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Errata for Inverse Problems with Microlocal Observations

Antti Kujanpää

January 24, 2022

(Jan 15, 2022) §3.1, page 7: The assumption n = 1 should be included in “Further, one checks
that the wave front set...” (cf. Figure 1).

(Jan 24, 2022) Article II, page 49: The equation after “Thus, for any (x, p) ∈ P+
M , we have

that...” should read

λ−1Fx,p(λ) −→
d

dλ

∣∣∣
λ=0

Fx,p(λ) = 0.

(Jan 24, 2022) Article II, page 49: Absolute values are missing in (B.120).
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1. Introduction

Inverse problems aim to recover a physical quantity (e.g. the density
distribution of tissues inside a human body) from inside a target object using a set
of data that is collected by making measurements in the exterior of the object. In
order to reconstruct an image of the interior, which cannot be accessed for direct
observations, one studies responses of the medium by probing it with various
physical fields, such as X-rays, electromagnetic fields or acoustic waves. Inverse
problems arise in many fields of science and technology, and a huge part of the
information we have about the world today was obtained by solving them. For
instance, we know about the interior structure of the Earth thanks to solving
seismic inverse problems, and the structure of DNA was determined by solving
X-ray diffraction problems. In today’s hospitals patients are often examined and
diagnosed using non-invasive techniques such as CT scans, MRIs and ultrasound
imaging, all of which rely heavily on the theory of inverse problems.

To introduce the standard framework, let us consider a physical model which
consists of a phase space and a set of equations that describe the physical reality. Let
uf stand for a solution (e.g. a wave, particle, moving object) to the equations with
some additional property f . An inverse problem related to the system studies a map
that links the controllable input f to an observationm(uf ) that captures information
about the solution uf . The map f �→ m(uf ) is interpreted as a mathematical model
for measurement data. Typically m(uf ) is a restriction of uf , or some derivatives of
it, to a subset or a topological boundary. The main objective in inverse problems
is to recover the underlying physical system, or some properties of it, from this
map. Determination of a potential, geometric structure or the conformal class of
the configuration space are perhaps the most common topics. In this dissertation
the main focus is on the uniqueness of such reconstructions.

As an example, let us consider an inverse problem related to a wave interacting
with a smooth compactly supported potential V on a bounded domain Ω ⊂ Rn.
Mathematically the wave is a function (or a distribution) u of space and time that
satisfies for (x, t) ∈ Ω× [0, T ] the equation

(1) (∂2
t −Δ+ V (x))u(x, t) = 0,

where Δ :=
∑n

j=1 ∂
2
j . For some fixed initial values u(x, 0) = φ(x), u(x, 0) = ψ(x)

the solution u = uf is uniquely defined by the Neumann boundary condition f =
N · ∇u|∂X×[0,T ], where N is the normal of ∂Ω, and we can consider the Neumann-
to-Dirichlet map ΛV : f �→ u|∂Ω×[0,T ] as the measurement data (i.e. m(uf ) :=
u|∂Ω×[0,T ]). The associated inverse problem of unique determinability is whether the
data determine the potential V :

Does ΛV = ΛW for two potentials V and W imply V = W?

A positive answer (for sufficiently large T > 0) to this particular question was given
by Rakesh and Symes in [RS88]. The result indicates that at least in theory it is
possible to recover the potential from active measurements on the surface of Ω by
sending waves into the region and observing scattering on the surface ∂Ω.
The object of study in the example above is the potential, whereas the kinematics

of waves are in fact trivial in the sense that waves propagate along straight lines at
a fixed constant speed. This is not always the case. As an example, let us consider
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the same model except (1) replaced with the equation

(2) (∂2
t − c2(x)Δ)u(x, t) = 0,

where c > 0 is a strictly positive function on Ω. The equation describes motion of
waves in isotropic inhomogeneous medium. In fact, the model can be taken as a
premise in ultrasound imaging with the quantity c(x) corresponding to the speed
of sound at x. Waves move along curved trajectories in the non-trivial geometry
described by the function c. Naturally, the objective is to reconstruct the function c
from the data. Let Λc stand for the data associated with (2). One asks the following:

Does Λc = Λc̃ for two strictly positive functions c and c̃ imply c = c̃?

A coarser analysis is often more convenient in applications, mainly because of
stability and shorter computation times. If one is interested in recovering the main
discontinuities in c it is enough to ask whether c− c̃ is sufficiently smooth. In fact,
the irregularities in c scatter quite well and in medical ultrasound imaging one
takes advantage of the echoes generated in this way. As an outcome, a
reconstruction is computed from the travel times and amplitudes of the reflections.
More sophisticated methods for the geometric problem exist. Unique
determination from travel times of waves is theoretically possible even for
smoothly inhomogeneous anisotropic materials. The techniques rely on Gaussian
beams. [KKL01]

There are, of course, many systems that are not uniquely determined by the
associated measurements. Non-trivial settings typically arise from reduction of data
or discretisation but may also be caused by geometric effects such as conjugate
points. For some models the uniqueness question remains unanswered. Perhaps
the most famous open problems are the anisotropic Calderón problem in dimension
n ≥ 3, the boundary rigidity problem on simple manifolds of dimension n ≥ 3, and
the backscattering problem for smooth potentials in Rn.

2. Lagrangian Distributions and Fourier Integral Operators

Some of the basic concepts of the theory of Fourier integral operators are briefly
discussed below. For more detailed introduction, see e.g. the textbooks [GS94],
[Dui96] and the original works [H7̈1], [DH72], [MU79], [GU81] and [GU93].

2.1. Symbols. Let M be a smooth n dimensional manifold. The standard symbol
class Sm(M × Rk) of order m ∈ R and type (1, 0) is defined as the space of
smooth functions a ∈ C∞(M × Rk) that satisfy the following condition: For every
(α, β) ∈ Nn × Nk and compact K ⊂ M there is C = CK,α,β,a > 0 such that

|∂α
x∂

β
ξ a(x, ξ)| ≤ C〈ξ〉m−|β|, ∀(x, ξ) ∈ K × Rk.

Moreover, we define S−∞(M × Rk) ⊂ C∞(M × Rk) by

S−∞(M × Rk) :=
⋂
m∈R

Sm(M × Rk).

The space Sm1,m2(M × (Rk1 \{0})×Rk2) is defined as functions a ∈ C∞(M × (Rk1 \
{0}) × Rk2) that satisfy the following: For every (α, β, γ) ∈ Nn × Nk1 × Nk2 and
compact K ⊂ M there is C = CK,α,β,γ,a > 0 such that

|∂α
x∂

β
ξ ∂

γ
ηa(x, ξ, η)| ≤ C〈ξ, η〉m1−|β|〈η〉m2−|γ|, ∀(x, ξ, η) ∈ K × Rk1 × Rk2 .
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2.2. The Wave Front Set. Let M be a smooth manifold of dimension n. The
singular support singsupp(u) of u ∈ D′(M) is defined as the set of points in M where
u fails to be smooth. That is; a point x0 ∈ M lies in singsupp(u) if and only if for
every φ ∈ C∞

c (M) with φ(x0) �= 0 we have that φu /∈ C∞
c (M). If x0 ∈ singsupp(u) we

say that u has a singularity at x0. A more detailed characterisation of singularities is
given by the Paley-Wiener theorem which implies that for a test function φ supported
in a coordinate neighbourhood U ⊂ M around x0 the product φu is smooth if and
only if

(3) |φ̂u(τθ)| ≤ O(τ−N),

for every N and θ ∈ Sn−1 as τ −→ ∞. Here the hat refers to the Fourier transform
in local coordinates. The wave front set WF (u) ⊂ T ∗M \{0} of u is defined via local
coordinatisations as the complement of all those cone axes (x0,R+θ) that satisfy (3)
for every N and some smooth local test function φ ∈ C∞

c (M) with φ(x0) �= 0. In
particular,

singsupp(u) = πWF (u),

where π : T ∗M → M is the canonical projection π(x, ξ) = x.

2.3. Distribution Classes. Let M be a smooth manifold of dimension n and let
σ ∈ ∧2T ∗M be the canonical 2-form, given in local canonical coordinates
x1, . . . , xn, ξ1, . . . , ξn by

σ = dξj ∧ dxj.

The cotangent bundle T ∗M equipped with σ is a symplectic manifold. A
submanifold Λ of T ∗M \ {0} is said to be Lagrangian if

TλΛ
σ = TλΛ, ∀λ ∈ Λ,

where TλΛ
σ stands for the symplectic orthogonal complement of TλΛ in TλT

∗M with
respect to σ. For example, the conormal bundle N∗V of a submanifold V ⊂ M is
Lagrangian.

A real-valued ϕ ∈ C∞(V ) on a conic neighbourhood V ⊂ M ×Rk is called a non-
degenerate phase function if it is positively homogeneous of degree 1 in ξ, does not
have critical points, and the condition dξφ(x0, ξ0) = 0 implies that the differentials

d ∂ϕ
∂ξ1

, . . . , d ∂ϕ
∂ξk

are linearly independent at (x0, ξ0). A Lagrangian distribution of

order r associated with a conic Lagrangian manifold Λ ⊂ T ∗M \ {0} is an element
u ∈ D′(M) that can be expressed as a locally finite sum of oscillatory integrals

(4) I(a, ϕ) :=

∫
Rk

eiϕ(x,ξ)a(x, ξ)dξ, a ∈ Sr−k/2+n/4(M × Rk),

where ϕ is a non-degenerate phase function such that the manifold Λ locally coincides
with

Λϕ := {(x, dxϕ(x, ξ)) : dξϕ(x, ξ) = 0}.
The class of such distributions is denoted by Ir(M ; Λ). An important subclass
of Ir(M ; Λ) is Ircl(M ; Λ) which is defined by requiring symbols in the oscillatory
integrals to be classical. In this dissertation it suffices to focus on such distributions
only.

A distribution u conormal to a submanifold W ⊂ M is by definition an element
of Ir(M ;N∗W ) for some r ∈ R ∪ {−∞}. In local coordinates (x′, x′′) ∈ Rn−dimW ×
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RdimW such that W coincides with the level set {x : x′ = 0} one derives the following
local expression:

(5) u(x) =

∫
Rn−dimW

eix
′·ξ′a(x, ξ′)dξ′, a ∈ Sr+dimW/2−n/4(M × Rn−dimW ).

For example, a delta-distribution

δ(x′) �
∫
R

eix
′ξ′dξ′, x = (x′, x′′) ∈ R× Rn−1

is conormal to W = {0} × Rn−1 and hence a Lagrangian distribution of degree
r = 1/2− n/4 with Λ = N∗W = {(0, x′′, ξ′, 0) : x′′ ∈ Rn−1, ξ′ ∈ R \ {0}}.
In some local coordinates x1, . . . , xn of M a Lagrangian manifold Λ has a local

representation of the form {(−dξH(ξ̃), ξ̃) : ξ̃ ∈ Rn} for some positively homogeneous

real-valued H and hence locally Λ = Λϕ for the phase function ϕ(x̃, ξ̃) = x̃j ξ̃j+H(ξ̃).
Applying the method of stationary phase yields

Î(a, ϕ)(ξ̃) = e−iH(ξ̃)A(ξ̃),

where

A(ξ̃) ≡ (2π)−
n+k
2 | detϕ′′|−1/2ei

π
4
sgnϕ′′

aμ(x(ξ̃), ξ(ξ̃)) mod Sm−n/4−1

and aμ, μ = m − k/2 + n/4 is the leading term in the asymptotic expansion a ∼∑∞
j=0 a

∞
μ−j. (See [GS94, §11]) For dϕ = | detϕ′′||dξ̃1 ∧ · · · ∧ dξ̃n| one derives the

following transition law:{
I(a, ϕ) = I(ã, ϕ̃)

Λϕ = Λϕ̃

microlocally near (x0, ξ0)(6)

⇒ aμ
√

dϕ = ei
π
4
(sgnϕ̃′′−sgnϕ′′)ãμ

√
dϕ̃ at (x0, ξ0)(7)

By the principal symbol of u ∈ Ir(M ; Λ) one usually refers to the highest order
term in the asymptotic expansion a ∼ ∑∞

j=0 a
∞
μ−j of a in the oscillatory integral

representation (4). However, such a definition depends on the associated local
representation in T ∗M . To define the principal symbol of u ∈ Imcl (M ; Λ) invariantly
one instead considers 1

2
-densities aμ

√
dϕ on Λ that obey the transition law (7).

This leads to the global definition of σ(u) as a section in the Keller-Maslov line
bundle Ω 1

2
(Λ) ⊗ L over Λ. The associated map from Imcl (M ; Λ)/Im−1

cl (M ; Λ) to the

smooth homogeneous of degree m + n/4 sections of the bundle Ω 1
2
(Λ) ⊗ L is

bijective.
In close relation to the standard Lagrangian distributions there is also the space

Ir1,r2(M ; Λ0,Λ1) ⊂ D′(M)

of distributions associated with a cleanly intersecting pair (Λ0,Λ1) of conic
Lagrangian manifolds Λ0,Λ1 ⊂ T ∗M \ {0}. The elements of Ir1,r2(M ; Λ0,Λ1) are
defined as locally finite sums of distributions in Ir1+r2(M ; Λ0) + Ir2(M ; Λ1) and
oscillatory integrals∫

Rk1+k2

eϕ(x,ξ,η)a(x, ξ, η)dξdη,

a ∈ Sr1+r2− k1+k2
2

+n
4
, −r2+

k2
2 (M × (Rk1 \ {0})× Rk2),
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where ϕ(x, ξ, η) is a multiphase near a point in Λ0 ∩ Λ1 such that the functions
ϕ(x, ξ, η) and ϕ(x, ξ, 0) parametrise the manifolds Λ0 and Λ1, respectively.
Microlocally away from Λ0 ∩ Λ1, each element of Ir1,r2(M ; Λ0,Λ1) belongs to
Ir1+r2(M ; Λ0) + Ir2(M ; Λ1).

2.4. Fourier Integral Operators. Let M and N be smooth manifolds. A
submanifold Λ̃ ⊂ T ∗M × T ∗N is called a canonical relation if the manifold

Λ̃′ := {(x, ξ; y, η) : (x, ξ; y,−η) ∈ Λ̃}
is Lagrangian with respect to the canonical form σM + σN , or equivalently, if Λ̃ is
Lagrangian with respect to the twisted symplectic form σM −σN . A Fourier integral
operator (FIO) of order m associated with the conic canonical relation Λ̃ is defined
as an operator F : C∞(N) → D′(M) with a Schwartz kernel kF that is an element of
Im(M ×N ; Λ̃′). For a closed cone Γ ⊂ T ∗Y \ {0} that does not meet the projection
WF ′

N(F ) := π∗
NWF (kF ), πN(x, y) := y, the domain extends to E ′

Γ(N) and further
to D′

Γ(N) if the operator is properly supported. An operator with M = N and

Λ̃ = diag(T ∗M \ {0}) is called a pseudo-differential operator. Another important
class of Fourier integral operators is the one associated with homogeneous canonical
transformations between conic neighbourhoods.

Analogously to the standard FIOs there is also the class of operators corresponding
to a cleanly intersecting pair (Λ1,Λ2) of canonical relations, defined by assuming
that the Schwartz kernels are Lagrangian distributions associated with the pair
(Λ′

1,Λ
′
2). Such operators were first studied in [MU79], [GU81] by Melrose, Uhlmann

and Guillemin in order to establish calculus for parametrices of pseudo-differential
operators. In fact, it was shown by the authors that a parametrix of an operator of
real principal type is associated with the pair (Δ,ΛP ) where Δ = diag(T ∗M \ {0})
and ΛP is a characteristic flow-out canonical relation, that is, the collection of pairs
of characteristic covectors in a same bicharacteristic.

For example, the forwards propagating parametrix for P := ∂
∂x1 is

E(x; y) = H(x1 − y1)δ(x2 − y2) . . . δ(xn − yn).

One checks that the bicharacteristic through a characteristic covector (x1, x′′; 0, ξ′′)
is the line R× {(x′′, 0, ξ′′)}. Hence,

ΛP = {(x1, x′′; 0, ξ′′ | y1, x′′; 0, ξ′′) : x′′ ∈ Rn−1, ξ′′ ∈ Rn−1 \ {0}, y1, x1 ∈ R}.
2.5. Operator Calculus. Composition calculus for the standard Fourier integral
operators was developed in [H7̈1] and [DH72] by Hörmander and Duistermaat. The
main requirements for the composition of two operators with canonical relations
Λ1 ⊂ (T ∗M×T ∗N)\{0, 0}, Λ2 ⊂ (T ∗N×T ∗Z)\{0, 0} to be valid in the framework
are that the projection

(T ∗M × diag(T ∗N)× T ∗Z) ∩ (Λ1 × Λ2) → T ∗M × T ∗Z

is injective proper mapping and the Cartesian product Λ1 × Λ2 meets the manifold
T ∗M × diag(T ∗N) × T ∗Z transversally. Hence, the theory is often referred to as
transversal intersection calculus.

Provided that the conditions are satisfied, composing two Fourier integral
operators F1 and F2 with canonical relations Λ1 and Λ2 yields a new Fourier
integral operator F1 ◦ F2 which admits as a canonical relation the manifold

Λ1 ◦ Λ2 := {(x, ξ; z, ζ) : ∃(y, η); (x, ξ; y, η) ∈ Λ1, (y, η; z, ζ) ∈ Λ2}.
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Moreover, the principal symbols of the operators are connected via the formula

σ(F1 ◦ F2)(x, ξ; z, ζ) =
∑

σ(F1)(x, ξ; y, η)σ(F2)(y, η; z, ζ),

where the sum is taken over those elements (y, η) in T ∗N that satisfy both
(x, ξ, y, η) ∈ Λ1 and (y, η, z, ζ) ∈ Λ2. By viewing a Lagrangian distribution as a
Fourier integral operator with trivial domain one obtains calculus also for Fourier
integral operators acting on Lagrangian distributions. As pointed out earlier, the
identities above were generalised in [MU79], [GU81] for operators with two cleanly
intersecting canonical relations.

2.6. Propagation of Singularities. The composition identities above make it
possible to compute singularities of solutions for partial differential equations.
Provided that P is a pseudo-differential operator of real principal type and of
order r, along with a Lagrangian manifold Λ ⊂ T ∗M that meets the characteristic
set of P transversally and hits each bicharacteristic of P at most a finite number of
times, a solution u of the equation

Pu = f, f ∈ Imcomp(M ; Λ)

can be written (see [GU93, Proposition 2.1]) in the form

(8) u = Ef + u0 ∈ Im−r+1/2(M ; Λ,ΛP ◦ Λ),
where u0 stands for a smooth residual and E is a parametrix of P which is associated
with the pair Δ,ΛP (Δ := diagT ∗M \{0}) of canonical relations. Moreover, we have

σ(u)(x, ξ) =
∑

(x,ξ;y,η)∈ΛP

σ(E)(x, ξ; y, η)σ(f)(y, η)

for (x, ξ) ∈ (ΛP ◦ Λ) \ Λ. Consequently, the principal symbol of u on ΛP ◦ Λ, and
hence on WF (u) \ Λ, is completely described by the symbols of E and f . In fact,
the principal symbol of u along ΛP ◦Λ is obtained (see [MU79, Proposition 5.4] and
[DH72, Theorem 6.1.1]) by solving the first transport equation

(9) (−iLHp + c)σ(u)|ΛP ◦Λ = σ(f)|ΛP ◦Λ,

thus implying invariance of the wave front set WF (u) along bicharacteristics (i.e.
characteristic integral curves of Hp) in between intersections with the manifold Λ.
Above, p stands for the principal symbol of P . If (x, ξ) ∈ WF (u) \Λ and r �→ Ξ(r)
is a bicharacteristic of P such that Ξ(r0) = (x, ξ), then

Ξ(r) ∈ WF (u)

holds for every r within any interval I that contains r0 and satisfies ΞI ∩ Λ = ∅.
In conclusion, the source f generates or annihilates singularities which elsewhere
propagate according to the characteristic flow. This phenomenon is very useful as
it can be used for transporting signals within the solution u.

For an elliptic operator P no propagation from WF (f) takes place in the wave
front set of a distribution u that solves Pu = f . That is; the singularities are static.
In fact,

WF (u) = WF (f).

However, some elliptic systems are closely related to non-elliptic ones. For
instance, a CGO solution u(x, τ) = eiτηv(x, τ) for the conductivity equation admits
propagation within the Fourier transform v̂(x, t). This was used by Greenleaf,
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Lassas, Santacesaria, Siltanen and Uhlmann in [GLS+18] for developing a new
method for stroke imaging.

3. Applications in Inverse Problems

3.1. Potential Scattering. Potential scattering in Euclidean geometry is described
by

(∂2
t −Δ− V (x))u(x, t) = 0, (x, t) ∈ Rn+1(10)

u(x, t) = δ(t− x · θ), for t � 0,(11)

or, alternatively, by the frequency domain equivalent

(ω2 +Δ+ V (x))û(x, ω) = 0,(12)

ûin(x, ω) = e−ix·θω,(13)

equipped with the Sommerfeld radiation condition. Here Δ refers to the Euclidean
Laplacian. A standard approach in the setting (10-11) is to write the scattered wave
usc(x, t) := u(x, t)− δ(t− x · θ) in the form

usc =
N∑
j=0

uj + rN ,

where the terms get more regular as N grows. For smooth V the method works for
each N and one checks by substitution that the equations above are satisfied for

u0(x, t) = EV (x)δ(t− x · θ), uk(x, t) = EV uk−1(x, t), k = 1, 2, 3, . . . ,(14)

where E ∈ I−3/2(Rn; diag(T ∗Rn \ {0}),Λ�) with

Λ� := {(x+ σs, t+ s;−ωσ, ω | x, t;−ωσ, ω) :

σ ∈ Sn−1, ω ∈ R \ {0}, s ∈ R, (x, t) ∈ Rn+1}
is a future-propagating parametrix of the wave operator. Perhaps the most common
approach is to analyse the first approximation

usc(x, t) ≈ EV (x)δ(t− x · θ),
which is valid also for less regular potentials. In view of (8),

WF (EV δ(t− x · θ)) ⊂ WF (V δ(t− x · θ)) ∪ Λ� ◦WF (V δ(t− x · θ)).
Further, one checks that the wave front set WF (V δ(t−x ·θ)) lies in (supp(V )×R×
Rn+1) and meets the characteristic manifold {(x, t, ξ, ω) ∈ T ∗Rn+1 \ {0} : ω2 = |ξ|2}
only in Q := {(x, x · θ;±ωθ, ω) : x ∈ supp(V ), ω ∈ R \ {0}} (see [Dui96, Theorem
1.3.6]). Thus,

WF (EV δ(t− x · θ)) \ (supp(V )× R× Rn+1) ⊂ Λ� ◦Q
= {(x± sθ, x · θ + s;∓θω, ω) : x ∈ supp(V ), s ∈ R}.

The two signs correspond to peak scattering and backscattering. The singularities
in peak scattering move forwards along with the initial wave in direction θ, whereas
backscattering corresponds to the reflected singularities (echoes) that propagate in
the opposite direction. It follows from (9) that the amplitude in peak scattering is
essentially the X-ray transform of V along the trajectories. In the frequency domain
the propagating singularities manifest as slower decay, and hence non-trivial far-field
asymptotes in these directions.
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x

t

supp(V )× R

Backscattering

Peak scattering

Figure 1. An schematic illustration of potential scattering in R1+1.
The peak scattering and backscattering are illustrated in blue and
red, respectively. The dashed arrows correspond to the backwards
propagating bicharacteristic curves which lie in Λ� ◦ Q but carry no
singularities due to the initial condition u = δ(t − x · θ), t � 0.
The dotted line in black stands for {(x, x · θ) : x ∈ Rn}, that is, the
(singular) support of the initial wave.

Inverse scattering, or more precisely, inverse potential scattering refers to the
theory of recovering the potential or some features of it from scattering effects at a
distance. Data are described using the scattering kernel, given in n = 3 by

(15) αV (s, θ, ω) :=
1

2π

∫
x·θ=τ

∂tu(x, τ − s, ω)dSx, (s, θ, ω) ∈ R× S2 × S2

(see e.g. [RU14], [Uhl01] ) where τ > 0 is large. The backscattering data is defined as
αV (s, θ,−θ). Alternative definitions exist. One may, for example, use the scattering
amplitude

aV (λ, θ, ω) =

∫
R

e−isλαV (s, θ, ω)ds.

The recovery of singularities (e.g. discontinuities, peaks) in particular is very
effective and a well studied topic in the field. See the works by Reyes and Ruiz
[RR12], Barceló, Faraco, Ruiz and Vargas [BFRV10], Ruiz and Vargas [RV05], Ola,
Päivärinta and Serov [OPS01], Päivärinta, Serov and Somersalo [PSS94], Greenleaf
and Uhlmann [GU93], Päivärinta and Somersalo [PS91], Joshi [Jos98], Päivärinta
and Serov [PS98]. Quite surprisingly, it remains unknown whether a smooth
potential is uniquely determined by the backscattering data. For angularly
controlled potentials the question was answered by Rakesh and Uhlmann [RU14].
The inverse backscattering problem has also been studied for other models. See,
for example, the works on the acoustic equation by Stefanov and Uhlmann [SU97]
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and Wang [Wan98b], [Wan98c] and on isotropic Maxwell’s equations by Wang
[Wan98a].

In Article I peak scattering is considered for random potentials. For related studies
we refer to the works by Lassas, Päivärinta and Saksmann [LPS08], Helin, Lassas
and Päivärinta [HLP17], and Li, Liu and Ma [LLM21], [LLM19]

3.2. Radon Transforms. The theory of Fourier integral operators plays an
important role in various reconstruction techniques. One approach is to apply the
transport phenomenon (9), or even the lower order asymptotics, to obtain an
integral transform of the source along the characteristic flow. This connects the
theory to generalised Radon transforms of the form

R(u)(x) =

∫
Lx

u(y)f(x, y)dy, x ∈ X, y ∈ Y,

where X and Y are topological spaces, the integral is considered in the sense of
distributions and Lx is a submanifold of Y . A special yet very important case is
when each Lx is a curve or even a geodesic. Such an operator is called a generalised
X-ray transform as it extends the concept of the standard euclidean X-ray,

(16) X (u)(x, θ) =

∫
lx,θ

u(y)dy.

Here lx,θ stands for the line x+ Rθ through x ∈ θ⊥.
Properties of Radon transforms, especially under the Bolker assumption (See

[Qui94, Definition 2.1]) are well studied. The main topics are injectivity, inversion
formulas and determination of range, kernel and support in specific function
spaces. For an introduction, see [Qui06a]. Range, support and kernel theorems
have been developed by various authors including Helgason [Hel81], [Hel11],
Quinto [Qui82], [Qui08], [Qui06b], Richter [Ric86], [Ric90], Gonzalez [Gon90],
Kurusa [Kur91], Kakehi [Kak92], Boman [Bom92], [Bom21], Boman and Quinto
[BQ93], Zhou and Quinto [ZQ00], and Estrada and Rubin [ER16]. On inversion
formulas and injectivity we emphasize works by Helgason [Hel65], [Hel07] Boman
[Bom90] , [Bom12], Rouvière [Rou01], [Rou06], Grindberg and Rubin [GR04],
along with studies on X-ray transforms by Greenleaf and Uhlmann [GU89],
Gonzalez [Gon87], Paternain, Salo, Uhlmann and Zhou [PSUZ19], Au Yeung,
Chung and Uhlmann [AYCU19], Stefanov, Uhlmann and Vasy [SUV18], Palacios,
Uhlmann and Wang [PUW18], Pestov and Uhlmann [PU04]. For a study on light
ray transform, see the study by Lassas, Oksanen, Stefanov and Uhlmann in
[LOSU20]. See also the stability estimates by Caro, Dos Santos Ferreira and Ruiz
[CDSFR14].

A generalised Radon transformR is usually analysed by studying microlocally the
operator RtR, where Rt is the transpose of R. A standard question is whether RtR
is an elliptic operator and hence stably invertible modulo a smoothing operator. In
some cases the inverse operator is known. For the standard Radon transform

R(φ)(s, θ) =

∫
Γs,θ

φ(x)dx, (s, θ) ∈ R× Sn−1, Γs,θ := {x ∈ Rn : x · θ = s},

that is,

R(s, θ; x) = δ(s− x · θ), (s, θ, x) ∈ R× Sn−1 × Rn,
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we have the Radon inversion formula

cnΔ
n−1
2 RtR = I.

This is essentially what CT devices are based on. In fact, the standard Radon
transform can be constructed by integrating (16). After taking several X-ray images
in various angles the formula (or a discretisation of it) can be applied to compute
a cross-section of the target. In Article I the Radon inversion formula is applied
to recover autocorrelations of a random potential. The Radon transform is used
also in scattering theory. See [Uhl01] and references therein in the framework of
Lax-Phillips.

3.3. Travel Time Reconstructions and Non-linear Inverse Problems. Let
us consider the setup of Section 2.6 for a real principal type operator P with a
characteristic flowout ΛP and a Lagrangian source f associated with a manifold Λ.
In addition to the transport phenomenon for symbols, studying the manifold ΛP ◦Λ
itself provides information about the underlying system, especially in the form of
travel times of characteristic curves. This is often more natural approach to take
if instead of the source one is interested in determining the geometry that governs
the characteristic flowout. A common approach in geometric inverse problems is to
vary Λ in the composition ΛP ◦Λ by controlling the singularities of the source f and
study on a submanifold (or a boundary) N the microlocal relation

f �→ WF (u|N) ⊂ (ΛP ◦ Λ)|TN ,

or even the local counterpart

(17) f �→ singsupp(u|N) ⊂ πM

[
(ΛP ◦ Λ)|TN

]
,

where πM : T ∗M → M stands for the canonical projection πM(x, ξ) := x and

(ΛP ◦ Λ)|TN := {(x, ξ|TN) : x ∈ N, (x, ξ) ∈ ΛP ◦ Λ} ⊂ T ∗N.

For many physically relevant P such as the Lorentzian Laplace-Beltrami operator
the associated bicharacteristic curves follow geodesics in the base manifold, thus
providing information on the Riemannian or Lorentzian distances in form of travel
times. In static geometries knowing the distances between the boundary and interior
points is shown (See [KKL01] and references therein) to determine the metric. In
fact, the method is applied in Article III. Analogously, in a globally hyperbolic
Lorentzian setting one reconstructs the metric from relative travel times of null-
geodesics which can be derived from earliest light observations. This was shown by
Kurylev, Lassas, and Uhlmann:

Theorem 3.1. [KLU18, Theorem 1.2] Let (Mj, gj), j = 1, 2 be two open, C∞-
smooth, globally hyperbolic Lorentzian manifolds of dimension n ≥ 0, μ̂ : [−1, 1] →
Mj be smooth time-like paths, and p±j = μ̂j(s±). Let the observation sets Vj ⊂ Mj

be neighbourhoods of μ̂j[−1, 1] and Wj ⊂ Mj be relatively compact sets such that
Wj ⊂ J−(p+j ) \ I−(p−j ). Let EVj

(Wj) be the families of the earliest light observations
sets with source points at Wj. Assume that there is a conformal diffeomorphism
Φ : V1 → V2 such that Φ(μ̂1(s)) = μ̂2(s), ∀s ∈ [−1, 1] and

Φ̃(EV1(W1)) = Φ̃(EV2(W2)),

where Φ̃ is the power set extension of Φ. Then there is a diffeomorphism Ψ : W1 →
W2 such that the metric Ψ∗g2 is conformal to g1 and Ψ|W1∩V1 = Φ|W1∩V1.
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•

•

W

x

Earliest light ob.

L+(x)

Figure 2. Schematic illustration of the earliest observation of light
from x ∈ W on a time-like curve.

In the reference this is referred to as the inverse problem for passive measurements.
The result plays an important role in Article II. The data EV (W ) (j omitted) above
consist of detecting the first (w.r.t. the intrinsic causality) intersections between the
neighbourhood V and the flowouts L+

x = expx(L
+
xM) of cones

L+
xM := {v ∈ TxM \ {0} : g(v, v) = 0, v future-pointing },

with a variable apex x in the region W ⊂ M that is endowed with “unknown”
topology and geometry. This is essentially the same as (17) for the Lorentzian
Laplace-Beltrami operator

P = �g, �gφ(x) :=
1√| det(g(x))|∂j(

√
| det(g(x))|gjk(x)∂kφ(x)),

N = V , point sources f ∈ Im(M ; Λ), Λ = T ∗
xM , x ∈ W with WF (f) = T ∗

xM , and
associated family of solutions u with smooth or zero initial data outside the causal
future of x. The main result for passive measurements says that the topology and
conformal type of the metric in the target is identical up to a diffeomorphism for a
pair of manifolds with identical data. A subsequent result for broken ray geometry
was derived by Hintz and Uhlmann in [HU19, Theorem 1.2].

In addition to the passive measurement setup, Kurylev, Lassas, and Uhlmann
studied in [KLU18] the so called active measurements

f �→ singsupp(u|V )
where u solves the nonlinear equation

(18) �gu(x) + a(x)u(x)2 = f(x)

together with zero initial data outside the causal future of supp(f). They developed
a method that applies nonlinearity of the equation to generate microlocally away

from certain manifolds the wave equations �guα ≡ δ
(r)
x with controllable point

sources δ
(r)
x for some of the coefficients uα in the multivariate perturbation series

u(x) ≈ uα(x)ε
α associated with sources of the form f = εjfj. Thus, it follows from

the result for passive measurements that the space W and the conformal class of g|W
on it are determined up to a diffeomorphism by the data of active measurements.
The statement of the result is as follows:
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Theorem 3.2. [KLU18, Theorem 1.5] Let (M (j), g(j)), j = 1, 2 be two smooth,
globally hyperbolic Lorentzian manifolds of dimension 1+3 that are represented in the
form M (j) = R×N (j) with a metric of the form g(j)(t, y) = −β(j)(t, y)dt2+κ(j)(t, y),
where κ(j) is a Riemannian metric on N (j).2 Let μ̂ : [−1, 1] → (−∞, T0) × N (j) be
smooth time-like paths, p+j = μ̂(s+), p

−
j = μ̂(s−), where −1 < s− < s+ < 1, and

Vj ⊂ M (j) are neighbourhoods of μ̂[−1, 1].
Let LVj

be source-to-solution maps for the wave equation (18) on manifolds

(M (j), g(j)) with nowhere vanishing smooth functions aj : M (j) → R, j = 1, 2.
Assume that there is a diffeomorphism Φ : V1 → V2 such that Φ(p−1 ) = p−2 and
Φ(p+1 ) = p+2 and the source-to-solution maps satisfy

((Φ−1)∗ ◦ LV1 ◦ Φ∗)f = LV2f

for f ∈ W, where W is a neighbourhood of the zero function in C6
c (V2).

Then there is a diffeomorphism Ψ : I(p−1 , p
+
1 ) → I(p−2 , p

+
2 ) and the metric Ψ∗g(2)

is conformal to g(1) in I(p−1 , p
+
1 ). Moreover, (Ψ∗g(2))|V1 = g(1) |V1.

The techniques used for active measurements are based on the microlocal
Fourier integral operator calculus. An important observation is that the product
v1v2 of distributions vj ∈ Im(N∗Hj), j = 1, 2 conormal to transversally intersecting
manifolds Hj has a wave front set not only in N∗Hj, j = 1, 2 but also in
N∗(H1 ∩ H2), given that the singular supports meet. By adding more elements to
the product one constructs a distribution that microlocally away from some
Lagrangian submanifolds equals a point-source. The non-linear term a(x)u(x)2 in
the equation above generates such products into the approximative equations
(higher order linearisations) by substituting the perturbation series as an ansatz in
(18). In fact, one derives for any equation of the form Pu + Q(u, u) = εjfj with
quadratic Q(u, u) the following recursive identities

u =
N∑

m=1

∑
α∈{1,...,k}m

uα εα(19)

Puj = fj,(20)

Puj,k = Q(uj, uk)(21)

· · ·(22)

Puμ =
∑

(ν,ρ)=μ

Q(uν , uρ).(23)

Contrary to the linear case, the quadratic interaction terms on the right provide a
way to generate additional controllable sources. The construction above is algebraic,
whereas the actual analysis requires additional assumptions on regularity.

In addition to the works mentioned above, the method has recently been applied
to various non-linear models. This includes Einstein scalar field equations studied
by Kurylev, Lassas, Oksanen and Uhlmann [KLOU18], Semilinear Lorentzian wave
equations by Lassas, Uhlmann and Wang [LUW18], and quadratic derivative
nonlinear wave equations by Wang and Zhou [WZ19]. See [UZ21] for more details
on recent progress on the topic. In Article II a similar scheme is adopted to study
the relativistic Boltzmann equation with a source. In that setting the non-linearity

2The existence of such representations follow from the global hyperbolicity.
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arises from a quadratic integral operator, whereas the linear part P corresponds to
a non-vanishing vector field. The model has points of resemblance to transport
equations such as the ones studied by McDowall [LM08], [McD04], Langmore and
McDowall [McD05], Mcdowall, Stefanov and Tamasan [MST10], and Choulli &
Stefanov [CS99].

4. Overview of the Articles

4.1. Article I. Let � stand for the Euclidean wave operator � := ∂2
t −Δ on Rn,

where Δ =
∑n

j=1 ∂
2
j , the Laplacian in Rn. The term “generalised function” (on X)

is adopted for elements of D′(X) to avoid confusion with probability distributions.
We study generalised functions u of the form

(�− V (x))u(x, t,Θ) = 0(24)

u(x, t,Θ) =
k∑

j=1

δ(t− x · θj) + usc(x, t,Θ),(25)

usc(x, t,Θ) = 0, for t � 0,(26)

where Θ = (θ1, . . . , θk) ∈ (Sn−1)k, x ∈ Rn, t ∈ R, and V (x) = V (x, ω) is a random
potential in H2(Rn), that is, a measurable function ω �→ V (·, ω) between a
probability space Ω and the Sobolev space H2(Rn) ⊂ L2(Rn) endowed with the
Borel σ-algebra. Such solutions describe interaction between k plane waves and a
single realisation of the random potential V (x). As a simple example of V (x),
consider

V (x) =

∫
Rn

k(x, y)W (y)dy,

where W is white noise and k(x, y) is a convenient Schwartz kernel. The model is
compatible with a randomly changing potential that varies relatively slowly
compared to the speed of waves (e.g. the speed of light). The scattered wave usc

on the opposite side of the target is known as forward scattering or peak scattering
and the amplitude of the main singularity in it is essentially the X-ray transform of
the potential. This correspondence, typically deduced for smooth V (x) and a
single incident wave, can be extended to the setting above as shown by us in the
article. Thus, if one places a detector on the opposite side of the target for each
incident wave then a collection of k X-ray images of the potential in that
particular state is captured as a single measurement. We are interested in studying
correlations in a large dataset of such measurements in several angles and random
states of the potential. That is; we let the potential evolve randomly while taking
samples in various angles. Under some a priori assumptions on ergodicity the data
collected in this way give us the correlations

(x1, . . . , xk, θ1, . . . , θk) �→ E

(∫
x1+Rθ1

V (x)dx · · ·
∫
xk+Rθk

V (x)dx

)
between X-ray transforms. In Article I we first show that these correlations can be
used to reconstruct the autocorrelations

Mk(x1, . . . , xk) = E(V (x1) · · ·V (xk)) ∈ D′(Rkn),

given that the potential satisfies

V ∈ H2(Rn) ∩ L∞(Rn) almost surely
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and there is a compact K ⊂ Rn such that supp(V ) ⊂ K almost surely. The proof
is based on the Radon inversion formula. The approach is constructive in the sense
that it gives an actual algorithm for computing the moments. The correlations are
then applied to show that the data uniquely determine the law V∗P if an additional
condition on exponential boundedness is satisfied.

The main point in the article is to develop a method of applying peak scattering
(X-ray) to analyse statistical behaviour of random potentials. The method is novel
and extends the concept of tomography to probability distributions. As explained
above, the technique can be used for recovering the distribution completely. The
study is a starting point for probabilistic analysis of similar systems with more
general FIO transforms such as generalised Radon transforms.

4.2. Article II. The relativistic Boltzmann equation with a source,

(27) Xu(x, p)−Q[u, u](x, p) = S(x, p),

is studied on the bundle PM of causal tangent vectors (x, p) of a globally hyperbolic
Lorentzian manifold (M, g). The operator X above stands for the geodesic vector
field, given by

Xu(x, p) := ∂tu(γx,p(t), γ̇x,p(t))
∣∣
t=0

where γx,p refers to the geodesic that satisfies (γ̇x,p(0), γ̇x,p(0)) = (x, p) for (x, p) ∈
TM . In the Minkowsky space-time one derives Xu(x, p) = ∂tu(x + tp, p)

∣∣
t=0

. The
operator Q is a quadratic integral operator which takes the form

Q[v, w](x, p) :=

∫
Σx,p

v(x, p)w(x, q)− v(x, q′)w(x, p′)A(x, p, q, p′, q′)dV,(28)

Σx,p := {q, p′, q′ ∈ PxM
4 \ {0} : p+ q = p′ + q′}(29)

where A is a convenient scattering kernel. Notice that the condition defining Σx,p

corresponds to the conservation of 4-momentum (i.e. energy-momentum). The
solution u represents the density of a great number of particles moving along
geodesics and interacting via elastic collisions. The particle interactions are
described by Q which splits into two components (gain and loss) according to the
two terms within the integral. The term S can be interpreted as an external source
of energy that emits particles into the system. Although the model above arises
from astronomy, there are also inhomogeneous, possibly time-dependent mediums
that obey the Lorentzian geometry in smaller scales. In such a framework
gravitation is substituted by properties of matter (cf. bending of light in
inhomogeneous medium) and it is reasonable to predict that such geometric
models are essential for the kinetic theory of inhomogeneous solids.

In the article we show that the source-to-solution map

S �→ u|L+V

which takes a regular source S of time-like particles into the corresponding solution
of (27) on the future-pointing light-like bundle L+V of a known open set V ⊂
M is well defined and uniquely determines the Lorentzian metric g in the region
I+(z1) ∩ I−(z2) between two chronologically related points z1, z2 ∈ V . The result
shows that it is possible to reconstruct the geometry (including the conformal factor)
of a Lorentzian space-time from a distance by sending particles with mass into the
region and observing light (photons) that scatters in the collisions. In solids this
could also refer to using quasiparticles as an input.
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4.3. Article III. The third article studies a specific radiation phenomenon arising
from electromagnetism in medium. We mention the works by Ola, Päivärinta and
Somersalo [OPS93], Kurylev, Lassas and Somersalo [KLS06], McDowall [McD00],
Joshi and McDowall [JM00], Liu, Rondi and Xiao [LRX19] and references therein
as some works related to the topic. See the article for more references.

It is well known that a particle in material can move faster than electromagnetic
waves. For a charge carrier, such as an electron, this leads to emission of light known
as Cherenkov radiation or Vavilov-Cherenkov radiation. In experimental physics the
phenomenon is applied in detection of charged particles by observing scattering in
homogeneous dielectric material such as water. The mathematical model in that
setting is simple from a geometric point of view and mainly reduces to solving the
euclidean wave equation

(∂2
t − k2Δ)u = f,

(or the associated Helmholtz equation) where k > 0 is a constant and the source
f is conormal to the world line {(z + tv, t) : t ∈ R}, z, v ∈ R3 of the charge
carrier. However, in presence of anisotropic inhomogeneities the system becomes
rather complicated even in the context of Maxwell’s equations. This is due to the
fact that the fields in general do not obey the standard wave equation of any simple
form if the transformation

(E(x, t), H(x, t)) �→ (D(x, t), B(x, t)) = (ε(x)E(x, t), μ(x)B(x, t))

between the standard and auxiliary fields are described by (1,1)-tensors

ε(x) = εkj (x)∂k ⊗ dxj

and
μ(x) = μk

j (x)∂k ⊗ dxj

instead of scalar functions. However, assuming the tensors are conformally
equivalent simplifies the system, as shown in [KLS06] by Kurylev Lassas and
Somersalo. For a moving charge carrier one derives the wave equation⎛⎝�g 0 0

0 �g 0
0 0 �g

⎞⎠⎛⎝E1

E2

E3

⎞⎠+

⎛⎝F 1
1 F 1

2 F 1
3

F 2
1 F 2

2 F 2
3

F 3
1 F 3

2 F 3
3

⎞⎠⎛⎝E1

E2

E3

⎞⎠ =

⎛⎝S1

S2

S3

⎞⎠ ,(30)

where F k
j , j, k = 1, 2, 3, are first order operators, each Sj, j = 1, 2, 3, is conormal to

the world line of the particle and

�g := ∂2
t − gjk∂j∂k,

(i.e. �g = ∂2
t −Δg with a different choice of F k

j ) for a Riemannian metric g which
is conformally equivalent to the tensors ε and μ.

It is relevant to ask if Cherenkov radiation is generated also in a system of the
form (30). A positive answer to this question is given in Article III. We show that
in regions where a moving singularity exceeds the phase velocity of the material
the source S = Sjdx

j generates a cone of singularities that propagate in the field
E = Ejdx

j along the characteristic flowout of the scalar operator ∂2
t − gjk(x)∂j∂k.

This implies that whenever the moving source breaks the phase velocity barrier (cf.
sound barrier) a phenomenon similar to Cherenkov radiation takes place in the level
of singularities.

Since the bicharacteristics of a wave operator transport covectors along
geodesics, a natural question is whether knowing the radiation on a boundary of a
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bounded region determines the metric g inside it. More precisely, we ask the
following: For a bounded open set W ⊂ R3 with a smooth boundary ∂W is it
possible to recover the metric g inside U ⊂ W from the set of data that is collected
by sending linearly moving point-like singularities (particles or quasiparticles) into
U at various velocities while observing scattered singularities on a part of the
boundary? As the main result of Article III we show that under some natural,
physically relevant a priori conditions the metric in U is in fact uniquely
determined by the data. The result covers even more general class of models,
including some with complicated polarisations. In comparison to a stationary
point source in space-time, Cherenkov radiation is mathematically more
challenging, mainly because a single particle creates a radiation pattern that is
simultaneously linked to many spatial points in the trajectory of it. However, by
applying geometric arguments and data related to several incident angles we show
that the distance to the boundary from any point in U can be derived.
The result is perhaps the first proposal for using Cherenkov radiation to

reconstruct Riemannian structure of inhomogeneous anisotropic medium. Other
existing methods (RICH, CLI) not only differ by purpose of use but rely strongly
on flatness of the geometry.

4.4. Author’s Contribution.

Article I: Antti T. P. Kujanpää has substantial contribution to the research and the
main contribution to writing of the article.

Article II: Antti T. P. Kujanpää has substantial contribution to the research and writing
of the article.

Article III: As the only author Antti T. P. Kujanpää has the main contribution to the
research and writing of the article.
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[PSS94] Lassi Päivärinta, Valeri S. Serov, and Erkki Somersalo. Reconstruction of singularities
of a scattering potential in two dimensions. Adv. in Appl. Math., 15(1):97–113, 1994.

[PSUZ19] Gabriel P. Paternain, Mikko Salo, Gunther Uhlmann, and Hanming Zhou. The
geodesic X-ray transform with matrix weights. Amer. J. Math., 141(6):1707–1750,
2019.

[PU04] Leonid Pestov and Gunther Uhlmann. On characterization of the range and inversion
formulas for the geodesic X-ray transform. Int. Math. Res. Not., (80):4331–4347, 2004.

[PUW18] Benjamin Palacios, Gunther Uhlmann, and Yiran Wang. Quantitative analysis of
metal artifacts in X-ray tomography. SIAM J. Math. Anal., 50(5):4914–4936, 2018.

[Qui82] Eric Todd Quinto. Null spaces and ranges for the classical and spherical Radon
transforms. J. Math. Anal. Appl., 90(2):408–420, 1982.

[Qui94] Eric Todd Quinto. Radon transforms satisfying the Bolker assumption. In 75 years of
Radon transform (Vienna, 1992), Conf. Proc. Lecture Notes Math. Phys., IV, pages
263–270. Int. Press, Cambridge, MA, 1994.



19

[Qui06a] Eric Todd Quinto. An introduction to X-ray tomography and Radon transforms. In
The Radon transform, inverse problems, and tomography, volume 63 of Proc. Sympos.
Appl. Math., pages 1–23. Amer. Math. Soc., Providence, RI, 2006.

[Qui06b] Eric Todd Quinto. Support theorems for the spherical Radon transform on manifolds.
Int. Math. Res. Not., pages Art. ID 67205, 17, 2006.

[Qui08] Eric Todd Quinto. Helgason’s support theorem and spherical Radon transforms. In
Radon transforms, geometry, and wavelets, volume 464 of Contemp. Math., pages
249–264. Amer. Math. Soc., Providence, RI, 2008.

[Ric86] F. Richter. On the k-dimensional Radon-transform of rapidly decreasing functions. In
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