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Institute for Atmospheric & Earth System Research (INAR) / Physics

University of Helsinki

Docent Martha Arbayani Zaidan, Ph.D.

Institute for Atmospheric & Earth System Research (INAR) / Physics

University of Helsinki

School of Atmospheric Sciences

Nanjing University

Reviewers: Professor Jean Sciare, Ph.D.

Climate and Atmosphere Research Center

Cyprus Institute

Docent Santtu Mikkonen, Ph.D.

Department of Applied Physics

University of Eastern Finland

Opponent: Professor Stephan Weber, Ph.D.

Institute of Geoecology

Technische Universität Braunschweig

ISBN 978-952-7276-72-3 (printed version) ISBN 978-952-7276-73-0 (pdf version)

ISSN 0784-3496

Helsinki 2022 Helsinki 2022

Unigrafia Oy http://www.FAAR.fi



Acknowledgements

First things first, I would like to show my sincere appreciation to my three supervisors:
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Abstract

Air pollution is one of the biggest environmental health challenges in the world, especially

in the urban regions where about 90% of the world’s population lives. Black carbon (BC)

has been demonstrated to play an important role in climate change, air quality and potential

risk for human beings. BC has also been suggested to associate better with health effects

of aerosol particles than the commonly monitored particulate matter, which does not solely

originate from combustion sources. Furthermore, BC has been recommended to be included

as one of the parameters in air quality index (AQI) which is communicated to citizens.

However, due to financial constraints and the lack of the national legislation, BC has yet been

measured in every air quality monitoring station. Therefore, some researchers developed low-

cost sensors which give indicative ambient BC concentrations as an alternative. Even so, due

to instrument failure or data corruption, measurements by physical sensors are not always

possible and long data gaps can exist. With missing data, the data analysis of interactions

between air pollutants becomes more uncertain; therefore, air quality models are needed for

data gap imputation and, moreover, for sensor virtualization. To complement the current

deficiency, this thesis aims to derive statistical proxies as virtual sensors to estimate BC by

using the current air quality monitoring network in Helsinki metropolitan area (HMA).

To achieve this, we first characterized the ambient BC concentrations in four types of envi-

ronments in HMA: traffic site (TR: 0.77–2.08 μg m−3), urban background (UB: 0.51–0.53 μg

m−3), detached housing (DH: 0.64–0.80 μg m−3) and regional background (RB: 0.27–0.28 μg

m−3). TR, in general, had higher BC concentrations due to the close proximity to vehicular

emission but decreasing trends (–10.4 % yr−1) likely thanks to the fast renewal of the city bus

fleet in HMA. UB, on the other hand, had a more diverse source of BC, including biomass

burning and traffic combustion. Its trend had also been decreasing, but at a smaller rate

(e.g. UB1: –5.9 % yr−1). We then narrowed down the dataset to a street canyon site and

an urban background site for BC proxy derivation. At both sites, despite the low correlation

with meteorological factors, BC correlated well with other commonly monitored air pollutant

parameters by both reference instruments and low-cost sensors, such as NOx and PM2.5.

Based on this close association, we developed a statistical proxy with adaptive selection of

input variables, named input-adaptive proxy (IAP). This white-box model worked better in

terms of accuracy at the street canyon site (R2 = 0.81–0.87) than the urban background site

(R2 = 0.44–0.60) because of the scarce missing gaps in data in the street canyon. When

compared with other white- and black-box models, IAP is preferred because of its flexibility

and architectural transparency. We further demonstrated the feasibility of sensor virtualiza-

tion by using statistical proxies like IAP at both sites. We also stressed that such virtual

sensors are location specific, but it might be possible to extend the models from one street

canyon site to another with a calibration factor. Similarly, the proposed methodology can

also be applied to estimate other air pollutant parameters with scarcity of data, such as lung

deposited surface area and ultrafine particles, to complement the existing AQI.

Keywords: virtual sensor, statistical proxy, missing data, black-box, white-box
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1 Introduction

Air pollution, being one of the biggest environmental health challenges in the world,

has become the world’s fourth-largest risk factor for premature death. Nearly one

out of every ten worldwide deaths (in total of 4.5 millions) were linked to outdoor

air pollution exposures in 2019 (Health Effects Institute, 2020). According to World

Health Organization (WHO, 2019), about 90% of the world’s population lives in urban

areas where air pollution concentration exceeds safe limits at present.

Particulate matter (PM) is one of the key components determining urban air pollution.

PM can be described by a combination of varying concentration (number, surface area

and mass), shape and chemical composition. Atmospheric black carbon (BC) consists

mostly of agglomerated sub-micron PM, and it is emitted as a by-product of incomplete

combustion (Bond et al., 2013). In urban areas, the typical combustion sources are

traffic and domestic wood burning (Helin et al., 2018; Rönkkö & Timonen, 2019). In

the combustion process of carbon-based fuel, BC is produced in the flame, and it is

then released to the atmosphere as carbon agglomerates. BC from traffic has been

found at the particle size of ∼100–150 nm whereas BC from biomass combustion has

been detected at ∼300 nm (Saarikoski et al., 2021). Besides, BC is capable of being

transported over a long distance, and this could also contribute to the urban BC source

(Järvi et al., 2008). Due to the limited atmospheric lifetime and unevenly distributed

sources, atmospheric BC is characterized by large spatial and temporal variation (Bond

et al., 2013). In the atmosphere, BC particles can change during the ageing process

via particle growth and surface reactions (Timonen et al., 2019).

WHO (2012) pointed out that BC might not be directly toxic, but it can act as a

universal carrier of other chemical components with varying toxicity which can bring

severe effects on human health, for example benzo(a)pyrene that is produced along with

BC during combustion (Hellén et al., 2017). BC particles of the size range of ∼100 nm

can penetrate deep into the respiratory system and all the way to the alveolar region

where the particles can be transported in the blood circulation system and further

into the organs. Long-term exposure to BC, even at low levels (Brunekreef et al.,

2021), could cause, for example, cardiopulmonary disorders, respiratory illnesses and

diseases that are not related to allergies (Janssen et al., 2011). International Agency for

Research on Cancer (IARC, 2014) stated that diesel exhaust particles composed of BC

are classified as 2B carcinogens, and impose harm on human health and environment.
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Besides potential health effects on human beings, BC also plays an important role

in climate change. Due to its black appearance, BC absorbs solar radiation in the

atmosphere over a large wavelength range (Bond et al., 2013; IPCC, 2013). The settling

of the BC on snow or ice sheets can lower the reflectivity, thus increasing in radiation

absorption and further speeding the heating and melting of the snow (Flanner et al.,

2009). This emphasizes the impact of BC emissions and induced warming in the Arctic

(Klimont et al., 2017). Reductions of BC emissions can, therefore, have a cooling

effect, but the additional interaction of BC with clouds is uncertain, which could lead

to some counteracting warming effects (IPCC, 2021). More locally, BC could lead to

poor visibility and bad air quality (Novakov et al., 2003).

Due to its negative influences on human’s health, climate change and air quality, it

has been recommended to include BC alongside with the other air quality parameters,

including particulate matter of diameter less than 10 and 2.5 μm (PM10 and PM2.5),

nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2) and carbon monoxide (CO),

for the calculation of air quality index (AQI) because BC concentration can associate

better with health effects of aerosol particles than just PM (Achilleos et al., 2017),

which does not solely originate from combustion sources (WHO, 2012). However, it

has yet to be adopted (WHO, 2021). According to the International Network for

Environmental Compliance & Enforcement (INECE, 2008), reduction of BC emissions

has been considered as a cost-effective way to reduce a major cause of global warming.

In order to reduce BC emissions, one of the suggestions is to implement a BC footprint

similar to the footprint of carbon dioxide (CO2) (Timonen et al., 2019). For these

suggestions to be taken into action, we demand for BC measurements to be covered

more extensively.

To understand the whole picture of the characteristics of urban BC and the interactions

of BC with other air pollutants, a dense air quality monitoring network is important to

capture their temporal and spatial variations. Currently, BC mass concentration can

be estimated in at least three ways, none of which fully represent BC (Sharma et al.,

2017): conversion of light absorption to give equivalent black carbon (eBC), thermal

desorption of elemental carbon (EC) from weekly integrated filter samples to give EC,

and measurement of incandescence from the refractory black carbon (rBC) component

of individual particles using a single particle soot photometer. Yet, no uniform met-

rics exist for emissions, concentrations, or impacts characterization and even a precise

definition of BC is missing (Timonen et al., 2019). Even using the same estimation

12



method, the use of different correction algorithms and mass absorption cross-section

values could alter the resulting BC concentrations (Luoma et al., 2021). Apart from

these concerns, building a dense network based on only the reference level instruments

could be expensive, attributed to not only the instruments themselves, but also the

maintenance and the workforce to sustain the measurements. Currently, apart from

the regulated pollutants, some other important health-concerned parameters (e.g. BC)

are not necessarily measured continuously in every national station. The monitoring

of these parameters is not required by the national environmental legislation in many

countries (e.g. Kutzner et al., 2018).

Because of this, researchers have been looking for alternatives, and among them, low-

cost sensors (LCSs) have been widely explored in the past decade for their usefulness

as an additional component in the air quality monitoring system (e.g. Morawska et al.,

2018). The classification of physical sensors is a spectrum depending on the cost of the

instruments and the reliability in measurement (Figure 1a). In particular, LCSs, which

are usually less than one tenth of the price of reference instruments (Lagerspetz et al.,

2019), has been developed and deployed in monitoring networks in bulk (e.g. Caubel

et al., 2019); however, the data quality of the LCSs remains a major issue that hinders

the wide spread of LCS implementation in practice. Accurate field measurements from

the LCSs will give a better resolution for a model in an urban setting compared to a

model constructed on just laboratory results (Krecl et al., 2018). Recently, extensive

research on LCSs have dedicated their studies on developing in-field sensor calibration

(e.g. Concas et al., 2021) to enhance the feasibility of this alternative.

Even if an air monitoring network is well built with extensive reference instruments and

LCSs, long data gaps can exist due to instrument failure or data corruption (Junger

& De Leon, 2015; Zaidan et al., 2019). With missing data, the behavior of air pol-

lution becomes more uncertain; therefore, air quality models are needed for data gap

imputation and air quality prediction. It would be of great interest to develop statis-

tical proxies-based virtual sensors to complement the current air quality monitoring.

Statistical proxies are data-driven approaches, which can be broadly classified into

white-box (WB) and black-box (BB) models. The classification of the two types of

models is a continuum depending on the computational complexity and the ability to

interpret the prediction (Figure 1b). WB models can be further classified into a few

categories depending on their model structures and feature selection criteria. Simple

yet apprehensible models, such as multiple linear regression (MLR, e.g. Fernández-

13



Guisuraga et al., 2016), generalized additive models (GAM, e.g. Järvi et al., 2009),

and mix-effects models (e.g. Mikkonen et al., 2011; Fung et al., 2021a) are commonly

utilized as WB models in air pollutant proxy studies. They map out the association

between the explanatory variables (input variables) and the response variable (out-

pur variable). Apart from model structures, the criteria of selecting input variables in

multi-pollutant datasets for model development have received considerable attention

over the years, and a large number of feature selection methods have been proposed

(Park & Klabjan, 2020) but no single feature selection method uniformly outweighs

the others (Hastie et al., 2020). Examples include traditional methods like stepwise

procedures (e.g. Chen et al., 2019), regularization approach (e.g. Chen et al., 2019;

Šimić et al., 2020) and criterion-based procedures. The criterion-based procedures,

such as best subset regression, choose the best predictor variables according to some

criteria (e.g. coefficient of determination (R2), residuals, etc). These procedures are

sensitive to outliers and influential points, but involve a wider search and compare

models in a preferable manner. No matter which model structures and methods of

(a)

(b)

Figure 1: A figure to explain (a) types of physical sensors in the spectrum of cost and

accuracy and (b) statistical proxies as virtual sensors in the continuum depending on the

computational complexity and the ability to interpret the prediction.
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feature selection are used, the resulting WB models are still easy to interpret. BB

models, on the other hand, refer to systems or objects which can be viewed in terms of

its inputs and outputs, without any knowledge of its internal workings or underlying

principles (Rudin, 2019). These include, but are not limited to, random forest (RF, e.g.

Kang et al., 2018; Masih, 2019) and neural networks (NN, e.g. Cabaneros et al., 2019;

Zaidan et al., 2019; Fung et al., 2021b). One could optimize the models by adjusting

the hyper-parameters, for example learning rate, number of trees in RF and number

nodes in NN. However, these hyper-parameters do not have any physical meanings to

the output pollutant variable. BB models generally give better estimations in terms of

accuracy but provide limited transparency and accountability on the results (Zaidan

et al., 2019).

When the proxy is validated and proven to be reliable and accurate, the proxy in turn

can be converted to a virtual sensor (Figure 2), i.e., sensor virtualization (Martin et al.,

2021); in other words, converting data sources by physical sensors to virtual sensors via

validated statistical proxies. The implementation of statistical proxies as virtual sensors

will lower the costs by providing added value of the already measured parameters with-

out a physical observation site upgrade, operation costs or maintenance costs (Tegen

et al., 2019). Virtual sensors provide an alternative when a physical sensor cannot be

Figure 2: The process of sensor virtualization.
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placed in a preferred position due to spatial conditions (e.g. lack of space for a sensor)

or hostile environments (e.g. exposure to acids or extreme temperatures). The result-

ing delay or inaccuracy of the measurement, when installing the sensor in a less suitable

spot, may be compensated by virtual sensors (Tegen et al., 2019). Furthermore, the use

of virtual sensors could provisionally improve the data quality by compensating drifts

of physical sensors (Albertos & Goodwin, 2002) and reducing signal noise by physical

sensors (Albertos & Goodwin, 2002), which are regarded as well-known phenomenon

rendering a sensor’s accuracy (Baier et al., 2019). In the field of air quality monitoring,

previous studies (e.g. Liu et al., 2019; Woo et al., 2016) have demonstrated the validity

of virtual sensors to complement the existing physical measurements.

This thesis first presents the results of in-situ measurements of BC concentration con-

ducted at various environments in Helsinki metropolitan area (HMA), Finland. To

narrow down the investigation, two measurement sites were selected for developing

statistical proxies: Mäkelänkatu measurement site (Hietikko et al., 2018) operated by

Helsinki Region Environmental Services (HSY), and Station for Measuring Ecosystem-

Atmosphere Relations III (SMEAR III, Järvi et al., 2009) co-operated by the University

of Helsinki (UHel) and Finnish Meteorological Institute (FMI). The two sites represent

the environment of street canyon and urban background, respectively. The deriva-

tion of air quality proxies in HMA has been introduced in Mølgaard et al. (2013) and

Shahriyer (2020) using the reference data in SMEAR III but it did not cover the other

parts of HMA. This thesis explores the developments of virtual sensors by using the

measurements by different levels of physical sensors, including reference station and

low-cost sensors, and implementing different statistical proxies, including WB models

and BB models.

16



In summary, the main aims of this thesis are illustrated in Figure 3, which are to:

1. characterize the ambient black carbon concentration from the reference measure-

ments in Helsinki metropolitan area (Papers I–III)

2. develop a novel statistical proxy for black carbon as a white-box virtual sensor

in case of missing data with adaptive input variables (Paper II)

3. compare and evaluate different statistical proxies when considered as virtual sen-

sors (Papers II & III)

4. explore the possibility to integrate virtual sensors into low-cost air monitoring

sensors by using statistical proxies (Paper IV)

Figure 3: A figure to explain the scope of the four papers included in this thesis.
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2 Methods

Paper I investigated the long-term trend of BC in HMA, Finland, thus measurements

of longer period (2005–2018) were collected. Measurements of shorter period are needed

for proxy development: Papers II–III focused on the data in two full years in 2017

and 2018 whilst Paper IV analyzed the data during the period of the LCS campaign

from March 2018 to June 2019. The following subsections describe the measurement

sites, instruments, statistical proxies and analysis involved in this thesis. A summary

of the four papers is presented in the end of this section as Table 1.

2.1 Measurement sites

In Paper I, four types of environments were investigated in HMA: traffic sites (TR1–

6, in red), urban background sites (UB1–2, in blue), detached housing sites (DH1–

5, in magenta) and regional background sites (RB1–2, in green). The corresponding

locations are shown in Figure 4 and the detailed description of all the sites can be found

in Paper I. RB2 is not shown in the map because it is located about 200 km outside

HMA and the location is out of scope of this thesis. Meteorological data in Pasila

weather station (black diamond) was used in Paper I. From these measurement sites,

TR2 (Figure 5a) and UB2 (Figure 5b) were selected for the development of proxies

in Papers II–IV. They are Mäkelänkatu measurement site (Hietikko et al., 2018)

operated by HSY and SMEAR III (Järvi et al., 2009) co-operated by UHel and FMI,

respectively. The two sites are 500 meters away from each other, which, respectively,

represent the environments of urban background and traffic sites.

18



Figure 4: Location of the measurement stations in Helsinki metropolitan area. Paper I

collected data in all the stations shown on the map (both circle and square markers). Papers

II–IV focused on urban background UB2 site and street canyon TR2 site for statistical

proxy development (square markers). Markers of red, blue, magenta and green color with

corresponding site number represent the four different environments: traffic (TR) sites, urban

background (UB) sites, detached housing (DH) sites and regional background (RB) sites,

respectively. The black solid diamond represents the location of Pasila weather station.
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(a) (b) (c)

Figure 5: The measurement tower at the urban background UB2 site is shown in (a) while

the measurement container at the street canyon TR2 site is shown in (b). Data were collected

from there in all the four papers. (c) shows the Clarity LCSs positioned side-by-side at the

measurement tower at UB2 site. The collected data was used in the integration of LCS

analysis. All the three pictures were originally presented in Paper IV.

2.2 Instruments

All of the measurements of BC were conducted by using a multi-angle absorption pho-

tometer (MAAP, Thermo Fisher Scientific) except at DH4, DH5 and RB2. The MAAP

determines the absorption coefficient of aerosol particles at wavelength 637 nm by col-

lecting the particles on a fiber filter and by measuring the intensity of light penetrating

the filter and the intensity of light that is scattered from the filter at two different angles

(Petzold & Schönlinner, 2004). The absorption coefficient was determined from these

measurements by using a radiative transfer model (Petzold & Schönlinner, 2004). The

BC concentrations were obtained from the absorption coefficient by using a constant

mass absorption cross-section value of 6.60 m2 g−1 (Petzold & Schönlinner, 2004). The

other stations used Aethalometer (either AE31 or AE33, Magee Scientific), which has

similar measuring principles (Luoma, 2021) but determines the absorption coefficient

of aerosol particles at seven wavelengths (370, 470, 520, 590, 660, 880, and 950 nm).

All BC measurements were conducted optically. The head of the sampling line was

located 4 m above the ground. The concentration of BC was measured for particles
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smaller than 1 μm. Sample air was dried with an external dryer or by warming up the

sample to 40◦C at most of the stations, but at UB2, the sample air was not dried. The

BC concentration was derived from the light absorption of the particles, and hence the

measured BC was technically equivalent black carbon (eBC, Petzold et al., 2013), but

we use ‘BC’ in the rest of the thesis for clarity.

For the instruments of the rest of the air pollutants measured in HMA air monitoring

sites and meteorological parameters used in Pasila weather station, a detailed specifi-

cation was described in Paper I. Paper II reported the meteorological measurements

in TR2 and UB2 and Paper IV documented the specification of the Clarity LCSs

(Figure 5c).

2.3 Statistical proxies

Statistical proxies of BC were developed at the street canyon TR2 site and the urban

background UB2 site. They are measurement sites in HMA which measure tens of other

parameters including air pollutants and meteorological conditions in a long-term basis

by employing a suite of automated sensors and manual monitoring programs. The

various parameters measured at the same station make statistical proxy derivation

feasible.

2.3.1 White-box (WB) approach

WB models are ones of the approaches for the statistical proxy derivation in this thesis.

It is easy to comprehend the influence of different input variables on the output variable

and usually faster in computation (Figure 1b). This allows users to optimize the model

based on the actual physical properties rather than the statistical regression loss. Due

to the usually present missing data conditions, Paper II explored the idea of developing

a novel WB model with a capability of filling up missing data, with the resulting

product named input-adaptive proxy (IAP). Paper III evaluated and compared some

other WB models, such as least absolute shrinkage and selection operator (LASSO)

and decision trees (DT), with IAP. In this subsection, we explain the methods of two

highlighted WB models.
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The novel input-adaptive proxy (IAP) IAP, as a WB model, makes use of the

model structure of multiple linear regression (MLR) with ordinary least squares (OLS)

techniques, together with a variable selection method of criterion-based procedures

(Paper II). It first examined the correlation of output variable with the input features

by Pearson correlation coefficient (r). It pre-selected the most correlated input features

and created sub-models with maximum three input features. The model applied an

extra regularization by using Tukey’s bisquare weighting function, which depends on

the residuals, leverages from regression fits and the estimates of the standard deviation

of the error terms, with a tuning factor 4.685 (Wang et al., 2018) as a robust fitting in

case data are contaminated with outliers that often takes place in field measurements.

We ran the regression and evaluated every sub-model. According to the evaluation

metrics used, we ranked the sub-models based on their performance in descending

order. In practice, datasets are typically incomplete; in case of missing data, some

data points in the input variables in the best sub-model can possibly be missing, hence

the imputation cannot be fully achieved. IAP further imputed the missing data with

the second best performing sub-model, and so on, until all the voids were filled up.

Some of the sub-models were subject to rejection under two conditions: (1) strong

multi-collinearity among the input parameters using variance inflation factor (VIF,

Kleinbaum et al., 2013) and (2) violation of the normality assumption of residuals

using Kolmogorov-Smirnov (K-S) test (Steinskog et al., 2007). Based on the situation

of missing data, the automated IAP searched for the best sub-model option from the

ranking chart. Hence, each data point might be estimated differently depending on

the data availability. Since IAP has been developed to fill up the missing data itself,

no missing data imputation was required before modeling, unlike the other models we

used. The full description of this model can be found in Papers II & III.

Least absolute shrinkage and selection operator (LASSO) As one of the ex-

ample of WB models, LASSO was used and compared against IAP in Paper III.

LASSO was first introduced by Tibshirani (1996) and later extensively used in air pol-

lutant prediction (e.g. Van Roode et al., 2019). Like IAP, it is also a MLR but uses

regularization term as variable selection method. The regularization imposes a penalty

on different parameters of the model to reduce the model freedom and eliminates redun-

dant predictor variables, yet deals poorly with multi-collinear variables. In this way,

the model improves the generalization capacity. LASSO makes use of L1-norm penalty

by using a geometric sequence (Tibshirani, 1996), where λ is a hyper-parameter that
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controls the penalty term for the strength of shrinkage. In Paper III, λ was optimized

by obtaining the minimum mean square error in a five-folded cross-validation.

2.3.2 Black-box (BB) approach

BB models, which lie on the other end of the spectrum in Figure 1b, has been demon-

strated to work better in terms of accuracy; however, they provide limited transparency

and accountability regarding the outcomes (Rudin, 2019). The commonly used BB

models in the field were selected. Random forest (RF), support vector regression

(SVR), shallow neural network (SNN) and long short-term memory (LSTM) were used

in Paper III while non-linear auto-regressive exogenous model (NARX) was used in

Paper IV. The evaluation of the different WB approaches and BB approaches was

performed in Paper III. Since most BB approaches do not accept dataset with missing

data. Different interpolation techniques were performed before data analysis: linear

interpolation (Paper III), nearest neighbor method (Paper III) and Akima cubic

Hermite interpolation method (Paper IV). Below we describe some of the BB ap-

proaches used: RF, SNN and NARX.

Random forest (RF) RF is constructed on each subset by aggregating the results

generated from all individual decision trees (Kang et al., 2018; Masih, 2019), as individ-

ual decision tree tends to over-fit (Yu et al., 2016). Different random subsets from the

original dataset with replacement are generated. The same learning method on each

sample is trained later and finally outputs of each model are simply weighted. This

bootstrap-aggregated ensemble method reduces bias and error variance and improves

generalization (Van Roode et al., 2019). In Paper III, Breiman’s random forest algo-

rithm was applied for each decision split to determine the number of input variables to

be selected at random (Breiman, 1996). As the outcome was obtained by aggregating

all individual trees, the importance of input features were not easily depicted as one

of the characteristics of BB models. The full description of this model can be found in

Paper III.
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Shallow neural network (SNN) Artificial neural network models have been uti-

lized in predicting air quality (e.g. Cabaneros et al., 2019; Van Roode et al., 2019;

Fung et al., 2021b). The architecture of static neural networks consists of nodes which

generate a signal or remain silent as activation function. The activation function in

each layer determines the output value of each neuron with different weights that be-

comes the input values for neurons in the next hidden layer connected to it. A SNN

with one hidden layer of five neurons was used in Paper III because Cabaneros et al.

(2019) suggested that such SNN can fit any finite input-output mapping problem for

non-linear relationship.

Non-linear auto-regressive exogenous model (NARX) Besides static NN, re-

current dynamic networks, such as NARX, model the dynamic of a variable (time-

series) depending on its past values and on the current and past values of external

driving input (exogenous inputs) (Esposito et al., 2016). NARX contains feedback

connections that affect several layers of the network and this allows mapping non-

linear relationship in time-series datasets (Lin et al., 1996). In Paper IV, the best

NARX architectures were determined through grid search, and Bayesian regulariza-

tion backpropagation were used for NARX parameters’ estimation to ensure the model

generalization and avoid over-fitting.

2.4 Trend analysis

In order to investigate the trends of the long-term air monitoring measurements in

Paper I, we used the Mann-Kendall test and Sen’s slope estimator, which are non-

parametric statistical methods allowing missing data points based on Gilbert (1987).

They are used widely in analyzing environmental data (e.g. Collaud Coen et al.,

2020). The Mann-Kendall test quantifies whether a homogeneous long-term trend in a

studied variable is statistically significant and whether it is monotonically decreasing

or increasing. Sen’s slope estimator estimates the magnitude of the trend. A seasonal

version of Mann-Kendall test and Sen’s slope estimator were applied in Paper I that

overcame the auto-correlation problem related to the cyclic pattern of the data, for

example seasonal variations, weekend effects and diurnal cycles, due to for example

boundary layer dynamics or traffic rates. We used monthly median values in the trend

analysis. Valid data of at least 14 days for each month were required; otherwise, the

24



month was not taken into account in the trend analysis. Trend analysis were only

applied to TR1, TR2, RB2, and UB1 in 2015–2018. Even though there were 4 years of

measurements at UB2, the station was omitted from the trend analysis since the data

availability at UB2 in 2016–2017 was not enough. No DH sites had data longer than

one year for trend analysis.

2.5 Evaluation metrics

We calculated Pearson correlation coefficient (r, Papers I–IV) to investigate the linear

correlation between the response variable and other explanatory variables by:

rxy =

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

i=1(yi − y)2
, (1)

where x is the arithmetic mean of the output variable and y is the arithmetic mean of

each input variable. N is the number of valid data points in the variables of x and y.

Positive r indicates positive correlation while negative r implies negative correlation.

The absolute values of r (|r|) ranging from 0 to 1 quantify the degree of correlation

from the lowest to the highest.

In order to evaluate the model performance quantitatively, coefficient of determination

(R2, Papers III & IV) with its variant adjusted R2 (adjR2, Paper II), together with

mean absolute error (MAE, Papers II–IV) and root mean square error (RMSE,

Papers II–IV), were used as diagnostic evaluation attributes, as follows:

R2 = 1−
∑N

i=1(yi − ŷ)2∑N
i=1(yi − y)2

, (2)

adjR2 = 1− (1−R2)× (
N − 1

N − p− 1
) , (3)

MAE =
1

N

N∑
i=1

|yi − ŷi| , (4)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 , (5)

25



where yi and ŷi are ith measured and ith estimated output variable by the model, re-

spectively, and y is the expected value of the measured valuable. N is the number of

complete data input to the model. Both R2 and adjR2 illustrate the linear associa-

tion between two variables (the estimated output variable by proxy and the measured

variable), i.e. a measure of how close the data lie to the fitted regression line. adjR2

differs from R2 in the way that adjR2 considers also the degree of freedom, and adjusts

the number of input terms in a model relative to the number of data points. However,

neither of R2 and adjR2 consider the biases in the estimation. Therefore, we further

validated the models with MAE and RMSE where MAE measures the arithmetic

mean of the absolute differences between the members of each pair and RMSE calcu-

lates the square root of the average squared difference between the estimation and the

measurement pairs. RMSE is more sensitive to larger errors than MAE.

Table 1: A summary of the measurement period (column 2), measurement location (column

3), physical instruments of BC (column 4) and the statistical proxies used (column 4) in this

thesis.

Measurement

period

Location Physical

sensors

Statistical proxies for BC

Paper I 2005–2018 TR1–6,

UB1–2,

DH1–5,

RB1–2

MAAP,

AE-31,

AE-33

-

Paper II 2017–2018 TR2, UB2 MAAP IAP

Paper III 2017–2018 TR2, UB2 MAAP WBmodels: IAP, LASSO; BB mod-

els: RF, SVR, SNN, LSTM

Paper IV 2018–2019 TR2, UB2 MAAP NARX
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3 Results and discussion

Combining the four papers in this thesis, we answer aim 1 of the thesis by reporting

the spatial and temporal ambient BC concentration from the reference measurements

in HMA in Section 3.1. We also compare BC with other commonly monitored pollu-

tant parameters, NOx and PM2.5, and demonstrate the correlation of BC and other

parameters in Section 3.2 and Section 3.3, respectively. The demonstrated correlation

could serve as a good ground for statistical proxy development and the evaluation of

the statistical proxies are presented in Section 3.4, addressing aim 2 and 3 in the

thesis. We further respond to aim 4 by exploring the possibility to integrate virtual

sensors into low-cost air monitoring sensors by using statistical proxies in Section 3.5,

and finally in Section 3.6, we investigate the feasibility of sensor virtualization using

the studied statistical proxies.

3.1 Characteristics of BC in HMA

This subsection describes the spatial and temporal statistical diagnostics and trend

analysis of the BC measurements in all measurement sites (Papers I–III), as well

as the characterization of BC concentration at UB2 and TR2 in terms of its seasonal

variation, weekend effect and diurnal cycle (Papers II & III).

The spatial BC concentrations were reported in Paper I and it is shown in Figure

6a. The highest mean BC concentrations over the year 2005–2018 were observed at

the TR sites (0.77–2.08 μg m−3) while DH sites had the second highest among the

four environments (0.64–0.80 μg m−3). The BC concentrations at TR3 and TR4 were

clearly higher than the other TR sites as they both are located close to a heavily

trafficked highway Ring I in HMA. At the UB sites, the mean BC concentrations were

around 0.52 μg m−3, which was clearly lower than at the TR and DH sites. The lowest

mean BC concentrations (∼0.27 μg m−3) were observed at the RB sites that had no

local BC sources in the vicinity.

A statistically significant (p-value<0.05) decreasing trend was observed for all of the

stations included in the trend analysis (TR1, TR2, UB1, and RB2). The smallest

absolute decrease was observed at the background stations UB1 and RB2, for which

the slopes of the trends were –0.02 and –0.01 μg m−3 yr−1, respectively. At TR1,
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(a)

(b)

Figure 6: (a) A boxplot showing the statistical distribution of BC concentration measured at

different locations in HMA for years 2005–2017. Shaded regions represent the characterization

of the four environments: traffic sites (TR, red), urban background (UB, blue), detached

housing (DH, magenta) and regional background (RB, green). The tick labels TR2 and UB2

are boxed to indicate that they were used in the proxy derivation. The horizontal line in

the box and the cross represent the median and arithmetic mean at the station, respectively.

The lower and upper lines of the box represent the 25th and 75th percentiles, respectively,

while the lower and upper whiskers represent the 10th and 90th percentiles, respectively. (b)

Contour plots showing the average monthly diurnal pattern in the street canyon TR2 site for

workdays (left panel) and weekends (right panel) with x-axis the local hour in HMA, y-axis

the month of a year and logarithm color scale the averaged BC concentrations.
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the concentration decreased more rapidly by –0.04 μg m−3 yr−1, and the decrease was

even greater at TR2 (–0.09 μg m−3 yr−1). In addition to the absolute trend, we also

determined the relative trends by dividing the absolute slope of the trend by the overall

median concentration. At TR1, UB1, and RB2, the relative trends were rather similar:

–6.4 % yr−1, –5.9 % yr−1, and –6.3 % yr−1, respectively. At TR2, the decrease was

relatively steeper: –10.4 % yr−1. Similar decreasing trend can be observed in other

countries, for example in Germany (Kutzner et al., 2018), China (Guo et al., 2020) and

the United Kingdom (Ciupek et al., 2021).

For the derivation of BC statistical proxies, we narrowed down the measurement pe-

riod to 2017–2018 and all the measurements sites to TR2 and UB2, which served as

good representatives of the environments of street canyon and urban background, as

demonstrated in many previous studies (e.g. Järvi et al., 2009; Hietikko et al., 2018).

Over the year 2017–2018, the data coverage of BC was 99% and 70% at TR2 and UB2,

respectively. The low data coverage further motivates the needs for the development

of statistical proxies as virtual sensors in long run. In agreement with the results of

the other TR and UB stations, the BC concentration at the street canyon TR2 site

(1.03±0.88 μg m−3) was almost twice as high as that at the urban background UB2

site (0.47±0.46 μg m−3). This is because TR2 is in proximity of a heavily-trafficked

road while UB2 measured the source from residential area situated 50 meters to the

north and roads with moderate traffic separated by a forest. The long distance from

the source could increase dilution rate of BC, and hence lower the BC levels.

When considering the seasonal variation (Figure 6b), BC concentration in the winter

appeared to be the highest (0.65±0.6 μg m−3) at UB2 owing to lower mixing height

(Teinilä et al., 2019) and elevated wood combustion by domestic heating (Hellén et al.,

2017). At street canyon TR2 site, BC concentration in the summer appeared to be only

10% higher than the other seasons (Paper III). The small variation agreed with Helin

et al. (2018) who observed the lack of BC seasonal variability in traffic environments.

Moreover, Teinilä et al. (2019) suggested that the seasonal changing mixing height did

not show correlation with the dilution of local pollution in the street canyon.

At both sites, the diurnal cycle was bimodal on weekdays due to the elevated traffic

counts during working peak hours at 7–9 a.m. and at 4–6 p.m. (local hour, UTC+2

in the winter and UTC+3 in the summer) in all months as typically observed in HMA

(Timonen et al., 2014). The evening peak during workdays was smaller than the morn-

ing peak because of the higher mixing height in the evening (Teinilä et al., 2019),
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which diluted the BC pollutants from the surface. In addition, there was a clear sea-

sonal variation in diurnal pattern in the street canyon site. Due to low boundary layer

height in summer mornings, BC concentrations were higher in summer mornings than

in winter mornings (Paper I). During weekends, only one peak was observed in the

late evening. The evening peak during weekends appears at 5–8 p.m. in the winter-

time and at 8–10 p.m. in the summertime. The boosted nocturnal BC concentrations

might be attributed to the increasing traffic rates along the daytime, reaching a peak

approaching sunset when residents in the city return home (Paper II).

3.2 Comparison of BC with NOx and PM2.5

BC, NOx and PM2.5 are considered as one of the traffic-related pollutants in urban

area; therefore, it is of great interest to compare BC with NOx and PM2.5 and to see

whether BC can be estimated by them. Similar as BC concentration, NOx and PM2.5

concentrations were higher at TR2 than that at UB2. The difference in mean NOx

concentration was very distinctive, almost five times higher at TR2 (68.1±65.1 μg m−3)

than that at UB2 (11.8±16.6 μg m−3). On the contrary, the environmental separation

of the PM2.5 concentration was not as clear as in BC and NOx. The mean PM2.5

concentrations at TR2 and UB2 were comparable, 7.04±4.58 μg m−3 and 5.37±6.86

μg m−3, respectively (Paper II). This unclear environmental separation could be due

to the more diverse source of PM2.5 in urban area (e.g. Karagulian et al., 2015).

To see how the decrease in BC concentrations compared to the trends in other air

pollutants, we conducted the trend analysis also for the PM2.5 and NOx data (Table 2).

The only parameter for which we did not observe a statistically significant decreasing

trend was PM2.5 at TR2 (p-value>0.05). While the trend in BC concentration was

–10.6% yr−1, the trends in NOx and PM2.5 concentration at TR2 were –19.7% yr−1

and –7.1% yr−1, respectively. The concentrations of BC and NOx decreased relatively

faster than the concentration of PM2.5 (Paper I).

Since the pollutant emissions from the traffic sources generally decreased, it clearly

affected the trends in BC and NOx, and, to a lesser extent, the trend in PM2.5. This

difference in extent is because PM2.5 is not as sensitive to changes in primary traffic-

related emissions as BC and NOx which are originated from local traffic sources. Similar

results were also found in Krecl et al. (2017). While the decrease in local traffic emis-

sions seem to be one of the probable explanations for the decreasing trends, the changes
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in the long-range transported pollution also influenced the trends. Statistically signif-

icant trends were observed also at RB2, indicating that the long-range transported

pollution and the emissions in the regional area had also decreased.

Table 2: Statistical diagnostics and results of trend analysis of the measurements of BC,

NOx and PM2.5 at the selected stations: street canyon TR2 site and urban background UB2

site. The statistical diagnostics (all in μg m−3) were conducted in 2017–2018, including

arithmetic mean (Mean), standard deviation (SD), 25th percentile (P25), median (P50) and

75th percentile (P75), which are shown in column 3–7, respectively. Data coverage (%) in

these two years is presented in column 8. Column 9–10 show the absolute trend (μg m−3

yr−1) and relative trend (% yr−1), respectively, included in the trend analysis conducted in

2015–2018.

Location Variable Mean SD P25 P50 P75 Data

%

Absolute

trend

Relative

trend

Street

canyon

TR2

BC 1.03 0.88 0.43 0.79 1.37 99 –0.09 –10.4

NOx 68.1 65.1 23.8 47.2 92.5 99 –11.0 –19.7

PM2.5 7.04 4.58 3.99 6.00 8.83 97 –0.46* –7.10*

Urban

background

UB2

BC 0.47 0.46 0.18 0.34 0.60 70 - -

NOx 11.8 16.6 3.30 7.07 14.1 83 - -

PM2.5 5.37 6.86 1.96 3.69 6.94 42 - -

* p-value>0.05, not statistically significant.

At TR2, NOx seemed to decrease at a doubled rate compared to BC, which could

be caused, for example, by the fast renewal of the city bus fleet. According to the

Helsinki Regional Transport Authority (HSL), in 2015, about 17% of the HSL buses

were Euro VI, and in 2018, the fraction had increased to about 50%. A study by

Järvinen et al. (2019) showed that moving to Euro VI buses from enhanced environ-

mentally friendly vehicles efficiently decreases the NOx emissions regardless the types

of fuels (Aakko-Saksa et al., 2020). Although NOx emission control has been success-

ful, urban roadside NO2 concentrations have not decreased as expected. The increase

in diesel cars and their potentially high primary NO2 emissions might have been one

factor in slowing down the decline of concentrations (Anttila, 2020). Some other fac-

tors like the overall change in traffic density and traffic policy could also potentially

influence the concentrations of the traffic-related pollutants. Moreover, at TR2, the

short time-series cause uncertainties in the trends, and, for example, the year-to-year

variability caused by the meteorological conditions could lead to the apparent decrease

in pollutant concentrations (Paper I).
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3.3 Correlation of BC with other parameters

This subsection describes the correlation of BC and other air pollutants in HMA, in

particular at the two highlighted measurement sites. In order to find out the most

linearly correlated terms with BC, we computed their overall Pearson correlation coef-

ficient (r). If BC has a high correlation with some of the other parameters, it provides

a good ground to develop statistical proxies to estimate BC based on the highly corre-

lated parameters.

Figure 7 illustrates the correlation of BC and other air pollutants at the street canyon

TR2 and the urban background UB2 site. The hue of each box represents the degree

of correlation and the color differentiate whether the correlation is positive (red) or

negative (blue). The logarithm of BC was highly correlated with part of the gaseous

and aerosol variables in both sites. The correlations were high at the street canyon

TR2 site, in particular with lung deposited surface area (LDSA), NO2 and particle

number concentration (PNC) (r = 0.75–0.85). We also notice that the correlation on

workdays was much higher than that on weekends (Paper II). It is due to the fact

that a great portion of NO2 and the number of particles also come from traffic as BC

emissions do (Helin et al., 2018) in proximity of a heavily-trafficked road. At urban

background UB2 site, the correlations of BC with aerosol and gaseous compounds

were generally slightly lower (Paper III). No clear discrepancies between workdays

and weekends were observed. However, in winter and spring, the correlation of BC

with LDSA was unexpectedly high (Paper II). These high correlations provided a

basis for proxy development based on other existing measurements.

In alignment with previous studies (e.g. Hussein et al., 2004; Teinilä et al., 2019), the

linear association of BC and meteorological data remained low in both sites. Wind

speed ranked top (|r| = 0.27–0.39) at both TR2 and UB2 sites among the other me-

teorological variables, which were also suggested in previous studies (e.g. Järvi et al.,

2008; Teinilä et al., 2019). At TR2, RH, P and WD had very low correlation with BC

concentration (|r| < 0.1). On the other hand, the correlation of these meteorological

variables with BC concentration appeared to be higher (|r| = 0.12–0.30). No clear

discrepancies between workdays and weekends were observed in the urban background

environment (Paper II). By running trend analysis to factors like WS and Temp, it is

likely that the decreasing trends in the BC concentration cannot be explained by the

local meteorology (Paper I). Despite the low correlation of BC with meteorological
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data, we still included them as input variables because the data availability of meteoro-

logical data is usually higher and they are useful when the other measurements happen

to be suspended.

Figure 7: A heatmap showing the correlation of BC and other parameters measured at

urban background UB2 site (upper row) and at street canyon TR2 site (lower row). The

hue of each box represents the degree of correlation and the color differentiate whether the

correlation is positive (red) or negative (blue). The number in each box calculates the Pearson

correlation coefficient (r). Note that all the aerosol and gaseous parameters including BC are

in logarithm.

3.4 Evaluation of statistical proxies involved

This subsection describes the performance of the statistical proxies we used for esti-

mating BC in terms of accuracy and other aspects, such as flexibility, complexity and

efficiency. We compared input-adaptive proxy (IAP, Papers II & III) and least abso-

lute shrinkage and selection operator (LASSO, Paper III) as white-box (WB) models.

In addition, random forest (RF, Paper III), support vector regression (SVR, Paper

III), shallow neural network (SNN, Paper III), long short-term memory (LSTM, Pa-

per III) and non-linear auto-regressive network with exogenous inputs (NARX, Paper

IV) were also evaluated as black-box (BB) models.

Except for NARX, which were developed with a different timeframe, R2 for all the

WB and BB models were higher than 0.8 (Table 3, WB: R2 = 0.81–0.87; BB: R2 =

0.86–0.87) at the street canyon TR2 site. As demonstrated in scatter plot Figure 8a as

one of the examples, the data points were more concentrated along the 1:1 line, which

indicates that the models performed well in terms of accuracy. In spite of a higher R2,

the fitting for RF and SVR diverged from the 1:1 line at the lower tail (Paper III).
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Table 3: An evaluation table of all statistical proxies used for estimating BC models at the

urban background UB2 site and the street canyon TR2 site. The evaluation matrix includes

R2, MAE (μg m−3) and RMSE (μg m−3). The statistical proxies are classified as white-

box (WB) and black-box (BB) models. The measurement period is January 2017–December

2018, unless stated otherwise.

Location
Evaluation

metrics

Statistical proxies

WB models BB models

IAP LASSO RF SVR SNN LSTM NARX1

(LCSs)*

NARX2

(LCSs)*

Street

canyon

TR2

R2 0.87 0.84 0.87 0.86 0.87 0.87 0.90 0.86

MAE 0.199 0.200 0.190 0.197 0.191 0.181 0.141 0.202

RMSE 0.310 0.342 0.303 0.321 0.308 0.300 0.289 0.342

Urban

background

UB2

R2 0.50 0.60 0.55 0.41 0.49 0.64 0.81 0.79

MAE 0.176 0.141 0.146 0.166 0.157 0.151 0.219 0.248

RMSE 0.311 0.278 0.297 0.339 0.317 0.265 0.406 0.427

* The data collection period was shorter (March 2018–June 2019) because of the LCS campaign.

NARX1 has input variables of Temp, RH and calibrated PM2.5.

NARX2 has input variables of Temp, RH, calibrated PM2.5 and modeled CO2.

(a) (b)

Figure 8: Scatter plots in logarithm scale of calculated BC concentration (μg m−3) by using

statistical proxy IAP against measured BC concentration (μg m−3) by reference instrument

MAAP at (a) urban background UB2 site and (b) street canyon TR2 site. Blue and red

circles represent data points for workdays and weekends, respectively. The corresponding

evaluation metrics R2, MAE and RMSE are shown as the sub-titles in the figure.

34



The model performance at the urban background UB2 site was generally worse (Table

3, WB: R2 = 0.44–0.60; BB: R2 = 0.41–0.64) and showed more marked variation among

all WB and BB models than at the street canyon TR2 site. LSTM performed best (R2

= 0.64) while SVR had the lowest R2 (R2 = 0.41). LASSO, RF, SNN and SVR tended

to underestimate the extreme values and the fitting slope was less than 1 (Paper III).

In addition, IAP appeared to overestimate all data points generally for both workdays

and weekends (Figure 8b).

In general, WB and BB models performed similarly in terms of accuracy which is in

alignment with previous studies (e.g. Zaidan et al., 2019). When considering individual

models, LSTM performed quite well in all cases because it treated also data from the

previous time-step to cope with the time dependency. SNN and LSTM models had

resembling architecture where SNN had only one hidden layer and did not consider

short-term memory. SNN turned out to perform generally worse than LSTM. IAP and

SVR had fair fitting accuracy, but IAP is still recommended because it managed to

fill in missing data by other input variables without extra interpolation. This can be

shown in the BC time-series at street canyon TR2 site in Figure 9a where missing gap

was found on 4 August 2018 while IAP can still give estimation on that day.

The difference in the overall performance at the urban background UB2 site and the

street canyon TR2 site indicated that the models are location specific because of their

different pollutant sources with location specific dynamics. The street canyon has

been suggested to have a relatively constant BC source (Helin et al., 2018), so the

overall regression performance at the street canyon site was better than that at the

urban background where the temporal variation was large attributed to the various BC

sources, such as local traffic and residential wood combustion (Saarikoski et al., 2021) as

well as long-range transported pollutants (Järvi et al., 2008). The model performance

also depended on the missing data patterns, such as completeness of the dataset and the

length of the data gap, suggested by Junninen et al. (2004). A sensitivity analysis study

of missing data on these statistical proxies can be done in the future so as to determine

the threshold of up to which level (missing data percentage) the statistical proxies can

fill in observational gaps with good performance while remaining still robust.
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(a)

(b)

Figure 9: Time-series of the measured BC concentration (μg m−3) by reference instrument

MAAP (black solid line) and the calculated BC concentration (μg m−3) by using statistical

proxy IAP (blue dashed line) at (a) the street canyon TR2 site and (b) the urban background

UB2 site, in a selected period 1–16 August 2018. The vertical dotted lines separate the testing

set and the training set. The shaded regions represent the weekends in the selected period.
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Apart from the model accuracy presented in Table 3, Paper III evaluated the models

by other aspects, such as flexibility, complexity and efficiency. The architecture of the

WB models is transparent, which allows users to understand and modify, if necessary,

the influencing variables (Rybarczyk & Zalakeviciute, 2018). Among all WB models,

IAP takes maximum three input predictors in an adaptive way, while the number of

input predictors for LASSO depends on lambda. For BB models, the inner components

or logic are inaccessible. In case of anomalies, it is difficult to inspect and locate the

problems from the model structure (Rybarczyk & Zalakeviciute, 2018).

Some BB models, for example SNN and LSTM, have many hyper-parameters, which

require extensive efforts for model optimization (Esposito et al., 2016) and fail to show

any physical meanings to the output variable. In terms of efficiency, LASSO and RF

required the least computational resources among all the models we tested in this

study. SVR and SNN took 30–50% longer time for the modeling process. Since IAP

had to search for the best combination of input predictors and fill in missing data, its

computational time could be five times higher than the most efficient ones. LSTM

took the longest computation time, still under 10 min (Paper III).

Combining all the evaluation criteria, we deduced that IAP is the best model despite

the slightly higher computational time. It had relatively high accuracy at both sites.

The model structure is transparent and the inner components can be inspected easily.

The flexibility to select input predictors is also one of the merits when using this

model. The second best model is LASSO since it performed evenly in both locations

and could, therefore, be considered the most generalized model. Its fast modeling

process and transparent model structure also enable it to stand out from the rest of

the models.
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3.5 Integration of low-cost sensor (LCS) data into the statis-

tical proxies

This subsection investigates the feasibility of the integration of LCS data (Paper IV).

Before moving on to the actual statistical proxy derivation, raw LCS data have to

be calibrated against reference stations. In Paper IV, the LCS data were collected

through Clarity LCSs during a campaign in March 2018–June 2019 at TR2 and UB2

site. Since weather parameters measured by LCSs had linear relationship with those

measured by the reference instruments, temperature and relative humidity were cali-

brated using dynamic linear models. However, for other aerosol parameters, such as

PM2.5, due to the non-linear relationship, it required calibration using models that are

more complex (Concas et al., 2021). Through performing sensitivity analysis, NARX

was found to be the best calibration model. This non-linear model was then generalized

by training it with datasets from the street canyon TR2 site and the urban background

UB2 site simultaneously. After calibrating the LCSs with reference station, two BC

statistical proxies using NARX structure were developed. One used temperature, rela-

tive humidity and calibrated PM2.5 as input variables. The other used the same input

variables plus CO2 that was measured and estimated using the same LCSs.

The first BC model showed high R2 and low MAE for both sites (Table 3, TR2: R2 =

0.81, MAE = 0.219 μg m−3; UB2: R2 = 0.90, MAE = 0.141 μg m−3). The second

model showed worse performance even though it contained one more input variable

because it propagated the modeling errors of LCS calibration and virtual sensors (Table

3, TR2: R2 = 0.79, MAE = 0.248 μg m−3; UB2: R2 = 0.86, MAE = 0.202 μg m−3).

Figure 10a shows a scatter plot between the measured BC by reference instruments

and calculated BC by the proposed model at the urban background UB2 site. The

results for the BC model were in agreement with the 1:1 reference line. Figure 10b

illustrates time-series plots for BC by the reference instrument and the proposed model

at the urban background UB2 site in the period of 15–19 June 2018. This further

demonstrates that the statistical proxy for estimating BC tracked well the diurnal

cycle of the measurement of BC concentrations obtained from reference instruments.

The performance of this non-linear BC model integrated with LCS data is satisfactory

in terms of accuracy.
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(a)

(b)

Figure 10: (a) A scatter plot and (b) a time-series of the measured BC (black solid line)

and the calculated BC with the use of LCSs using NARX model (blue dashed line) at the

urban background UB2 in the period of 15–19 June 2018.
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3.6 Feasibility and limitations of sensor virtualization

This subsection discusses the feasibility and limitations of converting the signals from

physical sensors to virtual sensors through statistical proxies, i.e. sensor virtualization

(Figure 2). In the previous section 3.4, we deduced that IAP and LASSO are the best

two statistical proxies (Paper III); as a result, only these two proxies are considered

in this section. Provided that adequate data is used to train the model in advance,

virtual measurements can be given continuously with fairly high accuracy at both the

urban background and street canyon sites. In case of physical sensor failure of some

variables, models that take all the input variables as in the training process might

not work. IAP and LASSO, nevertheless, still manage to estimate BC by fewer input

variables. In extreme situations where only meteorological parameters are available,

IAP is still able to work thanks to its input adaptability. Although air pollutant virtual

sensors have been proven to work satisfactorily, and may assimilate a wide variety of

information, it is still advisable to maintain original observational data that represents

actual conditions for validation purposes (Hagler et al., 2018).

However, there are limitations in using BC models as virtual sensors (Paper IV). In

this thesis, the two measurement sites can be characterized as street canyon and urban

background. Each characterization only represents places with similar air pollutant

sources; therefore, the statistical proxies trained by data measured in one environment

might not work in another. Despite this limitation, it might be possible to extend the

proxies from one site to another with a calibration factor. Multiple models created

on measurements from different types of environments might be necessary (Jha et al.,

2021). If there is enough data available, with the use of reference instruments, LCSs,

and even portable sensors with citizens’ involvement (e.g. Rebeiro-Hargrave et al.,

2021; Kortoçi et al., 2022), from different locations not limited to street canyon and

urban background sites only, a network of database can be established. Within the

network, selection of input variables can be interchanged. Although virtual sensors

could be a good alternative when physical sensors cannot be placed in a preferred

location, extra data post-processing has to be carried out (Jha et al., 2021). This

is because the calibration models and the estimations from the virtual sensors might

drift due to environmental changes or physical sensors degradation (Martin et al.,

2021). The statistical proxies might not be accurate anymore in case of occasional

events, such as wildfire, extreme weather, etc. Therefore, the application of virtual

sensors requires a long-term drift monitoring and online-adaptive models can be used

40



to adjust the models accordingly and regularly to maintain the added value provided

by the implementation of statistical proxies as virtual sensors (Paper IV).

Once the sensor virtualization process is validated, the continuous measurements can be

utilized to update the current AQI (Monteiro et al., 2017). While there is no universally

accepted method, most organizations including WHO consider PM10, PM2.5, NO2, O3,

SO2 and CO as parameters for AQI calculation (WHO, 2021). From the scientific

point of view, these parameters are insufficient to show association with health risk

of aerosol particles, especially for cardiovascular effects (Geng et al., 2013). Although

WHO (2012) has recommended the inclusion of BC as one of the components in AQI

alongside with the other air quality parameters, this has not been taken into action

due to the unavailability of continuous BC measurements. This is partly attributed

to the lack of national environmental legislation (Kutzner et al., 2018), instrument

failure or data corruption (Junger & De Leon, 2015; Zaidan et al., 2019). Apart from

BC, other aerosols parameters with data unavailability, such as LDSA and ultrafine

particles (UFP), can also be estimated using virtual sensors with a similar methodology

(Fung et al., 2021a).
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4 Review of papers and the author’s contribution

Paper I presents the BC, NOx, and PM2.5 concentrations at various environments in

southern Finland and especially in the HMA. Depending on the varying local anthro-

pogenic activities that were traffic and residential wood combustion, BC concentration

also varied both spatially and temporally. In terms of long-term trends, the BC, NOx,

and PM2.5 concentrations were statistically decreasing, and the decreasing trends were

most probably due to a decrease in the local traffic emissions. For this article, I con-

tributed by commenting and editing the manuscript. Through commenting, I also

assisted in data interpretation from which has then been the basis of this Ph.D. topic.

Paper II introduces a novel IAP to estimate air pollutant variables in case of missing

data. BC estimation is the case study in the paper. By checking the correlation of BC

with other existing measurements in the same site, the model manages to select the

more favorable input variables for the regression. The results show the novel method

could give generally accurate and continuous BC estimation at the two selected urban

environments: urban background and street canyon. For this article, I performed the

majority of the data analysis and writing.

Paper III compares the IAP with other WB and BB models, namely LASSO, DT,

RF, SVR, SNN and LSTM. In general, the BB models demonstrate better performance

in terms of accuracy, but the white-box models are better choice due to the higher

transparency in model architecture. Among all tested models in the paper, IAP and

LASSO are recommended due to its flexibility and efficiency, respectively, as virtual

sensors. For this article, I performed the majority of the data analysis and writing.

Paper IV presents a novel method of integrating LCSs embedded with the features

of intelligent calibration and virtual sensors. The paper also demonstrates how to cali-

brate LCSs in the field and how to extend the operation of LCSs to monitor additional

air quality indicators (e.g. BC) that are not measured directly by these LCSs. I was

responsible for curating data from the reference station. Moreover, I assisted in data

interpretation and visualization, not to mention gave comments to the article.
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5 Conclusion and outlook

Black carbon (BC) is known to have a strong influence in climate change, air quality

and potential risk for human beings. Therefore, BC has been recommended to be

included as one of the parameters for air quality index (AQI) calculation, along with

the current parameters, by the World Health Organization (WHO). However, due to

the lack of national environmental legislation of BC monitoring, BC is not measured

in every national measurement stations. Besides the measurement scarcity, relying on

BC measurements are not always possible due to instrument failure or data corruption,

leading to long data gaps. For example, the missing data of BC in an urban background

site in Helsinki metropolitan area (HMA) in 2017–2018 could reach 30%. With the

missing data, the analysis of air pollution becomes more uncertain; therefore, air quality

models are needed for data gap imputation and air quality prediction.

In this thesis, we explored the BC monitoring network in HMA. The ambient BC

concentrations show various characteristics in different environments. Generally, BC

concentrations were the highest in traffic sites (TR) due to vehicular combustion, fol-

lowed by detached housing sites (DH) and urban background sites (UB) depending

on the time of the day, the day of the week and the month of the year. The sources

of the ambient BC in these environments were typically coupled with the mixture of

household wood combustion and vehicle combustion. Regional background (RB) had

the lowest concentration because there were no local BC sources in the vicinity. All

the environments with long enough datasets showed a decreasing trend in BC con-

centrations. The study also showed that BC had a high correlation with some other

commonly monitored parameters, for example NOx and PM2.5. These high correlation

values served good grounds for statistical proxy derivation. BC was also highly corre-

lated with lung deposited surface area (LDSA), particle number concentration (PNC)

and CO and moderately correlated with PM10 and O3 at the two selected sites, the

urban background UB2 site and the street canyon TR2 site, linearly. At both sites,

BC showed low correlation with meteorological parameters. This well responds to aim

1: to characterize the ambient BC concentration from the reference measurements in

HMA.

At the two selected sites, we developed a novel input-adaptive method to estimate

BC concentrations based on the reference station data as a statistical proxy for sensor

virtualization (aim 2). This proposed input-adaptive proxy (IAP) was demonstrated
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to perform well in terms of accuracy and flexibility. As a white-box model, the model

architecture of IAP is transparent; therefore, it is possible to spot the mistakes and

then fine-tune the model in case of errors based on the actual physical properties of

the air pollutant. It was evidenced to outperform the other models with all things

considered (aim 3). We also explored the feasibility to integrate virtual sensors into

low-cost air monitoring sensors by using statistical proxies (aim 4). A non-linear model

structure was validated and used for the calibration of LCSs and the development of BC

statistical proxy. The results showed a satisfactory performance in terms of accuracy.

The virtual sensors using the statistical proxies, both with reference data and LCS

data, were demonstrated to overcome the following three weaknesses of purely physical

sensors: price issues, spatial conditions and data quality deficiency. However, there are

limitations in using BC models as virtual sensors. In this thesis, the two measurement

sites can be characterized as urban background and street canyon. Each characteriza-

tion represents places with similar air pollutant sources. The corresponding BC models

are also location-specific, but it might be possible to extend the models from one street

canyon site to another with a calibration model. Similar ideas could also be applied

to urban background sites. Once we gather enough training data over a substantial

of time from different locations, not limited to street canyon and urban background

sites investigated in this thesis, a network of database can be established. Within

the network, selection of predictors can be interchanged. Although virtual sensors are

considered to be an alternative to overcome the three weaknesses abovementioned, ad-

ditional data post-processing is often required to keep the data quality up to standard.

A long-term drift monitoring and online-adaptive models are also required to adjust

the proxies accordingly. These would be our next steps on top of the thesis.

In this thesis, we focused on the BC statistical proxies that can provide continuous

modeling data with good accuracy as virtual sensors. Similarly, other aerosols param-

eters with data unavailability, such as LDSA and ultrafine particle (UFP), which are

considered having negative impact on human health but lack air quality guidelines, can

also be estimated with the proposed general methodology in the future.
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B. J., Flanner, M. G., Ghan, S., Kärcher, B., Koch, D., et al. (2013). Bounding the

role of black carbon in the climate system: A scientific assessment. J. Geophys. Res.

Atmos., 118(11), 5380–5552. https://doi.org/10.1002/jgrd.50171

Breiman, L. (1996). Bagging predictors. Mach. Learn., 24(2), 123–140. https://doi.

org/10.1007/BF00058655

Brunekreef, B., Strak, M., Chen, J., Andersen, Z., Atkinson, R., Bauwelinck, M., Bel-

lander, T., Boutron, M.-C., Brandt, J., Carey, I., Cesaroni, G., Forastiere, F., Fecht,

D., Gulliver, J., Hertel, O., Hoffmann, B., de Hoogh, K., Houthuijs, D., Hvidtfeldt,

U., Janssen, N., Jørgensen, J., Katsouyanni, K., Ketzel, M., Klompmaker, J., Krog,

N. H., Liu, S., Ljungman, P., Mehta, A., Nagel, G., Oftedal, B., Pershagen, G.,

Peters, A., Raaschou-Nielsen, O., Renzi, M., Rodopoulou, S., Samoli, E., Schwarze,

P., Sigsgaard, T., Stafoggia, M., Vienneau, D., Weinmayr, G., Wolf, K., & Hoek, G.

(2021). Mortality and morbidity effects of long-term exposure to low-level PM2.5,

45



BC, NO2, and O3: An analysis of European cohorts in the ELAPSE Project. Report,

Health Effects Institute.

Cabaneros, S. M., Calautit, J. K., & Hughes, B. R. (2019). A review of artificial neural

network models for ambient air pollution prediction. Environ. Model. Softw., 119,

285–304. https://doi.org/10.1016/j.envsoft.2019.06.014

Caubel, J. J., Cados, T. E., Preble, C. V., & Kirchstetter, T. W. (2019). A distributed

network of 100 black carbon sensors for 100 days of air quality monitoring in West

Oakland, California. Environ. Sci. Technol., 53(13), 7564–7573. https://doi.org/

10.1021/acs.est.9b00282

Chen, J., de Hoogh, K., Gulliver, J., Hoffmann, B., Hertel, O., Ketzel, M., Bauwelinck,

M., Van Donkelaar, A., Hvidtfeldt, U. A., Katsouyanni, K., Janssen, N. A., Martin,

R. V., Samoli, E., Schwartz, P. E., Stafoggia, M., Bellander, T., Strak, M., Wolf, K.,

Vienneau, D., Vermeulen, R., Brunekreef, B., & Hoek, G. (2019). A comparison of

linear regression, regularization, and machine learning algorithms to develop Europe-

wide spatial models of fine particles and nitrogen dioxide. Environ. Int., 130, 104934.

https://doi.org/10.1016/j.envint.2019.104934

Ciupek, K., Butterfield, D., Quincey, P., Sweeney, B., Lilley, A., Bradshaw, C., Fuller,

G., Green, D., & Font, F. (2021). 2019 Annual Report for the UK Black Carbon

Network. Report, National Physical Laboratory. https://doi.org/10.47120/npl.

ENV38

Collaud Coen, M., Andrews, E., Bigi, A., Martucci, G., Romanens, G., Vogt, F. P. A.,

& Vuilleumier, L. (2020). Effects of the prewhitening method, the time granularity,

and the time segmentation on the Mann–Kendall trend detection and the associ-

ated Sen’s slope. Atmos. Meas. Tech., 13, 6945–6964. https://doi.org/10.5194/

amt-13-6945-2020

Concas, F., Mineraud, J., Lagerspetz, E., Varjonen, S., Liu, X., Puolamäki, K., Nurmi,

P., & Tarkoma, S. (2021). Low-cost outdoor air quality monitoring and sensor

calibration: A survey and critical analysis. ACM Trans. Sens. Netw., 17, 1–44.

https://doi.org/10.1145/3446005

Esposito, E., De Vito, S., Salvato, M., Bright, V., Jones, R. L., & Popoola, O. (2016).

Dynamic neural network architectures for on field stochastic calibration of indicative

46



low cost air quality sensing systems. Sens. Actuators B Chem., 231, 701–713. https:

//doi.org/10.1016/j.snb.2016.03.038

Fernández-Guisuraga, J. M., Castro, A., Alves, C., Calvo, A., Alonso-Blanco, E.,

Blanco-Alegre, C., Rocha, A., & Fraile, R. (2016). Nitrogen oxides and ozone in Por-

tugal: trends and ozone estimation in an urban and a rural site. Environ. Sci. Pollut.

Res., 23(17), 17171–17182. https://doi.org/10.1007/s11356-016-6888-6

Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,

Ramanathan, V., & Rasch, P. (2009). Springtime warming and reduced snow

cover from carbonaceous particles. Atmos. Chem. Phys., 9(7), 2481–2497. https:

//doi.org/10.5194/acp-9-2481-2009

Fung, P. L., Zaidan, M. A., Niemi, J. V., Saukko, E., Timonen, H., Kousa, A., Kuula,
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