
Newcastle University, UK

School of Engineering

Power-compute co-design for robust
pervasive IoT applications

PhD Thesis

Sergey Mileiko

October 22, 2020

Abstract
The modern development of internet of things (IoT) requires the IoT devices to be more

compact and energy autonomous. Many of them require to be able to operate with

unstable and low power supplies that come from various energy sources such as energy

harvesters. This creates a challenge for building IoT devices that need to be robust to

energy variations.

In this research we propose methods for improving energy characteristics of IoT

devices from the perspective of two main challenges: (i) improving the efficiency

and stability of power regulators, and (ii) enhancing the energy robustness of the IoT

devices. The existing design methods do not consider these two aspects holistically. One

important feature of our approach is holistic use of event-based, temporal representation

of data, which involves using asynchronous techniques and duty-cycle-based encoding.

For power regulation we use switched-capacitor converters (SCC) because they offer

compactness and ease of on-chip implementation. In this research we adapt the existing

methods and develop new techniques for SCC design based on asynchronous circuits.

This allows us to improve their performance and stability. We also investigate the

methods of parasitic charge redistribution, and apply them to self-oscillating SCC,

improving their performance. The key contribution within (i) is development of the

methods of SCC design with improved characteristics.

The majority of novel IoT systems are shifting towards the “AI at the edge” vision,

for example, involving neural networks (NN). We consider a perceptron-based neural

network as a typical IoT computing device. In our research we propose a novel

NN design approach using the principle of pulse-width modulation (PWM). PWM-

encoded signals represent information with their duty cycle values which may be made

independent of the voltages and frequencies of the carrier signals. As a result, the device

is more robust to voltage variations, and, thus, the power regulation can be simplified.

This is the second major contribution addressing challenge (ii).

The advantages of the proposed methods are validated with simulations in the

Cadence environment. The simulations demonstrate the operation of the designed

power regulators, and the improvements of their efficiency. The simulations also

demonstrate the principle of operation of the PWM-based perceptron and prove its

power and frequency elasticity.

The thesis gives future research directions into a deeper study of the holistic co-design

of a variation-robust power-compute paradigm and its impact on developing future IoT

applications.

Contents

List of Figures iii

List of Tables vii

Acknowledgments 1

1 Introduction 2

1.1 Challenges of IoT applications . 2

1.2 Requirements to the power regulators for IoT devices 3

1.3 Improvement of power robustness of IoT devices 5

1.4 Summary . 6

1.5 Main publications on the thesis . 6

1.6 Thesis layout . 8

2 Background 9

2.1 Principle of operation and challenges of SCCs 9

2.1.1 Two-phase SCC . 10

2.1.2 Multi-phase SCC . 13

2.1.3 Self-oscillating SCC . 14

2.1.4 Bottom plate capacitance and parasitic charge redistribution 16

2.2 Principles of asynchronous circuits design 19

2.2.1 Self-timed buck controller design . 20

2.3 AI hardware design for energy efficiency 24

i

3 Design of efficient SCCs 28

3.1 Two-phase SCC control . 29

3.2 Multi-phase SCC control . 30

3.3 Self-oscillating SCCs with parasitic charge redistribution 34

3.4 SCC simulation . 36

3.4.1 Switch design and simulation . 36

3.4.2 Two-phase SCC simulation . 38

3.4.3 Multi-phase SCC simulation . 42

3.4.4 Simulations of the self-oscillating SCC 44

3.5 Summary . 46

4 Power-elastic PWM-based perceptron 49

4.1 Principles of duty cycle to voltage conversion 50

4.2 PWM arithmetic . 53

4.3 Voltage to PWM conversion . 56

4.4 PWM-coded perceptron design . 57

4.5 PWM-coded neural network design . 58

4.6 Summary . 62

5 Simulation results 64

5.1 Simulation flow . 65

5.2 Analysis and validation of PWM-coded perceptron 65

5.3 Power elasticity and resilience in static operation 69

5.4 Analysis of perceptron operation in dynamics 72

5.5 Perceptron design trade-off analysis . 76

5.6 Validation and analysis of PWM-coded neural network 78

5.7 Summary . 86

6 Conclusions 87

6.1 Contributions . 87

6.2 Future work . 88

Bibliography 90

ii

List of Figures

1.1 Typical power flow in an IoT device. 3

2.1 Typical SCC cell (a) and its use in the divider by two SCC (b). 10

2.2 Two clocks φ1 and φ2 with dead time dt (a) and overlap st (b). 11

2.3 Topologies of the dividing by two SCC including the parasitic one. 11

2.4 Current through the flying capacitor C (not in scale). 12

2.5 The equivalent circuits of a SCC representing only conduction losses (a)

and both conduction and bottom-plate capacitance losses (b). 12

2.6 Schematic of the multi-phase SCC with two flying capacitors. 13

2.7 Structure of the self-oscillating SCC. 15

2.8 Leakage-based delay element in self-oscillating SCC. 16

2.9 Operation of the SCC cell as a voltage divider (1), voltage multiplier (2),

and negative voltage generator (3). 17

2.10 Charging and discharging phase of the bottom plate parasitic capacitor. . 17

2.11 The method of the parasitic charge redistribution, applied to the regular

SCC structure. 19

2.12 A Signal Transition Graph describing the behaviour of inverter. 20

2.13 Structure of the buck converter. 21

2.14 Scenarios of operation of the buck converter. 21

2.15 STG for the first scenario with no ZC. 22

2.16 STG for the second scenario with late ZC. 22

2.17 STG for the third scenario with early ZC. 23

iii

2.18 Combined STG of the buck controller. 23

2.19 Self-timed circuit of the buck controller. 24

2.20 Structural organisation of a perceptron, which is the basic building block

of NNs. 25

3.1 Signal transition graph of the two-phase SCC controller. 29

3.2 Synthesized circuit of the two-phase SCC controller. 30

3.3 Formal STG specification for 1/4 ratio control. 32

3.4 Informal timing diagram for 1/4 ratio switching. 32

3.5 STG specification of multi-phase SCC controller. 33

3.6 Structure of the self-oscillating SCC with charge redistribution. 34

3.7 Implementation of the top and bottom logic blocks. 36

3.8 Circuit used as a bidirectional switch. 36

3.9 Examination circuit for the switch to measure the switching losses (a) and

the Ron (b). 37

3.10 Energy losses per one switch caused by the shoot-through currents. . . . 38

3.11 Current through the switch transistors for fclk=200MHz. Solid line:

NMOS, dashed line: PMOS, dotted line: total current. 39

3.12 Output pulses of the SCC controller for f=20MHz and dt=0.5ns. Solid line:

ph1, dashed line: ph2. 39

3.13 Steady-state current through C for f=20MHz and dt=0.5ns. 40

3.14 Worst case of the current spikes during the transitions. Solid line: S1,

dashed line: S2. 40

3.15 Steady-state currents of the SCC for f=20MHz and dt=0.5ns. Solid line:

input current, dashed line: output current. 41

3.16 Efficiency of small (a), medium (b), and large (c) two-phase SCC with

different loads. 41

3.17 Inputs/outputs of the multi-phase SCC controller. 42

3.18 Efficiency of the large multi-phase SCC with the large load for different

ratios. 43

3.19 Power consumption of the generated SCC controllers. 43

3.20 Charge redistribution simulation results. 44

iv

3.21 Efficiency vs frequency with C f ly = 50pF for the SCC without charge

redistribution and with it, with the large and the small store capacitor.

. 45

3.22 Efficiency vs frequency with C f ly = 20pF for the SCC with and without

charge redistribution. 46

4.1 A CMOS-based inverter circuit. 51

4.2 Inverter output with PWM-coded input. 51

4.3 PWM inverter equivalent circuit, approximated as a voltage divider. . . . 52

4.4 Output voltage of the PWM inverter vs input duty cycle. 52

4.5 PWM adder circuit performed by parallel inverters, with outputs con-

nected via a capacitor. 53

4.6 A single cell of the PWM weighted adder, based on a NAND gate. 54

4.7 PWM weighted addition VAC with 3 inputs and 3-bit weights. 55

4.8 The ring oscillator based voltage to PWM converter. 57

4.9 Structure of the perceptron: PWM adder, voltage to PWM converter, and

compensation transistor. 57

4.10 Neural network for MNIST. The DCsum signals are voltages. in and out

signals are duty cycles. 59

4.11 Integer weight training. 60

4.12 ReLU function. 62

4.13 Capped ReLU function. 62

5.1 Perceptron simulation flow. 66

5.2 Capacitor charging in the 3 inverters VAC. 67

5.3 Output duty cycle of the voltage to PWM converter. 68

5.4 Output vs input duty cycle of the perceptron. 68

5.5 Output vs input duty cycle of the perceptron with and without compen-

sation. 69

5.6 Output voltage (absolute values) vs static variation of power supply. . . . 70

5.7 Output voltage (relative values) vs static variation of power supply. 70

5.8 Output voltage vs static variation of input frequency. 71

v

5.9 Output voltage swing vs frequency. 71

5.10 Power vs frequency of the 3x3 VAC. 72

5.11 Output capacitor discharge over time. 73

5.12 Capacitor voltage DCsum corresponding to PWM-coded input. 73

5.13 Output voltage swing vs frequency. 73

5.14 Frequency limits for different RC values. 73

5.15 VAC operation under dynamic supply voltage and input data variations. . 75

5.16 Energy per operation at fpwm = 2×min(fpwm). 77

5.17 PWM output. 79

5.18 Output vs model stage 1. 79

5.19 Output vs model stage 2. 80

5.20 Output vs model stage 3. 80

5.21 PWM perceptron output model function. 80

5.22 Capped ReLU function with PWM-like offset. 80

vi

List of Tables

2.1 Bottom plate capacitance for different capacitor technologies. 18

3.1 Specification of the topologies. 30

3.2 Width of the transistors relatively to the power NMOS. 37

5.1 Experimental and theoretical results of the 3× 3 weighted adder. 68

5.2 Voltage, duty cycle and expected voltage ratios. 75

5.3 Speed, power, area and frequency range trade-offs. 78

5.4 Simulation result of the floating-point weight neural network. 82

5.5 Simulation result of the integer weight neural network. 83

5.6 Performance comparison. 85

vii

List of Acronyms

AF - Activation Function

AI - Artificial Intelligence

BP - Back-Propagation

CSC - Complete State Coding

EMI - Electromagnetic Interference

FP - Floating Point

IoT - Internet of Things

KVL - Kirchhoff’s Voltage Law

MIM - Metal-Insulator-Metal

MOM - Metal-Oxide-Metal

MOS - Metal-Oxide-Semiconductor

NN - Neural Network

PWM - Pulse Width Modulation

SCC - Switched-Capacitor Converter

STG - Signal Transition Graph

VAC - Voltage Accumulator

viii

Acknowledgments

I would like to express my gratitude to Alex Yakovlev, my supervisor, for his wisdom and

guidance throughout my postgraduate studies. I would also like to thank my second

supervisor, Danil Sokolov, for introducing me to the world of asynchronous circuits

and providing invaluable guidance during my research. I am grateful to Alexander

Drozd, who supervised me during my master studies; he gave me a basic knowledge

of hardware design and introduced me to the process of science.

I also extend my thanks to Alexander Kushnerov, who acted as my unofficial

supervisor, sharing his huge experience in the field of switched-capacitor converters.

The methods proposed in chapter 3, are developed in close collaboration with him. A

huge impact on my research was made by Rishad Shafik, Fei Xia, and Thanasin Bunnam,

who helped me with an understanding of neural network design. Chapter 4 was born

as a result of our cooperative work. My colleagues, Alex Bystrov and Andrey Mokhov

have helped me a lot, by having very informative discussions about my research.

I am thankful to my girlfriend, Maryna, for all of her love, support and patience

throughout my PhD. She was there to help me at difficult times, and to share in the

good times. I am grateful to my family for the concern and support during this research.

My thanks to all my friends, especially to Georgy Lukyanov, who made my life even

more fun by involving me into various sport and social activities.

This research was supported by EPSRC, grants SAVVIE (EP/K012908/1) and A4A

(EP/L025507/1).

1

Chapter 1

Introduction

1.1 Challenges of IoT applications

Advances in sensing devices are causing a shift towards the fourth industrial revolu-

tion [1]. The number of Internet of Things (IoT) devices is expected to grow significantly

in the next few years. The modern IoT devices are facing two grand challenges: energy

efficiency and energy autonomy.

The progress of IoT devices is moving towards the full independence of these devices

in terms of energy consumption. This progress relies on the development of energy

harvesting technologies. Modern energy harvesters can receive energy from everywhere.

However, as power sources they cannot provide a stable supply voltage for the devices.

Typical power flow in an IoT device is shown in Fig. 1.1. The device receives power

from the environment using an energy harvester. The power regulator converts the

conditioned power coming from the harvester to stable voltage levels that supply the

computational unit.

Thus, IoT devices require quite complex techniques of power regulation. On the

one hand, the power regulators that can produce a stable voltage to the devices can

be rather complicated and consume a lot of power by themselves. On the other hand,

the simplification of the power regulators leads to instability of the supply voltage and

results in errors in the device’s operation.

2

energy
harvester

power
regulator

computational
unit

conditioned
power

raw
power

regulated
power

environment

Figure 1.1: Typical power flow in an IoT device.

In this research we approach the problem of IoT power supply from two perspectives:

• We propose methods for improving the efficiency and stability of the power

regulators;

• We improve the power robustness of the targeted IoT devices, thereby allowing the

power regulation part to be simplified.

1.2 Requirements to the power regulators for IoT devices

There are two common types of DC-DC converters: linear regulators and switching

converters.

In linear regulators, input and output are connected directly and their efficiency

depends on the relation between input and output voltages. If difference between them

is big, then the efficiency of the converter can be quite low [2]. Linear regulators are used

in applications, where power losses are not critically important, and demanded voltage

levels have to be obtained at any cost.

Switching converters use energy-storing components, which are periodically con-

nected to the power supply. Energy is delivered by portions from the input to the output.

This type of converters has higher efficiency than linear regulators. The two main groups

of switching DC-DC converters are inductive and capacitive converters.

Inductive DC-DC converters use one or several inductors for energy transfer. They

are very widespread because of their universality. They can be used in different

applications with different voltage and current levels. However, inductive converters

have several disadvantages [3]:

3

• It is expensive to realise an inductance on-chip, thus, it is always implemented

externally. It has a relatively big size, thus the converter occupies a lot of space;

• The output of the converter produces voltage spikes that can be harmful to the

components under the voltage supply. These voltage spikes must be damped by

filters that also require extra space;

• The pulsating input current of the inductive converter can produce an electromag-

netic interference (EMI) that can affect other components.

Capacitive DC-DC converters, also known as switched-capacitor converters (SCCs),

are often used in low power applications. They do not have those disadvantages that

inductive converters have [2]. They do not produce high EMI. Capacitive converters, in

contrast to inductive ones, can be easily implemented on-chip. That gives them a huge

advantage in terms of size. Thus, they can be used in small devices without increasing

their dimensions. But in comparison to linear regulators, SCCs keep higher efficiency,

especially at target voltages.

Considering the advantages of SCCs, it has been chosen as the best option for power

regulation of the IoT applications. The main problem of SCCs, however, is their low

efficiency caused by the following reasons [3]:

• Efficiency reduction when the expected output voltage is different from the target

voltage that can be produced by the SCC;

• The shoot-through currents, which appear when the transistors that are supposed

to operate in counter-phase, are turned on at the same time.

• The losses associated with the parasitic capacitances;

A solution to the first problem is straightforward: increasing the number of con-

verter’s ratios. There are several solutions that successfully resolve this issue, such as

in [4–6]. However, these solutions lead to more complicated control circuitry for such

SCCs.

In order to resolve the problem with the shoot-through currents, the SCCs require

more complex control: it must prevent the short-through currents by separating the

switching phases in time.

4

The importance of SCC controllers calls for advanced methods of their design. The

power control could significantly benefit from the use of asynchronous logic [7, 8] that

does not rely on the global clock signal and performs at the pace determined by the

operating conditions [9]. Thus such circuits are adaptable to the rate of changes in the

controlled system and can react to the asynchronous signals from the sensors without

the need for synchronizers. These benefits are already realised by the analogue engineers

who are keen to use asynchronous circuits. At present they typically perform an ad hoc

design of clock-less power control circuits and rely on exhaustive simulation to validate

their correctness. Some solutions with the successful use of asynchronous logic for power

regulation have been reported in [8–10].

In this research, we propose the methods of asynchronous controller design for SCCs.

These methods lead to improving the SCC efficiency, and the efficiency of the IoT device

in general.

1.3 Improvement of power robustness of IoT devices

Modern IoT devices are often used for the tasks of decision making. The most common

way of performing these tasks is using Neural Networks (NNs) [11]. We choose NNs as

our targeted IoT device because of the following reasons:

• NNs are quite common in IoT applications, and the modern trends demonstrate the

increase of the popularity of NNs in IoT;

• Computations in NNs do not require a high degree of accuracy. Some inaccuracy

in NNs can be compensated by an algorithm of updating weights.

We propose an approach of migrating the computations involved in NNs to the

Pulse-Width Modulation (PWM) domain. Our key motivation to use the duty-cycle

time-domain representation of data is base on its potential fundamental resilience to

dynamic variations in the amplitude and frequency of the information-carrying signal.

We assume that such variations are inevitable for energy-autonomous systems that draw

energy from the environment. The other motivating factor is the natural ability of CMOS

logic to perform multiplication and addition operation on the duty-cycled inputs. This

5

is enabled by the inherent effects of proportionally ratioed current switching in CMOS

networks between P and N subnets during the operational cycle of each gate. This gives

way to implementing the PWM-based compute functions directly in CMOS logic gates.

1.4 Summary

The future development of IoT devices will be directed towards improving their size

and energy autonomy. In this work, we approach the IoT improvements from two sides:

improving the efficiency and stability of the power regulator, as well as increasing the

robustness of the IoT device by itself.

The switched-capacitor converter is chosen as a power regulator for an IoT device.

We propose a method of designing an efficient control for a general type of SCCs, as well

as a method of reducing the parasitic losses for self-oscillating SCCs.

From another side, we help to reduce the complexity of the design of the converter

part by improving the IoT device’s robustness to the voltage variations by switching the

computations into a PWM domain.

The main contributions of this thesis are as follows:

• We develop methods for the design of asynchronous controllers for two-phase and

multi-phase SCCs.

• We apply the method of parasitic charge redistribution to self-oscillating SCCs. This

results in more efficient converters compared to state-of-the-art solutions.

• We propose a novel design approach for a perceptron-based NN using the principle

of PWM. This approach leads to the improvement of power elasticity of the NN-

based device.

1.5 Main publications on the thesis

• Mileiko S, Kushnerov A, Sokolov D, Yakovlev A. Self-timed control of two-phase

switched capacitor converters. In: 2016 IEEE International Conference on the Science

6

of Electrical Engineering, ICSEE 2016. 2017, Eilat, Israel: Institute of Electrical and

Electronics Engineers Inc. (materials of this paper are used in chapter 3).

• Mileiko S, Kushnerov A, Sokolov D, Yakovlev A. Self-timed control of multiphase

switched capacitor converters. In: 2017 European Conference on Circuit Theory and

Design (ECCTD). 2017, Catania, Italy: IEEE. (materials of this paper are used in

chapter 3).

• Mileiko S, Kushnerov A, Sokolov D, Yakovlev A. Self-oscillating switched capacitor

converter with parasitic charge redistribution. In: Annual Research Conference (ARC).

2018, Newcastle, UK. (materials of this paper are used in chapter 3).

• Mokhov A, De Gennaro A, Tarawneh G, Wray J, Lukyanov G, Mileiko S, Scott J,

Yakovlev A, Brown A. Language and hardware acceleration backend for graph processing.

In: Languages, Design Methods, and Tools for Electronic System Design. 2018,

Verona, Italy: Springer Verlag.

• Mileiko S, Shafik R, Yakovlev A, Edwards J. A pulse width modulation based power-

elastic and robust mixed-signal perceptron design. In: Design, Automation and Testing

in Europe (DATE). 2019, Florence, Italy. (materials of this paper are used in

chapters 4 and 5).

• Mileiko S, Bunnam T, Xia F, Shafik R, Yakovlev A, Das S. Neural Network Design

for Energy-Autonomous AI Applications using Temporal Encoding. In: Philosophical

Transactions of the Royal Society. Volume 378. Issue 2164. 2019.(materials of this

paper are used in chapters 4 and 5).

• Mileiko S, Bunnam T, Xia F, Shafik R, Yakovlev A. Dynamics of Time-domain Power-

elastic Circuits for Pervasive Machine Learning. In: International Symposium on

Circuits & Systems (ISCAS). 2020, Seville, Spain.(materials of this paper are used

in chapter 5).

7

1.6 Thesis layout

This thesis is organised as follows:

Chapter 1 - Introduction. In this chapter, we briefly discuss the motivations for the

thesis and summarise the contributions.

Chapter 2 - Background. We discuss the major challenges of SCC design and

the existing methods that address these challenges. We overview the methods of

asynchronous circuits design based on signal transition graphs, which will be used for

SCC control design. We investigate the modern trends in AI hardware design.

Chapter 3 - Design of efficient SCCs. In this chapter, we develop methods of

asynchronous controller design for two-phase and multi-phase SCCs. We also combine

the method of parasitic charge redistribution with the method of design of self-oscillating

SCCs in order to improve the efficiency of this type of converters.

Chapter 4 - Power-elastic PWM-based perceptron. This chapter proposes a novel

approach to design a perceptron-based neural network in PWM domain. The chapter in-

cludes the theoretical background supported by the design of the perceptron prototype.

It ends up in the design of NN based on PWM perceptrons.

Chapter 5 - Simulation results. To validate the methods proposed in chapters 3 and 4

we simulate the proposed designs in CADENCE and MATLAB environment. The

simulation results are analysed and compared with state-of-the-art solutions.

Chapter 6 - Conclusions. This is a summary of the contributions as discussed in this

thesis, and future research areas for the development of power and computational parts

of IoT devices.

8

Chapter 2

Background

In this chapter, we review the current achievements in the investigated field. Section 2.1

describes the principle of operation of the capacitive power regulators. We start from the

simplest two-phase SCC that demonstrates the basic principles of energy transferring in

SCCs. After that, we move to more complex types of SCCs, such as multi-phase and

self-oscillating SCCs. In this section, we also describe the main challenges of the on-chip

SCC design. We investigate the losses associated with the shoot-through currents and

the parasitic bottom plate capacitance. We also review the state-of-the-art solutions that

handle these challenges.

In section 2.2, we review the methods of asynchronous circuits design that will be

applied to SCC control design methods.

Section 2.3 describes the modern achievements in the perceptron-based neural

network design and the challenges associated with it.

2.1 Principle of operation and challenges of SCCs

Capacitive DC-DC converters, also known as switched-capacitor converters (SCCs), are

often used in low power applications. They do not have those disadvantages that induc-

tive converters have [2]. They do not produce high Electromagnetic Interference (EMI).

Capacitive converters, in contrast to inductive ones, can be easily implemented on-

9

chip. That gives them a huge advantage in terms of size. Thus, they can be used in

small devices without increasing their dimensions. Moreover, in comparison to linear

regulators, SCCs keep higher efficiency, especially at target voltages. Considering the

advantages of SCCs, they have been chosen as the best option for power regulation of

the IoT applications.

2.1.1 Two-phase SCC

A typical SCC cell is shown in Fig. 2.1a. It consists of four switches and one capacitor.

In principle, each switch in this cell may be turned on/off independently. However,

in the so-called two-phase SCCs [2] all the switches are divided into two groups, each

of which is turned on/off in counter-phase. Depending on the control scheme, four

different SCCs can be built on a single cell: voltage follower, inverter, voltage doubler

and divider by two (the latter is shown in Fig. 2.1b). Two clocks φ1 and φ2 control the

pairs of switches S1, S3 and S2, S4 respectively. To avoid the shoot-through currents, φ1

and φ2 must have dead time, as shown in Fig. 2.2a. However, large changes in the SCC

operating conditions, e.g. temperature fluctuations or voltage drop, can lead to large

skews of the clock pulses, such that φ1 and φ2 overlap, as shown in Fig. 2.2b. On the other

hand, the switches can be more sensitive than the controller and, under some conditions,

may turn on/off slower. If the dead time has not increased, the SCC still will suffer from

shoot-through currents.

S2

+C

S1 S4

S3

(a)

Vin Co
S2

+C

S1 S4

S3

+
Ro

Vo

�ly

(b)

Figure 2.1: Typical SCC cell (a) and its use in the divider by two SCC (b).

Denoting the on-resistances of the switches by R1, ..., R4, we can represent the

overlapping case of Fig. 2.2b by the topologies shown in Fig. 2.3. When these topologies

cycle, the SCC reaches a steady state. If the load is disconnected, the steady state means

10

t1φ1

φ2

dt t2

(a)

t1

t2st

φ1

φ2

(b)

Figure 2.2: Two clocks φ1 and φ2 with dead time dt (a) and overlap st (b).

Vin C Ro
Co

+

+

Vo

C
Ro

Co ++

VoR1+R3 R2+R4

Vin
C+

R1

RoCo
+

Vo

R3

R4

R2

1 2 3

Figure 2.3: Topologies of the dividing by two SCC including the parasitic one.

that the capacitors are charged to constant voltages of VC and Vo. To find these voltages,

we apply the Kirchhoff’s Voltage Law (KVL) to each topology. This leads to the following

system of linear equations:

1

2

3

Vin − VC = Vo

Vo = VR2 + VR3

VC = Vo

(2.1)

Note that if R1 + R4 = R2 + R3, the second topology gives Vo = Vin/2, but with high

power loss. Thus, having dead time is necessary for correct SCC operation. Since real

switches cannot turn on/off immediately, the current through the flying capacitor C in

the steady state will look as shown in Fig. 2.4, where tr is the rise time, ton is the on-time

and t f is the fall time.

This current causes heating of the corresponding switches and other resistances where

it flows. The total power dissipated by all the resistive elements is called conduction

losses. These losses are modelled by an equivalent resistance, Req, as shown in Fig. 2.5a.

The target voltage VTRG is the no-load output voltage that is defined as VTRG = M ·Vin,

where M is the conversion ratio. Assuming that in Fig. 2.2a all the switches are identical,

and t1 = t2, one can use the general expression from [12] to obtain equivalent resistance

11

tr tfton

iC

t

Figure 2.4: Current through the flying capacitor C (not in scale).

+_
VTRG Co Ro+

Req Vo

(a)

+_
VTRG Co Ro

+

Req

Rbp

Vo

(b)

Figure 2.5: The equivalent circuits of a SCC representing only conduction losses (a) and both

conduction and bottom-plate capacitance losses (b).

for our case:

Req = (
R
f
)

tr + (1− e−2β)RC + t f e−2β

(tr + 2(1− e−β)RC + t f e−2β)2 (2.2)

where β = ton/(RC), and R = 2Rsw. For ultra-fast switches we can assume that

tr = t f = 0, then (2.2) is reduced to:

Req =
1

4 f C
1− e−2β

(1− e−β)2 =
1

4 f C
coth(

β

2
) (2.3)

where β = (T− 2dt)/(RC). If dead time dt = 0 then, according to [13], the asymptotic

limits of (2.3) are:

lim
β→∞

Req =
1

4 f C
; lim

β→0
Req = 2Rsw (2.4)

In simpler words, the physical meaning of (2.4) is that when the capacitor has enough

time to charge/discharge, the Req is defined by the conductance losses in the switches;

whereas, when the phases are small, the capacitor charging losses start dominating in

defining Req.

12

Although the conduction losses in case of integrated SCC constitute a significant part

of all the losses, the model of Fig. 2.5a needs refining. For example, losses caused by

recharge of bottom plate capacitances can be modelled by the parallel resistance Rbp, as

shown in Fig. 2.5b.

The detailed methods of design of two-phase SCC are described in section 3.1.

2.1.2 Multi-phase SCC

One of the biggest disadvantages of the SCCs is their efficient operation only in a certain

number of target voltages. These voltages are defined by the ratios of the SCC. The

voltages beyond the target can also be generated, but only at the expense of the efficiency

reduction. To avoid an essential efficiency reduction, the converters with a large number

of ratios are used. The state of the art solution is the multi-phase SCC with binary

resolution [14]. This type of converters can provide 2N − 1 ratios, where N is the number

of flying capacitors. Fig. 2.6 shows the schematics of a simple step-down multi-phase

converter with N = 2 flying capacitors.

Rload

Cfly1
+

Cfly2
+

Vin
S1

S3 S2S7

S8

S4

S5

S6Cout
+

Figure 2.6: Schematic of the multi-phase SCC with two flying capacitors.

The converter has 4× N switches that allow setting special topologies of the flying

capacitors to provide a certain conversion ratio. The task of controlling these switches is

not trivial and can become quite complicated with higher N.

Requirements for the switches’ controller are as follows:

13

• Oscillate among several predefined topologies for each specific ratio.

• Control the delay between phases (switching frequency).

• Provide a dead-time between phases to prevent the shoot-through currents.

• Prevent the errors during the ratio change (when the ratio is changed at the same

time with an internal signal).

To support these requirements, the method of designing the controller must be

more complicated than for the two-phase case. The method allows systematizing the

process of the design for SCC control. A simple algorithm based on this method can be

generated. The inputs to the algorithm will be the states of the switches in each topology,

and its output – a self-timed circuit of the SCC controller. A self-timed controller

simplifies the design of SCC because it does not need a clock signal, which sometimes

can be complicated to deliver and adjust. Moreover, such a controller does not consume

dynamic power in a standby mode, as there is no clock signal to oscillate. We propose

the method of generating such controllers in section 3.2.

2.1.3 Self-oscillating SCC

Self-oscillating SCCs differ from the regular ones by the fact that the power switches

are a part of the control circuit. The main advantage of the self-oscillating SCCs is their

ability to operate with relatively high switching efficiency at very low output power. This

advantage is provided by the simplification of the control circuit that helps reduce the

leakage and the dynamic power consumption of the converter [15–17]. Self-oscillating

SCCs can also be used to operate with larger loads. However, the advantage of this type

of SCC becomes less perceptible with the increase of output power.

Let us consider the self-oscillating SCC shown in Fig. 2.7. It consists of two ring

oscillators whose power supply buses are connected in series. Each pair of inverters

in the top and bottom oscillators is connected to its flying capacitor C f lyi. The function of

these capacitors is twofold: to transfer the charge, and to synchronize the top and bottom

oscillators.

The switching frequency of SCC is determined by the leakage-based delay ele-

ments [18]. A leakage-based delay element is shown in Fig. 2.8. The principle of its

14

operation is as follows: When the output of the power inverter (inv) changes from ′0′ to
′1′ or from ′1′ to ′0′, the gates of the transistors become disconnected from the voltage

sources. The voltage values in these points are slowly changing because of the leakage

in these transistors. We can control the duration of the delay by changing the resistance

of the pass transistor (Tp) using the control voltage (Vctrl), which can come from the

feedback circuit.

From the environment perspective, SCC is a three-port circuit (two input ports and

one output port). Their values are defined by the equation (2.5), where for the ideal case

Vhigh > Vmed > Vlow.

Vhigh + Vlow − 2Vmed = 0 (2.5)

If our inputs to the SCC are the voltage source (Vin) and ground (GND), the SCC

can act as a voltage divider, voltage multiplier, or negative voltage generator, depending

on which terminal is specified as an output (Fig. 2.9). Different SCC operation modes

can be utilised for achieving different conversion ratios when composing several SCC

cells [4], [15].

The detailed methods of design of self-oscillating SCC are described in section 3.3.

S2

S1

Vmed

Cfly1

S4

S3

L
e
a
k
a
g

e
-b

a
s
e
d
 d

e
la

y

S2

S1

Cfly2

S4

S3

L
e
a
k
a

g
e
-b

a
s
e

d
 d

e
la

y

S2

S1

Cfly3

S4

S3

L
e
a
k
a
g

e
-b

a
s
e
d
 d

e
la

y

S2

S1

Cfly4

S4

S3

L
e
a
k
a

g
e
-b

a
s
e

d
 d

e
la

y

S2

S1

Cfly5

S4

S3

L
e
a
k
a

g
e
-b

a
s
e

d
 d

e
la

y
Vhigh

Vlow

Stage 1

Figure 2.7: Structure of the self-oscillating SCC.

15

inv
in_t out_t

Vmed

inv
in_b out_b

CsyncCfly

Tp

Vlow

Vhigh

Vctrl

Leakage-based delay

Figure 2.8: Leakage-based delay element in self-oscillating SCC.

2.1.4 Bottom plate capacitance and parasitic charge redistribution

In an on-chip implementation, the bottom plate of each C f lyi has a parasitic capacitance

Cbpi to the substrate. This capacitance is charged by Vmed in one switching state, and

discharged to Vlow in the other, as shown in Fig. 2.10. Therefore, the charge on the bottom

plate capacitors is effectively wasted in the process of recharging.

The losses, associated with the parasitic bottom plate capacitance, bring the largest

contribution to the entire losses of any SCC implemented on-chip.

According to [19], the limitation of the maximum efficiency of the SCC can be

16

Vmed

Vhigh

Vlow

Vin

GND

Vout=Vin/2

Vout=2Vin

Vmed

Vhigh

Vlow

Vin

GND

Vmed

Vhigh

Vlow

Vin

GND

Vout=-Vin

1 2 3

Figure 2.9: Operation of the SCC cell as a voltage divider (1), voltage multiplier (2), and negative

voltage generator (3).

Cfly

Cbp

Vin

Vout

Cfly

Cbp

Vin

Vout

Phase 1 Phase 2

Figure 2.10: Charging and discharging phase of the bottom plate parasitic capacitor.

obtained using the following equation:

ηmax =
1

1 +
√

αBPKBPKc
(2.6)

where KBP and Kc are topological constants defined by converters ratio; and αBP is

relative size of the parasitic bottom plate capacitance to the size of the flying capacitor

itself.

The value of αBP is defined by the technology used, as shown in Table 2.1. The

most popular capacitor technologies in CMOS, namely metal-insulator-metal (MIM)

and metal-oxide-metal (MOM) capacitors, have the same values of αBP around 1.5%.

Another widespread technology, metal-oxide-semiconductor (MOS) capacitors, is not

recommended for designing the flying capacitors for SCCs because of the large αBP value

17

Table 2.1: Bottom plate capacitance for different capacitor technologies.

Capacitor technology Bottom plate capacitance (ffBP)

Metal-insulator-metal (MIM) 1.5%

Metal-oxide-metal (MOM) 1.5%

Metal-oxide-semiconductor (MOS) 7%

Deep trench 1.5%

Ferroelectric < 0.1%

of around 7%. The technology of deep trench capacitors looks promising for SCC design

mostly because of the possibility to implement larger capacitance values on the same area

comparing to other technologies. However, deep trench capacitors can be implemented

only using FD-SOI technology that is relatively new, and not very popular. The lowest

values of αBP can be observed in ferroelectric capacitors. This technology, however, is

considered ”exotic” and too expensive for the SCC design.

The charge loss at the bottom plate parasitic capacitance causes significant efficiency

reduction. There are certain methods of reducing charge losses, e.g. via parasitic

charge redistribution [20]. According to this method, two parallel SCCs are operating

in a counter phase. During the switching between the phases the bottom plates of

both SCCs are connected through the pass transistor (Fig. 2.11). Thereby, half of the

charge of the charged capacitor is passed to the discharged one and is not wasted to the

ground. Therefore, the losses associated with the parasitic capacitance are halved. The

application of this method is particularly described in section 3.3.

Another approach to reducing charge losses is by scalable parasitic charge redistribu-

tion [19]. Here the number of SCCs and the number of operating phases are increased

and the process of charge redistribution is conducted in several stages. This method

allows reducing the parasitic losses by several times at the expense of more complicated

control circuitry.

18

Cbp2Cbp1

S2

S1

Cfly1

S4

S3

Vin

GND

S2

S1

Cfly2

S4

S3

Vin

GND

VoutVout

SCC1 SCC2

Scr

Figure 2.11: The method of the parasitic charge redistribution, applied to the regular SCC

structure.

2.2 Principles of asynchronous circuits design

Asynchronous circuits are event-driven, i.e. they react to changes in a system at the rate

they occur [21,22]. This makes them particularly useful for on-chip power management,

where the ability to quickly respond to dynamically changing loads across the chip is

essential for reliable operation and efficiency [23].

Asynchronous design is a highly developed field with a variety of different design

methods and techniques [24, 25]. One of the most popular ways of specifying the

asynchronous control circuits is using the Signal Transition Graphs (STGs). The STGs

are compatible with multiple synthesis tools, such as PETRIFY [26], MPSAT [27],

ATACS [28]. These tools take an STG specification of a complete controller and produce

a speed-independent circuit implementation [29].

The STGs are a kind of Petri nets [30] in which transitions are labelled with the rising

and falling edges of circuit signals [31, 32]. Graphically, the places are represented as

circles, transitions as text labels, consuming and producing arcs are shown by arrows,

19

and tokens are depicted by dots. For simplicity, the places with one incoming and

one outgoing arc are often hidden, allowing arcs (with implicit places) between pairs

of transitions.

STGs can be used to model the environment that a circuit reacts to, the input signals,

the intermediate signal changes within the circuit, internal signals, and the output signals

which are the reaction of the circuit to its environment. Conventionally, input, output

and internal signals are identified by their colour – red, blue and green, respectively.

Each signal can transition either high, indicated by the ′+′ suffix, or low, indicated by

the ′−′ suffix [33].

Figure 2.12: A Signal Transition Graph describing the behaviour of inverter.

Figure 2.12 shows an example of STG describing the behaviour of a simple inverter.

The arcs between the signals represent the sequence of events that happen in the circuit.

The dynamic behaviour of STG is defined as a token game, changing marking according

to the enabling and firing rules described in [30].

The STG specifications can be verified and validated in WORKCRAFT toolsuite [34–

36]. It provides a convenient framework for capturing STG specifications, their formal

verification [37], automatically resolve Complete State Coding (CSC) conflicts [38], and

logic synthesis of speed-independent circuits [26, 39].

2.2.1 Self-timed buck controller design

In this section, we consider an example of asynchronous circuits design flow using

the STGs. This example is the design of the self-timed controller for the buck DC-DC

converter proposed in [9]. This design is used to demonstrate the successful application

of the methods of asynchronous design for power electronics. The methods presented in

this section will be applied to another type of power regulators - SCC.

The structure of the converter is shown in Fig. 2.13. The controller switches the

power regulating PMOS and NMOS transistors ON and OFF as a reaction to under-

20

control

V_nmos

V_pmos

buck

V_ref

I_0

R
_l
oa
d

PMOS

NMOS

I_max

gp_ack

oc

uv

zc

gn_ack

gp

gn

Figure 2.13: Structure of the buck converter.

voltage (UV), over-current (OC) and zero-crossing (ZC) conditions. These conditions are

detected and signalled by a set of specialised sensors implemented as comparators of the

measured current and voltage levels against some reference values (V re f , I max and I 0

respectively). The gp and gn signals are buffered to drive the very large power regulating

transistors (occupy more than 50% of the buck area) and their effect on the buck can be

significantly delayed. Therefore, the controller is explicitly notified (by the gp ack and

gn ack signals) when the power transistor threshold levels (Th pmos and Th nmos) are

crossed.

no ZC early ZC

time

late ZC

NM
OS
of
f

PM
OS
on

NMOS off

PMOS offNM
OS
on

PM
OS
offNM

OS
of
f

PM
OS
on

NM
OS
on

PM
OS
off

NM
OS
off

PM
OS
onNMOS on

PMOS off

current
I_max

UV OC UV ZC OC ZC UV OC
I_0

Figure 2.14: Scenarios of operation of the buck converter.

This specification in Fig. 2.14 shows the alternation of the UV and OC conditions

which are handled by switching the power regulating PMOS and NMOS transistors

of the buck ON and OFF. Detection of the ZC condition after UV does not change

21

this behaviour, however, if ZC is detected before UV then both the PMOS and NMOS

transistors remain OFF until the UV event.

According to the phase diagram there are three distinctive scenarios:

• no ZC – UV happens without ZC;

• late ZC – UV is followed by ZC;

• early ZC – UV happens after ZC.

Figure 2.15: STG for the first scenario with no ZC.

Initially, the NMOS transistor is ON and the PMOS transistor is OFF which should

lead to the UV condition. When UV is detected the NMOS transistor needs to be

switched OFF. When the OFF state of NMOS is confirmed the PMOS transistor can be

switched ON to charge the buck. Eventually, the buck will saturate leading to reset of UV

and OC conditions. At this stage, the PMOS transistor needs to be switched OFF. After

the OFF state of the PMOS transistor is confirmed the NMOS transistor is switched ON.

This leads to the release of OC and brings the controller to the initial state. The behaviour

of the controller for this scenario is described with an STG in Fig. 2.15.

Figure 2.16: STG for the second scenario with late ZC.

The scenario for late ZC (Fig. 2.16) is formalised in a very similar way. Both phases of

ZC just happen concurrently with switching NMOS transistor OFF and PMOS transistor

ON.

22

Figure 2.17: STG for the third scenario with early ZC.

The scenario for early arrival of ZC (Fig. 2.17) is a bit different. Here the NMOS

transistor needs to be switched OFF as soon as ZC is detected, without waiting for UV.

However, switching the PMOS transistor ON is still delayed till UV condition.

Figure 2.18: Combined STG of the buck controller.

The STG in Fig. 2.18 combines all the three scenarios mentioned above. Furthermore,

all three scenarios had the same parts in the STG. Thus, these parts were simplified to

avoid duplication.

This STG has been transformed into a circuit using the Petrify tool. The resulted

circuit is shown in Fig. 2.19. The circuit satisfies the requirements to the buck controller,

and its properties have been validated using the Workcraft environment [36].

The example of the buck controller design demonstrates the simplicity of the method

of asynchronous design. The STG description is intuitively clear, and the tools embedded

in Workcraft environment allow us not only to synthesize the circuit but also to verify

and validate it.

23

Figure 2.19: Self-timed circuit of the buck controller.

2.3 AI hardware design for energy efficiency

Advances in sensing devices are causing a shift towards the fourth industrial revolu-

tion [1]. The large volumes of the data produced by these devices are enabling a new

generation of Artificial Intelligence (AI) systems at the micro-edge that are designed

to infer important decisions in the real world [40]. A promising direction of these AI

Systems is the leap towards perpetual computability, allowing always available local AI

service. To enable this, designers of pervasive AI system are facing two grand challenges:

energy efficiency and energy autonomy [41–44].

Energy efficiency refers to economising the energy consumption of elementary

compute operations. The aim is to prolong operating lifetime with a given energy

budget, typically defined by the batteries. Reducing energy requires careful design

considerations at device-, circuit- and system levels. Examples include reducing device

geometry [45], scaling operating voltage [46] and designing circuits with reduced or

approximate logic [47].

New generations of pervasive AI-based systems require maintenance-free long-

life. As such traditional energy-efficient design principles applied in battery-operated

systems are not feasible, as they need periodic re-charging and replacements. Portable

energy harvesters, which produce electrical energy to supply to computation loads

by scavenging energy from the environment, are gradually making inroads. Such a

scheme of energy harvesting can remove the need for maintenance in favour of energy

autonomy. However, mitigating their energy variations needs computational capability

over a dynamic power envelope, otherwise known as power elasticity [48, 49].

Despite advances in low-power design methodologies, the energy footprint of

24

existing AI systems, such as NNs, has generally remained high [50]. Our persistence

in using arithmetic-heavy circuits with growing algorithmic complexities is a major

contributor to this. For instance, object detection using deep NNs may require a hundred

to over ten thousand times the energy needed by the traditional histogram of oriented

gradient techniques [51]. Due to such poor efficiency, the widespread adoption of

energy-autonomous AI hardware at the micro-edge has proven challenging [52].

To appreciate the importance of efficient AI hardware design, we show the example

of a perceptron, whose idea originates from Rosenblatt’s work of 1958 [53]. It is a basic

building block of NNs used in AI applications [54–56]. It consists of an input vector, a

set of weights and a bias to produce binary classification outcomes, as follows:

f (x) =

1, if w.x + b > 0

0, otherwise
(2.7)

where w is a vector of real-valued weights, w.x is the dot product ∑m
i=1 wixi with m

number of inputs, and b is the bias. The process of deciding the appropriate weights (w),

often also known as training, serves as the basic principle of supervised learning. When

m becomes large, it approximates the behaviour of a biological neuron.

in1

in2

inm

X

X

X

∑ Compare
+

Feedback

w1

w2

wm

reference

Figure 2.20: Structural organisation of a perceptron, which is the basic building block of NNs.

Figure 2.20 shows the typical structure of a perceptron [57, 58]. At its core is an

adder that sums m weighted inputs. The result of the addition is compared with a

reference during the training phase, during which the weights are updated to ensure

the reference is matched. For hardware implementation, multiplication and addition

25

are crucial arithmetic circuits in a perceptron [59]. Such arithmetic operations require

significant area and power costs, which depend on the number of input-weight pairs, the

precision of the multipliers/adders, their underlying technology nodes and algorithmic

complexities.

Over the years, substantial research has been dedicated to improving the energy

efficiency of AI hardware [60]. A vast body of this research has predominantly remained

within the remits of Landauer’s logic boundaries for energy or power reduction [61].

Reducing threshold voltage that defines the logic boundaries and designing new low-

complexity architectures are key to achieving this. Andri et al. [52] proposed a NN

architecture that showed how high-performance NN operations can be achieved by

parallel logic blocks. These blocks are designed using low-threshold technology nodes

that are faster and ultra-low power. Prado et al. [62] showed a logic approximation

method applied in parallel NNs. Due to low-complexity architecture the individual

components are faster and more energy-efficient. Among others, Qiqieh et al. [47]

proposed logic compression approaches for reducing power consumption, area and

critical path delay of NNs. By combining the circuit-level approaches with online

system-wide techniques, significant energy reduction was reported.

However, reducing power or energy alone using the above principles, does not solve

the problem of energy-autonomous pervasive AI systems [48]. These systems will need

to be able to not only work with limited power supplies but also survive extreme

variations as power regulation and energy storage options are limited and expensive

in low-end micro-edge devices [48, 63]. Indeed, these systems will need to be built with

natural power elasticity to operate over a large power domain [48, 63, 64].

Existing perceptron designs are predominantly digital, although a number of ana-

logue implementations have been reported [65,66]. The digital designs can operate over

a range of powers defined by paired voltages (Vdd) and frequencies (f). These designs

are however vulnerable to dynamic power supply variations, for example, conditions

where the power source voltage changes in time and continuous Vdd and f pairing can

prove expensive under limited energy budgets. As such, existing designs have poor

power elasticity that prevents them from providing useful computation under unreliable

or unstable power supply conditions.

26

In chapter 4, we propose a novel perceptron design, which is supposed to have a

higher degree of power elasticity.

27

Chapter 3

Design of efficient SCCs

In this chapter, we improve the power management part of the IoT devices by proposing

novel methods for the SCC design.

The section 3.1 describes a method for the control design for two-phase SCCs. In this

section we formally specify the intended behaviour of SCC controller using STGs and

then synthesize a speed-independent controller implementation.

In the section 3.2, we expand this method for the case of multi-phase SCC. In this case,

the controller operates differently when choosing different conversion ratios. The design

method for such a controller becomes more sophisticated.

In the section 3.3 we improve the design of self-oscillating SCC demonstrated in

section 2.1.3. Our improvement resolves the issue of bottom plate parasitic capacitance

discussed in section 2.1.4.

In section 3.4, we simulate the power regulation part designed in this chapter. The

controller and converter circuits are designed using the ams350nm technology with

nominal supply voltage 3.3V. The converter part requires large power transistors in

order to support a large load and to reduce the conduction losses. The simulations

start with a demonstration of the switch used in SCC design. After that, we simulate

the controllers for two-phase and multi-phase SCCs and show their operation together

with the converter part. The section ends with the simulation of the self-oscillating SCC,

which was compared to the state-of-the-art solution. The self-oscillating SCC is designed

28

for applications with lower power and does not require large power transistors. By this

reason. it was designed using the umc65nm technology.

3.1 Two-phase SCC control

In order to specify the behaviour of an SCC controller formally we use STGs [67]. Subse-

quently, this will enable us to synthesize its speed-independent circuit implementation

automatically using the WORKCRAFT environment [35].

The designed controller has the following interface: it provides two output signals

– ph1 and ph2 that control two pairs of switches S1, S3 and S2, S4 respectively; it

also requires two delay elements, for dead time and for the switching phase. Both

these delays are external for the controller. The dead time delay is inserted between

dt delay req/ack, and the phase delay – between ph delay req/ack.

ph1+

ph_delay_req-

ph_delay_req+ ph1-

dt_delay_req+

ph_delay_ack- ph2+ph2-

dead time for transition
from phase 2 to phase 1

dt_delay_req-

ph_delay_ack+

dt_delay_ack-

delay of phase 1

delay of phase 2

dt_delay_ack+

dead time for transition
from phase 1 to phase 2

Figure 3.1: Signal transition graph of the two-phase SCC controller.

An STG in Fig. 3.1 specifies the behavior of the two-phase SCC controller. Initially,

phase 1 is active and waits when the phase delay is elapsed. Upon receiving ph delay ack,

the output ph1 goes down (to turn S1 and S3 off) and runs the dead time delay by rising

dt delay req. As soon as dt delay ack goes up, phase 2 is activated: ph2 signal is set

high (to turn S2 and S4 on) and the phase delay is triggered. The phase 2 completes

after the phase delay finishes and the signal ph delay ack goes down. The end of the

phase 2 (triggered by the signal ph2 going low) starts the dead time delay by switching

the dt delay req to ′0′. As soon as dt delay ack goes down, we start the phase 1 (rising the

signal ph1) and return to the initial state.

The STG of Fig. 3.1 is built and translated into the asynchronous circuit using

29

WORKCRAFT toolsuite [36]. The obtained circuit is shown in Fig. 3.2 with additional

elements of reset. WORKCRAFT also allows us to verify that the circuit is speed-

independent, i.e. operates correctly regardless of the values of delays of any circuit

component. The only assumption is about two inverters with dotted lines: the delays of

their output wires must be negligible. This is usually achieved by placing the inverters

close to the main gates during the place-and-route stage.

dt_delay_ack

ph_delay_ack

ph_delay_req

dt_delay_req

ph1

ph2

nrst

Figure 3.2: Synthesized circuit of the two-phase SCC controller.

3.2 Multi-phase SCC control

Table 3.1: Specification of the topologies.

Ratio Phase S1 S2 S3 S4 S5 S6 S7 S8

1
4

1 1 0 0 0 0 1 0 1

2 0 0 1 0 1 0 0 1

3 0 0 0 1 1 0 1 0

2
4

1 1 0 1 1 0 0 0 1

2 0 0 1 1 1 0 1 0

3
4

1 0 1 0 0 1 0 1 0

2 1 0 0 1 0 0 1 0

3 1 0 1 0 0 0 0 1

30

Table 3.1 shows all the topologies for different ratios of the multi-phase SCC in Fig. 2.6.

The table, and the methods of obtaining it are described in [13]. The topologies are

alternating in 3 phases for the ratios 1/4 and 3/4, and in 2 phases for the ratio 2/4.

The value ′1′ in the table indicates that the corresponding switch is turned on, and the

value ′0′ – turned off.

The first step of the controller design is defining STG specification for each ratio,

obeying the following rules:

• In the initial state, all the switches are turned off (switch control signals are ′0′) and

all the signals between the controller and the delay elements (delay requests and

acknowledgements) are equal to ′1′.

• The switching sequence of an i delay element must be following: dir−, dia−, dir+,

dia+.

• The switching starts with resetting the first delay request (signal d1r), and ends

with setting the last delay acknowledgement (signal d3a in the example case). For

the ratios with the smaller number of phases the delays before the last are skipped.

In the example, for the ratio 1/2 the delay 1 is followed by the delay 3, and the

delay 2 is skipped.

• The switches of a certain topology must be turned on after the reset of the delay

requests and turned off after the set of the delay request.

• The switches, which remain on in several topologies in a row, do not turn off

between these topologies.

The STG for the ratio 1/4 is shown in Fig. 3.3. The arcs from delay requests to delay

acknowledgements in this STG can be removed because of the transitivity property,

however, they do not affect the STG, and are left for better visual representation. The

timing diagrams depicted in Fig. 3.4 demonstrate the causality links between the signals

in the STG.

The next step is to design an STG of the part of the controller that chooses the ratio and

communicates with an environment. This STG for the example SCC is shown in Fig. 3.5.

The initial state is marked by places with tokens. The first transition is sending the ratio

31

Figure 3.3: Formal STG specification for 1/4 ratio control.

Figure 3.4: Informal timing diagram for 1/4 ratio switching.

request (switching the signal ratio r to ′1′). After that, the environment is allowed to send

the ratio to the controller. When the ratio arrives, the controller starts the first phase of a

chosen ratio by resetting the first delay request, as it was described above. At the same

time, it allows resetting the ratio signal from the environment. When the acknowledge

signal of the last phase arrives, the system turns all the switches off and sends the new

ratio request.

The STG contains the arcs that lead to the input signals. The controller cannot delay

or prevent its inputs because they are produced by the external environment. However,

we can assume the following behaviour of the environment:

• The environment sends only one ratio signal, and only when it is requested. This

ratio signal resets right after the request is reset.

• The ratio signal resets before the delay acknowledgment arrives. This assumption

32

ratio_14+

ratio_14-

ratio_24+

ratio_24-

ratio_34+

ratio_34-

start_ratio_14

finish_ratio_34

finish_ratio_24

finish_ratio_14

start_ratio_34

start_ratio_24

Figure 3.5: STG specification of multi-phase SCC controller.

means that delay provided by the delay element takes more time than the com-

munication between the controller and the environment. This assumption is not

necessary, however, the circuit can become more complicated without it.

• The delay acknowledgement signals arrive later than the switch control signals

change their value.

The delay element provides two delays: the phase delay for the transition from ′1′

to ′0′, and the dead time delay for the transition from ′0′ to ′1′. One of the possible

implementations of such delay could be connecting the outputs of both delay elements

to an OR gate. Because the phase delay is always greater than the dead time delay, the

duration of transition from ′1′ to ′0′ would be equal to the phase delay, and from ′0′ to ′1′

- to the dead time delay.

Since the dead time delay is short, it can be implemented as a chain of inverters.

In step-down SCCs, where the power stage is built using transmission gates, Vdd of

the controller can be used as a bias for the substrates of power p-MOS transistors. In

this case, change in Vdd will cause a change in the delay of switches and in the delay

of inverters. These changes will occur in the same direction that should contribute to

avoiding the shoot-through currents. The phase delay is much longer than the dead

time delay and requires more sophisticated solutions, e.g. using a leakage-based delay

element [15]. Other techniques to realize long delays can be found in [68, 69]. However,

this element must specify the following requirement: its delay of ′1′ must be not larger

than the delay of ′0′. Otherwise, it may not set to ′1′, when the new ′0′ arrives.

33

3.3 Self-oscillating SCCs with parasitic charge redistribution

Following the idea of the parasitic charge redistribution proposed in [20], one could

design two self-oscillating SCCs that share their parasitic charge. However, such design

would require a complicated control, that compromises our goal of designing low

complexity self-oscillating SCC.

In our approach, instead, we add an extra capacitor Cstore, which stores the parasitic

charge. The bottom plates of each C f lyi is connected to this Cstore through its switch SWch.

When a stage is changing its phase, the corresponding SWch is conducting. Thereby,

when C f lyi is switching from the charging phase to the discharging phase, a part of the

parasitic charge goes to the store capacitor and thus is not wasted. Similarly, when C f lyi

switches back to the charging phase, the Cbpi is first partially charged from Cstore, and

therefore requires less energy for being fully charged.

The structure of the designed converter is shown in Fig. 3.6. In contrast to the regular

self-oscillating SCC, the inverters are replaced by pmos and nmos separately controlled

by the logic blocks since in the process of charge redistribution both of the transistors

must be turned off. The operation of the logic blocks is described by the following steps:

S2

S1

Vmed

Cfly1

S4

S3

L
e
a
k
a
g

e
-b

a
s
e
d
 d

e
la

y

S2

S1

Cfly2

S4

S3

L
e
a
k
a
g

e
-b

a
s
e
d
 d

e
la

y

S2

S1

Cfly3

S4

S3

L
e
a
k
a
g

e
-b

a
s
e
d
 d

e
la

y

S2

S1

Cfly4

S4

S3

L
e
a
k
a
g

e
-b

a
s
e
d
 d

e
la

y

S2

S1

Cfly5

S4

S3

L
e
a
k
a
g

e
-b

a
s
e
d
 d

e
la

y

Vhigh

Vlow

Stage 1

L
o
g
ic

L
o
g
ic

L
o
g
ic

L
o
g
ic

L
o
g
ic

L
o
g
ic

L
o
g
ic

L
o
g
ic

L
o
g
ic

L
o
g
ic

CstoreSWch SWch SWch SWch SWch

Figure 3.6: Structure of the self-oscillating SCC with charge redistribution.

The operation of the logic block can be described by the following steps:

• Both top (Logic t) and bottom (Logic b) logic blocks have the same structure. The

34

difference is that they have different voltage levels, and the bottom block of the i

stage controls the Sci.

• Initially the output of the leakage-based delay element (input of the logic block) is
′0′. The outputs of the logic block that control the transistors are also ′0′. It means

that the pmos of the inverter is on and the nmos and SWch are off, and C f lyi is in a

charging phase.

• When the input of the logic block changes to ′1′, the pmos output also changes to ′1′.

The pmos now switches off, and the output of the inverter is ′Z′. At this moment

SWch is turned on and Cbpi discharges to Cstore.

• After the Cbpi finishes discharging, the SWch is turned off, and the nmos output is

switched to ′1′. The capacitor switches to the discharging phase.

• After the signal propagates through all the inverters of the chain, the input of the

logic block changes back to ′0′. When it happens, the nmos output switches to ′0′,

and the inverter switches to the ′Z′ state again. At this state the SWch is turned on,

and the parasitic capacitor charges from the store.

• After the Cbpi finishes charging, the SWch is turned off, and the pmos output is

switched to ′0′. The flying capacitor switches to the charging phase.

The logic blocks are implemented as shown in Fig. 3.7. The power losses associated

with this circuit are much lower than the power saved by the charge redistribution

process. The delay element must be specified according to the size of the bottom plate

capacitor, and the resistance of the switch SWch. This delay must be as low as possible

because, during this delay, the capacitor is not operating which causes additional losses.

On the other hand, this delay should be large enough to allow each Cbp to finish its

charge/discharge process. Normally, this delay is in the range of 5− 10ns.

The inverters at the outputs of the logic block are used as drivers for the power

transistors. Their strength should be chosen accordingly to the size of the transistors

they drive.

Although the method in [20] uses a simple nmos as a charge recycling switch, in this

design it should be implemented as a transmission gate to allow the switch having low

35

Logic_t Logic_b

Figure 3.7: Implementation of the top and bottom logic blocks.

resistance in both directions. When we start transmitting the charge from Cbp to Cstore,

the Vgs of the nmos equals to 0, and it has very high resistance.

3.4 SCC simulation

3.4.1 Switch design and simulation

Since the currents through the switches in the SCC do not change direction, we can use

unidirectional switches such as diodes and transistors. However, in general case, the so-

called four-quadrant switches are used. This is bidirectional switches that can be realized

in step-down SCCs as transmission gates. The resistance of transmission gate can be

made very small, while to realize large capacitance on-chip we need large area or/and

non-standard technology process. Thus, to have low Req the SCC should operate with

high switching frequency.

Cgsp

CgsnCgdn

Cgdp

Cdsn Cdsp

inv1

inv2

Figure 3.8: Circuit used as a bidirectional switch.

However, here we face the problem of parasitic capacitances of the MOS transistors,

known as the charge injection (clock feedthrough) effect. It is expressed in that the

current through the transistor in the moments of turning on/off has spikes. Parasitic

36

bottom-plate capacitances of the flying capacitors will increase these spikes even more.

The transmission gate should have constant resistance in a wide range of the input

voltages. For this, the PMOS transistor is made wider than the NMOS transistor. Since

the mobility of electrons is approximately 3 times greater than that of holes, minimal

width ratio is 3. There are several methods to reduce the charge injection [70, 71].

However, these methods over-complicates the transmission gate circuit, providing a not

very high advantage in avoiding the charge injection. We use the method, where PMOS

transistor is turned on/off first by a power inverter [72]. The corresponding circuit of

the bidirectional switch is shown in Fig. 3.8. The width of the transistors in this circuit,

including the inverters, is given in table 3.2.

Table 3.2: Width of the transistors relatively to the power NMOS.

Element
Transistor width

NMOS PMOS

inv1 0.1 · nWidth 0.3 · nWidth

inv2 0.04 · nWidth 0.12 · nWidth

switch nWidth 3 · nWidth

Such transistor size has been chosen to support the fast switching time. In the case

of the small power switches, the transistors can be smaller than the technology limits.

In this case, the smallest technology transistors should be used. In the case of the large

power switch, the inverter inv1 may require an extra buffer to drive. The transistors of

this buffer should be also 8-10 times smaller.

+_Vin
sw

+_Vo clk

Ish-t
sw

clk

(a)

+_Vin
Vo

sw
+_+_VTRG clk

Isw

(b)

Figure 3.9: Examination circuit for the switch to measure the switching losses (a) and the Ron (b).

The parameters of the switch are examined in the two circuits presented in Fig. 3.9.

37

The circuit in Fig. 3.9a measures the losses caused by the shoot-through currents. Two

switches are connected serially between Vo = Vin/2 and ground. The switches are

operating in a counter-phase. The energy losses in these switches are representing the

losses of the switches S2 and S3 of the two-phase SCC in Fig. 2.1. The losses for the

different values of nWidth are demonstrated in Fig. 3.10.

nWidth, (um)
0 50 100 150

Po
w
er
lo
ss
es
p
er
sw
it
ch
,
(p
J)

0

2

4

6

8

10

12

14

16

18

1.8V
2.5V
3.3V
5V

Figure 3.10: Energy losses per one switch caused by the shoot-through currents.

The circuit in Fig. 3.9b measures the ON-resistance Ron of the switch. Fig. 3.11

shows the currents through the transistors and the total current, Isw, for the switch

with nWidth = 150µm, and the following parameters: Vin = Vdd = 3.3V, VTRG =

Vin/2 = 1.65V, and Vo = 1.6V. For the level of Isw = 2.7mA the switch resistance

Rsw = ((VTRG −Vo))/Isw = 18Ω.

3.4.2 Two-phase SCC simulation

Based on Fig. 3.11, we set the dead time dt = 0.5ns. The output dt delay req of the

controller is connected to dt delay ack, such that the dead time is provided only by delays

of the corresponding logic gates. Fig. 3.12 shows the output pulses of the controller ph1

and ph2. To realize the phase delay, we used the element ”delay” of the simulator.

Since the obtained Rsw = 18Ω is low, the SCC can provide a relatively high output

current. This means that its efficiency will be high even with heavy enough load. If the

38

0 8 1 60 2 4 3 2 4 0

t, ns

2.4

0.8

1.6

3.2

-0.8

mA

0

Isw

Figure 3.11: Current through the switch transistors for fclk=200MHz. Solid line: NMOS, dashed

line: PMOS, dotted line: total current.

3

1

2

4

10 20
0

30 40 50

t, ns

V

600

Figure 3.12: Output pulses of the SCC controller for f=20MHz and dt=0.5ns. Solid line: ph1,

dashed line: ph2.

losses due to parasitic capacitances are small, the efficiency can found as:

η =
Vo

VTRG
=

RL
RL + Req

(3.1)

The best efficiency is obtained in the case when β in 2.3 tends to 0. This means that

the current through the flying capacitor C is a rectangle. Such a form of the current is

impossible in practice due to parasitic elements. For optimal f = 20MHz the current

through the capacitor C = 1.5nF is shown in Fig. 3.13.

Since the switches S1 and S2 are connected to Vin and gnd and have not been

optimized to work at these conditions, they demonstrate the highest spikes as shown

in Fig. 3.14. The input and output currents also have spikes and are shown in Fig. 3.15.

The equation 3.1 represents the efficiency only in the case of the small parasitic

capacitances. In reality, the efficiency of the on-chip devices is significantly affected

by these parasitics. For this paper, we use the metal-insulator-metal (MIM) capacitors

that have the bottom plate capacitance αbp = 1.5% and the top plate capacitance

39

0.9

-0.9

0

1.8

-1.8
12 240 36 48 60

t, ns

mA IC

Figure 3.13: Steady-state current through C for f=20MHz and dt=0.5ns.

0

-3

-6

3

-9

mA

t, ns

I

0 0 6 1 2 1 8 2 4

Figure 3.14: Worst case of the current spikes during the transitions. Solid line: S1, dashed line: S2.

αtp = 1.5% [19,73]. During every switching phase, these parasitic capacitors are charged

and discharged with δV = Vin/2. Thus, the losses associated with them increase with

the higher switching frequencies. Although, the losses, associated with the resistance of

the switches and the flying capacitor, are resulting in the output voltage drop; the losses,

caused by the parasitic capacitances, increase the input current. To estimate the SCC

efficiency we divide the output power by the input. It results in the following equation:

η =
V2

o
RL ·Vin · Iin

(3.2)

The converters with the large switches and capacitors have smaller Req and are able to

support the larger loads. At the same time, they will have larger parasitic capacitances,

that will lead to the extra unnecessary losses when operating with smaller loads. To

demonstrate this, the following SCCs have been simulated:

• Large SCC with C f ly = 1.5nF and switch nWidth = 150µm

• Medium SCC with C f ly = 300pF and switch nWidth = 20µm

40

1.4

0

0.7

2.1

-0.7
8 160 24 32 40

t, ns

mA I

Figure 3.15: Steady-state currents of the SCC for f=20MHz and dt=0.5ns. Solid line: input current,

dashed line: output current.

• Small SCC with C f ly = 60pF and switch nWidth = 1.2µm

The examination circuit (Fig. 3.9b) was used to measure the Ron. For the large switch

it is 18Ω, for the medium - 136Ω, for the small - 2371Ω. Each SCC was supporting three

loads: large RL = 1KΩ, medium RL = 20KΩ, and small RL = 400KΩ. The resulting

efficiency of the converters for Vin = 3.3V is shown in Fig. 3.16

Frequency, (MHz)
0.1 1 10 100

E
ff
ic
ie
n
cy
,
(%
)

0

10

20

30

40

50

60

70

80

90

100

large load
medium load
small load

(a)

Frequency, (MHz)
0.1 1 10 100

E
ff
ic
ie
n
cy
,
(%
)

0

10

20

30

40

50

60

70

80

90

100

large load
medium load
small load

(b)

Frequency, (MHz)
0.1 1 10 100

E
ff
ic
ie
n
cy
,
(%
)

0

10

20

30

40

50

60

70

80

90

100
large load
medium load
small load

(c)

Figure 3.16: Efficiency of small (a), medium (b), and large (c) two-phase SCC with different loads.

The plots show that every SCC has its peak efficiency, which depends on the following

parameters: switching frequency, SCC size, and load size. The small SCC shows

better efficiency with the small load, however, with the large load, its efficiency drops

significantly.

Another interesting observation is that the larger SCC requires lower switching

frequency to perform with the same efficiency.

41

3.4.3 Multi-phase SCC simulation

To demonstrate the operation of the multi-phase SCC, it has been set in series to the ratios

1/4, 2/4, 3/4 and 1/4. The expected values of Vout are 0.825V, 1.65V, 2.475V and 0.825V

respectively.

The results of the simulation are shown in Fig. 3.17. When the requested ratio was

set to 1/4, the output voltage became 0.82V. Then, after changing the ratio to 2/4, the

voltage changed to 1.64V. When the ratio was set to 3/4, the voltage became 2.46V.

Afterwards, when the ratio was set back to 1/4, the voltage returned to 0.82V. A high

degree of inertia of the output voltage is due to the relatively high output capacitance

and large load resistance.

Vout

0.0

0.82

1.65

2.47

S1
0.0

3.3

S2
0.0

3.3

S3
0.0

3.3

S4
0.0

3.3

S5
0.0

3.3

S6
0.0

3.3

S7
0.0

3.3

S8
0.0

3.3

r_req
0.0

3.3

r_14
0.0

3.3

r_24
0.0

3.3

r_34
0.0

3.3

ratio 1/4 ratio 2/4 ratio 3/4 ratio 1/4 stand-by

0 25 50 75 100 125 150
Time (us)

Voltage(V)

Figure 3.17: Inputs/outputs of the multi-phase SCC controller.

The signal ratio req was periodically sent to the mode control block, but most of the

time it was ′0′. At the end of the simulation, when there were no ratio signals, it has

remained in ′1′, waiting for the next ratio signal arrives.

The control signals to the switches (S1− S8) were sent according to the specification

of the topologies from Table 3.1. The phase period was 1µs as it was set to the phase

delay element. The dead time was around 1.5ns - the delay of the logic gates has been

42

added to the delay.

Fig. 3.18 shows the efficiency of a large SCC (nWidth = 150µm, C f ly1 = 1nF, C f ly2 =

0.5nF) with a large load (RL = 1KΩ), operating with different ratios. The efficiency

of the ratio 2/4 is higher than other ratios. However, this efficiency is lower than one,

achieved using the two-phase converter. Fig. 3.19 shows the power of the controllers in

different operation modes. Although, for all the ratios the power consumption grows

linearly with frequency increase, in a stand-by mode the controller does not consume

any dynamic power.

Frequency, (MHz)
0.1 1 10 100

E
ff
ic
ie
n
cy
,
(%
)

0

10

20

30

40

50

60

70

80

90

100

ratio 1/4
ratio 2/4
ratio 3/4

Figure 3.18: Efficiency of the large multi-phase SCC with the large load for different ratios.

Switching frequency, (MHz)
0 5 10 15 20 25 30 35

Po
w
er
co
n
su
m
p
ti
on
,
(u
W
)

0

20

40

60

80

100

120

140

160

180

200

two-phase
ratio 1/4
ratio 2/4
ratio 3/4
stand-by

Figure 3.19: Power consumption of the generated SCC controllers.

43

3.4.4 Simulations of the self-oscillating SCC

The designed circuit of the self-oscillating SCC has been simulated with the following

parameters of the simulation:

• Type of the SCC - step-down with the ratio 1/2.

• Number of stages - 5.

• Technology - umc65nm.

• Input voltage - Vin = 2.5V.

• Flying capacitor - C f lyi = 50pF.

• Width of pmos - Pwidth = 10µm.

• Width of nmos - Nwidth = 5µm.

• Load resistance - Rload = 5KΩ.

For the flying capacitors, we used MIM capacitors, which have λbp = 1.5%. That

means that the parasitic capacitors have the capacitance equal to 1.5% of the flying

capacitors. In this case Cbp = 0.75pF.

-0.1

1.4

-0.1

1.4

-0.1

1.1

-0.1

0.6

1.3
-500

0.0

500

Vstore(V)

Cfly-(V)

ISW(uA)

nmos(V)

t

pmos(V)

SWch(V)

Figure 3.20: Charge redistribution simulation results.

The results of the simulation in fig. 3.20 show the process of the parasitic charge

redistribution, and all the signals associated with it. The figure shows the signals of

44

the lower part of one stage of the SCC. The flying capacitor of this stage is switching

from the charging state to the discharging (the input of the inverter changes from ′0′ to
′1′). The pmos switches to ′1′ first, and the nmos - only after a certain delay. During this

delay, the inverter is in a third state, and the charge redistribution switch (SWch) turns on.

The current through this switch (Isw) discharges the bottom plate of the flying capacitor

(C f ly−) to the store capacitor. When the delay finishes, the voltages of these capacitors

are almost equal.

After some time the flying capacitor is switching back to the charging state (the input

of the inverter changes from ′1′ to ′0′). The switching process occurs in the opposite way:

the nmos switches to ′0′ first, and the bottom plate of the flying capacitor is charging from

the store.

The average voltage of the Cstore is around 550mV. It is a bit lower than Vout/2,

because of the losses associated with the charge transfer.

In Fig. 3.21 we compare the efficiency of the designed SCC (Fig. ??) with the initial self-

oscillating SCC (Fig. 2.7). The peak efficiency of the SCC with the charge redistribution

is higher by 1.5 − 2%, and the efficiency gain is higher with the higher frequencies.

However, this converter requires extra space for the store capacitor, which size is equal

to C f ly. In another simulation, we used the smaller Cstore that equals to 0.1C f ly, and its

efficiency was almost the same as the model with the large Cstore.

Frequency, (MHz)
1 2 3 4 5 6 7 8

E
ff
ic
ie
n
cy
,
(d
)

83

84

85

86

87

88

89

90

large cap
small cap
no chred

Figure 3.21: Efficiency vs frequency with C f ly = 50pF for the SCC without charge redistribution

and with it, with the large and the small store capacitor.

45

However, the advantage of this method is lower with the lower size of C f ly. Fig. 3.22

shows the efficiency of the converter with smaller flying capacitors: C f ly = 20pF. The

difference in the peak efficiencies is smaller here (around 1%).

Frequency, (MHz)
2 4 6 8 10 12 14

E
ff
ic
ie
n
cy
,
(%
)

80

81

82

83

84

85

86

87

88

with chred
w/o chred

Figure 3.22: Efficiency vs frequency with C f ly = 20pF for the SCC with and without charge

redistribution.

It may happen that, if we use too small flying capacitors, the method can give even

worse efficiency, because the losses, associated with the additional logic gates can be

larger than the energy we save by the charge redistribution.

3.5 Summary

In this chapter, we look at the shoot-through currents in SCCs through the prism of

hazards in digital circuits. Namely, we define a sequence of safe transitions in accordance

with the theory of asynchronous circuits. Common properties of asynchronous circuits

allow us to state that the asynchronous control of SCCs will have advantages over the

synchronous ones when the operating conditions are intermittent.

We believe that the steps described in Sections 3.1 and 3.2 can be automated. Ideally,

the user would only input the required ratios and SCC topologies, and the tool would

automatically produce a completed implementation of the corresponding controller.

While the multi-phase SCC controller is quite large, its size can be reduced. One

of the possible ways of doing this is by using the David cells [74] in the controller

46

part that interfaces the delay elements. The circuit, which is based on the David cells

connected into a ring with delays, can generate the phase and dead time delays for the

controller. In this case, the controller would not bother of handling the delay request and

acknowledgement signals, and its circuit can be significantly simplified.

Another optimization is to simplify the operation of the signal ratio req in such a way

that it does not interrupt the generation of the switch control signals. These optimization

possibilities are a subject for future research.

The dead time delay is usually rather small: it is comparable to the delay of a logic

gate and is three orders of magnitude smaller than a phase delay. Therefore inaccuracy in

this delay caused by the process variation would not have a critical effect on the efficiency

of the entire system.

The problem of the method of parasitic charge redistribution (proposed in section 3.3)

is that it works only when the parasitic capacitance of the added logic gates is, at least,

twice smaller than the bottom plate parasitic capacitance. Therefore the method will

have less advantage in the large scale technologies with larger logic gates.

In order to further optimize the method of parasitic charge redistribution, the delays

should be calculated more accurately. From the one hand, we should have as a small

delay as possible, because during the delay the flying capacitor is not operating, that

adds some extra losses to the SCC. From the other hand, this delay should be large

enough to give the parasitic capacitor enough time to charge or discharge, otherwise,

the method becomes meaningless. The charge can be transferred faster if we use larger

charge redistribution switches (SWch). However, larger switches consume more dynamic

power. The optimal values of the switch size and the delay can be calculated using the

initial parameters of the SCC.

The simulations of the self-timed SCC controller demonstrated in sections 3.4.2 and 3.4.3

validate the correctness of the controller’s operation. The power consumption of the

controllers may vary depending on the chosen topology. The two-phase SCC controller

consumes less power compared to the multi-phase one with the ratio 1/2. Although,

they both perform the same operation (divide the input voltage by two), the two-phase

SCC is more efficient. But the multi-phase SCC is able to provide multiple conversion

ratios, whereas the two-phase SCC operates only with a single ratio.

47

The method designed in section 3.3 applies the parasitic charge redistribution to the

self-oscillating SCC. The simulations in section 3.4.4 show that the proposed method

improves the efficiency of the SCC by 1− 2%. Although it is quite a small number, it can

be significantly higher in the SCC systems that consist of several SCC units like in [15].

48

Chapter 4

Power-elastic PWM-based perceptron

In this chapter, we improve the computational part of the AI-related IoT devices. This

improvement aims to increase the robustness of the device to supply voltage variations.

The chapter focuses on the design of the PWM-based perceptron, including the

fundamental theories, the circuits of its constituent parts, methods of PWM-based

arithmetic, leading to the construction of NNs. The design methods form the basis of

extensive analysis supporting the validation of the perceptrons integrated into a NN.

A perceptron capable of voltage and frequency elasticity may be constructed by

exploiting the fact that relative temporal properties, such as duty cycle, are resilient

to voltage and frequency variations. As the supply voltage reduces, any oscillatory

activity, such as a clock signal, may show the reduced amplitude and reduced frequency.

However, the ratio between the time within a period when the clock signal is high and

the time within a period when the clock signal is low stays the same as both would

increase at the same rate.

Our method, therefore, is dedicated to finding ways of exploiting this fact by

transferring computation from the digital domain, which is affected by voltage and

frequency variations, to the relative temporal domain, which is not. This means making

use of PWM-based techniques.

Section 4.1 describes the main idea of PWM to voltage conversion. Based on this

idea, we develop the PWM arithmetic described in section 4.2. We use this theoretical

49

background to design a PWM arithmetic circuit (voltage accumulator). In section 4.3

we propose our approach to design the second part of the perceptron, which converts

the data from voltage to PWM domain. Section 4.4 combines the designed circuits

into complete perceptron design. In section 4.5 we validate our approach by designing

a neural network based on the PWM perceptrons and discussing the main issues

associated with it.

4.1 Principles of duty cycle to voltage conversion

Figure 4.1 shows an inverter-based PWM to voltage converter, which produces an output

voltage whose value represents the value carried by the input PWM signal, i.e. its duty

cycle. Here we exploit the principle that if the input of an inverter is a periodic signal,

such as a clock, the average voltage on its output is inversely proportional to the duty

cycle of the input signal. In other words, the analogue average value of the inverter’s

output voltage encodes the value of the duty cycle of the input signal. Since an inverter

is a digital component, whose output equals to logic ′0′ or ′1′ at any moment in time, it

needs to be ”analogised” (i.e. transcoded) to convert the input duty cycle into the output

voltage that is a corresponding proportion of the supply voltage. This may be achieved

in the following ways:

• increasing the input switching frequency,

• increasing the output capacitance,

• limiting the output current.

For the inverter-based PWM to voltage converter shown in Figure 4.1, with the input

clock duty cycle at 50%, the average output voltage is around Vdd/2 (Figure 4.2). This

is due to the fact that during the interval of time when the input is low the output

capacitance is charged with current from the power source via the PMOS transistor, and

during the interval of input being high, the capacitance is discharged via the NMOS

transistor. With a 50% duty cycle these two periods of time are the same length and,

assuming the transistors are balanced, their voltages average out to half the supply

50

voltage. When the duty cycle deviates from 50% the average value of the output voltage

deviates from Vdd/2 proportionally in the same direction.

Cout

in out
Rout

Figure 4.1: A CMOS-based inverter circuit.

0.0

0.9

1.6

V(in)

V(out)

2.5

Time

Figure 4.2: Inverter output with PWM-

coded input.

If the frequency is high enough that the output capacitor is never fully charged

or discharged, the inverter may be equivalently represented as a resistive voltage

divider (see Figure 4.3). The output voltage of such a divider can be calculated using

the following equation.

Vout = (Vdd − GND) · R∗n + R∗out
(R∗n + R∗out) + (R∗p + R∗out)

. (4.1)

where Rn and Rp are parasitic resistances of NMOS and PMOS transistors. During the

charging phase (tlow) the input of the inverter is low and current passes through the

PMOS and the output resistor. During the discharging phase (thigh), the input of the

inverter is high and current goes through the output resistor and NMOS. As a result, the

resistance values can be calculated from the lengths of time of each phase:

R∗n + R∗out = (Rn + Rout) ·
tlow + thigh

thigh
; (4.2)

R∗p + R∗out = (Rp + Rout) ·
tlow + thigh

tlow
. (4.3)

Assuming that Rn ≈ Rp (this transistor balancing can be achieved by the appropriate

relative sizing of the PMOS and NMOS transistors, for instance, by setting the PMOS

51

width to 2.7 times the NMOS width for the UMC65nm technology) and GND = 0, the

equation 4.1 is simplified to:

Vout = Vdd ·
tlow

tlow + thigh
= Vdd · (1− DC), (4.4)

where DC is the input duty cycle - the ratio between the length of time when the input

clock is high during a clock period and the length of the clock period.

out

Rout*

Rout*

Rp*

Rn*

Figure 4.3: PWM inverter equivalent circuit,

approximated as a voltage divider.

Figure 4.4: Output voltage of the PWM

inverter vs input duty cycle.

Figure 4.4 shows the relationship between the input duty cycle and the output voltage

of the PWM inverter. In the case when there is no output resistor, the dependency of the

output voltage on the input is not linear. The reason for this non-linearity is that the

PMOS and NMOS resistances change with the change of their drain voltages. Thus,

Rp 6= Rn when the value of Vout is different from Vdd/2. This non-linearity, given the

arithmetic functional requirements of a perceptron, is undesirable and needs to be either

removed or compensated for. Compensation means very high per-inverter overheads

which need to be precise in the analogue domain. However, by adding an output resistor

Rout � (Rp, Rn), the difference between PMOS and NMOS resistances no longer affects

the output, and the input duty cycle to output voltage relationship becomes completely

linear. This requires no high-precision tuning in the analogue domain.

52

4.2 PWM arithmetic

A perceptron needs to perform arithmetic operations. Converting from PWM to voltage

is not the only function of the PWM inverters. They can also be used to construct

arithmetic units, such as adders and weighted accumulators. Below we discuss these

two operations and their circuits relevant to NNs.

The circuit of a PWM adder is shown in Figure 4.5. To add n PWM-coded numbers

we use n inverters connected in parallel. Each inverter has an output resistor. The result

is stored in the output capacitor in the form of its average voltage.

in1 in2

out

Cout

inn

Figure 4.5: PWM adder circuit performed by parallel inverters, with outputs connected via a

capacitor.

This kind of adder works on the principle of current summation and charge (i.e.

voltage) accumulation. In other words, the values encoded in the input PWM signals

are accumulated in the voltage on the output capacitor, and such circuits can be called

voltage accumulators (VACs). To calculate the VAC output voltage, we use the principle

of current summation and rewrite 4.1 using conductances instead of resistances. The

following equation is for a single PWM inverter:

Vout = Vdd ·
G∗p

G∗p + G∗n
, (4.5)

where G∗p = 1
R∗p+R∗out

and G∗n = 1
R∗n+R∗out

.

53

Likewise, equation 4.4 can be expressed as follows:

G∗p = G · tlow
tlow + thigh

= G · (1− DC), (4.6)

G∗n = G ·
thigh

tlow + thigh
= G · DC, (4.7)

where G = 1
Rp+Rout

= 1
Rout+Rn

.

Since the inverters in Figure 4.5 are connected in parallel, the output voltage of a

multi-inverter VAC can be given by:

Vout = Vdd ·
∑n

i=1 G∗pi

∑n
i=1(G

∗
pi + G∗ni)

. (4.8)

Using equations 4.6 and 4.7, equation 4.8 can be simplified as:

Vout = Vdd · (1−
∑n

i=1 DCi

n
). (4.9)

In simple terms, the output voltage of a multi-inverter VAC is inversely proportional

to the average value of the duty cycles of its inputs, which is exactly what is required.

in

out
Rout

enable

Figure 4.6: A single cell of the PWM weighted adder, based on a NAND gate.

In order to design a perceptron, the ability to integrate weighted additions is another

crucial design requirement. The VACs must be capable of programming the input

weights when required. This is performed by replacing the inverters by two-input

54

NAND gates (Figure 4.6). One input of this gate is the PWM-coded signal, and the other

is a digital switch signal for enabling or disabling this cell. The output of a disabled cell

is always connected to Vdd having the same effect as an enabled cell with zero input duty

cycle. In this way, the perceptron can be programmed to determine which NAND gates

participate in the accumulation. This programming may be carried out in the digital

domain without affecting the voltage and frequency elasticity of the computation.

Figure 4.7 shows a perceptron arithmetic VAC architecture for 3 × 3 weighted

addition based on these types of gates. As can be seen, the circuit adds 3 PWM-coded

inputs multiplied by 3-bit weights. Every weight bit is implemented on a separate

cell. The least significant bit goes to the cells with the smallest transistor sizes and the

largest output resistors (cells ’×1’). The second bit is computed at the cells with doubled

transistor widths and halved output resistances (cells ’×2’). And the most significant bit

is coded with 4 times the transistor widths, and 1/4 times the output resistances (cells

’×4’).

w11

out

Cout

w21

w31

w12

w22

w32

w13

w23

w33

in1

in2

in3

X1

X1

X1

X2

X2

X2

X4

X4

X4

Figure 4.7: PWM weighted addition VAC with 3 inputs and 3-bit weights.

The output voltage of the 3× 3 weighted addition VAC can be calculated using 4.9,

considering the ×2 and ×4 cells as 2 and 4 single cells respectively.

Vout = Vdd · (1−
∑n

i=1 DCi ·Wi

n · (2k − 1)
). (4.10)

where n is the number of inputs, k is the number of bits of the weight, DCi is the duty

cycle of the input i, and Wi is the weight of the input i.

55

In the case of the 3× 3 weighted addition VAC, where n = 3 and k = 3, the output

voltage is:

Vout = Vdd · (1−
∑3

i=1 DCi ·Wi

21
). (4.11)

The arithmetic part of this equation is the weighted sum of duty cycles DCsum:

DCsum =
∑3

i=1 DCi ·Wi

21
. (4.12)

Thus, the definition of the 3× 3 weighted addition VAC is that its output voltage is

proportional to the weighted sum of its input duty cycles, which is exactly as required:

Vout = Vdd · (1− DCsum). (4.13)

4.3 Voltage to PWM conversion

In order to design a VAC based perceptron, we need to provide an output interface for

it. The output of the perceptron must be used as an input for the perceptrons of any

subsequent layer in an NN. Therefore the output voltage of the PWM arithmetic unit (its

VAC) should be converted back to the PWM format.

The schematics of the voltage to PWM converter is shown in Figure 4.8. The converter

circuit was proposed originally by [75]. The converter is a ring oscillator with different

power supplies: the odd-numbered inverters are supplied with a voltage of Vdd/2, and

the even-numbered inverters are supplied with the input voltage, which is the output

voltage of the VAC. The difference between the supply voltages of the odd- and even-

numbered inverters determines the output duty cycle. If the input voltage equals Vdd/2,

the inverters have an equal delay and the output duty cycle is 50%. If the input voltage

increases, the period of switching from 0 to 1 increases, and the output duty cycle goes

down. If the input voltage is lower than Vdd/2, the switching from 1 to 0 takes more

time, and the output duty cycle goes up.

Given that the VAC theoretically achieves a linear relationship between its input duty

cycle and its output analogue average voltage, the voltage to PWM converter should

also ideally achieve a linear conversion relationship. In that case, the overall relationship

56

Cout

Vdd/2

out

in

Figure 4.8: The ring oscillator based voltage to PWM converter.

between the input duty cycle signal and the output duty cycle signal would also be linear,

for the simple case where the perceptron is programmed to do no arithmetic processing.

In theory, the inverter chain-based voltage to PWM converter should be able to achieve

this if the inverters are set to work in the linear regions of their transistors.

4.4 PWM-coded perceptron design

The PWM-based perceptron consists of two main parts. The first part is the PWM

arithmetic unit in the form of a VAC. This converts the PWM-coded inputs to a voltage

which encodes the result of the computation as programmed by the enable signals.

The second part then converts this voltage result to PWM format for use as inputs by

subsequent perceptrons as their inputs.

3x3
PWM
adder

in1

in2

in3

weights

Voltage to
PWM
converter

out

Figure 4.9: Structure of the perceptron: PWM adder, voltage to PWM converter, and

compensation transistor.

57

This structure is shown in Figure 4.9, with the 3 × 3 weighted addition VAC as an

example PWM-based arithmetic unit. Any desired VAC arithmetic unit can be put in

this place to satisfy specific perceptron functionality requirements. The simple glue logic

consisting of a PMOS transistor between the two blocks will be discussed in detail in

Section 5.2.

The size of such a perceptron is such that its design may be entirely analysed

and validated through simulations within the VLSI CAD environment in which it

is implemented. At least some of this analysis must be conducted in the analogue

signal domain as the voltage signal between the two parts of the perceptron holds the

computation results in its analogue value. As a result, simulations in a VLSI CAD tool

environment that support mixed-signal or analogue studies are the best way of analysing

and validating such designs. In this work, we implement our perceptron and analyse it

using the Cadence Analogue Design Environment. Detailed results will be shown in

Section 5.1.

4.5 PWM-coded neural network design

The proposed PWM perceptrons can be used in constructing traditional NNs such as the

example shown in Figure 4.10. In this NN, the input vector (in) is fed to the input layer,

and the activity propagates through a number of hidden layers to reach the output layer,

where the output vector (out) is generated. Then, the output vector is compared to the

target vector and the error is back propagated to update the weights of each layer using

gradient descent. This procedure is iterated concerning the specified approach.

In this work, the in and out signals are of the PWM-type. The value of such a signal,

which is between 0 and 1, is represented by its duty cycle value between 0% and 100%.

The VAC arithmetic units then compute on such in values. This is illustrated by the

example described by equation 4.12, where each in is multiplied by its weight and all

results are accumulated by the VAC in the DCsum voltages. In other words, the weight

and sum blocks in Figure 4.10 are implemented by the proposed perceptron’s VAC. Then,

every DCsum, which is an analogue voltage across a capacitor, is fed to the activation

function (AF) whose output is in PWM format to be used as the input of the next layer. To

58

Compare
&

feedback

target
vector

w784

w2

w1 Σ1

Σ2

Σ784

1

2

784 w784

w2

w1 Σ1

Σ2

Σ10

1

2

10

output layerinput layer

W x D: 28 x 28
784 pixels

[0, 1]

input
vector

ini1

ini2

ini784

ino1

ino2

ino784

DCsum_i1

DCsum_i784

DCsum_i2

hidden
layers

DCsum_o1

DCsum_o10

DCsum_o2

outo1

outo2

outo10

output
vector

PWM adder
Voltage to

PWM converter

Figure 4.10: Neural network for MNIST. The DCsum signals are voltages. in and out signals are

duty cycles.

include the AF, equation 4.12 can be modified as expressed in equation 4.14. This requires

that the voltage to PWM conversion also implements the AF. Potential modifications

from the basic ring oscillator may be necessary, although the basic ring oscillator already

approximates a popular AF. This will be discussed in detail in Section 5.6.

out = f (DCsum) = f (∑n
i=1 ini ·Wi

n · (2k − 1)
) (4.14)

Finally, out is obtained, the error is calculated and every weight is adjusted by the

back-propagation (BP) algorithm. The comparison to the target vector is not necessarily

implemented with a perceptron-like device and may be implemented by some external

controller, which is outside the scope of this paper.

For the PWM-coded NNs, a number of design choices must be made: weight

encoding, maximum weight, AF and number of layers, among others. This section

establishes a method of making the best use of the proposed PWM-based perceptron to

construct NNs to perform specific computational tasks. We will explore aspects of NN

design, including weight types, AF, maximum weight and number of layers. We will use

the well-known handwriting digit (MNIST) classification problem [76], which is widely

used for machine learning algorithm testing [77], as the benchmark application and case

study for this investigation. The goal is to suitably determine the best NN configurations

for the proposed PWM-coded NN.

59

Regarding the circuit design, the weight is discretised to an integer value. This

is different from most related work where floating-point (FP) numbers are used for

weights. As the circuit size depends on the bit-width of the weight, it is crucial to find

the smallest bit-width that still provides the specified error rate tolerance.

The integer weight training can be designed as illustrated in Figure 4.11. The MNIST

input vector (in) is multiplied by the integer weight (W) and the results are accumulated

as out. Then, out is divided by n · (2k − 1) (i.e. normalising), which yields the final value

of out between 0 and 1.

Consequently, out is scaled to the same range and comparable to the target vector.

Then, out passes the AF, and the output vector is obtained and compared to the target

vector. Next, the FP update is computed from the gradient descent, the learning rate, and

the error. To adjust the integer weight, the update is scaled back to the integer number

by multiplying by n · (2k − 1) and rounding. Next, the integer weight is updated and

capped if it exceeds the specified bit-width (e.g. the example 3× 3 weighted addition

VAC in Figure 4.7 has 3-bit weights). Finally, the training process iterates until the

number of specified epochs is reached. Note that the weight capping can be disabled

to allow unlimited weight adjustments to mimic FP training.

÷n·(2k-1)

× n·(2k-1)

int
weight

input
vector

×

round

int

compare
target
vector

gradient
descent

output
vector

activation
function

weight
capping

weight
update

float

Figure 4.11: Integer weight training.

The activation function is necessary for an NN-based learning process because it

provides non-linearity to the computation so that the learning is not limited to linear

problems. It also helps map the resulting values in a certain range, depending on the

function.

60

In this work, the input and output ranges of the AF are the main concern because

they need to match the output format of the problem and the circuit behaviour. In

other words, depending on the purpose of the NN, it may expect its input and output

variables to take values within certain ranges. These ranges then need to be mapped

onto the working signal range of our perceptron, which is restricted by the duty-cycle

representation between 0% and 100%. Here we take a popular MNIST benchmark [78]

as an exemplar to explore this aspect of NN design using our perceptron as the basic

building block.

In the context of MNIST, the AFs are needed to provide a fully positive output to

comply with the target vector [76]. Also, our perceptron design stores the VAC result

as the voltage across Cout between its two blocks, which means that the DCsum signals

are entirely positive voltages. And such a voltage gets converted to a PWM duty cycle,

which is also entirely positive. For these reasons, the well-known AF ReLU [54, 79],

which has an entirely positive output range, is best suited.

Certain other popular AFs are less suitable for this initial investigation. For instance,

the sigmoid function is clearly non-linear across an input range between -5 and 5 [54],

which requires the representation of negative values. The non-linearity also means

that major modifications to the voltage to PWM part need to be investigated for

implementing such AFs. hence, we decided to concentrate on trying to mimic the ReLU

AF using our perceptron’s voltage to PWM converter.

f (x) =

0 , x < 0

x , x > 0
(4.15)

f (x) =

0 , x < 0

x , 0 < x < 1

1 , x > 1

(4.16)

The ReLU function in equation 4.15 [79] is depicted in Figure 4.12. One of its

attractions is that it is easily differentiable, facilitating gradient descent. To mimic the

output of the VAC, it is better than the sigmoid function because the charge in the output

capacitor (Cout) is emptied when the VAC result is negative. Otherwise, the capacitor is

61

charged and the positive result is obtained. However, the output of this function must

be capped at 1 to represent the limit of the PWM range as shown in equation 4.16 and

Figure 4.13. This work will attempt to construct an AF that approximates the capped

ReLU function.

Figure 4.12: ReLU function. Figure 4.13: Capped ReLU function.

The size of an entire NN designed for the MNIST problem is such that it is not possible

to analyse it entirely within a VLSI CAD environment. For instance, to analyse an image

of 784 pixels (cf. the example in Fig. 4.10) there need to be 784 perceptrons in the first

layer of the NN alone and this is clearly beyond analogue simulations at the VLSI level.

Effort must be expended in building models in a higher-level language to investigate the

design properly.

4.6 Summary

We propose the first mixed-signal (analogue/digital/relative temporal) perceptron

design using the principles of PWM. Central to our design are a number of parallel

inverters that suitably transcode the input-weight pairs from the spatial domain to the

relative temporal domain. This approach aims to deliver high resilience to amplitude

and frequency variations in the supply voltage, exploiting the fact that PWM-based

solutions are typically agnostic to such variations.

Another advantage of the proposed design is its simplicity. Whilst conventional

62

implementations of the perceptron require complex logic to perform multiplication and

addition, the proposed approach uses only one gate (either an inverter or a two-input

NAND) per bit for every input. Thus, for the 3× 3 weighted addition VAC, we used

only 54 transistors. This significantly reduces the logic requirement and, therefore, the

power consumption of the entire device.

One more interesting feature of this design is the possibility to perform training

including the network itself, in order to compensate for variability-induced errors. Any

design variability will be compensated by the weight adjustment during the training

stage.

63

Chapter 5

Simulation results

In this chapter, we designed the prototypes of the computational parts of the IoT device

and simulated them in the Cadence Analog Design Environment tool [80]. This chapter

validates the operation of the PWM-based perceptron designed in chapter 4.

A prototype circuit of the PWM perceptron is designed using umc65nm technology.

We used the high voltage transistors (with 2.5V nominal voltage) in the purpose of better

observation.

The simulations start with validation of the perceptron, including its parts (voltage

accumulator and voltage to PWM converter). After that, we analyzed the resilience of

the perceptron to the static and dynamic variations of the key parameters. Based on this

analysis, we specify the trade-offs between different perceptron parameters, such as size,

frequency, power consumption, and performance.

In the last part, we analyze the PWM-based neural network described in section 4.5.

This simulation cannot be performed in Cadence environment, because the NN circuit is

too large. Thus, we used Cadence to generate a perceptron model and used this model

in Matlab [81] simulation.

64

5.1 Simulation flow

In this section, we analyse the behaviour of the PWM-based perceptron designed in

Chapter 4. We start the analysis with Cadence simulations of two parts of the perceptron

separately: VAC and voltage to PWM converter. After that, we simulate the whole

perceptron circuit and generate its model describing perceptron’s input/output function.

The operation of the perceptron is simulated with static and dynamic variations of the

operating conditions. The results of the simulations are analysed from the viewpoint of

power robustness.

We cannot simulate the whole neural network based on the PWM perceptrons using

Cadence environment, because even a single perceptron simulation takes a lot of time

and computational resources. To resolve this issue, we use Cadence to generate the

input/output model of the perceptron. And use this model in Matlab to simulate

the designed PWM-based NN. To validate this method, we design the circuit of 3

perceptrons connected in series and simulate this circuit in Cadence and Matlab,

comparing the simulation results.

The flow of the PWM perceptron simulations is shown in in Figure 5.1.

5.2 Analysis and validation of PWM-coded perceptron

Below we analyse the behaviour of the perceptron circuit under different parametric

variations, generated by the design tool.

The first constituent part of the perceptron is the VAC. Figure 5.2 shows the charging

of the capacitor in the VAC based on three inverters connected in parallel as shown in

Figure 4.5. The frequencies and duty cycles of the inputs are: f1 = 140MHz, DC1 = 70%,

f2 = 120MHz, DC2 = 30%, f3 = 100MHz, DC3 = 50%. The capacitor has been charged

to the voltage value, proportional to the average duty cycle of the inputs. The charging

time of the capacitor depends on the RC value, and the input frequency does not affect

it. However, if the frequency is too low, it may result in a too high ripple of the output

voltage, and, thereafter, reduction of accuracy.

To support our VAC design based on inverters/NANDs and voltage summation on

65

VAC simulation
Voltage to PWM

simulation

Perceptron
simulation.

In/out model

Static analysis

Dynamic
analysis

Simulation of 3
perceptrons

Model
preprocessing

Simulation of 3
perceptrons

NN design and
simulation

Comparison of
the results.

Model validation

Cadence

MatLab

Perceptron
trade-off
analysis

NN validation
and analysis

Figure 5.1: Perceptron simulation flow.

a capacitor, we implemented the 3× 3 weighted addition VAC shown in Figure 4.7 in

Cadence and ran simulation experiments on it. The results of these simulations are

compared to theoretical results obtained from 4.11 and compared in Table 5.1. The

differences between the theoretical and simulation results do not exceed 10%. These

results validate the correctness of the PWM-based weighted addition VAC design.

The second constituent part of the proposed perceptron is the voltage to PWM

converter. This converts the result of VAC arithmetic computation stored as an analogue

voltage (a DCsum signal) back to the PWM format for output to subsequent perceptrons,

as presented in Section 4.3. The Cadence Analog Environment simulation results of

the voltage to PWM converter are shown in Figure 5.3. Ideally, the voltage to PWM

conversion should be linear. The real relationship between the output and the input is

almost linear for input voltages between 0.7V and 2.3V. However, outside this range,

the ring oscillator stops oscillating.

66

0

2.5

0

2.5

0

2.5

0

0.4

0.8

1.3

time (ns)
0.0 20.0 40.0 60.0 80.0 100.0 120.0 150.0

V(in1)

V(in2)

V(in3)

V(out)

Figure 5.2: Capacitor charging in the 3 inverters VAC.

The reason for this is that the input voltage is used as a power supply for the inverters.

When the voltage is below the threshold, it is not enough to trigger the NMOS transistors

of the inverters, and the output of the ring oscillator becomes a constant voltage.

Another interesting effect is that the linearity of the output increases with increasing

the number of inverters, but the difference between 9 and 13 inverters is small. Thus,

a chain of 9 inverters should be considered a reasonable voltage to PWM converter and

we use this design in our subsequent studies.

Figure 5.4 shows the combined operation of both parts of the perceptron: the 3× 3

weighted PWM addition VAC (Figure 4.7) connected to the voltage to PWM converter

(Figure 4.8). The three inputs of the perceptron are connected together, and all the

weights are 7 (all the cells are enabled). The line labelled ’ideal’ is for the desired case

when the output duty cycle equals to the input duty cycle. Analysing these results we

67

Table 5.1: Experimental and theoretical results of the 3× 3 weighted adder.

DC1 W1 DC2 W2 DC3 W3
Vout Vout

theoretical simulation

70% 7 80% 7 90% 7 0.50V 0.51V

50% 1 50% 2 50% 4 2.08V 2.11V

20% 5 60% 6 80% 7 1.29V 1.33V

95% 7 90% 6 80% 6 0.50V 0.45V

30% 1 40% 4 50% 2 2.16V 2.21V

80% 7 20% 3 50% 4 1.54V 1.61V

Input Voltage, (V)
0 0.5 1 1.5 2 2.5

O
u
tp
u
t
d
u
ty
cy
cl
e,
(%
)

0

20

40

60

80

100
5 inverters
9 inverters
13 inverters

Figure 5.3: Output duty cycle of the voltage

to PWM converter.

Duty cycle in, (%)
20 30 40 50 60 70

D
u
ty
cy
cl
e
ou
t,
(%
)

0

20

40

60

80

100
Vdd=1.8V
Vdd=2.5V
Vdd=3.3V
ideal

Figure 5.4: Output vs input duty cycle of the

perceptron.

can say that:

• In this simulation for the ideal case, we expect the output duty cycle to be equal to

the input duty cycle. However, the real output is slightly different from the ideal;

and this difference increases with the input duty cycle above 50%.

• The output duty cycles for different supply voltages are similar. The difference does

not exceed 10%. This indicates voltage variation resilience in the perceptron design.

• The input duty cycle has a limited range - from 20% to 70%. Beyond this range, the

output stops oscillating and becomes a constant signal.

The observed reduction of operational range and loss of linearity in the voltage to

68

Input duty cycle, (%)
20 40 60 80

O
u
tp
u
t
d
u
ty
cy
cl
e,
(%
)

20

40

60

80

100
without compensation
with compensation
ideal

Figure 5.5: Output vs input duty cycle of the perceptron with and without compensation.

PWM converter are caused by the fact that the voltage DCsum powers the voltage to

PWM converter. When the input duty cycle is above 70%, DCsum is below 30% of Vdd. For

Vdd = 2.5V this is below the threshold voltage. And in this case, the NMOS transistors

of the ring oscillator are always off, and the output stops oscillating. In other words,

there is a mismatch between the voltage ranges of the two parts of the perceptron. The

output voltage range of the PWM weighted addition VAC is from 0V to 2.5V (Figure 4.4);

the input voltage range of the voltage to PWM converter is from 0.7V to 2.3V (Figure 5.3).

We may limit the range of the output voltage of the PWM weighted addition VAC.

This can be done by adding a small glue logic between the two blocks of the perceptron.

This may consist of no more than a compensation PMOS transistor, whose gate and drain

are connected to the capacitor as shown in Figure 4.9. In this case, when the voltage on

the capacitor goes below the threshold, the PMOS starts charging this capacitor, and

when the voltage is above the threshold, the PMOS is off.

The input and output duty cycles of the perceptron with compensation are depicted

in Figure 5.5. The output is closer to the ideal, and its range is much wider: from 10% to

90%.

5.3 Power elasticity and resilience in static operation

To demonstrate the perceptron’s resilience to power variations we simulated the 3× 3

PWM-based weighted addition VAC circuit (Figure 4.7) with different values of supply

69

voltage and input signal amplitude. The results are shown in Figure 5.6. As can be seen,

the output voltage grows almost linearly with increased Vdd. As expected, higher duty

cycle shows lower output voltages and vice versa. In the case of the unstable supply

voltage, the absolute value of the output voltage does not bear any reliable information.

In this case, we should consider the relative relationship between the output voltage

and the supply voltage. This relationship should be proportional to the input duty cycle

independently from Vdd. This is demonstrated by Figure 5.7 where the y axis represents

not the absolute value of Vout, but the ratio between Vout and Vdd that is more relevant

for unstable power conditions.

Supply voltage Vdd, (V)
1 2 3 4 5

V
ou
t,
(V
)

0

1

2

3

4
DC=25%
DC=50%
DC=75%

Figure 5.6: Output voltage (absolute values)

vs static variation of power supply.

Supply voltage Vdd, (V)
1 2 3 4 5

V
ou
t
/
V
d
d

0

0.2

0.4

0.6

0.8

1
DC=25%
DC=50%
DC=75%

Figure 5.7: Output voltage (relative values)

vs static variation of power supply.

The circuit shows high resilience to static supply voltage variations. Starting from 1 -

1.5V the ratio Vout and Vdd remains the same for each duty cycle value of the input signal.

Further simulation experiments are carried out to investigate the VAC’s resilience to

static frequency variations. Two sizes of the 3× 3 VAC are investigated: the small - with

the output capacitor Cout = 10pF and the output resistors of each cell Rout = 100KΩ; and

the large - with Cout = 100pF and Rout = 1MΩ. The duty cycle of all the inputs is 50%,

and all the weights equal to 7 (all the cells are enabled). Figure 5.8 shows that both VACs

produce the output 1.25V, that equals to Vdd/2. The average output voltage remains the

same on the simulated range of frequencies: from 1kHz to 1GHz.

On the other hand, the value of Cout does affect other aspects of perceptron perfor-

mance. Cout contributes to the RC time constant of the VAC circuit, providing a low-

70

Input frequency, (Hz)
104 106 108

A
ve
ra
g
e
ou
tp
u
t
vo
lt
ag
e,
(V
)

0

0.5

1

1.5

2

2.5
small VAC
large VAC

Figure 5.8: Output voltage vs static varia-

tion of input frequency.

Input frequency, (Hz)
104 106 108

O
u
tp
u
t
vo
lt
ag
e
sw
in
g
,
(V
)

0

0.5

1

1.5

2

2.5
small VAC
large VAC

Figure 5.9: Output voltage swing vs fre-

quency.

pass filter effect on the voltage DCsum. As a result, a larger Cout is less suitable than a

smaller Cout for the fast response, but it would provide better robustness in the presence

of frequency variations. In addition, as the voltage to PWM converter depends on the

charge on Cout for energy, a smaller Cout may encounter difficulties in keeping DCsum

constant enough to complete the conversion.

Figure 5.9 shows the DCsum voltage swing in the presence of static frequency

variations. As can be seen, with reduced input frequency the voltage swing increases,

and at some point, the VAC operates as a simple inverter with the output voltage DCsum

oscillating between Vdd and GND. Ideally, we would like the voltage swing to be not

larger than 0.2V. It means that the frequency of the input PWM signals should not be

lower than 1MHz for the large VAC and 100MHz for the small VAC.

In addition, Figure 5.10 shows that VAC size and frequency also affect power

consumption. The small VAC has higher power consumption. This is due to the output

resistor limiting the charging current. The resistor is 10× larger in the large VAC, and

the current and the power consumption are smaller.

In the large VAC, we increase the size of Cout and reduce the charging current. This

increases the charging time of the capacitor. To investigate this we simulated the time

when the voltage on Cout reaches the average output value (which is Vdd/2 = 1.25V for

the 50% input duty cycle). The capacitor is initially charged to Vdd = 2.5V. The charging

71

Figure 5.10: Power vs frequency of the 3x3 VAC.

time of the capacitor is around 0.14µs for the small VAC and 14.5µs for the large VAC,

which is true for the entire range of frequencies. This ∼ 100× ratio is because the RC

product is 100× as large for the large VAC as for the small VAC.

5.4 Analysis of perceptron operation in dynamics

Fig. 5.11 shows the process of discharging the output capacitor. Initially, the voltage

on the capacitor is equal to Vdd. As can be seen, the response time of the discharging

process is related to the output resistance R and the output capacitance C (the charging

process is similar to a direction change). The time constant RC is proportional to

the charging/discharging delay for the Vout’s average value Vout. In addition, the

ripples in Vout’s instantaneous value resulting from PWM carrier oscillations have higher

amplitudes for smaller RC values, because of the low-pass filtering effect of the RC

circuit. In these experiments, different resistance and capacitance values are selected

to have different RC as well as different capacitance and resistance values composing to

the same RC value. In these experiments, the PWM frequency is set to fpwm = 30MHz.

In the static state, when the operating conditions, input frequency and duty cycle are

constant, Vout has a saw-tooth shape. Fig. 5.12 presents the shape of the output capacitor

voltage of a single PWM inverter. Only Vout is used for perceptron computation, with the

VAC’s arithmetic result encoded by Vout/Vdd (See equation (4.10)). However, the voltage

swing of the ripples as a result of PWM carrier oscillations may affect the accuracy and

72

should also be analysed.

Time, (μs)
0 0.4 0.8 1.2 1.6 2

C=1pF, R=100kΩ
C=2pF, R=100kΩ
C=1pF, R=200kΩ
C=2pF, R=200kΩ

1

1.4

1.8

2.2

2.6

V
ou

t,
 (

V
)

Figure 5.11: Output capacitor discharge

over time.

0.0

0.9

1.6

Vin

Vout

2.5

Time

average
swing

Figure 5.12: Capacitor voltage DCsum

corresponding to PWM-coded input.

fpwm, (MHz)
10

-1
10

0
10

1
10

2

V
ol

ta
g
e

sw
in

g
,(

V
)

0

0.5

1

1.5

2

2.5 C=1pF, R=100KΩ
C=1pF, R=1MΩ
C=10pF, R=100KΩ
C=10pF, R=1MΩ

Figure 5.13: Output voltage swing vs

frequency.

fpwm, (MHz)

R
C
 v

al
u
e

10

10

10

-7

-6

-5

5%
10%
20%

10
-1 0 1 2 3

10 10 10 10

Figure 5.14: Frequency limits for different

RC values.

The ripple voltage swing depends on three parameters: PWM carrier frequency

(fpwm), output resistance (R), and output capacitance (C). Fig. 5.13 shows the relation

between the voltage swing amplitude and input frequency for different output resistors

and capacitors. The ripple voltage swing increases at lower fpwm values. As the carrier

frequency continues to reduce, the voltage swing eventually becomes equal to Vdd, and

the VAC starts operating as a digital device without any PWM arithmetic.

In Fig. 5.13, the voltage swing is almost the same for the cases with C = 1pF, R =

73

1MΩ and C = 10pF, R = 100KΩ. The small difference between these cases is due

to parasitic capacitance and resistance of the transistors that are not included in the

analysis. This means that the voltage swing can be broadly defined by the perceptron’s

RC value.

Perceptron accuracy is affected by the ripple voltage swing amplitude. We may set

an acceptable ripple swing as a percentage of Vdd. This acceptable voltage swing then

(Fig. 5.13) results in the lowest tolerable fpwm limit. If we define the acceptable voltage

swing as 5%, 10% or 20% of Vdd, we can find the tolerable frequency ranges for different

RC values (Fig. 5.14). The acceptable ranges are to the right and above the relevant

boundary lines in Fig. 5.14.

Notice that the boundaries in Fig. 5.14 are straight lines, which is expected as RC = τ

is time and fpwm is frequency, related to each other via a hyperbola. When set in

logarithmic scales the relationship between them traces a straight line:

τ = R · C =
A

fpwm
+ τ0, (5.1)

where A is a constant factor and τ0 is a constant offset. From Fig. 5.14 it is evident that

for this particular system A ≈ 1 and τ0 depends on the acceptable voltage swing. This

means that a single, or at most two, experiment points would be needed to determine

the boundary condition for any specific acceptable voltage swing value.

We can use this method to determine the design parameter space for the R and C

values as well as the lowest value of the PWM carrier frequency fpwm, for any given

tolerable Vout ripple swing.

Next, we study the behaviour of the 3 × 3 perceptron VAC circuit in Fig. 4.7 with

dynamically changing power supply and input data. This is important because the

PWM-based perceptron design targets unpredictable energy supply and variable Vdd

situations. In the simulation using Cadence Analog Design tools the supply voltage

changes from 3V (120% of nominal Vdd) to 2V (80% of nominal Vdd during a period of

2µs. This substantial drop of Vdd may be caused by energy supply uncertainties. During

this period, the VAC is subjected to four different sets of parametric values on its input

PWM signals as shown in Table 5.2:

Fig. 5.15 depicts the simulation results from the parametric changes (Table 5.2). In

74

Table 5.2: Voltage, duty cycle and expected voltage ratios.

Phase (Time) DCin W Vout/Vdd

1 (0-2.5µs) all DC = 75% W1|2 = 7, W3 = 0 50%

2 (2.5-5µs) all DC = 75% W1|3 = 0, W2 = 7 25%

3 (5-7.5µs) all DC = 75% W1|2|3 = 7 75%

4 (7.5-10µs) all DC = 75% W1|3 = 7, W2 = 0 50%

this experiment, the input signals all have different fpwm values, 100MHz, 111MHz, and

125MHz for in1, in2 and in3 respectively, and C = 10pF and R = 4.76kΩ.

Time (μs)

0.25

0.75

1.0

0.5

0.25

0.75

0.5

V
d
d
 (

V
)

D
C
ou

t
w

/o
co

m
p
.

D
C
ou

t
w

/
co

m
p
.

V
ou

t/
V
d
d

V
ou

t
(V

)

3.0

2.5

2.0
3.0

2.0

1.0

1.0

0.75

0.5

0.25

0.0 0.5 1.0 1.5 2.0

Figure 5.15: VAC operation under dynamic supply voltage and input data variations.

The figure shows that the VAC fulfils its design objective, i.e. providing functional

correctness under variable energy supply conditions. The Vout/Vdd output values

stabilize at the correct expected percentages after the charging/discharging processes

complete, even though there exist inconsistencies in the different fpwm signals and rather

large Vdd changes.

75

However, the voltage-to-PWM converters proposed in section 4.3 cannot take advan-

tage of this and fail to provide a correct PWM output from the correct Vout/Vdd output

of the VAC. One version of the voltage-to-PWM converter does not have compensation

to take the threshold voltage of transistors into account. This works correctly when

Vout stays above the threshold voltage, but fails when Vout reduces below the threshold

voltage. The second version of the voltage-to-PWM converter attempts to compensate

for this by artificially keeping Vout above the threshold voltage, but the method of

doing so is computationally incorrect, resulting in potentially significant errors in the

PWM output duty cycle (DCout). This shows that further research is needed for a

computationally correct compensation for the voltage-to-PWM conversion stage.

It is also evident that the allowed rate of change for the input signals is determined

by the RC value of design. For the VAC to function correctly, Vout/Vdd must be given

enough time to settle before an input change can be allowed. In this instance, τ = R ·C =

47.6ns and the input change period is 500ns or ≈ 10τ, giving plenty time for Vout/Vdd to

settle.

5.5 Perceptron design trade-off analysis

Another design-space exploration made possible by this dynamic analysis is the inves-

tigation of various trade-offs. For instance, Fig. 5.11 indicates that the computational

speed is faster for smaller perceptron RC values. This is because the establishment of the

perceptron arithmetic result Vout/Vdd comes earlier if Vout charging/discharging finishes

earlier. However, Fig. 5.14 indicates that smaller RC values require higher PWM carrier

frequencies, which may lead to implementation limitations on the design of the PWM

frequency generating subsystem and power dissipation. In addition, the perceptron

arithmetic result Vout/Vdd is held in the charge of the output capacitor C, for which a

larger C will provide a more stable Vout/Vdd for longer and better support the reading

of this value by subsequent perceptrons or output circuits. There are also limitations on

the upper and lower values for both R and C for on-chip implementations.

In addition to computation speed, tolerable PWM frequency range, power dissipation

and Vout/Vdd resilience, another design metric is energy consumption, which is usually

76

measured in energy per operation, or the energy required for completing a single

operation. As an example, we define a single operation as having continuously charged

or discharged the output capacitor for 5 time constants (5τ = 5RC). This arbitrary

definition achieves 98% of the target value of Vout/Vdd for a 2% charging/discharging

error. If this level of precision is not needed, the per operation time definition can be

shortened. However, the choice of the operation completion time does not affect the

generality of this method.

Figure 5.16: Energy per operation at fpwm = 2×min(fpwm).

From Fig. 5.16 it can be seen that the energy per operation is lower for larger RC

values and higher for smaller RC values at the same PWM carrier frequencies. According

to Fig. 5.11, larger RC values cause longer computation time (each operation takes longer

time) which increases energy per operation. However, as evidenced from Fig. 5.13

they also result in smaller ripple voltage swings reducing dynamic power dissipation.

Evidently, for the systems observed in these experiments, the latter factor outweighs the

former. Being able to create quantitative comparisons using dynamic analysis makes

it possible to study design trade-offs in detail. This is important because there are no

general rules in some of these trade-offs. For instance, the power dissipation difference

caused by the same ripple voltage swing difference may depend on the perceptron

arithmetic specification.

Table 5.3 summarizes the impact of choosing larger or smaller RC values in terms of

speed, power, area and the range of permitted fpwm choices.

77

Table 5.3: Speed, power, area and frequency range trade-offs.

RC value Speed Power Area fpwm choice range

Larg RC lower lower higher wider

Small RC higher higher lower narrower

5.6 Validation and analysis of PWM-coded neural network

This section explores an NN system built using the proposed PWM-based perceptron.

This NN is designed for solving the MNIST problem and has the structure shown in

Figure 4.10. Firstly a high-level model of the perceptron is constructed so that analysis

can be carried out in MATLAB, at a higher level than analogue VLSI simulations, which

is impractical for systems of this size. Then this model is used in MATLAB investigations

on system properties to validate our NN-design approach.

In this section, the duty cycle output of the perceptron is modelled in the form of

a mathematical equation with parameters. Then, the model and the voltage to PWM

converter itself are studied to verify that the device approximately incorporates the

capped ReLU AF.

The equations in Section 4.5 pertain to ideal cases. These can be used for comparing

with how the implemented perceptron actually delivers. In order to make this compar-

ison at the whole system level, we need to generate a high-level mathematical model

based on observations made whilst experimenting with the perceptron circuit at a low

level.

We experimented in the Cadence Analog Design Environment with a single percep-

tron, two perceptrons connected in series, mimicking the simplest two-layer NN, and

three perceptrons connected in series, emulating the simplest NN with a depth of 3. This

is as far as analogue VLSI simulations could practically go, as the three-layer study took

many hours on a competitively specified server machine.

The outputs of these perceptron connection topologies are shown in Figure 5.17. In

the ideal case, the input and output duty cycles should be equal when every weight is at

the maximum value (dashed line). However, there is a non-linear relationship between

78

the input and output of the single perceptron (red line) and the degree of non-linearity

increases when the depth of the NN is increased (blue and green lines). In addition, the

output begins to saturate in the last (third) stage when the input (DCsum) reaches 0.85.

To model this relationship, a third-order polynomial equation, which is easy to differ-

entiate, is curve-fitted to the response of the single perceptron using basic regression in

MATLAB. The result is shown in equation 5.2. Note that the saturation point of the model

is set at the maximum output duty cycle, which is 98%. Then, the model is connected

in the same two- and three-stage series topologies as in the Cadence experiments and

their outputs are plotted in Figure 5.18 - 5.20, together with the relevant Cadence results

for comparison. All figures show that this model accurately estimates the input-output

relationship of the perceptron. The accuracy can be obtained as the R-squared values of

stages one, two and three, which are 99.88%, 99.33% and 97.66% respectively.

DCout = 107.27V3
Cout − 53.25V2

Cout + 52.92VCout + 13.44 (5.2)

f (x) =

0 , x < 0

DCout , 0 < x < 1

0.98 , x > 0.98

(5.3)

Figure 5.17: PWM output. Figure 5.18: Output vs model stage 1.

We use the perceptron model in equation 5.2 to assemble models of large-size MNIST

NNs then simulate these systems in full in MATLAB. The model plot is shown in

79

Figure 5.19: Output vs model stage 2. Figure 5.20: Output vs model stage 3.

Figure 5.21: PWM perceptron output model

function.

Figure 5.22: Capped ReLU function with

PWM-like offset.

Fig. 5.21. We also create a capped ReLU function with offset (Oft.ReLU), expressed in

equation 5.4. As can be seen in the equation, this offset ReLU function takes the constant

13.44 from the perceptron model in equation 5.2 to have the same offset nonlinearity as

the perceptron model in Fig. 5.21, but otherwise has a similar straight-line behaviour to

the non-offset capped ReLU in Fig. 4.13. The plot of this offset ReLU can be found in

Fig. 5.22.

This function is used to investigate whether the step nonlinearity or the curvature

nonlinearity higher in the curve of equation 5.2 is more important when it comes to NN

performance, through comparisons with both the perceptron model in equation 5.2 and

80

the capped ReLU function without offset in Fig. 5.22.

f (x) =

0 , x < 0

DCout + 13.44 , 0 < x < 1

1 , x > 0.86.56

(5.4)

There are two groups of simulations using MATLAB: without/with limiting the

maximum weight. All implement the training procedure described in Figure 4.11 for the

MNIST problem, which is selected as our benchmark. Without defining the maximum

weight, the weight is adjusted freely like the basic FP training while the proposed NN

is demonstrated by the limited weight simulation. Four AFs: ReLU, capped ReLU

(Cap.ReLU), capped ReLU with offset (Oft.ReLU) and PWM perceptron (PWM percept.)

are applied in three network configurations: two (784/10), three (784/300/10) and four

(784/300/100/10) layers.

The PWM perceptron AF is implemented by the PWM perceptron on its own

unmodified - the justification being that it may be considered as an approximation of

the capped ReLU (cf. Figure 5.21 and Figure 4.13).

As can be seen from this data, these systems being simulated include hundreds of

perceptrons and are well beyond analysing in the VLSI design domain.

For the unlimited weight simulation, the learning rate is swept from 0.001 to 0.1 for

every AF. The configurations with the smallest error are listed in Table 5.4. The limited

weight simulation is carried out in the same way except that the initial weight is swept

from ±1 to ±255. This is because a small weight causes a small update which can keep

the final weight within the specified range. Then, the configurations with higher than

90% accuracy are selected to sweep their maximum weights down until the accuracy is

nearly equal to 90%. This is to save the circuit area by using the smallest bit-width. The

simulation results are listed in Table 5.5.

In the single perceptron, two-perceptron and three-perceptron experiments, both the

resultant model and the Cadence simulations indicate that the voltage to PWM converter,

without modifications, may serve as an approximate capped ReLU AF, qualitatively.

In addition, the three-perceptron, three-stage full analogue simulation analysis shows

81

Table 5.4: Simulation result of the floating-point weight neural network.

No.
No. Activation Learning

Error
Perceptron Function Rate

1 784/10 ReLU 0.010 1.40

2 784/10 Cap.ReLU 0.008 1.75

3 784/10 Oft.ReLU 0.009 5.09

4 784/10 PWM percept. 0.004 8.54

5 784/300/10 ReLU 0.040 1.63

6 784/300/10 Cap.ReLU 0.009 1.91

7 784/300/10 Oft.ReLU 0.002 79.54

8 784/300/10 PWM percept. 0.004 27.01

9 784/300/100/10 ReLU 0.040 2.07

10 784/300/100/10 Cap.ReLU 0.010 3.60

11 784/300/100/10 Oft.ReLU 0.010 90.20

12 784/300/100/10 PWM percept. 0.090 79.07

that the single-perceptron MATLAB model can be used in multi-stage system analysis

without worrying about the fidelity of high-level MATLAB models when multiple layers

of perceptrons exist in a system.

Quantitatively, however, the use of a nonlinear perceptron to approximate linear

behaviour becomes increasingly problematic when the depth of the network increases,

as the non-linearity accumulates. This is shown to be true by the subsequent whole-NN

experiments.

The unlimited weight simulation result in Table 5.4 gives us traditional NN examples

which contain FP weights. It shows that both ReLU and capped ReLU functions give

less than 4% errors at every depth.

The results for the PWM perceptron AF are similar to those from the capped ReLU

with offset. They obtain small error rates at the shallowest NN depth, while the capped

ReLU without offset outperforms all others at every depth. This confirms that it is mainly

82

Table 5.5: Simulation result of the integer weight neural network.

No.
No. Activation Learning Initial Max

Error
Perceptron Function Rate Weight Weight

1 784/10 ReLU 0.030 ±3 ±31 9.28

2 784/10 Cap.ReLU 0.040 ±3 ±63 6.12

3 784/10 Oft.ReLU 0.004 ±7 ±255 7.10

4 784/10 PWM percept. 0.030 ±1 ±255 9.98

5 784/300/10 ReLU 0.020 ±255 ±255 79.49

6 784/300/10 Cap.ReLU 0.020 ±255 ±255 79.49

7 784/300/10 Oft.ReLU 0.020 ±3 ±255 18.35

8 784/300/10 PWM percept. 0.010 ±15 ±255 25.17

9 784/300/100/10 ReLU 0.010 ±31 ±255 88.50

10 784/300/100/10 Cap.ReLU 0.010 ±31 ±255 88.50

11 784/300/100/10 Oft.ReLU 0.020 ±127 ±255 64.09

12 784/300/100/10 PWM percept. 0.010 ±63 ±255 53.25

the step transition at DCsum = 0 that causes the convergence problem in our NN, more

than the curvature nonlinearity higher in the curve of Fig. 5.21. Therefore, compensating

the circuit to shift the output duty cycle back to 0% appears to be a promising route of

investigation. This will be a subject in our future work.

Table 5.5 shows the results with weight limitations. All results at two-layer NN are

worse than the ones in Table 5.4 due to the weight capping and rounding, except for

the PWM perceptron, which does better. The PWM perceptron continues to perform

better at higher layer depths than in the unlimited weight case, confirming an advantage

for it when weight is limited and represented by an integer. However, it again fails

to approximate the ReLU function quantitatively at higher layer depths, by returning

obviously better performances than the latter.

Our proposed PWM-based perceptron’s non-linearity, as well as range limits of the

PWM duty cycle (it starts from ∼ 13% rather than 0% as shown in Figs. 5.18 and 5.21),

83

makes it less suitable for deeper NNs. Its lack of support for negative values also limits

its wider usability as the fundamental element of NNs, without further modification to

better incorporate established AFs. The approximation of ReLU, although qualitatively

promising, proves to be quantitatively unsatisfactory at higher NN depths, although in

some cases this results in the perceptron’s AF being better than the ReLU AF. The high

error rate also comes from the resolution loss in basic weight rounding which may be

solved by implementing a rounding technique and PF inference quantization presented

in [82] and [83] respectively.

In other words, even if the negative value representation problem is solved, com-

puting AFs in the analogue and relative temporal domains remains a challenge that

must be solved. As a result, a future work direction is the incorporation of more general

arithmetic operations in these domains, which is needed to improve the accuracy of AF

implementations.

A related and interesting unsolved problem is the ’comparing with target vector’

function in Figure 4.10, which is currently relegated to external controllers. It is a duty

cycle in and digital out block and can potentially be designed by extending the methods

in this work.

Table 5.6 summarises our design compared to related work. The work in [84]

quantizes the entire NN and yields the lowest error. However, it is designed for a digital-

based processing unit which contains the CPU-memory bottleneck issue implying extra

power budget and latency. Furthermore, real power measurement is missing as it

estimates the power consumption from the literature. Weight rounding methods are

proposed in [82]. Although they achieve the second lowest error, they require binarized

input data which is a challenge for analogue applications. Moreover, it does not include

an investigation of hardware implementation. The memristor crossbar NN in [85]

acquires the lowest accuracy with the highest power consumption even its input image

size is reduced. Charge trap transistor-based NN which performs MNIST classification

from the original data is presented in [77]. It mainly aims to save power and requires a

specific CMOS technology to fabricate the special transistors.

Even though the error of our design is higher, it is still within the same order of mag-

nitude, and we have yet to investigate more sophisticated techniques for compensating

84

Table 5.6: Performance comparison.

Work
Weight

MNIST
NN

Error
Power Power

Hardware
type conf. (µW) elastic

[84] integer quantized WAGE 0.4 n/a N MCU

[82] integer binarized MLP < 3% n/a N n/a

[85] n/a
reduced &

MLP 13.5%
53,000

N
memristor

quantized (NN) crossbar

[77] fixed-point original MLP ∼5%
14,800

N Spec. CMOS
(NN)

This integer original MLP < 10%
14-1,080

Y Std. CMOS
(VAC)

the voltage to PWM part to improve the duty cycle coverage and eliminate the step

nonlinearity at DCsum = 0, which promises to reduce error. We also do not investigate

beyond standard CMOS technology as that is out of scope for this investigation. Our

focus is on tolerating unstable and unpredictable power supply voltages, a necessity

for energy autonomous AI devices. In this regard, this solution is unique as existing

research in the literature invariably requires stable and known voltages and operating

frequencies. Note that the power figures in Table 5.6 are not directly comparable. The

figure for [82] is obtained from measurements carried out on a fabricated chip at the

28nm technology node with special non-CMOS transistor techniques aiming to showcase

the advantage of that technology in low-power operations, whilst that for this work is

obtained from simulating one VAC at the 65nm technology node with a deliberately

high (2.5V) nominal supply voltage to facilitate studying voltage instability scenarios.

This is similar to [85] where the circuit is implemented with non-CMOS technology.

A fair power consumption comparison with [82] and [85] is not yet possible without

fabricating and testing real chips, preferably at the same VLSI technology node, as

whole-NN simulations at the VLSI level is not practical. In addition, the power figures

for [82] and [85] are themselves not comparable with each other as [85] covers the entire

system including peripherals and [82] covers the NN engine only.

85

5.7 Summary

In this chapter, we simulated the PWM-based perceptron. The perceptron’s arithmetic

unit design is shown to fully accomplish its design aim of power and frequency

resilience. It is also shown to be working within reasonable boundaries in pragmatic

applications, especially in NNs of limited depth which are nevertheless of significant

size. Future improvements should be concentrated on improving its linearity, its

threshold voltage independence and its representation of negative values to increase its

usability of NNs of greater depth and more sophisticated AFs.

Our design methods, supported by extensive analysis and validations, have proven

the original hypothesis, and demonstrated the following features:

• power elasticity and resilience across a dynamic range of Vdd (statistically varying by

5×) and f (statistically varying by up to 6 orders of magnitude). Such elasticity

is achieved for the VAC without requiring any voltage regulator circuit and clock

pairing between Vdd and f . Dynamic power supply variations also show good

resilience. However, further compensation will be required at lower voltages to

avoid large errors at the whole-perceptron level;

• minimal use of additional analogue (ideally, only passive components) electron-

ics, coupled with low-complexity PWM-coded arithmetic using primarily digital

components, making our approach highly power efficient and suitable for low-cost

fabrication;

• extensive validation and analysis using multi-layer PWM-coded NNs show good

scalability of the proposed approach; however, deeper NNs may need circuit-

level compensation after each layer or high-precision representation techniques to

improve the overall accuracy and efficiency.

86

Chapter 6

Conclusions

6.1 Contributions

In this research, we approached the problem of IoT energy supply from two main

directions: improving the efficiency and stability of power regulators, and increasing

the power elasticity of the computation unit.

For IoT applications the most suitable type of power regulators is SCC. We discuss

the major challenges of on-chip SCC and demonstrate the methods of solving these

challenges. In sections 3.1 and 3.2 we discuss the methods of designing the self-timed

SCC controllers, which resolve the problem of the shoot-through currents. Another issue

with bottom plate parasitic capacitance is resolved in section 3.3, where we apply the

method of parasitic charge redistribution to the self-oscillating SCC. The correctness of

the proposed methods is validated by Cadence simulations. The simulations also show

the increasing of efficiency of these methods.

We use a Neural Network as a typical IoT computation unit. We aim to improve its

resilience to supply voltage variations in order to reduce the complexity and cost of the

power regulator circuit.

We propose the first mixed-signal (analogue/digital/relative temporal) perceptron

design using the principles of PWM. Central to our design are a number of parallel

inverters that suitably transcode the input-weight pairs from the spatial domain to the

87

relative temporal domain. This approach aims to deliver high resilience to amplitude

and frequency variations in the supply voltage, exploiting the fact that PWM-based

solutions are typically agnostic to such variations.

Another advantage of the proposed design is its simplicity. Whilst conventional

implementations of the perceptron require complex logic to perform “lication and

addition, the proposed approach uses only one gate (either an inverter or a two-input

NAND) per bit for every input. Thus, for the 3× 3 weighted addition VAC, we used

only 54 transistors. This significantly reduces the logic requirement and, therefore, the

power consumption of the entire device.

Extensive experimentation on the perceptron and its use in neural networks of

relatively significant sizes helps to explore the perceptron design’s advantages, usability

and limitations. Also through experimental studies, design improvements are found

which further strengthen the perceptron’s case. These experimental explorations also

lead to further insights into the design and provide guidance on potential future work.

6.2 Future work

This thesis gives the possibilities for future research in both power regulation and

computation parts.

The methods proposed in sections 3.1 and 3.2 allow designing self-timed controllers

for SCC. The steps described in the methods can be automated. Ideally, a user would

have to input only the required ratios and topologies of a designed SCC, and an

algorithm based on this method would produce a completed implementation of the

corresponding controller.

While the controller generated in section 3.2 is quite large, its size can be reduced.

One of the possible ways of doing this is by using the David cells [74] in the controller

part that interfaces the delay elements. Another optimization is to simplify the operation

of the signal ratio req in such a way that it does not interrupt the generation of the switch

control signals. These optimization possibilities are a subject for future research.

The method of design of self-oscillating SCC with parasitic charge redistribution

proposed in section 3.3 can be expanded to the more complex charge redistribution

88

algorithms such as in [19]. However, these algorithms would require additional logic,

which would have its own parasitic capacitance.

There are some other ways of applying the parasitic charge redistribution method to

the self-oscillating SCC. For example, we can have two parallel self-oscillating SCC that

operate in a counter-phase and share their parasitic charge between each other. This

method is more similar to [20], and it does not require the additional store capacitor.

However, the logic in this method would be more complicated and would consume more

power in comparison to the method described in this paper.

The method of PWM-based perceptron design demonstrated the high degree of

resilience to voltage and frequency variations in the VAC part. However, the voltage

to PWM converter based on the ring oscillator designed in section 4.3 is less resilient,

especially, to the dynamic variations. The main issue of the proposed solution is that the

transistor’s threshold voltage remains constant with the dynamically changing supply

voltage. The question of finding a cost-effective circuit solution for voltage-to-PWM

conversion for a wide dynamic range of voltages (covering near and sub-threshold

voltage level) remains an open challenge.

The VAC design proposed in section 4.2 can also be improved. If not only the input

but also the weight was PWM-coded, the number of cells would be significantly reduced.

In that case, the adder would require only one cell per input. However, this design will

require more complicated feedback circuitry.

89

Bibliography

[1] K. Schwab, The fourth industrial revolution. London : Portfolio Penguin, 2017.

[2] T. V. Breussegem and M. Steyaert, “Cmos integrated capacitive dc-dc converters.”

Springer, 2013.

[3] G. Villar-Piqué, H. J. Bergveld, and E. Alarcón, “Survey and benchmark of

fully integrated switching power converters: Switched-capacitor versus inductive

approach,” IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4156–4167, 2013.

[4] L. Salem and P. Mercier, “A 45-ratio recursively sliced series-parallel switched-

capacitor dc-dc converter achieving 86% efficiency,” 09 2014, pp. 1–4.

[5] A. Kushnerov and S. Ben-yaakov, “Unified algebraic synthesis of generalized

fibonacci switched capacitor converters,” 09 2012.

[6] W. Jung, D. Sylvester, and D. Blaauw, “12.1 a rational-conversion-ratio switched-

capacitor dc-dc converter using negative-output feedback,” vol. 2016, 01 2016, pp.

218–219.

[7] S. Unger, “Asynchronous sequential switching circuit,” 1969.

[8] D. Sokolov, V. Dubikhin, V. Khomenko, D. Lloyd, A. Mokhov, and A. Yakovlev,

“Benefits of asynchronous control for analog electronics: Multiphase buck case

study,” 03 2017, pp. 1751–1756.

[9] D. Sokolov, V. Khomenko, A. Mokhov, A. Yakovlev, and D. Lloyd, “Design and

verification of speed-independent multiphase buck controller,” 05 2015, pp. 29–36.

90

[10] O. Benafa, A. Ogweno, D. Shang, and A. Yakovlev, “Design of a dco based on worst-

case delay of a self-timed counter and a digitally controllable delay path,” 06 2016,

pp. 1–4.

[11] H. Ning and Z. Wang, “Future internet of things architecture: Like mankind neural

system or social organization framework?” IEEE Communications Letters, vol. 15,

no. 4, pp. 461–463, 2011.

[12] M. Evzelman and S. Ben-yaakov, “The effect of switching transitions on switched

capacitor converters losses,” 11 2012.

[13] A. Kushnerov, “High-efficiency self-adjusting switched capacitor dc-dc converter

with binary resolution,” Ph.D. dissertation, 08 2009.

[14] A. Kushnerov and S. Ben-Yaakov, “Unified algebraic synthesis of generalised

Fibonacci switched capacitor converters,” IET Power Electronics, vol. 7, no. 3, pp.

540–544, 2014.

[15] W. Jung, S. Oh, S. Band, Y. Lee, Z. Foo, G. Kim, Y. Zhang, D. Sylvester, and

D. Blaauw, “An ultra-low power fully integrated energy harvester based on self-

oscillating switched-capacitor voltage doubler,” IEEE Journal of Solid-State Circuits,

vol. 49, no. 12, 2014.

[16] M. J. Turnquist, M. Hiienkari, J. Makipaa, and L. Koskinen, “A fully integrated self-

oscillating switched-capacitor dc-dc converter for near-threshold loads,” in 2015

IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov 2015, pp. 1–4.

[17] M. Turnquist, M. Hiienkari, J. Mäkipää, and L. Koskinen, “A fully integrated 2:1

self-oscillating switched-capacitor dc-dc converter in 28 nm utbb fd-soi,” Journal of

Low Power Electronics and Applications, vol. 6, p. 17, 09 2016.

[18] M. Fojtik, D. Kim, G. Chen, Y.-S. Lin, D. Fick, J. Park, M. Seok, M.-T. Chen, Z. Foo,

D. Blaauw, , and D. Sylvester, “A millimeter-scale energy-autonomous sensor

system with stacked battery and solar cells,” IEEE Journal of Solid-State Circuits,

vol. 48, no. 3, pp. 801–813, March 2013.

91

[19] N. Butzen and M. Steyaert, “Scalable parasitic charge redistribution: Design of

high-efficiency fully integrated switched-capacitor dc-dc converters,” IEEE Journal

of Solid-State Circuits, vol. PP, pp. 1–11, 10 2016.

[20] T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. Kossel,

M. Brandli, P. Buchmann, and P. Francese, “A 4.6w/mm2 power density 86%

efficiency on-chip switched capacitor dc-dc converter in 32 nm soi cmos,” pp. 692–

699, 01 2013.

[21] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A Systems

Perspective, 01 2001.

[22] J. Beaumont, A. Mokhov, D. Sokolov, and A. Yakovlev, “Compositional design of

asynchronous circuits from behavioural concepts,” 09 2015, pp. 118–127.

[23] J. Audy, “Navigating the path to a successful ic switching regulator design,” in

Tutorial at IEEE International Solid-State Circuits Conference (ISSCC), 2008.

[24] L. Lavagno, Algorithms for Synthesis and Testing of Asynchronous Circuits, 01 1993.

[25] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli, “Algorithms for synthesis

of hazard-free asynchronous circuits,” 02 1995.

[26] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic

Synthesis of Asynchronous Controllers and Interfaces, 01 2002, vol. 8.

[27] V. Khomenko, M. Koutny, and A. Yakovlev, “Detecting state encoding conflicts in

stg unfoldings using sat.” Fundam. Inform., vol. 62, pp. 221–241, 01 2004.

[28] W. Belluomini, C. Myers, and H. Hofstee, “Verification of delayed-reset domino

circuits using atacs,” Proceedings of the International Symposium on Advanced Research

in Asynchronous Circuits and Systems, 04 1999.

[29] W. Bartky and D. Muller, “A theory of asynchronous circuits,” in International

Symposium of the Theory of Switching, 1959.

[30] C. Petri, “Kommunikation mit automaten (communicating with automata),” vol. 3,

01 1962.

92

[31] E. Chung and L. Kleeman, “Avoiding hazards in self-timed digital circuits derived

from signal transition graphs,” Australian Telecommunications Research, vol. 29, pp.

25–38, 01 1995.

[32] L. Rosenblum and A. Yakovlev, “Signal graphs: From self-timed to timed ones.” 01

1985, pp. 199–206.

[33] J. Beaumont, “Compositional circuit design with asynchronous concepts,” 2018.

[34] I. Poliakov, V. Khomenko, and A. Yakovlev, “Workcraft – a framework for

interpreted graph models,” vol. 5606, 06 2009, pp. 333–342.

[35] D. Sokolov, V. Khomenko, and A. Mokhov, “Workcraft: Ten years later,” in This

asynchronous world. Essays dedicated to Alex Yakovlev on the occasion of his 60th birthday,

A. Mokhov, Ed. Newcastle University, 2016, available online http://async.org.uk/

ay-festschrift/paper25-Alex-Festschrift.pdf.

[36] “WORKCRAFT homepage,” http://workcraft.org/.

[37] V. Khomenko, “Model checking based on prefixes of petri net unfoldings,” Ph.D.

dissertation, 04 2003.

[38] M. Schaefer, W. Vogler, D. Wist, and R. Wollowski, “Avoiding irreducible csc

conflicts by internal communication,” vol. 95, 07 2008, pp. 3 – 12.

[39] V. Khomenko, M. Koutny, and A. Yakovlev, “Logic synthesis for asynchronous

circuits based on stg unfoldings and incremental sat.” Fundam. Inform., vol. 70, pp.

49–73, 03 2006.

[40] N. Javaid, A. Sher, H. Nasir, and N. Guizani, “Intelligence in iot-based 5g networks:

Opportunities and challenges,” IEEE Communications Magazine, vol. 56, no. 10, pp.

94–100, October 2018.

[41] A. Biswas and A. P. Chandrakasan, “Conv-ram: An energy-efficient sram with

embedded convolution computation for low-power cnn-based machine learning

applications,” in 2018 IEEE International Solid - State Circuits Conference - (ISSCC),

Feb 2018, pp. 488–490.

93

http://async.org.uk/ay-festschrift/paper25-Alex-Festschrift.pdf
http://async.org.uk/ay-festschrift/paper25-Alex-Festschrift.pdf
http://workcraft.org/

[42] M. Chen, Y. Miao, X. Jian, X. Wang, and I. Humar, “Cognitive-LPWAN: Towards

Intelligent Wireless Services in Hybrid Low Power Wide Area Networks,” arXiv e-

prints, p. arXiv:1810.00300, Sep 2018.

[43] M. T. Sharbati, Y. Du, J. Torres, N. D. Ardolino, M. Yun, and F. Xiong,

“Low-power, electrochemically tunable graphene synapses for neuromorphic

computing,” Advanced Materials, vol. 30, no. 36, p. 1802353, 2018.

[44] E. O. Neftci, “Data and power efficient intelligence with neuromorphic learning

machines,” iScience, vol. 5, pp. 52 – 68, 2018.

[45] R. Shafik and A. Yakovlev, Chapter: From Power-Efficient to Power-Driven Computing,

in Many-Core Computing: Hardware and Software. Ed: G. Merrett and B. M. Al-

Hashimi, IET, 2019.

[46] R. A. Shafik, S. Yang, A. Das, L. A. Maeda-Nunez, G. V. Merrett, and B. M. Al-

Hashimi, “Learning transfer-based adaptive energy minimization in embedded

systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 35, no. 6, pp. 877–890, June 2016.

[47] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev, “Energy-efficient

approximate multiplier design using bit significance-driven logic compression,” in

Proceedings of the Conference on Design, Automation & Test in Europe, ser. DATE ’17.

European Design and Automation Association, 2017, pp. 7–12. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3130379.3130382

[48] R. Shafik, A. Yakovlev, and S. Das, “Real-power computing,” IEEE Transactions on

Computers, vol. 67, no. 10, pp. 1445–1461, Oct 2018.

[49] S. Beeby and N. M. White, Energy harvesting for autonomous systems. Artech House,

2010.

[50] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional neural

networks using energy-aware pruning,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017, pp. 5687–5695.

94

http://dl.acm.org/citation.cfm?id=3130379.3130382

[51] A. Suleiman, Y.-H. Chen, J. Emer, and V. Sze, “Towards closing the energy gap

between hog and cnn features for embedded vision,” in 2017 IEEE International

Symposium on Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[52] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture for ultralow

power binary-weight cnn acceleration,” IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 37, no. 1, pp. 48–60, Jan 2018.

[53] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and

organization in the brain,” Psychological Review, pp. 65–386, 1958.

[54] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design. Boston, MA,

USA: PWS Publishing Co., 1996.

[55] E. Wilson and D. W. Tufts, “Multilayer perceptron design algorithm,” in Proceedings

of IEEE Workshop on Neural Networks for Signal Processing, Sep. 1994, pp. 61–68.

[56] H. Adeli and C. Yeh, “Perceptron learning in engineering design,” Computer-

Aided Civil and Infrastructure Engineering, vol. 4, no. 4, pp. 247–256, 1989.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8667.

1989.tb00026.x

[57] S. Hung and H. Adeli, “A model of perceptron learning with a hidden layer for

engineering design,” Neurocomputing, vol. 3, no. 1, pp. 3 – 14, 1991. [Online].

Available: http://www.sciencedirect.com/science/article/pii/0925231291900165

[58] Byeongjang Jeong and Yong Hoon Lee, “Design of weighted order statistic filters

using the perceptron algorithm,” IEEE Transactions on Signal Processing, vol. 42,

no. 11, pp. 3264–3269, Nov 1994.

[59] Wang Qinruo, Yi Bo, Xie Yun, and Liu Bingru, “The hardware structure design of

perceptron with fpga implementation,” in SMC’03 Conference Proceedings. 2003 IEEE

International Conference on Systems, Man and Cybernetics. Conference Theme - System

Security and Assurance (Cat. No.03CH37483), vol. 1, 2003, pp. 762–767 vol.1.

95

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8667.1989.tb00026.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8667.1989.tb00026.x
http://www.sciencedirect.com/science/article/pii/0925231291900165

[60] Y. hsin Chen, T.-J. Yang, and J. S. Emer, “Understanding the limitations of existing

energy-efficient design approaches for deep neural networks,” in Energy, vol. 2,

no. L1, 2018, p. L3.

[61] R. W. Keyes and R. Landauer, “Minimal energy dissipation in logic,” IBM Journal of

Research and Development, vol. 14, no. 2, pp. 152–157, 1970.

[62] M. de Prado, M. Denna, L. Benini, and N. Pazos, “Quenn: Quantization engine for

low-power neural networks,” in Proceedings of the 15th ACM International Conference

on Computing Frontiers. ACM, 2018, pp. 36–44.

[63] A. Yakovlev, “Energy-modulated computing,” in 2011 Design, Automation Test in

Europe, March 2011, pp. 1–6.

[64] D. Shang, X. Zhang, F. Xia, and A. Yakovlev, “Asynchronous design for new on-chip

wide dynamic range power electronics,” in 2014 Design, Automation Test in Europe

Conference Exhibition (DATE), March 2014, pp. 1–6.

[65] R. LiKamWa, Y. Hou, Y. Gao, M. Polansky, and L. Zhong, “Redeye: Analog convnet

image sensor architecture for continuous mobile vision,” in 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA), June 2016, pp. 255–

266.

[66] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel and Sze, Vivienne, “Eyeriss:

An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural

Networks,” in IEEE International Solid-State Circuits Conference, ISSCC 2016, Digest

of Technical Papers, 2016, pp. 262–263.

[67] L. Rosenblum and A. Yakovlev, “Signal graphs: from self-timed to timed ones,” in

IEEE int. Workshop on Timed Petri Nets, 1985.

[68] G. Kim, M.-K. Kim, B.-S. Chang, and W. Kim, “A low-voltage, low-power cmos

delay element,” IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 966–971, 1996.

[69] C.-Y. Yu, C.-C. Chung, C.-J. Yu, and C.-Y. Lee, “A low-power dco using interlaced

hysteresis delay cells,” IEEE Transactions on Circuits and Systems II: Express Briefs,

vol. 59, no. 10, pp. 673–677, 2012.

96

[70] J. W. Peterson, “Solid state transmission gate,” Patent US4 473 761 (A), 09 25, 1984.

[71] B. C. Grugett, “Biasing circuit for reducing body effect in a bi-directional field effect

transistor,” Patent US5 767 733 (A), 06 16, 1998.

[72] F. Maloberti, “Charge injection compensation,” in Analog Design for CMOS VLSI

Systems. Springer, 2001.

[73] T. Andersen, F. Krismer, J. Kolar, T. Toifl, C. Menolfi, L. Kull, T. Morf, M. Kossel,

M. Brandli, P. Buchmann, and P. Francese, “A deep trench capacitor based 2:1 and

3:2 reconfigurable on-chip switched capacitor dc-dc converter in 32 nm soi cmos,”

03 2014, pp. 1448–1455.

[74] R. David, “Modular design of asynchronous circuits dened by graphs,” IEEE

Transactions on Computers, vol. 26, no. 8, pp. 727–737, 1977.

[75] I. Vaisband, M. Azhar, E. G. Friedman, and S. Köse, “Digitally controlled pulse

width modulator for on-chip power management,” IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 22, no. 12, pp. 2527–2534, 2014.

[76] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[77] Y. Du, L. Du, X. Gu, J. Du, X. S. Wang, B. Hu, M. Jiang, X. Chen, S. S. Iyer, and

M. F. Chang, “An analog neural network computing engine using cmos-compatible

charge-trap-transistor (ctt),” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, pp. 1–1, 2018.

[78] L. Deng, “The mnist database of handwritten digit images for machine learning

research [best of the web],” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 141–

142, 2012.

[79] M. D. Zeiler, M. Ranzato, R. Monga, M. Mao, K. Yang, Q. V. Le, P. Nguyen, A. Senior,

V. Vanhoucke, J. Dean, and G. E. Hinton, “On rectified linear units for speech

processing,” in 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing, 2013, pp. 3517–3521.

97

[80] “CADENCE homepage,” http://www.cadence.com/.

[81] “MATLAB homepage,” http://www.mathworks.com/.

[82] L. K. Muller and G. Indiveri, “Rounding methods for neural networks with low

resolution synaptic weights,” eprint arXiv:1504.05767, p. arXiv:1504.05767, 2015.

[Online]. Available: https://ui.adsabs.harvard.edu/abs/2015arXiv150405767M

[83] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,

and D. Kalenichenko, Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference, ser. arXiv e-prints, 2017. [Online]. Available:

https://ui.adsabs.harvard.edu/#abs/2017arXiv171205877J

[84] S. Wu, G. Li, F. Chen, and L. Shi, Training and Inference with Integers in

Deep Neural Networks, ser. arXiv e-prints, 2018. [Online]. Available: https:

//ui.adsabs.harvard.edu/#abs/2018arXiv180204680W

[85] H. Jiang, K. Yamada, Z. Ren, T. Kwok, F. Luo, Q. Yang, X. Zhang, J. J. Yang, Q. Xia,

Y. Chen, H. Li, Q. Wu, and M. Barnell, “Pulse-width modulation based dot-product

engine for neuromorphic computing system using memristor crossbar array,” in

2018 IEEE International Symposium on Circuits and Systems (ISCAS), Conference

Proceedings, pp. 1–4.

98

http://www.cadence.com/
http://www.mathworks.com/
https://ui.adsabs.harvard.edu/abs/2015arXiv150405767M
https://ui.adsabs.harvard.edu/#abs/2017arXiv171205877J
https://ui.adsabs.harvard.edu/#abs/2018arXiv180204680W
https://ui.adsabs.harvard.edu/#abs/2018arXiv180204680W

	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Challenges of IoT applications
	Requirements to the power regulators for IoT devices
	Improvement of power robustness of IoT devices
	Summary
	Main publications on the thesis
	Thesis layout

	Background
	Principle of operation and challenges of SCCs
	Two-phase SCC
	Multi-phase SCC
	Self-oscillating SCC
	Bottom plate capacitance and parasitic charge redistribution

	Principles of asynchronous circuits design
	Self-timed buck controller design

	AI hardware design for energy efficiency

	Design of efficient SCCs
	Two-phase SCC control
	Multi-phase SCC control
	Self-oscillating SCCs with parasitic charge redistribution
	SCC simulation
	Switch design and simulation
	Two-phase SCC simulation
	Multi-phase SCC simulation
	Simulations of the self-oscillating SCC

	Summary

	Power-elastic PWM-based perceptron
	Principles of duty cycle to voltage conversion
	PWM arithmetic
	Voltage to PWM conversion
	PWM-coded perceptron design
	PWM-coded neural network design
	Summary

	Simulation results
	Simulation flow
	Analysis and validation of PWM-coded perceptron
	Power elasticity and resilience in static operation
	Analysis of perceptron operation in dynamics
	Perceptron design trade-off analysis
	Validation and analysis of PWM-coded neural network
	Summary

	Conclusions
	Contributions
	Future work

	Bibliography

