
Subfoveal choroidal thickness in ipsi- and contralateral eyes of patients with carotid 

stenosis before and after carotid endarterectomy: a prospective study 

 

 
 
Marianne Ala-Kauhaluoma 1*, Suvi M. Koskinen 2,3, Heli Silvennoinen 2, Pirkka Vikatmaa 4, Krista Nuotio 3, 

Petra Ijäs 3, Kristiina Relander 5, Perttu J. Lindsberg 3, Lauri Soinne 3, Paula A. Summanen 1 

 

1 Ophthalmology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland  

2 HUS Medical Imaging Center, Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, 

Finland 

3 Neurology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland 

4 Vascular surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland 

5 Neuropsychology, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, 
Finland 
 

 

*Corresponding author Marianne Ala-Kauhaluoma  

Department of Ophthalmology, Helsinki University Hospital, 

PL 220, Haartmaninkatu 4 C, FI-00029 HUS Helsinki, Finland 

e-mail: ext-pia.ala-kauhaluoma@hus.fi 

phone +35894711 

fax +358947175100 

 

 

 

 

 

 

 

 

 

 

 

mailto:ext-pia.ala-kauhaluoma@hus.fi


Abstract 

 

Purpose: To compare subfoveal choroidal thickness (SFCT) and associated clinical variables in patients with 

carotid stenosis (CS) before and six months after carotid endarterectomy (CEA). 

Methods: The prospective non-randomized Helsinki Carotid Endarterectomy Study—Brain and Eye Sub-

sTudy included seventy patients (81% male, mean age 69 years) and 40 control subjects (77% male, 68 

years), from March 2015 to December 2018. Ophthalmological examination included SFCT measured with 

enhanced depth imaging-optical coherence tomography. CS was more severe (≥70% stenosis in 92%) 

ipsilateral to the CEA than contralaterally (<50% stenosis in 74%; p<0.001). 

Results: At baseline, patients had thinner mean SFCT than control subjects in both eyes (ipsilateral, 222 vs. 

257m and contralateral, 217 vs 258 m, p≤0.005). At follow-up, SFCT did not change in ipsi- and 

contralateral eyes compared to baseline in patients (p0.68 and p0.77), or in control subjects (p0.59 and 

p0.79). Patients with coronary artery disease had thinner mean SFCT vs those without it in ipsilateral eyes 

before CEA (200 vs 233 m, p0.027). In ipsilateral eyes of patients before CEA, thinner SFCT and ocular 

signs of CS, plaque and hypoperfusion related findings combined, were associated (p0.036), and the best-

corrected visual acuity, measured in logMAR, increased with increasing SFCT (r0.25; p0.046).  

 

Conclusions: SFCT is thinner in patients with CS without association between SFCT and the grade of CS. 

Unchanged SFCT after CEA suggests, that choroidal vessels in severe CS are unable to react to increased 

blood flow. Bilaterally thin SFCT could be considered as yet another sign of CS. 

 

 

 

 

Introduction 

 

The ophthalmic artery, the first branch of the internal carotid artery, is the main source of blood supply to the 

eye. Up to 70% of its blood flow goes to the choroid (Mrejen &  Spaide 2013). Ophthalmic symptoms and 



signs in patients with carotid stenosis (CS) may result from embolism to the ophthalmic artery and its 

branches from an ulcerated carotid plaque (Rubin 2006) or from hypoperfusion to the globe (Arthur et al. 

2014; Hayreh 2015). Ocular signs such as Hollenhorst plaques and other posterior segment changes in the 

retina and optic nerve as well as anterior segment changes, may precede cerebral signs of CS. Clinicians 

should therefore be familiar also with these signs, in order to prevent a stroke (Lawrence &  Oderich 2002; 

Biousse et al. 2018). Unlike these changes, the effect of reduced blood flow to the choroid caused by CS, is 

less well known, however.  

 

 Full-thickness choroidal imaging has been difficult, mainly because of blocking by the retinal pigment 

epithelium (RPE). Indocyanine green angiography and ultrasonography were conventional techniques to 

visualize the choroid. Discovery of enhanced-depth imaging spectral-domain optical coherence tomography 

(EDI-OCT) enabled more precise and detailed visualization of the choroid (Spaide et al. 2008), particularly 

choroidal thickness (CT). Repeatability in subfoveal choroidal thickness (SFCT) measurements using EDI-

OCT has been validated, “a change of >32 m in SFCT exceed interobserver variability” (Rahman et al. 

2011) and better intra-observer repeatability compared to two observers has been shown (Cho et al. 2014). 

Measuring CT and choroidal volume (CV) based on Early Treatment of Diabetic Retinopathy Study (ETDRS) 

subfields has been introduced (Cheong et al. 2018). This method also requires manual measurement of CT, 

and is so far lacking normative data and assessment of repeatability. CT measurements have served in 

clarifying the pathogenesis of several ocular disorders such as age-related macular degeneration (AMD) and 

especially central serous chorioretinopathy, polypoidal choroidal vasculopathy, and other manifestations of 

the pachychoroid (Kim et al. 2011; Dansingani et al. 2016). The population-based Beijing Eye Study 

associated visual acuity with SFCT, indicating its functional role (Wei et al. 2013), and the Gutenberg Health 

Study found that CT was associated with cardiovascular risk factors (Schuster et al. 2019).  

 

Studies have shown that in eyes affected by CS, SFCT is thinner compared to fellow eyes (Kim et al. 2015; 

Wang et al. 2017; Wang et al. 2017; Akca Bayar et al. 2019) or control subjects (Sayin et al. 2015; Kang et 

al. 2019). Three studies have found either bilaterally thinner SFCT in CS (Lareyre et al. 2018), a thicker 

SFCT when CS was >70% (Akçay et al. 2016), or choroidal thinning before retinal changes (Wang et al. 

2017). The last study suggested that SFCT may perform well in choosing the optimal schedule for carotid 

surgery. Changes in SFCT before and after carotid endarterectomy (CEA) has been the topic of four small 



series (Lareyre et al. 2018; Rabina et al. 2018; Akca Bayar et al. 2019; Krytkowska et al. 2020), again with 

partly contradictory results and only one of these with control subjects (Akca Bayar et al. 2019). 

 

In an effort to elucidate some existing controversies, we conducted a larger prospective study with healthy, 

age- and gender-matched control subjects. Our aim was: 1) to compare SFCT at baseline and six months 

after CEA and 2) to discover variables associated with SFCT by use of EDI-OCT. 

 

Patients and Methods 

Study design  

This prospective non-randomized study is part of the Helsinki Carotid Endarterectomy Study - Brain and Eye 

Sub-sTudy (HeCES-BEST) conducted in the Helsinki University Hospital, Helsinki, Finland. HeCES-BEST 

involves ophthalmologists, neurologists, neuroradiologists, vascular surgeons and neuropsychologists to 

evaluate structural and functional changes in the brain and eye at baseline and six months after CEA. The 

ethics committee of the Hospital District of Helsinki and Uusimaa approved the study. Its design complies 

with the tenets of the Declaration of Helsinki. All participants gave their written informed consent.  

 

Patients and controls 

 

From March 2015 to December 2018, 71 patients and 41 control subjects were enrolled, all Caucasians. 

One patient and one control subject were excluded, the former because of inadequate co-operation in EDI-

OCT and the latter was diagnosed with cancer. The inclusion criterion was CS 70% or more in the first 

evaluation leading to CEA. Six enrolled patients had an ipsilateral CS of <70% when assessed with CTA by 

an experienced study neuroradiologist. The exclusion criterion was recent (<6 months) cerebral infarction. 

Twelve patients (17%) had undergone CEA on the contralateral side a median of 0.6 (range, 0.2–17.2) years 

earlier. Healthy, unmedicated, age- and gender-matched control subjects, who underwent carotid 

ultrasonography to rule out CS, were enrolled from senior- and exercise clubs, and among hospital staff, 

relatives and friends.  

 

Baseline and follow-up examinations 



Both eyes of the 70 patients and 40 control subjects were examined at baseline. Twenty-nine patients (41%) 

underwent right sided and 41 (59%) patients left sided CEA. The right eye served as the control for the 

ipsilateral eye in 17 (42%) and the left eye as the control for the contralateral eye in 23 (58%) control 

subjects, the sides were randomly drawn. All patients except one were operated within two weeks of 

baseline examination; one patient needed further investigations for anemia and was operated 11 weeks after 

baseline examination. Patients were examined a median of 5.9 (range, 5.3–8.6) months after CEA. Seven 

(10%) of them were lost to follow-up: one had a postoperative cerebral infarction, two did not respond to 

invitation, and four withdrew from the study. Eight patients (12%) with bilateral CS underwent CEA of the 

contralateral side a median of 0.6 (range, 0.1–2.8) months after the first CEA, and the follow-up data from 

these patients were excluded from the analysis. All control subjects were examined twice with a comparative 

interval (median, 5.9; range, 4.8–6.9 months).  

Clinical records and interview by a research assistant were used to collect patient data (Table 1). All 

participants had blood samples collected at the baseline, which are not presented in this manuscript, except 

that the diagnosis of dyslipidemia was based on low-density lipoprotein (LDL) level >3 mmol/L in our control 

subjects. Blood pressure was measured once in the sitting position from the brachial artery using an 

automatic sphygmomanometer (Omron, Omron Healthcare, Kyoto, Japan). Mean arterial pressure (MAP) 

was calculated with the formula: MAP = Diastolic blood pressure (DBP) + 0,412 x Systolic blood pressure 

(SBP) – DBP (Papaioannou et al. 2016). Body mass index (BMI) was calculated as weight (in kg) divided by 

the square of height (in meters). SBP was similar, whereas control subjects had higher DBP and MAP and 

lower BMI compared to patients (Table 1). 

Grade of CS as analyzed with computed tomography angiography (CTA) according to the North American 

Symptomatic Carotid Endarterectomy Trial (NASCET) method (Barnett et al. 1991), is described in Table 1. 

A 1.0 mm decrease in distal luminal diameter beyond a tight stenosis was used as the cut-off for a subtle 

near-occlusion (NO-s). The near-occlusion was classified as a full collapse (NO-fs) only if the luminal 

reduction exceeded 2.5 mm (Koskinen et al. 2017; Meershoek et al. 2018).  

 

Ophthalmological examination 

 



Baseline ophthalmological findings in patients and control subjects are shown in Table 2. Best-corrected 

visual acuity (BCVA) was measured in logMAR units using ETDRS charts. Intraocular pressure (IOP) was 

measured with a rebound tonometer (Icare® TA01i Tonometer, Icare Finland, Vantaa, Finland), the mean of 

three reliable measuring cycles was used. Bio-microscopy of the anterior and posterior segment was 

assessed with emphasis on findings related to impaired circulation (Lawrence &  Oderich 2002; Mendrinos et 

al. 2010). After pupillary dilatation with tropicamide (Oftan Tropikamid® 5 mg/ml, Santen, Tampere, Finland), 

ultra-widefield images were obtained with Optos® 200 Tx (Optos, Dunfermline, United Kingdom) and 50° 

color and red-free fundus photographs centered on the macula and the nasal field, and 30° photographs 

centered on the disc were taken (FF450plus, Carl Zeiss, Jena, Germany). Ocular signs of CS are dived into 

plaque- and hypoperfusion related findings (Table 3). 

 

Optical coherence tomography  

 

Spectral-domain EDI-OCT was performed using the Heidelberg Spectralis® (version 6.3.2.0; Heidelberg 

Engineering, Heidelberg, Germany). Caffeine intake and cigarette smoking was prohibited three hours 

before examination. Standardized scans were obtained using high resolution and automatic real-time 

function, with 16 frames and 49 sections in a 20° rectangle centered on the fovea. Manual calipers were 

used to measure SFCT at the center of the fovea following a standardized protocol (Boonarpha et al. 2015). 

In short, the calipers were placed at the outer edge of the hyperreflective RPE/Bruch’s complex band and the 

choroid-sclera junction. SFCT was measured twice in different sessions. If the difference between the two 

measurements was <10 m, the mean was calculated. If the difference was ≥10 m, a third measurement 

was taken and the mean of the two nearest measurements with a difference of <10 m was used. 

Measurements outside this limit were excluded from further comparison. The percentages of acceptable 

measurements in the ipsi- and contralateral eyes of the patients were 91% and 83% at baseline and 86% 

and 87% at follow-up, and in control subjects 88%, 88%, 83%, and 80%, respectively. The mean time of the 

day at the baseline EDI-OCT examination was 11:56 a.m. ( 1:28 hours) for patients and 11:48 a.m. ( 1:54 

hours) for control subjects. The corresponding times at the follow-up were: 10:59 a.m. ( 1:31 hours) and 

11:32 a.m. ( 1:56 hours), respectively.  All examinations and measurements were performed by the same 

ophthalmologist (MA-K) masked to the operated side.  

 



Statistical analysis 

Descriptive statistics for continuous normally distributed variables are presented as means (standard 

deviations) and for non-normally distributed variables as medians (ranges), and for categorical variables as 

frequencies (percentages). To compare the variables between patient and control groups, two-sample t-test 

or Mann-Whitney U-test was used for continuous variables and chi-square or Fisher’s exact for categorical 

variables. The differences in CS and ocular signs of CS between ipsi- and contralateral eyes were examined 

with McNemar-Bowker test. Mean SFCT values between ipsi- and contralateral eyes, and between pre- and 

postoperative visits were compared using linear mixed model with random intercept for a subject to account 

for the dependency between measurements on the same subject. Restricted maximum likelihood estimation 

was used in linear mixed model to get the unbiased estimates in the presence of missing data. Two-sample 

t-test was used to test the differences in mean SFCT between patients and controls. Associations of 

categorical characteristics with preoperative SFCT were analyzed using two-sample t-test or 1-way ANOVA 

with Tukey’s adjustment for multiple comparisons. Correlations between continuous clinical characteristics 

and preoperative SFCT were calculated with Pearson or Spearman correlation coefficients. Statistical 

analyses were done using SPSS for Windows (version 26, IBM, Armonk, NY). Statistical significance was set 

at 0.05.  

 
 

Results 

 

Subfoveal choroidal thickness  

 

At baseline, the SFCT was within 5 m of each other in both the ipsi- vs contralateral eyes of the patients 

(222 vs 217 m, p=0.90, linear mixed model) and in control subjects (257 vs 258 m, p0.72, Fig.1). The 

SFCT was 36–41 m thinner ipsi- and contralaterally in the patients compared to the control subjects 

(p0.005 and p0.004, two-sample t-test).  

At the postoperative visit, SFCT did not change in ipsi- and contralateral eyes relative to their SFCT at 

baseline (p0.68 and p0.77, linear mixed model, Fig.1). It did not differ between the ipsi- vs contralateral 



eyes, neither in the patients (225 vs 209 m, p0.13) nor in control subjects (261 vs 244, p  0.62). The 

significant difference between the patients and control subjects in SFCT ipsi- and contralaterally was 

maintained at the postoperative visit (p0.011 and p0.007, two-sample t-test). 

Grade of CS did not influence SFCT which remained unchanged postoperatively in ipsi- and contralateral 

eyes in patients with preoperative grade of CS >70% (225 vs 222 and 216 vs 212 m, respectively; p0.54 

and 0.23, linear mixed model), including patients with NO, and also in contralateral eyes in patients with 

preoperative grade of CS <50% (218 vs 214 m, p0.32). 

 

Effect of cardiovascular disease  

At baseline, patients with coronary artery disease (CAD) vs those without CAD had a thinner SFCT in the 

ipsi- but no difference in the contralateral eyes (200 vs 224 and 202 vs 224 m, p0.027 and p=0.23, two-

sample t-test, Table 4, Fig.2). At the postoperative visit, these values were not different in the ipsi- but were 

thinner in the contralateral eyes (210 vs 232 and 185 vs 219 m, p0.25 and p0.050, respectively). 

Postoperatively, SFCT in ipsi- and contralateral eyes of patients with CAD and without CAD did not change 

relative to baseline (Fig.2).   

  

Association between preoperative SFCT and clinical characteristics  

 

We further analyzed which variables besides CAD associated with SFCT at baseline. An association was 

found between thinner SFCT and ocular signs of CS in the ipsilateral eyes (p0.036, one-way ANOVA), but 

not in the contralateral eyes (p0.30, two-sample t-test, Table 4). In line with this, we found an inverse 

correlation between SFCT and logMAR in the ipsilateral eyes (r  0.25; p0.046, Spearman rank 

correlation), but not in the contralateral eyes (r 0.03; p0.81), corresponding to increasing BCVA with 

increasing SFCT. No correlation was found in ipsilateral eyes between SFCT and spherical equivalent (r  

0.11; p  0.39, Pearson correlation), age (r  0.16; p  0.20), BMI (r  0.01; p  0.95), SBP (r   0.14; p  

0.27) nor DBP (r  0.10; p  0.43). Furthermore, gender, smoking, DM, systemic hypertension, 



dyslipidemia, amaurosis fugax, AMD, time of OCT measurement and grade of CS were unassociated with 

ipsi- or contralateral SFCT (Table 4).  

The control subjects were analyzed similar to the patients, a correlation was found between SFCT and BMI 

(r  0.37; p0.036, Pearson correlation), but on one side only. 

 
Discussion  
 

To our knowledge, this seems to be the largest study thus far on SFCT in patients with CS before and after 

CEA. We showed thinner SFCT both before and after CEA in both eyes despite significant difference in the 

grade of CS ipsi- and contralaterally. In all evaluations, our patients had, in fact, thinner SFCT compared to 

control subjects. An association appeared also between SFCT and patients with CAD, as thinner SFCT was 

found preoperatively in ipsilateral eyes and postoperatively in the contralateral eyes. Furthermore, an 

association appeared between thinner SFCT and ocular signs of CS, and SFCT was correlated with BCVA, 

both findings in the ipsilateral eyes of our patients. 

We confirmed thinner SFCT in ipsi- and contralateral eyes in patients with CS (Fig. 1). In our study, mild CS 

on the contralateral side occurred in 74% of patients, who nevertheless had thinner SFCT, whether this 

indicates a compromised blood flow to the choroid even in mild CS is not yet known. As already mentioned, 

one study concluded, that when choosing the optimal time for surgery in CS, measuring SFCT could prove 

useful (Wang et al. 2017). Their conclusion is challenged by our finding of thin SFCT in mild CS. Our finding 

also challenges the theory that dilation of choroidal collaterals might cause choroidal thickening in early 

stages of CS (Yeung et al. 2020). On the other hand, we confirmed an absence of correlation between the 

grade of CS and SFCT (Sayin et al. 2015; Lareyre et al. 2018). 

In concordance with recent findings (Sayin et al. 2015; Kang et al. 2019; Li et al. 2019) we found thinner  

SFCT in patients with CS compared to that of control subjects (Fig.1). The mean SFCT in large population-

based studies has ranged from 252 to 255 m (Wei et al. 2013; Schuster et al. 2019). This is in line with the 

mean SFCT in our control subjects, 244 to 261 m. On the other hand, 33% of our control subjects had thin 

SFCT (<220 m), and of these 74% had bilaterally thin SFCT, and 75% had thin SFCT at both visits. It 

seems, that bilaterally thin SFCT may exist also as a normal variation. However, age-matched control 



subjects in our study, though without medications according to study protocol, had a higher DBP (single 

measurement) compared to that of the patients, and 80% were dyslipidemic (Table 1). The fact that only the 

patients used medications, such as antiplatelet and statin therapy, that enhance the circulation and 

endothelial function, might have influenced our results. If so, one could hypothesize that this would have 

narrowed the difference between the patients and control subjects which, however, was significant both 

before and after CEA. Our patients´ medication did not change during follow-up. 

Thus far, four studies on SFCT after CEA have appeared (Lareyre et al. 2018; Rabina et al. 2018; Akca 

Bayar et al. 2019; Krytkowska et al. 2020). The Lareyre-group had 36 patients at baseline of whom 28 with 

follow-up results at 1 month and 19 at 3 months (Lareyre et al. 2018). After CEA, SFCT was increased at 1 

and 3 months in the ipsilateral eyes (211 m at baseline vs 226 m at 3 months, p<0.001) and at 3 months 

in the contralateral eyes (215 m vs 220 m, p=0.04). Thinner SFCT compared to that of the normal 

population emerged in our study as well; their mean SFCT in ipsi- and contralateral eyes was comparable to 

that of our patients both pre- (211 vs 222 m and 215 vs 217 m) and postoperatively (226 vs 225 m and 

220 vs 213 m).  The Krytkowska-group measured mean CT and CV from 38 eyes of 19 patients in 9 

ETDRS subfields at baseline, and at 2 days and 3 months after CEA. Compared to baseline, CT and CV had 

not changed at 2 days in either eye, whereas at 3 months the ipsilateral eye showed increase in total CT 

(p=0.04), including from 320 to 336 m (p=0.03, without adjusting for multiple subfield comparisons) in the 

central subfield, and overall CV (p=0.01), including from 0.25 to 0.26 mm3 (p=0.06, without adjusting for 

multiple subfield comparisons) in the central subfield. Unlike these two studies, we found no increase in 

SFCT postoperatively. It is possible that either the increase in SFCT after CEA is temporary, or the variability 

in SFCT measurements prevents detection of small changes. The Rabina-group´s study included 8 patients 

with a normal preoperative SFCT (268–277 m) and no change 6 months after CEA (Rabina et al. 2018). 

The Akca Bayar-group study, using ETDRS subfields for evaluation of CT, included 43 patients with 

moderate (50-70%) or severe (>70%) CS at baseline, requiring stenting in 22 patients and CEA in 21 

patients, and 40 control subjects (Akca Bayar et al. 2019). At baseline the subfoveal CT was thinner in 

moderate and severe CS as compared to controls (242 m vs 249 m vs 264 m, p0.03, without adjusting 

for multiple subfield comparisons), as well as in the other subfields. They concluded that only stenting in 

patients with moderate CS provided a recovery in CT, suggesting that higher grade of CS may lead to 



permanent decrease in choroidal thickness. Our findings support this theory because our patients had no 

increase in SFCT after CEA.  

A study with 34 patients with CAD and 28 age-matched control subjects found significantly thinner SFCT in 

the former, concluding that “CT could serve as potential biomarker” of CAD (Ahmad et al. 2017), and the 

same suggestion appeared in a recent review (Yeung et al. 2020). Another study showed decreased 

choroidal vessel density and blood flow in OCT angiography, associated with higher grade of stenosis of 

coronary arteries (Wang et al. 2019). Our series included 22 patients with CAD, of whom 32% had had acute 

myocardial infarction, and 64% had undergone revascularization procedure. Our patients with CAD had 

thinner SFCT than did patients without CAD in ipsilateral eyes preoperatively and in contralateral eyes 

postoperatively (Fig. 2), whether thinner SFCT in CAD patients is the result of compromised blood flow in 

choroidal vessels, prone to change also on the unoperated side, remains to be determined. In the Gutenberg 

Health Study, cardiovascular risk factors such as sex, SBP, left ventricular mass index and dyslipidemia 

were associated with SFCT, mediated by aging (Schuster et al. 2019). Association of SFCT with higher BP, 

shown in other studies of DPB and higher mean blood pressure (Wei et al. 2013), as well as with arterial 

hypertension (Lareyre et al. 2018), was absent from our series. However, our patients were normotensive, 

albeit 84% had medication for arterial hypertension (Table 1).  Neither did we find any association between 

SFCT and dyslipidemia, i.e. patients with medication for dyslipidemia. Controversy exists as to how diabetes 

affects CT (Laviers &  Zambarakji 2014), we found no association there. Healthy individuals with higher BMI 

(>25) have thinner CT than do those with lower BMI (Yilmaz et al. 2015). Accordingly we found a negative 

correlation between BMI and SFCT in our healthy control subjects, but not in the patients with CS. Studies 

with EDI-OCT have confirmed age-related decline in SFCT of 16- 54m per decade (Margolis &  Spaide 

2009; Ding et al. 2011; Wei et al. 2013). Probably due to the limited age range in our patients and control 

subjects, we found no correlation between age and SFCT (Table 1). 

In our study, midperipheral hemorrhages were the most common findings in patients with ocular signs of CS 

(Table 3). These signs were associated with thinner SFCT in the ipsilateral eyes, despite that the grade of 

CS was not associated with SFCT (Table 4). To the best of our knowledge, this seems to be the first report 

on association between SFCT and signs of CS, which could suggest that thin SFCT might play a role in the 

pathogenesis of these changes. A functional role for SFCT has been suggested, because visual acuity has 



been associated with SFCT (Wei et al. 2013). We also found better BCVA with increasing SFCT in the 

ipsilateral eye of our patients. 

Diurnal variation in SFCT has occurred, ranging from 10 to 13 m (Usui et al. 2012; Lee et al. 2014). We 

observed no association between SFCT and time of its measurement, the mean time being around noon. 

Diurnal variation should not, therefore, have influenced our results. In two studies, SFCT decreased by 8.7 

and 15 m for every diopter of myopic shift (Fujiwara et al. 2009; Wei et al. 2013). None of our participants 

had high myopia, their mean spherical equivalent was slightly on the hyperopic side with the ranges in ipsi- 

and contralateral eyes of patients and control subjects being similar (Table 2). Their spherical equivalent 

showed no correlation with SFCT.  

All our study participants were Caucasians and mostly males, hence making our findings valid accordingly. 

Limitations in our study include lack of data on axial length, anterior chamber depth, and lens thickness, all of 

which may influence SFCT measurements (Wei et al. 2013). Another limitation concerns EDI-OCT 

measurement protocol, although we used high resolution and automatic real-time function, best quality in 

images would have required 100 averaged scans in each section. To our benefit, we evaluated SFCT in 

separate sessions and used only measurements within 10 m to exclude images with indistinct choroid-

sclera junction. Most of the studies on CT have not revealed their protocol in EDI-OCT imaging, however.   

In conclusion, the bilaterally thin SFCT found in patients with CS, could be considered as yet another sign of 

CS, though bearing in mind that this finding may overlap with normal variation. Thin SFCT occured even in 

mild CS (<50%). An absence of recovery in SFCT after CEA supports the hypothesis that choroidal vessels 

may be unable to react to increased blood flow in patients with severe CS (>70%). Thin SFCT in patients 

with CAD, suggests that, in such patients, the systemic effect of atherosclerotic disease plays an additive 

role with local hemodynamic effect of CS. Furthermore, whether thin SFCT plays a role in the pathogenesis 

of ocular signs of CS, as demonstrated by midperipheral hemorrhages and other signs of ocular ischemic 

syndrome, is unknown. Future research is essential to confirm our findings.  
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