
The predator’s numerical and functional

responses derived from first principles:

population dynamical and evolutionary

consequences

Cecilia Berardo

Doctoral dissertation

To be presented for public examination with the permission of
the Faculty of Science of the University of Helsinki,
in Auditorium PII, Porthania, Yliopistonkatu 3

on 22 January, 2022 at 12 o’clock.

Department of Mathematics and Statistics

Faculty of Science

University of Helsinki

Finland

2022



Supervisor

Adjunct Professor Stefan Geritz
University of Helsinki, Finland
Email: stefan.geritz@helsinki.fi

Pre-examiners

Professor Christopher Klausmeier
Kellogg Biological Station, Michigan State University, USA
Email: klausme1@msu.edu

Adjunct Professor Kalle Parvinen
Department of Mathematics and Statistics, University of Turku, Finland
Email: kalparvi@utu.fi

Opponent

Professor Andrea Pugliese
Department of Mathematics, University of Trento, Italy
Email: andrea.pugliese@unitn.it

Custos

Professor Jani Lukkarinen
University of Helsinki, Finland
Email: jani.lukkarinen@helsinki.fi

Copyright c© 2022 Cecilia Berardo
Doctoral School in Natural Sciences Dissertation Series
Series no. 1/2022
ISSN 2669-882X (print)
ISSN 2670-2010 (online)
ISBN 978-951-51-7833-6 (softcover)
ISBN 978-951-51-7834-3 (PDF)
Helsinki 2022
Unigrafia Oy



The predator’s numerical and functional responses derived
from first principles: population dynamical and
evolutionary consequences

Cecilia Berardo

Department of Mathematics and Statistics
P.O. Box 68, FI-00014 University of Helsinki, Finland
Email: cecilia.berardo@helsinki.fi
Website: https://researchportal.helsinki.fi/en/persons/cecilia-berardo

Abstract

This article-based dissertation uses mathematical models to study predator-
prey interactions and their population dynamical and evolutionary conse-
quences. The focus is on the predator’s numerical and functional response
which I derive from first principles, i.e., from the interactions between prey
and predator individuals. The aim is to connect population-level phenom-
ena and the long-term evolution of the prey or the predator to processes
on the level of the individuals.

The dissertation consists of a general introductory part and three research
articles with general results as well as applications to specific models. The
first two articles have already been published in the Journal of Mathemat-
ical Biology and in the Journal of Theoretical Biology, respectively. The
third article is under review for publication.

In the first research article, I introduce a formal method for the derivation
of a predator’s functional and numerical response from the interactions
between the individual prey and predators. Such derivation permits an ex-
plicit interpretation of the parameters and structure of the functional and
numerical responses in terms of individual behaviour. The general method
is illustrated with several concrete examples. Some examples give novel
derivations of already well-known functional responses. Other examples
give derivations for responses that have not been used before and lead to
a rich population dynamical behaviour including Allee effects as well as si-
multaneous existence of multiple positive population-dynamical attractors.

In the second research article, I model a stand-off between a predator and a
prey individual when the prey is hiding and the predator is waiting for the
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prey to come out from its refuge, or when the two are locked in a situation
of mutual threat of injury or even death. The stand-off is resolved when the
predator gives up or when the prey tries to escape. Using the methods of the
first article, this individual-level model leads to the well-known Rosenzweig-
MacArthur model but now with parameters that directly connect to the
behaviour of the individuals, in particular the giving-up rates of the prey
and the predator. I use the model to study the coevolution of the giving-
up rates using the mathematical theory of adaptive dynamics. New and
different evolutionary results emerge in comparison with the asymmetric
war of attrition in evolutionary game theory which is the more traditional
way of modelling a stand-off.

In the third research article, I study the evolution of density dependent
handling times (i.e., the processing time of captured prey) and the related
functional and numerical responses. It is a well-established theoretical re-
sult that coexistence of two predator species feeding on one and the same
prey is possible, but only if the system exhibits non-equilibrium dynamics.
Coexistence is possible because the two predator species occupy different
temporal niches: the one with the longer handling time has the advantage
when the prey is rare so that holding on to the same catch is the better
option, while the species with the shorter handling time has the advantage
when the prey is common and easy to catch. Using the adaptive dynam-
ics approach, I show that a predator species with a non-constant handling
time that decreases with the prey density is selectively superior regardless
of whether the prey is rare or common. The reason is that such generalist
predator can occupy both temporal niches all by itself.

By means of these examples, the dissertation demonstrates the strengths of
deriving population models from first principles as it enables us to connect
population-level phenomena and long-term evolution to the behaviour of
the individuals that make up the population.
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Chapter 1

Introduction

The mathematician owns a wonderful tool created by the efforts of many
ingenious people, accumulated through the centuries. He has the key that
can open a way to the many mysteries of the Universe and obtain, by a

few symbols, a synthesis that covers and connects many and diverse
results of different sciences.

Vito Volterra (1860-1940)

A mathematical model is a simplified yet interpretable mathematical
description of a real phenomenon: simplified, because reality is too complex
to replicate in full detail, and interpretable, for the necessary insight into
the mechanisms and interactions to compare the behaviour of the model
with that of reality (Geritz and Kisdi 2012).

We use mathematical models mainly to predict and understand the
real system that they represent. However, notwithstanding the importance
of prediction, Epstein (2008) gives at least sixteen more reasons to use
models. Among them, modelling suggests analogies, as it happens that the
same equations fit different natural phenomena and apply to a huge range
of totally unrelated areas of science.

I am thinking how, for example, similar differential equations have been
used in mathematical immunology to simulate the immune response to a
disease or a vaccine, or in epidemiology to study how a disease spreads in
a population, in economics and mathematical finance to model the bonds
and stocks price behaviour and their sensitivity to the interest rate change,
in population growth of, for instance, bacteria and other microorganisms.

A simple example is the logistic equation

dn(t)

dt
= rn(t)

(
1− n(t)

K

)
, (1.1)
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2 1 Introduction

where n(t) is the population density at time t. The parameters r and K are
the intrinsic growth rate (of the population) and the carrying capacity (of
the environment), respectively. The logistic equation has been first used
to model population growth by Verhulst (1838) and Pearl and Reed (1920)
and later found many applications in, for example, fluid convection (the
period doubling cascade in the Rayleigh-Bénard experiment by Libchaber
et al. 1982), neuron firing (Crevier and Meister 1998), cardiac arrhythmias
(Garfinkel et al. 1992).

With the famous quote of G. Box, all models are wrong, but some are
useful, Epstein (2008) also argues against the unnecessary disappointment
if a model is not exactly right (Hutchinson 1961 also shows how some
models are most useful when they are wrong). Having said that, a model
should still be a fair and close description of the focal phenomena and the
modelling approach proposed in this thesis appears as a powerful method
to build simple models with an interpretation.

Mathematical modelling of population dynamics dates back through
ages and, among the founders, we typically address Malthus, Verhulst,
Pearl, Reed, Lotka and Volterra (Edelstein-Keshet 2005, Berryman 1992).
The predator-prey model by Lotka (1925) and Volterra (1928) was the first
mathematical model to give an abstract explanation of a trophic interaction
(Edelstein-Keshet 2005): why did the predatory fish in the Adriatic Sea
increase during the World War I, given that fishing decreased at the time
of the war? The model is composed of the pair of equations

dx(t)

dt
= αx(t)− βx(t)y(t), (1.2)

dy(t)

dt
= γx(t)y(t)− δy(t), (1.3)

where x(t) and y(t) denote the prey and predator densities at time t, respec-
tively, and α, β, γ and δ are positive parameters describing the interactions
between the two populations. One of the most innovative elements of this
model was the use of the physical principle of mass action, which states that
the number of pairwise interactions per unit of time between particles of
given kinds in a well-mixed system is proportional to the respective particle
densities of both kinds. In the above model the particles are individual prey
and individual predators, and their interaction is the prey being captured
and killed by the predator. The principle of mass action now has become
a standard tool in the mathematical modelling of populations.

The above model also made the biologically unrealistic assumption of
a constant per capita growth rate of the prey, leading to exponential pop-
ulation growth in absence of the predator. The problem of unbounded
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population growth was later fixed by using the logistic growth function in
which the per capita growth rate decreases at high population densities.
However, the meaning of this function in terms of individual-level interac-
tions (birth and death) was still unclear.

In the context of predator-prey models, another major contribution was
the introduction of more varied functional responses by Holling (1959a,b,
1966), who suggested a non-linear formulation for the predation term, and
later by the ratio-dependent equation of DeAngelis et al. (1975) and Bed-
dington (1975). Like in case of the logistic function, the phenomenological
approach, also known as top-down approach, seemed to be preferred at
first, and many functional responses appearing in literature often lacked
of an explicit interpretation at the individual level (except for the Holling
type II functional response, which was mechanistically derived by Holling
1959a,b via a time budget argument).

Durrett and Levin 1994, among others, raised one of the most impor-
tant questions in theoretical ecology: how to scale up from the individual-
level behaviours to functions and equations at the population level? Metz
and Diekmann (1986), with their bottom-up derivation of the Holling type
II functional response from a system of fast time individual state transi-
tions, were among the first ones to claim the potential of the mechanistic
modelling method (i.e. bottom-up) versus the phenomenological approach
and the importance of interpreting the model variables and parameters in
terms of the underlying individual-based mechanisms (see also Rashevsky
1959, Sjöberg 1980, Taylor 2013). Later, Geritz and Gyllenberg (2012,
2013, 2014) applied the same method to derive the Beddington-DeAngelis
functional response and to show the possible dependence on the predator
density of the prey numerical response. Finally, also the logistic equation
found several mechanistic explanations (Rueffler et al. 2006 and references
therein).

A disadvantage of the mechanistic modelling approach is that, in prac-
tice, the model could become rather complex and parameter heavy and
therefore often difficult to analyse. Given the rapid development in com-
puting power and numerical methods, one solution is the use of numerical
simulations. Alternatively, useful tools to reduce the number of equations
and parameters of the model are time-scale separation, if the interactions
between different individual states happen on different time scales, and
conservation laws, e.g. when the total population density remains constant
on the time scale of the individual state transitions.

All in all, this article-based dissertation investigates the use of mathe-
matical modelling to understand predator-prey interactions and their evo-
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lution with a special focus on the mechanistic modelling approach and the
functions which describe the biological population at both microscopic and
macroscopic level. In the context of climate change and consequent eco-
logical and evolutionary shifts, the interplay between the ecological and
evolutionary modelling frameworks is an important tool to study popula-
tion dynamics. Predator-prey models comprise a simple and well-known
tool to understand the mechanistic ecological and evolutionary dynamics
of animals and microorganisms. Many theoretical models already proved
to be strong frameworks to predict ecosystem responses (Abrams and Mat-
suda 1997, Yoshida et al. (2003) Koch et al. 2014).

The thesis includes new general results and specific applications which
are canonical examples of the methods presented.

The first part of the thesis is introductory and guides the reader through
the main research questions, theoretical tools and results. Chapter 2 focuses
on the research questions and mathematical methods, such as the mecha-
nistic modelling approach and the adaptive dynamics framework. Chapter
3 gives an overview on the main results contained in the following articles.

The second part of the thesis is the main body of the dissertation and
includes three scientific articles (I-III). Article I serves as an introduction
to the mechanistic modelling method applied to predator-prey systems.
In addition to some general results, it is shown by means of illustrative
examples how explicit modelling of complex interactions between individual
prey and predators produces functional and numerical responses, some of
which are completely new.

Another and at least as important merit of the mechanistic modelling
approach is that the population parameters can be interpreted in terms
of individual level processes and, in particular, the rate parameters. As
the rate parameters are subject to evolution, this gives a way to study the
evolution of the functional and numerical responses, which is the focus of
articles II and III.

Articles II and III have similar structure. First, we present the indi-
vidual level predator-prey interactions and from that derive the functions
which describe the population dynamics. Next, we analyse the ecological
dynamics, including steady-states, limit cycles and bifurcations. Finally,
we study the evolution of the predator-prey interactions using the mathe-
matical framework of adaptive dynamics. Fundamental in this final stage
are both analytical and numerical tools, the latter being particularly useful
in case of ecological periodic environments.



Chapter 2

Research questions and methods

Now, here, you see, it takes all the running
you can do, to keep in the same place.

Lewis Carroll (1872)

In this chapter, I focus on the research questions addressed in Articles
I-III and the mathematical methods applied and developed. In particular,
the mechanistic modelling approach and the adaptive dynamics framework.
In the articles, the analysis is conducted also with the use of standard
numerical methods and the software MATLAB� and Mathematica� to
numerically integrate the population equations, evaluate convergence of
the solutions and give graphical descriptions of the results.

2.1 Research questions

The central research topics addressed in the dissertation are:

Q1 : How to derive functional and numerical responses from first princi-
ples in the context of predator-prey models?

Q2 : How do predator-prey strategies coevolve when the predator and
its prey enter a stand-off?

Q3 : How does the possibility of evolution of density dependent prey
handling affect coexistence of multiple predator species sharing one
and the same prey species?

5



6 2 Research questions and methods

2.2 Mechanistic modelling approach: background
motivation

It is well-known that predator-prey interactions are an important driver of
adaptive evolution, biodiversity and community ecology (Pettorelli et al.
2015).

While observing predator-prey interactions, the modeller focuses on four
key elements: predation risk, i.e. the chance for a prey species to be sub-
jected to predation; prey selection, i.e. the particular factors that influence
how and what prey the predator chooses; the predator functional response
(Holling 1959a,b, 1966), formally defined as the average number of prey
caught per predator per unit of time; the predator and prey numerical
responses, which include the demographic numerical responses, i.e. the
growth rates linked to birth and death as functions of the population den-
sities, and the aggregative numerical responses, i.e. the rate of change in
the populations caused by the predator migration to areas with high prey
density (Solomon 1949, Hughes et al. 1973). In particular, functional and
numerical responses are the focal object, as they represent the modeller’s
understanding of the interactions between a specific predator species and
its prey, including predation risk and prey selection. Wrong functional and
numerical responses can deeply qualitatively affect the predictions on the
ecological and evolutionary dynamics.

Functional responses that have been widely used in literature are types
I, II and III introduced by Holling (1959a,b, 1966) and the functional re-
sponse by DeAngelis et al. (1975) and Beddington (1975). Type I assumes
a linear dependence between the number of prey eaten per unit of time and
the prey density; type II is a hyperbolic function which saturates at a fixed
threshold and takes into account the time spent by the predators handling
the prey (where handling time here stands for the time spent killing the
prey, opening the carcass, eating, digesting, but also resting and giving
birth); type III is a sigmoid function as the encounter rate of the predator
and prey individuals increases monotonically with the prey density; the
Beddington-DeAngelis functional response is similar to type II, but con-
tains an extra term in the denominator that is predator density-dependent
and was originally interpreted in terms of predator interference.

Biological systems can be way more complex than expected and it is
important to find a general method to scale up from specific individual
level processes that we observe in nature to population responses. Mecha-
nistic derivations of the main functional responses were given by Metz and
Diekmann (1986) and Geritz and Gyllenberg (2012, 2013, 2014), as well
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as many works addressed the importance of a mechanistic interpretation
of the population functions in both deterministic and stochastic predator-
prey models, among them the articles by Jeschke et al. (2002), Johansson
and Sumpter (2003), Alexander et al. (2012). The same individual state
transitions that determine the functional response can also affect the nu-
merical response and examples of the derivation of numerical responses
from fast-time processes have been given by Geritz and Gyllenberg (2013,
2014).

Figure 2.1: Mechanistic modelling method. Illustration inspired by the
course Mathematical modelling of Stefan Geritz.

2.3 The mechanistic modelling approach

The first step of the mechanistic modelling method (Figure 2.1) requires
a deep understanding of the individual states and transitions, with an ap-
proach similar to that of compartmental models in epidemiology. In the
context of predator-prey models, predators of the same species can be par-
titioned according to their individual state, such as searching, handling,
starving, well-fed, experienced, inexperienced, etc. In the same way, the
prey population can be structured according to the individual states like
foraging, hiding, or different age or developmental classes such as juvenile
or adult, etc.

Individual-level processes can occur on vastly different time scales, some
being fast, others being slow. It is typically assumed that birth and death
happen on a slow time scale in comparison with more frequent state transi-
tions due to, for example, predation or encounter with other individuals. In
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the same way, we could consider the juveniles’ lifespan (before maturation
into adults) on a slower time scale than interactions, but on a fast time
scale if compared to the adults’ lifespan (see Lehtinen and Geritz 2019b
and Lehtinen and Geritz 2019a).

Once the behavioural states have been specified, the individual-level
processes can be described using the same visual form as molecular reac-
tions, where the reactants are the interacting individuals. State transitions
can happen spontaneously or may require an interaction with another in-
dividual, and they can be visualised as monomolecular and bimolecular
reactions, respectively. We apply now the law of mass action to convert
the individual-level processes into the corresponding population-level equa-
tions.

At a later stage, we use time-scale separation and the conservation laws,
to derive the fast time equations and the corresponding equilibrium of the
fast dynamics (or quasi-equilibrium). At the population level there are
as many differential equations as individual states. Since different state
transitions may occur on different time scales, the system of differential
equations often takes the form of a fast-system with fast changing variables
and slow changing variables. Then we can use the method of time-scale
separation where we analyse the system on the fastest time scale first in
order to calculate the quasi-equilibrium of the corresponding fast variables
as functions of the slower variables. This procedure can be repeated for the
next fastest time scale and so forth till all equations have been accounted
for. The final result is a much smaller system of differential equations for
the slowest variables only, but the terms in the equation have become more
complicated as they implicitly represent the effects of various fast processes.
How this is done in practice is easiest to show in an example.

At this point, we derive the population functions of the predator and
the prey following their definitions to build the population equations. In
particular, most predator-prey models are special cases of the model by
Gause (1934) and Gause et al. (1936)

dx

dt
= g(x)x− f(x)y, (2.1)

dy

dt
= γf(x)y − δy, (2.2)

where f(x) is the predator functional response, g(x) is the per capita growth
rate of the prey in the absence of the predators, i.e. the prey numerical
response, γ > 0 is the conversion factor of prey eaten into predator off-
spring, δ is the per capita natural mortality rate of the predators and,
finally, γf(x)− δ is the predators’ numerical response.
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As a practical example, I consider the predator individuals divided into
well-fed (S1) and starving (S2) and assume different capture rates, for in-
stance the starving predators have a lower capture rate c1 > c2 due to
exhaustion, or, viceversa, predation increases according to the starvation
level and c1 < c2. I suppose further that after prey capture the predators
in state S1 enter the handling state H1, and similarly for the predators in
state S2 transitioning into H2. Ecological factors, such as starvation, can
also naturally affect mating (examples are the surface-dwelling hemipteran
Microvelia austrina by Travers and Sih 1991, or the scorpionfly Panorpa
cognata by Engqvist and Sauer 2003). Therefore, I suppose different per
capita fecundities for the well-fed and starving predators Γ1 > Γ2, as a
little part of the energy gained by the starving predators will be allocated
for reproduction (see also the energy budget theory by van der Meer 2006,
Sousa et al. 2008, Kooijman 2010). I also assume that reproduction hap-
pens only in the handling state and the offspring are in the starving state
S2.

The state transitions can be visualised in the following way

S1 + X
c1−→ H1 the well-fed predator enters the handling state

S2 + X
c2−→ H2 the starving predator enters the handling state

H1
d1−−→ S1 from the handling to the well-fed state

H2
d1−−→ S1 from the handling to the well-fed state

S1
d2−−→ S2 from the well-fed state to the starving state (2.3)

I denote with x and y the total prey and total predator densities. I
suppose that the state transitions in (2.3) are on a fast time scale compared
to birth and death. I assume further that g(x, y) is the per capita growth
rate of the prey and δ the per capita mortality rate of the predators.

The corresponding population equations on the slow time t become

dS1

dτ
= −c1xS1 + d1(H1 +H2)− d2S1 − δS1, (2.4)

dS2

dτ
= −c2xS2 + d2S1 + Γ1H1 + Γ2H2 − δS2, (2.5)

dH1

dτ
= +c1xS1 − d1H1 − δH1, (2.6)

dH2

dτ
= +c2xS2 − d1H2 − δH2, (2.7)

dx

dτ
= g(x, y)x− (c1xS1 + c2xS2) , (2.8)
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dy

dτ
= Γ1H1 + Γ2H2 − δy. (2.9)

As a second step, I apply time-scale separation by introducing a small
and dimensionless scaling parameter ε and introduce the scaled short time
t = ε−1τ . Since the predators are typically higher up the food chain, assum-
ing that the predator population is much smaller than the prey population
is biologically reasonable. This results into dividing the fast-time transition
rates by ε and multiplying the predator state variables by ε. The final fast
time-scale population dynamics is modelled by the system of equations

dS1

dt
= −c1xS1 + d1(H1 +H2)− d2S1, (2.10)

dS2

dt
= −c2xS2 + d2S1, (2.11)

dH1

dt
= +c1xS1 − d1H1, (2.12)

dH2

dt
= +c2xS2 − d1H2, (2.13)

dx

dt
= 0, (2.14)

dy

dt
= 0. (2.15)

The system above can be further simplified into three equations by
applying the conservation law on the total predator density dy

dt = dS1
dt +

dS2
dt + dH1

dt + dH2
dt = 0.

As a third step, by setting the equilibrium equations to zero, I com-
pute the asymptotically stable fast-time equilibrium for the fast variables
(Ŝ1, Ŝ2, Ĥ1, Ĥ2), where

Ŝ1 =
c2x

d2

(
1 + c2

1
d1
x
)
+ c2x

(
1 + c1

1
d1
x
)y, (2.16)

Ŝ2 =
d2

d2

(
1 + c2

1
d1
x
)
+ c2x

(
1 + c1

1
d1
x
)y,

Ĥ1 =
c1c2
d1

x2

d2

(
1 + c2

1
d1
x
)
+ c2x

(
1 + c1

1
d1
x
)y,

Ĥ2 =
c2d2
d1

x

d2

(
1 + c2

1
d1
x
)
+ c2x

(
1 + c1

1
d1
x
)y.
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The functional response is the average number of prey caught per preda-
tor per unit of time and, in the particular scenario presented here, it be-
comes

f(x) =
c1xŜ1 + c2xŜ2

y
=

c2x(d2 + c1x)

d2

(
1 + c2

1
d1
x
)
+ c2x

(
1 + c1

1
d1
x
) , (2.17)

that is a special form of the Holling type III functional response f(x) =
ax+bx2

1+cx+dx2 where the model parameters a = c2, b = c1c2
1
d2
, c = c2

(
1
d1

+ 1
d2

)
and d = c1c2

d1d2
now have an interpretation according to the individual tran-

sition rates.

In a similar way, given different fecundities for the predator states, the
per capita reproduction rate of the predators becomes

Γ1Ĥ1 + Γ2Ĥ2

y
=

c2
1
d1
x (Γ1c1x+ Γ2d2)

d2

(
1 + c2

1
d1
x
)
+ c2x

(
1 + c1

1
d1
x
) . (2.18)

Here the per capita reproduction rate corresponds to the product γf(x) in

equation 2.2, where the conversion factor γ(x) =
1
d1

(Γ1c1x+Γ2d2)

(d2+c1x)
is no longer

constant, but a function of the prey density.

Given different mortality rates δi for the predator states, also the per
capita mortality rate becomes a function of the prey density, that is δ(x)
instead of just δ.

In general, the more assumptions on the state transitions, the more
complex the population functions. However, the strength of this method is
in the possibility to interpret the population equations in terms of the fast
transition rates.

2.4 Adaptive dynamics: background motivation

The modern approach to study evolution is strongly based on the concept
of natural selection introduced by Darwin (1859).

On one hand, population genetics focuses on the genetics (genotypes
and genetic interactions), but largely ignores ecology (Crow et al. 1970).
Quantitative genetics focuses on phenotypes controlled by many different
genes each with a small additive effect (Lande 1976, Falconer 1996). Quan-
titative genetics was in the first place meant to model domestic animal
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breeding but later was also used to model phenotypic evolution in ecolog-
ical systems (see the equation by Lande 1976, as well as many papers by
Peter Abrams).

On the other hand, in the context of evolution of phenotypic traits and
ignoring genetic detail, highly debated have been the limitations of optimis-
ing selection, versus frequency-dependent selection. A turning point of this
discussion was the concept of eco-evolutionary feedback loop, integrated by
Smith and Price (1973) into their evolutionary game theory. Evolutionary
game theory is based on frequency-dependent selection and allows for a pay-
off function depending on both the individual’s strategy and the strategies’
distribution.

In the 1990s, the adaptive dynamics framework by Metz et al. (1992),
Dieckmann and Law (1996), Geritz et al. (1997, 1998, 1999) extended and
generalised the idea of frequency-dependent selection from evolutionary
game theory to models which allowed for more complex and realistic eco-
logical scenarios. In particular, key concept of adaptive dynamics is the
linkage between ecological dynamics and evolutionary dynamics to study
the long-term consequences of small mutation in phenotypic traits.

The adaptive dynamics framework is based on four key assumptions
(Geritz et al. 1998):

(i) clonal reproduction;

(ii) selection happens on a fast time scale, while mutations occur on a
slow time scale;

(iii) the density of the mutant trait is small compared to the resident
population;

(iv) small mutation steps.

In essence, the resident population with given traits determines the
environment, which in turn affects the population dynamics of the resident
(ecological feedback loop). The environment generated by the resident trait
distribution affects the fitness of a mutant with given different trait values.
The mutant fitness determines whether the mutant can invade and affects
the final trait composition of the population (eco-evolutionary feedback
loop).

With its simplified picture of the eco-evolutionary feedback loop (Fig-
ure 2.2), adaptive dynamics provides handy mathematical tools to answer
questions such as ”What are the conditions that favour certain adaptions?”,
”How is diversity maintained and how can it be lost?”, and among the main
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outcomes of the eco-evolutionary dynamics we account for trait substitu-
tion, disruptive selection and coexistence of different traits, evolutionary
suicide and Red-Queen dynamics (an exhaustive list of references on the
main works is provided in the online bibliography by Éva Kisdi
https://www.mv.helsinki.fi/home/kisdi/addyn.htm).

Figure 2.2: Eco-evolutionary feedback loop in adaptive dynamics. Illustra-
tion inspired by a talk given by Sebastian Schreiber.

2.5 The adaptive dynamics framework

The adaptive dynamics framework is a rather technical theory built around
the key concept of invasion fitness defined by Metz et al. (1992).

Consider an ecosystem with x1, ..., xk ∈ X resident strategies (also
called traits), where X is the strategy space. The corresponding densities
(scalar or vector-valued) are denoted by ni, i = 1, ..., k. I denote with E(t)
the ecological environment determined by the distribution of the resident
traits and f(xi, E(t)) the exponential growth rate of the total population
density for strategy xi.

Assuming that the ecological environment is at an attractor Ex(t) (ei-
ther a steady state or a periodic attractor), I introduce the mutant strategy
y = xi + ε, where ε is the small mutation step. The invasion fitness is de-
fined as the exponential growth rate of the mutant population with strategy
y in the established resident population when the mutant is still rare, i.e.
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the long-term average population growth rate

sx(y) = E[f(y,Ex(t))] = lim
t→0

1

t

∫ t

0
f(y,Ex(t))dt. (2.19)

By definition, the invasion fitness verifies sx(xi) = 0 for all resident strate-
gies at the demographic attractor (defined as selective neutrality of the resi-
dents). Furthermore, when the environment attains an interior equilibrium
the invasion fitness is simply

sx(y) = f(y,Ex(t)), (2.20)

whereas in case of periodic orbit

sx(y) =
1

tx

∫ tx

0
f(y,Ex(t))dt, (2.21)

where tx is the period of the resident cycles. In the latter case of conver-
gence to a stable limit cycle, computing the invasion fitness analytically
becomes complicated and the use of numerical simulations is often neces-
sary to approximate the orbits.

The sign of the invasion fitness determines the outcome of the invasion.
If the fitness is positive, sx(y) > 0, the mutant can invade the resident,
and, viceversa, when sx(y) < 0 the mutant dies out.

A rather intuitive result is the principle of competitive exclusion in adap-
tive dynamics which is a direct consequence of the selective neutrality of
the residents and states that the dimensionality of the environment at equi-
librium in numbers of environmental feedback variables, i.e. the elements
of the vector Ex(t), sets a theoretical upper limit to the number of possible
coexisting strategies (Levin 1970, Dieckmann and Law 1996, Meszéna et al.
2006).

Another useful result is the Tube theorem by Geritz et al. (2002) which
formalises the idea of attractor inheritance in the context of adaptive dy-
namics when an invasion successfully occurs. If the mutation step is suffi-
ciently small, then the sum of the densities of the mutant and the resident
is close to the resident attractor, being confined in a tube in the resident-
mutant state space. However, if a sudden change in the resident attractor
occurs, such as discontinuous bifurcations leading to multiple attractors
(e.g. saddle node bifurcation, homoclinic bifurcation), the mutation step
close to the bifurcation point should be infinitely small to keep the mu-
tant strategy on the same side of the bifurcation as the resident strategy.
This scenario is unlikely to happen, while possible outcomes are attractor
switching, the resident strikes back (when the resident switches to a different



2.5 The adaptive dynamics framework 15

attractor that cannot be invaded by the mutant, see Mylius and Diekmann
2001) and evolutionary suicide (when the invasion leads to extinction of
both the resident and mutant strategies, see Parvinen 2005).

Second key concept in the adaptive dynamics framework is the selection
gradient, which determines the direction of evolution in the trait space. In
particular, the selection gradient is the fitness derivative with respect to
the mutant strategy y and evaluated at the resident trait,

D(x) = [Di(x)]
�
i=1,...,k =

(
∂sx(y)

∂y

∣∣∣
y=x1

, ...,
∂sx(y)

∂y

∣∣∣
y=xk

,

)�
. (2.22)

The canonical equation represents the third key tool of adaptive dy-
namics and gives a deterministic approximation of the stochastic muta-
tion process by assuming sufficiently small mutations (Dieckmann and Law
1996, Champagnat et al. 2002). The canonical equation describes the rate
of change of the evolutionary variable xi as

dxi
dt

= ki(t)
∂sx(y)

∂y

∣∣∣
y=xi

(2.23)

where ki(t) is a scaling non-negative coefficient which takes into account
the influence of mutation. In particular, the term ki(t) is given by the
product of the mutation probability per birth event μ(x), the variance
of the mutation step distribution σ2(x) and the effective population size
ni(x, t). While μ(x) and σ2(x) are basic model ingredients and therefore
are given, the effective population size ni(x, t) can be computed from the
resident dynamics.

In case of stable limit cycle for the resident dynamics, defining the
effective population size looks more complicated. Ripa and Dieckmann
(2013) and Metz et al. (2016) extended the canonical equation to periodic
environments. In particular, the rate of change in the variable xi can be
expressed as

dxi
dt

= μ(x)σ2(x)
1

2

∫ tx
0 (bi + di)dt∫ tx
0

(bi+di)
ni(x,t)

dt

∂sx(y)

∂y

∣∣∣
y=xi

, (2.24)

where bi and di are the explicit birth term and explicit death term in the
population equations for the population type i and the selection gradient
is averaged over the length of the limit cycle tx.

For simplicity, I settle now in the simple case of one-dimensional res-
ident strategy x. When the selection gradient D(x) > 0, a mutant with
strategy y > x can invade, whereas when D(x) < 0, mutants with strategy
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y < x will invade. Following the direction given by the fitness gradient,
the population evolves until it reaches an evolutionary singular strategy x∗,
such that D(x∗) = 0 (i.e. an equilibrium of the canonical equation as the
selection gradient vanishes). At the evolutionary singular strategy the fit-
ness landscape has a maximum or a minimum, according to the second
derivative of the mutant fitness evaluated at the singular strategy. Alter-
natively, directional selection may also lead the strategy to the boundary of
the strategy space, or to the boundary of viability (evolutionary suicide).

A singular strategy that cannot be invaded by any mutant is called evo-
lutionary stable (or ESS, as defined by Maynard Smith 1982 in evolutionary
game theory). An ESS satisfies

sx∗(y) < 0, (2.25)

for all mutant strategies y �= x∗. Moreover, the fitness function has a
maximum at the ESS, x∗, and verifies

∂2sx(y)

∂y2
< 0 (2.26)

at the singular strategy.
A singular strategy is called convergence stable when a mutant with

strategy even closer to the singularity x∗ than the resident one can invade,
i.e.

sx(y) > 0, (2.27)

for x < y < x∗ and x∗ < y < x. Therefore, at the convergence stable
strategy the fitness gradient is decreasing and

dD(x)

dt
=

∂2sx(y)

∂y2
+

∂2sx(y)

∂y∂x
< 0. (2.28)

A singular strategy can be ESS and convergence stable, or convergence
stable but not ESS. In the former case, the singularity is defined contin-
uously stable strategy (or CSS by Eshel and Motro 1981; Eshel 1983). In
the latter case, two strategies x1 and x2 (with x1 < x2) can mutually in-
vade, i.e. sx1(x2) > 0 and sx2(x1) > 0 (with sx1(x1) = 0 and sx2(x2) = 0)
and give rise to a dimorphism. From the convexity of the fitness function,
we deduce that only strategies y such that y < x1 and y > x2 can invade.
Therefore the two strategies in the dimorphism gradually become more and
more distinct. This phenomenon is called evolutionary branching and sug-
gests a possible way to study speciation if applied to sexual populations
(see, for example, Kisdi and Geritz 1999 and Geritz and Kisdi 2000).
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In order to study evolutionary singularities, a tool that has found sev-
eral applications is critical function analysis (Kisdi 2006, 2015, Geritz et al.
2007). The method is applied to those models with two coevolving parame-
ters, where one evolving variable can be expressed as a trade-off function of
the other. The main idea behind critical function analysis is to construct a
family of critical functions, each with the critical slope of the trade-off func-
tion such that a certain strategy is singular. Thus, the singular strategies
are the tangent points of the trade-off function to the critical functions.

Graphical tools are also essential, in particular the pairwise invasibility
plot (or PIP, see for example Van Tienderen and De Jong 1986, Metz
et al. 1995, Kisdi and Meszéna 1993; Kisdi and Meszena 1995) describes
the change of sign of the invasion fitness for every combination resident-
mutant in the strategy space. The mirror image along the main diagonal
of the PIP is called mutual invasibility plot (MIP) and gives information
on the invasion cone, that is the set of parameter pairs which are mutually
invasible. Particularly important are the eight possible configurations of
local PIPs near to the singularity given by Geritz et al. (1998). Finally,
the evolutionary tree describes the mutation and adaption process of the
strategies on the slow evolutionary time scale.

In Figure 2.3, I give examples of PIP and MIP based on Article III.
In this scenario, the singularity in the PIP is convergence stable but not
evolutionary stable, and so a branching point. The diagonal reversed pic-
ture in the MIP gives the so called area of protected coexistence (i.e. the
region denoted with ++), where all pairs of strategies are such that they
can mutually invade. Here, the dotted lines (i.e. the c1-isocline and c2-
isocline) indicate where the selection gradient vanishes in one of the two
components and their intersection corresponds to a singular coalition (and,
by symmetry, the reciprocal pair below the main diagonal is also a singular
coalition).

To conclude this brief introduction to the adaptive dynamics frame-
work, note that the definition of ESS for one-dimensional resident popu-
lation extends to multi-dimensional resident populations, whereas conver-
gence stability becomes more complicated. In particular, a singular strategy
is convergence stable if it is locally attainable and the eigenvalues of the
Jacobian matrix for the canonical equation have negative real parts (Dieck-
mann and Law 1996, Matessi and Di Pasquale 1996, Leimar 2002, 2009).
Unlike one-dimensional resident populations where convergence stability is
determined by the selection gradient, in multi-dimensional resident popula-
tions convergence stability depends on the mutation and variation rates for
each resident strategy. In this direction, Leimar (2002, 2009) introduced the



18 2 Research questions and methods

concepts of absolute convergence stability (often more demanding for multi-
dimensional resident strategies) and strong convergence stability, while Hui
et al. (2018) used constant mutation rates and step sizes in the canonical
equation.
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Figure 2.3: Examples of PIP and MIP from Article III.
Top panel : PIP; + and − indicate the sign the invasion fitness sc1(c2) of a
mutant with strategy c2 in the environment settled by a resident with strat-
egy c1; the arrows indicate the direction of evolution (i.e. the evolutionary
path) and are obtained from the canonical equation; BP: branching point
(although not immediately obvious on this scale).
Bottom panel : MIP; dashed lines indicate the mirror image of the PIP;
the pairs of + and − give the sign of the invasion fitnesses sc1(c2) and
sc2(c1), respectively; ++: sc1(c2) > 0, sc2(c1) > 0, i.e. mutually invasible
strategies. +−: sc1(c2) > 0, sc2(c1) < 0, i.e. invasion and substitution.
−+: sc1(c2) < 0, sc2(c1) > 0, i.e. the mutant strategy cannot invade; the
arrows give the evolutionary dynamics in the cone of mutual invasibility;
grey dashed line: c1-isocline, i.e. the selection gradient with respect to c1
vanishes. Grey dash-dotted line: c2-isocline, i.e. the selection gradient with
respect to c2 vanishes; D: dimorphic singularity.
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Chapter 3

Main results

Nothing in evolution or ecology makes sense
except in the light of the other.

Pelletier et al. (2009)

In this Chapter, I list some of the results discovered in the scientific
Articles I-III. The main focus of all articles is predator-prey models, and
all three use the same mathematical and numerical methods.

I discuss the results in order of the research questions Q1, Q2 and Q3.
This order corresponds by and large to the order of the articles as well.

3.1 Main results on the mechanistic derivation of
functional and numerical responses

Article I gives a new and formal overview of the mechanistic modelling
method by considering a predator-prey model with m prey states x =
(xi)

m
i=1 and n predator states y = (yj)

n
j=1. The possible state transitions

happen spontaneously or due to the encounter of a prey individual for the
predators and, viceversa, a predator individual for the prey. The fast time
scale equations can be summarised with the system in matrix form,

ẋ = (A+B(y))x, (3.1)

ẏ = (C(x) +D)y, (3.2)

where the matrices A+B(y), A and B(y) in Mm(R) (the m×m-matrix
space over R) and C(x) + D, D and C(x) in Mn(R) (the n × n-matrix
space over R) are non-negative off-diagonal matrices and have negative
main diagonal entries. Conservation laws apply on the total prey density x

21
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and total predator density y, so that they remain constant on the fast time
scale.

In Article I, we discuss the existence and uniqueness of the quasi-
equilibrium (x̂, ŷ) and give general definitions for the predator functional
response and the numerical responses of the predator and the prey. In
particular, we define with βij the capture rate of a prey in state i by an
individual predator in state j and obtain the functional response

f(x, y) =

∑m
i=1

∑n
j=1 βij x̂iŷj

y
. (3.3)

In the same way, the prey numerical response is defined as

g(x, y) =

∑m
i=1 λix̂i
x

−
∑m

i=1 μix̂i
x

, (3.4)

with λi and μi denoting respectively the per capita birth and natural mor-
tality rates for the prey in state i. Likewise, the predator numerical response
becomes

γ(x, y)f(x, y)− δ(x, y) =

∑m
i=1

∑n
j=1 γijβij x̂iŷj

y
−

∑n
j=1 δj ŷj

y
, (3.5)

where γij is the per capita fecundity of the predator in state j feeding on
the prey in state i and δj denotes the per capita mortality rate of a predator
individual in state j.

Main result is the general population model where the functions describ-
ing the population dynamics depend on both the total prey and predator
densities

dx

dt
= g(x, y)x− f(x, y)y, (3.6)

dy

dt
= γ(x, y)f(x, y)y − δ(x, y)y, (3.7)

The equations in (3.6) and (3.7) extend the model by Gause (1934) and
Gause et al. (1936) in (2.1) and (2.2).

In this context, we also give concrete applications and derive several
new functional and numerical responses from the underlying individual in-
teractions. Among them the mechanistic derivation of the Holling type
III functional response, typically associated to prey switching and predator
learning (Leeuwen et al. 2007), for which we give two mechanistic interpre-
tations, in terms of different hunger levels and different experience levels of
the predators.
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In another application, we assume that the predator may overcome the
prey defences by causing panic or attacking the isolated individuals and the
rate at which the prey leaves its refuge is predator density-dependent. The
processes are reminiscent of the individual level interactions introduced
by Geritz and Gyllenberg (2012) in their mechanistic derivation of the
Beddington-DeAngelis functional response. Here we obtain a functional
response that creates an Allee effect in the predator dynamics, i.e. at low
predator densities almost all prey are protected and cannot be captured
(see Allee et al. 1949, Freedman and Wolkowicz 1986, Crawley 1992, Kot
2001, Turchin 2003, Zhu et al. 2003, Bate and Hilker 2014).

In Article I, we also introduce a mechanistic explanation for a functional
response with density-dependent handling time, which is further analysed
under an evolutionary perspective in Article III. In this case, the predator
may either quit the handling state spontaneously or by a chance encounter
with a prey individual. This scenario finds several applications in natural
ecosystems: it has been observed that visual cues and chemical signals
produced by the prey (known as kairomones) can affect the behaviour of
different predators (a complete list of references for this phenomenon can
be found in Article III).

Finally, Article II models from first principles a stand-off between a
predator and its prey, when the predator employs predatory techniques to
lure its prey, or the prey uses anti-predator strategies to maximise survival,
such as deterrent signals, deimatic behaviour, playing dead, physical and
chemical features (for a complete list of references, see Article II).

3.2 Main results on the coevolution of predator-
prey strategies

Article II investigates question Q2 and suggests the analysis of a scenario
that fits into the research studies on the ecology of fear (such as the works
by Brown 1999, Brown and Kotler 2007, Katz et al. 2010, 2013, Křivan
1997, 2007).

We assume that the predator and the prey enter a stand-off with a
certain probability, upon encounter. The stand-off is resolved either when
the predator gives up, or when the prey tries to escape. We define with s
and q the giving-up rates of the prey and the predator, respectively, and
provide a mechanistic derivation of the corresponding Holling type II like
functional response,

fs,q(x) =
βs,qx

1 + βs,qhs,qx
. (3.8)
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The capture rate βs,q and the handling time hs,q are functions of the fast
time state transition rates and, in particular, of the giving-up rates s and
q.

Stand-off situations in various specific contexts have been previously
studied in evolutionary game theory with the asymmetric war of attri-
tion, where two players with unambiguous roles (e.g. owner-intruder, prey-
predator) compete for the same pay-off and the winner is determined by
its persistence (Smith and Price 1973, Maynard Smith 1974, 1982, Bishop
and Cannings 1978, Selten 1980, Kim 1993). As a result of the game, there
is no ESS, but a continuum of strict Nash equilibria where one player gives
up immediately while the other player can choose any giving-up time above
a certain threshold.

In Article II, we apply the adaptive dynamics framework to study the
coevolution of the giving-up rates s and q. The main outcomes of our
evolutionary analysis appear quite different from the Nash equilibria in
evolutionary game theory, namely

(i) the predator gives up immediately (i.e., q = ∞), while the prey never
gives up (i.e., s = 0);

(ii) the predator never gives up (i.e., q = 0), while the prey adopts any
giving-up rate greater than or equal to a given positive threshold
value;

(iii) the predator goes extinct.

In particular, the Nash equilibria in the asymmetric war of attrition cannot
be reproduced here and this is a consequence of our modelling approach
where the population equations are derived from individual-level interac-
tions with exponentially distributed event times.

The new results reveal the strength of the interplay between the ecolog-
ical and evolutionary dynamics in the method of analysis. More precisely,
the bottom-up modelling approach, to derive the population dynamics from
the individual-level transitions, qualitatively affects the evolutionary re-
sults.

Moreover, Article II shows that the main costs and benefits for the
predator and the prey cannot easily be predetermined as in evolutionary
game theory, but are implicit in the births and deaths gained and lost.
Only in retrospect, after the model analysis, it became clear, at least in
a constant (i.e., non-cycling) population that costs for the predator are
measured in terms of the expected time till the next prey capture, while for
the prey evolution minimises the predation-related per capita death rate
(see discussion of Article II).
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3.3 Main results on the coexistence of multiple
predator strategies

Article III addresses research question Q3 by focusing on the evolutionary
dynamics of one predator’s handling time h, when the rate at which the
predator’s transitions from the handling to the searching state, bx+ c, has
a prey density-dependent part, bx, and a constant part c. Therefore, we
express the handling time with the ratio

h(x) =
1

bx+ c
. (3.9)

This form for the handling time has been derived from first principles in
Article I.

Another fundamental assumption concerns the conversion factor of cap-
tured prey into predator offspring which depends on the handling time in
the following way:

γ(h) =

∫ ∞

0
ρ(τ)e−

1
h
τdτ. (3.10)

In the equation above, ρ(τ) is the nutrient ingestion rate at τ time units
after prey capture in terms of predator offspring per unit of handling time
and e−

1
h
τ represents the probability that the predator is still handling its

prey.
We consider the following generalisation of the model by Rosenzweig

and MacArthur (1963) for a single prey species x and potentially multiple
predator species with population size yi, i = 1, ..., n

dx

dt
= rx

(
1− x

K

)
−

n∑
i=1

βxyi
1 + βhi(x)x

(3.11)

dyi
dt

= γ(hi(x))
βxyi

1 + hi(x)βx
− δyi, i = 1, ..., n. (3.12)

Main focus of the first part of Article III is on the modelling assumptions
for the function ρ(τ), which acts on the individual level and is linked to the
conversion factor γ(h) via the inverse of the Laplace transform operator.
Central is the bottom-up approach and the main result here regards the
mechanistic interpretation of the conversion function in terms of individual-
level processes.

Concerning the population dynamics of the model, we find that multiple
positive equilibria and multiple stability (of stable cycles and equilibria) are
possible outcomes. In this, our model differs from the standard Rosenzweig-
MacArthur model.
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The second part of Article III analyses the evolutionary dynamics of the
prey density-dependent handling time with the adaptive dynamics frame-
work. In this context, previous studies on the coexistence of multiple preda-
tor species concluded that a coalition of predator strategies is likely to ap-
pear if the resident environment exhibits non-equilibrium dynamics, such
as limit cycle or chaos (Koch 1974, McGehee and Armstrong 1977, Levins
1979, Muratori and Rinaldi 1989, Huisman and Weissing 1999, Abrams
et al. 2003, Liu et al. 2003, Wilson and Abrams 2004). Other results con-
firm the assumption that the shape of the predators’ functional and numer-
ical responses as functions of the prey density (Armstrong and McGehee
1980) and sufficiently different handling times and conversion factors for
each predator type facilitate coexistence (Abrams and Holt 2002).

Unlike the case with fixed handling time studied by Geritz et al. (2007),
we find that, in a cycling resident population, if the handling time is a func-
tion of the prey density, evolutionary branching and coexistence of different
predator strategies are not possible evolutionary outcomes. We also con-
clude that a predator with density-dependent handling time can invade a
convergence stable coalition of two fixed handling times. Therefore, we con-
firm that a plastic response is a superior strategy than a fixed response in
a cycling environment where the predator with density-dependent strategy
can adapt to low and high level of prey density by dynamically switching
niche.

Among the possible evolutionary results, cycles of evolutionary branch-
ing and extinction may appear, in case of fixed handling time and for a
particular choice of the ingestion rate ρ(τ). We also find that the dual trait
(b, c) evolves to a point where cycles are lost and the population becomes
stable. This appears to be a robust outcome. In a wider research con-
text phenomena like this have been called evolution to the edge of stability
(see Ellner and Turchin (1995), Gragnani et al. (1998), Rinaldi and De Feo
(1999), Rai (2004), Rai and Upadhyay (2006), Dercole et al. (2006)).



References

P. A. Abrams and R. D. Holt. The impact of consumer–resource cycles on
the coexistence of competing consumers. Theoretical Population Biology,
62(3):281–295, 2002. doi: 10.1006/tpbi.2002.1614.

P. A. Abrams and H. Matsuda. Prey adaptation as a cause of predator-prey
cycles. Evolution, 51(6):1742–1750, 1997. doi: 10.1111/j.1558-5646.1997.
tb05098.x.

P. A. Abrams, C. E. Brassil, and R. D. Holt. Dynamics and responses
to mortality rates of competing predators undergoing predator–prey cy-
cles. Theoretical Population Biology, 64(2):163–176, 2003. doi: 10.1016/
S0040-5809(03)00067-4.

M. E. Alexander, J. T. Dick, N. E. O’Connor, N. R. Haddaway, and K. D.
Farnsworth. Functional responses of the intertidal amphipod echinogam-
marus marinus: effects of prey supply, model selection and habitat
complexity. Marine Ecology Progress Series, 468:191–202, 2012. doi:
10.3354/meps09978.

W. C. Allee, O. Park, A. E. Emerson, T. Park, K. P. Schmidt, et al.
Principles of animal ecology. 1949.

R. A. Armstrong and R. McGehee. Competitive exclusion. The American
Naturalist, 115(2):151–170, 1980. doi: 10.1086/283553.

A. M. Bate and F. M. Hilker. Disease in group-defending prey can ben-
efit predators. Theoretical ecology, 7(1):87–100, 2014. doi: 10.1007/
s12080-013-0200-x.

J. R. Beddington. Mutual interference between parasites or predators and
its effect on searching efficiency. The Journal of Animal Ecology, pages
331–340, 1975. doi: 10.2307/3866.

27



28 References

A. A. Berryman. The orgins and evolution of predator-prey theory. Ecology,
73(5):1530–1535, 1992. doi: 10.2307/1940005.

D. Bishop and C. Cannings. A generalized war of attrition. Journal of the-
oretical biology, 70(1):85–124, 1978. doi: 10.1016/0022-5193(78)90304-1.

J. S. Brown. Vigilance, patch use and habitat selection: foraging under
predation risk. Evolutionary ecology research, 1(1):49–71, 1999.

J. S. Brown and B. P. Kotler. Foraging and the ecology of fear. Foraging:
behaviour and ecology, pages 437–480, 2007.
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J. A. J. Metz, K. Staňková, and J. Johansson. The canonical equation
of adaptive dynamics for life histories: from fitness-returns to selection
gradients and pontryagin?s maximum principle. Journal of Mathematical
Biology, 72(4):1125–1152, 2016. doi: 10.1007/s00285-015-0938-4.

S. Muratori and S. Rinaldi. Remarks on competitive coexistence. SIAM
Journal on Applied Mathematics, 49(5):1462–1472, 1989. doi: 10.1137/
0149088.

S. D. Mylius and O. Diekmann. The resident strikes back: invader-induced
switching of resident attractor. Journal of Theoretical Biology, 211(4):
297–311, 2001. doi: 10.1006/jtbi.2001.2349.

K. Parvinen. Evolutionary suicide. Acta biotheoretica, 53(3):241–264, 2005.
doi: 10.1007/s10441-005-2531-5.

R. Pearl and L. J. Reed. On the rate of growth of the population of the
united states since 1790 and its mathematical representation. Proceedings
of the National Academy of Sciences of the United States of America, 6
(6):275, 1920. doi: 10.1073/pnas.6.6.275.

F. Pelletier, D. Garant, and A. Hendry. Eco-evolutionary dynamics, 2009.

N. Pettorelli, A. Hilborn, C. Duncan, and S. M. Durant. Individual
variability: the missing component to our understanding of predator–
prey interactions. Advances in ecological research, 52:19–44, 2015. doi:
10.1016/bs.aecr.2015.01.001.

V. Rai. Chaos in natural populations: edge or wedge? Ecological Complex-
ity, 1(2):127–138, 2004. doi: 10.1016/j.chaos.2005.09.003.



References 35

V. Rai and R. K. Upadhyay. Evolving to the edge of chaos: Chance or
necessity? Chaos, Solitons & Fractals, 30(5):1074–1087, 2006. doi: 10.
1016/j.chaos.2005.09.003.

N. Rashevsky. Some remarks on the mathematical theory of nutrition of
fishes. The bulletin of mathematical biophysics, 21(2):161–183, 1959.

S. Rinaldi and O. De Feo. Top-predator abundance and chaos in tritrophic
food chains. Ecology letters, 2(1):6–10, 1999. doi: 10.1046/j.1461-0248.
1999.21035.x.

J. Ripa and U. Dieckmann. Mutant invasions and adaptive dynamics in
variable environments. Evolution, 67(5):1279–1290, 2013. doi: 10.1111/
evo.12046.

M. L. Rosenzweig and R. H. MacArthur. Graphical representation and sta-
bility conditions of predator-prey interactions. The American Naturalist,
97(895):209–223, 1963. doi: 10.1086/282272.

C. Rueffler, M. Egas, and J. A. Metz. Evolutionary predictions should
be based on individual-level traits. The American Naturalist, 168(5):
E148–E162, 2006. doi: 10.1086/508618.

R. Selten. A note on evolutionarily stable strategies in asymmetric animal
conflicts. Journal of theoretical Biology, 84(1):93–101, 1980. doi: 10.
1016/S0022-5193(80)81038-1.
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