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Abstract

This paper proposes a formal framework for modeling the interaction
of causal and (qualitative) epistemic reasoning. To this purpose, we extend
the notion of a causal model [16, 17, 26, 11] with a representation of the
epistemic state of an agent. On the side of the object language, we add
operators to express knowledge and the act of observing new information.
We provide a sound and complete axiomatization of the logic, and discuss
the relation of this framework to causal team semantics.

Keywords: causal reasoning epistemic reasoning counterfactuals team se-
mantics dependence.

1 Introduction

In recent years a lot of effort has been put in the development of formal models of
causal reasoning. A central motivation behind this is the importance of causal
reasoning for AI. Making computers take into account causal information is
currently one of the central challenges of AI research [27, 9]. There has also
been tremendous progress in this direction after the earlier groundbreaking
work in [23] and [28]. Advanced formal and computational tools have been
developed for modelling causal reasoning and learning causal information,
with applications in many different scientific areas. In this paper we want to
extend this work further. The direction we want to explore is that of developing
formal models of the interaction between causal and epistemic reasoning.

Even though the standard logical approach to causal reasoning ([23, 17, 18])
can model epistemic uncertainty1, it does not permit reasoning about the in-
teraction between causal and epistemic reasoning in the object language. Al-
though recently there have been proposals adding probabilistic expressions to
the object language (e.g., [21]), very little has been done on combining causal

*Thinking_about_Causation_long.tex, compiled 2nd November, 2020, 01:55.
1E.g., by adding a probability distribution over a causal model’s exogenous variables.
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and qualitative epistemic reasoning.2 However, this kind of reasoning occurs
frequently in our daily life, especially in connection with counterfactual think-
ing. Consider, for instance, the following situation.

Example 1 In front of Billie there is a button, which is connected to a circuit breaker
and a sprinkler. If the circuit is closed, the sprinkler works if and only if the button
is pushed. If the circuit is not closed, the sprinkler won’t work, independently of the
state of the button. Billie knows these causal laws. She can also see the button and the
sprinkler, but she does not know the state of the circuit breaker. Suppose that at the
moment the circuit is closed and the button is not pushed; as a result, the sprinkler is
not working.

In such a situation, we want to derive that Billie is not sure that if the button
had been pushed, the sprinkler would have been working. Thus, we want to
make inferences involving epistemic attitudes towards counterfactuals, which
in turn explore causal dependencies. We also want to reason counterfactually
about such epistemic attitudes. Considering the same example, we also want
to infer that if Billie had pushed the button and saw that the sprinkler works,
then she would have known that the circuit is closed (because of the causal
knowledge she has). In order to formalize this type of reasoning, we need a
framework that combines causal reasoning with a model of epistemic attitudes.

Given the vast literature on epistemic logic, there is a lot of work that we
can build on. This paper makes a start on combining the standard approach to
causal reasoning ([23, 17, 18]) with tools from Dynamic Epistemic Logic (DEL;
[4, 8, 13]). The main motivation for this choice is the dynamic character of
both systems, even though this aspect will not be explored at depth here. For
now we will only consider a very simple extension of the standard system of
causal reasoning. But, as we will show, this basic extension already allows us
to formalise some interesting concepts and formulate concrete questions for
further research.

Outline. Section 2 introduces the standard approach to causal reasoning, and
then Section 3 motivates in more detail the extension proposed here. Section 4
extends the standard causal modeling with means to express knowledge and
external communication, and Section 5 provides a sound and complete axiom-
atization for the new system. Section 6 concludes the paper discussing the
relationship with Causal Team Semantics [5, 6].

2 The standard causal modelling approach

What we refer to as the standard logic of causal reasoning was presented on
[24], extended in [16], and then further developed in, among others, [17, 25, 11].
This section recall briefly the most important concepts and tools.

The starting point is a formal representation of causal dependencies. This
is done in terms of causal models, which represent the causal relationships
between a finite set of variables. These variables as well as their ranges of
values are given by a signature. Throughout this text, let S = 〈U,V,R〉 be the
finite signature where

2See [5] for an exception, though the epistemic element is not made fully explicit in the language.
Section 6 discusses the relationship between the referred paper and the current proposal.
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• U = {U1, . . . ,Um} is a finite set of exogenous variables (those whose value is
causally independent from the value of every other variable in the system),

• V = {V1, . . . ,Vn} is a finite set of endogenous variables (those whose value is
completely determined by the value of other variables in the system), and

• R(X) is the finite non-empty range of the variable X ∈ U ∪V.3

A causal model is formally defined as follows.

Definition 1 (Causal model) A causal model is a triple 〈S,F ,A〉 where

• S = 〈U,V,R〉 is the model’s signature,

• F = { fV j
| V j ∈ V} assigns, to each endogenous variable V j, a map

fV j
: R(U1, . . . ,Um,V1, . . . ,V j−1,V j+1, . . . ,Vn)→ R(V j).

The map fV is sometimes called V’s structural function, and the set F is called
a set of structural functions forV.

• A is the valuation function, assigning to every X ∈ U∪V a valueA(X) ∈ R(X).
For each endogenous variable, the valuation should comply with the variable’s
structural function. In other words, for every V j ∈ V, the following should hold:

A(V j) = fV j

(

A(U1), . . . ,A(Um),A(V1), . . . ,A(V j−1),A(V j+1), . . . ,A(Vn)
)

.

In a causal model 〈S,F ,A〉, the functions in F describe the causal rela-
tionship between the variables. Using these functional dependencies, we can
define what it means for a variable to directly causally affect another variable.4

Definition 2 (Causal dependency) Let F be a set of structural functions for V.
Given an endogenous variable V j ∈ V, rename each other variable in S, the variables
U1, . . . ,Um,V1, . . . ,V j−1,V j+1, . . . ,Vn, as X1, . . . ,Xm+n−1, respectively.

We say that, under the structural functions inF , an endogenous variable V j ∈ V is
directly causally affected by a variable Xi ∈ (U∪V) \ {V j} (in symbols, Xi ֒→F V j)
if and only if there is a tuple

(x1, . . . , xi−1, xi+1, . . . , xm+n−1) ∈ R(X1, . . . ,Xi−1,Xi+1, . . . ,Xm+n−1)

and there are x′
i
, x′′

i
∈ R(Xi) such that

fV j
(x1, . . . , x

′
i , . . . , xm+n−1) , fV j

(x1, . . . , x
′′
i , . . . , xm+n−1).

When Xi ֒→F V j, we will also say that Xi is a causal parent of V j. The relation ֒→+
F

is the transitive closure of ֒→F .

As it is common in the literature, we restrict ourselves to causal models in
which circular causal dependencies do not occur.5

3Given (X1, . . . ,Xk) ∈ (U ∪V)k , abbreviate R(X1) × · · · × R(Xk) as R(X1, . . . ,Xk).
4This notion of a direct cause is adopted from [16]; it is related to the notion of a variable having

a direct effect on another, as discussed in [23] in the context of Causal Bayes Nets. The notions
defined here differ from Halpern’s notion of affect [17], and this affects the axiomatization: axiom
HP6 (Table 1) has the same function as C6 in [17] (ensuring that the canonical model is recursive),
but does so in a slightly different way.

5The reason behind this restriction is that only acyclic relations are thought to have a causal
interpretation (see [29] for an argument). The counterfactuals satisfy different logical laws if cyclic
dependencies are allowed (see [17]).
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Definition 3 (Recursive causal model) A set of structural functions F is recur-
sive if and only if ֒→+

F
is a strict partial order (i.e., an asymmetric [hence irreflexive]

and transitive relation, so there are no cycles). A causal model 〈S,F ,A〉 is recursive
if and only if F is recursive. In this text, a recursive causal model will be called simply
a causal model.

The most important notion of this formalisation of causal reasoning is that
of an intervention. This notion refers to the action of changing the values of
variables in the system. Before we define an intervention formally, let us first
introduce the notion of assignment.

Definition 4 (Assignment) Let S = 〈U,V,R〉 be a signature. An assignment on

S is an expression
#—

X= #—x where
#—

X is a tuple of different variables in U ∪V (that is,
#—

X = (X1, . . . ,Xk) ∈ (U∪V)k for some k ∈N, with Xi , X j for i , j), and #—x ∈ R(
#—

X).

Now, an intervention that sets a variable X to the value x is defined as an
operation that maps a given model M to a new model MX=x, which is the same
as M except that the function determining the value of X is replaced by the
constant function mapping X to x. In other words, X is cut off from all its causal
dependencies and fixed to the value x.

Definition 5 (Intervention) Let M = 〈S,F ,A〉 be a causal model; let
#—

X= #—x be an
assignment on S. The causal model M #—

X= #—x = 〈S,F #—

X= #—x ,A
F
#—

X= #—x
〉, resulting from an

intervention setting the values of variables in
#—

X to #—x , is such that

• F #—

X= #—x is as F except that, for each endogenous variable Xi in
#—

X, the function fXi

is replaced by a constant function f ′
Xi

that returns the value xi regardless of the
values of all other variables.

• AF#—
X= #—x

is the unique valuation where (i) the value of each exogenous variable not

in
#—

X is exactly as in A, (ii) the value of each each exogenous variable Xi in
#—

X is
the provided xi, and (iii) the value of each endogenous variable complies with its
new structural function (that in F #—

X= #—x ).6

We can now extend a propositional language with a new type of sentence

for describing the effect of an intervention. The expression [
#—

X= #—x ]γ should be

read as the counterfactual conditional if the variables in
#—

X were set to the values
#—x , respectively, then γ would be the case.

Definition 6 Formulas φ of the language LC based on the signature S are given by

γ ::= Z=z | ¬γ | γ ∧ γ for Z ∈ U ∪V and z ∈ R(Z)

φ ::= Z=z | ¬φ | φ ∧ φ | [
#—

X= #—x ]γ for
#—

X= #—x an assignment on S

6Note that, since F is recursive, the valuationAF#—
X = #—x

is uniquely determined. First, the value of

every exogenous variable U is uniquely determined, either from #—x (if U occurs in
#—

X) or else from

A (if U does not occur in
#—

X). Second, the value of every endogenous variable V is also uniquely

determined, either from #—x (if V occurs in
#—

X , as V’s new structural function is a constant) or else
from the (recall: recursive) structural functions in F #—

X = #—x (if V does not occur in
#—

X).
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The language makes free use of Boolean operators, but it forbids the nesting

of intervention operators [
#—

X= #—x ] (see [11] for a way to remove this restric-
tion). Formulas of LC are evaluated in causal models 〈S,F ,A〉. The semantic
interpretation for Boolean operators is the usual; for the rest,

〈S,F ,A〉 |= Z=z iff A(Z) = z

〈S,F ,A〉 |= [
#—

X= #—x ]γ iff 〈S,F #—

X= #—x ,A
F
#—

X= #—x
〉 |= γ

3 Limitations of the standard system

The notion of a causal model contains an incredible amount of extra information
compared to classical models. Not only does it tell us which variables depend
causally on which other variables, but it also determines the exact character
of this dependence. On the side of the language this wealth of information is
then explored in terms of counterfactual conditionals using the concept of an
intervention. This is where the actual causal reasoning happens. The standard
logic of causal reasoning is in fact a logic of counterfactual reasoning. This is no
accident: Judea Pearl, founder of the approach to causal reasoning introduced
above, sees both concepts as intimately related. He argues that only when
an agent can evaluate counterfactual conditionals does she fully engage with
causal reasoning [26, 27]. Counterfactual reasoning is the highest level of causal
reasoning – a level that even the most advanced AI technology doesn’t reach.7

Still, the basic causal framework has some limitations. An important one
is that causal (or counterfactual) reasoning does not stand on its own: it does
interact with other forms of reasoning. For instance, and as we illustrated in
the introduction, counterfactual reasoning also considers the effect interven-
tions have on the epistemic state of (observing) agents. We can reason that
If Peter had pushed the button, he would have known that his flashlight is broken,
which involves thinking about Peter’s epistemic state after observing a causal
intervention. This type of reasoning allows us to plan our actions (try out a
flashlight before we take it for a night walk), and also influences our interaction
with other agents (if you want Peter to come back from his walk, you should tell
him to test his flashlight before he leaves). Therefore, a full account of the logic
of causal reasoning needs to model its interaction with epistemic reasoning as
well. The next section takes a first step in this direction: it adds a represen-
tation of the epistemic state of an agent to the model, extending the language
with expressions that can talk about knowledge and knowledge-update in the
context of causal reasoning.

There is another perspective from which such an epistemic extension of the
standard framework can be motivated. In recent years there has been growing
interest in the logic of dependence/determinacy. For instance, the IF logic of [22]
expresses dependence by decorations of the quantifiers. Then, [30] and [2] use
a primitive expression indicating that the value of one variable depends on that
of another. In all these cases, the discussed notion of dependence/determinacy

7The other two levels that Pearl distinguishes are the level of association, which is based on
observation, and the level of intervention, which is based on doing. Modern AI technology is for
him still at the first level: association. Counterfactual reasoning is not possible without a true
understanding of why things happen – in our terminology, it is not possible without knowing the
causal relationships as determined by F .

5



relies on considering a multiplicity of valuations in the model: the variable Y
depends on (it is determined by) the variables X1, . . . ,Xn when, in all valuations
that are being considered, fixing the value of the latter also fixes the value
of the former. This gives rise to the question of how the notion of causal
dependence modelled by the just introduced framework interacts with the
notions of dependence/determinacy modelled by these alternative frameworks,
and how causal dependence fits into a general picture of reasoning with and
about dependencies. Interestingly, extending the standard causal reasoning
approach with basic epistemic notions gives us another way to express the same
notion of dependence as studied in the works just cited. This, then, allows us
to compare different notions of dependency within one logical system. We will
come back to this connection in Section 6.

4 Epistemic causal models

The first step towards a framework that combines causal with epistemic rea-
soning is adding a representation of the epistemic state of an agent to the
causal model. This is done by adding a set of valuations T , representing the
alternatives the agent considers possible.

Definition 7 (Epistemic causal model) An epistemic (note: recursive) causal
model is a tuple 〈S,F ,T〉 where S = 〈U,V,R〉 is a signature, F is a (note:
recursive) set of structural functions for V, and T is a non-empty set of valuation
functions forU ∪V, each one of them complying with F .

Example 1 can now be modelled as follows. We define an epistemic causal
model E = 〈S,F ,T〉 whose signature S has three variables: the exogenous
B for the button and C for the circuit breaker, and the endogenous S for the
sprinkler. All three variables can take two values, 0 or 1. The set of functions
F contains only one element: the function mapping S to 1 iff both B and C also
have value 1. Because the agent can observe the value of the variables B and S,
the setT contains the assignmentA1 that maps C to 0, B to 0 and S to 0, and the
assignmentA2 that maps C to 1, B to 0 and S to 0. Note howT cannot contain the
assignment C = 1, B = 1 and S = 0, for instance, because this assignment does
not comply with the causal law in F . This observation highlights an important
feature of this notion of epistemic model: it cannot model uncertainty about the
causal dependencies. Investigating the consequences of lifting this restriction
is left for future research.

The next step is to extend the notion of intervention to epistemic causal
models.

Definition 8 (Intervention) Let E = 〈S,F ,T〉 be an epistemic causal model; let
#—

X= #—x be an assignment onS. The epistemic causal model E #—

X= #—x = 〈S,F #—

X= #—x ,T
F
#—

X= #—x
〉,

resulting from an intervention setting the values of variables in
#—

X to #—x , is such that

• F #—

X= #—x is defined from F just as in Definition 5,

• T F#—
X= #—x

:= {A′F#—
X= #—x

| A′ ∈ T } (see Definition 5).

Note how 〈S,F #—

X= #—x ,T
F
#—

X= #—x
〉 is indeed an epistemic causal model, asF #—

X= #—x is recursive

and all valuations in T F#—
X= #—x

comply with it.
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In the just introduced model E for Example 1, we can now calculate the
effects of considering the intervention that sets B = 1. According to Definition 8,
an intervention on an epistemic causal model amounts to intervening on each
of the assignments contained in the epistemic state. Thus, for our concrete
example, we need to calculate the effects of an intervention with B = 1 on
the assignments A1 and A2 that make up the epistemic state T . The new

epistemic state T F
B=1

will now contain the assignment AF
1,B=1

that maps C to 0,

B to 1 and S to 0 and the assignment AF
2,B=1

that maps C to 1, B to 1 and S to
1. Thus, the consequences of the intervention are calculated for all epistemic
possibilities the agent considers. In other words, Definition 8 assumes that the
agent has full epistemic access to the effect of the intervention on the model.
In particular, she knows that the intervention takes place (in the counterfactual
scenario considered). This makes a lot of sense if you think of the agent whose
epistemic state is modelled as the one engaging in the counterfactual thinking.
It is less plausible in connection to counterfactual thinking about the knowledge
states of other agents. But this is something that we can leave for now, as we
will not consider epistemic causal models for multiple agents in this paper.

Based on these changes on the semantic side, we can now extend the object
language with expressions that talk about the epistemic state of the agent.
More specifically, we add the operator K for knowledge and “!” for information
update. In other words, we understand “!” as expressing the action of observing
or receiving information.

Definition 9 Formulas φ of the language LPAKC based on S are given by

γ ::= Z=z | ¬γ | γ ∧ γ | Kγ | [γ!]γ for Z ∈ U ∪V and z ∈ R(Z)

φ ::= Z=z | ¬φ | φ ∧ φ | Kφ | [φ!]φ | [
#—

X= #—x ]γ for
#—

X= #—x an assignment on S

Other Boolean operators (∨,→,↔) can be defined as usual. Note how, al-
though the language makes free use of Boolean, epistemic and announcement
operators (K and [φ!], for the latter two), nested intervention is again not al-

lowed.8 Note also how the tuple vector
#—

X can be empty, in which case [
#—

X= #—x ]γ
becomes γ. The semantics for this extended language is straightforward.

Definition 10 Formulas ofLPAKC are evaluated in a pairs (E,A) with E = 〈S,F ,T〉
an epistemic causal model and A ∈ T . The semantic interpretation for Boolean
operators is the usual; for the rest,

(E,A) |= Z=z iff A(Z) = z

(E,A) |= Kφ iff (E,A′) |= φ for everyA′ ∈ T

(E,A) |= [ψ!]φ iff (E,A) |= ψ implies (Eψ,A) |= φ

(E,A) |= [
#—

X= #—x ]γ iff (E #—

X= #—x ,A
F
#—

X= #—x
) |= γ

with Eψ = 〈S,F ,T ψ〉 such that T ψ := {A′ ∈ T | (E,A′) |= ψ}. Note how Eψ is an
epistemic causal model: F is recursive, and all valuations in T ψ comply with it.

8However, notice that the semantics already allows for nested occurrences of all dynamic
operators. We will extend the proofs of sound- and completeness to the unrestricted language
in the future.
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To illustrate this definition, we go back to the epistemic model E introduced
for Example 1. In order to evaluate a concrete formula with respect to this model
we need to select, next to E, an assignment representing the actual world. In
the example this is assignment A2: in the actual world, the circuit breaker
is closed, but because the button has not been pushed, the sprinkler is not
working. We can calculate that the counterfactual [B=1]S=1 comes out as true
given E and A2, just as in the non-epistemic approach discussed in Section 2.
But because we now also have a representation of the epistemic state of some
agent, we can additionally consider epistemic attitudes the agent has towards
this counterfactual. For instance, we can check that K([B=1]S=1) is not true
given E andA2. For the sentence to be true, the formula [B=1]S=1 needs to be
true over both (E,A1) and (E,A2), becauseA1 andA2 are the two elements ofT .
Thus, we need both (EB=1,A

F
1,B=1

) |= S=1 and (EB=1,A
F
2,B=1

) |= S=1. We already

calculated TB=1 above: TB=1 = {A
F
1,B=1

,AF
2,B=1
}. But the content of TB=1 does

not matter for the truth of the consequent S=1 of the counterfactual that we are
considering here, since this consequent does not contain epistemic operators.

However, while inAF
1,B=1

the sprinkler is still off, inAF
2,B=1

it is on. This means

that (EB=1,A
F
1,B=1

) 6|= S=1, while (EB=1,A
F
2,B=1

) |= S=1. Thus, the agent cannot
predict the outcome of the intervention, just as intended in this case.

Finally, we define an operator in terms of the existing vocabulary as a
way to express causal dependency in the object language.

Definition 11 Take X and Z inU ∪V. The formula X Z is defined as

∨

#—w ∈ R((U ∪V) \ {X,Z}),

{x1, x2} ⊆ R(X), x1 , x2,

{z1, z2} ⊆ R(Z), z1 , z2

[
#—

W= #—w,X=x1]Z=z1 ∧ [
#—

W= #—w,X=x2]Z=z2,

A formula X  Z should be read as “X has a direct causal effect on Z”. It
holds when there is a vector #—w of values for variables in R(U ∪V \ {X,V}) and
two different values x1, x2 for X that produce two different values z1, z2 for Z
(cf. [17]). When Z ∈ V, it is clear that is the syntactic counterpart of the
relation “֒→” of Definition 2.

5 Axiomatization

The axiom system LPAKC is presented in Table 1.The intervention axioms, HP1-
HP6, RH1 and RH2, are the standard axiomatization for the intervention oper-
ator over recursive causal models, with EX an additional axiom indicating that
an exogenous variable is immune to interventions to any other variables. Then,
the epistemic part contains the standard modal S5 axiomatization for truthful
knowledge with positive and negative introspection.

Axiom CM indicates that what the agent will know after an intervention

([
#—

X= #—x ]Kφ) is exactly what she knows now about the effects of the interven-

tion (K[
#—

X= #—x ]φ). Although maybe novel in the literature on causal models,
the axiom is simply an instance of the more general DEL pattern of interaction

8



between knowledge and a deterministic action without precondition. Finally,
axioms RP2-RP4 and rule RE in the announcement part are a reduction-based ax-
iomatisation for public announcements in the DEL style. Here, axioms RP4
and RP1 are the most important. The first, RP4, is the well-known reduc-
tion axiom for announcement and knowledge, stating that knowing φ after
an announcement of ψ is equivalent to knowing, conditionally on ψ, that the
announcement of ψ would make φ true.9 The second, RP1, establishes the

reduction for ‘atoms’ of the form [
#—

X= #—x ]Z=z; when
#—

X is not empty, it states that
a public announcement does not change the causal rules in the model.

Propositional:

P: ⊢ φ for φ an instance of a tautology MP: From φ→ ψ and φ derive ψ

Intervention:

HP1: ⊢ [
#—

X= #—x ]Z=z → ¬[
#—

X= #—x ]Z=z′ for z , z′ ∈ R(Z)

HP2: ⊢
∨

z∈R(Z)[
#—

X= #—x ]Z=z

HP3: ⊢
(

[
#—

X= #—x ]Z=z ∧ [
#—

X= #—x ]W=w
)

→ [
#—

X= #—x ,Z=z]W=w

HP4: ⊢ [
#—

X= #—x ,Z=z]Z=z

HP5: ⊢
(

[
#—

X= #—x ,Z=z]W=w ∧ [
#—

X= #—x ,W=w]Z=z
)

→ [
#—

X= #—x ]W=w for W , Z

HP6: ⊢ (Z0  Z1 ∧ · · · ∧ Zk−1  Zk) → ¬(Zk  Z0)

RH1: ⊢ [
#—

X= #—x ](γ1 ∧ γ2) ↔ ([
#—

X= #—x ]γ1 ∧ [
#—

X= #—x ]γ2)

RH2: ⊢ [
#—

X= #—x ]¬γ ↔ ¬[
#—

X= #—x ]γ

EX: ⊢ U=u↔ [
#—

X=#—x ]U=u for U ∈ U with U <
#—

X

Epistemic:

K: ⊢ K(φ→ ψ)→ (Kφ→ Kψ) T: ⊢ Kφ→ φ

N: From ⊢ φ derive ⊢ Kφ 4: ⊢ Kφ→ KKφ

5: ⊢ ¬Kφ→ K¬Kφ

Epistemic+Intervention:

CM: ⊢ [
#—

X= #—x ]Kγ ↔ K[
#—

X=#—x ]γ

Announcement:

RP1: ⊢ [ψ!][
#—

X= #—x ]Z=z ↔ (ψ→ [
#—

X= #—x ]Z=z) RP3: ⊢ [ψ!](φ ∧ χ) ↔ ([ψ!]φ ∧ [ψ!]χ)

RP2: ⊢ [ψ!]¬φ ↔ (ψ→ ¬[ψ!]φ) RP4: ⊢ [ψ!]Kφ ↔ (ψ→ K(ψ→ [ψ!]φ))

RE: From ⊢ ψ1 ↔ ψ2 derive ⊢ φ ↔ φ[ψ2/ψ1], with φ[ψ2/ψ1] an LPAKC formula
obtained by replacing one or more non-announcement occurrences of ψ1 in φ
with ψ2 .10

Table 1: Axiom system LPAKC

The axiom system LPAKC is sound and complete forLPAKC in epistemic causal
models. Here is the argument for soundness.

9Note how the announcement of ψ is a deterministic action with precondition ψ. Hence the
similarities and differences between RP4 and CM.

10A non-announcement occurrence of ψ in φ is an occurrence of ψ in φ where ψ is not inside the
brackets of an announcement operator.
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Theorem 1 The axiom system LPAKC is sound for LPAKC in epistemic causal models.

Proof. For the soundness of HP1-HP6, RH1 and RH2 on causal models (enough
for soundness on epistemic causal models, as evaluating the formulas does not
require a change in valuation), see [17]. For the soundness of K, N, T, 4, and
5 on relational structures with an equivalence relation (equivalent to having
a simple set of epistemic alternatives, as epistemic causal models have), see
[15, 10]. For the soundness of RP1-RP4 when [ψ!] describes the effect of a
deterministic domain-reducing model operation, see [31].

For axioms EX and CM, take any (〈S,F ,T〉,A). For EX note how, for any
#—

X= #—x , the valuations A and AF#—
X= #—x

assign the same value to exogenous vari-

ables not occurring in
#—

X (Definition 5). For CM, note how (i) K[
#—

X= #—x ]φ holds

at (〈S,F ,T〉,A) iff φ holds at (〈S,F #—

X= #—x ,T
F
#—

X= #—x
〉,A′F#—

X= #—x
) for every A′ ∈ T ,

and (ii) [
#—

X= #—x ]Kφholds at (〈S,F ,T〉,A) iffφholds at (〈S,F #—

X = #—x ,T
F
#—

X= #—x
〉, (AF#—

X= #—x
)′)

for every (AF#—
X= #—x

)′ ∈ T F#—
X= #—x

. Then it is enough to notice how, by Definition 8,

the set of relevant valuations for the second, T F#—
X= #—x

, is exactly the set of relevant

valuations for the first, {A′F#—
X= #—x

| A′ ∈ T }. Finally, soundness of RE follows

from two facts: the truth-value of every formula depends on the truth-value
of its subformulas, and model operations (intervention and announcements)
produce epistemic causal models. Thus, substituting a non-announcement
subformula for a formula that is semantically equivalent in the given class of
structures does not affect the final result. �

The argument for completeness follows two steps. (i) First, using the
reduction axioms technique, we show that LPAKC allow us to translate any
formula in LPAKC into a logically equivalent one without public announce-
ments.11 (ii) Then, relying on the canonical model construction for both causal
models [17] and epistemic models [15, Chapter 3], we show that LPAKC is com-
plete for the language without public announcements.

Theorem 2 The axiom system LPAKC is complete forLPAKC in epistemic causal models.

Proof. See Appendix A.1 �

6 Discussion

In this section we will compare our proposal to the Causal Team Semantics
developed in [5, 6, 7]. Causal Team Semantics was proposed with the intention
of supporting languages that discuss both accidental and causal dependencies.
This is a topic that has gained quite some interest in recent years (see, e.g.,
[12, 21]). Causal Team Semantics was developed along the lines of a non-modal

11Readers familiar with DEL might have noticed that LPAKC does not have a reduction axiom
for nested announcements [φ1!][φ2!]φ. There are (at least) two strategies for dealing with such
formulas. The first follows an ‘outside-in’ approach, reducing two announcements in a row into a
single one. This requires an axiom for nested announcements. The second follows an ‘inside-out’
strategy, applying the reduction over the innermost announcement operator in the formula until
the operator disappears, and then proceeding to the next. For this, the rule of substitution of
equivalents (our rule RE) is enough [31, Theorem 11].
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tradition of logics of dependence and independence (e.g. [30, 22]) by extend-
ing the so-called team semantics [20] with elements taken from causal inference.
Even though the focus there is not on combining causal with epistemic reason-
ing, this framework bears many similarities to the one we are using, which is
why we will discuss it here in detail. Furthermore, this also allows us to say a
bit more on the topic of dependence from the perspective of our proposal.

Let us quickly introduce the central notions of Causal Team Semantics to
facilitate a comparison of the two frameworks. A causal team12 is a tuple
T = 〈T ,F 〉 where F is defined similarly as in our paper13 and T is a possibly
empty set of valuations that comply with F . Papers on Causal Team Semantics
consider a variety of languages. The focus here is the one we shall call LCOD,
which is similar to the standard causal language (thus allowing to express var-
ious notions of causal dependence in terms of counterfactuals) except for the
additional dependence atoms “=(X1, ...,Xn; Y)”, which expresses (accidental) de-
pendency of the variable Y on the variables X1 to Xn. A sentence =(X1, ...,Xn; Y)
is interpreted as the claim that any two states s and s′ that agree on the valuation
of the variables X1, ...,Xn also have to agree on the value they assign to Y. Let
us describe the syntax of LCOD in more detail.

The signatures used in [5] are pairs of the form 〈Dom,Ran〉,where Dom is a set
of variables (not encoding the distinction between exogenous and endogenous
variables) and Ran is defined analogously as the R used in this paper. For any
such fixed signature S, the language LCOD is defined as

α ::= Z=z | Z,z | α ∧ α | α ∨ α | α ⊃ α |
#—

X= #—x � α

φ ::= Z=z | Z,z | =(
#—

X; Y) | φ ∧ φ | φ ∨ φ | α ⊃ φ |
#—

X= #—x � φ

for Z,Y,
#—

X ∈ Dom, z ∈ Ran(Z), and with the expression
#—

X= #—x an abbreviation
for a conjunction of the form X1=x1 ∧ · · · ∧ Xn=xn.14 15 16 Below the complete
semantics of LCOD is given, using the notation of this manuscript. Notice that
formulas are evaluated on a causal team globally: no valuation in T is isolated
as being ‘the actual world’. At the atomic level, this is done by means of
a universal quantification. Indeed, while formulas of the form Z=z and Z,z
indicate, semantically, that Z’s value is (different from) z in all valuations in T , a
dependence atom =(X1, ...,Xn; Y) indicates, as stated, that all pairs of valuations

12This is the definition from [7], which, save for implementation details, corresponds to what are
called fully defined causal teams in [5] (where a more general notion is considered).

13With some additional machinery (which is not worth exploring here) to keep track of the
domains of the functions. For simplicity, we may assume here that F is defined in the same way
as for causal epistemic models.

14One can then have inconsistent antecedents, say if
#—

X = #—x contains conjuncts X = x and X = x′

with x , x′. In such cases the intervention is undefined. The semantic clause given in the main
text should be extended so as to have any counterfactual with such an antecedent evaluated as
(vacuously) true.

15Notice that the syntax allows negation only at the atomic level. Adding contradictory negation
(defined by T |= ∼ψ iff T 6|= ψ) would lead to a more expressive language and to an unintended
reading of negation. As observed in [6], the language can be extended – without changes in
expressivity – with a dual negation, defined by the clause: (T ,F ) |= ¬ψ iff, for all s ∈ T , (s,F ) 6|= ψ.
The dual negation has the intended reading on formulas without dependence atoms. Neither
negation allows the usual interdefinability of ∧ and∨ via the De Morgan laws; for this reason, both
∧ and ∨ are included in the syntax.

16Notice also that the antecedent of the operator ⊃ (selective implication) is restricted to formulas
without occurrences of dependence atoms. The consequents of counterfactuals, instead have no
restrictions, and they may contain occurrences of�.
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agreeing on the values of all Xi also agree on the value of Y. To keep the
global perspective through the rest of the formulas, the interpretation of some
connectives (∨ and ⊃) differs from the traditional one (and, in particular, from
that given on epistemic causal models). However, these connectives behave
classically if applied to subformulas without occurrences of dependence atoms,
and also when T is a singleton (the quantification plays no relevant role).

T |= Z=z iff s(Z) = z for all s ∈ T

T |= Z,z iff s(Z) , z for all s ∈ T

T |= =(X1, ...,Xn; Y) iff for all s, s′ ∈ T , if s(Xi) = s′(Xi) for 1 6 i 6 n, then s(Y) = s′(Y)

T |= φ ∧ ψ iff T |= φ and T |= ψ

T |= φ ∨ ψ iff there are T1 ∪ T2 = T such that 〈T1,F 〉 |= φ and 〈T2,F 〉 |= ψ

T |= α ⊃ ψ iff 〈T α,F 〉 |= ψ, for T α := {s ∈ T | ({s},F ) |= α} and α without

dependence atoms

T |=
#—

X= #—x � ψ iff 〈T F#—
X = #—x

,F #—

X = #—x 〉 |= ψ, with T F#—
X = #—x

and F #—

X = #—x as in Definition 8.

From their definitions, it is clear that an epistemic causal model and a causal
team are identical objects; the only difference is that, for evaluating formulas, the
former requires an ‘actual world’. On the syntactic side, even though the truth
clauses of the logical operators differ in various respects, we can find several
equivalences. For instance, the notion of dependence from team semantics can
be expressed in our formal language as well.17 Indeed, interpret the object T of
a causal team as the epistemic state of some agent. Then, the statement Y = y
of causal team semantics can be understood as a claim about the knowledge of
the agent, written in our language as K(Y = y). Building on this translation, we

can express that variable Y depends on the variables
#—

X as the following claim:

for all possible valuations #—x of
#—

X there is some value y of Y such that the agent

knows that if she would observe
#—

X = #—x , she would know that Y has value y.
∧

#—x ∈R(
#—

X )

∨

y∈R(Y)

[(X1=x1 ∧ · · · ∧Xn=xn)!]K(Y=y).

With this idea in mind we can define a translation of the non-nested formulas
of LCOD.18 Setting aside for a moment the case of the operator ⊃, and using A
to denote the set of all possible valuations for U ∪V, the translation is given
by the following clauses.

tr(Y=y) := K(Y=y) tr(φ1 ∧ φ2) := tr(φ1) ∧ tr(φ2)

tr(Y,y) := K(¬(Y=y)) tr(
#—

X= #—x � φ) := [
#—

X= #—x ]tr(φ)

tr(φ ∨ ψ) :=
∨

S⊆A

K
(

[(
∨

#—

Y = #—y ∈S

#—

Y = #—y )!]tr(φ) ∧ [(¬
∨

#—

Y = #—y ∈S

#—

Y = #—y )!]tr(ψ)
)

tr(=(X1, ...,Xn; Y)) :=
∧

#—x ∈R(
#—

X )

∨

y∈R(Y)

[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y)

17This has been observed, independently and for languages without causal features, in [14] and
[1], in the context of epistemic languages with modalities for the knowledge of values.

18A formula is non-nested if, in every subformula of the form
#—

X= #—x � φ, no� occurs inside
φ. Providing a translation for these formulas is sufficient, since every formula of the causal team
language is provably equivalent to a non-nested one.
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A short note on the not-so-intuitive translation clause for ∨. First observe
that, in the semantic clause for∨, the setsT1 andT2 can equivalently be required
to form a partition ofT , i.e. to be disjoint. The translation clause uses the fact that
a partition ofT (say,T∩S andT \S) can be characterized by the pair of formulas
∨

#—

Y= #—y ∈S

#—

Y= #—y (defining T ∩ S as a subset of T ) and ¬
∨

#—

Y= #—y ∈S

#—

Y= #—y (defining

T \S). The conjunction [(
∨

#—

Y= #—y ∈S

#—

Y= #—y )!]tr(φ) ∧ [(¬
∨

#—

Y= #—y ∈S

#—

Y= #—y )!]tr(ψ) then

ensures that the current assignment either is in S and satisfies the translation
of φ, or it is in T \ S and satisfies the translation of ψ. The K operator, placed
after the disjunction

∨

S⊆A, ensures that, fixing a partition, this property holds
for all the assignments (i.e. the partition is not picked out as a function of
the assignment). Notice also that this translation clause – as well as that for
dependence atoms – is well-defined relative to a fixed, finite signature, since
the translation uses an enumeration of the variables and of their corresponding
allowed values.

Formulas of the form α ⊃ ψ translate into public announcement formulas.
However, in order to play the role of announcement, α cannot be translated
using tr, as announcements are evaluated according to the classical meaning.
We need instead a simpler translation e which just replaces logical operators
with their counterparts in LPAKC (X,x is replaced by ¬(X=x); β ⊃ γ by β → γ;
#—

X = #—x � φ by [
#—

X = #—x ]φ; ∧ and ∨ are left unaltered, or, more precisely, β ∨ γ
is replaced by ¬(¬β ∧ ¬γ)). Then we can define tr for ⊃ as follows:

tr(α ⊃ φ) := [e(α)!]tr(φ)

This translation satisfies the following (for a proof, see Appendix A.2).

Proposition 1 (Global translation) For any causal team 〈T ,F 〉 over a finite sig-
nature S and any formula φ ∈ LCOD, we have 〈T ,F 〉 |= φ if and only if, for all
A ∈ T , we have (〈S,F ,T〉,A) |= tr(φ).

This result compares truth on a causal team with validity over an epistemic
causal model. On the other hand, a different translation of the dependence atom
from [14, 1] suggests an alternative, “local” translation. Let tr∗ be as tr, except
for the following clauses (notice the additional K operator in both clauses):

tr∗(=(X1, ...,Xn; Y)) :=
∧

#—x ∈R(
#—

X )

∨

y∈R(Y)

K[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y)

tr∗(α ⊃ φ) := K[e(α)!]tr(φ)

Now we have the following result (for a proof, see Appendix A.2).

Proposition 2 (Local translation) For any causal team 〈T ,F 〉 over a finite signa-
ture S and any formula φ ∈ LCOD, we have:

(i) If 〈T ,F 〉 |= φ, then, for allA ∈ T , (〈S,F ,T〉,A) |= tr(φ).

(ii) If there is anA ∈ T such that (〈S,F ,T〉,A) |= tr(φ), then 〈T ,F 〉 |= φ.

This result shows that, in the finite case,LPAKC is at least as expressive asLCOD.
Despite this, the way the notion of (accidental) dependence is spelled out in the
two languages differs in an interesting way. While it is a primitive element in
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the language of Causal Team Semantics, the way it is definable in our epistemic
framework emphasises what we can do with such a concept of dependence: we
can make predictions based on what we observe. Furthermore, it is interesting
to notice the similarity between this translation of (accidental) dependence and
the way causal dependence is expressed. It is also not defined as a primitive in
the language, but can be expressed using counterfactuals, which work based
on the concept of intervention. These counterfactuals, in turn, focus on what
you can do with causal information: prediction based on intervention.

Based on the counterfactual expression, various notions of causal depen-
dence can be defined. We saw one already in Section 4, Definition 11: X Z,
which expresses that X is a causal parent of Z (if Z is an endogenous variable).
The local translation of the notion of dependence from Causal Team Semantics
into our framework suggests a different notion of causal dependence. We repeat
the local translation below under the name of e-dependence. C-dependence
defines the corresponding causal notion.19

• Y e-depends on X in (E,A) iff (E,A) |=
∧

x∈R(X)

∨

y∈R(Y) K([(X = x)!]K(Y = y))

• Y c-depends on Y in (E,A) iff (E,A) |=
∧

x∈R(X)

∨

y∈R(Y)[X = x]K(Y = y)

Given an epistemic causal model, C-dependence holds between a list of
variables X1, . . . ,Xn and a variable Y if any intervention fixing the value of
the variables X1, . . . ,Xn also determines the value of Y within the epistemic state
of the agent. While this notion is certainly more robust than the notion of e-
dependence, it still takes into account the epistemic state of the agent. The less
the agent knows about the values of the variables, the more variables she needs
to control to make sure that a variable Y is in a particular state. If the agent
knows more about the actual causal history of Y, she can predict the state of
Y already from smaller interventions. These kind of hybrid notions between
causal and epistemic dependence that our framework allows to define deserve
certainly some attention in future research.

7 Conclusions

In this paper we have moved some steps towards the integration of causal and
epistemic reasoning, providing an adequate semantics, a language combining
interventionist counterfactuals with (dynamic) epistemic operators and a sound
and complete system of inference. Our deductive system models the thought of
an agent reasoning about the consequences of hypothetical interventions and
observations. It describes what the agent may deduce from her/his a priori pool
of knowledge about a system of variables. It is therefore a logic of thought
experiments. Going back to Example 1 from the introduction, the approach
allows us to account for the inference that Billie is not sure that if the button
had been pushed, the sprinkler would have been working. However, the logic
is not yet able to also model the second inference discussed in connection with
this example: if Billie had pushed the button and saw that that the sprinkler
works, then she would have known that the circuit is closed. In order to account

19The additional K operator in the definition of e-dependence is needed to deal with the fact
that information update always checks first whether the information that the information state is
updated with is true. This problem disappears in the case of interventions, because the formula
you intervene with is made true in the hypothetical scenario you consider.
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for this kind of reasoning we need to model how an agent may reason about
(from her perspective) actual experiments. Things change significantly in such
a setting: because of unobserved factors, the agent may fail to predict the
outcome of an experiment; yet the outcome may sometimes be recovered from
direct observation of the consequences of the experiment. The development of a
such a framework will involve a more careful distinction between observable and
unobservable variables. The resulting logic must necessarily abandon the right-

to-left implication of axiom CM ([
#—

X= #—x ]Kφ → K[
#—

X= #—x ]φ), which expresses the
fact that interventions cannot increase the knowledge of the agent.

Our framework has many points in common with the earlier causal team
semantics, and we provided a translation between the two approaches. For
the purpose of modeling causal reasoning, our semantics has the advantage,
over causal team semantics, of encoding explicitly a notion of actual state of the
world (and in particular, of actual value of variables). Actual values seem to
be crucial for the attempt of defining notions of token causation ([19, 32, 18]), i.e.
causation between events. In order to fully appreciate this advantage, though,
we will need to consider richer languages with hybrid features that allow to
explicitly refer to the actual values of variables.

Finally, in future work we plan to extend the setting to a multi-agent system.
This involves considering not only different agents with potentially different
knowledge, but also epistemic attitudes for groups (e.g., distributed and com-
mon knowledge) and the effect of inter-agent communication. One advantage
this will bring is the potential to contribute to the discussion about causal
agency and the role of causation in the study of responsibility within AI (see,
for instance, [3]).

A Appendix

A.1 Proof of Theorem 2

As mentioned, the argument for completeness proceeds in two steps: trans-
lating any formula in LPAKC into a logically equivalent one without public
announcements, and using the canonical model construction for both causal
models [17] and epistemic models [15] to show that LPAKC is complete for the
language without public announcements.

A.1.1 From LPAKC to LKC

The translation of a formula in LPAKC into a logically equivalent one without
public announcement operators proceeds in two stages. First, the formula in
LPAKC is translated into a logically equivalent one where the only formulas
inside the scope of intervention operators are of the form Z=z. This involves
the use of axiom CM for putting epistemic operators K outside the scope of
interventions, and the use of axioms RP1-RP4 for eliminating public announce-
ment operators inside the scope of interventions. The resulting formula is now
built by the free use of Boolean operators, K and [ψ!] over ‘atoms’ of the form

[
#—

X= #—x ]Z=z. Then, axioms RP1-RP4 can be applied once more to eliminate every
remaining public announcement operator.

To formalise the process, the following definitions will be useful.
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Definition 12 (LanguagesL1 and LKC)

• Formulas ξ of the language L1 are given by

ξ ::= [
#—

X= #—x ]Z=z | ¬ξ | ξ ∧ ξ | Kξ | [ξ!]ξ

Thus, formulas in L1 (a fragment of LPAKC) are built by the free use of Boolean

operators, K and [ψ!] over ‘atoms’ of the form [
#—

X= #—x ]Z=z.20

• Formulas χ of the language LKC are given by

χ ::= [
#—

X= #—x ]Z=z | ¬χ | χ ∧ χ | Kχ

Thus, formulas in LKC (a fragment of LPAKC) are then built by the free use of

Boolean operators and K over ‘atoms’ of the form [
#—

X= #—x ]Z=z.

The process consists of two stages: translating fromLPAKC intoL1, and then
from L1 into LKC.

Proposition 3 (i) Every formula φ ∈ LPAKC is logically equivalent to a formula
ξφ ∈ L1. Moreover, φ ↔ ξφ is derivable in LPAKC. (ii) Every formula ξ ∈ L1 is
logically equivalent to a formula χξ ∈ LKC. Moreover, ξ↔ χξ is derivable in LPAKC.

Proof. For (i), consider the translation tr1 : LPAKC → L1 given by

tr1(Z=z) :=Z=z

tr1(¬φ) :=¬ tr1(φ)

tr1(φ1 ∧ φ2) := tr1(φ1) ∧ tr1(φ2)

tr1(Kφ) :=K tr1(φ)

tr1([φ′!]φ) := [tr1(φ′)!] tr1(φ)

tr1([
#—

X= #—x ]Z=z) := [
#—

X= #—x ]Z=z

tr1([
#—

X= #—x ]¬γ) := tr1(¬[
#—

X= #—x ]γ)

tr1([
#—

X= #—x ](γ1 ∧ γ2)) := tr1([
#—

X= #—x ]γ1 ∧ [
#—

X= #—x ]γ2)

tr1([
#—

X= #—x ]Kγ) := tr1(K[
#—

X= #—x ]γ)

tr1([
#—

X= #—x ][γ′!]Z=z) := tr1([
#—

X= #—x ](γ′ → Z=z))

tr1([
#—

X= #—x ][γ′!]¬γ) := tr1([
#—

X= #—x ](γ′ → ¬[γ′!]γ))

tr1([
#—

X= #—x ][γ′!](γ1 ∧ γ2)) := tr1([
#—

X= #—x ]([γ′!]γ1 ∧ [γ′!]γ2))

tr1([
#—

X= #—x ][γ′!]Kγ) := tr1([
#—

X= #—x ](γ′ → K(γ′ → [γ′!]γ)))

tr1([
#—

X= #—x ][γ′!][γ′′!]γ) := tr1([
#—

X= #—x ][γ′!] tr1([γ′′!]γ))

From the cases defined in the second column, it should be clear that tr1 does
yield formulas in L1. Indeed, the second and third cases push intervention

operators [
#—

X= #—x ] through Boolean operators until the formula directly in front

of [
#—

X= #—x ] is either Z=z, or else K or else [γ′]. Then, while the fourth case

in the second column takes K outside the scope of [
#—

X= #—x ], cases six through
eight ‘push’ [γ′] inside the formula until it has only an atom Z=z in front, at
which moment [γ′] is eliminated (fifth case).21 The ninth case deals with nested
announcements following an ‘inside-first‘ strategy.

20Recall that Z=z is the particular case of [
#—

X= #—x ]Z=z where
#—

X is empty.
21Proving that the translation ends and that announcement operators are indeed eventually

eliminated requires some care. The crucial thing to notice is that, in cases sixth through eighth,
the formula occurring under the scope of announcement operators on the right-hand side is less
complex that the one occurring under the scope of the same announcement operator on the left-
hand side. See [13, Section 7.4] and [31] for a detailed explanation of the way the reduction works.
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Then, note how |= φ↔ tr1(φ) holds for every φ ∈ LPAKC. This can be shown
by induction on φ, with the crucial cases being those corresponding to the
definitions in the second column. The first is obvious. The second and third
follow from the validity of axioms RH1 and RH2, and the fourth follows from
CM. Cases fifth through eighth rely on the validity of axioms RP1 through RP4,
and the ninth case uses the rule RE. This last rule is used through all the cases,
allowing us to replace sub-formulas for logically equivalent ones.

Finally note how, within the axiom system LPAKC, there is a derivation ofφ↔
tr1(φ), as every non-trivial equivalence that is used for defining the translation
(axioms RH1, RH2, CM, RP1-RP4 and rule RE) is in LPAKC.

For (ii), consider the translation tr2 : L1 → LKC given by

tr2([
#—

X= #—x ]Z=z) := [
#—

X= #—x ]Z=z

tr2(¬ξ) := ¬ tr2(ξ)

tr2(ξ1 ∧ ξ2) := tr2(ξ1) ∧ tr2(ξ2)

tr2(Kξ) := K tr2(ξ)

tr2([ξ′!][
#—

X= #—x ]Z=z) := tr2(ξ′ → [
#—

X= #—x ]Z=z)

tr2([ξ′!]¬ξ) := tr2(ξ′ → ¬[ξ′!]ξ)

tr2([ξ′!](ξ1 ∧ ξ2)) := tr2([ξ′]ξ1 ∧ [ξ′!]ξ2)

tr2([ξ′!]Kξ) := tr2(ξ′ → K(ξ′ → [ξ′!]ξ))

tr2([ξ′!][ξ′′!]ξ) := tr2([ξ′!] tr2([ξ′′!]ξ))

As [31] shows, tr2 eliminates public announcement operators, thus yielding
indeed a formula in LKC. Then, note how |= ξ↔ tr2(ξ) holds for every ξ ∈ L2.
This can be shown by induction on χ: the crucial cases, those corresponding to
the definitions in the second column, follow from the validity of axioms RP1
through RP4. For the last entry in the second column, it is the rule RE which
allow us to nest the translation function. This last rule is used through all the
cases, allowing us to replace sub-formulas for logically equivalent ones. Finally
note how, within the axiom system LPAKC, there is a derivation ξ ↔ tr1(ξ), as
every non-trivial equivalence defining the translation (axioms RP1-RP4 and
rule RE) is in LPAKC. �

Then,

Theorem 3 Every formula φ ∈ LPAKC is logically equivalent to a formula χφ ∈ LKC.
Moreover, φ↔ χφ is derivable in LPAKC.

A.1.2 Canonical model for LKC

Now it will be shown that LKC, the fragment of LPAKC without axioms RH1,
RH2, CM and RP1-RP4, is strongly complete for LKC over epistemic causal
models. This will be done by showing, via the construction of a canonical
model, that any LKC-consistent set of LKC-formulas is satisfiable in a pointed
epistemic causal model. The construction here will follow those in [17] and
[15], for causal and epistemic models, respectively.

Let C be the set of all maximally LKC-consistent sets of LKC-formulas. The
first step will be show how each Γ ∈ C gives raise to a causal model.

Definition 13 (Building a causal model) Let Γ ∈ C be a maximally LKC-consistent
set of LKC-formulas.

17



• Let
#—

U be the tuple of all exogenous variables. For each endogenous variable V ∈ V,

let
#—

Y be the tuple of all endogenous variables inV\ {V}. The structural function

f ΓV is defined, for each #—u ∈ R(
#—

U) and #—y ∈ R(
#—

Y), as

f ΓV( #—u , #—y ) = v if and only if [
#—

U= #—u ,
#—

Y= #—y ]V=v ∈ Γ

Note: axioms HP1 and HP2 ensure that f ΓV is well-defined, as they guarantee Γ

has one and only one formula of the form [
#—

U= #—u ,
#—

Y= #—y ]V=v for fixed #—u , #—y and
V. Then, the set of structural functions forV in Γ defined asF Γ := { f Γ

V
| V ∈ V}.

• The valuationAΓ is defined, for every Z ∈ U ∪V, as

AΓ(Z) = z if and only if Z=z ∈ Γ

Note: axioms HP1 and HP2 ensure that AΓ is a well-defined function, as they
guarantee Γ has one and only one formula of the form Z=z for a fixed Z.

We show that the structure just defined is indeed a causal model.

Proposition 4 Take Γ ∈ C. The tuple 〈S,F Γ,AΓ〉 is a proper causal model, that is,
(i) F Γ is recursive, and (ii)AΓ complies with F Γ.

Proof.

(i) Suppose F Γ is not recursive, i.e., suppose ֒→+
F Γ

is either not asymmetric or

else not transitive. The relation is transitive by construction, so the problem
should be asymmetry: there are X1,X2 ∈ U ∪V such that X1 ֒→

+
F Γ

X2 and

X2 ֒→
+
F Γ

X1, that is,

X1 ֒→F Γ Y1 ֒→F Γ · · · ֒→F Γ Yp ֒→F Γ X2, X2 ֒→F Γ W1 ֒→F Γ · · · ֒→F Γ Wq ֒→F Γ X1

Now, note how, for any two variables Z1,Z2 ∈ U ∪ V, if Z1 ֒→F Γ Z2 then
Z1 Z2 ∈ Γ.

22 Thus, all formulas in














X1  Y1, Y1 Y2, . . . ,Yp−1  Yp, Yp  X2,

X2  W1, W1  W2, . . . ,Wq−1  Wq, Wq X1















are in Γ, and so is their conjunction. But, by axiom HP6, (X1  Y1 ∧

· · · ∧ Wq−1  Wq) → ¬(Wq  X1) ∈ Γ. This makes Γ inconsistent; a
contradiction.

(ii) Suppose AΓ does not comply with F Γ. Then, there is V ∈ V such that

AΓ(V) = v but f Γ
V

(AΓ(
#—

U),AΓ(
#—

Y)) , v, with
#—

U the tuple of all exogenous

variables and
#—

Y the tuple of all endogenous variables in V \ {V}. Take

AΓ(
#—

U) = #—u andAΓ(
#—

Y) = #—y .

22Indeed, let
# —

Z− be a vector containing all variables in (U∪V)\{Z1,Z2}, and suppose Z1 →֒F Γ Z2 .

By definition of →֒F Γ , there is a vector
#—

z− ∈ R(
# —

Z−) and there are z1 , z
′
1
∈ R(Z1) with z1 , z′

1
such that,

if f Γ
Z2

(
#—

z−, z1) = z2 and f Γ
Z2

(
#—

z−, z′
1
) = z′

2
(with f Γ

Z2
the structural function for X2 in F Γ), then z2 , z′

2
.

Thus, from the definition of the structural functions in F Γ, it follows that [
# —

Z−=
#—

z−,Z1=z1]Z2=z2 ∈ Γ

and [
# —

Z−=
#—

z−,Z1=z′
1
]Z2=z′2 ∈ Γ for

#—

z− ∈ R(
# —

Z−), z1 , z′
1

and z2 , z′2 . Since Γ is maximally consistent,
the conjunction of both formulas is also in Γ, and hence so is Z1  Z2.
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From AΓ’s definition, AΓ(
#—

U) = #—u , AΓ(
#—

Y) = #—y and AΓ(V) = v imply that

the formulas in {V=v} ∪ {Ui=ui | Ui ∈
#—

U} ∪ {Yi=yi | Yi ∈
#—

Y} are all in Γ. This

and axiom HP3 imply that [
#—

U= #—u ,
#—

Y= #—y ]V=v ∈ Γ. But, from f Γ
V

’s definition,

f Γ
V

(AΓ(
#—

U),AΓ(
#—

Y)) , v implies [
#—

U= #—u ,
#—

Y= #—y ]V=v < Γ, a contradiction.

�

We have so far been using expressions of the form
#—

X= #—x (“assignments”)
only inside intervention modalities. From this point onwards we follow the
literature and we allow such expressions to occur also outside of modalities;
in such contexts, they must be understood as conjunctions of atoms, such as
X1=x1 ∧ · · · ∧Xn=xn.

Lemma 1 (Inverse of composition) Let
#—

X,
#—

Y ,
#—

Z be tuples of variables in U ∪V,

and #—x #—y z ∈ R(
#—

X
#—

Y
#—

Z). From the assumptions [
#—

X= #—x ]
#—

Y= #—y and [
#—

X= #—x ,
#—

Y= #—y ]
#—

Z= #—z

we can formally prove [
#—

X= #—x ]
#—

Z= #—z in LKC.

Proof. Suppose for the sake of contradiction that the set∆ = {[
#—

X= #—x ]
#—

Y= #—y , [
#—

X= #—x ,
#—

Y =
#—y ]

#—

Z = #—z ,¬[
#—

X = #—x ]
#—

Z = #—z } is consistent. If |(|R(
#—

Z)) = 1, this contradicts axiom

HP2; so assume |(|R(
#—

Z)) > 1. By applying RH2, HP2 and classical logic to the

last of these formulas, we obtain that also ∆′ = {[
#—

X = #—x ]
#—

Y = #—y , [
#—

X = #—x ,
#—

Y =
#—y ]

#—

Z = #—z , [
#—

X = #—x ]
#—

Z = #—z ′} is consistent, for some #—z ′ , #—z . Applying HP3 to

the first and third formulas of ∆′, we obtain [
#—

X = #—x ,
#—

Y = #—y ]
#—

Z = #—z ′; by HP1

we obtain ¬[
#—

X = #—x ,
#—

Y = #—y ]
#—

Z = #—z , contradicting the consistency of ∆′. �

The following proposition is the crucial part of the proof: it shows that

〈S,F Γ,AΓ〉 satisfies all ‘atoms’ (formulas of the form [
#—

X= #—x ]Z=z) in Γ.

Proposition 5 Let Γ ∈ C be a maximally LKC-consistent set of LKC-formulas. Let
#—

X= #—x be an assignment, for
#—

X a tuple of variables in U ∪V; take Z ∈ U ∪ V and
z ∈ R(Z). Then,

[
#—

X= #—x ]Z=z ∈ Γ if and only if 〈S,F Γ,AΓ〉 |= [
#—

X= #—x ]Z=z

Proof. From the semantic interpretation, the right-hand side 〈S,F Γ,AΓ〉 |=

[
#—

X= #—x ]Z=z is equivalent toAΓ
F Γ
#—

X= #—x
(Z) = z. Then, the proof will show that, for

any assignment
#—

X= #—x onU ∪V, any Z ∈ U ∪V and any z ∈ R(Z),

[
#—

X= #—x ]Z=z ∈ Γ if and only if AΓ
F Γ
#—

X= #—x (Z) = z

There are two main cases. First, suppose Z ∈ U, and take any
#—

X= #—x .

• Suppose further that Z occurs in
#—

X, so Z = Xk for some 1 6 k 6 |
#—

X|. (⇒)

Suppose [
#—

X= #—x ]Xk=z ∈ Γ. By axiom HP4, we also have [
#—

X= #—x ]Xk=xk ∈ Γ; thus,
axiom HP1 and the consistency of Γ imply z = xk. Now, from the definition of
the value of intervened variables after an intervention (Definition 5), it follows

that AΓ
F Γ
#—

X= #—x
(Xk) = xk; this, together with z = xk, produces the required

AΓ
F Γ
#—

X= #—x
(Xk) = z. (⇐) Suppose AΓ

F Γ
#—

X= #—x
(Xk) = z. From Definition 5 again,

AΓ
F Γ
#—

X= #—x
(Xk) = xk, so z = xk. Now, by axiom HP4 again, [

#—

X= #—x ]Xk=xk ∈ Γ so,

since z = xk, it follows that [
#—

X= #—x ]Xk=z ∈ Γ.
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• Suppose Z does not occur in
#—

X. By axiom EX, [
#—

X= #—x ]Z=z ∈ Γ if and only
if Z=z ∈ Γ; by the definition of AΓ (Definition 13), Z=z ∈ Γ if and only if
AΓ(Z) = z; by the definition of the value an intervened valuation assigns to
a non-intervened exogenous variable (Definition 5),AΓ(Z) = z if and only if

AΓ
F Γ
#—

X= #—x
(Z) = z.

Suppose now Z ∈ V. The proof proceeds by induction on the number of

non-intervened endogenous variables, i.e., by induction on the size ofV \
#—

X.

Case |V \
#—

X| = 0. This is the case when every endogenous variable is being
intervened; in particular, Z is. Then, the argument for the case Z ∈ U with Z

occurring in
#—

X shows that the equivalence holds.

Case |V \
#—

X| = 1. If Z is being intervened (i.e., Z occurs in
#—

X), then the argu-

ment for the case |V \
#—

X| = 0 is enough.

If Z is the lone non-intervened endogenous variable,
#—

X contains all variables in

V\{Z}. Then, define
# —

U′=
#—

u′ as the assignment over the exogenous variables not

in
#—

X (i.e., U′ ∈
# —

U′ if and only if both U′ ∈ U and U′ <
#—

X) by taking u′
i

:=AΓ(U′
i
).

From the definition of AΓ, it is clear that U′
i
=u′

i
∈ Γ for all U′

i
∈

# —

U′. Note how

the disjoint vectors
#—

X and
# —

U′ contain, together, exactly all the variables in
(U ∪ V) \ {Z}.Notice that, by the definition of intervention (Definition 5), we

haveAΓ
F Γ
#—

X= #—x
(Z) = AΓ

F Γ
#—

X
#—

U′= #—x
#—

u′
(Z) = f ΓZ ( #—x , #—u ′). But then, by the construction of

f ΓZ (Definition 13) we haveAΓ
F Γ
#—

X= #—x
(Z) = z if and only if [

#—

X= #—x ,
# —

U′=
#—

u′]Z=z ∈ Γ.

In the presence of [
#—

X= #—x ]
# —

U′=
#—

u′ ∈ Γ (a consequence of the previous
#—

U′= #—u ′ ∈ Γ

and axiom EX), the latter is equivalent to the required [
#—

X = #—x ]Z = z (by Lemma
1 in one direction, and by axiom HP3 in the other).

Case |V \
#—

X| = k > 1. If Z is being intervened, equivalence follows as shown

in the case |V \
#—

X| = 0.

Suppose Z is not being intervened. Define
# —

U′=
#—

u′ as in the previous case.

(⇒) Suppose [
#—

X= #—x ]Z=z ∈ Γ. Based on this, we will build a complete valuation
A∗, and we will show thatA∗ (i) agrees withAΓ on the values of all exogenous

variables not in
#—

X, (ii) follows
#—

X= #—x for the values of exogenous variables in
#—

X,
and (iii) complies with all structural functions in F Γ#—

X= #—x
. Since there is a unique

valuation satisfying these three requirements (F Γ is recursive, as shown in

Proposition 4), it will follow thatA∗ = AΓ
F Γ
#—

X= #—x
. As it will be shown,A∗(Z) = z,

so that will produce the requiredAΓ
F Γ
#—

X= #—x
(Z) = z.

Recall that
# —

U′ contains exactly all exogenous variables not in
#—

X; let
# —

V′ be the

vector containing exactly all endogenous variables not in
#—

X. Then, define

• A∗(Xi) := xi for Xi ∈
#—

X;

• A∗(U′
i
) := u′

i
for U′

i
∈

# —

U′;

• A∗(V′
i
) := v′

i
if and only if [

#—

X= #—x ]V′
i
=v′

i
∈ Γ, for V′

i
∈

# —

V′.23

Note how (i)A∗ agrees withAΓ on the values of all exogenous variables not in
#—

X (i.e., variables in
# —

U′) because
#—

u′ is directly taken from AΓ. Moreover, (ii) it

23Axioms HP1 and HP2 guarantee that this uniquely determines the value of each variable in
# —

V′.
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follows
#—

X= #—x for the values of all (in particular, the exogenous) variables in
#—

X.
Then, (iii) it is only left to show that A∗ complies with F Γ#—

X= #—x
. For notation,

use y∗ to denote the value a variable Y receives according to A∗. Note how,

since |V \
#—

X | > 1, there are at least 2 endogenous variables that are not being

intervened (i.e., there are at least two variables in
# —

V′); denote them by W1

and W2. By definition of the values in
#—

v′, we have [
#—

X= #—x ]W1=w∗
1
∈ Γ and

[
#—

X= #—x ]W2=w∗
2
∈ Γ.

For the proof, it should be shown that, for every endogenous variable Y, the
value y∗ complies with the structural function for Y in F Γ#—

X= #—x
. Take any en-

dogenous variable Y different from W1. If Y is in
#—

X, from axiom HP4 it

follows that [
#—

X= #—x ,W1=w∗
1
]Y=y∗ ∈ Γ. Otherwise, Y is not in

#—

X, so Y is in
# —

V′ and therefore [
#—

X= #—x ]Y=y∗ ∈ Γ. But [
#—

X= #—x ]W1=w∗
1
∈ Γ so, by axiom HP3,

[
#—

X= #—x ,W1=w∗
1
]Y=y∗ ∈ Γ. Thus, [

#—

X= #—x ,W1=w∗
1
]Y=y∗ ∈ Γ holds for every Y ∈ V

different from W1. Since |V \ (
#—

X ∪ {W1})| = k − 1, from inductive hypothesis it

follows thatAΓ
F Γ
#—

X= #—x ,W1=w∗
1

(Y) = y∗, and also thatA∗ complies with the structural

function for Y from F Γ#—
X= #—x ,W1=w∗

1

, since A∗ agrees with AΓ outside of {
#—

X,W1}.

But Y is different from W1, so A∗ complies with the structural function for Y
from F Γ#—

X= #—x
.

Thus, for any Y different from W1, the valuationA∗ complies with the structural
function for Y atF Γ#—

X= #—x
. An analogous reasoning shows that, for any Y different

from W2, the valuationA∗ complies with the structural function for Y at F Γ#—
X= #—x

.

Thus, for every endogenous variable Y, the valuation A∗ complies with the
structural function for Y at F Γ#—

X= #—x
. This proves (iii), so we get the desired

A∗ = AΓ
F Γ
#—

X= #—x
. For the final detail, note how our variable Z is in

# —

V′; since we

have assumed [
#—

X= #—x ]Z=z ∈ Γ, we have A∗(Z) = z, that is, AΓ
F Γ
#—

X= #—x
(Z) = z, as

required.

(⇐) Suppose AΓ
F Γ
#—

X= #—x
(Z) = z. Since |V \

#—

X| = k > 1, there are at least two

endogenous variables not in
#—

X. One of them is Z; let W be one of the others,

and let w ∈ R(W) be the value satisfyingAΓ
F Γ
#—

X= #—x
(W) = w.

• Consider the valuationAΓ
F Γ
#—

X= #—x ,W=w
. SinceAΓ

F Γ
#—

X= #—x
andAΓ

F Γ
#—

X= #—x ,W=w
agree on

W, it follows that AΓ
F Γ
#—

X= #—x ,W=w
(Z) = z. As |V \ (

#—

X ∪ {W})| = k − 1, from the

inductive hypothesis it follows that [
#—

X= #—x ,W=w]Z=z ∈ Γ.

• Consider the valuation AΓ
F Γ
#—

X= #—x ,Z=z
. Since AΓ

F Γ
#—

X= #—x
and AΓ

F Γ
#—

X= #—x ,Z=z
agree on

Z, it follows that AΓ
F Γ
#—

X= #—x ,Z=z
(W) = w. As |V \ (

#—

X ∪ {Z})| = k − 1, from the

inductive hypothesis it follows that [
#—

X= #—x ,Z=z]W=w ∈ Γ.

Thus, [
#—

X= #—x ,W=w]Z=z ∈ Γ and [
#—

X= #—x ,Z=z]W=w ∈ Γ. Then, by axiom HP5,

[
#—

X= #—x ]Z=z ∈ Γ, as required.

�

Having proved this ‘truth Lemma’ for ‘atoms’ in LKC, the next step is to
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go from the causal model 〈S,F Γ,AΓ〉 to an epistemic causal model where all
formulas in Γ are satisfied. The definition and lemma are below.

Definition 14 Take Γ ∈ C.

• Let DΓ := {Γ′ ∈ C | F Γ
′

= F Γ} be the set maximally consistent sets in C whose
structural functions coincide with those of Γ. Obviously, Γ ∈ DΓ.

• Define RΓ ⊆ DΓ ×DΓ as (Γ1, Γ2) ∈ RΓ if and only if Kχ ∈ Γ1 implies χ ∈ Γ2 for
every χ ∈ LKC. This is the standard definition of the relation in modal canonical
models (see, e.g., [15, 10]). The elements ofD are maximally LKC-consistent sets,
and LKC includes axioms T, 4 and 5; thus, it follows from standard modal results
(see, e.g., the just mentioned reference) that RΓ is an equivalence relation. In
particular, axiom T implies (Γ, Γ) ∈ RΓ.

• Define T Γ := {AΓ
′

| (Γ, Γ′) ∈ RΓ} as containing the valuation function (see
Definition 13) of each maximally consistent set inD that is RΓ-reachable from Γ.
In particular, from (Γ, Γ) ∈ RΓ it follows thatAΓ ∈ T Γ.

The structure EΓ is given by 〈S,F Γ,T Γ〉.

Lemma 2 (Truth lemma for LKC) Take Γ ∈ C; recall thatAΓ ∈ T Γ. Then,

(〈S,F Γ,T Γ〉,AΓ) |= χ if and only if χ ∈ Γ

Proof. The proof is by induction on χ ∈ Γ.

Case [
#—

X= #—x ]Z=z. The truth-value of an ‘atom’ [
#—

X= #—x ]Z=z at (〈S,F Γ,T Γ〉,AΓ)
is independent from T Γ; then,

(〈S,F Γ,T Γ〉,AΓ) |= [
#—

X= #—x ]Z=z if and only if 〈S,F Γ,AΓ〉 |= [
#—

X= #—x ]Z=z

By Proposition 5, the right-hand side is equivalent to [
#—

X= #—x ]Z=z ∈ Γ.

Case ¬χ. Immediate from the inductive hypothesis and the properties of a
maximally consistent set.

Case χ1 ∧ χ2. Immediate from the inductive hypotheses and the properties of
a maximally consistent set.

Case Kχ. As in the same case in the completeness proof of basic modal logic
with respect to relational models (see, e.g., [15, Chapter 3]), using the fact that
LKC contains axiom K and rule N.

�

It is only left to check that 〈S,F Γ,T Γ〉 is indeed an epistemic causal model.

Proposition 6 Take Γ ∈ C. The tuple 〈S,F Γ,T Γ〉 is such that every valuation in T Γ

complies with F Γ.

Proof. Take any AΓ
′

∈ T Γ. Note how AΓ
′

complies with F Γ
′

(second item in
Proposition 4). But AΓ

′

∈ T Γ, so (Γ, Γ′) ∈ RΓ and hence Γ′ ∈ D, which implies
F Γ

′

= F Γ. Thus,AΓ
′

complies with F Γ. �

Here is, then, the full argument for the strong completeness of LKC for
LKC in epistemic causal models. Let Γ− be any LKC-consistent set of LKC-
formulas. From the enumerability of LKC, the set Γ− can be expanded into a
maximally LKC-consistent set Γ. By Lemma 2, all formulas in Γ− are satisfiable
in (〈S,F Γ,T Γ〉,AΓ), which by Proposition 6 is an epistemic causal model.
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A.2 Proofs for Propositions 1 and 2

As pointed out in the main text, here we show how to translate only the non-
nested formulas of LCOD into LPAKC. Furthermore, we denote as α, β, γ...non-
nested formulas of LCOD that have no occurrences of dependence atoms. We
need to define a simple preliminary translation e of such formulas, so that they
may correctly act as public announcements. This will be needed in order to
translate formulas of the form α ⊃ ψ.

e(Y=y) := Y=y, e(β ∧ γ) := e(β) ∧ e(γ), e(β ⊃ γ) := e(β)→ e(γ),

e(Y,y) := ¬(Y=y), e(β ∨ γ) := ¬(¬e(β) ∧ ¬e(γ)), e(
#—

X = #—x � γ) := [
#—

X = #—x ]e(γ).

We point out two simple properties of the preliminary translation e.

Lemma 3 Let α be a non-nested formula of LCOD without occurrences of dependence
atoms. Let 〈S,F ,T〉 be an epistemic causal model. Then, for everyA ∈ T ,

(〈S,F ,T〉,A) |= e(α) if and only if 〈{A},F 〉 |= α.

Proof. A simple induction on the syntax of α. �

Lemma 4 Let α be a non-nested formula of LCOD without occurrences of dependence
atoms. Let E = 〈S,F ,T〉 be an epistemic causal model. Then Ee(α) = 〈S,F ,T α〉.

Proof. By definition, Ee(α) differs from E only in that its set of valuations is
{A ∈ T | (E,A) |= e(α)}. But, by Lemma 3, this is equal to {A ∈ T | 〈{A},F 〉 |=
α} = T α. �

Now we can define the translation of (non-nested formulas of) LCOD into
LPAKC.

tr(Y=y) := K(Y=y) tr(φ1 ∧ φ2) := tr(φ1) ∧ tr(φ2)

tr(Y,y) := K(¬(Y=y)) tr(
#—

X= #—x � φ) := [
#—

X= #—x ]tr(φ)

tr(α ⊃ φ) := [e(α)!]tr(φ)

tr(φ ∨ ψ) :=
∨

S⊆A

K
(

[(
∨

#—

Y = #—y ∈S

#—

Y = #—y )!]tr(φ) ∧ [(¬
∨

#—

Y = #—y ∈S

#—

Y = #—y )!]tr(ψ)
)

tr(=(X1, ...,Xn; Y)) :=
∧

#—x ∈R(
#—

X )

∨

y∈R(Y)

[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y)

We need to show for any causal team 〈T ,F 〉 over a signature S and any
formula φ ∈ LCOD, we have 〈T ,F 〉 |= φ if and only if, for all A ∈ T , we have
(〈S,F ,T〉,A) |= tr(φ). This can be done by induction on the complexity of φ.
We write E for 〈S,F ,T〉.

Case Y=y. 〈T ,F 〉 |= Y=y iffA(Y) = y for eachA ∈ T iff (E,A) |= K(Y=y).

Case Y,y. 〈T ,F 〉 |= Y,y iffA(Y) , y for eachA ∈ T iff (E,A) |= K(¬(Y,y)).

Case ψ ∧ χ. This case follows immediately from the inductive hypothesis.
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Case
#—

X= #—x � χ. 〈T ,F 〉 |=
#—

X= #—x � χ iff 〈T F#—
X= #—x

,F #—

X= #—x 〉 |= χ iff for all

B ∈ T F#—
X= #—x

we have (〈S,F #—

X= #—x ,T
F
#—

X= #—x
〉,B) |= tr(χ) iff for all A ∈ T we have

(〈S,F #—

X= #—x ,T
F
#—

X= #—x
〉,A #—

X= #—x ) |= tr(χ) iff for all A ∈ T we have (〈S,F ,T〉,A) |=

[
#—

X= #—x ]tr(χ).

Case α ⊃ χ. 〈T ,F 〉 |= α ⊃ χ iff 〈T α,F 〉 |= χ iff (by inductive hypothesis)
(〈S,F ,T α〉,A) |= tr(χ) for all A ∈ T α iff (by Lemma 4) (Ee(α),A) |= tr(χ) for all
A ∈ T α iff (E,A) |= [e(α)!]tr(χ) for allA ∈ T α. For the rest, (E,A) |= [e(α)!]tr(χ)
holds trivially for everyA ∈ T \ T α, as e(α) is false onA by Lemma 3.

Case ψ ∨ χ. As a preliminary observation, note how the causal team language
is downward closed, in the sense that if 〈T ,F 〉 |= θ andT ′ ⊆ T , then 〈T ′,F 〉 |= θ
(see [6] for a proof). By downward closure, it is easy to see that the statement
that there are T1,T2 such that T1 ∪ T2 = T , T1 |= ψ and T2 |= χ is equivalent to
stating the existence of such T1,T2 which are furthermore disjoint.

Now, write
#—

Y forU∪V; recall that A is the set of all possible assignments to
#—

Y .
We have 〈T ,F 〉 |= ψ∨ χ iff there are disjoint T1 ∪T2 = T such that 〈T1,F 〉 |= ψ
and 〈T2,F 〉 |= χ iff

(by inductive hypothesis) there are disjointT1∪T2 = T such that (〈S,F ,T1〉,A) |=
tr(ψ) for allA ∈ T1 and (〈S,F ,T2〉,A) |= tr(χ) for allA ∈ T2 iff there are disjoint

T1 ∪ T2 = T such that (E,A) |= [(
∨

B∈T1

#—

Y = B( #—y ))!]tr(ψ) for all A ∈ T1 and

(E,A) |= [(
∨

B∈T2

#—

Y = B( #—y ))!]tr(χ) for allA ∈ T2.

For the next step, notice that the first of these public announcement formu-
las holds trivially on valuations from T2 (where the announcement is false);
analogously, the second formula holds trivially on valuations from T1 Thus,
the statement above is equivalent to the assertion that both formulas hold on
each valuation of T . If furthermore we write S for the set of assignments

to
#—

Y that correspond to valuations in T1, since T1 and T2 are disjoint we
can rewrite the statement as: there is an S ⊆ A such that, for all A ∈ T ,
(E,A) |= [(

∨

#—

Y= #—y ∈S

#—

Y = #—y )!]tr(ψ) ∧ [(¬
∨

#—

Y= #—y ∈S

#—

Y = #—y )!]tr(χ).

By the semantic clauses, this is equivalent to saying that the same assertion
holds for the same formula preceded by K. By classical logic, it follows that we
can invert the order of the quantifiers,

for allA ∈ T there is an S ⊆ A such that

(E,A) |= K
(

[(
∨

#—

Y= #—y ∈S

#—

Y = #—y )!]tr(ψ) ∧ [(¬
∨

#—

Y= #—y ∈S

#—

Y = #—y )!]tr(χ)
)

.
(∗)

Then this is equivalent to: for all A ∈ T , (E,A) |=
∨

S⊆A K
(

[(
∨

#—

Y= #—y ∈S

#—

Y =
#—y )!]tr(ψ) ∧ [(¬

∨

#—

Y= #—y ∈S

#—

Y = #—y )!]tr(χ)
)

, i.e. the desired conclusion.

In the opposite direction, assume (∗) holds. We need to show that we can swap
the two quantifiers; this is not given by a logical rule, but we have instead
to show that we can take the same S for all A. But this follows immediately

from the clause for K: if, for a fixed S, we have (E,A) |= K
(

[(
∨

#—

Y= #—y ∈S

#—

Y =
#—y )!]tr(ψ) ∧ [(¬

∨

#—

Y= #—y ∈S

#—

Y = #—y )!]tr(χ)
)

for some A, then it holds (with the

same S) for eachA ∈ T .
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Case =(
#—

X; Y). Let
#—

X be X1, . . . ,Xn. Suppose 〈T ,F 〉 |= = (
#—

X; Y); this holds iff
for all A1,A2 ∈ T , if A1(Xi) = A2(Xi) for all 1 ≤ i ≤ n, then A1(Y) = A2(Y),
that is, iff for all #—x ∈ R(

#—

X) there is some y ∈ R(Y) such that for all A ∈ T ,
A(X1) = x1, ...,A(Xn) = xn implies A(Y) = y, which is equivalent to stating

that for all #—x ∈ R(
#—

X), there is some y ∈ R(Y) such that for all A ∈ T , (E,A) |=
[(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y = y). Then, it follows that for all A ∈ T , (E,A) |=
∧

#—x ∈R(
#—

X )

∨

y∈R(Y)[(X1=x1 ∧ ... ∧Xn=xn)!]K(Y=y).

In the opposite direction, supposing that for all A ∈ T the above holds, we
only need to prove that y can be chosen independently of A (i.e., only as a
function of x1, . . . , xn). Actually, we prove that it must be chosen independently

of A. Suppose for the sake of contradiction that, for some x1 . . . xn ∈ R(
#—

X), we
have y , y′ ∈ R(y) such that (〈S,F ,T〉,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y = y)
and (〈S,F ,T〉,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y′). From this we easily get
that every assignment B in the causal epistemic model 〈S,F ,T X1=x1∧···∧Xn=xn〉

satisfies both B(Y) = y and B(Y) = y′, a contradiction.

Similarly, we can prove each of the two claims of Proposition 2 by induction
on the complexity of φ. As before, the case for ∧ is trivial. Again, write E for
〈S,F ,T〉. In the case of claim (i), for all operators except dependence atoms,
we can follow word-by-word the left-to-right entailments from the proof of

Proposition 1. In the proof of the case = (
#—

X; Y) we observe, as an additional

step, that from the assumption that for all #—x ∈ R(
#—

X) there is some y ∈ R(Y)
such that for all A ∈ T , (E,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y) we can infer,
by the semantic clause for K, that the same statement holds for the formula
K[(X1=x1 ∧ · · · ∧Xn=xn)!]K(Y = y). It is then immediate to conclude that, for all
A ∈ T , (E,A) |= tr∗(φ).

Let us then prove claim (ii) of Proposition 2.

Cases X=x and X,x. Suppose there isA ∈ T such that (E,A) |= tr∗(X=x) (i.e.,
K(X=x)). Then, for allA ∈ T , A(X) = x, i.e. 〈T ,F 〉 |= X=x. The proof for X,x
is analogous.

Case
#—

X= #—x � χ. Suppose (〈S,F ,T〉,A) |= [
#—

X= #—x ]tr∗(χ) holds for some A ∈

T . Then, (〈S,F #—

X= #—x ,T
F
#—

X= #—x
〉,A #—

X= #—x ) |= tr∗(χ) and therefore, by inductive hy-

pothesis, 〈T F#—
X= #—x

,F #—

X= #—x 〉 |= χ, i.e., 〈T ,F 〉 |=
#—

X= #—x � χ.

Case α ⊃ χ. Suppose there is A ∈ T such that (E,A) |= K[e(α)!]tr(χ). Then
for all A ∈ T we have (E,A) |= [e(α)!]tr(χ). In particular, this holds for all
A ∈ T α ⊆ T , so we can proceed as in the right-to-left direction of the proof of
Proposition 1.

Case ψ ∨ χ. Suppose there is a valuation A in the set T satisfying (E,A) |=
∨

S⊆A K
(

[(
∨

#—

Y= #—y ∈S

#—

Y= #—y )!]tr(φ)∧ [(¬
∨

#—

Y= #—y ∈S

#—

Y= #—y )!]tr(ψ)
)

. So there is an S ⊆ A

such that, for all A ∈ T , (E,A) |= [(
∨

#—

Y= #—y ∈S

#—

Y = #—y )!]tr(φ) ∧ [(¬
∨

#—

Y= #—y ∈S

#—

Y =
#—y )!]tr(ψ). From this point we can proceed as in right-to-left direction of the
proof of Proposition 1.

Case =(
#—

X; Y). Suppose there isA ∈ T such that (E,A) |=
∧

#—x ∈R(
#—

X )

∨

y∈R(Y) K[(X1=x1∧

· · · ∧ Xn=xn)!]K(Y=y); then, for all x1, . . . , xn ∈ R(X1, . . . ,Xn) there is a y ∈ R(Y)
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such that, for all A ∈ T , (E,A) |= [(X1=x1 ∧ · · · ∧ Xn=xn)!]K(Y=y). From this
point we can proceed as in the right-to-left case of Proposition 1.
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