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ABSTRACT 

 

Sepsis complicated by coagulopathy is associated with a higher mortality rate.  The cell 

surface expression of tissue factor (TF) may be important in its development.  There at least 

three subsets of monocytes – classical, intermediate and non-classical – that vary in 

proportion during sepsis.  This project used three approaches to investigate how the monocyte 

subsets and their endothelial interaction could contribute to sepsis-associated coagulopathy: 

the in vitro stimulation of healthy monocytes with lipopolysaccharide (LPS) and endothelial 

co-culture; the use of a human model of endotoxaemia; and the collection of blood samples 

from individuals with sepsis. 

 

LPS stimulation of healthy monocytes demonstrated that the monocyte subsets express cell 

surface TF to different extents.  Classical and intermediate monocytes express the highest 

proportion of TF in response to LPS.  An in vitro monocyte-endothelial co-culture model 

demonstrated that monocytes could promote coagulation through the increased cell surface 

expression of TF, independent of LPS, and influence the endothelial fibrinolytic response. 

 

Blood samples were taken at a range of time-points following an injection of LPS into a 

healthy volunteer.  An increase in cell surface TF occurred within 90 minutes of exposure to 

LPS and was associated with an increase in markers of coagulation.  Individuals varied in 

their response to LPS, with two groups identified: high and low responders.  The response of 

individuals was consistent between the subsets. 

 

Samples from individuals with sepsis expressed a higher level of cell surface TF compared to 

individuals who were critically ill but did not have sepsis.  The surface expression of TF 

increased further when measured following recovery from sepsis. 

 

This work demonstrates that the cell surface expression of TF varies between the monocyte 

subsets, that individuals may increase monocyte TF expression to different levels, and that 

individuals with sepsis express higher levels of TF both at the time of sepsis and following 

recovery.  
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1. Chapter 1. Introduction 
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1.1 Overview 

Sepsis is defined as life-threatening organ dysfunction caused by a disordered immune 

response to infection (Singer et al., 2016).  Despite significant advances in critical care 

medicine, it has an unacceptably high mortality rate (Angus et al., 2001; Fleischmann et al., 

2016; Meyer et al., 2018).  Frequently, sepsis occurs concomitantly with a coagulopathy that 

further reduces an individual’s chances of recovery.  Multiple interventional studies have 

failed to find any therapies that can improve these outcomes (Warren et al., 2001; Ranieri et 

al., 2012; Vincent et al., 2013).  There is an urgent need to better understand the 

pathophysiology and to identify new therapeutic targets.   

 

The role of intravascular tissue factor (TF), expressed on monocytes, and subsequent 

activation of the coagulation system is believed to be an important trigger for coagulopathy 

(Gando et al., 2016).   Monocytes can be divided into at least three functionally different 

subsets; however, there is a paucity of data regarding TF expression between these subsets 

(Stojkovic et al., 2017).  This work investigates the role of monocyte subsets and their TF 

expression during health, endotoxaemia and sepsis. 

 

Monocytes are divided into subsets using the cell surface markers cluster of differentiation 

(CD)14, a co-receptor for LPS, and CD16, a weak Fc gamma receptor.  The subsets are 

identified as ‘classical’ (CD14++CD16-), ‘non-classical’ (CD14+CD16++) and ‘intermediate’ 

(CD14++CD16+) (Ziegler-Heitbrock et al., 2010a).  Classical monocytes are mainly 

associated with bacterial killing, producing the most reactive oxygen species and being the 

most phagocytic; non-classical are believed to ‘patrol’ the endothelium and have a role in 

tissue repair; and intermediate monocytes have been associated with viral killing (Wong et 

al., 2011). 

 

During sepsis, there is an increase in circulating non-classical monocytes and a proportionate 

decrease in circulating classical monocytes (Fingerle et al., 1993). This project investigates 

whether this change in circulating monocyte subsets may contribute to the coagulopathy of 

sepsis.  Improved understanding of how TF expression varies between the monocytic subsets 

may allow for the identification of new therapeutic targets in the management of sepsis-

associated coagulopathy. 

  

This chapter will discuss the following in further detail: the poorer outcomes from sepsis-

associated coagulopathy; possible causes of the coagulopathy; the role and function of TF; a 
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comparison of the monocyte subsets; and how best to model the immune response to 

inflammation to better understand the pathophysiology.  Current literature will be reviewed, 

and a context established for the rest of this work. 

 

1.2 Sepsis 

1.2.1 Overview 

This section discusses the incidence and mortality rates of sepsis over the last few decades 

and clarifies the changes in definition that have occurred. 

 

1.2.2 The incidence and outcomes of sepsis 

Sepsis is increasing in incidence.  A review of over 750 million hospital admissions in the 

United States showed an increase in cases of sepsis, between 1979 and 2000, from 82.7 cases 

to 240.4 per 100,000 population (zieglerMartin et al., 2003).   The associated in-hospital 

mortality rate, however, has decreased over the last 30 to 40 years, from approximately 30 % 

to nearer 20 % (Angus et al., 2001; Martin et al., 2003; Brun-Buisson et al., 2004; 

Fleischmann et al., 2016; Meyer et al., 2018).  Most likely this reflects an improvement in 

critical care and evidence-based guidelines such as the Surviving Sepsis Campaign (Levy et 

al., 2014).  Despite this decrease, a significant proportion do not survive, and combined with 

the rising incidence there has been a three-fold increase in the total number of deaths (Martin 

et al., 2003).   

 

Most sepsis trials measure mortality at 28 days or over the ‘in-hospital’ period; the two rates 

have been shown to be similar (Stevenson et al., 2014).  Failure to consider the longer-term 

mortality rates, however, will likely underestimate the true mortality rate of sepsis.   Several 

studies have demonstrated an increasing mortality rate in survivors of sepsis up to 5 years 

following the episode (Quartin et al., 1997; Brun-Buisson et al., 2004; Laupland et al., 2005). 

 

A significant proportion, approximately 20 %, of sepsis survivors are re-admitted to hospital 

within 30 days.  This is higher than for other acute medical admissions (Jones et al., 2015; 

Prescott et al., 2015).  Recent work has shown that although this percentage may be starting 

to drop, to some degree this has been offset by the number of attendances to the emergency 

department where patients received treatment but were not admitted.  Due to the rising 

incidence, this has resulted in a three-fold increase in re-admissions (Meyer et al., 2018).  The 

most common reasons for re-admission are sepsis, congestive cardiac failure and pneumonia 

(Prescott et al., 2015; Sun et al., 2016). 
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Long-term morbidities associated with sepsis should also not be forgotten.  Survivors develop 

more recurrent infections and are at higher risk for thromboembolic disease for at least 12 

months following the episode of sepsis (Mejer et al., 2015; Arens et al., 2016; Ou et al., 

2016).  The cause for these longer-term complications remains unclear.  There is a trend 

towards higher inflammatory markers in survivors, whilst stimulation of ex-vivo blood 

samples of survivors showed a lower level of pro-inflammatory cytokine release (Arens et al., 

2016).  To determine the longer-term impact on survivors of sepsis, further work is needed to 

understand the causes of these morbidities and increased mortality (Shankar-Hari and 

Rubenfeld, 2016). 
 

1.2.3 Defining sepsis 

In 1991, the American College of Chest Physicians (ACCP) and Society of Critical Care 

Medicine (SCCM) reached a consensus for defining sepsis that included the need for 

confirmation of infection and evidence of a host inflammatory response, i.e. the systemic 

inflammatory response syndrome (SIRS) (Bone et al., 1992). 

 

This was reviewed in 2001, when it was recognised that clinicians were unclear as to the 

definitions of sepsis and there was concern that SIRS criteria (extremes of core temperature, 

tachycardia, high respiratory rate, hypoxia, high or low white count or more than 10 % 

immature white cells in the peripheral blood) were not specific enough.  Definitions were 

revisited at the 2001 International Sepsis Definitions Conference, which included the ACCP, 

SCCM, American Thoracic Society (ATS), European Society of Intensive Care Medicine 

(ESICM) and Surgical Infection Society (SIS).  The diagnostic criteria for sepsis were 

expanded to include other physical and laboratory signs of SIRS that may occur due to 

infection (Levy et al., 2003). 

 

The poor specificity of the SIRS criteria remained.  A large cohort study reviewed individuals 

with signs of infection and organ failure from 172 ICUs across Australia and New Zealand 

between 2000 and 2013.  Approximately 10 % did not meet the conventional criteria for 

severe sepsis due to having ≤ 2 SIRS criteria; however, they had a similar mortality rate to 

those with > 2 (Kaukonen et al., 2015). 

 

As the pathophysiology of sepsis has become increasingly understood, the ESICM and SCCM 

again met throughout 2014 and into early 2015 to review the definitions.  Sepsis was defined 



 5 

as “life-threatening organ dysfunction caused by a dysregulated host response to infection” 

and septic shock was taken to refer to a subset of individuals who have “profound circulatory, 

cellular and metabolic abnormalities” (see Table 1.1).  The new definitions do not include 

‘severe sepsis’ and remove the need for SIRS criteria. They are based on the development of 

organ dysfunction, measured with the Sequential (Sepsis-related) Organ Failure Assessment 

(SOFA, see) score, and emphasise the need for close monitoring of all septic individuals 

(Seymour et al., 2016).  This work uses this latter definition. 
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This table shows the 2015 definitions of sepsis and septic shock from “Sepsis-3: The Third 

International Consensus Definitions for Sepsis and Septic Shock”, adapted from Singer et al. 

2016 (Seymour et al., 2016; Singer et al., 2016). 

  

Concept Definitions 

Sepsis Life-threatening organ dysfunction caused by a dysregulated host 

response to infection 

Organ dysfunction Acute change of 2 or more points in the Sequential (Sepsis-related) 

Organ Failure Assessment (SOFA) score 

Septic shock Severely affected subset of sepsis, when circulatory, metabolic or 

cellular abnormalities are profound enough to increase mortality. 

Requires sepsis diagnosis with one of the below criteria. 

Criteria for shock Vasopressors needed to maintain mean arterial blood pressure at 

greater than 65mmHg  

Lactate greater than 2mmol/L despite fluid resuscitation 

Table 1.1 The definition of sepsis 
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Table 1.2 The Sequential (Sepsis-related) Organ Failure Assessment (SOFA) score 

This table shows the Sequential (Sepsis-related) Organ Failure Assessment (SOFA) adapted 

from Jones et al. (Jones et al., 2009). Glasgow coma scale from Teasdale and Jennett 

(Teasdale and Jennett, 1974). Dopamine, noradrenaline and dobutamine to be administered 

for at least 1 hour, units - µg/kg/min.  

(abbreviations: dL – decilitre, kg – kilogram, mg- milligram, min – minute, mL – millilitre, 

mm – millimetres, mmHg – millimetres of mercury).  

SOFA score 1 2 3 4 

Respiratory criteria         

PaO2/FiO2 (mmHg) <400 <300 <220 <100 

SaO2/FiO2 221-301 142-220 67-141 <67 

Cardiovascular 

criteria 
        

Hypotension 
MAP <70 

mmHg 

dopamine ≤5 or 

any dobutamine 

dopamine >5 

or 

norepinephrine 

≤0.1 

dopamine >15 or 

norepinephrine 

>0.1 

Neurological 

criteria 
        

Glasgow coma 

score 
13-14 10-12 6-9 <6 

Renal criteria         

Creatinine (mg/dL) 1.2-1.9 2.0-3.4 3.5-4.9 >5.0 

Urine output 

(mL/day) 
- - <500 <200 

Haematological 

criteria 
        

Platelets 

(x103/mm3) 
<150 <100 <50 <20 

Hepatic criteria         

Bilirubin (mg/dL) 1.2-1.9 2.0-5.9 6.0-11.9 >12.0 
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1.2.4 Summary 

Overall, there has been a rise in the incidence of sepsis, and it is associated with both a 

significant mortality rate and long-term morbidity.  There is a need to better understand the 

underlying pathophysiology to help guide future studies. A continuing challenge to research is 

the difficulty in establishing a concise definition that is useful both clinically and in 

performing research studies.  When reviewing literature regarding sepsis, it is important to 

bear in mind the recent changes in definition.  A recent study prospectively scored cases of 

sepsis by the Sepsis-3 and earlier definitions, demonstrating that Sepsis-3 identified fewer 

cases but of a more severe phenotype than earlier definitions (Driessen et al., 2018).  This 

obviously has implications when considering studies of sepsis prior to the adoption of Sepsis-

3. 

 

1.3 Sepsis-associated coagulopathy 

1.3.1 Overview 

The association between coagulopathy and sepsis has been recognised for many decades, 

initially discussed in multiple case reports.  Corrigan first systematically documented the 

effects of sepsis on coagulation in a series of 26 individuals.  The cases were divided into two 

groups, normotensive and hypotensive, with the latter group displaying a more severe 

coagulopathy.  The correlation between severity of disease and coagulopathy was highlighted 

(Corrigan et al., 1968).  This section will briefly outline the physiological processes of 

coagulation and fibrinolysis before discussing the causes and effects of sepsis-associated 

coagulopathy. 

 

1.3.2 The coagulation system 

The coagulation system was first described in the early 1960s, originally considered a cascade 

of reactions with three pathways, intrinsic, extrinsic and common (Davie and Ratnoff, 1964; 

Macfarlane, 1964).  These pathways are composed of a series of reactions; inactive pro-

enzymes of serine proteases are activated and then catalyse the next pro-enzyme in the 

cascade.  This description of coagulation was based upon laboratory assays and was not a true 

reflection of the in vivo situation.  The extrinsic pathway function is reflected by the 

prothrombin time (PT) measurement and the intrinsic pathway by the activated partial 

thromboplastin time (APTT). 

 

Venous haemostasis is achieved by the formation of a stable clot composed of platelets and 

fibrin; however, the pro-thrombotic factors required to create this must also be contained and 

https://en.wikipedia.org/wiki/Serine_protease
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localised to the site of injury.  The cell-based model by Hoffman et al. proposed in the 1990s 

is a more accurate representation and involves three stages: initiation, propagation and 

amplification (Hoffman, 2003).  During initiation, TF expressed on a cell surface binds and 

activates the pro-enzyme factor VII into the activated FVIIa (FVIIa); this complex then 

creates a small amount of activated factors X (FXa) and XI (FXIa) on the cell surface.  This 

FXa remains on the cell surface and activates factor V (FVa).  FXa and FVa then bind to form 

the prothrombinase complex (FXa:FVa), capable of cleaving prothrombin into thrombin.  

Although small amounts of thrombin are subsequently formed, this action is quickly inhibited 

by anti-thrombin (AT) and tissue factor pathway inhibitor (TFPI).   

 

For a thrombus to form there must be an amplification step and this requires the proximity of 

an activated platelet.   The small amounts of thrombin already formed serve to activate 

platelets, which release more Va.  Factor VIII bound to its carrier protein von Willebrand 

factor (vWF) in the plasma then binds to the activated platelet.  Thrombin cleaves the vWF 

and activated VIII (FVIIIa).  By the completion of amplification, FVa and FVIIIa are bound 

to the activated platelet surface.   

 

Both the prothrombinase and now the tenase (FIXa:FVIIIa) complexes form on the platelet 

surface, and propagation begins.  The tenase complex greatly increases the formation of FXa, 

leading in turn to a much higher concentration of the prothrombinase complex and a greater 

production of thrombin.  The cell-based model is further explained in Figure 1.1.  Thrombin 

not only serves to cleave fibrinogen into fibrin but is also a potent aggregator of platelets.    

 

Fibrin monomers polymerise to an insoluble fibrin network.  This polymerisation is initially 

reversible but is stabilised by FXIII, activated by thrombin, that covalently crosslinks the 

fibrin strands (Weisel and Litvinov, 2017). 

 

In vitro experiments have also given rise to the idea of a ‘contact pathway’.  This is composed 

of three proteins: factor XII (FXII), prekallikrein (PK) and high molecular weight kininogen 

(HK) that all become activated when on a negatively charged surface and can shorten in vitro 

clotting times.  The in vivo activator has not been identified.  FXII is known to auto-activate 

on negatively charged surfaces; it then activates PK to plasma kallikrein.  Kallikrein itself can 

activate FXII.  HK binds to the negatively charged surface and acts as a cofactor for both the 

activation of FXII and the production of kallikrein.  The cleavage of HK by PK leads to the 

release of bradykinin, a proinflammatory mediator.  C1NH is the main inhibitor of both FXIIa 
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and PK.  The physiological role of this pathway in coagulation is yet to be elucidated and 

remains controversial.  It is worth noting that deficiency in one of these three plasma proteins 

does predispose an individual to an increased risk of bleeding, as is seen with other 

coagulation factors (Schmaier, 2014; Wu, 2015; Maas and Renné, 2018). 

 

Control of coagulation involves three anticoagulant pathways: the protein C system, TFPI and 

antithrombin. Thrombin binds to endothelially bound thrombomodulin and thereby activates 

protein C; this, along with its co-factor protein S, works to degrade FVIIIa and FVa, thereby 

inhibiting both the prothrombinase and the tenase complexes.  TFPI is the main inhibitor of 

TF and works by binding to TF that is complexed to FVIIa.  Antithrombin binds and forms a 

complex with both thrombin and FXa (Gando et al., 2016).   Alpha 1 antitrypsin (A1AT), a 

serine protease inhibitor, has been shown to bind strongly to a fibrin clot and may also play a 

role in the inhibition of coagulation, but this is still unclear (Talens et al., 2013). 
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Figure 1.1 demonstrates the cell-based model of coagulation that comprises initiation, amplification 

and propagation as described below. 

1. Initiation  

1.1. TF on cells binds small amounts of factor VIIa in circulation and creates more VIIa from VII. 

1.2. TF bound to VIIa activates factor X and IX to Xa and IXa respectively. 

1.3. Factor Xa activates factor V (slowly) to Va. 

1.4. Factors Xa and Va bind on the cell surface to create the prothrombinase complex that 

cleaves prothrombin into thrombin. 

1.5. Thrombin can only be created in small quantities on the cell surface of the TF-expressing cell 

and is quickly mopped up away from the cell surface by circulating tissue factor pathway 

inhibitor (TFPI) and anti-thrombin (AT). 

 

 

Figure 1.1 Cell-based model of the coagulation system. 
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2. Amplification 

2.1. Occurs when the TF-expressing cell comes into contact with an activated platelet. 

2.2. Factor IXa and small amounts of thrombin produced on the TF-expressing cell reach the 

activated platelet. 

2.3. Factors VIII, IX and V are activated on the surface of the platelet to VIIIa, IXa and Va. 

2.4. Factor VIII is thereby released from von Willebrand Factor (vWF), its carrier protein. The 

released vWF promotes platelet aggregation. 

 

3. Propagation 

3.1. Factors VIIIa and IXa bind together on the platelet surface to form the tenase complex that 

activates factor X into Xa. 

3.2. Factors Xa and Va then bind on the platelet surface and form the prothrombinase complex. 

3.3. The tenase complex on the platelet allows for the creation of thrombin from prothrombin on 

the cell surface. 

3.4. Thrombin itself can then activate further platelets. 
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1.3.3 Overview of fibrinolysis 

Fibrinolysis is the process of resolving a clot.  Endothelial cells under normal conditions 

release tissue plasminogen activator (tPA) to maintain blood flow and prevent thrombus 

formation.  tPA works to cleave plasminogen into plasmin, which is capable of degrading 

fibrin into fibrin degradation products (FDPs) (such as D-dimers).  Monocytes also produce a 

plasminogen activator, urokinase plasminogen activator (uPA).  Both activators have an 

inhibitor: plasminogen activator inhibitor (PAI) -1 and PAI-2 respectively.  Monocytes can 

produce PAI-1 and PAI-2.  Endothelial cells produce PAI-1 and tPA simultaneously, and it is 

the balance between them that determines whether fibrinolysis is promoted or suppressed (see 

Figure 1.2). 
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Figure 1.2 A summary of fibrinolysis. 

Fibrinolysis is the breakdown of fibrin and is therefore essential for the resolution of thrombus.  It is 

the process of activating plasmin to cleave fibrin into fibrin degradation products (FDPs). Step 1: 

tissue plasminogen activator (tPA) is released from the endothelium.  tPA can be inhibited by 

plasminogen activator inhibitor (PAI-1).  PAI-1 is primarily released by endothelium and a small 

amount of PAI-1 is released from monocytes.  Step 2: tPA cleaves plasminogen into plasmin.  Step 3: 

plasmin cleaves fibrin into fibrin degradation products.  α2-antiplasmin works to inhibit plasmin.  

(RBC – red blood cell). 
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1.3.4 Thromboinflammation 

Innate immunity and coagulation are not separate systems that work in isolation: increasingly, 

there is evidence of complex interaction between the two (Engelmann and Massberg, 2013).  

Invertebrates such as insects and crustaceans have not evolved two separate processes, but use 

a single system called haemolymph coagulation (Muta and Iwanaga, 1996; Dushay, 2009).  

Haemolymph of the horseshoe crab (Limulus polyphemus) contains haemocytes that are very 

sensitive to LPS; this is an endotoxin that forms part of the cell wall of Gram-negative 

bacteria and is a potent stimulus for inflammation.  Once stimulated, haemocytes release their 

granular contents and trigger coagulation.  Intravascular pathogens become trapped within the 

forming thrombus whilst anti-microbial substances also released from haemocytes destroy 

them (Muta and Iwanaga, 1996).  How coagulation and immunity cooperate in humans is still 

to be elucidated. 

 

Considering coagulation initially, thrombin, fibrinogen and fibrin have all been shown to 

recruit and activate innate immune cells.  Thrombin induces the endothelial release of pro-

inflammatory cytokines, including tumour necrosis factor (TNF)α, IL-1α and IL-6;  this has 

been shown with in vitro and animal models to increase neutrophil migration (Drake et al., 

1992).  Thrombin is also able to directly activate complement and can cleave both C3 and C5 

(Huber-Lang et al., 2006; Krisinger et al., 2012). 

 

Fibrinogen and fibrin have been shown repeatedly to have anti-microbial effects.  Evidence 

from animal models suggests that fibrinogen and fibrin may limit the spread of pathogens 

intravascularly.  Group A Streptococcus secretes the enzyme streptokinase, which is highly 

specific for human plasminogen. A transgenic murine model expressing human plasminogen 

has a higher mortality rate following subcutaneous group A streptococcal infection when 

compared to wild-type.  This difference in mortality was not evident with intravenous 

infection.  The authors hypothesise that fibrinogen works to prevent spread of pathogens 

through the vasculature and that streptokinase is a way for bacteria to circumvent this 

defence.  The transgenic mice were shown to have a more widespread distribution of bacterial 

colonies when compared to wild-type following subcutaneous infection (Sun et al., 2004).  

Fibrinogen and plasminogen also play a role in Yersinia petis infection.  Either the creation of 

a plasminogen deficient murine model or the removal of the Yersinia plasminogen activator 

confers resistance to infection (Degen et al., 2007).   
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Fibrinogen is able to directly activate innate immune cells.  Through direct binding to 

complement receptor macrophage (MAC)-1 on neutrophils, fibrinogen induced degranulation, 

an increase in phagocytosis and delayed apoptosis (Rubel et al., 2001).  Stimulation of both 

murine and human monocytic cell lines with fibrinogen lead to an increase in monocyte 

chemokine secretion.  This effect was not blocked by hirudin, a thrombin inhibitor, suggesting 

that it was fibrinogen rather than fibrin that was responsible (Smiley et al., 2001). 

 

It is challenging to identify the distinct anti-microbial roles of fibrinogen and fibrin.  A 

fibrinogen resistant to cleavage by thrombin was added to a murine fibrinogen knockout 

model.  Plasma from the model was unable to produce fibrin in response to thrombin, 

although the fibrinogen was still able to induce platelet aggregation.  As with fibrinogen 

deficient mice, there was impaired clearance of Streptococcus following an intra-peritoneal 

injection.  Model mice, however, had a lower early mortality rate when compared to the 

fibrinogen-deficient mice.  This work suggests a role for both fibrinogen and fibrin.  

Potentially, fibrin may limit the spread of infection, but fibrinogen itself also exerts anti-

microbial effects (Prasad et al., 2015).  

 

Platelets also appear to have an immune function.  For many years it has been known that 

platelets will aggregate and become activated by the presence of LPS and bacteria (Clawson 

and White, 1971a; Clawson and White, 1971b; Clawson, 1973; Clawson et al., 1975; Zhang 

et al., 2009).  They are also known to express the toll-like receptor (TLR)-2, TLR-4 and TLR-

9 (Cognasse et al., 2005).  These receptors are important in the detection of pathogen-

associated molecular patterns (PAMPs). 

 

Platelets also have the potential to activate polymorphonuclear cells.  Triggering receptor 

expressed on myeloid cells (TREM)-1 is expressed on neutrophils and monocytes.  Following 

infection, TREM-1 is upregulated and promotes functions such as phagocytosis and IL-8 

release (Bouchon et al., 2000).  Platelets have been shown to express a ligand for TREM-1.  

Whilst binding of TREM-1 did not induction platelet activation or aggregation, there was an 

enhancement in the neutrophil reactive oxygen species production following LPS incubation; 

this effect was blocked by the presence of either a TREM-1 specific Ab or excess of 

recombinant soluble TREM-1 (Haselmayer et al., 2007).   

 

Innate immune cells have also been shown to promote coagulation.  Several innate immune 

cells have been shown capable of expressing TF on their cell surface (Giesen et al., 1999; 
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Darbousset et al., 2012).  The role of TF on the monocyte surface will be discussed in more 

detail later (see section 1.4.4, page 28).   

 

Intra-vital imaging during a mouse model of venous thrombus, induced by restriction of blood 

flow, demonstrated endothelial adhesion of neutrophils and monocytes prior to the formation 

of a thrombus.  This was not seen in control mice that underwent a sham procedure.  

Repeating the experiment using P-selectin knockout models prevented not only the 

accumulation of the leucocytes but also the formation of thrombus.  The development of 

thrombus in this model was TF-dependent.  Repeating the experiment using a mouse that 

received a bone marrow transplant from a TF knockout donor prevented thrombus formation, 

suggesting it was the TF expressed on blood cells rather than the endothelium that initiated 

coagulation.  Intra-vital microscopy also identified the presence of extracellular DNA 3 hrs 

following the flow restriction; the DNA was in close proximity to neutrophils.  The authors 

propose that this may be due to release of neutrophil extracellular traps (NETs) and that they 

may also contribute to thrombus formation (Fuchs et al., 2010; von Bruhl et al., 2012).  A 

knockout mouse deficient in the neutrophil serine proteases elastase and cathespin G shows 

reduced thrombus formation following carotid artery injury.  Compared to wild-type mice, 

thrombi were smaller, more fragile and with a prolonged time to vessel occlusion (Massberg 

et al., 2010). 

 

Cooperation between the coagulation and innate immune systems appears to be necessary to 

fight infection.  Potentially, a failure of thromboinflammation may predispose to both the 

coagulopathy and the immune dysregulation that occurs during sepsis. 

 

1.3.5 Sepsis-associated coagulopathy and disseminated intravascular coagulation 

Most cases of sepsis involve a degree of coagulopathy; it occurs in a spectrum from the very 

mild, detectable only by the most sensitive of laboratory assays, to the clinically evident, 

presenting with thrombosis and/or bleeding (Levi and van der Poll, 2017).  Initially, a 

systemic activation of the coagulation process leads to the deposition of fibrin, particularly in 

vessels smaller than 1µm in diameter (micro-vessels).  Later, a consumption of coagulation 

proteins and a reduction in platelet number can lead to haemorrhagic complications.  The 

fibrinolytic system is also more active in sepsis, with an increase in fibrin degradation 

products such as d-dimer levels and a decrease in the circulating levels of tPA and uPA (Levi 

et al., 1993).   
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Approximately 50-70 % of sepsis cases have associated coagulopathy, a third of which meet 

the criteria for disseminated intravascular coagulation (DIC), a syndrome where the activation 

of intravascular coagulation occurs in small and medium-sized vessels and is not localised to 

a specific site of injury.  The widespread activation of coagulation occurs simultaneously with 

both an inhibition of fibrinolysis and a depletion in physiological anticoagulants, leading to 

intravascular thrombus which contributes to the organ dysfunction associated with sepsis 

(Gando et al., 2016).  Post-mortem studies have shown micro-thrombi to be a frequent 

presentation of DIC, with the kidney as the most commonly affected organ.  Haemorrhage 

was present in only a minority of cases (Robboy et al., 1972). 

 

There is no specific therapy for DIC, other than to treat the underlying cause.  As with sepsis, 

there had been a difficulty in defining DIC, with multiple definitions and guidelines available.  

In 2013, a scientific subcommittee of the International Society of Thrombosis and 

Haemostasis (ISTH) met to combine three guidelines from the British Committee for 

Standards in Haematology (BCSH), the Japanese Society of Thrombosis and Hemostasis 

(JSTH), and the Italian Society for Thrombosis and Hemostasis (SISET).  Recommendations 

included the use of a DIC scoring system.  Currently three scores are available: the ISTH 

overt score, which is most diagnostically specific; the Japanese Ministry of Health, Labor and 

Welfare (JMHLW) score; and the Japanese Association of Acute Medicine (JAAM) score, 

which is most diagnostically sensitive.  All three scores can predict poorer outcomes 

(Takemitsu et al., 2011; Wada et al., 2013).  A comparison of the three scores is given in 

Table 1.3. 
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Table 1.3 A comparison of three DIC scores 

This table shows the three ISTH-recommended DIC scores; ISTH (Toh and Hoots, 2007), 

JAAM (Gando et al., 2013) and JMHLW (Wada et al., 2015). (SF – soluble fibrin, ULN – 

upper limit of normal). 

 

  

  
ISTH JAAM JMHLW 

Risk factors 
Underlying disease 

capable of causing DIC 0 (essential) 0 (essential) 1 

Clinical symptoms 0 1 if SIRS score ≥3 
1 for bleeding;                

1 for organ 
failure 

Platelet count (x109/L) 1 for 50-100;                     
2 for <50 

1 for 80-120 or >30% 
reduction;                        

3 for <80 or >50% 
reduction 

1 for 80-120;                     
2 for 50-80;                       

3 for <50 

Fibrin-related marker 

 D-dimer, FDP or SF.     
2 > ULN but <5X 

ULN;                                 
3 > 5X ULN 

FDP (µg/mL).                   
1 for 10-25;                       

3 for >25 

FDP (µg/mL).                   
1 for 10-20;                       
2 for 20-40;                       

3 for >40 

Fibrinogen (g/L) 1 for <1 0 1 for 1-1.5;                         
2 for <1 

Prothrombin time 

Prolonged PT 
(seconds above 

normal).                        
1 for 3-6;                            
2 for ≥6 

PT ratio.                             
1 for >1.2 

PT ratio.                               
1 for 1.25-1.67;                

2 for >1.67 

Score needed for 
diagnosis of DIC ≥ 5 ≥ 4 ≥ 7 
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1.3.6 Causes of coagulopathy 

As mentioned above, thrombocytopenia is the most common manifestation of sepsis-

associated coagulopathy.  Causes include decreased production, consumption, splenic 

sequestration and possibly an increase in haemophagocytosis by mononuclear cells due to the 

increase in macrophage colony-stimulating factor (MCSF).  In a study of fifty patients with 

sepsis and concurrent thrombocytopenia, haemophagocytosis was found in a bone marrow 

aspirate of 64 %. Although all individuals had high levels of MCSF, cases with 

haemophagocytosis had the highest levels (Francois et al., 1997).  Other co-existing 

conditions such as heparin-induced or drug-induced thrombocytopenia may also contribute to 

low platelet counts (Warkentin et al., 2003; Levi and van der Poll, 2017). 

 

TF is the most important activator of coagulation during sepsis.  It is usually expressed only 

on extra-vascular tissues, but during sepsis it is upregulated on circulating monocytes (see 

section 1.4, page 27).  There are various stimuli that increase the monocytic expression of TF, 

including TNFα , interleukin (IL)-1β and LPS (Rivers et al., 1975; Conkling et al., 1988; 

Schwager and Jungi, 1994).  The upregulation of TF, and subsequent increase in intravascular 

thrombin, is believed to be an important cause of DIC.  Human and animal models of 

endotoxaemia, where a low level of endotoxin is infused and then blood samples taken at 

intervals, demonstrate an initial increase in TNF, followed by a peak in IL-6 and IL-1 levels.  

These models demonstrate an upregulation of TF expression on the monocyte cell surface, a 

125-fold increase in TF mRNA and an increase in thrombin production (van Deventer et al., 

1990; van der Poll et al., 1994; Franco et al., 2000; Gando et al., 2016).  Use of an antibody 

to inhibit TF during a primate model of endotoxaemia prevented both the development of 

coagulopathy and death (Taylor et al., 1991; Levi et al., 1994).  The use of such models will 

be discussed in more detail in section 1.6.  The ex vivo examination of monocytes from cases 

of meningococcal infection showed an increase in TF expression in approximately half, two-

thirds of which had levels 60-300-fold higher than the rest of the cohort.  All individuals with 

the highest levels died (Osterud and Flaegstad, 1983). 

 

Sepsis-associated coagulopathy also involves an activation followed by an inhibition of 

fibrinolysis.  Human models of endotoxaemia first demonstrated these biphasic changes, a 

rise in plasminogen activators (tPA and uPA) followed by a more sustained increase in 

plasminogen activator inhibitor (PAI)-1 (Suffredini et al., 1989; van Deventer et al., 1990).  

Pre-treatment with blocking antibodies to TNF and IL-6 in a chimpanzee endotoxaemia 

model greatly attenuated the increase in both plasminogen activators and PAI-1.  The 
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sustained release of PAI-1 ultimately leads to an inhibition of fibrinolysis during DIC 

(Biemond et al., 1995; Gando et al., 2016).  More recent work has also measured increased 

PAI-1 levels during cases of sepsis (Madoiwa et al., 2006).  

 

The dysregulation is compounded by disruption of the physiological anticoagulant pathways.  

Deficiencies in proteins C and S and antithrombin all occur during sepsis, due to either a 

decrease in production or loss from increased vascular permeability.    

 

Antithrombin activity is potentiated up to a thousand-fold by the binding of heparin.  The 

glycocalyx that covers the surface of the endothelium contains multiple heparin-like cofactors 

that behave in a similar way.  During sepsis the production of endothelial glycosaminoglycans 

is reduced.  Use of labelled sulphate molecules during the in vitro culture of porcine aortic 

endothelial cells showed that IL-1β or TNFα was able to reduce the production of heparin 

sulphate (Kobayashi et al., 1990).   

 

The anticoagulant protein C is activated by binding to endothelial-bound thrombomodulin.  

Skin biopsies from individuals with dermal purpura secondary to meningococcal sepsis 

showed a downregulation of both endothelial-bound thrombomodulin and the endothelial 

protein C receptor when compared to healthy controls (Faust et al., 2001).  This 

downregulation would limit the activity of protein C.    

 

There is no consistent evidence to suggest that TFPI is expressed at a lower level during 

sepsis, but a baboon endotoxaemia model demonstrates a decrease in mortality by the addition 

of TFPI (Novotny et al., 1991; Creasey et al., 1993; Gando et al., 2016). 

 

1.3.7 Predicting outcomes from sepsis-associated coagulopathy 

The development of coagulopathy is associated with a poorer outcome from sepsis (Fourrier 

et al., 1992).  Analysis of 840 individuals diagnosed with severe sepsis showed a correlation 

between 28-day mortality, higher SOFA scores and coagulopathy (Dhainaut et al., 2005).  

Thrombocytopenia at diagnosis of sepsis has also been correlated with organ dysfunction as 

demonstrated with SIRS and SOFA scores, whilst lower anti-thrombin levels have also been 

correlated with a higher mortality rate (Fourrier et al., 1992; Ogura et al., 2007). 

 

PAI-1 works to inhibit the breakdown of thrombus.  Raised PAI-1 levels (>90ng/mL) at the 

diagnosis of DIC (using JMHLW scores) have been associated with a higher 28-day mortality 
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rate and correlated with increasing SOFA scores.  Most non-septic cases in this study had an 

underlying malignancy, two-thirds of which were haematological. This suggests that a failure 

of the regulation of fibrinolysis plays a potential role in septic DIC (Madoiwa et al., 2006).  A 

recent meta-analysis of 19 studies confirmed this finding.  PAI-1 levels appear to be useful in 

predicting disease severity and mortality in cases of sepsis (Tipoe et al., 2018). 

 

DIC associated with sepsis undoubtedly increases the mortality rate; however, there does 

appear to be an improvement in survival over the last few decades.  Data from Japan recorded 

in 2010 and 2012 shows an increase in the incidence of DIC associated with sepsis (39.5 % vs 

43.3 %) but a decrease in sepsis-associated DIC mortality at 14 days (20.4 % vs 17.9 %) and 

28 days (31.1 % vs 27.7 %) (Murata et al., 2014).  This likely reflects a general improvement 

in the care of the critically ill patient (as discussed in section 1.2.2).   As with sepsis as a 

whole, a significant rate of mortality remains.  

 

1.3.8 Efforts to treat sepsis-associated coagulopathy 

With regard to DIC management, the mainstay of treatment is to treat the underlying cause, 

i.e. the sepsis. There is little to no evidence to support replacing deficient coagulation factors 

or platelets with transfusion, unless there are bleeding complications or platelet counts are 

lower than 10-20x109/L (Wada et al., 2013; Levi, 2016).  

 

Multiple interventional studies, which will now be discussed, have been performed with the 

aim of improving the outcomes of individuals with sepsis-associated coagulopathy; 

unfortunately, there has been limited success.  Heparin has been investigated not just as a 

potential anticoagulant but also for its possible role as an anti-inflammatory (Cornet et al., 

2007).  Initial work using a baboon model of DIC, during which animals were given an 

infusion of thrombin, showed that pre-treatment with heparin improved both survival and 

coagulopathy.  Treatment with heparin, two hours after the infusion of thrombin, did not 

correct coagulopathy but did reduce mortality rates to a lesser extent than pre-treatment (du 

Toit et al., 1991).  This model of DIC is significantly limited by the lack of fibrinolytic 

inhibition, reduction in physiological anticoagulants and possibility of increased bleeding due 

to the consumption of coagulation factors and platelets.  A more recent study used a non-

anticoagulant dose of heparin in a mouse model of sepsis (caecal ligation and puncture model, 

discussed further in section 1.6) and showed an improvement in inflammation and mortality 

(Wildhagen et al., 2014).  Evidence outside of animal models is lacking. A randomised 
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controlled trial of heparin as a treatment of sepsis-associated DIC is needed; however, this is 

always going to be hindered by the possibility of increasing a patient’s risk of haemorrhage. 
 
More work has been performed to investigate the efficacy of supplementing activated protein 

C (APC).  Preclinical studies showed that recombinant APC prevented coagulopathy 

(measured by prevention of hypofibrinogenaemia) and reduced mortality in a baboon model 

of lethal Escherichia coli sepsis (Taylor et al., 1987).  A later phase 2 study of drotrecogin 

alfa activated (DrotAA), a recombinant form of APC, showed a dose-dependent reduction in 

d-dimer and IL-6 levels, suggesting it improved coagulopathy and inflammation (Hartman et 

al., 1998).  A phase 3 double-blinded placebo-controlled trial (PROWESS) followed and was 

stopped early due to a perceived benefit.  It demonstrated a small reduction in any-cause 

mortality at 28 days (30.8 % vs. 24.7 %) but also an increased risk of bleeding (3.5 % vs. 2.0 

%) during the infusion period.  Those with the highest Acute Physiology and Chronic Health 

Evaluation (APACHE) II scores, i.e. the more severe disease, received the most benefit.  As 

with the previous studies, D-dimer levels were significantly lower in the treated group 

compared to placebo (Bernard et al., 2001).  A retrospective review of the phase 3 data was 

performed using a modified ISTH DIC score.  Participants with overt DIC derived a greater 

benefit from DrotAA (43 % untreated vs. 27 % treated 28-day mortality).  Rates of serious 

bleeding (defined as intracranial bleeding, a need for more than three red cell transfusions or 

life-threatening bleeding), however, were worse in those with overt DIC (0.9 % untreated vs. 

3.0 % treated) (Dhainaut et al., 2004).  As the original study was stopped early, some doubt 

remained regarding the benefit of DrotAA in treating certain populations, such as those with a 

lower severity of disease (Levi, 2008).  A few subsequent studies also cast doubt on the 

benefit of DrotAA. Abraham et al. showed no benefit compared to placebo when it was used 

in those with less severe disease (APACHE II score <25 or single organ failure) (Abraham et 

al., 2005).  A further randomised placebo-controlled trial was performed (PROWESS-

SHOCK); unfortunately, it failed to replicate the earlier results and no improvement was 

demonstrated in mortality rates at either 28 days or 90 days, but an increased risk of bleeding 

was shown (Ranieri et al., 2012).  Following these results, the use of activated protein C in 

sepsis in DIC was removed from the guidelines (Thachil et al., 2012).  DrotAA is no longer 

available as a therapeutic. 

 

Another possible therapy is antithrombin (AT) concentrate.  Multiple pre-clinical animal 

models have shown that AT can improve outcomes and coagulopathy, such as a rabbit 

endotoxaemia model that demonstrated less intravascular fibrin deposition with AT treatment 



 25 

(Giebler et al., 1999; Opal, 2000).  Initially, a small phase 2 study of 35 cases of sepsis-

associated DIC demonstrated that AT concentrate shortened the duration of coagulopathy and 

suggested that there might be a survival benefit from the treatment (Fourrier et al., 1993).  A 

much larger randomised placebo-controlled trial of over 2000 participants with sepsis 

compared three groups, placebo, AT and AT with heparin.  No significant reduction in 28-day 

mortality was demonstrated in either treatment group, but an increase in bleeding was 

observed in those participants who received heparin and AT (Warren et al., 2001).  As with 

DrotAA, a retrospective analysis of the data showed a mortality benefit in the subset of 

participants with a diagnosis of DIC (again using a modified ISTH score) who received AT 

without concomitant heparin (Kinasewitz et al., 2005).  Later meta-analyses suggest a benefit 

for AT in DIC, but these results must be prospectively investigated before it can be 

considered as therapy (Wiedermann, 2018).  In Japan, however, AT concentrate is 

recommended for the treatment of sepsis-associated DIC (Nishida et al., 2018). 

 

Despite no consistent evidence that TFPI is lowered during sepsis, there is some limited data 

to support the use of recombinant TFPI (rTFPI).  A phase 2 study of 210 cases, comparing 

two doses of rTFPI, showed no significant reduction in mortality but suggested that the 

activation of coagulation was inhibited with a significant reduction in thrombin-antithrombin 

complexes.  As with the previous interventions, there was a trend towards an increase in rates 

of bleeding, but in this case it was not significant (9 % in treated vs. 6 % untreated, p=0.39) 

(Abraham et al., 2001).  A larger phase 3 study showed no reduction in all-cause mortality at 

28 days; however, there was improved survival in participants with an international 

normalised ratio (INR) of less than 1.2 (12.0 % in treated vs. 22.9 % in untreated).  The use of 

rTFPI increased the risk of bleeding for all groups.  Once again, the use of rTFPI did show 

lower levels of thrombin-antithrombin complex and prothrombin fragments 1+2, suggesting it 

did inhibit coagulation; this result was seen regardless of the baseline INR (Abraham et al., 

2003). 
 

Thrombomodulin, which binds to active thrombin and acts as an important cofactor for APC 

when bound to endothelium, has also been investigated.  A phase 3 double-blind trial 

compared the use of thrombomodulin to low-dose heparin in cases of DIC associated with 

either sepsis or haematological malignancy.  Further analysis of the studies investigating 

APC, AT and TFPI suggests a possible improvement in mortality for those in the placebo 

group who received prophylactic dose heparin (Warren et al., 2001; Abraham et al., 2003).  

The use of soluble thrombomodulin, when compared to low dose heparin, reduced both the 



 26 

duration of DIC and the risk of bleeding complications.  In the small cohort of sepsis-

associated DIC (99 cases), there appeared to be a trend towards reduced mortality with 

thrombomodulin (28.0 % vs. 34.6 %).  In the group that received thrombomodulin, almost all 

markers of DIC were normalised, including thrombin:antithrombin, D-dimer and PAI-1 (Saito 

et al., 2007).  A further, placebo-controlled, phase 2 trial was performed to investigate the 

effects of thrombomodulin in cases of sepsis that met the ISTH criteria for DIC.  Although 

thrombomodulin improved markers of DIC as before, there was no reduction in mortality or 

differences in either thrombosis or bleeding between the two groups.  A sub-group analysis, 

however, did suggest a reduction in 28-day all-cause mortality in cases treated with 

thrombomodulin who had either cardiac or respiratory dysfunction, an INR higher than 1.4 

and a platelet count between 30-150 x109/L (26.3 % in treated vs. 38.2 % untreated) (Vincent 

et al., 2013).  As with AT concentrate, thrombomodulin is used in Japan.  A meta-analysis of 

all randomised trials and observational studies suggested a trend towards a decrease in 

mortality but, importantly, no significant increase in bleeding complications (Yamakawa et 

al., 2019).  Further phase 3 studies are needed. 

 

A different approach has been to block the cytokines that are believed to contribute to both 

the inflammation and coagulopathy of sepsis.  A phase 2 placebo-controlled study of a 

humanised monoclonal antibody against TNFα showed no difference in 28-day all-cause 

mortality.  A serum-sickness like reaction was seen in 4 % of those treated.  There was no 

analysis of coagulopathy specifically although a third of all cases met the criteria for DIC and 

were spread evenly between treatment and placebo groups (Abraham et al., 1995).  An earlier 

study of the chimpanzee endotoxaemia model showed that infusing a monoclonal antibody of 

IL-6 had no effect on the induced inflammation but did attenuate the activation of the 

coagulation system (lower thrombin:antithrombin, plasmin:antiplasmin and prothrombin 1+2 

complexes) (van der Poll et al., 1994).  A later study of individuals with renal cancer showed 

that an infusion of recombinant IL-6 led to an activation of coagulation (Stouthard et al., 

1996).  Infusion of an IL-1 antagonist, anakinra, has also been shown to reduce the markers of 

coagulopathy in cases of sepsis.  Whereas IL-6 and TNFα peak within two hours of 

endotoxaemia, as shown by various models, IL-1β has appeared unchanged in some models 

of endotoxaemia and peaked at four hours in others (Andreasen et al., 2008).  This calls into 

question the role of IL-1β in the development of sepsis-associated coagulopathy (van 

Deventer et al., 1990; Boermeester et al., 1995). 
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Collectively, these trials suggest that perhaps a more targeted approach is needed.  It is 

certainly ambitious to improve all-cause mortality in all degrees of sepsis-associated 

coagulopathy, but perhaps investigating specific groups, such as those at lower bleeding risk, 

or aiming to intervene prior to the full diagnosis of DIC, would be more fruitful.  Recently, a 

retrospective analysis of over 400 cases of sepsis-associated DIC was published.  Individuals 

with a baseline INR ≥1.57 and a SOFA score ≥13 were identified as at high risk of an early 

death; 83 % died within 3 days (Iba et al., 2018).  In the future using such a score may allow 

particular populations to be targeted.  

 

1.3.9 Summary 

There is an urgent need to understand the pathology of sepsis-associated coagulopathy in 

more detail, to diagnose it promptly and accurately, and to tailor therapies to improve the 

outcome for affected patients. 

 

1.4 Tissue Factor 

1.4.1 Overview 

As already highlighted, TF plays an important role in activating the coagulation system and 

potentially the coagulopathy associated with sepsis.  This section will discuss the roles of TF 

further. 

 

1.4.2 The discovery of tissue factor 

In the early 1900s, Morawitz proposed the ‘classical theory of blood coagulation’, describing 

how prothrombin, thrombin, calcium and fibrinogen are necessary for the formation of a 

blood clot.  It was in 1905, however, that he published his seminal work Die Chemie der 

Blutgerinnung (The Chemistry of Blood Coagulation); for the first time, a substance in tissue 

was identified that activated clotting. Morawitz named it ‘thrombokinase’, but this would later 

be known as TF (Morawitz, 1905; Morawitz, 1958; Boulton, 2006).  It would take almost 

another eighty years until TF was purified, initially from bovine and then from human tissue 

(Bach et al., 1981; Broze et al., 1985). This was swiftly followed by full sequencing of the TF 

gene, localisation to chromosome 1 and identification of the protein structure by several 

groups (Morrissey et al., 1987; Scarpati et al., 1987; Spicer et al., 1987; Mackman et al., 

1989).  TF has three domains: extracellular, transmembrane and intracellular.  The 

extracellular domain, (the NH2-terminal, residues 1–219) appears to fold in a similar way to 

the cytokine receptor superfamily, with seven β strands arranged as two β sheets; the primary 

protein sequence and structure appear similar to receptors for growth hormone or 
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erythropoietin.  The transmembrane domain (residues 220–242) serves to anchor TF to the 

cell membrane, whereas the intracellular domain (the COOH-terminal, residues 243–263) has 

a role in cell signalling (Ruf and Edgington, 1994; Butenas, 2012). 

 

1.4.3 Tissue factor: an activator of the coagulation system 

TF is a 47kDa trans-membrane glycoprotein expressed predominantly by extra-vascular cells 

such as fibroblasts, creating what is frequently termed ‘the haemostatic envelope’ around the 

vasculature (Drake et al., 1989).  By binding to factor FVIIa on a cell surface, it serves to 

initiate coagulation where there is a vessel wall injury (ten Cate et al., 1993).  No other TF 

ligands, other than FVII and FVIIa, have been identified. TF, once bound to FVIIa, has been 

shown to activate factors X (FXa), FIX (FIXa) and FXI (FXIa) (Mackman, 2004).  A full 

description of the cell-based coagulation model is given in Figure 1.1, but, briefly, the 

prothrombinase complex (a complex of activated factors V and X) works to cleave 

prothrombin to thrombin.  This thrombin is quickly inhibited by antithrombin; to overcome 

this, more FXa is created by the tenase complex (activated factors IX and VIII).  TF is 

therefore able to contribute to both the prothrombinase and tenase complexes and in doing so 

is integral to the activation of coagulation. 

 

TF is inhibited primarily by TFPI, which serves to inhibit the binding of FVIIa to TF and the 

formation of the prothrombinase complex (see section 1.3.2, page 8). Two isoforms have been 

identified: TFPIα and TFPIβ.  Both can inhibit the binding of TF to FVIIa, but only TFPIα 

also inhibits the prothrombinase complex (Wood et al., 2013; Maroney and Mast, 2015).  

TFPIβ is predominantly expressed on the endothelial cell surface, whilst TFPIα is secreted 

from platelets (Maroney et al., 2013). Platelets contain TFPIα and it is released when they are 

activated, such as by thrombin.  The TFPIα in platelets appears to be important in controlling 

the formation of intravascular thrombus; TFPIα knockout mice showed an increase in 

thrombus volume following vascular injury when compared to wild-type mice (Maroney et 

al., 2011). 

 

1.4.4 Tissue factor expression on circulating monocytes and ‘encryption’   

Aside from contributing to the haemostatic envelope, it is now accepted that TF can be 

expressed on the surface of circulating monocytes; however, unless it is induced, this is at 

very low level (Osterud, 2012).  The role of monocytic TF expression is poorly understood, 

but it may have a role in thromboinflammation (see section 1.3.4, page 16).  The induction of 

TF expression on the monocyte surface has been shown with multiple agents including LPS, 
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C-reactive protein and P-selectin (Rivers et al., 1975; Cermak et al., 1993; Celi et al., 1994).  

There is, however, great variability in TF expression between individuals, and so-termed 

‘hyper-responders’, who express higher levels, have been associated with diseases that 

include a higher risk of thrombosis (Egorina et al., 2005). 

 

Maynard et al. first demonstrated that TF was present on cells within the circulation and 

appeared to be associated with the cell surface; however, they also noted the need to cause 

disruption of the membrane to increase activity (Maynard et al., 1975).  It is now accepted 

that the majority of cell-bound TF is supressed through the post-translational mechanism of 

‘encryption’ within the cell membrane.  Whilst encrypted TF is still bound to factor VIIa, and 

thereby demonstrates some procoagulant activity, this is much lower compared to ‘decrypted’ 

TF (Bach, 2006; Kothari et al., 2013).  The process of encryption is yet to be elucidated, but 

for many decades it has been recognised that phospholipids in the cell membrane affect the 

activity of TF and the initiation of coagulation (Studer, 1946; Nemerson, 1968; Jones et al., 

1985; Mann et al., 1990). There are several theories to explain the possible role of lipids in 

encryption.  The most widely accepted theory is that of phosphatidylserine (PS) asymmetry: 

usually this lipid remains in the inner cell membrane, but when it is externalised to the outer 

membrane it has been shown to increase the activity of TF.  The organisation of TF within the 

cell membrane is likely also to be important.  Other more recent work suggests a suppressive 

role for sphingomyelin in the cell membrane and the reduction/oxidation of a cysteine 

disulphide bond with the TF extracellular domain.  All of these will now be discussed.  

 

Phosphatidylserine (PS) is maintained by ATP transport on the inner cell membrane.  In vitro 

work has shown that when PS becomes extracellular there is an increase in cell-bound TF 

activity (Forman and Nemerson, 1986).  PS can be moved to the outer membrane in several 

ways in vitro, including by freezing and by increasing intracellular calcium.  Several in vivo 

mechanisms have also been discovered, including the activation of platelets by thrombin 

leading to an increase in cytosolic calcium and possibly therefore to decryption (Bach and 

Moldow, 1997).  There are three enzymes that are known to transport phospholipids in the 

cell membrane: flippase (which moves them inward), floppase (which moves them outward) 

and scramblase (which can rapidly break down the usual membrane asymmetry).  Scramblase 

has been shown to increase the binding of Annexin V to the outer surface of activated 

platelets in a calcium-dependent manner (Bevers et al., 1983; Zwaal et al., 2005). Another 

mechanism, in vivo, can be seen in apoptotic cells, which are known to increase PS on the cell 

surface (Bach, 2006).  Exactly how PS may decrypt TF is unclear, but a possibility is that PS 
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interrupts the ‘self-association’ of TF – the formation of homodimers in the presence of a 

ligand (Roy et al., 1991; Aras et al., 2004; Bach, 2006).  Alternatively, perhaps, an increase in 

PS on the outer surface increases the binding of Xa (Rao et al., 2012).  Multiple diseases that 

have a thrombotic component have been associated with an increase in outer cell PS, 

including the red blood cells and platelets in diabetes mellitus and the ‘sickled’ red blood cells 

of sickle cell disease (Zwaal et al., 2005).   

 

Lipid rafts, cholesterol-rich microdomains within the outer cell membrane, have also been 

identified as potentially important in maintaining TF encryption. These rafts are composed 

primarily of sphingolipids and cholesterol in the outer cell membrane that connect with 

phospholipids and cholesterol within the inner membrane.  They are organised structures that 

can move around the membrane, are more densely packed than surrounding regions and can 

cluster together (Simons and Ehehalt, 2002).  Disruption of lipid rafts has been demonstrated 

to increase the activity of TF without a corresponding increase in the proportion of cell-bound 

TF or an increase in cell lysis (Dietzen et al., 2004; Mandal et al., 2005).  Rafts have also 

been implicated in the management of intracellular calcium.  Disruption of rafts by the 

removal of cholesterol has been shown to decrease the release of calcium from intracellular 

stores, increase the externalisation of PS and increase the procoagulant activity of affected 

cells (Kunzelmann-Marche et al., 2002). 

 

A more controversial theory involves the regulatory effect of protein disulphide isomerase 

(PDI) on thiol residues at the TF Cys186-Cys209 disulphide bond.   There are two disulphide 

bonds within the extracellular domain of TF: one of these, Cys186-209, has been shown to be 

necessary for TF to demonstrate procoagulant activity (Rehemtulla et al., 1991).  It is 

hypothesised that unpaired thiol residues at Cys186 and 209 create an encrypted structure, 

whereas the creation of a disulphide bond decrypts the TF and increases activity.  Chen et al. 

demonstrated in vitro that the addition of mercuric chloride, which oxidizes dithiols to 

disulphides, increased the activity of TF, whereas blocking unpaired cysteine thiols led to a 

decrease in TF activity.  They suggest that PDI breaks the disulphide bond and may thereby 

control TF encryption and activate the TF procoagulant activity.  The authors, however, were 

unable to demonstrate an excess of free cysteine thiols, which would be expected as the 

majority of cell-bound TF is believed to be encrypted (Chen et al., 2006).  This is supported 

by a murine model of vascular damage: microparticles expressing TF were injected into the 

damaged area, leading to an increase in fibrin.  The addition of an anti-TF antibody prevented 

fibrin formation, as did the addition of an anti-PDI antibody.  PDI was visualised around 
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activated platelets within the forming thrombus and vascular smooth muscle cells, suggesting 

its release following injury or platelet activation (Reinhart et al., 2013). There is also some 

evidence for this mechanism in monocytes. It has long been recognised that the use of anti-

thymocyte globulin (ATG) to deplete lymphocytes (such as prior to allogenic stem cell 

transplant) leads to activation of coagulation.  ATG was shown to increase the TF activity of 

monocytes in vitro, but not through an increase in cell surface PS. Instead the increase in TF 

activity was prevented by blocking the number of free thiols (Langer et al., 2013). 

 

There are several problems with this theory, however. The addition of an oxidising agent such 

as mercuric chloride may increase the surface expression of anionic phospholipids such as PS; 

this could therefore explain the increase in TF activity without the creation of a disulphide 

bond.  There has also been no conclusive evidence that PDI associates with TF, and human 

endothelial cells transfected with mutant TF that does not contain the Cys186-209 bond have 

a similar ability to activate coagulation in vitro (Pendurthi et al., 2007; Kothari et al., 2013).  

Finally, in vitro work with human endothelial cells demonstrates that inhibition of PDI can be 

procoagulant by increasing the cell surface expression of PS independent of calcium (Popescu 

et al., 2010).  Further work is needed, primarily to identify how PDI may associate with TF, 

but this remains an intriguing possibility. 
 

Recent work has suggested that the presence of sphingomyelin in the outer cell membrane 

may work to ‘dampen down’ or encrypt TF.  Sphingomyelin is a phospholipid comprising up 

to 50 % of the outer cell membrane (Wang et al., 2017).  Wang et al. have shown in 

macrophages that the hydrolysis of sphingomyelin through the action of sphingomyelinase 

increases TF activity.  Through stimulation with adenosine triphosphate, acid-

sphingomyelinase was shown to translocate to the outer cell membrane without an increase in 

the proportion of PS (Wang et al., 2017).  This suggests that perhaps sphingomyelin acts to 

suppress TF activity and maintain it in an encrypted state. 

 

Whilst much remains to be understood in relation to encryption, it certainly appears to be an 

important physiological process that is necessary to control TF activity on circulating blood 

cells. 

 

1.4.5 The role of monocyte surface TF expression in coagulation 

As discussed, TF is expressed on cells other than monocytes including activated endothelium.  

Several pre-clinical studies have investigated the specific contribution of TF expressed on the 
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surface of monocytes.   Lethally irradiated mice were transplanted with haematopoietic cells 

from mice that did not express TF.  They were compared to wild-type mice transplanted with 

normal haematopoietic cells.  Both groups were injected with intra-peritoneal LPS and had 

markers of coagulation measured at 3 hrs.  Although both groups showed an increase in the 

thrombin-antithrombin (TAT) complex, the level was higher in the wild-type group that had 

an also demonstrated an increase in haematopoietic cell TF expression of (Schoenmakers et 

al., 2004).  A floxed mouse model that, with a specific myeloid promotor, deleted the 

expression of TF in myeloid cells also demonstrated a reduction in TAT following 

endotoxaemia.  The group did not detect TF mRNA in the murine platelets (both unstimulated 

and stimulated), but did demonstrate it from blood leucocytes.  Further work using a Tie-2 

promoter created a mouse with a > 95 % reduction in TF on all cell types (including 

endothelial).  By transplanting them with bone marrow from control mice, a model was 

created that did not express endothelial TF but did express haematopoietic TF.  Selective 

deletion of TF expressed on the endothelium did not reduce the TAT levels following 

endotoxaemia. This work demonstrated that the TF expressed on leucocytes, and not the 

endothelium or platelets, that activates coagulation following endotoxaemia (Pawlinski et al., 

2010).  The role of TF on platelets has been debated between groups. Although several groups 

have reportedly detected TF mRNA and protein in human platelets, this is disputed by other 

groups who have failed to replicate these results (Zillmann et al., 2001; Butenas et al., 2005; 

Østerud and Bjørklid, 2006; Pawlinski and Mackman, 2010).   

 

Later work involved using the Berkley murine model of sickle cell disease (BERK), a model 

known to express higher levels of TF on leucocytes compared to controls.  The leucocytes 

found to express TF on their surface were identified morphologically as monocytes.  

Transplanting the Tie-2 flox model with cells from the BERK mouse again created a model 

that expressed TF only on haematopoietic cells.  Coagulation markers were higher in the 

BERK transplanted model and not reduced by removing the non-haematopoietic expression 

of TF (Chantrathammachart et al., 2012).   

 

These pre-clinical data support the idea that TF expressed on the monocytic surface is 

functionally active. 

 

1.4.6 High and low responders to the LPS induction of monocytic TF cell surface expression 

The monocytic cell surface expression of TF, following LPS stimulation, varies considerably 

between individuals.   This phenomenon was first noted by Ossterud in 1995: whole blood 
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samples were taken from 135 healthy volunteers and stimulated ex vivo with 5 ng/mL LPS for 

2 hours prior to the measurement of TF activity.  Two groups of individuals were identified, 

those with a high response and those with a low response; the TF activity was shown to vary 

between individuals by as much as 50-fold (Ossterud, 1995).  Later work by the same 

laboratory used flow cytometry to measure TF cell surface expression on a CD14 positive cell 

population and demonstrated a high and low responder group; once again, high and low 

responder groups were defined by the level of TF activity. 

 

The cause of this difference in response is not fully understood.  The presence of platelets 

seems to increase the LPS induction of TF.  Ossterud et al. (1990) used blood preparations 

that contained 15 % of the original platelet count; adding platelets from a low responder to a 

high responder sample resulted in a lower TF activity when compared to the addition of 

autologous platelets (Osterud et al., 1990).  The same group also demonstrated that the 

monocytic TF activity induced with LPS was reduced by two thirds when the monocytes were 

suspended in platelet-poor plasma compared to platelet-rich plasma.  Other work has 

suggested that granulocyte stimulation may increase monocytic TF activity; this effect was 

reduced by blocking CD15 (a p-selectin ligand).  Potentially, an interaction between 

granulocytes, monocytes and platelets enhances the LPS induction of monocyte surface 

expression of TF (Osterud et al., 1990; Halvorsen et al., 1993; Ossterud, 1995).   

 

More recent work has also demonstrated the ability of red blood cells to increase monocyte 

TF activity following LPS stimulation in a dose-dependent manner.  Comparing the red blood 

cell counts of healthy human volunteers to their monocyte TF activity, however, failed to 

show a clear correlation (r=0.199, p=0.001 using Pearson’s co-efficient).  The group used a 

mouse model of endotoxaemia to investigate the monocytic cell surface expression of TF.  

Mice were given an intraperitoneal injection of LPS and blood was collected from the inferior 

vena cava five hours post injection.  There was an increase in TF surface expression on 

murine monocytes at five hours following injection when compared to controls injected with 

phosphate-buffered saline.  This effect was abolished by the use of Duffy anti-gen receptor 

for chemokines (DARC)-null mice (Østerud et al., 2015).  DARC is a red blood cell receptor 

that varies in expression between populations; it is present in a high proportion of white 

Caucasians but a much smaller proportion of sub-Saharan African (Meny, 2010).  DARC is a 

receptor for a range of pro-inflammatory chemokines including monocyte chemoattractant 

protein (MCP)-1 and IL-8 (Gardner et al., 2004; Meny, 2010). 
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Whether a high versus a low response affects clinical outcomes or predisposes to thrombotic 

disease is not yet known.  A small group of 54 individuals with a family history, but not a 

personal history, of myocardial infarction were investigated.  Only a small proportion of 

individuals with high cholesterol were considered high responders (10 %) whereas those with 

normal cholesterol levels had a much higher proportion of high responders (55 %).  There was 

no control group without a family history of myocardial infarction (Østerud et al., 2002).  

Further work is needed before any conclusions can be drawn. 

 

1.4.7 The pathway of lipopolysaccharide-induced tissue factor expression  

The induction of TF expression on monocytes by LPS has long been recognised (Drake et al., 

1989; Gregory et al., 1989); however, the pathway(s) by which LPS induces TF gene 

expression has not fully been elucidated, and particularly not in relation to monocyte subsets.  

LPS is known to bind to the lipopolysaccharide-binding protein and then to CD14 and TLR-4.  

Nuclear factor (NF)–κB, extracellular signal–regulated kinase (ERK) and c-Jun amino 

terminal kinase (JNK) pathways are all activated by LPS and have all been associated with TF 

transcription (Dokter et al., 1993; Groupp and Donovan-Peluso, 1996; O'Connell et al., 1998; 

Guha et al., 2001; Bode and Mackman, 2014).  Studies in THP-1 cells, a human monocytic 

cell line, have demonstrated that LPS is able to increase TF mRNA and increase the cell 

surface expression of TF (Bode and Mackman, 2014).   

 

Multiple regions within the TF promoter have been identified that are suitable for 

transcription factors to bind (see Figure 1.3).  Proximally there are two Sp-1 sites and three 

overlapping Sp-1/Egr-1 sites that appear important for basal TF expression (Mackman, 1995).  

Egr-1 is also required for maximal TF expression; inhibition of the Egr-1 binding site within 

the TF promoter led to a 72 % reduction in TF expression (Guha et al., 2001).  Distally, a 56-

base pair LPS responsive element (LRE) has been identified through the work of Mackman et 

al., using the THP-1 cell line.  The LRE comprises two AP-1 sites and a NF-κB binding site, 

both of which are needed for full LPS-induced transcription (Mackman et al., 1991; 

Mackman, 1995). The NF-κB site, interestingly, does not match the κB DNA consensus 

sequence and binds a c-Rel/p65 heterodimer.  There is also a suggestion that an interaction 

between this heterodimer and AP-1 is required for TF to be fully transcribed following LPS 

stimulation.  Increasing the distance between the NF-κB and AP-1 binding sites prevented 

LPS-induced TF transcription (Glover and Harrison, 1995; Parry and Mackman, 1995; Oeth 

et al., 1997).   
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Figure 1.3 demonstrates the three transcription pathways associated with the lipopolysaccharide 

(LPS) induction of TF on monocytes. The AP-1 and NF-κB binding sites make up the 

lipopolysaccharide-responsive element.  The Egr-1 site appears to be important in the maximal 

expression of TF. 

  

Figure 1.3 LPS-induced TF expression. 
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1.4.8 Innate immune training and TF 

Over the last decade there has been increasing evidence to support the idea of the innate 

immune system having a memory, with the potential for innate cells to be ‘trained’ (Kurtz, 

2004).  Initial evidence came from the study of invertebrates that do not have an adaptive 

immune system.  Recovery from infection in a crustacean was shown to relate to previously 

encountered pathogens.  If there had been previous infection with a microbe with similar 

molecular patterns the crustacean was more likely to recover from the infection (Kurtz and 

Franz, 2003).  Witteveldt and colleagues also demonstrated that oral vaccination against a 

virus was possible in shrimp; a reduction in mortality was demonstrated, although the effect 

was significantly reduced at 21 days (Witteveldt et al., 2004).  The mechanisms underpinning 

this ‘memory’ are still unclear, although it has been hypothesised that it may be due to long-

lasting upregulation of molecules that recognise the pathogen (Kurtz, 2004).  Murine models 

have demonstrated the ability of PAMPs to induce immune training in monocytes.  Mice that 

lacked both B and T lymphocytes were shown to have protection from a lethal dose of 

Candida albicans following prior infection with a sub-lethal dose.  This protection did not 

occur in monocyte deficient mice (Quintin et al., 2012). 

 

Several human studies have also supported the concept of innate training.  Following Bacillus 

Calmette-Guérin (BCG) vaccination in healthy volunteers, isolated monocytes stimulated 

with LPS demonstrated an upregulation in PRRs and an increase in pro-inflammatory 

cytokines for up to 12 months (Kleinnijenhuis et al., 2014).  Epigenetic study of the isolated 

human monocyte that had been ‘trained’ with β-glucan (part of the fungal cell wall) showed 

changes in histone H3 acetylation.  Looking at the transcriptome revealed an upregulation of 

genes associated with macrophages (Saeed et al., 2014).  Later work demonstrated that LPS 

could induce macrophage epigenetic modification of histone H3 via cyclic AMP-dependent 

transcription factor (ATF)-7, which conferred resistance to Staphylococcus aureus infection 

(Yoshida et al., 2015). 

 

Potentially, the monocytic surface expression of TF could be a consequence of innate immune 

training. 

 

1.4.9 TF expression and its role in sepsis 

For several decades, TF has been associated with the development of coagulopathy in sepsis 

(Osterud and Flaegstad, 1983).  Several animal models have demonstrated an association 

between TF and DIC.  The injection of an anti-TF antibody to a rabbit model of 
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endotoxaemia, prior to the injection of LPS and TF, prevented the formation of coagulopathy 

seen in those not given the antibody (via a decrease in fibrinogen and factors V and VIII) 

(Warr et al., 1990).  A similar model in baboons showed a decrease in mortality following 

endotoxaemia in animals given an antibody to block TF (Taylor et al., 1987).  This work was 

then extended by the same group using an injection of TFPI prior to a lethal infusion of 

Escherichia coli in a baboon model; in this case the TFPI prevented death from sepsis in 

comparison to the control group, which did not receive TFPI and had 100% mortality (Taylor 

et al., 1991).  Later work blocking the active site of FVIIa reduced coagulopathy but only 

prevented death in half of the cases.  TFPI prevents the formation of both the TF:FVIIa 

complex and also the prothrombinase complex. This suggests that it is the complex of 

TF:FVIIa that is most important and that it may play a role in not just coagulation but also the 

inflammatory response to sepsis (Taylor et al., 1998).   

 

TFPI has been shown to improve survival in other models, including a rabbit model of Gram-

negative peritonitis in which recombinant TFPI was administered four hours after the 

induction of peritonitis, and several murine models of superantigen-induced shock and 

polymicrobial intra-abdominal sepsis (Camerota et al., 1998; Opal et al., 2001).  As 

previously discussed, however, the use of recombinant TFPI had no effect on mortality when 

trialled in humans (see section 1.3.9, page 25) (Abraham et al., 2003). 

 

As mentioned earlier, there has been very little investigation of the high and low responder 

phenomenon in thrombotic illnesses and none looking particularly at sepsis.  Potentially a 

high response during sepsis could predispose to the development of sepsis-associated 

coagulopathy, allowing for the identification of at-risk individuals and a stratified approach to 

management.  Such a stratification has been used in other aspects of critical illness.  An 

excellent example is that shown by the work of Calfee et al. (2015), who have identified 

biomarkers that can be used to distinguish direct (due to pneumonia or aspiration) and indirect 

(e.g. non-pulmonary sepsis) forms of acute respiratory distress syndrome (ARDS) (Calfee et 

al., 2015).  Each form of ARDS has been associated with varying clinical outcomes and 

mortality rates (Luo et al., 2017).  Future clinical trials can therefore investigate the efficacy 

of new therapies in each subtype.  Hinds et al. have taken a similar approach to sepsis, 

identifying four endotypes using the expression of 140 genes. One of the four endotypes was 

associated with both 28-day and 1-year mortality (Scicluna et al., 2017). 
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1.4.10 Summary 

TF undoubtedly plays a role in the development of sepsis-associated coagulopathy and in 

inflammatory responses.  Further work is needed to fully understand its effects with the hope 

that future interventions may improve the outcome of individuals with sepsis. 
 

 

1.5 Monocyte subsets 

1.5.1 Overview 

Over the last few decades, monocytes have been divided into subsets that are believed to be 

functionally different.  The development of subset classification, the role of each subset and 

the implications this has during sepsis will now be discussed.  

 

1.5.2 Classification of the three subsets 

Monocytes vary by morphology and function and there have been many attempts to divide 

them into sub-populations.  Initially this was done by size and shape using elutriation.  Two 

populations were defined: small and large.  They differed in reactive oxygen species 

production, how they responded to stimuli such as LPS, and their degree of antigen 

presentation (Yasaka et al., 1981; Esa et al., 1986; Turpin et al., 1986; Shiotsuki et al., 1987).   

As well as using morphology, adhesion to fibronectin was used to separate monocytes into 

subpopulations (Owen et al., 1992).  These methods were fraught with difficulty: monocytes 

needed to be isolated prior to subset identification, which might alter their function; it was not 

possible to ensure there was no contamination with smaller cell populations such as dendritic 

cells; and these methods varied by the skill of the operator (Ziegler-Heitbrock, 1996b). 

 

An alternative method for dividing monocytes into subsets is the use of cell markers.  Three 

populations were first identified by Passlick et al. using the markers CD14 (an LPS co-

receptor) and CD16 (a low affinity Fc gamma immunoglobulin receptor, FcγRIII) (Passlick et 

al., 1989).  The use of markers reduces the risk of contamination with non-monocytes and 

does not require cell isolation prior to identification (Ziegler-Heitbrock, 1996b; Ziegler-

Heitbrock et al., 2010a).  In 2010, nomenclature for monocyte subsets was internationally 

agreed and approved by the Nomenclature Committee of the International Union of 

Immunological Societies (see Table 1.4).  Three human subsets were identified: classical 

(CD14++, CD16-), the major subset, accounting for approximately 85 % of circulating 

monocytes; intermediate (CD14++, CD16+), accounting for 5 %; and non-classical (CD14+, 

CD16++), accounting for 10 % (see Figure 1.4).  This nomenclature is useful to help compare 
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studies and avoids problematic descriptions such as ‘inflammatory monocytes’ (Ziegler-

Heitbrock et al., 2010a; Wong et al., 2011).  Most of the work performed from this time has 

considered only two monocyte subsets, classical and non-classical; there is great variability 

between authors regarding how the intermediate subset was determined.  It was either ignored 

completely or incorporated within the non-classical population.  For clarity, all further 

discussion of subsets will be based on the internationally agreed nomenclature unless 

otherwise stated. 
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Table 1.4 Markers of human and murine monocytes used to identify subsets 

This table lists markers that differ between the subsets, based on the international standard 

and others.  + means this marker is expressed at a level at least 10-fold higher than isotype 

control, whereas ++ means an expression at least 100-fold higher.  (CLEC4D - C-Type 

Lectin Domain Family 4 Member D, CXRCR1 - CX3C chemokine receptor 1, Gr - 

glucocorticoid receptor, HLA – human leukocyte antigen, Ly6C - Lymphocyte antigen 6 

complex locus G6D, Siglec10 - Sialic acid-binding Ig-like lectin 10) 

 

  

 Human subsets Murine subsets 

 Classical Intermediate Non-
classical Classical Intermediate Non-

classical 

Markers 
included in 

international 
classification 

CD14++             
CD16- 

CD14++       
CD16+ 

CD14+         
CD16++ 

Ly6C++       
CD43+ 

Ly6C++      
CD43++ 

Ly6C+         
CD43++ 

Other 
markers 

CCR2+          
CXCR1+ 
CXCR2+ 

CLEC4D+      
IL-13Rα1+ 

HLA-ABC+         
HLA-DR+          

CD40+ 

CD115+     
CD294+      

Siglec10+ 

CX3CR1+     
Gr1++  CX3CR1++   

Gr1+ 
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This figure shows the internationally accepted nomenclature for monocyte subsets as agreed 

in 2010 (Ziegler-Heitbrock et al., 2010a). Non-classical monocytes are morphologically 

smaller than classical.  Non-classical monocytes are known to ‘patrol’ the endothelium 

(Auffray, 2007; Cros et al., 2010).  

Figure 1.4 Human monocyte subsets. 
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Some significant limitations to this classification remain. Firstly, they refer to monocytes in ‘a 

steady state’, whereas CD markers may change during conditions such as inflammation or 

potentially through the method of monocyte isolation (Zhou et al., 2012; Mukherjee et al., 

2015).  Secondly, there is increasing evidence that monocytes can transition between subsets 

(classical to intermediate to non-classical); this can make the distinction between subsets 

challenging, particularly as the gating of flow cytometry is operator-dependent and it is 

challenging to separate the intermediate and non-classical subsets (Yona et al., 2013).  To 

some extent this can be improved through use of analysis software such as t-distributed 

stochastic neighbour embedding (tSNE) where similar cells are clustered together (Maaten 

and Hinton, 2008).   

 

Following the definition of the three subsets, there have been additional markers proposed to 

further define the CD16+ subsets.  This include TIE2 (angiopoietin receptor) and Slan (a 

carbohydrate modification of PSGL-1).  Studies of tissue repair following limb ischaemia 

suggest a majority group of non-classical monocytes that express TIE2 at times of critical 

ischaemia in humans and decrease again following recovery.  The expression of the Slan 

marker has been shown to be decreased on the intermediate subset in conditions such as 

sarcoidosis (Patel, 2013; Hofer et al., 2015). This suggests that these markers may be useful 

to define the subsets more accurately, and they may have clinical implications.  

 

1.5.3 Mouse monocyte subsets 

In 2001, Palframan et al. first discussed the possibility of mouse monocyte subsets, during an 

investigation of monocyte recruitment to lymph nodes (Palframan et al., 2001).  Since then, 

mouse monocyte subsets have been shown to be homologous in some respects to human 

subsets.  The use of murine models has been very helpful for investigating monocyte subsets.  

Nomenclature for mouse monocyte subsets was also suggested in 2010, using the markers 

Ly6C (lymphocyte antigen 6C, a haematopoietic differentiation antigen) and CD43 (cell 

surface sialoglycoprotein, a member of the surface mucin family).  The subsets are defined as 

classical (Ly6C++, CD43+), intermediate (Ly6C++, CD43++) and non-classical (Ly6C+, 

CD43++) (Ziegler-Heitbrock et al., 2010a).  Unlike human monocytes, there are equal numbers of 

all subsets (Geissmann et al., 2003; Sunderkotter et al., 2004).  As with human monocyte 

subsets, mouse classical monocytes are recruited through CCR2 and non-classical through 

CX3CR1 (Nahrendorf et al., 2007). 
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A comparison of human and monocyte subset genetic profiles revealed 269 human and 561 

mouse genes that were differentially expressed with a greater than two-fold difference 

between subsets.  An algorithm to rank genes between species for similarity was used to 

identify genetic conservation between species.  Both classical and non-classical subsets 

showed similar genetic profiles between human and mouse monocytes. Staining for cell 

surface markers appeared to confirm that these similarities were also present at the protein 

level (Ingersoll et al., 2010). 

 

A model commonly used to visualise mouse monocytes uses CX3CR1GFP/+ mice.  The use of 

green fluorescent protein (GFP) associated with CX3CR1 allows the two subsets 

(CX3CR1++/Ly6C+, non-classical and CX3CR1+/Ly6C+, classical) to be visualised using 

intra-vital microscopy.  This method was used during a murine model of skeletal muscle 

injury and showed again that classical monocytes were recruited first to the site of injury but 

several days later non-classical monocytes predominated.  The classical monocytes were 

shown to produce TNF-α & IL-1β when compared to the non-classical, which produced more 

IL-10 and TGF-β1 (Arnold et al., 2007).  A murine model of intra-peritoneal infection using 

Toxoplasma gondii once again demonstrated an influx of classical monocytes; repeat with a 

CCR2-/- knockout mouse model abrogated the recruitment of classical monocytes to the site of 

infection and led to increased mortality (Robben et al., 2005).  These studies suggest that the 

classical subset is important in fighting infection. 

 

In a murine model of myocardial ischaemia, different and complementary functions were 

identified.  Classical monocytes in the peripheral blood were predominant for the first five 

days, following coronary artery ligation, whilst non-classical predominated from day five and 

remained at higher than normal levels until day sixteen.  In the tissue, classical monocytes – 

but not non-classical – showed a high proteinase activity and expressed TNF-α.  Non-classical 

monocytes expressed a high level of vascular endothelial growth factor (VEGF) compared to 

classical.  This strongly suggests different functional roles for each subset.  The authors 

suggest that, potentially, the classical monocytes assist in phagocytosing damaged tissue, 

whereas the non-classical may be needed for tissue repair (Nahrendorf et al., 2007).  There 

may  be a role for classical monocytes in the development of atherosclerosis.  Apolipoprotein 

(apoE)-/- mice fed a high-fat diet, a murine atherosclerotic model, showed a monocytosis with 

a proportionate expansion of classical monocytes that infiltrated developing plaques.  Non-

classical monocytes were also shown to be capable of infiltrating plaques, but, interestingly, 
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without the need for CX3CR1, which was instead used by classical monocytes along with 

CCL2 and CCR5 (Tacke et al., 2007).   

 

More recent work also suggests a role of non-classical monocytes in tissue repair.  Using a 

model of skeletal muscle injury in a CX3CR1GFP/+ mouse, both monocyte subsets were 

recruited to the site of injury, reaching a plateau level at 7 days.  Increasing the proportion of 

non-classical monocytes promoted muscle fibre regeneration and decreased fibrosis (San 

Emeterio et al., 2017). 

 

Auffray et al. investigated the movement of the subsets further.  Using the CX3CR1GFP/high 

mouse, they showed that CX3CR1high/Gr1- monocytes ‘crawled’ along the endothelium.  This 

movement was not dependent on blood flow and these monocytes were confined to a 

particular area, hence the author’s description of this crawling as ‘patrolling’.  This movement 

was abrogated in CX3CR1-deficient mice and in mice where either CD11b or CD18 were 

blocked.  In response to tissue damage, the CX3CR1high/Gr1low subset extravasated rapidly 

and prior to PMNs (Auffray, 2007).   A limitation of this study, and others, is the use of the 

Gr-1 epitope on Ly6C.  This should ideally be avoided when identifying monocyte subsets, as 

it occurs on both Ly6C and Ly6G, but monocytes only express the former (Geissmann et al., 

2003). 

 

Mice injected with Listeria monocytogenes experience a monocytopenia in the peripheral 

blood followed by a monocytosis, primarily formed of classical monocytes, 72 hours later.  

This suggests that murine monocytes are released from the bone marrow as classical and later 

differentiate into other subsets (Sunderkotter et al., 2004).  Murine classical monocytes have 

been shown to enter sites of inflammation rapidly, and over time appear to differentiate into 

non-classical monocytes (Jutila et al., 1988; Geissmann et al., 2003).  In vitro studies have 

shown that murine classical monocytes lose Ly6C expression after several days of culture 

(Jutila et al., 1988).  Dichloromethylene-bisphosphonate-loaded liposomes have been used to 

eliminate monocytes in a murine model; the in vivo monocyte recovery was then investigated.  

The initial monocytes to return to the circulation were classical (Ly6C++), later followed by 

non-classical (Ly6C+) (Sunderkotter et al., 2004).   

 

Later work by Yona et al supports the differentiation of classical to non-classical monocytes.  

Once again, classical monocytes were isolated from CX3CR1GFP/+ mice. The monocytes were 

then adoptively transferred into wild-type mice.  One day following transplant all GFP-
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positive monocytes were classical; however, by day three, GFP-positive non-classical 

monocytes were detectable.  Elimination of classical monocytes reduced the levels of non-

classical and, interestingly, appeared to extend the half-life of the Ly6Clow monocytes that 

were already present (Yona et al., 2013). 

 

1.5.4 Human monocyte subsets 

Human monocyte subsets vary in their cell surface expression of markers other than CD14 

and CD16.  Classical monocytes express the majority of CCR2, CXCR1, CXCR2, CLEC4D 

and IL-13Rα1; intermediate monocytes highly express HLA-ABC, HLA-DR and CD40; non-

classical monocytes can be distinguished by the expression of CD115, CD294 and Siglec10 

(Wong et al., 2011).  As with the murine subsets, the terms classical, intermediate and non-

classical as defined in Table 1.4 will be used; if monocytes were identified in a different way, 

this will be stated.  In studies prior to the agreement on nomenclature, the classical subset was 

defined in the same way, but the non-classical subset may have included intermediate 

monocytes depending on the author’s flow cytometry gating methods. 
 

Although it is challenging to reliably separate the monocyte subsets, as with mice, there is 

evidence that the three subsets have distinct roles.  Examination of the transcriptome of each 

subset has provided further information regarding roles.  A comparison of monocyte 

transcriptomes and proteomes performed in 2009, prior to the agreement on identifying the 

three subsets, compared CD16+ and CD16- monocytes.  Classical monocytes had an 

upregulation of genes associated with anti-microbial actions such as myeloperoxidase and IL-

8.  With regard to phagocytosis, there are conflicting reports, with one group suggesting that 

classical monocytes express most genes associated with phagocytosis, whilst another 

described a different pattern (Mobley et al., 2007; Zhao et al., 2009). 

 

The pattern of cytokine secretion by each subset is controversial and varies by the methods 

used to measure it.  In general, it is accepted that classical monocytes release the widest range 

of cytokines, but there is debate over the specific cytokines released by each subset (Wong et 

al., 2011).  Frankenberger et al. performed initial work in 1996: a Ficoll density isolation was 

used and then peripheral blood mononuclear cells (PBMCs) were sorted into CD14++/CD16- 

and CD14+/CD16+ subsets using FACS. These subsets were then incubated with 1μg/mL of 

LPS for 4 hours. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to 

identify transcripts.  TNF levels were the same in both subsets, whereas IL-10 levels were 

higher in CD14++/CD16- (classical) monocytes (Frankenberger et al., 1996).  More recently, 
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whole blood was stimulated with LPS (1μg/mL for between 1 and 4 hours) for various time-

points, after which brefeldin A was added to prevent secretion and subsets were stained for 

intracellular cytokines.  This showed that classical monocytes produce the most IL-1β and 

TNF-α; contradictory to previous studies, intermediate (and not non-classical) monocytes 

produced the most IL-10 (Mukherjee et al., 2015).  Other groups have isolated monocyte 

subsets using FACS; cells were then cultured in the presence of LPS (0-100ng/mL for up to 

18 hours) and cytokine levels measured from supernatants. These groups found that it was the 

non-classical monocytes that produced the majority of IL-1β and TNF-α, whereas the 

classical subset produced the most IL-10 (Cros et al., 2010; Wong et al., 2011).  This 

variability may be due to the dose, the length of incubation and the changes in subset 

definitions. 

 

Most studies suggest that classical monocytes are effective at fighting bacterial infection.  

They seem to display the most phagocytic activity. Mukherjee et al. used whole blood 

analysis to investigate cell surface marker expression and, in their hands, classical monocytes 

were shown to express the most cell markers associated with phagocytosis (CD36 and 

CD163) and to demonstrate the most phagocytic activity in vitro through the ingestion of 

latex beads and GFP-stained E. coli (Cros et al., 2010; Mukherjee et al., 2015).  Classical 

monocytes have also been shown to release the most reactive oxygen species (ROS) in 

response to LPS (Cros et al., 2010).  Aspergillus fumigatus is a source of life-threatening 

infections in patients following allogeneic stem cell transplantation.  Monocyte subsets were 

isolated from allogeneic stem cell transplant donors who had received granulocyte colony-

stimulating factor (GCSF).  Two subsets were identified, CD14+/CD16- and CD14+/CD16+. 

Their proportions in the sample were similar to those in healthy donors who had not received 

GCSF, and they remained viable following the procedure of leukapheresis.  Both subsets were 

shown to phagocytose Aspergillus spores, but only the classical monocytes were able to 

prevent germination (Serbina et al., 2009). 

 

As mentioned earlier, Auffray et al. demonstrated that Gr1- mouse monocytes patrol the 

endothelium.  Cros et al. investigated the ability of non-classical monocytes to act in a similar 

way.  Human monocyte subsets were isolated using FACS into classical, intermediate and 

non-classical and labelled with fluorescent probes.  Each subset was then injected into a 

murine model and their behaviour visualised using intra-vital microscopy.  Most non-classical 

monocytes were seen to adhere rapidly to the endothelium and crawl for a prolonged period, 

similar to the Gr1- subset in mice (Auffray, 2007; Cros et al., 2010).  Analysis of the non-
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classical transcriptome agrees with this finding: most genes differentially expressed in this 

subset related to migration and trans-endothelial motility, as well as MHC class I functions 

(Hofer et al., 2015).  

 

Non-classical monocytes display less phagocytic activity than the other subsets and express 

very little reactive oxygen species.  They were shown to produce TNF-α and IL-1β in 

response to the measles and herpes simplex virus (HSV)-1.  To a lesser extent, a similar 

response was seen in the intermediate subset (Cros et al., 2010). 

 

Generally, the role of intermediate monocytes is less defined, in part because monocytes were 

identified initially in two subsets (CD16+ and CD16-) but also because of the challenges in 

reliably distinguishing them from the non-classical subset. Genetic profiling and cell surface 

expression suggests they express major histocompatibility (MHC) class II receptor and are 

involved in antigen presentation (Mukherjee et al., 2015).  Zawada et al. focussed on 

transcriptome differences between the intermediate and non-classical subsets.  They identified 

more genes associated with phagocytosis, production of ROS, and MHC class II antigen 

processing and presentation in the intermediate compared to the non-classical subset (Zawada 

et al., 2011).   

 

A higher proportion of intermediate monocytes has been reported in patients with coronary 

artery disease (Schlitt et al., 2004).  An increase in the proportion of circulating intermediate 

monocytes has been associated with a higher rate of cardiovascular events and death in 

patients receiving long-term dialysis (Heine et al., 2008; Rogacev et al., 2011).  This suggests 

a possible role for these cells in cardiovascular disease. 

 

Increasingly, it is accepted that the intermediate monocyte, as well as having an individual 

functional role, is also a transitional cell from classical to non-classical.  Following the 

introduction of the 2010 nomenclature defining the three subsets, Wong et al. examined the 

transcriptome of all monocyte subsets from healthy individuals.  The number of differentially 

expressed genes between classical and non-classical subsets was higher than between either 

intermediate and non-classical, or intermediate and non-classical subsets (1456 compared to 

249 and 942 respectively).  The intermediate subset was shown to express 87 % of genes at a 

level between that of the classical and non-classical subsets; a similar result was found when 

they examined cell surface markers, with intermediate monocytes expressing them at levels 

between those of the other two subsets (Wong et al., 2011).   Ancuta et al., prior to the 
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definition of the three subsets, compared the transcriptome of monocyte subsets from healthy 

volunteers, Comparing CD16+ to CD16- monocytes showed that 13,569 genes were similarly 

expressed, whilst 250 genes were down-regulated and 228 up-regulated with at least a 2-fold 

difference in expression. CD16+ monocytes had upregulation of markers also present in 

dendritic cells and macrophages. CD16- monocytes had high levels of granulocyte and 

myeloid markers (Ancuta et al., 2009). The work of both groups supports the idea of 

monocyte subsets having a common progenitor and transition from the classical subset 

through to intermediate and then on to non-classical. 

 

Several mechanisms have been proposed for differentiation between subsets.  Macrophage 

colony-stimulating factor (MCSF) is released by many cells, including endothelial cells and 

monocytes (Stanley et al., 1978; Vellenga et al., 1988).  Two studies in particular suggest a 

role for MCSF in monocyte subset differentiation.  Firstly, a study of monocyte subsets was 

carried out in patients with cancer, a proportion of whom were given recombinant MCSF.  

Initial results showed that patients with gastrointestinal cancer already had an expansion of 

CD16+ monocytes prior to receiving MCSF.  Following the administration of recombinant 

MCSF there was a significant increase in the number of monocytes but also a 20-fold increase 

in the proportion of circulating CD16+ monocytes.  The authors noted that the majority of 

these CD16+ cells were also low in their CD14 expression, but this work was over a decade 

before the identification of the intermediate subtype (Saleh et al., 1995a).  Later work 

investigated the use of an antibody to MCSF in a patient with rheumatoid arthritis.  A week 

following administration of the antibody there was a complete loss of non-classical 

monocytes, which returned to normal four weeks after the infusion (Korkosz et al., 2012). 

 

Accurate understanding of the distinct functions of monocyte subsets is challenging.  As 

discussed above, there are multiple contradictory reports relating to monocyte subset function, 

cell surface expression and cytokine secretion.  In part this is due to the relatively recent 

agreement on defining the subsets, with work performed prior to 2010 tending to consider 

intermediate and non-classical monocytes together or to ignore the intermediate subset 

completely.  Methods of examining the subsets are also imprecise; flow cytometry gating is 

very operator-dependent and the nomenclature for the subsets applies only in ‘steady state’ 

conditions.  There has also been some work to suggest that the isolation of monocytes from 

whole blood can itself affect the proportion of subsets (Zhou et al., 2012; Mukherjee et al., 

2015). Single cell sequencing of whole blood enriched for HLA DR+ cells identified four 

monocyte subsets.  Using principal component analysis, an unbiased classification was 
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performed.   Four monocyte clusters were identified.  The two largest clusters (Mono1 and 

Mono2) contained the classical and non-classical monocytes respectively.  Intermediate 

monocytes however did not form a homogenous group but were divided between Mono1 and 

Mono2 as well as the two remaining smaller clusters (Mono3 and Mono4) (Villani et al., 

2017). 

 

1.5.5 Monocyte subsets during sepsis 

Expansion of different monocyte subsets has been associated with various disease states; as 

mentioned previously, caution is needed when identifying subsets using methods designed for 

the ‘steady state’ (Ziegler-Heitbrock et al., 2010a).  With regard to sepsis, there is also the 

added complication of a changing definition (see section 1.2.3, page 4).   

 

During sepsis, several studies have demonstrated an increase in CD16+ monocyte numbers 

(Fingerle et al., 1993; Herra et al., 1996; Skrzeczynska et al., 2002; Ziegler-Heitbrock, 2007).  

Most studies suggest that this expansion is in non-classical monocytes, although others report 

an expansion of both intermediate and non-classical or intermediate alone (Skrzeczynska et 

al., 2002; Poehlmann et al., 2009; Mukherjee et al., 2015).  This is likely due to the 

heterogenous population of individuals with sepsis, the rapidly changing status of patients 

with sepsis, the range of treatments for such patients, the variations in classifying monocyte 

subsets and the difficulties in separating intermediate and non-classical subsets using flow 

cytometry. 

 

Serial measurements of monocyte subtypes throughout the course of sepsis reveal a transient 

increase in non-classical monocytes for approximately 3 days.  No increase in total monocyte 

numbers was shown, simply a change in proportion (Fingerle et al., 1993; Fingerle-Rowson et 

al., 1998). 

 

HLA DR is a major histocompatibility complex class II molecule.  Its expression has been 

known to decrease in sepsis and critical illness; this has been associated with the development 

of innate immunosuppression, which can lead to secondary infection in sepsis. A prolonged 

decrease in expression has been associated with worsened outcomes (Conway Morris et al., 

2013).  All subsets have been shown to decrease their expression of HLA DR during sepsis 

(Poehlmann et al., 2009).  Later work has demonstrated that during systemic inflammation 

(post-abdominal aorta surgery) the expression of HLA DR varies between the subsets, with 

expression being lower in CD14++ versus CD14+ subsets (Kim et al., 2010).  Further work is 
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needed to enable a better understanding of the control of HLA DR expression between 

subsets. 

 

As previously discussed, MCSF is believed to be involved in the differentiation of classical to 

non-classical monocytes.  MCSF levels increase during sepsis, and this has been shown to 

occur particularly in individuals who have an associated thrombocytopenia, potentially due to 

haemophagocytosis (Francois et al., 1997; Oren et al., 2001).  Perhaps the changes in MCSF 

levels may explain the variations between monocyte subsets during sepsis. 

 

Although the expression of TF on circulating monocytes has been investigated, very little 

work has considered TF expression between subsets.  The induction of TF following IL-33 

stimulation demonstrated that TF expression can vary between monocyte subsets (Stojkovic 

et al., 2017).  The possible role of TF expression on monocyte subsets during sepsis has yet to 

be considered. 

 

1.5.6 Summary 

The current system of classifying monocyte subsets is still arbitrary and may require the 

addition of more markers in future, so that we can adequately separate functionally different 

cells.  Problems remain with the operator-dependent nature of flow gating, although clustering 

algorithms can help.  There do appear to be distinct differences, however, between the current 

classical, intermediate and non-classical subsets.  Future work investigating the mechanisms 

underpinning sepsis should consider monocyte subsets and their individual contributions. 

  

1.6 Modelling the immune response to infection 

1.6.1 Overview 

This section discusses the use of models to investigate the pathology of sepsis, with a focus 

on the human endotoxaemia model. 

 

1.6.2 Why do we need a model?   

To comprehend sepsis and its associated coagulopathy better, we need to understand the 

pathophysiological changes that occur prior to an individual’s presentation to healthcare 

services.  Sepsis itself is heterogeneous; with a range of aetiologies, presentations and 

outcomes, cases are difficult to standardise or to control for.  The use of models is therefore 

an important part of studying sepsis. 
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1.6.3 Difficulties with animal models  

There are three main animal models used in sepsis research: the addition of a toxin or 

virulence factor such as lipopolysaccharide (LPS); the addition of a viable pathogen such as 

bacteria administrated intravenously or intra-peritoneally; and the use of host-barrier 

dysfunction such as caecal ligation and puncture (CLP).  The use of animal models in sepsis 

has led to several possibilities for improving outcomes and coagulopathy that have 

unfortunately, as discussed in section 1.3.7, not been translatable into humans (Warren et al., 

2001; Abraham et al., 2003; Ranieri et al., 2012; Vincent et al., 2013; Fink, 2014).   

 

There are differences between the response to endotoxaemia in animals compared to humans.  

Mice and baboons are much more resistant to LPS than humans; rabbits are more sensitive 

but show a very variable response.  Agents such as D-galactosamine (LPS is metabolised by 

the liver, but this agent is hepatotoxic) have been used in the past to further sensitise animal 

models to LPS (Galanos et al., 1979).  Endotoxaemia models are based on a single insult, 

whereas the development of sepsis is believed to involve multiple insults.  Endotoxaemia 

itself is not a model of sepsis but of inflammation; it is not able to replicate the response seen 

to viable pathogens (Buras et al., 2005).  

 

Animal models have been designed to produce sepsis within hours to days without therapeutic 

intervention. Once sepsis is identified in a patient, they are treated with antimicrobials and 

supportive therapies, but such measures are usually not used in animal models.  This may lead 

to a therapy appearing more effective in the animal model compared to the patient who has 

ongoing care (Buras et al., 2005). 

 

Finally, a major concern is the lack of standardisation between animal models, although there 

have been recent efforts to rectify this.  A group of international experts met at a conference 

held in 2017 to discuss a literature review of the 260 most cited papers on pre-clinical models 

of sepsis and to write guidelines for the standardisation of such models, published as 

“Minimum Quality Threshold in Pre-Clinical Sepsis Studies”. Recommendations include that 

the model accurately reflects the clinical situation (for example by employing appropriate 

supportive and antimicrobial therapies), that clear methodologies are included in publications 

to allow for accurate replication by different research groups, that LPS should not be used as a 

model of sepsis in animals, and that humane treatment is universally applied  (Osuchowski et 

al., 2018). 

 



 52 

1.6.4 The human endotoxaemia model 

The limitations of animal models can to some extent be addressed using human pre-clinical 

models; the most common and long-standing is the administration of LPS to cause 

endotoxaemia in humans.  LPS can be administered in several ways, for example 

intravenously, intradermally and via the inhaled route.  As mentioned earlier this is not a 

model of sepsis but does lead to activation of coagulation, fibrinolysis and inflammation (van 

Deventer et al., 1990).  The main benefit of the model is that it can allow investigators to 

understand the early physiological changes that occur during systemic inflammation and 

potentially provide new therapeutic targets to be further studied (Andreasen et al., 2008). 

 

LPS is a component of the Gram-negative bacterial outer membrane and has been used as an 

experimental model of inflammation in animals for over 200 years.  In the late 1800s it was 

used as a treatment for cancer patients; probably any effects were due to the increase in TNFα 

(Andreasen et al., 2008).  It was first clearly identified in 1935 by Boivin and Mesrobeanu 

and its biochemistry determined in 1952 by Westphal and Luderitz (Boivin and Mesrobeanu, 

1936; Westphal et al., 1952).  LPS works to form a hydrophobic barrier around the bacterium, 

conferring protection against host defences such as complement and some anti-microbials 

(Donaldson et al., 1974; Nikaido and Nakae, 1980; Taylor, 1983).  Endotoxin strictly refers to 

the complex of LPS, phosphates and proteins when bound to the bacterial cell wall, although 

most literature when discussing models of endotoxaemia refers to the use of purified LPS 

(Andreasen et al., 2008).  LPS binds to TLR-4, with the CD14 receptor acting as a co-

receptor.  The binding leads to the activation of NF-κB transcription factors that lead to 

production of pro-inflammatory cytokines including TNFα and IL-1β (Lu et al., 2008). 

 

Intravenous LPS studies in humans have used a range of doses up to 4ng/kg, but a dose of 

2ng/kg has been shown to stimulate inflammation, coagulation and fibrinolysis (van Deventer 

et al., 1990).  The source of LPS used in these studies is important when choosing dose.  The 

standardised source of E. coli group O 113:H10:K negative, used for models between the 

1970s and 1990s, for example, was depleted and multiple investigators noted it became less 

potent over time (Lowry and Fong, 1996)  Another reference endotoxin was produced, again 

from E. coli 0 113, by the American National Institute of Health Clinical Center.  A 

comparison of the two endotoxin sources demonstrated the dose-responsive nature of LPS and 

confirmed that the former batch had lost potency (Suffredini et al., 1999). 
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Unlike in animal models, human participants show a very stereotypical response.  As 

discussed in section 1.3, infusion of LPS into healthy human participants leads to an initial 

activation of the coagulation system in the first few hours, and there is a 125-fold increase in 

TF mRNA.  The TF peaks at 3 hours post-infusion and is followed by an activation of 

coagulation at 4 hours as demonstrated by an increase in thrombin:antithrombin levels and 

prothrombin fragments 1 and 2 (Franco et al., 2000).  After the activation of coagulation there 

is a biphasic fibrinolytic response, with an initial activation of fibrinolysis for several hours 

followed by a more sustained inhibition with high levels of PAI-1 (Suffredini et al., 1989; van 

Deventer et al., 1990; Franco et al., 2000; Andreasen et al., 2008).  This is comparable to 

what is expected during sepsis (Levi et al., 1993).  Endotoxaemia models were primarily 

responsible for revealing the important role TF plays in causing sepsis-associated 

coagulopathy and DIC.  An important difference with regard to sepsis-associated 

coagulopathy, however, is that the physiological anticoagulants change very little or not at all 

following an infusion of LPS (Krabbe et al., 2006).   

 

A striking feature of the human endotoxaemia model is an early monocytopenia that reaches 

its nadir between 1 and 3 hours and resolves over the following 24 hours.  The monocyte 

count drops to <5% of pre-LPS levels.  Examining the recovery of monocytes following LPS 

shows that classical monocytes recover first at about 8 hours, followed by intermediate and 

then non-classical subsets after 24 hours (Tak et al., 2017).  This provides further support for 

the hypothesis that classical monocytes differentiate through intermediate into non-classical 

(see section 1.5.4, page 45).  The level of activation between subsets also appears to vary.  

Intermediate and non-classical monocytes have been shown to produce the highest levels of 

IL-6 and IL-8 following LPS infusion.  CD11b (important for leucocyte adhesion and 

migration) is a marker of monocyte activation and was expressed most highly by the 

intermediate subset (Thaler et al., 2016).  This suggests that each monocyte subset may have a 

different role in systemic inflammation. 

 

1.6.5 Strengths and limitations 

The human endotoxaemia model has multiple strengths: it is reproducible; it has a strong 

safety record; it allows the ability to measure temporal changes following endotoxaemia; and 

it measures responses in humans prior to clinical trials (Andreasen et al., 2008). 

 

As previously stated, the human endotoxic model is not a model of sepsis.  Obviously, it 

would be unethical to cause organ dysfunction in human participants.  As with animal models, 
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it measures the response to a single insult, unlike sepsis which has multiple causes and can be 

a response to repeated exposures.  LPS itself is only present in the circulation for 

approximately 15 minutes before it is cleared (van Deventer et al., 1990).  Endotoxaemia 

causes a rapid increase in cytokine levels that then quickly return to normal, while individuals 

with sepsis have a much more sustained exposure to endotoxin that can last several days 

(Guidet et al., 1994; Andreasen et al., 2008). 

 

LPS is present on the cell wall of Gram-negative bacteria, but a significant proportion of 

sepsis is caused by Gram-positive, fungal and viral pathogens.  However, most intracellular 

pathways and the induction of inflammation are similar with other causes (Andreasen et al., 

2008).   

 

1.6.6 Summary 

Endotoxaemia, although not a true model of sepsis, is a good way of measuring systemic 

inflammation in a human model.  More work is needed to understand the effects on monocyte 

subsets, particularly in relation to TF expression. 

 

1.7 Overall summary 

Despite a great deal of research, sepsis continues to have a high mortality rate that is highest 

in those with sepsis-associated DIC.  There is an urgent need to develop a better 

understanding of the pathophysiology that predisposes to the development of coagulopathy 

during sepsis, so it can be recognised earlier, and new therapeutic targets identified. 

 

The cell surface expression of TF on monocytes is crucial to the development of coagulopathy 

but there is little to no work comparing the expression between monocyte subsets. This 

project will compare the cell surface expression and activity of TF between the monocyte 

subsets. Monocyte TF will be investigated during health, endotoxaemia and sepsis to 

investigate the role of monocyte subset TF in the development of sepsis-associated 

coagulopathy.  
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1.8 Hypotheses  

1. The classical monocyte subset predominates in the circulation during health.  This 

subset expresses a low level of cell surface TF, which shows little activity.   

2. Following infection, there is an increase in the cell surface expression of TF and an 

increase in its activity.   

3. Interaction between monocytes and the endothelium allows a local low-level 

activation of coagulation. 

4. During sepsis, there is a decrease in the proportion of circulating classical monocytes 

and an increase in the proportion of non-classical.  Non-classical monocytes, when 

compared to the other monocyte subsets, express higher levels of TF, leading to a 

more pro-coagulant response and predisposing to sepsis-associated coagulopathy. 

 

1.9 Aims & Objectives 

These hypotheses will be tested in three conditions: health, endotoxaemia and sepsis.   

 

Monocytes will be isolated from healthy volunteers and investigated in culture with 

commercially-sourced human primary microvascular endothelial cells (PMVEC).  These 

experiments will be discussed in chapter three and aim: 

- to investigate the cell surface expression and activity of TF between monocyte subsets 

with and without LPS stimulation 

- to create an in vitro model of monocyte-endothelial interactions during sepsis 

- to understand the pathway through which LPS induces TF expression on the cell 

surface monocyte subsets. 

 

A human model of endotoxaemia will be used to simulate the initiation of sepsis.  This 

involves the injection of LPS (2ng/kg) to a healthy volunteer followed by venepuncture at the 

following time points: pre-injection, 90 minutes, 4, 6, 10, 24 hours and 7 days following the 

injection. These experiments will be discussed in chapter four, and aim: 

- to identify the changes in the proportion of circulating monocyte subsets following 

LPS exposure  

- to investigate the effect of endotoxaemia on the cell surface expression of TF between 

the monocyte subsets 
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Blood samples will be taken from individuals with sepsis on a critical care unit.  Sepsis will 

be defined by the requirement of organ support and the presence of an infection (as shown by 

either a positive blood culture, bronchoalveolar lavage or microbiological evidence of a deep-

seated infection such as peritonitis).  A further blood sample will be retrieved on discharge 

from the critical care unit in those individuals who recover and consent to a second sample.  

These experiments will be discussed in chapter five and aim: 

- to identify changes in the proportion of circulating monocyte subsets during sepsis and 

on recovery 

- to investigate the cell surface expression of TF between monocyte subsets during 

sepsis and on recovery 

- to investigate the monocyte-endothelial interactions during sepsis using the same in 

vitro model as used with healthy monocytes 
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2. Chapter 2. Materials and Methods 
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2.1 Overview 

This chapter will outline all methods used to produce the data discussed later.  All materials, 

reagents and equipment used are listed under the relevant providers.  Details of (a) studies 

used to obtain blood samples from healthy volunteers, (b) the human endotoxaemia model 

and (c) studies in patients with sepsis will be included, with protocols, information sheets and 

consent forms attached as appendices. 

 

2.2 Lists of materials and reagents 

Abcam (Cambridge, UK) 

- Human PAI-1 enzyme-linked immunosorbent assay (ELISA) Kit 

- Human tissue-type plasminogen activator ELISA Kit 

- Tissue Factor Activity Assay Kit (Human, colorimetric). 

 

Agar Scientific (Stanstead, UK) 

- Paraformaldehyde 16 % Solution (methanol-free) - 10x10 mL ampoules 

 

BD Biosciences (Wokingham, UK) 

- Alexa Fluor® 647 anti-human cluster of differentiation (CD) 354 (TREM-1), mouse 

IgG1, (clone 193015) 

- BD™ CompBead anti-mouse Ig, κ/negative control compensation particles set 

- BD FACS™ lysing solution 10x concentrate 

- BD Horizon™ brilliant stain buffer 

- BD Trucount™ Absolute Counting Tubes 

- Brilliant Violet (BV) 421 anti-human TLR4 (CD284), mouse IgG1, κ (clone TF901) 

- Fluorescein isothiocyanate (FITC) anti-human CD45, mouse IgG1, κ (clone HI30)   

- Phycoerythrin (PE) anti-human tissue factor (CD142) mouse IgG1, κ (clone HTF-1) 

- Violet (V) 500 anti-human CD16, mouse IgG1, κ (clone 3G8) 

 

 

 

Biolegend (London, UK) 

- Allophycocyanin (APC)/Cyanine7 anti-human CD19 antibody, mouse IgG1, κ (clone 

SJ25C1) 

- APC/Cy7 anti-human CD16 antibody, mouse IgG2b, κ (clone 3G8)  

- APC/Cy7 anti-human CD20 antibody, mouse IgG2b, κ (clone 257) 
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- Brilliant Violet 605™ anti-human CD3 antibody, mouse IgG2a, κ (clone OKT3) 

- Brilliant Violet 785™ anti-human HLA-DR antibody, mouse IgG2a, κ (clone L243) 

- PE anti-human CD1c antibody, mouse IgG1, κ (clone L161) 

- PE anti-human CD3 antibody, mouse IgG2a, κ (clone HIT3a) 

- PE anti-human CD7 antibody, mouse IgG2a, κ (clone CD7-6B7) 

- PE anti-human CD19 antibody, mouse IgG1, κ (clone 4G7) 

- PE anti-human CD20 antibody, mouse IgG2b, κ (clone 2H7) 

- PE anti-human CD34 antibody, mouse IgG1, κ (clone 581) 

- PE anti-human CD56 antibody, mouse IgG1, κ (clone HCD56) 

- PE anti-human CD66b antibody, mouse IgM, κ (clone G10F5) 

- PE anti-human CD123 antibody, mouse IgG1, κ (clone 6H6) 

- PE/Dazzle™ 594 anti-human CD14 antibody, mouse IgG1, κ (clone HCD14) 

- Peridinin chlorophyll/Cyanine (PerCP/Cy) 5.5 anti-human CD14 antibody, mouse 

IgG1, κ (clone HCD14) 

- Zombie UV™ Fixable Viability Kit. 

 

Fisher Chemical (Loughborough, UK) 

- Isopropanolol. 

 

Greiner Bio-One (Stonehouse, UK) 

- VACUETTE® TUBE 4.5 mL 9NC Coagulation sodium citrate 3.8 % blue cap-black 

ring 

- VACUETTE® TUBE 5 mL CAT Serum Separator Clot Activator gold cap-gold ring 

- VACUETTE® TUBE 9 mL K3E K3EDTA lavender cap-black ring, non-ridged 

- VACUETTE® TUBE 4 mL K3E K3EDTA lavender cap-black ring, non-ridged. 

 

Lonza (Slough, UK) 

- Iscove’s Modified Dulbecco’s Medium (IMDM) 

- Roswell Park Memorial Institute medium (RPMI) 1640 with glutamine. 

 

Miltenyi Biotec (Surrey, UK) 

- Sterile pre-separation filters, 30 µm. 

 

Promocell (Lutterworth, UK) 

- Endothelial cell growth basal medium MV 2 
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- Endothelial cell growth medium MV 2 supplement mix 

- Human pulmonary microvascular endothelial cells isolated from the lung of a single 

donor (C-12281).  

 

R&D Systems (Abingdon, UK) 

- IT 901, NF-κB c-Rel sub-unit inhibitor 

- SR 11302, activator protein (AP)-1 inhibitor 

- FR180204, selective ERK 1 and ERK 2 inhibitor 

- Human M-CSF DuoSet ELISA 

 

Sarstedt (Leicester, UK) 

- Cell culture flasks with ventilation cap (T25 and T75) 

- Cell culture plates (24- and 96-well) 

- Falcon tubes (15 mL and 50 mL)  

- Pipette tips (10 µL, 20 µL, 200 µL, 1000 µL, 5 mL and 10 mL). 

 

Sigma Aldrich Ltd. (Gillingham, UK) 

- 4ʹ, 6-diamidino-2-phenylindole (DAPI) 

- Bovine serum albumin (BSA) 

- Dimethyl sulphoxide (DMSO) 

- Citrate concentrated solution 4 % 

- Giemsa stain solution 

- Lipopolysaccharide from Escherichia coli 026:B6 

- Nalgene® Mr. Frosty, freezing container 

- Phosphate-buffered saline (PBS) 

- Propidium iodide (PI) 

- Sodium azide 

- Triton 10 % 

- Trypsin 

- Trypan blue solution 0.4 % 

- TWEEN® 20. 

 

STARLAB (Milton Keynes, UK) 

- Cryovial with Internal Thread, Silicone Seal Cap, 1.8mL, Skirted (Sterile). 
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2.3 Equipment 

- BD FACS Aria III (BD Biosciences, Wokingham, UK) 

- BD FACS Fusion (BD Biosciences, Wokingham, UK) 

- BD Symphony A5 (BD Biosciences, Wokingham, UK) 

- FLUOstar Omega spectrophotometer microplate reader (Aylesbury, UK) 

- MoFLO Astrios (Beckman Coulter, High Wycombe, UK) 

- ThermoScientific Shandon Cytospin 3 centrifuge (Fisher Scientific UK Ltd, Paisley, 

UK). 

 

2.4 Software 

- Flow cytometry was performed using FACS Diva software (version 8.01) for 

acquisition and FCS Express (version 6.06.002) for analysis. 

- Omega (version 5.10) acquisition and MARS data analysis software (version 3.02) 

were used for the multi-plate reader.  

 

 

2.5 Monocyte isolation and preservation 

2.5.1 Isolation of peripheral blood mononuclear cells from whole blood 

Peripheral blood mononuclear cells (PBMCs) were isolated using a Ficoll-Paque™ density 

gradient separation (density = 1.077 g/mL).  In brief, 30 mL of citrated (final concentration of 

1 % sodium citrate) whole blood was centrifuged at 200 g for 10 min at 21 ⁰C.  The plasma 

layer was removed (see Figure 2.1A).  A proportion of plasma was aliquoted, and serum 

obtained by adding 1M CaCl2 (220 µL per 10 mL of plasma) in a glass tube followed by 

incubation in a water bath at 21 °C until the platelets were aggregated.  The serum was then 

removed and either used in experiments that day or frozen at -80 ⁰C.  The volume of plasma 

removed was replaced with warmed 0.9 % saline solution and the cell pellet re-suspended.  

This was layered over 15 mL of Ficoll-Paque™ and the solution centrifuged at 400 g for 30 

min at 21 ⁰C to create a layer of PBMCs (see Figure 2.1B & C).  The PBMC layer was 

removed and washed twice using Hanks’ Balanced Salt Solution without Ca2+ or Mg2+ ions 

(HBSS-).  A 200 µL aliquot was taken.  Of this, 100 µL was stained with 5 µL 0.4 % Trypan 

blue, which stains positive if the cell membrane is disrupted (thereby identifying dead cells), 

and a cell count of live cells performed using a haemocytometer.  The remaining 100 µL was 

used to perform a cytospin to ensure the purity of the sample.  Cytospin slides were fixed in 

acetone for 10 min and then stained in Giemsa for 10 min.  Only PBMC preparations with > 

95 % purity and viability were used.  Typically, 30 million PBMCs are isolated from 30 mL 
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of whole blood.  The PBMCs are then re-suspended in either Hanks’ Balanced Salt Solution 

with Ca2+ and Mg2+ (HBSS+) or IIMDM with phenol red, depending upon the assay to be 

performed. 

 
2.5.2 Isolation of monocytes using adherence 

PBMCs were isolated as detailed above (see section 2.5.1, page 61) and re-suspended in 37 

°C IMDM with 10 % autologous serum at a concentration of 1 million per mL.  Cells were 

cultured in a 24-well plate for one hour, with 500,000 cells added per well, in an incubator at 

37 °C and 5 % CO2.  Following this, wells were washed twice with HBSS- to remove all non-

adherent cells.  500 µL of medium (IMDM with 10% autologous serum at 37 °C) was added 

to each well.  Light microscopy was used to ensure that > 90 % remaining cells were 

monocytes.     
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Figure 2.1 Isolation of peripheral blood mononuclear cells from whole blood isolation  

This figure depicts the stages of isolating mononuclear cells from whole blood using a Ficoll-

Paque™ density gradient separation. A – The whole blood sample is centrifuged to pellet the 

cells and separate the plasma. B – The cell pellet is re-suspended in warm 0.9 % saline and 

layered over 15 mL of Ficoll-Paque™.  C – The sample is centrifuged at 400 g for 30 min and 

a layer of PBMCs isolated.  
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2.5.3 Negative selection of monocytes using fluorescence-activated cell sorting 

PBMCs were isolated as described above (section 2.5.1, page 61).  They were centrifuged at 

300 g for 5 minutes at 4 ⁰C and re-suspended in flow buffer at a concentration of 10 million 

cells per 100 µL.  Flow buffer was prepared using PBS with 0.2 % bovine serum albumin and 

0.1 % sodium azide; it was stored at 4 °C.  The antibody mix detailed in table 2.1 was added; 

samples were vortexed and incubated at 4 °C in the dark for 30 min.  Following incubation, 

cells were washed by the addition of 500 µL flow buffer at 4 °C to each sample, and 

centrifugation at 200 g for 5 min at 4 ⁰C.  The supernatant was removed and the pellet re-

suspended in flow buffer at 4 °C at a concentration of 20 million cells per 1 mL of buffer.  

The sample was filtered using a sterile filter with a pore size of 30 µm. 

 

The Newcastle University Flow Cytometry Core Facility assisted in negatively selecting 

monocytes using fluorescence-activated cell sorting (FACS).  Sorting was performed using a 

70 µm nozzle on a BD FACS Fusion cell sorter.   

 

Mononuclear cells were identified using forward and side scatter.  Of these, the live cells 

were selected and all PE-positive cells discarded (see Figure 2.2).  The sample was 

maintained at 4 °C.  Monocytes were sorted into autologous serum, obtained as described 

earlier (section 2.5.1), and used immediately.  The purity of the monocytes was tested using 

flow cytometry for CD14 and CD16 using the panel detailed in Table 2.2. 

 

Both fluorochrome panels were compensated using BD™ anti-mouse compensation beads.  

Each fluorochrome was incubated, at the same concentration used for experimental samples, 

with mouse beads (positive and negative together) for 30 min at 4 °C in the dark.  The 

samples were then washed with the addition of 500 µL of flow buffer.  They were centrifuged 

at 300 g for 5 min at 4 ⁰C and the supernatant removed.  The sample was re-suspended in flow 

buffer and stored at 4 °C in the dark until used.  The beads were used to identify the positive 

and negative populations.  FACS Diva software was used to calculate compensation between 

fluorochromes.  

  



 65 

 

Antigen Primary cells to 
be identified Fluorochrome Wavelength Volume to be 

used 
CD3 T cells 

PE 561 586/15 
5 µL of each 

per 10 million 
cells 

CD7 T cells, NK cells 
CD20 B cells 
CD19 B cells 

CD123 
Haematopoietic 
progenitors, 
Basophils, Mast 
cells, Dendritic cells 

CD34 Haematopoietic 
progenitors 

CD66b 
Neutrophils, 
Eosinophils 

CD56 NK cells 

DAPI To test cell 
viability 

 405 450/50 
5 µL per 10 
million cells 
(0.1 µg/mL) 

 

Table 2.1 Flow cytometry panel for the negative selection of monocytes from PBMCs 

This table details the volume of each antibody used per 10 million PBMCs as well as the 

amount of DAPI used to assess viability.  The cells excluded by each CD marker are included.  
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This figure shows an example of healthy volunteer negatively-sorted monocytes and a check 

of sample purity post-sort.  

1 – Mononuclear cells are gated using forward and side scatter.  2 – Forward scatter height 

and area are used to select single cells. 3 – Live cells are gated by using DAPI-negative 

events. 4 – Monocytes are selected using the PE-negative population, excluding lymphocytes, 

natural killer (NK) cells, neutrophils, basophils and eosinophils.  

 5 – Mononuclear cells are gated using forward and side scatter variables.  6 – Single cells 

are gated using forward scatter area and height variables.  7 – Live cells are gated using PI 

staining.  8 - Monocyte subsets are sorted using CD14 and CD16 positivity.   

  

Figure 2.2 Gating used to negatively sort monocytes from PBMCs using FACS 
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Antigen Primary cells to 
be identified Fluorochrome Wavelength Volume to be 

used 

CD14 
Classical and 
Intermediate 
subsets 

PerCP/Cy5.5 488 695/40 1.25 µL per 2 
million cells 

CD16 
Intermediate and 
Non-classical 
subsets 

APC/Cy7 640 780/60 1.25 µL per 2 
million cells 

PI To test cell 
viability   561 610/20 1.5 µL of 0.5 

mg/mL 
 

Table 2.2 Flow cytometry panel used to assess the purity of the negatively sorted monocytes 

This table details the volume of each antibody used per 2 million negatively sorted monocytes, 

as well as the amount of PI to be used to assess viability. 
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2.5.4 Positive selection of monocyte subsets using fluorescence-activated cell sorting 

PBMCs were isolated and re-suspended in flow buffer at 4 °C as described earlier (section 

2.5.3, page 64).  The antibody mix detailed in table 2.3 was added and the samples incubated 

at 4 °C in the dark for 30 min.  Following incubation, samples were washed with the addition 

of 500 µL of flow buffer per 10 million cells at 4°C and centrifugation at 200 g for 5 min at 4 

⁰C.  The supernatant was discarded and the pellet re-suspended in flow buffer at a 

concentration of 20 million cells per mL of buffer.  Prior to sorting, the sample was filtered 

using a sterile filter with a pore size of 30 microns.   

 

The Newcastle University Flow Cytometry Core Facility assisted in positively selecting 

monocyte subsets using FACS.  Sorting was performed using a 70 µm nozzle on a BD FACS 

Fusion cell sorter.  Mononuclear cells were selected using forward and side scatter variables.  

The live cells were selected and BV421 positive cells excluded.  The monocytes were sorted 

into classical, intermediate and non-classical using CD14 and CD16 positivity. 

 

The sample was maintained at 4 °C.  Monocytes were sorted into IMDM medium and used 

immediately. 
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Antigen Primary cells to 
be identified Fluorochrome Wavelength Volume to 

be used 
CD3 T cells 

BV421 405 450/50 
5 µL of each 

per 10 
million cells 

CD20 B cells 
CD19 B cells 
CD56 NK cells 

CD14 
Classical and 
Intermediate 
monocytes 

PE dazzle 561 610/20 5 µL per 10 
million cells 

CD16 
Intermediate and 
Non-classical 
monocytes 

V500 405 525/50 5 µL per 10 
million cells 

DAPI To test cell 
viability UV 405 450/50 

5 µL per 10 
million cells       
(0.1 µg/mL) 

 

Table 2.3 Flow cytometry panel for the positive selection of monocyte subsets from PBMCs 

This table details the volume of each antibody used per 10 million PBMCs, as well as the 

amount of DAPI used to assess viability.  The cells identified by each CD marker are 

included.  
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1 – Mononuclear cells are gated using forward and side scatter.  2 – Forward scatter height 

and area are used to select single cells. 3 – Live cells are gated using DAPI-negative events. 4 

– Monocytes are selected using the BV421 negative population, thereby excluding CD3, 

CD19, CD20 and CD56. 5 – Monocyte subsets are sorted using CD14 and CD16 positivity.   

Figure 2.3 Example of the gating used to positively sort monocytes from a healthy 

volunteer into subsets using FACS 



 72 

2.5.5 Cryopreservation of peripheral blood mononuclear cells 

Freezing medium was prepared using 10 mL foetal bovine serum (FBS), 10 mL of sterile 

RPMI-1640 and 5 mL of DMSO.  PBMCs, isolated as described above (section 2.5.1, page 

61), were re-suspended in complete (c)RPMI medium at a concentration of 20 million per 

mL.  The volume of the cell suspension was then doubled using the freezing medium, creating 

a final concentration of 10 million PBMCs per mL.  PBMCs were stored in aliquots of 1 mL 

in cryovials and placed in a Mr Frosty freezing container filled with 70 % isopropanol.  The 

container was stored at -80°C for 24 hours before the samples were transferred into liquid 

nitrogen. 

 

Samples were thawed on the day they were to be used.  Cryovials were removed from the 

liquid nitrogen and their caps loosened to allow any liquid nitrogen that might have seeped 

into the vial to escape. Samples were then thawed quickly in a water bath.  Once only a small 

amount of ice crystal remained in the sample, the cryovials were quickly cleaned with 1 % 

Distel High Level Laboratory Disinfectant, followed by 70 % ethanol.  The PBMCs were 

diluted in 10 mL of HBSS and then centrifuged for 5 mins at 300 g at 21 ⁰C.  PBMCs were 

then re-suspended in the medium appropriate for the experiment to be performed.  An aliquot 

was taken to perform a viable cell count and cytospin (see section 2.5.1, page 61). 

 

2.6 Flow cytometry to determine monocyte subsets and tissue factor expression 

Flow cytometry was used to identify the monocyte subsets and their TF expression.  Flow 

cytometry was run using the BD Symphony machine with FACS Diva software.  Analysis 

was performed using the FCS express software. 

 

2.6.1 Flow cytometry for whole blood samples 

A panel of antibodies was used to identify monocytes and exclude other cells (see Table 2.4).  

Initially mononuclear cells were gated using CD45 positivity.  Single cells and live cells 

(Zombie UV positive) were then chosen.  B cells were excluded using markers for CD19 and 

CD20.  T cells were excluded with CD3.  Size and HLA-DR were used to distinguish 

monocytes from NK cells.  This left a population of monocytes that was gated into subsets 

using CD14 and CD16 positivity (see Figure 2.4). 

 

To calculate the absolute numbers of monocyte subsets in each whole blood sample, BD 

Trucount™ absolute counting tubes were used.  These tubes contain a known number of 
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beads; flow cytometry was run until 20,000 bead events had been measured.  This was then 

used to identify the absolute number of monocytes using the calculation: 

 

Absolute cell count = number of positive cell events   X  total number of beads 
          number of bead events           volume of blood tested 
 

100 µL of whole blood (anticoagulated with 1 % sodium citrate) was added via reverse 

pipetting to the mix of antibodies listed in table 2.4, within the Trucount™ tubes.  To reduce 

non-specific antibody binding, 50 µL of flow buffer at 4 °C was added to each sample.  Tubes 

were then vortexed to suspend the bead pellet and incubated at 4 °C in the dark for 30 min.  

BD FACS™ lysing solution was used to lyse the red cells and fix the antibody staining. Each 

sample was incubated with 1.5 mL of the solution in the dark at room temperature for 20 min.   

 

2.6.2 Flow cytometry for samples containing isolated monocytes 

For samples using isolated cells (either PBMCs or monocytes) the same antibody mix was 

used (see Table 2.4).  The cells were pelleted by centrifugation at 200 g for 5 min at 4 ⁰C, and 

the supernatant was removed and stored at –80 ⁰C before re-suspension in 100 µL flow buffer 

at 4 ⁰C (see section 2.5.1, page 61).  The mix of antibodies was added and left to incubate for 

30 min at 4 ⁰C in the dark.  Following incubation, a further 500 µL of flow buffer at 4 ⁰C was 

added to wash unbound antibody.  Samples were centrifuged for 5 min at 200 g and the 

supernatant discarded.  The pellet was re-suspended in 300 µL of flow buffer and stored in the 

dark at 4 ⁰C until flow cytometry. 
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1 – Mononuclear cells were gated using CD45 positivity and side scatter.  2 – Forward 

scatter height and area were used to select single cells. 3 – Live cells were gated using 

Zombie UV-negative events. 4 – B lymphocytes were removed using the CD19 and CD20 

negative population. 5 – T lymphocytes were removed using the CD3 negative population.  6 

– NK cells were excluded using HLA-DR and side scatter variables. 7 – Beads were gated 

using two fluorochromes.  8 - Monocyte subsets were sorted using CD14 and CD16 positivity.  

(CD – cluster of differentiation, NK – natural killer, UV – ultra-violet).  

Figure 2.4 Example (using blood from a healthy volunteer) of the monocyte gating 

strategy for whole blood samples. 
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Antigen Description Fluorochrome Wavelength 
Volume to be used 

per 100 µL of whole 
blood (µL) 

Zombie 
UV Viability marker UV 355 379/28 5 
TLR4 LPS receptor BV421 405 450/50 5 

CD16 
Intermediate and 
Non-classical 
monocyte marker 

V500 
405 525/50 5 

CD3 T cell marker BV605 405 610/20 5 

HLA-DR MHC class II cell 
surface receptor BV785 

405 780/60 5 
CD45 Leucocyte marker FITC 488 530/30 20 
CD142 Tissue factor PE  561 586/15 20 

CD14 
Classical and 
Intermediate 
monocyte marker 

PE Dazzle 
561 610/20 5 

TREM1 

Stimulator of 
monocyte and 
neutrophil 
inflammatory 
response 

AF647 

640 670/30 5 
CD19 B cell marker APC Cy7 640 780/60 5 
CD20 B cell marker APC Cy7 640 780/60 5 

Table 2.4 Antibody panel for whole blood flow cytometry 

This table details the panel used to identify monocyte subsets from whole blood as well as 

their cell surface expression of TLR4, HLA-DR, TREM1 and TF.   

(HLA-DR - Human Leukocyte Antigen DR isotype, TF – tissue factor, TLR4 – Toll-like 

receptor 4, TREM1 – Triggering receptor expressed on myeloid cells 1) 
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2.6.3 Optimising the flow cytometry panel 

As previously described, the antibody panel was compensated for use on the BD Symphony 

flow cytometer.  Compensation was performed using beads and cells. All antibodies were 

titrated to ensure that the optimal concentrations were used to detect all positive events.  The 

Zombie UV antibody is affected by the level of protein in samples; for this reason, 5 µL was 

used per 100 µL in whole blood samples and 1 µL per 100,000 isolated cells.  Both conditions 

were titrated. 

 

2.6.4 Flow cytometry controls  

Flow gating was based on fluorescence-minus-one (FMO) controls and non-specific binding 

was identified using isotype controls.   

 

FMOs were performed for: CD14, CD16, CD142 (tissue factor), HLA-DR, TREM1 and 

TLR4.  Gating of classical, intermediate and non-classical monocytes was guided by the use 

of a flow sample minus both CD14 and CD16 (see Figure 2.5).  This was later refined for 

endotoxic and septic samples, where FMOs were used for CD14 and CD16 (see Figure 2.6).  

A more detailed description of these antigens is shown in Table 2.4.  For each, a sample was 

prepared as previously described (see methodology sections 2.6.1, page 72 and 2.6.2, page 

73) but the antibody of interest was omitted.  This allows for accurate identification of 

positive events and accounts for cellular auto-fluorescence. Isotype controls were performed 

for all antibodies to identify non-specific binding.  These controls were prepared in the same 

way as for the usual samples for flow cytometry, with the exception that the antibody of 

interest was replaced with the same concentration of isotype control (see methodology 

sections 2.6.1, page 72 and 2.6.2, page 73). 
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An example of monocyte subset gating, using monocytes sorted using FACS from a healthy 

volunteer sample.  Flow plots are shown for sample using all the whole flow panel (fully 

stained), the second sample without the CD14 and CD16 antibodies (No CD14 or CD16).  

The red dashed lines delineate the negative population of cells not positive for the markers. 

 
 
 

 

 

 

 

 

  

Figure 2.5 The gating of monocyte subsets using the flow panel for sorted monocytes 
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An example of FMOs using a healthy volunteer sample with the whole blood flow panel.  

Flow plots are shown for sample using all the whole flow panel (fully stained), the second 

sample without the CD14 antibody (FMO CD14) and a third sample without the CD16 

antibody (FMO CD16).  The red dashed lines delineate the negative population of cells that 

are not positive for the relevant marker. 

 

 
 
  

Figure 2.6 Using FMO to guide the gating of monocyte subsets with the flow panel for 

whole blood 
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2.7 Endothelial cell culture 

All tissue culture was performed using a Class II biological safety cabinet.  Primary human 

pulmonary microvascular endothelial cells (PMVEC) were grown with endothelial cell basal 

medium MV 2 plus supplement mix (all from Promocell).  The incubator was set at 37°C and 

with 5 % carbon dioxide (CO2). 

 

2.7.1 Culture of primary pulmonary microvascular endothelial cells 

Cells were cryopreserved in liquid nitrogen with 10% DMSO, thawed rapidly using a water 

bath at 37 °C and added into 5 mL of endothelial cell medium at 37 °C.  Cells were then 

washed and centrifuged at 200 g for 10 min at 21 ⁰C.  The supernatant was discarded and the 

pellet re-suspended in endothelial medium at 37 °C. 

Cells were grown in a 75 cm2 flask at a density of 500,000 cells in 10 mL of the prepared 

medium. Once seeded, cells were incubated for 24 hr before the medium was changed.  

Following this initial change, medium was changed every 48 to 72 hr.  The medium was 

warmed for 15 min in a water bath at 37 °C before being added to cells. 

 

Primary PMVEC were used at a passage number between 2 and 8, at a confluence of 

approximately 90 %.  Flow cytometry was used to ensure they expressed the expected 

endothelial cell markers (CD31).   

 

Once confluence was reached, cells were removed from the 75 cm2 flask and split between 

another 75 cm2 ‘stock’ flask and 24-well plates for the co-culture experiments described 

below (see methodology section 2.7.2, page 82).  The cells were washed with PBS and then 

incubated with 2.5 mL of 0.05 % trypsin for 5 min at 21 °C.  Cells were detached by a sharp 

tap on the side of the flask and, if necessary, with the use of a cell scraper.  Trypsin was de-

activated with the addition of 7.5 mL of warmed endothelial medium.  The detached cells 

were centrifuged at 200 g for 5 min at 21 ⁰C, the supernatant discarded, and the pellet re-

suspended in warmed endothelial medium.  Each stock flask was seeded with 500,000 cells in 

10 mL medium whilst each well was seeded with 50,000 cells in 500 µL medium. 

 

2.7.2 Co-culture experiments 

Monocyte-endothelial co-cultures were set up as shown in Figure 2.7.  PMVEC cells were 

grown to 90 % confluence in a 24-well plate in endothelial cell medium.  Monocytes from 

healthy volunteers were sorted by FACS into autologous serum and added to the PMVEC, 

50,000 monocytes were added to each well.   
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To investigate the effects of co-culture on activated endothelium, a proportion of PMVECs 

were stimulated with LPS at a final concentration of 100 ng/mL for 1 hour at 37 °C.  To allow 

the LPS to be functional, autologous serum at a final concentration of 10 % was added to the 

wells.  Following this stimulation, the LPS was thoroughly washed off with two washes using 

warmed endothelial cell medium. 

 

Controls included: PMVEC alone, monocytes alone, PMVEC pre-stimulated with LPS and 

monocytes stimulated by LPS.  Monocytes were stimulated with 10 ng/mL of LPS and the 

LPS was not washed off to avoid losing monocytes through washing. 

 

Co-cultures performed using samples from individuals with sepsis did not use FACS sorted 

monocytes but instead used PBMCs.  Due to the smaller volume of blood obtained from 

individuals with sepsis insufficient monocytes could be sorted for co-culture.  PBMCs were 

isolated using a Ficoll-Paque™ density gradient separation and 100,000 PBMCs were added 

to each well.  As with the healthy volunteer monocytes, the same concentration of LPS was 

used to stimulate the PBMCs, and once again it was not washed off but remained for the 

whole co-culture. 

 

Prepared plates were incubated at 37°C in 5 % CO2 for 24 hr, following which adherent cells 

were scraped from the wells and, with the surrounding medium, were centrifuged at 200 g for 

10 min.  Supernatants were frozen in aliquots of 500 mL at -80°C.  Cell pellets were prepared 

for flow cytometry (see methodology section 2.6.2, page 73). 
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This figure shows the six co-culture conditions used.  The flow chart describes how the co-

culture experiment was assembled.   

Figure 2.7 The co-culture conditions and assembling the co-culture experiment 
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2.7.3 ELISA 

Sandwich ELISA kits were used to measure the MCSF, PAI-1 and tPA in the supernatants 

stored following monocyte-endothelial co-culture experiments.  The ELISAs were performed 

according the manufacturer’s instructions.  Sandwich ELISAs were also performed to 

measure levels of coagulation complexes by our collaborators in Maastricht.  These included: 

TAT, FIXa-AT, FXa-AT, FXIa-AT and FXIa-a1AT. 

 

Briefly, standards were prepared using serial dilution from a stock standard.  Either standards 

or samples were added in triplicate to 96-well plates pre-coated with primary antibody.  Three 

wells served as a ‘blank’ and contained only assay buffer, antibodies and substrate.  Wells 

were coated overnight by the addition of 100 µL of capture antibody prior to washing with 

wash buffer (0.5 % BSA and 0.1 % Tween 20 dissolved in PBS).   In the case of PAI-1 and 

tPA the plates were pre-coated. 

 

The plate was blocked with 200 µL blocking buffer (1 % BSA in PBS) added to each well for 

1 hour at room temperature.  The primary incubation of 100 µL of either sample or standard 

in each well occurred at room temperature on the shaker at 300 rpm.  The plate was then 

washed five times with wash buffer.  Secondary incubation with 100 µL per well of 

biotinylated detection antibody then took place at room temperature on a shaker at 300 rpm.  

This was followed by five washes with wash buffer.  Streptavidin-horseradish peroxidase 

(HRP) was added (100 µL per well) to bind the biotin, for 30 minutes at room temperature on 

the shaker at 300 rpm, followed by a further five washes with wash buffer.   Following this, 

100 µL of a 1:1 mixture of 3,3’,5,5’-Tetramethylbenzidine (TMB) solution and hydrogen 

peroxide (H2O2) was added to each well and left for 30 minutes in the dark.  The reaction was 

stopped with 100 µL of 2 N sulphuric acid.  

 

Absorbance was read at the appropriate wavelength using the FLUOstar Omega 

spectrophotometer microplate reader. Omega analysis software was used to calculate a curve 

using a 4-parameter fit.  Only r2 values higher than 95 % were accepted for the standard curve. 

 

 

2.8 Investigating monocytic TF expression 

2.8.1 LPS stimulation of monocytic TF expression  

PBMCs and sorted monocytes were cultured with 500,000 cells per well in 450 µL of IMDM 

and 50 µL of serum in 24-well plates.  Where available, autologous serum was used (obtained 
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as described in section 2.5.1), otherwise it was substituted with FBS.  PBMCs were incubated 

with a range of LPS concentrations (0, 1, 10, 100, 1000 ng/mL) for 24 hr.  The incubator was 

set at 37 °C and with 5 % CO2.  All work was performed in a Class II biological safety 

cabinet.   

 

Following incubation, the samples were removed from the wells with scraping and 

centrifuged for 5 min at 200 g.  The supernatants were frozen at -80 °C.  Cell pellets were re-

suspended in 100 µL flow buffer (see section 2.5.1, page 6162) and flow cytometry antibodies 

added in quantities detailed in table 2.4.  All panels were compensated and FMOs with CD14 

and CD16 were used to gate the subsets (see sections 2.6.3, page 77 and 2.6.4, page 77).  The 

proportion of each subset was measured using BD Diva software. 

 

2.8.2 Measuring TF activity 

Monocyte subsets were isolated using FACS (see section 2.5.3, page 64) and collected in 

IMDM without serum.  A 96-well plate was used to incubate each subset at 30,000 cells per 

100 µL of IMDM.  LPS was added at a concentration of 1 ng/mL with 1 µL of autologous 

serum to each well, making a final concentration of 1 % serum.  Cells were incubated at 37 

°C with 5 % CO2 for 24 hr.  A well containing 99 µL IMDM and 1 µL of autologous serum 

was used to calculate the amount of TF activity in cell-free serum; this value was then 

subtracted from the values recorded from the subsets. 

 

Following incubation, the cells were lysed with the addition of 0.1 % Triton for 10 min at 

4 °C.  Each well was scraped and mixed. 

 

A TF activity was measured using a human TF activity colorimetric assay kit according to the 

manufacturer’s instructions.  Briefly, eight TF activity standards were reconstituted using 

serial dilutions and one blank.  An assay mix containing 50 µL assay diluent, 10 µL of FX 

and 10 µL of FVII were added to each well, followed by 10 µL of either a standard or sample.  

The plate was incubated at 37 °C for 30 min.  In the presence of TF, FX will become FXa.  

Each well had 20 µL of FXa substrate added; in the presence of FXa a yellow para-

nitroaniline (pNA) chromophore is released. 

 

Absorbance was measured at 405 nm every 5 min for 25 min on a FLUOstar Omega 

spectrophotometer microplate reader.  The Omega analysis software was used to create a 

standard curve using a 4-parameter fit; only curves with r2 values higher than 0.95 were 
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accepted.  Concentrations were measured during the time frame when the TF standards 

recorded a steady level.  The TF activity was calculated and expressed as pM per minute. 

 

2.8.3 Inhibition of LPS induction of TF cell surface expression 

Monocytes were isolated as described earlier (section 2.5.2, page 62).  A total of ten wells in a 

24-well plate were filled with 500,000 PBMCs, with a presumption that approximately 

100,000 monocytes would adhere.   

 

Three inhibitors were used to investigate the role of ERK, cRel and NFκB signalling in the 

LPS induction of TF transcription.  Each inhibitor had been previously shown to be effective 

(Fanjul et al., 1994; Shiohara et al., 1999; Ohori et al., 2005; Perrett et al., 2013; Shono et al., 

2016).  All were titrated to ensure optimum inhibition whilst maintaining cell viability above 

90 % (see section 3.3.3, page 115).   FR180204, an inhibitor of ERK1 and ERK2, was used at 

a concentration of 15 µM.  IT901, an inhibitor of the NFκB subunit cRel, was used at a 

concentration of 1.0 µM.  SR11302, an inhibitor of AP-1 was titrated and used at a 

concentration of 1.0 µM.  All were reconstituted as per the manufacturer’s instructions using 

DMSO; further dilutions were performed using IMDM.   

 

The inhibitors were added at titrated concentrations to monocytes isolated by adherence and 

the cells were left to incubate for 30 min.  Following incubation, LPS was added at a 

concentration of 1 ng/mL and the cells incubated for 24 hr.  Flow cytometry was performed 

on cells as described earlier (see section 2.6.2, page 73). 

 

2.9 Healthy volunteer samples 

2.9.1 Recruitment 

Healthy volunteers were recruited into the study ‘The role of inflammation of human 

immunity’ from the students and staff of Newcastle University (Research Ethics Committee 

number 12/NE/0121).  Participants were screened and excluded if they had a history of 

infection, autoimmune disease or significant illness, or if were taking regular medication 

(excluding the oral contraceptive pill).  All participants received a participant information 

sheet and were given an opportunity to discuss the study with a researcher before providing 

written, informed consent (see appendix A).  Venepuncture was performed with a 21-gauge 

butterfly needle and blood collected into a 50 mL Falcon tube containing a final concentration 

of 1 % sodium citrate. 
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2.9.2 Processing of samples 

Samples were stored at room temperature and processed within 30 minutes of venepuncture.  

PBMCs were isolated using Ficoll-Paque™ as described earlier (see methodology section 

2.5.1, page 61). Once isolated, PBMCs were stored on ice and used within 1 hour. 

 

2.10 Human endotoxic samples 

2.10.1 Recruitment 

Healthy volunteers were recruited through electronic mail advertisement to the study ‘Does 

the DNA of our cells’ batteries influence our response to bacteria?’ (Research Ethics 

Committee number 17/YH/0021).  This study was performed in the integrated critical care 

unit (ICCU) at City Hospitals Sunderland NHS Foundation Trusts (CHSFT), in a dedicated 

research bed space by a Consultant Intensivist.  Interested volunteers were sent a participant 

information sheet and given time to consider the information.   

 

Screening of possible participants occurred in the out-patients department at CHSFT and was 

performed by a Consultant Intensivist.  This involved a short medical history, physical 

examination, a blood sample (for a full blood count, coagulation screen, liver and renal 

function), an electrocardiogram and a pregnancy test in female participants.  Exclusion 

criteria included: age outside the range 18-40 years; known history of respiratory, cardiac or 

infectious diseases; pregnancy; current medication except the oral contraceptive pill in female 

participants; and laboratory blood results outside of the reference range. 

 

Following screening, written informed consent was taken and the participant’s general 

practitioner informed of their involvement.  Female participants were advised to use 

contraception for 48 hr following the study.  Copies of the participant information sheet, 

consent forms and protocol can be found in appendix B. 

 

2.10.2 Protocol  

The study involved three visits.  The initial visit involved a stay of 10 hr on the ICU.  A bolus 

injection of 2 ng/kg of U.S. reference Escherichia coli-derived endotoxin was given to induce 

a state of systemic inflammation.  Vital signs (pulse rate, blood pressure, blood oxygen 

saturations, respiratory rate and temperature) were measured at 30 min intervals throughout 

the ICCU stay.  An intravenous cannula was placed into each arm; one was used to give an 

infusion of Hartmann’s solution and the other to take blood samples at baseline, 90 min, 4 hr, 

6 hr and 10 hr.  Blood was collected into three types of vacutainers, containing either 
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ethylenediaminetetraacetic acid (EDTA), sodium citrate or serum-separating silica (see table 

2.5). 

 
Two further study visits were performed at 24 hr and 7 days following the injection of 

endotoxin.  The participant was reviewed at the out-patient department in CHSFT, where a 

short history, examination and blood sampling was performed. 
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Time-point 
Volume in each sample tube (mL) 

EDTA 
anticoagulant 

Sodium Citrate 
anticoagulant 

Serum         
separating tube 

Baseline (pre-endotoxin) 84 4.5 10 
90 min 84 4.5 10 
4 hr 4 4.5 10 
6 hr 84 4.5 10 
10 hr 84 4.5 10 
24 hr 4 4.5 10 
7 days 4 4.5 10 

 

Table 2.5 Blood samples taken following endotoxaemia 

This table details the samples taken at each time point. 
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2.10.3 Processing of samples 

At each time point, a 1 mL sample of EDTA anti-coagulated blood was processed according 

to the flow cytometry protocol as outlined in section 2.6.1 (page 72). 

 

At baseline, 90min, 6 hr and 10 hr time-points, nine extra 9 mL EDTA samples were taken 

and used to isolate PBMCs that were then frozen as described earlier (see sections 2.5.1, page 

61 and 2.5.3, page 64). 

 

The remaining 6 mL EDTA and citrate samples were centrifuged at 300 g for 10 min 21 ⁰C.  

Sodium heparin tubes were centrifuged at 1500 g for 10 min at 21 ⁰C to separate the serum.  

Plasma and serum were removed and stored in 200-400 µL aliquots at -80 °C. 

 

2.11 Critically ill and septic samples 

2.11.1 Recruitment 

Participants from the intensive care units (ICUs) at Newcastle upon Tyne Hospitals NHS 

Foundation Trust (NuTH) and CHSFT were recruited into the study ‘The effects of critical 

illness on innate immunity’ (Research Ethics Committee number 18/NE/0036).  Samples for 

this work were taken from June 2017 until March 2019.  The study involved taking a 20 mL 

blood sample, and collecting medical data, whilst patients were in ICU.  In those participants 

who recovered, a second blood sample was taken within one working day of discharge from 

the ICU.  Inclusion and exclusion criteria for the study are shown in Table 2.6. 
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Inclusion Criteria Exclusion criteria 
Expected to remain in the ICU for 
longer than 24 hr <16 years of age 

Expected to survive for longer than 24 
hr Pregnancy 

Provision of written consent (or written 
consultee declaration) 

Known infection with human 
immunodeficiency virus 

Requires one or more of the following 
organ supports: inotropes, invasive 
ventilation, non-invasive ventilation, 
haemofiltration or dialysis. 

Use of immunosuppressants or 
corticosteroids at a dosage higher than 
the equivalent of prednisolone 10 
mg/day 

  Haematological malignancy 
 

Table 2.6 Inclusion and exclusion criteria for the study ‘The effects of critical illness on 

innate immunity’ 

This table lists inclusion and exclusion criteria for the study used to obtain samples from 

critically ill participants. 
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2.11.2 Consent  

Individuals were identified and assessed for capacity to consent to the study by a Consultant 

Intensivist in charge of their care.  If all eligibility criteria were met and the individual had 

capacity to consent, they were provided with a participant information sheet and given as 

much time as they needed to read and understand the information.  Research nurses and 

myself were available to discuss the study with the individual and their relatives.  If they 

wished to proceed with the study, they were asked to provide written informed consent. 

 

Frequently, individuals staying on ICU did not have the capacity to give informed consent.  In 

this setting, the next of kin was approached to act as a personal consultee and given a copy of 

a personal consultee consent form.  Again, the research team were available to answer any 

questions.  If the personal consultee believed the individual would agree to the study, they 

were asked to sign a personal consultee declaration form.  If there was no next of kin, a 

Consultant Intensivist, who was independent of the research study, was asked to act as a 

professional consultee.  The relevant consultant was given a professional consultee 

information sheet and asked to sign a professional consultee declaration form. 

 

If those participants recruited using a consultee later regained capacity, they were given a 

recovered capacity information sheet and the study was explained.  The participant would 

then be asked to sign a recovered capacity consent form if they wished to remain in the study.  

Individuals who did not wish to remain in the study were asked if samples and data already 

gathered could be kept; if they did not agree, samples were destroyed. 

 

It was clearly explained to all participants, their families and the clinical teams caring for 

them that they could withdraw from the study at any time. 

 

Copies of the study protocol, all participant information sheets and consent and declaration 

forms are included in appendix C. 

 

2.11.3 Processing of samples 

A single sample of 20 mL of whole blood was collected into a 50 mL Falcon tube with a final 

concentration of 1 % sodium citrate on recruitment into the study and then, if appropriate, 

within one working day of discharge from ICU. 
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A 1 mL aliquot of whole blood was taken to perform flow cytometry as described earlier 

(methodology section 2.6.1, page 72). 

 

The whole blood sample was initially centrifuged for 5 minutes at 300 g at 21 ⁰C to separate 

cells from plasma.  The plasma was removed and stored at -80 °C in aliquots of 200 µL. The 

volume removed was then replaced with warmed 0.9 % saline.  This was layered over Ficoll-

Paque™ and PBMCs were isolated as previously described (methodology section 2.5.1, page 

61).   

 

Serum samples were also obtained from plasma as previously described (section 2.5.1, page 

61) using 1 mL of plasma.  Serum was then stored in aliquots of 200 µL at -80 °C. 

 

Recovery samples were processed in the same way. 

 

2.11.4 Data collection 

Clinical data were collected at the time of the first sample.  This included clinical, 

radiological and microbiological evidence of infection; types of organ support used; 

information to calculate the Acute Physiology and Chronic Health Evaluation (APACHE) II 

and Sequential Organ Failure Assessment (SOFA) scores; co-morbidities; concurrent 

medication; and recent full blood count and coagulation screen.  A copy of the data collection 

form is shown in appendix C. 

 

2.12 Statistical analysis 

Statistical analysis was performed using Graphpad Prism (version 7.01). 

 

Data were tested for normality using the D’Agostino & Pearson normality test.  The 

significance level for all analysis was set at p<0.05. 

 

 

Data assuming a normal distribution were analysed using a paired t-test if the data sets were 

dependent, or an unpaired t-test if they were not.  If more than two variables were compared, 

either a one-way or repeated measures ANOVA was used. 

 

Data not assuming a normal distribution were analysed using the Wilcoxon signed-rank test 

when they were dependent or the Mann-Whitney U test if they were not.  Where more than 
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two measurements were compared, significance was analysed using Friedman’s test with 

Dunn’s multiple comparisons test (if repeated measures were compared) or the Kruskal-

Wallis test (when there was no matching between variables). 

 

Fisher’s exact test was used to compare the data of contingency tables. 

 
  



 96 



 97 

3. Chapter 3.  Investigation of Tissue Factor Expression across Monocyte 

Subsets 
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3.1 Overview 

Monocytes are known to express TF on their cell surface; however, there are very limited data 

comparing this expression between monocyte subsets (Rivers et al., 1975; Stojkovic et al., 

2017).  There is no published work investigating the effects of LPS on TF induction, TF 

activity or transcription of TF between the subsets.    

 

TF is believed to be important in the pathogenesis of disseminated intravascular coagulation 

(DIC), a widespread activation of coagulation that occurs in small blood vessels and increases 

mortality from sepsis (Warr et al., 1990).  Multiple groups report a change in monocyte 

subsets during sepsis, with a decrease in classical and an expansion of either intermediate or 

non-classical monocytes (Fingerle et al., 1993; Herra et al., 1996; Mukherjee et al., 2015).  

Potentially, relative TF expression on these subsets could contribute to the coagulopathy of 

sepsis. 

 

This chapter will focus on the cell surface expression of TF between the monocyte subsets 

and investigate the interactions between monocyte subsets and microvascular endothelium. 

 

3.2 Research aims 

- to investigate the cell surface expression and activity of TF between monocyte subsets 

with and without LPS stimulation 

- to create an in vitro model of monocyte-endothelial interactions during sepsis 

- to understand the pathway through which LPS induces TF expression on the cell 

surface monocyte subsets. 
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3.3 Investigating changes in monocyte subsets and TF expression following LPS 

stimulation 

To investigate the expression of monocyte TF, monocytes were cultured with LPS, a 

component of the Gram-negative bacterial cell wall.  Monocytic co-culture PMVECs, with 

and without LPS stimulation, was used to investigate changes in TF cell surface expression in 

the subsets. 

 

PBMCs were isolated from healthy volunteer whole blood using Ficoll-Paque™  

density gradient separation.  FACS was then used to sort monocytes as a whole or each subset 

individually (see methodology section 2.5.3 and 2.5.4, pages 64 to 67).   

  

3.3.1 Effect of LPS stimulation on monocyte subsets 

Monocytes (not sorted into individual subsets) were obtained using FACS and were cultured 

for 24 hours with LPS in IMDM and 10 % autologous serum.  Into each well 50,000 

monocytes were added.  Following this the proportions of monocyte subsets were assessed 

using flow cytometry.  Figure 3.1 shows the percentage of sorted monocytes that were 

recovered following in vitro culture with LPS.  The majority of monocytes were not 

recovered following culture.  Propidium iodide was used to assess cell viability. The LPS 

concentrations used (1 ng/mL to 1000 ng/mL) did not impact cell viability (Figure 3.2).   

 

There was a dose-dependent increase in the proportion of classical monocytes following LPS 

stimulation (Figure 3.3).  This was accompanied by a relative reduction in the intermediate 

and non-classical subsets.  Further analysis of the flow data, using the same samples, showed 

a decrease in the CD16 median fluorescent intensity (MFI), whilst the CD14 MFI was 

unchanged (Figure 3.4). 
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Monocytes, negatively sorted using FACS, were incubated with varying concentrations of 

LPS in IMDM and 10% autologous serum.  Following a 24-hour incubation, flow cytometry 

was performed to measure the proportions of monocyte subsets and TF surface expression. 

This figure shows the percentage of monocytes recovered from each sample following the in 

vitro culture with increasing levels of LPS. The results of 7 independent experiments are 

displayed.   Black dots show the median values whilst error bars show the interquartile range.  

Significance was calculated using the Friedman test with Dunn’s multiple comparisons test.  

There was no statistically significant difference between the time-points. 
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Figure 3.1 Percentage of sorted monocytes recovered following culture with LPS 
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Monocytes, negatively sorted using FACS, were incubated with varying concentrations of 

LPS in IMDM and 10% autologous serum.  Following a 24-hour incubation, flow cytometry 

was used to measure cell viability using propidium iodide. This figure shows the percentage 

of live cells in each sample with increasing levels of LPS. The results of 7 independent 

experiments are displayed.   Black dots show the median values whilst error bars show the 

interquartile range.  The red dashed line shows 90% cell viability.  Significance was 

calculated using the Friedman test with Dunn’s multiple comparisons test.  There was no 

statistically significant difference between the time-points.  

Figure 3.2 Viability of recovered monocytes 
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Monocytes, negatively sorted using FACS, were incubated with increasing concentrations of 

LPS in IMDM and 10% autologous serum.  Following a 24-hour incubation, flow cytometry 

was used to measure the proportions of monocyte subsets. This figure shows the results of 7 

independent experiments.  Error bars represent median values and the interquartile range.   

The classical subset increased in proportion (p=0.006 by Friedman test, ** - p<0.001 

between 1000 ng/mL LPS and no LPS using Dunn’s post hoc test). The intermediate subset 

decreased following incubation with LPS (p=0.006 by Friedman test, *- p<0.05 between 100 

ng/mL LPS and 1000 ng/mL LPS compared to no LPS using Dunn’s post hoc test).  The non-

classical subset decreased in proportion (p=0.06 by Friedman test, * -p<0.05 between 1000 

ng/mL LPS and no LPS using Dunn’s post hoc test). 

 

Figure 3.3 Incubation with LPS increases the proportion of classical subset monocytes 
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Monocytes, negatively sorted using FACS, were incubated with increasing concentrations of 

LPS in IMDM and 10 % autologous serum.  Following a 24-hour incubation, flow cytometry 

was used to measure the total monocyte median fluorescence for CD14 and CD16. This figure 

shows the results of 7 independent experiments.  Error bars represent median values and the 

interquartile range.  There was no statistically significant difference in the CD14 MFI 

between the LPS concentrations (p = 0.53 by Friedman test).  The CD16 MFI decreased with 

LPS incubation (p=0.02 by Friedman test, *- p<0.05 when the 10 ng/mL and 100 ng/mL LPS 

were both compared to no LPS by Dunn’s post hoc test). 
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Figure 3.4 Incubation with LPS reduces the expression of CD16 
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3.3.2 Changes in TF expression following LPS incubation 

Using the same 7 donors as described in figures 3.3 and 3.4 the cell surface expression of TF 

was measured on monocyte subsets using flow cytometry.  As before, this followed 

incubation in IMDM and 10 % autologous serum with increasing concentrations of LPS.  

Initially, the total monocyte population was examined.  This showed a dose-dependent 

increase in TF in response to LPS stimulation (Figure 3.5).   

 

A comparison between the monocyte subsets demonstrated a variation in TF expression.  All 

monocytes subsets increased TF expression with LPS stimulation.  Classical and intermediate 

monocytes expressed similar amounts, whilst non-classical had both fewer cells expressing 

TF and a lower MFI (Figure 3.6). 

 

To investigate whether the expressed TF was functionally active, the ability of TF to activate 

FX was compared between the subsets.  PBMCs from 5 different healthy volunteers were 

sorted into monocyte subsets using FACS (see methodology section 2.5.4, page 69).  Each 

subset was incubated at a concentration of 10,000 cells per 500 µL, with and without 1 ng/mL 

LPS for 24-hours.  A TF colorimetric assay was used to measure the amount of FXa created 

from FX.  LPS requires LPS-binding protein to be effective; this is found in autologous 

serum, and for this reason 5 % serum was added to each culture.  Autologous serum was used 

for each culture and the level of TF measured in serum alone at the same dilution.  The serum 

value of TF was subtracted from each monocyte sample and the activity expressed as pM per 

10,000 cells. 

 

TF activity varied by subset.  Classical monocytes had the highest level of total activity per 

10,000 cells, whereas intermediate and non-classical monocytes showed similar total activity 

levels.  However, as shown in Figure 3.6, compared to the classical and intermediate subsets, 

fewer non-classical monocytes increase TF cell surface expression in response to LPS.  

Earlier experiments have shown a median of 15 % of both the classical and intermediate 

subsets express TF on the cell surface following incubation with 1 ng/mL LPS.  This is higher 

than the 10 % of non-classical monocytes that express TF on the cell surface at the same LPS 

concentration.  Assuming these percentages are representative of the monocytic TF from the 5 

different healthy volunteers used to investigate TF activity, the classical and non-classical 

monocytes show a similar TF activity (Figure 3.7).   
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Although incubation with LPS increases the cell surface expression of TF, incubation with 

LPS does not increase the activity of TF.  Using the same five donors as the earlier TF 

activity work, a comparison between monocyte subsets cultured alone and those incubated 

with LPS showed that TF activity did not increase in response to LPS (Figure 3.8). 
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Monocytes, negatively sorted using FACS, were incubated with varying concentrations of 

LPS in IMDM and 10 % autologous serum.  Following a 24-hour incubation, flow cytometry 

was used to measure the percentage of monocytes expressing TF.  Error bars in figures B and 

C represent the median values and interquartile range.  The results of 7 independent 

experiments are shown.   Both the 1 and 10 ng/mL concentrations of LPS were statistically 

compared to no LPS.   A demonstrates the TF gating and is a representative example of 

monocytes incubated without LPS, with 1000 ng/mL of LPS and monocytes not stained for 

TF.  The red gate shows the negative population as set by the FMO, whilst the blue line gates 

the TF positive population.  B shows the percentage of monocytes expressing TF, as 

measured by flow cytometry using an FMO control.  The percentage of monocytes expressing 

TF on their surface increases following incubation with LPS (p=0.04 by Friedman’s test, **- 

p<0.01 for both 100 and 1000 ng/mL of LPS using Dunn’s post hoc test).  C shows the 

change in TF MFI.  The TF MFI increases with LPS incubation (p=0.003 by Friedman’s test, 

*- p<0.05 for 10 ng/mL of LPS, **-p<0.01 for 100 and 1000 ng/mL of LPS using Dunn’s post 

hoc test).   

 

Figure 3.5 Incubation with LPS increases the monocytic cell surface expression of TF 
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Monocytes, negatively sorted using FACS, were incubated with and without 1 ng/mL of LPS 

in IMDM and 10% autologous serum.  Following a 24-hour incubation, flow cytometry was 

used to measure the percentage of monocyte subsets and the monocytic expression TF.  This 

figure shows the results of 7 independent experiments (the intermediate and non-classical 

subset incudes 5 experiments as there were too few of these monocytes to allow accurate 

gating). Error bars represent median values and the interquartile range. Both the 1 and 10 

ng/mL concentrations of LPS were statistically compared to no LPS.   A shows that all 

monocyte subsets increased the cell surface expression of TF following incubation with LPS 

(classical TF %: p=0.04 by Friedman’s test, * - p<0.05 for 10 ng/mL LPS using Dunn’s post 

hoc test;  intermediate TF %: p=0.04 by Friedman’s test, p=0.05 for 10 ng/mL of LPS using 

Dunn’s post hoc test; non-classical TF %: p=0.02 by Friedman’s test, * - p<0.05 for 10 

ng/mL of LPS, p=0.05 for 1 ng/mL using Dunn’s post hoc test).  B shows that the classical 

and non-classical subsets increased TF MFI following incubation with LPS (classical TF 

MFI: p=0.003, *-p<0.05 for 1 ng/mL LPS, **-p<0.01 for 10 ng/mL LPS by Dunn’s post hoc 

test; non-classical TF MFI: p=0.04 by Friedman’s test, p=0.05 for 10 ng/mL LPS by Dunn’s 

post hoc test).  There was no statistically significant difference between the intermediate 

subset at different concentrations (p=0.52 by Friedman’s test).  

 
 
  

Figure 3.6 LPS-induced TF expression differs between monocyte subsets 
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Monocytes were positively sorted into subsets using FACS.  Each subset was incubated at a 

concentration of 50,000 cells per 500 µL with 1 ng/mL of LPS for 24-hours.  Following 

incubation, the TF activity of each subset was measured using a TF colorimetric assay that 

quantified the activated FX.  Both figures show the results of 5 independent experiments.  A 

shows the TF activity measured as pM per 10,000 cells.  The classical subset displays the 

highest TF activity (p=0.03 by Friedman’s test, * - p<0.05 compares the non-classical to the 

classical subsets by Dunn’s post hoc test).  B shows TF activity per TF positive cell.  

Assuming the classical and intermediate subsets have 15 % of cells expressing TF on the cell 

surface, whilst the non-classical subset has 10 % of cells.  This is based on earlier work 

shown in Figure 3.5.  There is no statistical difference between the subsets (p=0.09 by 

Friedman’s test).   

Figure 3.7 Monocyte subset TF activity 
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Monocytes were positively sorted in subsets using FACS.  Each subset was incubated with 

and without 1 ng/mL of LPS for 24 hours.  Following incubation, the TF activity of each 

subset was measured using a TF colorimetric assay that measured the amount of activated 

FX.  Values represent the TF activity per 10,000 cells.  Error bars represent median values 

and the interquartile range.  This figure shows the results of 5 independent experiments. 

There was no statistically significant difference between each subset cultured alone and each 

subset cultured with LPS (classical- p=0.82, intermediate- p=0.63, non-classical- p=0.44 by 

the Wilcoxon test).  
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Figure 3.8 Incubation with LPS does not seem to increase TF activity 
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3.3.3 Inhibiting the LPS induction of monocytic cell surface expression of TF 

The ERK, NFκB and JNK transcription pathways have all been shown to be important in 

monocytic TF expression (Bode and Mackman, 2014).  To investigate whether the pathways 

were important in all subsets, PBMCs were obtained from 6 different healthy volunteers using 

Ficoll-Paque™ density gradient separation.   Monocytes were isolated using the adherence 

method and were incubated with inhibitors prior to application of LPS at 1 ng/mL in a 24 well 

plate (see Figure 3.9 for the plate set-up).  The LPS remained in the culture for the duration of 

culture.  TF cell surface expression was once again measured using flow cytometry (see 

methodology section 2.6.2, page 73). 

 

Three inhibitors were used to investigate the role of ERK, cRel and NFκB signalling in the 

LPS induction of TF transcription.  All were titrated to ensure optimum inhibition whilst 

maintaining cell viability above 90 % (see Figure 3.10).   FR180204, an inhibitor of ERK1 

and ERK2, was used at a concentration of 15 µM (Ohori et al., 2005; Perrett et al., 2013).  

IT901, an inhibitor of the NFκB subunit cRel, was used at a concentration of 1.0 µM (Shono 

et al., 2016).  SR11302, an inhibitor of AP-1 was titrated and used at a concentration of 1.0 

µM (Fanjul et al., 1994; Shiohara et al., 1999).  All were reconstituted as per the 

manufacturer’s instructions using DMSO; further dilutions were performed using IMDM. 

 

The cell surface expression of TF was lower than in earlier experiments.  No results were 

statistically significant, although there was a trend for TF expression to decrease in response 

to inhibitors in the total monocyte population, without a drop in cell viability (see Figure 

3.11).  A similar trend was seen in the classical and intermediate monocyte subsets but not in 

the non-classical subsets (see Figure 3.12).   

 
  



 116 

 
 1 2 3 4 5 6 

A  

M 

 

M 

 

M 

ERK 

 

M 

cRel 

 

M 

AP-1 

 

B  

M + L 

 

 

M + L 

 

 

M + L 

ERK 

 

M + L 

cRel 

 

M + L 

AP-1 

 

 

 

 

 

 

Figure 3.9 Set-up of TF cell surface expression inhibitor plate 

This figure demonstrates the set-up of a 24-well plate used to investigate the LPS induction of 

monocytic cell surface TF expression. 

Abbreviation Meaning 

M Monocyte 

L Lipopolysaccharide (LPS) 

ERK ERK inhibitor, FR180204 

cRel cRel inhibitor, IT901 

AP-1 AP-1 inhibitor, SR11302 
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This figure details the change in TF expression on monocytes following incubation with 

various inhibitors. The inhibitors were titrated to identify the concentration associated with a 

clear decrease in TF expression whilst maintaining cell viability above 90 %. 

Figure 3.10 Dose-response of TF transcription inhibitors 
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PBMCs were incubated in IMDM in 24-well plates for 1 hour and then washed to leave only 

adherent monocytes. Monocytes were incubated with and without 1 ng/mL of LPS in IMDM 

and 10% autologous serum.  In some wells, inhibitors to ERK1 & 2 (FR180204, 15 µM), AP-

1 (SR11302, 1 µM) and c-Rel (IT901, 1 µM) were added 30 minutes prior to the LPS.  

Following a 24-hour incubation, flow cytometry was used to measure the percentage of 

monocytes expressing TF. The results of 6 independent experiments are shown.  A shows the 

effects of the inhibitors of the cell surface TF expression of all monocytes.  The blue bar 

represents monocytes alone, dark for orange for monocytes with LPS and light orange when 

an inhibitor is added.   Error bars show the upper quartile and bar height the median values.  

The inhibitors did not significantly decrease the LPS-induced TF expression (p=0.03 by 

Friedman’s test, * - p<0.05 when monocytes incubated with LPS are compared to those 

incubated alone, p=0.06 when monocytes incubated with LPS and FR180204 are compared 

to monocytes incubated with LPS alone using Dunn’s post hoc test).  B shows the cell 

viability for each condition.  Black dots show the median value and the error bars the 

interquartile range. Viability remained above 90 % for all conditions. There were no 

statistically significant differences (p=0.19 by Friedman’s test). 

  

Figure 3.11 Effects of transcription factors on LPS-induced TF cell surface expression 
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PBMCs were incubated in IMDM in 24-well plates for 1 hour and then washed to leave only 

adherent monocytes. Monocytes were incubated with and without 1 ng/mL of LPS in IMDM 

and 10% autologous serum.  In some wells, inhibitors to ERK1 & 2 (FR180204, 15 µM), AP-

1 (SR11302, 1 µM) and c-Rel (IT901, 1 µM) were added 30 minutes prior to the LPS.  

Following a 24-hour incubation, flow cytometry was used to measure the percentage of 

monocytes expressing TF. The results of 6 independent experiments are shown.  The blue bar 

represents monocytes alone, dark for orange for monocytes with LPS and light orange when 

an inhibitor is added.   Error bars show the upper quartile and bar height the median values.  

The inhibitors had no statistically significant effect on the LPS-induction of cell surface TF 

expression. (Classical: p=0.05 by Friedman’s test, *-p<0.05 for monocytes with LPS 

compared to monocytes alone by Dunn’s post hoc test; intermediate: p=0.17 by Friedman’s 

test; non-classical: p=0.05 by Friedman’s test).  

Figure 3.12 Effects of transcription factors on LPS-induced TF cell surface expression 

across the monocyte subsets 
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3.4 The effects of monocyte-endothelial interactions on TF cell surface expression 

An in vitro model of monocyte-endothelial cell interaction was used to investigate the effects 

on TF and monocyte subsets.  Monocytes were sorted with FACS from PBMCs using 5 

healthy donors.  They were cultured for 24 hours with endothelial cells in PMVEC medium.  

Some PMVEC were pre-treated with LPS (100 ng/mL) for one hour; the LPS was then 

washed off and monocytes were added to the culture.   

 

Some monocytes were stimulated by the addition of LPS (10 ng/mL); this LPS was not 

washed off (see methodology section 2.7.2, page 82). These conditions were set-up in a 24-

well plate as shown in Figure 3.13. 

 

The co-culture of monocytes with unstimulated PMVEC increased in the proportion of the 

classical subset.  Endothelial stimulation with LPS prior to the addition of monocytes does not 

appear to alter this effect (Figure 3.14). 

 

Monocyte-endothelial co-cultures were also used to investigate the effect on TF expression.  

TF expression was shown to increase in both the classical and intermediate subsets.  This 

effect was once again independent of LPS.  There were no statistically significant changes in 

the non-classical subset (Figure 3.15).   

 

To investigate whether contact was needed for the observed monocyte-endothelial cell 

interaction, co-cultures were repeated, using 5 different donors, with transwells to prevent 

cellular contact (see methodology section 2.7.2, page 82).  The yield of monocytes from 

transwells was too poor to accurately identify monocyte subsets; however, considering the 

flow data for all monocytes, contact did not affect monocyte TF expression (Figure 3.16). 

 

As discussed earlier, MCSF has been shown to alter monocyte subsets by promoting the 

differentiation of classical, through intermediate, to non-classical (Saleh et al., 1995b; 

Korkosz et al., 2012).  Measurement of MCSF in the co-culture supernatants showed no 

significant difference in levels between the conditions (Figure 3.17). 

 

The endothelial response to co-culture was measured using the supernatants.  There was no 

significant change in tPA levels.  PAI-1 levels increased following co-culture with monocytes 

and PMVECs pre-treated with LPS (figures 3.18 and 3.19).   
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A M M M + L M + L 

B PM PM PM+L PM+L 
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Figure 3.13 Co-culture plate set-up 

This figure depicts the set-up of a 24-well plate for a co-culture experiment of PMVEC and 

monocytes.  LPS (100 ng/mL) was added to PMVEC, and washed off after 1 hour, prior to the 

addition of monocytes.  LPS (10 ng/mL) was added to monocytes and not removed.  Co-

culture were incubated at 37 ⁰C and 5 % CO2 for 24 hours.  Following this, monocyte were 

harvested, and flow cytometry used to measure the monocytes subset proportions and the 

percentage of TF-positive monocytes.  

  

Abbreviation Meaning 

M Monocyte 

PM Human pulmonary microvascular endothelial cell (PMVEC) 

L Lipopolysaccharide (LPS) 



 124 

 



 125 

Monocytes were negatively sorted using FACS and incubated with and without PMVEC.  A 

proportion of PMVEC were stimulated with 100 ng/mL of LPS for 1 hour, and the LPS was 

washed off prior to the addition of the monocytes.  Some monocytes were cultured alone with 

10 ng/mL LPS; unlike with the PMVEC stimulation, the monocyte LPS was not removed but 

remained there for the duration of culture.  Following a 24-hour incubation, the proportions 

of monocyte subsets were measured using flow cytometry.  This figure shows the results of 5 

independent experiments. Error bars represent median values and the interquartile range.  

The proportion of classical monocytes increased following culture with PMVEC and LPS 

stimulated PMVEC (p=0.01 by Friedman’s test, **-p<0.01 for monocytes cultured with 

unstimulated PMVEC compared to monocytes alone by Dunn’s post hoc test).  The 

intermediate subset decreases in response to PMVEC co-culture (p=0.02 by Friedman’s test, 

*-p<0.05 for monocytes cultured with PMVEC compared to monocytes alone by Dunn’s post 

hoc test).  The non-classical subset decreases in response to PMVEC co-culture (p=0.02 by 

Friedman’s test, *-p<0.05 for monocytes cultured with PMVEC and with LPS-stimulated 

PMVEC when compared to monocytes alone by Dunn’s post hoc test).   

  

Figure 3.14 The proportion of classical monocytes are increased by PMVEC co-culture 
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Monocytes were negatively sorted using FACS and incubated with and without PMVEC.  A 

proportion of PMVEC were stimulated with 100 ng/mL of LPS for 1 hour, the LPS was 

washed off prior to the addition of the monocytes.  Some monocytes cultured without PMVEC 

were stimulated with 10 ng/mL LPS that was not removed but remained there for the duration 

of culture.  Following a 24-hour incubation, the subset TF expression was measuring using 

flow cytometry.  This figure shows the results of 5 independent experiments. Error bars 

represent median values and the interquartile range.  A shows the percentage of TF-positive 

cells for each subset following co-culture. Classical monocytes increase the cell surface 

expression of TF following PMVEC co-culture (p=0.02 by Friedman’s test, **- p<0.01 for 

monocytes cultured with unstimulated PMVEC compared to monocytes alone by Dunn’s post 

hoc test).  Intermediate (p=0.31 by Friedman’s test) and non-classical monocytes (p=0.88 by 

Friedman’s test) do not increase the percentage of cells expressing cell surface TF.  B shows 

the TF MFI of each subset following co-culture.  Classical monocytes increase TF MFI 

following PMVEC co-culture (p=0.02 by Friedman’s test, **- p<0.01 for monocytes cultured 

with unstimulated PMVEC compared to monocytes alone by Dunn’s post hoc test).  The 

intermediate subset increases TF MFI following co-culture with unstimulated and LPS-

stimulated PMVEC (p=0.001 by Friedman’s test, **- p<0.01 for monocytes cultured with 

LPS-stimulated PMVEC compared to monocytes alone by Dunn’s post hoc test).  There was 

no statistically significant change in the non-classical subset (p=0.80 by Friedman’s test).  

Figure 3.15 Classical and intermediate monocytes increase TF expression after co-culture 

with PMVECs 
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Monocytes were negatively sorted using FACS and incubated with and without PMVEC.  A 

proportion of monocytes were cultured in transwells above PMVEC.  Following a 24-hour 

incubation, the percentage of monocytes expressing TF was measuring using flow cytometry.  

This figure shows the results of 5 independent experiments. Error bars represent median 

values and the interquartile range. ‘No contact’ refers to the use of a transwell to prevent 

cellular contact between monocytes and PMVEC.  Monocyte culture with PMVEC increased 

the cell surface expression of TF; this was not affected by the use of the transwell (p=0.02 by 

Friedman’s test, *- p<0.05 for monocytes and PMVEC cultured with a transwell compared to 

monocytes alone, p=0.05 for monocytes and PMVEC cultured in contact compared to 

monocytes alone using Dunn’s post hoc test).  

  

Figure 3.16 TF expression does not require contact between monocytes and PMVEC 
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Figure 3.17 Co-culture of monocytes with PMVECs pre-treated with LPS does not affect 

MCSF levels 

Monocytes were negatively sorted using FACS and incubated with and without PMVEC.  A 

proportion of PMVEC were stimulated with 100 ng/mL of LPS for 1 hour, and the LPS was 

washed off prior to the addition of the monocytes.  Some monocytes cultured without PMVEC 

were stimulated with 10 ng/mL LPS that was not removed but remained there for the duration 

of culture.  This figure shows the quantity of MCSF in supernatants harvested following 24 

hours of culture.  MCSF was measured by ELISA. The figure shows data from 6 independent 

experiments.  Error bars represent median values and the interquartile range.  There was no 

significant difference between all the conditions (p=0.21 by Friedman’s test, ns – non 

significant). 

  



 130 

Monocytes were negatively sorted using FACS and incubated with and without PMVEC.  A 

proportion of PMVEC were stimulated with 100 ng/mL of LPS for 1 hour, and the LPS was 

washed off prior to the addition of the monocytes.  Some monocytes cultured without PMVEC 

were stimulated with 10 ng/mL LPS that was not removed but remained there for the duration 

of culture.  This figure shows the concentration of PAI-1 in supernatants harvested following 

24 hours of culture.  PAI-1 was measured using an ELISA. The figure shows data from 6 

independent experiments.  Error bars represent median values and the interquartile range.  

There was an increase in PAI-1 levels when monocytes were cultured with LPS-stimulated 

PMVEC compared to LPS-stimulated PMVEC cultured alone (p=0.07 by Friedman’s test, *- 

p<0.05 by Dunn’s post hoc test). 

 

 

 
 

Figure 3.18 Co-culture of monocytes with LPS-pre-treated PMVECs 

increases PAI-1 levels 
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Monocytes were negatively sorted using FACS and incubated with and without PMVEC.  A 

proportion of PMVEC were stimulated with 100 ng/mL of LPS for 1 hour, and the LPS was 

washed off prior to the addition of the monocytes.  Some monocytes cultured without PMVEC 

were stimulated with 10 ng/mL LPS that was not removed but remained there for the duration 

of culture.  This figure shows the concentration of tPA in supernatants harvested following 24 

hours of culture.  tPA was measured using an ELISA. The figure shows data from 6 

independent experiments.  Error bars represent median values and the interquartile range.  

There was no significant difference between the conditions involving PMVEC (p=0.027 by 

Friedman’s test, ns – non-significant between the conditions containing PMVEC). 

 

 

Figure 3.19 Co-culture of monocytes with LPS pre-treated PMVECs does not affect tPA 

levels 
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3.5 Discussion 

3.5.1 Change in monocyte subsets following LPS incubation 

The proportion of classical monocytes was increased by culture with LPS.  This was 

associated with a lower expression of CD16, the marker used to distinguish intermediate and 

non-classical subsets.  Interestingly, contrary to these results, multiple reports have suggested 

that LPS increases the expression of CD14.  Marchant et al. showed an increase in CD14 

expression within 30 minutes and 3 hours of incubation with LPS, an effect that did not 

require protein synthesis (Marchant et al., 1992). Landmann et al. demonstrated that after a 

few hours’ incubation, LPS appeared to decrease CD14 mRNA; this was followed, however, 

by an increase after 2 days.   The authors also demonstrated an increase in the protein surface 

expression, with CD14 MFI on both PBMCs and purified monocytes increasing following 

incubation with LPS at doses higher than 1 ng/mL (Landmann et al., 1996).   

 

The cultures described in this chapter were incubated for 24 hours. It may be that this was too 

early to detect an increase in CD14 and supports a change in CD16 expression as a cause for 

the rise in proportion of the classical subset.  There is some evidence to suggest that LPS 

stimulation of monocytes can result in the internalisation of CD16.  Both the intermediate and 

non-classical subsets have been shown to be capable of internalising their CD16 receptor in 

vivo (Paniagua et al.; Picozza et al., 2013). 

 

It is important to note, however, that a change in monocyte subset does not necessarily 

translate into a change in monocyte function.  As previously mentioned, the nomenclature for 

monocyte subsets applies during health (Ziegler-Heitbrock et al., 2010b).  Further work 

would need to be performed to investigate a change in function following stimulation of 

monocyte subsets with LPS. 

 

Finally, this data is limited by the measurement of proportions.  It is possible that during the 

experiment there was a disproportionate loss of non-classical and intermediate monocytes, 

rather than an increase in classical monocytes.  As demonstrated, only a minority proportion 

of monocytes were recovered following in vitro culture.  There were several parts of the 

protocol during which cells could be lost: these include harvesting monocytes that have 

adhered to the plastic wells, cell washing following antibody staining, and transfer to the flow 

cytometry tubes.  Although there was no significant decrease in yield with increasing levels of 

LPS, it is possible that increasing levels of LPS may increase the adhesiveness of some 

subsets to plastic.  Further work is needed to confirm whether this data represents a genuine 
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increase in the proportion of classical monocytes or in fact a disproportionate loss of the 

intermediate and non-classical subsets. 

 

3.5.2 Expression of TF by monocyte subsets 

All monocyte subsets were shown to increase their TF expression following LPS stimulation.  

The non-classical subset, contrary to my hypothesis, was shown to express the lowest levels 

of TF.  To my knowledge there is no published work comparing the TF expression of 

monocyte subsets following LPS stimulation.  Stojkovic et al. used IL-33 as a stimulus and 

showed an increase in the percentage of TF expressing intermediate monocytes, with a trend 

to increase demonstrated in the non-classical subset and no change noted in the classical 

subset.  TF activity following IL-33 stimulation was not investigated in their study (Stojkovic 

2017).   

 

There is no published work comparing the activity of TF expressed on monocyte subsets.  

Accounting for the lower proportion of non-classical monocytes that express TF, there was no 

significant difference in TF activity across the monocyte subsets.  Whilst LPS consistently 

increases the proportion of TF expressed by all monocytes, there was no evidence that it 

increased TF activity.  The discrepancy between the level of cell surface expression and 

activity may be explained by the process of encryption, a post-translation modification of TF 

on the monocytic cell surface to control its activity (see introduction section 1.4.4, page 28) 

(Bach, 2006).  Previous groups have suggested that the discrepancy between LPS-induced TF 

expression and its activity may be explained by an increase in cell death.  The process of cell 

death leads to an externalisation of phosphatidylserine (PS) and thereby a ‘decryption’ of TF 

expressed by the cell (Henriksson et al., 2007).  The work described in this chapter, however, 

consistently showed a cell viability of greater than 90 % at the levels of LPS stimulation used, 

as measured by propidium iodide, thereby excluding late apoptosis and necrosis (Figure 3.1).  

It is still possible that the cells are entering early apoptosis and future work to identify the 

exposure of PS and signs of apoptosis would be useful.  Potentially, this could involve the use 

of fluorescently-labelled Annexin V to assess the PS on the cell surface and DAPI to search 

for chromatin condensation (Cummings and Schnellmann, 2004).  The low yield of recovered 

monocytes may also mean that many dead cells were lost during the experiment.  This may 

have kept the viability artificially high. 
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3.5.3 Mechanisms involved in LPS-induced TF up-regulation on monocytes 

As discussed earlier, the pathway(s) through which LPS induces transcription of TF are 

unclear.  Three pathways have been implicated, with key roles for NFκB, ERK and JNK 

(Bode and Mackman, 2014).  There is no published work considering the pathways in 

different monocyte subsets. 

 

No statistically significant results were seen during this project, although there appeared to be 

a trend for inhibitors of all pathways to reduce TF surface expression, in total monocytes and 

in the classical and intermediate subset.  No such trend was seen in the non-classical subsets.  

The TF expression during the inhibitor experiments was lower than that measuring during 

earlier experiments.  This may be due to the use of adherence rather than FACS to isolate the 

monocytes.  To fully understand the up-regulation of surface TF expression, future work 

should investigate the monocyte transcriptome and proteome post LPS activation. 

 

3.5.4 The effect of monocyte-endothelial cell interaction on subset proportions and TF 

expression 

Co-culture of monocytes and PMVECs led to an increase in the proportion of classical 

monocytes, which did not appear to be dependent on the presence of LPS.  As discussed 

earlier (see introduction 1.5.5, page 49), MCSF can affect monocyte subset differentiation 

from classical to intermediate to non-classical (Saleh et al., 1995a; Korkosz et al., 2012).  

Measurement of the MCSF levels in supernatants following co-culture, however, showed no 

changes in MCSF levels between endothelial cells alone and those in contact with monocytes. 

 

Another explanation may be the ability of each subset to transmigrate through an endothelial 

monolayer.  Chimen et al. used monocyte and human umbilical vein endothelial cell 

(HUVEC) co-cultures to describe how all the subsets transmigrated from the apical to the 

basal side of an endothelial layer.  Interestingly, the classical subset then underwent a reverse 

transmigration by 90 minutes such that they returned to the apical surface and remained on 

there.  Intermediate and non-classical monocytes remained in a basal polarity (Chimen et al., 

2017).  Human and murine monocyte subsets, as previously described (see introduction 

section 1.5), have been shown to move differently across the endothelium, which may explain 

this behaviour; in both cases, the non-classical subset was shown to adhere more strongly to 

endothelium (Auffray, 2007; Cros et al., 2010).  Future work investigating the transmigration 

and adhesion abilities of human subsets in endothelial co-cultures are needed to better 

understand this.   
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Endothelial co-culture led to an increase in TF expression on classical and intermediate 

monocytes. Again, this effect appeared to be independent of endothelial LPS stimulation.  Lo 

et al. have previously demonstrated that direct contact between monocytes and endothelium 

led to an increase in endothelial TF expression, although monocytic TF expression was not 

investigated (Lo et al., 1995).  The work discussed in this chapter did not demonstrate a need 

for cellular contact between monocytes and endothelium to increase monocyte TF expression.   

 

There are several potential mediators that may explain the induction of monocytic TF without 

the presence of contact or LPS.  The release of homocysteine from endothelium at 

physiological levels has been shown to increase monocytic TF (Khajuria and Houston, 2000).  

P-selectin, bound to the endothelial surface, has also been shown to induce monocytic TF, but 

whether the release of soluble P-selectin could have a similar effect has so far not been 

investigated (Celi et al., 1994; Semenov et al., 1999).  Interestingly, both membrane-bound 

and soluble P-selectin have been shown to increase the proportion of PS in the monocytic 

outer cell membrane.  Potentially, this could support decryption of membrane-bound TF (del 

Conde et al., 2005). 

 

3.5.5 The endothelial response to co-culture 

Sepsis-associated coagulopathy is associated with an inhibition of the endothelial fibrinolytic 

response (Suffredini et al., 1989).  In my experiments co-culture of monocytes and 

endothelial cells resulted in no difference in tPA released, but there was an increase in PAI-1 

concentration when monocytes were co-cultured with PMVEC pre-treated with LPS.  

Monocytes are known to release a small proportion of PAI-1, but the increase in levels is 

higher than the amount of PAI-1 measured from monocytes cultured alone.  Multiple authors 

have also noted an activation of endothelium following co-culture with monocytes (Rainger et 

al., 1996; Tsouknos et al., 2003).  The increase in PAI-1 and unchanged level of tPA, 

following monocyte-endothelial co-culture has been noted previously by Funayama et al.  

They noted the effect occurred by 6 hours and was blocked by antibodies to IL-1β and TNF-α 

(Funayama, 1997).  As previously shown, there appeared to be a trend towards an increase in 

IL-1β and TNF-α following co-culture in this project, however more work is needed to 

investigate a possible mechanism. 
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3.6 Summary of key findings  

TF expression and activity has been shown to vary between monocyte subsets.  Interestingly, 

a discrepancy was noted between the TF expression and activity in the subsets.  This does not 

appear to be explained by cell death and warrants further investigation to consider the 

encryption of TF on each subset.  

 

My initial hypothesis, that the non-classical subset would express the highest level of TF has 

been refuted.  Although there is variation between the monocyte subsets, the classical and 

intermediate monocytes express the highest levels of TF, whilst there was no difference in TF 

activity. 

 

The in vitro model of sepsis using endothelial co-culture has demonstrated an induction of 

monocyte TF that appears independent of LPS, as well as an increase in PAI-1 production.  

This suggests two potential ways in which monocytes may contribute to the coagulopathy of 

sepsis. 
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4. Chapter 4.  Investigation of Monocyte Subsets following Endotoxaemia 

in Healthy Volunteers 
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4.1 Overview 

Chapter 3 looked at the effects of LPS in vitro. To investigate how the TF on monocytes 

responds to LPS in vivo, a model of human endotoxaemia was used.  Although not a model of 

sepsis, this allows for the temporal investigation of LPS activation of both the immune and 

coagulation systems (van Deventer et al., 1990).   

 

This chapter will discuss the impact of endotoxaemia on monocyte subsets and TF cell 

surface expression in healthy volunteers.  Previous work has demonstrated a profound 

monocytopenia within 90 minutes of exposure of LPS.  This is followed by the recovery of 

classical monocytes followed by intermediate and then non-classical subsets (Tak et al., 

2017).  A review of the literature revealed no previous investigation of changes in monocytic 

TF expression. 

 

4.2 Research aims 

- to identify the changes in the proportion of circulating monocyte subsets following 

LPS exposure  

- to investigate the effect of endotoxaemia on the cell surface expression of TF between 

the monocyte subsets 
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4.3 The human endotoxaemia model 

The human endotoxaemia model involves the injection of LPS (2 ng/kg) to a healthy 

volunteer followed by venepuncture at the following time points: pre-injection, 90 minutes, 4, 

6, 10 and 24 hours, and 7 days following the injection.  The participant is monitored 

throughout the first 10 hours in a dedicated research space within a critical care unit.  The 

experiment is performed by a critical care physician.  A small proportion of the blood taken is 

processed by the hospital’s laboratory to obtain full blood cell count and coagulation 

measurements.  The remaining blood is processed by the research team, including whole 

blood flow cytometry. 

 

Thirteen participants were recruited between July 2018 and February 2019.  Their median age 

was 24.5 years (range 18-37 years) and 8 (62%) were male.  

 

Most participants experienced a leucocytosis following the LPS injection.  Peak levels were 

reached at 10 hours and all white blood counts had returned to within the reference range 7 

days following the experiment.  The predominant circulating leucocytes were neutrophils, 

with levels following the trend of the total white blood count.  All participants developed a 

monocytopenia at 90 minutes and a lymphopenia at 4 hours (Figure 4.1).   
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This figure shows the total white blood cell counts at each time-point following an injection of 

2 ng/kg LPS in healthy volunteers (n=13).   Cell counts were measured by flow cytometry in 

the hospital’s laboratory using the Sysmex XN-3000TM analyser (Sysmex, Milton Keynes, 

UK).  Most participants had a white blood count and white cell differential measured at each 

time-point, but two had a single missing sample; the 4 hr and 10 hr timepoints therefore show 

the results of 12 participants.  The red dashed line marks the upper limit of the reference 

range, whilst the blue dashed line marks the lower limit. A – white blood cell count, B – 

monocyte count, C – neutrophil count, D – lymphocyte count.  Significance was calculated 

using the repeated-measures one-way ANOVA test (A, B, C and D: p<0.0001)) with 

Dunnett’s multiple comparisons test to compare each time-point to baseline (* – p<0.05, ** – 

p<0.01, *** – p<0.001, **** – p<0.0001). 

  

Figure 4.1 White cell counts of healthy controls following endotoxaemia 
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4.4 Monocyte subsets following endotoxaemia 

100 µL of whole blood from each time-point was used for flow cytometry in a BD 

Trucount™ tube to allow the calculation of absolute values (see methodology section 2.6.1, 

page 72). 

 

As seen in the full blood count sample, there was a profound monocytopenia.  This occurred 

in all participants and was most pronounced at the 90 min time-point following the LPS 

injection (Figure 4.2). 

 

The recovery begins at 4 hours but is not complete until 24 hours.  Reviewing the subsets 

individually shows a loss of virtually all intermediate and non-classical monocytes at early 

time points, with only a small population of classical remaining.  The classical subset begins 

to recover at 4 hours, but the intermediate and non-classical subsets do not return until 24 

hours (figures 4.3 and 4.4). 
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The monocyte count was measured with flow cytometry using 100 µL of whole blood in a BD 

Trucount™ tube for all 13 participants.   A – Endotoxaemia is followed by a profound 

monocytopenia.  The bars represent median values and the error bar the upper quartile.  The 

decrease in monocyte count was statistically significant (p<0.0001 by Friedman’s test, ** – 

p<0.01 comparing 4 hr to baseline and **** – p<0.0001 comparing 90 min to baseline by 

Dunn’s post hoc test).  B – A representative example of one participant’s flow cytometry at 

four time-points. 

 

Figure 4.2 Endotoxaemia induces a profound monocytopenia 
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This figure shows the changes in monocyte subsets, as gated by CD14 and C16 positivity, at 

each time-point following an injection of 2 ng/kg LPS in a single participant.  The classical 

population is gated in the red gate, the intermediate in blue and the non-classical in green.  

Figure 4.3 Monocyte subsets following endotoxaemia 
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This figure shows the absolute monocyte subset counts at each time-point following an 

injection of 2 ng/kg LPS in healthy volunteers (n=13).  Counts were measured with flow 

cytometry using 100 µL of whole blood in a BD Trucount™ tube.  The bars represent median 

values and the error bars the upper quartile.  Classical monocytes decrease at 90 mins and 

recover by 6 hr (p<0.0001 by Friedman’s test, **** – p<0.0001 comparing 90 min to 

baseline and *** – p<0.001 comparing 4 hr to baseline by Dunn’s post hoc test).  

Intermediate monocytes decrease at 90 mins and recover at 24 hr (p<0.0001 by Friedman’s 

test, **** – p<0.0001 comparing 90 min and 4 hr to baseline, ** – p<0.01 comparing 6 hr to 

baseline and * – p<0.05 compares 6 hr to baseline by Dunn’s post hoc test).  Non-classical 

monocytes decrease at 90 mins and recover at 24 hr (p<0.0001 by Friedman’s test, *** – 

p<0.001 comparing 90 min and 6 hr to baseline, ** – p<0.01 comparing 4 hr and 10hr to 

baseline by Dunn’s post hoc test).        

 
 
 
  

Figure 4.4 The classical subset recovers before the others following endotoxaemia-induced 

monocytopenia 
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4.5 TF expression following endotoxaemia 

As part of the whole blood flow cytometry, the proportion of TF-expressing monocytes was 

measured.  Only a very small proportion of circulating monocytes express TF.  The 

percentage of cells expressing TF was much lower than reported with LPS in vitro stimulation 

as described in chapter 3 (see section 3.3.2, page 105). 

   

The TF cell surface expression of each monocyte subset was investigated.  When considering 

all 13 participants there appeared to be two broad categories of response: in 8 participants the 

proportion of TF-expressing monocytes increased after LPS administration (high responders), 

while in the remaining 5, monocytes expressed a very low level of TF that did not change in 

any subset following LPS (low responders).  Figure 4.5 shows the data for all participants 

together as well as separately for each of these categories.  The level of 0.5 % of cells 

expressing TF was used to distinguish the two populations.  This level was chosen since the 

highest baseline level of TF noted in all participants was 0.48 %. 

 

There appeared to be two peaks in TF expression, at 90 minutes and then at 6 hours. 

When the TF expression on the monocyte subsets from the two categories was investigated, 

the pattern in each subset mirrored the pattern observed for total monocytes (Figure 4.6). The 

intermediate subset had the highest levels of TF expression (Figure 4.6).  This may be 

explained by the smaller number of cells present between 90 min and 6 hr, particularly in the 

intermediate and non-classical subsets (Figure 4.4). 

 

There was no difference between the ages, sex or white blood count of these the high and low 

responders (see table 4.1).  C-reactive protein (CRP) levels were measured, as a marker of 

inflammation, at baseline, 10 hr, 24 hr and 7 days in the hospital’s laboratory using 

chemoluminescence with the cobas® 8000 analyser.  The CRP increased for all participants at 

10 and 24 hr before returning to normal at 7 days.  There was no difference between the high 

and low responder groups.  Although the changes seen in the low responder group were not 

statistically significant, this is likely due to the small number of participants, particularly as 

one participant did not have CRP measured at 10 and 24 hr (see Figure 4.7). 
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This figure shows the percentage of monocytes that express TF at each time-point following 

an injection of 2 ng/kg LPS in healthy volunteers (n=13).  TF expressing cells were measured 

with flow cytometry using FMO to gate the negative the population.  A – This figure includes 

all participant data (n=13).  There was no statistically significant difference in the 

percentage of monocytes expressing TF (p=0.11 by Friedman’s test).  B – compares ‘high 

responders’ (participants who increased the percentage of cells expressing TF on their 

surface above 0.5%, n=8) and ‘low responders’ (participants who did not increase the 

percentage of cells above 0.5%, n=5).  The red dashed line marks 0.5 % of cells expressing 

TF.  There was an increase in the percentage of monocytes expressing TF at 90 min following 

LPS injection in the high-responder group (p=0.0005 by Friedman’s test, * – p<0.05 

comparing 90 min to baseline by Dunn’s post hoc test).  The percentage of monocytes 

expressing TF did not change in non-responder group (p=0.78 by Friedman’s test). 

 

 

 

 

 

Figure 4.5 In a sub-population of participants monocyte TF expression is enhanced 

following endotoxaemia 
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This figure shows the percentage of each monocyte subset that expresses TF at each time-

point following an injection of 2 ng/kg LPS in healthy volunteers (n=13).  TF-expressing cells 

were measured with flow cytometry using FMO to gate the negative population.   Frequently 

in the low responder groups and the non-classical subset, there were no cells expressing TF 

on their cell surface.  A – These figures include all participant data (n=13). The percentage 

of monocytes expressing TF did not change (classical: p=0.08, intermediate: p=0.34, non-

classical: p=0.65 by Friedman’s test).  B – includes data for ‘high responders’ (increased TF 

expression to >0.5 % of the total circulating monocyte population, n=8).  The classical 

monocyte subset increased the percentage of cells expressing TF (p=0.02 by Friedman’s test, 

* – p<0.05 comparing 90 min and 6 hr time-points to baseline by Dunn’s post hoc test).  C – 

includes data for ‘low responders’ (did not increase their TF expression to >0.5 % of the 

total circulating monocyte population, n=5).  There were no significant changes in the 

percentage of monocytes expressing TF in the low responders (classical: p=0.49, 

intermediate: p=0.56, non-classical: p=0.10 by Friedman’s test).   

Figure 4.6 All monocyte subsets in the high responder population show an increase TF 

expression in response to endotoxaemia 
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    High responders Low responders 

Number of participants 8 5 

Median age (years) 25 (range 18 to 37) 24 (range 22 to 32) 

Male 5 (62%) 3 (60%) 

White blood count Baseline 5.80 5.30 

 90 min 3.73 6.18 

 4 hr 8.07 11.92 

 6 hr 10.05 12.75 

 10 hr 13.70 14.82 

 24 hr 8.21 11.32 

  7 day 5.70 5.56 
 

Table 4.1 Demographic comparison of responders and non-responders 

This table compares the age, sex and white blood cell count of both populations.  There was 

no statistically significant difference found.  Cell counts and age of participants were 

compared using an unpaired t-test; the proportion of male participants in each group was 

compared using Fisher’s exact test.   
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This figure shows the level of CRP at baseline, 10 hr, 24 hr and 7 days following an injection 

of 2 ng/kg LPS in healthy volunteers (n=13).   One participant missed two CRP 

measurements at the 10 and 24 hr timepoints; they were in the low responder group.  The red 

dashed line marks the upper limit of the CRP reference range. A – shows the CRP level for all 

participants.  The CRP level increased at 10 and 24 hr (p<0.0001 by Friedman’s test, ** – 

p<0.01 comparing 10 hr to baseline, **** – p<0.0001 comparing 24 hr to baseline using 

Dunn’s post hoc test).  B – The CRP levels for high and low responders are displayed.  Both 

show an increase at 10 and 24 hr, although only the high responder group are statistically 

significant (high responders: p<0.0001 by Friedman’s test, * – p<0.05 comparing 10 hr to 

baseline, **** – p<0.0001 comparing 24 hr to baseline using Dunn’s post hoc test; low 

responders: p=0.0009 by Friedman’s test, p=0.08 comparing 24 hr to baseline using Dunn’s 

post hoc test). 

  

 

Figure 4.7 CRP levels following human endotoxaemia between the responder groups 
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4.6 Markers of coagulation following endotoxaemia 

As discussed earlier, TF, through binding to VIIa, activates the pro-enzyme clotting factors 

and creates FXa, FIXa and FXIa.  This allows the formation of both the tenase and 

prothrombinase complexes, leading to the propagation phase of coagulation and an increased 

production of thrombin.  Each factor has an inhibitor that binds to control coagulation: 

antithrombin (AT) binds to FIXa, FXa, FXIa and thrombin.  FXIa is also inhibited by α-1-

antitrypsin (FXIa-a1AT) (for a more detailed summary see introduction section 1.3.2, page 8).    

 

The down-stream effects of TF were investigated by measuring TAT, FIXa-AT, FXa-AT, 

FXIa-AT and FXIa-a1AT.  To investigate a role for the contact pathway during 

endotoxaemia, levels of FXIIa-C1NH were also measured.  All levels were obtained using 

ELISA by our collaborators at Maastricht University, The Netherlands (see methodology 

2.7.3, page 85). 

 

There was an increase in TAT, FIXa-AT, FXa-AT and FXIa-AT at 4 hr following LPS 

injection.  No change was seen in the FIXa-a1AT levels. At 6 hr there was a decrease in the 

FXIIa-C1NH levels (see Figure 4.8). 

The high and low responder groups were compared but there was no consistent difference 

demonstrated (see figures 4.9 and 4.10).  
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This figure shows the changes in markers of coagulation at each time-point following an 

injection of 2 ng/kg LPS in healthy volunteers.  Markers of coagulation were measured using 

an ELISA.  This work was performed by our collaborators in Maastricht University, The 

Netherlands.  Markers were measured in 12 participants; the 13th participant was unavailable 

at the time of processing.  Bar height represents median values and error bars the upper 

quartile.  A – TAT levels were increased between 4 and 6 hr (p<0.0001 by Friedman’s test, 

*** – p<0.001 comparing 4, 6 and 10 hr with baseline using Dunn’s post hoc test).  B – 

FIXa-AT levels were increased between 4 and 10 hrs (p<0.0001 by Friedman’s test, **** – 

p<0.0001 comparing 4 hr to baseline, ** – p<0.01 comparing 4 and 6hr to baseline using 

Dunn’s post hoc test). C – FXa-AT levels were increased at 4 and 6 hr (p<0.0001 by 

Friedman’s test, *** – p<0.001 comparing 4 hr to baseline, * – p<0.05 comparing 6 hr to 

baseline using Dunn’s post hoc test).  D – FXIa-AT levels increased between 4 and 10 hr 

(p<0.0001 by Friedman’s test, **** – p<0.0001 comparing 4 and 10hr to baseline, 

** – p<0.01 comparing 6 hr and baseline using Dunn’s post hoc test).  E – FXIa-AT levels 

were unchanged following LPS injection (p=0.44 by Friedman’s test).  F– FXIIa-C1NH 

levels increased at 6hr (p=0.03 by Friedman’s test, * – p<0.05 comparing 6 hr to baseline 

using Dunn’s test).  

  

Figure 4.8 Coagulation markers following endotoxaemia 
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This figure compares the changes in coagulation markers at each time-point following a 2 

ng/mL injection of LPS between high and low responders.  Markers of coagulation were 

measured using an ELISA.  This work was performed by our collaborators in Maastricht 

University, The Netherlands.  Markers were measured in 12 participants; the 13th participant 

was unavailable at the time of processing.  Bar height represents median values and error 

bars the upper quartile.  There was no consistent difference between the two groups.   A – 

TAT levels were increased between 4 and 6 hr; this change was statistically significant in the 

low responder group  (high responder: p<0.0001 by Friedman’s test, p=0.06 comparing 4 hr 

with baseline using Dunn’s post hoc test; low responder: p=0.0007 by Friedman’s test, 

** – p<0.01 comparing 4 hr to baseline, * – p<0.05 comparing 6 and 10 hr to baseline using 

Dunn’s post hoc test).  B – FIXa-AT levels were increased at 4 hrs in each group and at 10 hr 

in the low responder group (high responder: p<0.0001 by Friedman’s test, ** – p<0.001 

comparing 4 hr to baseline using Dunn’s post hoc test; low responder: p=0.007 by 

Friedman’s test, ** – p<0.01 comparing 4 hr to baseline, * – p<0.05 comparing 10 hr to 

baseline using Dunn’s post hoc test). C – FXa-AT levels were increased at 4 hr; this was 

statistically significant only in the low responder group (high responder: p<0.0001 by 

Friedman’s test, p=0.08 comparing 4 hr to baseline using Dunn’s post hoc test; low 

responder: p=0.008 by Friedman’s test, ** – p<0.01 comparing 4 hr to baseline using 

Dunn’s post hoc test).   

 
 
  

Figure 4.9 Comparison of TAT, FIXa-AT and FXa-AT between high and low responders 
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Figure 4.10 Comparison of FXIa-AT, FXIa-a1AT and FXIIa-C1NH between high and low 

responders 

This figure compares the changes in coagulation markers at each time-point following a 2 

ng/mL injection of LPS between high and low responders.  Markers of coagulation were 

measured using an ELISA.  This work was performed by our collaborators in Maastricht 

University, The Netherlands.  Markers were measured in 12 participants; the 13th participant 

was unavailable at the time of processing.  Bar height represents median values and error 

bars the upper quartile.  There was no consistent difference between the two groups.   D – 

FXIa-AT levels were increased between 4 and 10 hr; this change was statistically significant 

in the low responder group (high responder: p=0.0004 by Friedman’s test, ** – p<0.01 

comparing 4 hr with baseline, * – p<0.05 comparing 10hr to baseline using Dunn’s post hoc 

test; low responder: p=0.002 by Friedman’s test, *** – p <0.001 comparing 4 hr to baseline, 

** – p<0.01 comparing 10 hr to baseline using Dunn’s post hoc test).  E – FXIa-a1AT levels 

were increased at 24 hrs in the low responder group, there was no statistically significant 

difference in the high responder group (high responder: p=0.94 by Friedman’s test; low 

responder: p=0.05 by Friedman’s test, * – p<0.05 comparing 24 hr to baseline using Dunn’s 

post hoc test). F – FXIIa-C1NH levels were decreased between 4 and 6 hr in the high 

responder group (high responder: p<0.002 by Friedman’s test, ** – p<0.01 comparing 6 hr 

to baseline, * – p<0.05 comparing 10 hr to baseline using Dunn’s post hoc test; low 

responder: p=0.10 by Friedman’s test).   
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4.7 Discussion 

4.7.1 Changes in blood counts and monocyte subsets 

The human endotoxaemia model leads to a stereotypical response.  All participants 

experienced a neutrophilia, lymphopenia and monocytopenia.  The cause of such a profound 

monocytopenia is not clearly understood. Potentially, the monocytes may be marginating and 

adhering to the endothelium, which may have become activated following the administration 

of LPS.  Several studies have described the ability of monocytes to ‘roll’ or ‘crawl’ along the 

endothelium (Auffray, 2007; Cros et al., 2010).  Blood samples that measure circulating 

monocytes would therefore fail to collect the marginated cells. 

 

As shown by Tak et al., following the monocytopenia, the subsets recover differentially (Tak 

et al., 2017).  Initially the classical monocytes recover at 6 hours, followed by intermediate 

and non-classical at 24 hours.  This group also identified an increase in intermediate 

monocytes at 24 hours. Although no statistically significant difference was seen in this 

project, there did appear to be a trend in that direction (Tak et al., 2017).    

 

It is likely that monocytes are repopulated from the bone marrow.  There is increasing 

evidence that monocytes can transition through the subsets, from classical to intermediate to 

non-classical.  Murine classical monocytes have been shown to differentiate into the 

intermediate subset over several days (Yona et al., 2013).  Single-cell RNA sequencing data 

support the concept of separate classical and non-classical monocyte subsets, but suggest that 

the intermediate subset is not homogeneous and support the idea that it is a transitional 

population (Villani et al., 2017).  Patel et al. injected healthy volunteers with deuterium-

labelled glucose and demonstrated that deuterium-labelled classical monocytes appeared first 

from the bone marrow and intermediate monocytes were seen with a lower level of 

deuterium, while labelled non-classical monocytes did not appear for 7 days.   The group also 

injected deuterium 20 hours prior to performing the human endotoxaemia model. Their 

previous experiments had shown that at this time-point no circulating monocytes would be 

labelled.  Deuterium-labelled classical monocytes were shown to repopulate the circulating 

pool from the bone marrow from 4 hours after LPS administration, whereas the intermediate 

and non-classical subsets did not appear until 24 hours (Patel et al., 2017).  All these 

experiments support the idea of monocytes repopulating the circulation from the bone marrow 

and then differentiating into intermediate and non-classical monocytes.  What is not explained 

is the recovery in non-classical monocytes at 24 hours following LPS injection. Although the 

differentiation of intermediate cells from classical monocytes is feasible over 24 hours, the 
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non-classical population takes longer to appear (Patel et al., 2017).  Potentially, the non-

classical subset is released from the endothelium at 24 hours.  Further work is needed to 

clarify this as well as to investigate the cause of the initial monocytopenia. 

 

4.7.2 Monocytic TF expression 

The percentage of monocytes expressing TF was lower than reported in chapter 3.  The cause 

of this is unclear but may relate to activation of monocytes following isolation (Bennett and 

Breit, 1994).  Potentially the monocytes expressing most TF may not be circulating but be 

marginated.  Sampling the circulating blood may not accurately reflect the TF surface 

expression on monocytes (Auffray, 2007; Cros et al., 2010). 

 

All participants had a low percentage of monocytes that expressed TF prior to injection but an 

increase occurred from 90 minutes and continued until 6 hours.  Considering the percentage 

of TF positive cells, there appear to be two peaks of TF.  TF mRNA has been previously 

shown to increase several hours after LPS injection.  Increased transcription may account for 

the increase in TF expression at 6 hours but does not account for the earlier response at 90 

minutes (Franco et al., 2000). 

 

Egorina et al. stimulated whole blood with LPS and measured the time course of TF 

expression.  They also noted an increase within the first few hours.  Immunostaining for TF 

revealed an intracellular pool near to the membrane.  This is a plausible source of the initial 

peak in TF expression (Egorina et al., 2005). 

 

4.7.3 High and low responders 

This work supports the phenomenon of high and low responders following LPS stimulation 

(Ossterud, 1995).  Although TF transcription has been shown to increase throughout 

endotoxaemia, there has been no previous work comparing high and low responders (Franco 

et al., 2000).  Immunostaining has revealed that low responders produce monocytic TF and 

indeed have a higher proportion intracellularly than high responders.  Potentially, the 

difference occurs either in the cell’s response to LPS or in externalising the TF onto the cell 

membrane (Egorina et al., 2005).   

 

High responders have been associated with a higher risk of myocardial infarction (Osterud 

2002).  No work has been performed so far to investigate the role of a high response in the 

development of sepsis-associated coagulopathy.  As previously discussed, there is evidence 
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that monocytic TF expression contributes to disseminated intravascular coagulation (DIC) 

(Warr et al., 1990; Taylor et al., 1991).   

 

The difference in response may potentially help elucidate what leads an individual with sepsis 

to develop coagulopathy and allow for a personalised approach to management.  As discussed 

earlier, the use of biomarkers to stratify individuals with sepsis into different endotypes can 

predict mortality.  Scicluna et al. classified individuals with sepsis into four endotypes using 

the results from 38 previous studies that measured genetic expression in such individuals.  

One endotype was associated with an increased 28-day mortality.  A combination of genetic 

and clinical criteria as well as suggested potential biomarkers for the different genetic profiles 

were identified (Scicluna et al., 2017). 

 

4.7.4 Coagulation markers following endotoxaemia 

Three of the four markers of coagulation used to identify an increase in TF activity were 

raised between four and six hours.  This coincides with the increase in monocyte cell surface 

TF expression.  Previous work by Franco et al. has demonstrated a similar increase in TAT at 

4 hours (Franco et al., 2000).  A review of the literature has not revealed any instances of 

measurement of the other complexes during human endotoxaemia, although previous work 

has associated increased levels with thrombotic conditions (Hobbelt et al., 2017; Posma et al., 

2018). Earlier work has associated an increase in levels of FIX, FX and FXI following 

endotoxaemia.  Whilst FIX and FX were shown to peak around the 4 hour timepoint, FXI 

levels were shown to peak later at 24 hours (Reitsma et al., 2003). 

 

As previously described (see introduction 1.3.2, page 8), the contact pathway can activate FXI 

and thereby promote thrombin production.  Work in this chapter has shown a decrease in 

FXIIa-C1NH at 6 hours following LPS injection.  The in vivo activator of the FXII is yet to be 

elucidated, but it can be inhibited by both AT and C1NH.  An increase in FXIIa-AT and 

corresponding drop in FXIIa-C1NH have been associated with prothrombotic states such as 

individuals with systemic lupus erythematosus and a history of previous thromboembolic 

events.  The pathology behind this is still unclear; it has been proposed that the inhibition of 

FXII may depend on the site and mechanism of initial activation.  Incubation of FXII, plasma 

and fibrin in vitro shows an increase in FXIIa-AT but no detectable level of FXIIa-C1NH 

(Bäck et al., 2013).   
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No differences between these coagulation markers were detected between the high and low 

responder groups, although this may be due to the small sample size. 

 

A limitation of this work is the lack of direct measurement of monocyte TF activity; this was 

not possible due to the small numbers of monocytes available during the timepoints 90 

minutes and 10 hours.  All measurements performed are downstream effects and therefore 

affected by the rest of the complex coagulation system.  The human endotoxaemia model is 

known to affect much more than just TF: it alters the levels of physiological anticoagulants, 

the contact pathway and fibrinolysis (Suffredini et al., 1989; van Deventer et al., 1990; 

Franco et al., 2000; Krabbe et al., 2006). 
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4.8 Summary of key findings 

This chapter confirms the previous work by Tak et al. (2017), demonstrating the differential 

return of subsets following the profound monocytopenia post-endotoxaemia.  

 

There are two peaks in TF expression: an early peak at 90 minutes, presumably due to pre-

formed TF being externalised to the cell membrane, and a later one at 6 hours that may relate 

to an increase in TF transcription.  An increase in the coagulation markers known to be 

activated by TF was demonstrated at a timepoint that coincided with this increase in cell 

surface expression. 

 

For the first time, the TF cell surface expression on each monocyte subset has been 

documented following human endotoxaemia. There is clear distinction between high and low 

responders, and the response of each group is consistent within monocyte subsets.   
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5. Chapter 5.  Investigation of Monocyte Subsets during Sepsis on the 

Intensive Care Unit 
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5.1 Overview 

Sepsis-associated coagulopathy is believed to occur, in part, due to dysregulated monocyte TF 

expression (Warr et al., 1990; Taylor et al., 1991).  During sepsis, multiple studies have 

shown a change in the proportion of circulating monocyte subsets with a reduction in classical 

monocytes (Herra et al., 1996; Skrzeczynska et al., 2002; Mukherjee et al., 2015).  The 

changes in TF cell surface expression and activity between these subsets remain 

uncharacterised.   

This chapter will describe blood drawn from individuals on the ICU with a diagnosis of sepsis 

and compare features with further samples taken from those that recover.  The changes in 

monocyte subsets and their TF expression will be investigated. 

 

5.2 Research aims 

- to identify changes in the proportion of circulating monocyte subsets during sepsis and 

on recovery 

- to investigate the cell surface expression of TF between monocyte subsets during 

sepsis and on recovery 

- to investigate the monocyte-endothelial interactions during sepsis using the same in 

vitro model as used with healthy monocytes 
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5.3 Demographics and clinical features of participants with sepsis  

Between June 2018 and March 2019, 28 individuals were recruited from the ICUs at NUTH 

and CHSFT (see methods section 2.11, page 91).  These included 18 with a diagnosis of 

sepsis and 10 who were critically ill without sepsis.   A 20 mL blood sample was taken on 

recruitment to the study and, in 10 participants with sepsis who recovered and consented, a 

further 20 mL blood sample was taken following recovery and on discharge from intensive 

care.  Clinical details were taken at the time of the first blood sample, including cause of 

admission to ICU, evidence for infection, co-morbidities, medication history, results of 

clinically indicated blood tests and medical observations. 

 

Sepsis was diagnosed in 18 individuals with a need for organ support and evidence of 

infection.  This evidence included pathogens grown from blood cultures, bronchoalveolar 

lavage or evidence of deep-seated infection such as microbiological samples from an 

abdominal abscess or a surgical wound site.  The evidence for diagnosing sepsis, for each 

participant, is summarised in table 5.1. 

 

The remaining 10 critically ill individuals fit the same criteria for organ support but did not 

have a diagnosis of sepsis.  Most had no evidence microbiological evidence of infection.  

Participant 8 was found to have Haemophilus influenzae on sputum culture but not on 

bronchoalveolar lavage (BAL).  Participant 9 had E. coli grown in a urine culture that was 

believed to be a contaminant and was not treated.  The cause of ICU admission and the organ 

support required by this group are detailed in table 5.2. 

Both the critically ill cohort and the cohort with a diagnosis of sepsis were evenly matched.  

There was no statistically significant in age, sex, length of ICU stays prior recruitment to 

study, type or organ support required, APACHE II or SOFA score and survival to ICU 

discharge (see table 5.3). 

 

White blood cell counts, coagulation markers and platelet counts were similar between both 

cohorts (see Figure 5.1).  Twelve (67 %) individuals in the sepsis cohort and six (60 %) in the 

critically ill had a high white cell count, composed primarily of neutrophils.  Coagulopathy 

was defined as a platelet count below 150 X 109/L, prothrombin time (PT) above 15 sec 

(reference range 10-15 sec), activated partial thromboplastin time (APTT) above 35 sec 

(reference range 25-35 sec), or fibrinogen below 1.5 g/L (reference range 2.1-4.8 g/L).  

Coagulopathy was evident in 7 individuals (39 %) from the sepsis cohort and 7 (70 %) 
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individuals from the critically ill cohort (this was not statistically significant using Fisher’s 

exact test, p=0.24). 

 

Prognostic scores were calculated for both cohorts, APACHE II at the time of admission to 

ICU and SOFA at the time the first study blood sample was taken (see Figure 5.2).  The 

median APACHE II score for this cohort was 27, which has previously been associated with a 

mortality rate of 55 % in medical patients (Knaus et al., 1985).  More recent work has 

demonstrated that this mortality rate is now likely to be lower due to advances in the care of 

critically ill patients (Sadaka et al., 2017). 

The median SOFA score, measured at the time the first blood sample was taken, was 9, which 

was previously associated with an in-hospital mortality of 33 % (Vincent et al., 1996).  More 

recent work has shown the SOFA score remains a useful predictor (Innocenti et al., 2018). 

 

Most individuals with sepsis survived to leave the ICU (n=14, 78%); of these, 10 consented to 

have further blood taken following their discharge from critical care, the other 4 declined a 

further blood test.  
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    Organ support  

No. Source of sepsis Microbiological evidence Radiological evidence IV NIV IN     RRT 

1 Ischaemic bowel 
Klebsiella pneumoniae and 
Enterobacter cloacae from 
wound  

Ischaemic bowel on 
CT abdomen y   y   

2 Respiratory Influenza A PCR positive 
Right-sided 
consolidation seen on 
CXR 

y     y 

3 Intra-abdominal 
abscess 

Enterococcus faecium from 
blood culture 

CT abdomen showed 
multiple liver abscesses y   y   

4 

Necrotising 
pancreatitis with 
abdominal 
collections 

Escherichia coli from 
abdominal drain fluid 

Multiple abdominal 
collections on CT 
abdomen 

y       

5 Perforated 
bowel 

Enterococcus faecium from 
drain fluid 

CT abdomen showed 
proximal transverse 
colon perforation 

y     y 

6 Perforated 
gastric conduit 

Escherichia coli from 
abdominal drain fluid none y     y 

7 Respiratory Escherichia coli from blood 
and bronchoalveolar lavage 

Multi-focal 
consolidation on CT 
thorax 

y   y y 

8 
Post-operative 
debridement for 
cellulitis 

Proteus mirabilis from 
debrided tissue none   y     

9 
Spontaneous 
bacterial 
peritonitis 

Gram-negative rods from 
ascitic fluid, failed to grow on 
subculture 

none y   y y 

10 Renal  Escherichia coli from blood  CT abdomen showed 
pyelonephritis     y   

11 Cellulitis 
Group A Streptococcus and 
Staphylococcus aureus from 
wound 

none y       

12 Ruptured 
oesophagus 

Lactobacillus gasseri, 
Lactobacillus fermentum, 
Streptococcus salivarius and 
Streptococcus parasanguinis 
from sputum  

Loculated pleural 
effusion seen on CT 
thorax 

y       

13 Ruptured 
oesophagus 

Haemophilus influenzae from 
sputum  

CT thorax showed 
consolidation and 
collection 

y   y   

14 Respiratory  Escherichia coli from 
bronchoalveolar lavage 

Bibasal consolidation 
on CT thorax y       

15 Respiratory Influenza A PCR positive 
CXR showed bilateral 
infiltrates and 
consolidation 

y   y y 

16 Respiratory  

Escherichia coli from blood 
and bronchoalveolar lavage, 
Candida albicans from 
bronchoalveolar lavage 

Right-sided 
consolidation on CXR       y 

17 Respiratory Influenza A PCR positive Extensive bilateral 
consolidation on CXR y   y   

18 Respiratory  
Serratia marcescens from 
blood and Proteus mirabilis 
from sputum  

Consolidation and 
atelectasis on CXR y       
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Table 5.1 Diagnosis of sepsis 

This table details the source and evidence of infection as well as the organ support required 

by all individuals with sepsis (n=18).  Microbiological and radiological data were gathered 

at recruitment to the study.  (CT – computerised tomography, CXR – chest radiograph, IV – 

invasive ventilation, NIV – non-invasive ventilation, IN – required inotropes or vasopressor 

medication, RRT – renal replacement therapy). 
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    Organ support  

No. Cause of ICU 
admission 

Microbiological 
evidence 

Radiological 
evidence IV NIV IN     RRT 

1 Post craniotomy 
for brain tumour nil nil y       

2 Head and bowel 
trauma nil 

CT showed 
free fluid and 
air in bowel 
wall 

y       

3 Type I respiratory 
failure nil 

Bilateral 
consolidation 
on chest CXR 

  y     

4 Acute hepatic 
failure nil nil y   y   

5 
Cardiac arrest post 
abdominal aortic 
aneurysm repair 

nil nil y   y y 

6 

Type I respiratory 
failure secondary 
to worsening 
interstitial lung 
disease 

nil 
Bilateral 
consolidation 
on chest CXR 

y   y y 

7 

Intra-abdominal 
haemorrhage post 
gastrojejunostomy 
insertion 

nil nil y   y   

8 

Overdose of 
fluoxetine and 
oramorph on a 
background of 
cardiac failure 

Haemophilus 
influenzae in 
sputum 

Bilateral 
consolidation 
on chest CXR 

y       

9 

Alcohol 
withdrawal and 
type I respiratory 
failure 

E. coli in urine 
culture 

CXR showed 
lobar collapse  y       

10 
Type I respiratory 
failure secondary 
to cardiac failure 

nil 
Bilateral 
consolidation 
on chest CXR 

      y 
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Table 5.2 Clinical details of critically ill cohort 

This table details the source and evidence of infection as well as the organ support required 

by all individuals with critical illness who did not meet the criteria for sepsis (n=10).  

Microbiological and radiological data were gathered at recruitment to the study. 
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  Sepsis Critically ill 

Age (years) 66 (38-77) 58.5 (30-70) 

Male 12 (67 %) 7 (70 %) 

Length of stay (days) 7.5 (1-31) 5.5 (1-17) 

Invasive ventilation 15 (83 %) 8 (80 %) 

Non-invasive ventilation 1 (5 %) 1 (10 %) 

Use of inotropes or vasopressors 8 (44 %) 4 (40 %) 

Renal replacement therapy 7 (39 %) 3 (30 %) 

APACHE II score 27 (15-45) 26.5 (9-40) 

SOFA score 9 (3-16) 7 (4-14) 

Survived until ICU discharge 14 (78 %) 4 (40 %) 
 

Table 5.3 Comparison of critically ill cohort to the cohort with a diagnosis of sepsis 

This table compares the demographics, length of ICU stays (prior to recruitment into the 

study), organ support requirements, prognostic scores and survival of both cohorts.  SOFA 

scores were calculated at the time of the first blood sample; one critically ill individual and 

seven individuals with sepsis did not have a SOFA score calculated due to a lack of bilirubin 

measurement on that occasion.  There were no statistically significant differences.  Fisher’s 

exact test was used to compare male sex, invasive ventilation, non-invasive ventilation, use of 

inotropes or vasopressors, renal replacement therapy and survival.  The unpaired t-test was 

used to compare age, length of stay, APACHE II score and SOFA score.   
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White blood cell counts (WBC), platelet count, PT, APTT and derived fibrinogen levels were 

measured in the hospital laboratories using a Sysmex XN-9000TM (Sysmex, Milton Keynes, 

UK) and ACL Top® 700 (Beckman Coulter, High Wycombe, UK) analysers.  All levels were 

taken from clinically indicated samples obtained on the day of recruitment to the study.  A 

shows the total white cell count and the individual neutrophil, monocyte and lymphocyte 

counts for the critically ill (n=10) and septic cohorts (n=18).  B shows the PT, APTT, derived 

fibrinogen and platelet count in the critically ill cohort (n=10; one participant was excluded 

from the APTT figure as they were receiving a heparin infusion at the time of sampling) and 

septic cohort (n=18; 3 values were excluded from the APTT figure because these individuals 

were receiving therapeutic level heparin at the time of sampling).  The red dashed line marks 

the upper limit of the reference range of that marker, whilst the blue dashed line marks the 

lower limit.  Error bars represent the median values and interquartile ranges.  There were no 

statistically significant differences between the cohorts for any marker.  Significance was 

calculated using the Mann-Whitney U test (WBC: p=0.91, neutrophils: p=0.91, lymphocytes: 

p=0.45, monocytes: p=0.63, PT: p=0.68, APTT: p=0.59, fibrinogen: p=0.83, platelet count: 

p=0.99). 

 

  

Figure 5.1 White cell counts and coagulation markers of the septic and the critically ill 

cohorts 
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APACHE II score was based on information from the first 24 hours of ICU admission, SOFA 

score was calculated using information at the time of the first blood sample.  A shows the 

APACHE II scores for the individuals with sepsis (n=18) and critical illness (n=10).  The 

blue bar represents the participants that were post-operative.  Percentages denote the 

mortality rate associated with each APACHE II score (Knaus et al., 1985).  B shows the 

SOFA score for the sepsis and critically ill cohorts.  Eight participants were excluded from 

the SOFA figure as a score could not be calculated (a bilirubin level had not been measured 

on the day of the first study blood sample), seven were from the sepsis cohort and one from 

the critically ill cohort. The percentages denote the mortality rates associated with that level 

of SOFA score (Vincent et al., 1996).  There was no statistical difference between the cohorts 

(APACHE II score: p=0.98, SOFA score: p=0.81 using the unpaired t-test). 

 

Figure 5.2 Prognostic scores for the septic and the critically ill cohorts 
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5.4 Monocyte subsets during sepsis, compared to those in health and those in the 

recovery after sepsis 

As described previously, 100 µL of whole blood was taken from healthy controls (n=13), 

individuals with sepsis (n=18) and the subset of individuals who recovered from sepsis and 

consented to a further blood sample (n=10).  Flow cytometry was performed using a BD 

Trucount™ tube to allow the calculation of absolute values (see methodology section 2.6.1, 

page 72). 

 

There was no statistically significant difference between the absolute monocyte count of the 

critically ill cohort, the sepsis cohort and the recovery samples of individuals with sepsis 

(Figure 5.3).   

 

Flow cytometry was used to identify the proportions of monocyte subsets during sepsis, and 

these were compared against the critically ill cohort or blood samples taken on recovery 

(figures 5.4 and 5.5).  Both the proportion of subsets and the absolute monocyte counts were 

compared.  No statistically significant differences in monocyte subsets were noted.  
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Whole blood flow cytometry and Trucount™ absolute counting tubes were used to measure 

the absolute monocyte counts in whole blood. Error bars represent median values and 

interquartile ranges.  A compares the total number of monocytes between the critically ill 

cohort (n=10) and individuals with sepsis (n=18).  There was no statistically significant 

difference between the cohorts (p=0.65 by the Mann-Whitney U test).  B compares the 

absolute monocyte counts between blood samples taken during sepsis with a sample following 

recovery (n=10).  There was no statistically significant difference between individuals with 

sepsis and then on recovery (p=0.77 by the Wilcoxon matched-pairs signed rank test).  The 

red dashed line marks the upper limit of the reference range of that marker, whilst the blue 

dashed line marks the lower limit. The reference range is based on 13 independent healthy 

controls and defined as two standard deviations either side of the mean.   

Figure 5.3 Total monocyte counts of the critically ill, sepsis and recovery cohorts 
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Whole blood flow cytometry with Trucount™ absolute counting tubes were used to identify 

the counts of classical, intermediate and non-classical monocytes.  The error bars represent 

the median value and inter-quartile range.  A compares the percentage of monocyte subsets 

between the critically ill cohort (n=10) and the sepsis cohort (n=18). There were no 

statistically significant differences between the cohorts (classical: p=0.38, intermediate: 

p=0.87, non-classical: p=0.27 by the Mann-Whitney test).  B compares the absolute 

monocyte subset counts between the critically ill cohort (n=10) and the sepsis cohort (n=18).  

There were no statistically significant differences between the cohorts (classical: p=0.76, 

intermediate: p=0.87, non-classical: p=0.49 by the Mann-Whitney test).  The red dashed line 

marks the upper limit of the reference range of that marker, whilst the blue dashed line marks 

the lower limit. The reference range is based on 13 independent healthy controls and defined 

as two standard deviations either side of the mean.   

 

 

 

 

  

Figure 5.4 Monocyte subsets in the critically ill and sepsis cohorts 
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Whole blood flow cytometry with Trucount™ absolute counting tubes were used to identify 

the absolute counts of classical, intermediate and non-classical monocytes.  The error bars 

represent the median value and inter-quartile range.  A compares the percentage of monocyte 

subsets between paired samples of individuals with sepsis and the same individuals on 

recovery and discharge from ICU (n=10).  There were no statistically significant differences 

between the cohorts (classical: p=0.56, intermediate: p=0.43, non-classical: p=0.70 by the 

Wilcoxon matched-pairs signed rank test).  B compares the absolute monocyte subset counts 

between paired samples of individuals with sepsis and the same individuals on recovery and 

discharge from ICU (n=10).  There were no statistically significant differences between the 

cohorts (classical: p=0.70, intermediate: p=0.32, non-classical: p=0.92 by the Wilcoxon 

matched-pairs signed rank test).   

  

Figure 5.5 The proportions of monocyte subsets during sepsis and following recovery 
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5.5 TF expression non-septic critical illness, sepsis and recovery from sepsis 

Whole blood flow cytometry, as previously described, was performed to identify monocytic 

TF expression.  The gating of TF-positive events is demonstrated in Figure 5.6 and used 

fluorescence minus one (FMO) controls.  

 

There was no statistically significant difference between the percentages of monocytes 

expressing TF between the critically ill and sepsis cohorts. Considering the patients who had 

sepsis, there was an increase in the proportion of TF-expressing monocytes in recovery 

samples (Figure 5.6).   

 

TF expression was also considered on monocyte subsets.  Individuals with sepsis had a higher 

percentage of TF-positive intermediate and non-classical monocytes when compared to 

critically ill individuals without sepsis.  Classical monocytes were shown to have a higher 

percentage of TF-expressing cells following recovery from sepsis.  There were no differences 

in the proportion of monocytes expressing TF in either the intermediate or non-classical 

subsets (Figure 5.7). 

 

There was no difference between total monocyte TF expression between individuals with 

sepsis and evidence for coagulopathy, and those with sepsis but no coagulopathy (Figure 5.8).  
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Figure 5.6 Monocyte tissue factor expression increases following recovery from sepsis 

Whole blood flow cytometry was used to identify the percentage of total monocytes that 

expressed cell surface TF.  Error bars represent median values and the interquartile ranges.  

A shows a representative example of the flow gating used to identify TF-positive monocytes. 

The black gate shows positive events, whereas the red gate shows negative events, as 

demonstrated with the TF FMO.  B compares the percentage of TF-positive monocytes in the 

critically ill (n=10) and sepsis cohorts (n=18).  There was no statistical difference (p=0.09 

using Mann-Whitney test).  C compares the percentage of TF-positive monocytes between 

individuals with sepsis and the same individuals following recovery discharge from ICU 

(n=10).  The percentage of TF-positive monocytes increased following recovery from sepsis 

(p<0.01 using the Wilcoxon matched-pairs signed rank test).  
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Whole blood flow cytometry was used to identify the percentage of total monocytes that 

expressed cell surface TF.  Error bars represent median values and the interquartile ranges.  

A compares the percentage of TF-positive monocyte subsets of the critically ill (n=10) and 

sepsis cohorts (n=18).  There was no statistically significant difference between the classical 

subset, but the intermediate and non-classical subset showed higher percentages of TF in the 

sepsis cohort (classical: p=0.40, intermediate: **** – p<0.0001, non-classical: p<0.05 using 

the Mann-Whitney test).  B compares the percentage of TF-positive monocytes in individuals 

with sepsis and following their recovery (n=10).  The classical subset showed an increased 

percentage of TF-positive cells on recovery; there were no significant differences in the 

intermediate and non-classical subsets (classical: ** – p<0.01, intermediate: p=0.11, non-

classical: p=0.64 using the Wilcoxon matched-pairs signed rank test). 

 
 

 

 

Figure 5.7 Classical monocyte TF expression increases with recovery from sepsis 
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This figure shows the percentage of TF-positive monocytes in individuals with sepsis and 

evidence of coagulopathy,those with sepsis but no coagulopathy (n=8), individuals without 

sepsis and coagulopathy (n=7) and those without sepsis and no coagulopathy (n=3).  Three 

individuals with sepsis were excluded from this analysis because they received therapeutic 

levels of anticoagulation.  Coagulopathy was defined as platelet count below 150 x 109/L, PT 

above 15 sec, APTT above 35 sec or fibrinogen below 1.5 g/L.  The error bars represent the 

median value and interquartile range.   Red points show data from coagulopathic samples 

whilst black points show non-coagulopathic.  There was no significant difference between the 

cohorts (p=0.38 using the Mann-Whitney test). 

  

Figure 5.8 No change in the percentage of TF-positive monocytes between individuals 

with coagulopathy and individuals without coagulopathy 
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5.6 Monocyte-endothelial cell co-cultures 

The in vitro model of monocyte-endothelial cell interactions described in chapter 3 (see 

section 3.4, page 122) was repeated with PBMCs from healthy volunteers and individuals 

with sepsis.  Using Ficoll-Paque™ density gradient separation, PBMCs were isolated from 

whole blood samples.  Due to the smaller volume of blood received from individuals with 

sepsis compared to that available from healthy volunteers (20 mL compared to 80 mL) it was 

not possible to conduct FACS on sufficient monocytes for co-culture.  PBMCs were therefore 

used to repeat the co-culture experiments. 

 

They were cultured for 24-hours with PMVEC cells in PMVEC medium.  Some PMVECs 

were pre-treated with LPS (100 ng/mL) for one hour; the LPS was then washed off and 

PBMCs were added to the culture.  Some PBMCs were stimulated by the addition of LPS (10 

ng/mL); this LPS was not washed off (see methodology section 2.7.2, page 82). These 

conditions were set up in a 24-well plate as shown in Figure 5.9. 

 

PBMCs from healthy controls were isolated, again using Ficoll-Paque™ density gradient 

separation, on each day a co-culture was set up.  This allowed for a comparison of PBMCs 

from healthy controls and individuals with sepsis. 

 

This experiment was performed only four times due to the availability of PMVECs and 

PBMCs from a septic sample.  There were no statistically significant changes.  A trend 

towards an increase in the proportion of classical monocytes (with a corresponding decrease 

in the intermediate and nonclassical monocyte subsets) was seen in co-cultures using PBMCs 

from healthy volunteers (Figure 5.10).  This is comparable to the co-cultures described with 

healthy blood samples in Chapter 3 (see figure 3.14).   

 

When PBMCs from individuals with sepsis were used, no clear trend for the classical subset 

to increase with co-culture was seen (figure 5.10).  The intermediate subset from individuals 

with sepsis showed a statistically non-significant increase with co-culture, in contrast to the 

pattern observed using PBMC samples from healthy volunteers.  Although the non-classical 

subset appeared to change in a similar way between both healthy and sepsis samples, the 

classical and intermediate subsets appear to vary between the two groups (figure 5.10). 

However, this work would need to be extended before any conclusions could be drawn.  In 

particular the proportion of monocytes recovered from culture would need increased. 
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Although the healthy PBMCs tended towards an increase in the classical subset with co-

culture (as previously shown; see section 3.4, page 122), this was not seen when using 

PBMCs from patients with sepsis (figure 5.10).  No change in TF expression was seen when 

comparing isolated monocyte subsets from individuals with sepsis or healthy controls, after 

PBMCs had been co-cultured with PMVECs (figure 5.11).   
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 1 2 3 4 

A PBHV PBHV PBHV + L PBHV + L 

B PBHV /PM PBHV /PM PBHV /PM+L PBHV /PM+L 

C PM PM PM+L PM+L 

D PBS PBS PBS + L PBS + L 

E PBS /PM PBS /PM PBS /PM+L PBS /PM+L 

 

 

Figure 5.9 Co-culture plate set-up 

This figure depicts the set-up of a 24-well plate for a co-culture experiment of PMVECs and 

PBMCs.  LPS (100 ng/mL) was added to PMVECs and washed off after 1 hour, prior to the 

addition of PBMCs.  LPS (10 ng/mL) was added to PBMCs and not removed.  Co-culture 

were incubated at 37 ⁰C and 5 % CO2 for 24 hours.  Following this, PBMCs were harvested, 

and flow cytometry used to measure the monocyte subset proportions and the percentage of 

TF-positive monocytes.  

  

Abbreviation Meaning 

PBHV PBMC from healthy volunteer 

PBS PBMC from individual with sepsis 

PM Human pulmonary microvascular endothelial cell (PMVEC) 

L Lipopolysaccharide (LPS) 
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PBMCs were isolated using Ficoll-Paque™ density gradient separation using samples from 

healthy volunteers and individuals with sepsis.  A proportion of PMVECs were stimulated 

with 100 ng/mL of LPS for 1 hour; the LPS was washed off prior to the addition of the 

PBMCs.  Some PBMCs were cultured alone with 10 ng/mL LPS: in contrast to the PMVEC 

stimulation, the LPS was not removed but remained there for the duration of culture.  

Following a 24-hour incubation, the proportions of monocyte subsets were measured using 

flow cytometry.  This figure shows the results of 4 independent experiments. Error bars 

represent median values and the interquartile range.  There were no statistically significant 

differences between the coculture conditions using Friedman’s test (classical healthy: 

p=0.13, intermediate healthy: p=0.13, non-classical healthy: p=0.07, classical sepsis: 

p=0.93, intermediate sepsis: p>0.99, non-classical sepsis: p=0.07).

Figure 5.10 Comparing monocyte subsets following endothelial cell co-culture using 

PBMCs from healthy controls and sepsis 
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PBMCs were isolated using Ficoll-Paque™ density gradient separation using samples from 

healthy volunteers and individuals with sepsis.  A proportion of PMVECs were stimulated 

with 100 ng/mL of LPS for 1 hour; the LPS was washed off prior to the addition of the 

PBMCs.  Some PBMCs were cultured alone with 10 ng/mL LPS: in contrast to the PMVEC 

stimulation, the LPS was not removed but remained there for the duration of culture.  

Following a 24-hour incubation, the percentage of TF-positive monocytes were measured 

using flow cytometry.  This figure shows the results of 4 independent experiments: one sample 

was excluded from the intermediate and non-classical subset as there was too few monocytes 

to accurately gate the TF-positive events. Bars represent median values and error bars the 

upper quartile.  There were no statistically significant differences between the co-culture 

conditions using Friedman’s test (classical healthy: p=0.43, intermediate healthy: p=0.19, 

non-classical healthy: p=0.94, classical sepsis: p=0.93, intermediate sepsis: p=0.19, non-

classical sepsis: p=0.94).  

Figure 5.11 TF expression in monocyte subsets following PMVEC co-culture of 

PBMCs from healthy volunteers and patients with sepsis 
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5.7 Discussion 

5.7.1 The population of individuals with sepsis is similar to previously described cohorts. 

The cohort of individuals with sepsis were severely ill as demonstrated by a median APACHE 

II score of 27 (calculated using information from their first 24 hours in ICU) and a median 

SOFA score of 9 (on the day of the first blood sample following recruitment to the study).  

The use of these is scores is limited by the change in ICU care that has occurred since they 

were first designed.  Recent work shows that although the predicted mortality rates may not 

be as accurate, comparing APACHE II predictions and actual hospital mortality rates 

demonstrate that the score is still a good discriminator of disease severity and risk of 

mortality.  This was particularly true in regard to individuals with sepsis (Godinjak et al., 

2016; Sadaka et al., 2017).  

 

Similar work has also demonstrated that the SOFA score remains a good predictor of 

mortality following sepsis (Innocenti et al., 2018).  A limitation of this study was the 

measurement of the SOFA score on a single occasion.  A retrospective review of more than 

180,000 adults on an ICU with an infection has shown that an increase in SOFA of more than 

two points is a good predictor of mortality (Raith et al., 2017).  The SOFA score was initially 

created to be performed daily, not as a predictor of mortality but as a way of monitoring organ 

failure over time (Vincent et al., 1996).  With regard to this work, a higher score is related to 

a more severe degree of organ failure, and it remains a useful way of describing the critically 

ill and sepsis cohorts. 

 

Of this cohort, 22% did not survive to be discharged from the ICU.  This is similar to other 

larger scale studies (Fleischmann et al., 2016; Meyer et al., 2018). 

 

To ensure a diagnosis of sepsis, all patients had evidence of infection on microbiological 

culture and a need for organ support.  This is based on the most recent international definition 

of sepsis (Singer et al., 2016). 

 

Coagulopathy was present in 39% of this cohort (7 individuals).  This is in keeping with 

previous studies that have documented coagulopathy in between 30 and 75% of sepsis cases 

(Gando et al., 2016).   

 



 198 

5.7.2 Change in monocyte subset during sepsis 

Multiple studies have shown an increase in either intermediate or non-classical monocytes 

associated with sepsis (Herra et al., 1996; Skrzeczynska et al., 2002; Mukherjee et al., 2015). 

The work presented here, however, showed no statistically significant difference, although 

there was perhaps a trend towards an increase in the non-classical subset.  Reasons for this 

difference seem likely to be explained, at least in part, by the heterogeneous nature of sepsis 

and the variation in flow cytometry gating between users.  Mukherjee et al., for example, 

selected only HLA-DR positive cells; previous work has shown a decrease in monocytic 

HLA-DR expression is seen in some individuals with sepsis (Drewry et al., 2018).   

 

5.7.3 TF expression during sepsis and recovery 

Previous work has demonstrated an increase in TF activity on isolated monocytes from 16 

individuals with meningococcal infection with higher levels associated with a worse 

prognosis (Osterud and Flaegstad, 1983). The samples, however, were frozen and thawed 

prior to testing.  Work performed by Maynard et al. demonstrated that the freeze-thaw cycle 

can de-crypt TF on monocytes and increase activity.  It is therefore difficult to draw any 

definite conclusions about TF activity and sepsis (Maynard et al., 1975; Osterud and 

Flaegstad, 1983).   

 

Animal models have provided some further insight, showing improved survival in a septic 

model if a monoclonal Ab to TF was given.  Monocytic TF was not investigated (Warr et al., 

1990; Taylor et al., 1991). 

 

Measurement of TF in plasma from individuals with sepsis has also been shown to be raised 

and to be particularly high in those meeting the criteria for DIC (Gando et al., 1998). 

 

Vickers et al. have previously investigated the proportion of monocytes expressing TF during 

sepsis.  They showed an increase in the TF expression of CD14 positive monocytes in 

individuals with a diagnosis of sepsis compared to those who were critically ill but did not 

have a sepsis diagnosis. Individuals on the critical care unit were screened for signs of sepsis 

according to the criteria at that time.  Participants were recruited to the study as soon as they 

reached the criteria for sepsis, and blood samples were taken within 12 hours of recruitment 

(Bone et al., 1992; Vickers et al., 1998). The work presented in this chapter supports these 

findings, with an increase in TF expression in those with sepsis when compared to critically 

ill individuals without sepsis.  These data have also shown an increase in the proportion of 
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classical monocytes expressing TF following recovery from sepsis.  This has not previously 

been reported and warrants further investigation.   

 

Potentially, this prolonged change in monocytic TF expression could be an example of 

monocyte innate training (see section 1.4.8, page 36).  Previous work has demonstrated a 

change in monocyte phenotype to up to 12 months following infection (Kleinnijenhuis et al., 

2014).  Although there has been measurement of monocyte TF expression following innate 

training, there is evidence to suggest that it can promote atherosclerosis.  The Apolipoprotein 

E knockout murine model is used to study atherosclerosis.   Murine monocytes previously 

stimulated with low-dose LPS were adoptively transferred to the knockout model; using 

monocyte controls incubated with PBS, the LPS-trained monocytes were associated with an 

increase in atherosclerotic plaques (Geng et al., 2016). 

 

The percentage of monocytes expressing TF is similar to that shown following the human 

endotoxaemia model but again it is lower than that seen with in vitro work.  As discussed 

earlier, this may be related to the margination of monocytes or activation of monocytes during 

the in vitro experiments. 

 

5.7.4 Co-cultures of PMVECs and PBMCs from individuals with sepsis 

A repeat of the PMVEC co-cultures with PBMCs from healthy controls or patients with 

sepsis showed no statistically significant changes between monocyte behaviour between the 

two groups.  PBMCs isolated from healthy volunteers, however, did appear to follow the 

same trend as previously described in chapter 4, with an increase in the classical monocyte 

subset following co-culture with and without LPS (see section 3.4, page 122).  PBMCs 

isolated from individuals with sepsis did not follow this trend.  Interestingly, the intermediate 

monocyte subset appeared to increase following co-culture with PBMCs from an individual 

with sepsis and LPS-pre-treated PMVECs.   

 

With regard to monocytic TF expression following co-culture, again no statistically 

significant changes were seen.  Again, the PBMCs from healthy controls appeared to follow 

the trend seen previously, with TF expression increasing following co-culture.  No such trend 

was seen in the co-culture of PBMCs from individuals with sepsis.   

 

Before any firm conclusions can be drawn, however, further co-cultures would need to be 

performed. 



 200 

 
5.8 Summary 

The percentage of monocytes expressing TF within each monocyte subset varies across 

critical illness, sepsis and recovery from sepsis.  To understand the implications this could 

have on the development of sepsis-associated coagulopathy, further work is needed to 

measure monocyte TF expression and activity sequentially from the diagnosis of sepsis and 

beyond initial recovery. 
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6. Chapter 6. Discussion 
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6.1 Overview 

Sepsis-associated coagulopathy complicates a significant proportion of sepsis cases and is 

associated with worse outcomes (Gando et al., 2016; Levi and van der Poll, 2017).  To 

improve the situation, a better understanding of the pathophysiology is needed.  TF is the 

most important in vivo initiator of coagulation.  This work aimed to review the monocytic 

expression of TF and investigate its potential to contribute to the coagulopathy of sepsis. 

 

Monocyte subsets have been shown to vary with sepsis. Multiple groups have demonstrated 

an increase in either the intermediate or non-classical monocyte subsets during sepsis (Herra 

et al., 1996; Zielger-Heitbrock, 1996; Skrzeczynska et al., 2002; Mukherjee et al., 2015).  

There are a paucity of data examining monocytic TF expression during sepsis, particularly 

with regard to the monocyte subsets (Vickers et al., 1998).  Comparison of monocyte subsets 

following an IL-33 stimulus demonstrated a variable ability to express TF (Stojkovic et al., 

2017).  No work had previously been performed to investigate the TF response on monocyte 

subsets to LPS or during the model of human endotoxaemia. 

 

This project hypothesised: 

1. The classical monocyte subset predominates in the circulation during health.  This 

subset expresses a low level of cell surface TF, which shows little activity.   

 

2. Following infection, there is an increase in the cell surface expression of TF and an 

increase in its activity.   

 

3. Interaction between monocytes and the endothelium allows a local low-level 

activation of coagulation. 

 

4. During sepsis, there is a decrease in the proportion of circulating classical monocytes 

and an increase in the proportion of non-classical.  Non-classical monocytes, when 

compared to the other monocyte subsets, express higher levels of TF, leading to a 

more pro-coagulant response and predisposing to sepsis-associated coagulopathy. 

 

6.2 The cell surface expression of TF varies between monocyte subsets 

The initial results chapter examined the effect of an LPS stimulus on human monocyte subsets 

in vitro.  For the first time, the monocyte subsets have been shown to express different levels 

of TF in response to LPS.   My starting hypothesis was refuted, with classical and 



 204 

intermediate subsets expressing the most TF and the no clear difference in TF activity 

between the subsets. 

 

The majority of monocyte TF is known to be inactive or ‘encrypted’.  How it becomes 

‘decrypted’ is yet to be elucidated.  The discrepancy between TF surface expression and 

activity of the subsets suggests that there may be different levels of encryption between the 

subsets. 

 

The mechanism by which monocytic surface expression of TF is not fully understood.  Future 

analysis of both the transcriptome and proteome following LPS stimulation is needed.  

 

To address the third part of the hypothesis, co-cultures of monocytes and PMVECs were used.  

Monocyte-endothelial interactions do appear to promote coagulation.  Monocytes were 

induced to express TF when cultured with endothelium, even without the presence of LPS.  

This effect was not dependent on cellular contact.  Further work is needed to investigate what 

could be mediating this increase in TF.  The use of monocyte-endothelial co-cultures limits 

the ability to identify fully the activation of coagulation.  Although an increase in cell surface 

TF may lead to an increase in coagulation, the creation of fibrin could not be measured in this 

model.  

 

Co-culture was shown to alter the endothelial fibrinolytic response.  Although tPA was 

unchanged, there was an increase in the expression of PAI-1, an inhibitor of fibrinolysis, 

following culture. 

 

Together this work suggests that monocytes can influence not just the initiation of coagulation 

but the fibrinolytic response.  Increasingly, the innate immune and coagulation systems have 

been shown to work cooperatively to help fight infection (Engelmann and Massberg, 2013).  

This work suggests that monocytes could be central to such cooperation. 

 

6.3 Monocytic TF expression occurs early and transiently following exposure to 

endotoxaemia 

To examine the temporal nature of monocytic TF expression, the human endotoxaemia model 

was used.  Monocytes were shown to increase expression of TF between 90 minutes and 6 

hours.  Previous studies of the endotoxaemia model have shown an increase in TF mRNA 

from 4 hours following LPS, but the earlier response seen in this project suggests that there is 



 205 

preformed TF intracellularly capable of externalising to the cell membrane (Franco et al., 

2000). 

 

The human endotoxaemia model causes a transient increase in monocyte TF expression.  As 

mentioned previously, endotoxaemia is a model of systemic inflammation and does not 

recapitulate all the features of sepsis.  Sepsis is not caused by a single insult or virulence 

factor.  Further work is needed to examine whether monocyte TF expression is indeed 

transient during the development of sepsis. 

 

This project supports work from other groups who identified two phenotypes for monocyte 

TF expression after administration of LPS, those with a high and those with a low response.  

Very little is understood about this response or what effect it could have functionally, 

although high responders have been previously associated with an increased risk of 

myocardial infarction (Ossterud, 1995).  Previously this difference in response has been 

examined on the monocyte population as a whole.  My work has demonstrated that the change 

in response is consistent across all monocyte subsets.  Future work should investigate whether 

those with a high response are at a higher risk of thrombosis or the development of sepsis-

associated coagulopathy.   The possibility of identifying those at higher risk of sepsis-

associated coagulopathy could allow for more tailored treatments. 

 

6.4 Monocytic TF expression varies during sepsis and recovery 

To understand monocytic TF during sepsis better, blood samples were taken from individuals 

on the critical care unit with a diagnosis of sepsis and, where available, a repeat sample was 

taken when they recovered sufficiently to leave the critical care.  Finding an appropriate 

control for participants who are critically ill with a diagnosis of sepsis is challenging because 

of the heterogeneous aetiologies of sepsis.  This problem is compounded by the known 

variation between individuals, with regard to monocytic TF expression.  For this reason, the 

use of recovery samples was a useful control. 

 

Confirming previous work, monocytes were shown to express higher levels of monocyte TF 

during sepsis when compared to individuals who were critically ill and did not meet the 

criteria for sepsis (Vickers et al., 1998).  This work has demonstrated that this increase in the 

cell surface expression of TF occurs within the intermediate and non-classical subsets.  Both 

subsets have been shown to be increased during sepsis (Fingerle et al., 1993; Herra et al., 
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1996; Skrzeczynska et al., 2002; Ziegler-Heitbrock, 2007).  Potentially this could contribute 

to the coagulopathy associated with sepsis and certainly warrants further investigation.   

 

Another intriguing finding of this project was the increase in classical monocyte TF following 

recovery from sepsis which again has not previously been documented. Most sepsis studies 

have considered morbidity and mortality only for the first 30 days following diagnosis.  

Increasingly there is evidence that the risk of poor outcomes continues for much longer in 

survivors of sepsis.  A systematic review of studies investigating the long-term effects showed 

an increase in mortality for up two years following the sepsis episode (Winters et al., 2010).  

The ongoing thrombotic risk following an episode of sepsis has not been measured.  

Investigations into monocyte innate training have demonstrated an increase in the release of 

pro-inflammatory cytokines up to 12 months following infection (Kleinnijenhuis et al., 2014), 

see section 1.4.8, page 36).  Further work should investigate how long this increase in 

classical monocyte TF expression continues and its possible consequences for the individual.  

As discussed earlier (see section 1.3.4, page 16), there is a complex interplay between 

coagulation and innate immunity.  It is hypothesised that sepsis-associated coagulopathy is a 

consequence of dysregulated thromboinflammation, predisposing individuals with sepsis to 

both DIC and secondary infections (Levi et al., 1993; Levi and van der Poll, 2010; Levi and 

van der Poll, 2017).  Changes in the monocyte phenotype are able to affect not only the 

immune response but also the coagulation system.   This could explain some of the longer-

term morbidity and mortality associated with survivors of sepsis. 

 

6.5 Summary of monocytic TF expression 

This work has increased our knowledge of monocytic TF.  It has shown that TF varies 

between monocyte subsets in terms of both expression and activity.  Following systemic 

inflammation, exemplified by the human endotoxaemia model, TF expression increases in all 

monocyte subsets and does so early, supporting the idea that it is preformed intracellularly 

and moves to the membrane.  There is a change in TF expression on monocytes during sepsis, 

with the highest levels being found on the intermediate and non-classical subsets.  Monocytic 

cell surface TF expression has been shown to be higher during critical illness with sepsis than 

in critical illness without sepsis, and to increase on the classical monocyte subset upon 

recovery from sepsis.  These changes in expression are summarised in Figure 6.1. 
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This figure summarises the changes in TF expression on monocyte subsets.  The critically ill 

population, without a diagnosis of sepsis, show a relative decrease in TF expression on the 

intermediate and non-classical subsets.  During sepsis, TF expression on the intermediate 

and non-classical monocyte subsets is higher than during critical illness without sepsis.  

Following recovery from sepsis, TF on classical monocytes is raised above levels seen during 

health. The thicker red outline represents the increase in TF.  (CL – classical, IN – 

intermediate, NC – nonclassical).  

Figure 6.1 The changes in monocyte subset TF expression in different conditions 
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6.5 Strengths  

This work has led to many new insights.  Prior to this work there had been no comparison of 

monocyte subset TF expression following LPS stimulation, although there is significant 

evidence to support a change in the circulating subsets during sepsis (Herra et al., 1996; 

Skrzeczynska et al., 2002; Mukherjee et al., 2015). 

 

The use of animal models to understand the pathophysiology of sepsis has failed to translate 

into benefit for patients with sepsis (Fink, 2014).  This work has avoided the use of such 

models by using human cells, samples from individuals with a diagnosis of sepsis and the 

human endotoxaemia model (which allowed for the temporal investigation of monocyte TF 

expression).  In particular, this allowed an assessment of the high and low monocyte TF 

responder phenotype over time (Ossterud, 1995). 

 

The use of these three approaches has also allowed for a direct comparison of monocyte TF 

expression using the same flow cytometry panel run by a single investigator.  Inter-user and 

inter-panel variability were therefore controlled for, minimising problems frequently 

encountered with regard to flow cytometry studies as a whole, but particularly in measuring 

TF cell surface expression.  

 

As discussed earlier, choosing a suitable control for individuals with sepsis is challenging.  A 

strength of this work was to use not just samples from the same individuals following 

recovery from sepsis.   This would allow for the variation in response between individuals.  

 

 

6.6 Limitations 

There are also some important limitations of this work.  Firstly, TF is only a small part of a 

much larger and complex process of coagulation that leads to the production of fibrin.  This 

project is focussed on only a small part of this system.  The initial response to TF is tempered 

by multiple downstream effects, especially physiological anticoagulants.   

 

TF itself is also expressed on cells other than monocytes, such as the endothelium.  Previous 

work demonstrates that even a small increase in whole TF can alter the coagulation, the effect 

of TF expressed on other cell types cannot be discounted (Butenas et al., 2005). 
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TF expression on monocytes appears to be variable between time-points, disease states, 

individuals and subsets; it is hard to control completely for such variation.  To fully 

understand monocytic TF expression, further work is needed to measure it at different time-

points.  The samples from individuals with sepsis were taken at range of time-points 

following admission to the critical care unit (a range of 1 to 31 days).  Future work would 

benefit from a stricter time limit on recruitment. 

 

Another limitation of this work is that although the TF activity was measured in different 

monocyte subsets in healthy volunteers, the activity during sepsis was not measured and not 

measured directly during endotoxaemia.  The monocyte surface expression of TF during 

sepsis has not been demonstrated to be active.  TF encryption may also vary significantly 

during different disease states and it should be examined in the future. 

 
 
6.7 Future work 

To better understand monocyte TF expression during sepsis, I would suggest a case-

controlled study performed on the critical care unit comparing critically ill individuals with 

and without a diagnosis of sepsis, as well a second group of age- and sex-matched healthy 

controls.  Similar to the study of Vickers et al, individuals on the critical care unit should be 

screened daily to look for signs of sepsis (Vickers et al., 1998).  Once a diagnosis of sepsis 

was made, they could be recruited, and the first sample taken within 12 hours.  Later samples 

could be taken within the first few days and then perhaps at 30 days and 60 days.  This would 

allow for the sequential measurement of monocytic TF expression, TF activity and other 

markers of coagulation such as prothrombin fragments 1+2 and thrombin-antithrombin 

complex. 

 

To examine the consequences of the high and low responder phenomenon further, monocytes 

from individuals who have survived sepsis could be stimulated with LPS.  Examination of 

medical records and blood samples would allow for identification of coagulopathy during 

their episode of sepsis.  A comparison could then be made between their level of response and 

their risk of sepsis-associated coagulopathy.  Samples could also be used to investigate 

possible mechanisms of high and low monocyte TF response. 

 

Further work is also needed to better understand the mechanisms by which the subsets differ 

in both TF expression and activity.  There is a possibility that the differences between 

expression and activity are related to different methods or levels of encryption between the 
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subsets.  Work to investigate the lipid profile of each subset would be an interesting way to 

start this investigation.  This project also suggests that the LPS induction of TF transcription 

may vary between the monocyte subsets.  If further work was to prove that to be the case, 

then this could be potentially modified during conditions such as sepsis. 
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6.8 Final conclusions 

Sepsis-associated coagulopathy is associated with high mortality, and the mechanisms 

underpinning it are poorly understood.  The ability of monocytes to express TF, the main 

initiator of coagulation in vivo, and their interaction with endothelium that increases PAI-1 

means they have an important role in thromboinflammation and may contribute to sepsis-

associated coagulopathy. 

 

TF expression varies between monocyte subsets.  Classical and intermediate monocytes 

express the highest levels of TF on their cell surface.  TF activity between monocyte subsets 

does not seem to vary.  Interestingly, although LPS stimulation was shown to increase TF cell 

surface expression it did not increase the activity of the cell surface TF.  The encryption of TF 

between monocyte subsets during health and sepsis should be investigated to better 

understand the contribution of monocyte TF surface expression to sepsis-associated 

coagulopathy. 

 

The human endotoxaemia model has demonstrated that monocytes increase their cell surface 

expression of TF early following exposure to LPS.  The model also showed a variation in 

response between individuals to the LPS induction of TF expression on the monocyte surface.  

This has been demonstrated for the first time across all the monocyte subsets.  Future work 

should investigate whether this may allow for the stratification of individuals with sepsis and 

correlate with the risk of sepsis-associated coagulopathy. 

 

Different monocyte subsets have been shown to predominate in the circulation throughout 

sepsis, and this may potentially contribute to the development of sepsis-associated 

coagulopathy.  The cell surface expression of TF has been shown to increase in the 

intermediate and non-classical subsets when compared to a critically ill individuals without 

sepsis.   

 

In conclusion, monocyte subsets vary in the cell surface expression of TF and this may 

contribute to sepsis-associated coagulopathy. 
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APPENDIX A.  

 

The protocol, participant information sheet and consent form used to collect healthy 

volunteer blood samples. 
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PROTOCOL 
 

The role of inflammation in human immunity 

 

Section Page 

A. Investigators 1 

B. Background 2 

C. The Volunteer’s Visit - Consent and Sampling 2 

D. Processing of Samples 3 

E. Recording and Storage of Data/Samples 4 

 

SECTION A:  INVESTIGATORS 

 

Chief Investigator 

John Simpson 

Professor of Respiratory Medicine 

Institute of Cellular Medicine 

4th Floor, William Leech Building 

Medical School 

Newcastle University 

Framlington Place 

Newcastle upon Tyne 

NE2 4HH 

 

Phone: 0191 222 7770 

Fax: 0191 222 0723 

Email: j.simpson@ncl.ac.uk 

 

Co-investigators in alphabetical order (all Newcastle University) 

• Dr Emma Browne 
• Prof Matt Collin 
• Prof Paul Corris 
• Dr Anthony de Soyza 
• Prof Andrew Fisher 
• Dr Sophie Hambleton 
• Dr Thomas Hellyer 
• Prof David Jones 

mailto:j.simpson@ncl.ac.uk
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• Prof Farhad Kamali 
• Dr James Macfarlane 
• Dr Fai Ng 
• Dr Fiona Oakley 
• Dr Marie-Helene Ruchaud-Sparagano 
• Mr Jonathan Scott 
• Prof Neil Sheerin 
• Dr Peter Thelwall 
• Dr Christopher Ward 
• Dr Jolanta Weaver 
• Dr John Widdrington 
• Dr Sarah Wiscombe 
• Prof Matthew Wright 

 

 

SECTION B:  BACKGROUND 

 

Inflammation is implicated in a wide range of pathological processes including autoimmune 

disease, fibrosis, cancer, chronic viral infections, and cardiovascular disease. Deficient 

inflammatory processes are heavily implicated in pre-disposition to infection and in failure of 

resolution of inflammation. It has long been recognised that the initiation, maintenance, 

regulation and resolution of inflammation is a complex process, dependent on critical 

interactions. For example, during an inflammatory reaction neutrophils must interact with: 

soluble mediators in blood; vascular endothelium; interstitial cells, host-tissue epithelium; 

soluble mediators at the inflammatory site; other blood-derived cells at the site of inflammation 

(eg other neutrophils, platelets and mononuclear cells); foreign material (eg bacteria); and any 

drugs the patient may be taking. Despite recognition of this complexity, there is still a tendency 

for the human inflammation literature to focus on individual elements of the system. This 

project is based on the assumption that improved understanding of mechanisms underlying 

human inflammation can only develop through testing of the interaction between critical 

components of the system. 

 

Therefore, while the focus is predominantly on the regulation of neutrophil function (ie 

mechanisms by which bacteria and host factors impair neutrophil function and how these can 

be restored pharmacologically), the project provides the capacity to dissect interactions between 

the critical circulating cells and mediators driving inflammation, ie elements of the liquid phase 

of blood (serum/plasma) and the cellular components of blood (red cells, platelets, neutrophils, 

monocytes, eosinophils, lymphocytes, dendritic cells). 
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The investigators have a range of experience providing the optimal skill mix to ensure 

maximally efficient design of experiments studying interactions between critical components 

of human inflammation. 

 

The study focuses entirely on the study of the normal elements of human blood participating in 

inflammatory processes. Therefore research participants for the this study will be healthy adult 

volunteers. 

 

 

SECTION C:  THE VOLUNTEER’S VISIT – CONSENT AND SAMPLING 

 

Volunteers will be identified through placement of adverts in Newcastle University notice 

boards, websites and email lists.  

 

Volunteers who express an interest will be sent a Participant Information Sheet and Consent 

Form, and asked to contact the team again if they wish to take part. The volume of blood 

requested on a given day may range from 30-240 ml. If a request for a donation of >160 ml is 

being made, the volunteer will be asked to attend for one screening visit, in order to donate a 

sample of blood (up to 5 ml) which will be sent to the local laboratory for testing haemoglobin 

concentration. Such volunteers will be excluded from further study if the haemoglobin 

concentration is below the normal range.  

 

In addition to low haemoglobin levels (in those donating >160 ml), exclusion criteria will 

consist of 

 

• blood donation (eg to the Blood Transfusion Service or to research studies) in the 
previous 90 days. 

• donation of >1 litre of blood in the previous year (this equates to around 3 donations to 
the Blood Transfusion Service in the past year). 

• a history of anaemia in the past year. 
• age under 18 years. 
• any regular, prescribed medication (the oral contraceptive pill is permissible in female 

participants). 
 

 

If a volunteer wishes to proceed, Prof Simpson or his personal assistant will check study records 

to determine if the volunteer has donated blood in the last 3 months (see Section E below). If 
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not, he/she will be invited to come to the Clinical Research Facility, Royal Victoria Infirmary 

at a mutually convenient date and time (in almost all cases this will be a weekday morning). It 

is expected that the intended volume of blood collection will be indicated to the volunteer at 

this stage. 

 

On the study day a medically qualified member of the study team, or a registered nurse from 

the study team/Clinical Research Facility will inform the volunteer of the preferred size of 

blood donation, and will ask for witnessed, written, informed consent from the volunteer. If this 

is provided, the original consent form will be given to the volunteer to keep, and a copy will be 

made for retention by the study team (see Section E below). The volunteer should be asked for 

the name/address of his/her GP. 

 

Blood sampling will be performed in the Clinical Research Facility, Royal Victoria Infirmary. 

The position most comfortable for the volunteer should be decided, but wherever possible 

phlebotomy should be performed in a semi-recumbent position, on a couch that has a self-

reclining function. Upon completion of phlebotomy, pressure should be applied to the site until 

haemostasis is secured. If the volunteer has no known allergy to sticking plaster, one should be 

offered. The volunteer should be offered a carton of fruit juice and/or a drink of water. If the 

volunteer feels well he/she should be allowed to leave. A book token should be offered to the 

participant (for the time and inconvenience incurred by the study). 

 

Vasovagal symptoms occasionally accompany phlebotomy. If the participant feels unwell 

during or after the procedure, phlebotomy should be discontinued, and the couch should be 

positioned so that the volunteer is supine. Management should proceed on an individual basis, 

but in the majority of instances the vasovagal symptoms are expected to be self-limiting. 

 

After the volunteer has left, and assuming the appropriate consent has been given regarding 

‘information for the GP’, a letter must be sent to the GP informing him/her of the volunteer’s 

participation. If the procedure has had to be abandoned because of a vasovagal episode or other 

reason, the GP should be informed of this in the letter. 

SECTION D:  SAMPLE PROCESSING 

 

Blood samples will be processed in the Institute of Cellular Medicine. Samples will be separated 

into fluid phase and cellular components. Standard techniques will be involved – typically 

dextran sedimentation and density gradient centrifugation of anticoagulated whole blood will 
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be used for this process, yielding red cells, plasma, granulocytes and mononuclear cell fractions. 

Variations and extra steps will be used as indicated, for example: to prepare serum (eg adding 

CaCl2 to plasma); to prepare platelets (eg centrifugation of platelet rich plasma); or to isolate 

specific populations of leukocytes (eg by positive or negative selection using antibody-loaded 

columns, or by flow sorting). DNA or RNA will be prepared from aliquots using standard DNA 

or RNA isolation kits. 

 

DNA/RNA will not be used to test for any genes known to provide diagnostic information. 

 

Cells will be used fresh. Liquid phase samples will be stored frozen. Cytospins may be prepared 

yielding glass slides with cells. 

 

 

SECTION E: RECORDING AND STORAGE OF DATA AND SAMPLES 

 

A logbook of participants will be kept in a locked drawer and will be accessible only to Prof 

Simpson (chief investigator), his personal assistant, and regulatory authorities with access to 

study documents. 

 

The logbook will keep a record of all volunteers expressing an interest in donating blood for 

the study. The logbook will record any donation made by that individual, along with  

• the volunteer’s contact details and date of birth 
• the name and address of the volunteer’s GP (if known and if the volunteer agrees for 

information to be sent to the GP) 
• the date of donation,  
• the volume of donation and  
• any comments relating to whether the procedure was well tolerated or not.  

 

The logbook will also record the unique study number for each individual’s donation. The first 

6 letters indicate the study, the next 3 digits the individual’s unique number, the last letter will 

indicate whether it is the individual’s first donation or not. 

eg  ICM-BLD-001.A would be volunteer number 1’s first donation 

 ICM-BLD-001.B would be volunteer number 1’s second donation 

 ICM-BLD-074.D would be volunteer number 74’s fourth donation etc. 

 

The unique number will be used to label all samples arising. 
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Samples will be stored in freezers in the Institute of Cellular Medicine. 

 

Any data held on University computers may only use the unique identifier number, ie no 

personal data may be used to label samples. 

 

The only information linking the volunteer’s identity to his/her samples will be held in the 

logbook. As described above, this will be held in a locked drawer, geographically distinct from 

the location of the freezers or university computers on which results are held. 

 

Team investigators will be notified in advance of dates when donations are to be made. They 

will be invited to contact the researcher performing the blood prep, who will prepare aliquots 

of plasma / serum / neutrophils / eosinophils/ lymphocytes / monocytes / platelets etc, as 

appropriate. 

 

 

 

Version 2, 2.6.12 
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Institute of Cellular Medicine 
4th Floor William Leech Building 

Newcastle University 

Medical School 

Framlington Place  

Newcastle upon Tyne 

NE2 4HH 

  (0191) 222 7770  

   (0191) 222 0723 
 

 

PARTICIPANT INFORMATION SHEET  

(for volunteers providing ≤160 ml blood) 

 

 

PART 1 

 

The role of inflammation in human immunity 

 

You are being invited to take part in a research study.  Before you decide it is important for you 

to understand why the research is being done and what it will involve.  Please take time to read 

the following information carefully. Talk to others about the study if you wish.  

• Part 1 tells you the purpose of this study and what will happen to you if you take part. 
• Part 2 gives you more detailed information about the conduct of the study. 

Ask us if there is anything that is not clear or if you would like more information.  Take time 

to decide whether or not you wish to take part. 

 

What is the purpose of the study? 

Inflammation is the body’s way of protecting organs from damage from insults such as 

infections. However under-active inflammation leaves patients prone to developing infection 

and over-active inflammation may actually damage the host’s organs. Inflammation is now 

recognised to be a key factor in diseases as diverse as arthritis, cancer, fibrosis (scarring), 
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strokes, as well as infection. We require a far greater understanding of the processes controlling 

initiation, regulation and resolution of inflammation if new effective treatments are to be 

discovered. This project seeks to study the processes of initiation, regulation and resolution of 

inflammation. 

 

Why have you been chosen? 

You have been identified as a healthy individual who may be willing to take part.  

 

Do you have to take part? 

No. It is up to you to decide whether or not to take part.  If you do, you will be given this 

information sheet to keep and be asked to sign a consent form. You are still free to withdraw at 

any time and without giving a reason.  A decision to withdraw at any time, or a decision not to 

take part, will not affect the standard of care you receive in the NHS at any time. 

 

How long can you take to decide? 

You should take as much time as you wish.  

 

 

What will happen to you if you take part? 

You will visit the Clinical Research Facility at the Royal Victoria Infirmary, where a single 

blood sample will be taken by a doctor or nurse. Afterwards you will rest for a few minutes, 

and pressure will be applied to the vein. You will be given water or a carton of juice to drink. 

This is very similar to advice issued by the Blood Transfusion Service 

(www.blood.co.uk/giving-blood/what-happens/) which states “Once you have given blood, you 

should have a short rest before being given some refreshments usually a drink and biscuits.” 

This ends your participation on the day. Your sample will be processed in the lab, dividing it 

into its constituent parts (various blood cells and the liquid part of blood). These will be used 

to study the behaviour and function of blood cells. 

 

Are there situations in which you should not take part? 

In healthy individuals the bone marrow rapidly replaces blood cells if any bleeding takes place. 

However we impose limits on when you can provide blood for us. These are any from 

• if you have donated blood (eg to the Blood Transfusion Service or to research studies) 
in the previous 90 days. 

• if you have donated >1 litre of blood in the previous year (this equates to around 3 
donations to the Blood Transfusion Service in the past year). 

http://www.blood.co.uk/giving-blood/what-happens/
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• if you have been told by a doctor that you have anaemia in the past year. 
• if you are under 18 years of age. 
• if you are on any regular, prescribed medication (the oral contraceptive pill is 

permissible in female participants). 
 

How much blood is taken as part of this study? 

You must be aware that the amount of blood we request is more than the usual small samples 

of blood that you might have previously given at your GP surgery, but less than the size of a 

donation to the Blood Transfusion Service. Depending on the precise population of blood cells 

to be studied that day we may take between 30 and 160ml of blood. To place these figures in 

context, a tablespoon holds approximately 15ml, a typical clinical sample at the GP surgery is 

about 10ml, a typical ‘unit’ of blood that people provide for the Blood Transfusion Service is 

320ml. 

 

 

What are the possible disadvantages and risks of taking part? 

As with all blood samples, the blood test may leave a small bruise. There is a low risk (<5%) 

of fainting when blood is taken. The risk is higher if you have a history of fainting in the past 

and we ask you to let us know in advance of taking blood if this is the case. We have taken 

steps to minimise any problems associated with the unlikely event of fainting, in that you will 

be on a reclining chair/bed in a medically supported environment. 

 

What are the potential benefits of taking part? 

There is no direct benefit to you.  

 

Is there any reimbursement for taking part? 

You will be offered a £5 book token, which is intended to take account of the time and 

inconvenience of the trip to hospital. 

 

What if there is a problem? 

Any complaint about the way you have been dealt with during the study or any possible harm 

you might suffer will be addressed. The detailed information on this is given in part 2. 

 

 

 

Will your taking part in this study be kept confidential? 
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Yes. All the information about your participation in this study will be kept confidential. The 

details are included in Part 2. 

 

Contact details 

Should you wish further information please contact 

John Simpson,  

Professor of Respiratory Medicine,  

Newcastle University 

E-mail: j.simpson@ncl.ac.uk   

Phone: 0191 222 7770 

 

 

This completes Part 1 of the Information Sheet. If the information in Part 1 has interested you 

and you are considering participation, please continue to read the additional information in Part 

2 before making your decision. 

 

 

 

 

 

 

 

 

  

mailto:j.simpson@ncl.ac.uk
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PART 2 

 

What will happen if you do not wish to carry on with the study? 

You may withdraw from the study at any time. If you choose not to participate in the study 

now, or at any stage, this will not in any way influence the care you receive from the NHS at 

any stage in the future. 

 

What if there is a problem? 

If you have a concern about your treatment by members of staff during the study, you should 

ask to speak with the researchers who will do their best to answer your concerns (a contact 

number for Prof Simpson is at the end of Part 1 of the Information Sheet). If you remain 

unhappy and wish to complain formally, you can do this through the NHS Complaints 

Procedure. Details can be obtained from your hospital. In addition, the local Patient and Liaison 

Service (PALS) can provide very useful information if you have any concerns. The PALS 

website www.pals.nhs.uk/ will provide you with up to date details, but at the time of writing 

the local contact is  

Ms Angie Brown 

Patient Advice and Liaison Service 

Newcastle Hospitals NHS Foundation Trust 

New Victoria Wing 

Royal Victoria Infirmary 

Queen Victoria Road 

Newcastle upon Tyne NE1 4LP 

northoftynepals@nhct.nhs.uk 

0800 032 0202 

 

In the unlikely event that something goes wrong and you are harmed during the study there are 

no special compensation arrangements. If you are harmed and this is due to someone’s 

negligence then you may have grounds for a legal action for compensation against the 

NHS/Newcastle University but you may have to pay for your legal costs. The normal NHS 

complaints mechanisms will still be available to you.  

 

 

 

 

http://www.pals.nhs.uk/
mailto:northoftynepals@nhct.nhs.uk
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Will your taking part in this study be kept confidential? 

All information that is collected about you during the course of the research will be kept 

strictly confidential.  

 

Involvement of the GP 

With your permission, we shall inform your GP by letter that you have taken part in our 

study.  

 

Will any genetic tests be done? 

We shall retain a sample from which DNA can be prepared. Our study protocol specifically 

states that we must not test for genes known to provide diagnostic information (eg the cystic 

fibrosis gene, muscular dystrophy genes, or certain cancer genes). Instead we are limited solely 

to studying the make up of genes that are involved in inflammation or in the way that the body 

handles certain drugs that interfere with inflammation. None of these genes are used 

diagnostically. 

 

Will any information and material be stored? 

Yes, but only with your permission. Your personal information (your name, date of birth, 

contact details and your consent form) will be kept in a locked drawer. A unique identifier 

number allocated to you will be kept with this information in the locked drawer. In this way, 

your blood samples and any research information held on computers ONLY carry the unique 

identifier number and not your details. As such, the only people who could potentially identify 

you from blood samples etc are Professor Simpson or his personal assistant. 

 

Using this system we shall keep information about your health and your medicines on a 

password protected computer, ie the data will only be linked to your unique identifier number. 

We propose to store a sample of your blood but this will only be labelled with a study number. 

In line with Trust policy we propose to keep your information and samples for up to 15 years 

after completion of the study, at which point we propose to destroy the samples. As medicine 

advances and new information becomes available, we occasionally find good reasons to 

perform additional tests on stored samples in the future. Should this situation arise we may use 

your samples again, but this would be on the strict condition that you could not be identified 

from the sample except by our research team, and that we obtain fresh and separate permission 

from an ethics committee. 
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Can you take part in this study more than once? 

Yes, but only under strict condition that you do not breach any of the ‘exclusion’ criteria (see 

bullet points in Part A). For example, if we take a blood sample of 80mls or less we may contact 

you again after 30 days to ask if you would give a further sample. If the volume of blood taken 

is between 81mls and 160mls we would contact you after 3 months (90 days). This is the most 

often we would ask you to give samples and may be much longer depending on volunteers and 

your availability. If we took the maximum allowed at each visit this is still less than 1 litre of 

blood over a year (equivalent to less than 3 blood donations).  

 

What will happen to the results of the research study? 

We intend for the results to be published in medical/scientific journals and presented at 

medical/scientific meetings. All information in the public domain will be anonymous, ie you 

cannot be identified from these publications/presentations.  

 

Who is funding and organising the research? 

The research is funded by Newcastle University.  

 

 

Who has reviewed the study? 

The study has also been reviewed and approved by a local Research Ethics Committee and the 

regional Research and Development Office. 

 

Is there an independent doctor you can approach for further information? 

If you would like to discuss any aspect of this research with an experienced researcher who is 

not linked in any way to this study, please feel free to contact 

Dr Ian Forrest 

Consultant Respiratory Physician 

Royal Victoria Infirmary 

Queen Victoria Road 

Newcastle upon Tyne NE1 4LP 

 

You will be given a copy of this Information Sheet and a signed consent form to keep. 

Thank you for taking time to read this sheet and for considering taking part. 

 

Version 3, 05.06.13 
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CONSENT FORM  
(for volunteers providing ≤160 ml blood) 

Title of Project: The role of inflammation in human immunity 
Lead Investigator: Prof J Simpson, Institute of Cellular Medicine 

              Please initial box 
 

1.  I confirm that I have read and understood the information sheet dated ....5/6/13..................   

     (version ....3........) for the above study. I have had the opportunity to consider the               

      information, ask questions and have had these questions answered satisfactorily. 

 

2. I have informed the study team of any blood donations I have provided (eg to the  

    Blood Transfusion Service) in the last year and of any previous history of anaemia.                                           

 

3.  I understand that my participation is voluntary and that I am free to withdraw at any  

     time, without giving any reason, without my medical care or legal rights being affected.               

 

4.   I agree that samples prepared from my blood may be stored for up to 15 years after  

      completion of the study.                                                                                                                       

 

5.   I agree that my samples may be used in future studies on condition that I cannot be  

      identified from those samples and that ethical approval is granted for such studies.                                                                                                                         

 

6. I agree that the research team may send a letter informing my general practitioner of my  

      participation in this study.                                                                                 

 

7. I understand that relevant sections of my records collected during the  

     study may be looked at by individuals from regulatory authorities or from the NHS Trust,  

     where this is relevant to my taking part in this research.                                                  

          

 

____________________________                  _______________        _____________________ 

Name of Participant                                           Date                               Signature                      

 

____________________________                 _______________         _____________________ 

Name of Person Taking Consent                      Date                              Signature 

 

____________________________                 _______________         _____________________ 

Name of Phlebotomist                                      Date                              Signature 

1 copy of this form to be given to participant; 1 for researcher (to be filed in central file)  

Version 2, 2.6.12 
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APPENDIX B.  

 

The protocol, participant information sheet and consent form used to obtain blood 

samples from the human endotoxaemia model. 
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Study Protocol 
Does mitochondrial haplogroup predict the inflammatory response in a model of human 

endotoxaemia? (Does the DNA of our cell’s batteries influence our response to 

bacteria?) 

 

Chief Investigator 

 

 

Prof John Simpson 

 

Investigators 

 

Dr Anthony Rostron 

Dr Alistair Roy 

Prof Muzlifah Haniffa 

Dr John Widdrington 

Dr Gavin Hudson 

Dr Angela Pyle 

Mr Jonathan Scott 

Dr Marie-Helene Ruchaud-Sparagano 

Dr Kathryn Musgrave 

Julie Furneval 

Ashley Allan 

Dr Sarah Wiscombe 

Dr Patrick Kesteven 

Prof Patrick Chinnery 

Prof Paul Corris 

 

 

Funder 

 

 

Newcastle University 

 

Sponsor  

 

 

Newcastle upon Tyne Hospitals NHS 

Foundation Trust 

 

 

Protocol 

 

 

Human endotoxaemia model v1.0 

(29/07/2016) 
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Introduction 

 
Although sepsis is one of the oldest syndromes recognised within medicine, understanding of 

its biology remains incomplete. The healthcare burden from infection remains substantial. 

Severe sepsis is found in approximately 2% of hospital admissions in the USA, half of which 

require treatment in the intensive care unit (ICU)(1). As many as 30% of patients have sepsis 

on admission or during their ICU stay. The mortality associated with sepsis seems to be 

substantially higher than that of other syndromes leading to ICU admission (2) and it is the 

most common cause of death in non-surgical ICUs (3).  

 

Risk factors for the development of severe sepsis are premorbid health status and 

physiological reserve of the host, causative organism, timeliness of intervention and host 

genetic characteristics. Gram-negative infections account for a greater proportion of severe 

sepsis than Gram-positive infections (4) and they are also associated with a worse outcome 

(5). Studies exploring genetic factors have concentrated on polymorphisms in nuclear genes 

involved in the innate inflammatory response (6), coagulation and fibrinolysis (1).  

 

Impaired cellular respiration is important in the development of multi-organ dysfunction in 

severe sepsis (7). Natural variation in mitochondrial DNA (mtDNA) is an understudied area 



 234 

likely to yield insights into how the host genome may influence outcome in severe sepsis. 

Human mtDNA is maternally inherited and codes for 13 essential protein components of the 

mitochondrial respiratory chain. Individuals can be divided into mtDNA haplogroups on the 

basis of specific single nucleotide polymorphisms (SNPs) in their mitochondrial genome. The 

most common subdivision of mtDNA in Europe, haplogroup H, is associated with enhanced 

oxidative phosphorylation and is a strong independent predictor of survival after admission to 

the ICU with severe infection (8). The frequency of haplogroup H is approximately 40% in 

North East England (9).  

 

Human survival from infection requires an appropriate inflammatory response: an 

unbalanced, hyperinflammatory response predisposes patients to overwhelming inflammation, 

while protracted immunosuppression is associated with organ dysfunction and heightened risk 

of nosocomial and opportunistic infections (10). An observational study performed in 

Newcastle suggested that patients with haplogroup H had a survival advantage, and higher 

fevers, when compared with non- H haplogroups (8). Recent data from our laboratory 

(manuscript in preparation) suggest that mitochondrial genes regulate the expression of TLR-

4 and triggering receptor expressed on myeloid cells type 1 (TREM1) on human monocytes 

through interferon gamma-dependent pathways, which in turn influences the early 

inflammatory response to lipopolysaccharide (LPS).  

 

 

Previous research on sepsis has focused on isolated mediators using a reductionist approach 

often derived from animal models (11). A genome wide study has questioned the validity of 

using murine models (12) whilst experimental human endotoxaemia shows much greater 

correlation with transcriptomic changes due to inflammatory stresses in human disease (13). 

Injection of LPS, a non-infectious Gram-negative bacterial cell-wall product, is a well-

recognised, safe, investigational technique that has been used experimentally for over 50 

years(14). The dose used is adjusted to body weight to ensure a standardised reaction in all 

participants. While we recognise that administration of low dose endotoxin is not a clinical 

model of sepsis, it does represent a significant improvement in experimental modeling over 

animal studies. Human endotoxaemia reproduces the earliest features of the pathogenesis of 

sepsis (which are almost impossible to study in the clinical setting), paving the way to define 

mechanisms of pathogenesis, and “drugable” targets.  
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The prevailing frequency of haplogroup H in the general population and the human 

endotoxaemia model together provide a unique opportunity to begin to explore the 

contribution of mitochondrial function to the early inflammatory response in sepsis. The aim 

of this seed application is therefore to test the hypothesis that mitochondrial haplogroup H 

leads to a more pronounced pro- inflammatory response to intravenous lipopolysaccharide 

in a model of human endotoxaemia.  

 

Experimental Plan using the Human Endotoxaemia Model 

 
The human intravenous endotoxaemia model has been used for more than 50 years as a model 

of acute systemic inflammation, encountered in conditions such as sepsis and trauma. Low 

dose purified lipopolysaccharide (LPS, also referred to as endotoxin) from the cell membrane 

of Escherichia coli (E.coli) is administered to healthy volunteers resulting in transient, flu-like 

symptoms, and an acute systemic inflammatory response, which, at least partially, mimics the 

inflammatory response of early sepsis. The doses needed in humans to mimic the clinical 

entity of severe sepsis are ethically unacceptable.  

 

The effects of Good Manufacturing Practice (GMP) grade LPS from E.coli are highly 

reproducible (15).  Within an hour of the intravenous administration of LPS, volunteers 

experience varying degrees of flu-like symptoms e.g. chills, headache, myalgia , nausea, 

photophobia and sleepiness. In general the response is dose-dependent. Most subjects only 

experience symptoms for about two to six hours. The core temperature increases within one 

hour of administration and peaks at three to five hours and meets in the SIRS criterion for 

fever in most participants. Any drop in blood pressure is prevented by the administration of 

intravenous fluid, but an increase in heart rate of 20bpm within the first four hours is 

consistently seen. No severe cardiovascular complications resulting from endotoxin 

administration have been reported (15). Whilst, in some subjects the respiratory rate and 

minute ventilation increases with administration of high doses of endotoxin (4ng/kg), this is 

less often seen using lower doses (14). The change in white blood cell count is a little more 

delayed, but in most participants the peak is seen by nine hours and fulfilling the SIRS 

leukocytosis criterion. 

 
Our group has considerable previous (16) and on-going experience with LPS challenge 

studies. Our close liaison with van der Poll’s group in Amsterdam and Gilroy’s group in 
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London give us confidence that we can safely extend our investigations to an intravenous 

model of human endotoxaemia using GMP grade endotoxin from the NIH endotoxin 

repository.  

 

Following ethical approval, we shall recruit 30 healthy, non-smoking, volunteers aged 18 - 

40. The sample size is pragmatic (given the novelty of this experimental design), informed by 

a previous observational, cohort study and by the distribution of haplogroups within the 

population (8). We shall dichotomise the study cohort into H and non-H haplogroups for 

analysis. We will attempt to recruit as many volunteers as possible up to a maximum of 30, 

but believe that analysis of data from 12 volunteers will be informative. 

 

We will advertise the study at Newcastle University using mechanisms that have served us 

well in current and previous inhaled LPS studies. Participants providing informed, written 

consent will undergo an initial health screen and will be required to have no significant 

medical history or recent febrile illness, as well as normal physical examination, 

electrocardiography, oxygen saturation, full blood count, urea and electrolytes, and liver 

function tests. Blood will be drawn for determination of mitochondrial haplogroup, but we 

will be blinded to the results until study completion.  

 

Volunteers will be asked to refrain from caffeine or alcohol for 24 hours before the study and 

will spend a full day (10 hours) in the Intensive Care Unit at City Hospitals Sunderland. Vital 

signs (pulse rate, blood pressure, temperature, respiratory rate and oxygen level) will be 

monitored at baseline and every 30 minutes throughout the day. A venous line will be inserted 

into each arm. Systemic inflammation will be induced by intravenous injection of a bolus of 

2ng/kg of U.S reference E. coli endotoxin made available by the National Institute of Health 

(Bethesda, USA). Doses of up to 4ng/kg have been used but the inflammatory response 

appears to be similar whether 2ng/kg or 4ng/kg is used (15), Therefore in an attempt to reduce 

any unpleasant symptoms for volunteers the lower dose will be used. Participants can eat and 

drink at any point following injection of endotoxin. 20ml of blood will be drawn at baseline 

and at 90 minutes, 4, 6 and 10 hours. Volunteers will attend for blood sampling and follow-up 

the day after the study and then 7 days following the study.  
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Objectives 

 
Primary Objective 

 
The primary objective is to test the hypothesis that mitochondrial haplogroup predicts the 

inflammatory response in a model of human endotoxaemia, the primary outcome measure 

used will be the TNFα level 90 minutes after endotoxin administration. 

 

 

Secondary Objectives 

 
(i) To determine the expression of HLA-DR, TLR4 and TREM-1 by monocyte 

subsets in different haplogroups. 
(ii) To determine the release of reactive oxygen species in blood in different 

haplogroups. 
(iii) To determine the profile of additional proinflammatory and anti-inflammatory 

mediators in plasma in different haplogroups. 
(iv) To determine mitochondrial DNA (mtDNA) copy number in plasma in different 

haplogroups. 
(v) To determine the changes in leukocyte dynamics and function in response to 

intravenous LPS. 
(vi) To measure the clinical response (temperature, pulse rate, blood pressure, 

respiratory rate and oxygen saturation) to endotoxin in different haplogroups. 
 

Study Design 

 
Participant Enrolment and Selection 

 
An advert will be placed on Newcastle University email lists and notice boards. Potential 

participants will be asked to make contact with the research team only if they consider 

themselves to be healthy. Interested individuals will be invited to contact the research team 

who will send out information on the study (participant information sheets and screening 

consent form). Participants sent such information will be invited to contact the research team 

to arrange a screening visit (see below) or to decline participation. If no reply is received after 

2 weeks, the research team will telephone the volunteer as a reminder. 
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Screening Visit 

 
Healthy volunteers will be recruited from within Newcastle University. The screening visit 

will take the form of: 

 

• a short history 
• vital signs measurement (temperature, pulse rate, blood pressure)  
• measurement of oxygen saturation breathing room air 
• cardiorespiratory examination  
• electrocardiogram 
• blood sample for full blood count 
• blood sample for urea & electrolytes assay, liver function tests and C-reactive protein 
• urinary pregnancy test in women 

 

 

Eligibility will be based on the results of this and inclusion and exclusion criteria (see 

inclusion/exclusion criteria).   

 

Setting  

 
All volunteers will be recruited through advertisement within Newcastle University. 

Volunteers will be screened at the preassessment clinic at City Hospitals Sunderland 

Foundation Trust. If found eligible for the study, they will be given time to consider if they 

wish to continue to study entry (minimum 24 hours) and invited to re-attend on a set day. 

Participants will be asked to attend the integrated critical care unit (ICCU, City Hospitals 

Sunderland Foundation Trust) for LPS administration. Downstream preparation and analysis 

of samples generated by the study will be performed in the Simpson lab, in the flow 

cytometry facilities (Centre for Life and Institute of Cellular Medicine), in the Wellcome 

Trust Centre for Mitochondrial Research (Centre for Life, eg for assessment of mitochondrial 

DNA), all Newcastle University. Processing of screening blood tests and routine clinical tests 

following administration of LPS will take place in the clinical laboratories at City Hospitals 

Sunderland. 

 

Study Population 

 
30 healthy participants will be recruited. 
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Inclusion criteria 

 

• Healthy adult volunteers aged between 18 and 40 years of age 
• Able to give informed consent 

 

Exclusion criteria 

 
A volunteer will not be eligible for inclusion in the study if any of the following criteria apply 

at entry: 

 
1. Age <18 or >40 years. 

2. Needle phobia. 

3. Current participation in a clinical trial. 

4. Known history of mitochondrial disease. 

5. Past history of chronic respiratory disease. 

6. Past or current history of conditions known to affect immunity or cardiac function (e.g. 

diabetes, ischaemic heart disease, congenital heart disease, valvular heart disease, cirrhosis, 

chronic renal impairment, recurrent urinary tract infection). 

7. Known history of immunodeficiency. 

8. Known history of hepatitis B/C or HIV. 

9. History of an acute intercurrent cardiorespiratory illness. 

10. Pregnant or breastfeeding. 

11. Any current medication (except oral contraceptive pill). 

12. Current history of smoking. 

13. Reported alcohol intake >21 units per week. 

14. Abnormal physical signs detected at cardiorespiratory examination. 

15. Temperature >37.3 degrees celsius. 

16. Oxygen saturation <95% breathing room air. 

17. Haemoglobin outside the laboratory reference range. 

18. Platelet count less than 100 x 10∧9/l or greater than 650 x 10∧9/l. 

19. Total white cell count outside the laboratory reference range. 

20. Any deviation of greater than 20% from normal in the differential white cell count. 

21. Serum sodium, potassium, creatinine outside the laboratory reference range. 



 240 

22. Blood urea greater than 10mg/dl. 

23. Bilirubin greater than 30micromol/l. 

24. Alanine transferase greater than twice the upper limit of the laboratory reference range. 

25. Allergy to the any of the constituents of Hartmann's solution. 

26. Currently participating in a clinical trial that the chief investigator feels would interfere 

with the analysis carried out as a result of this study. 

 

 

Consent 
 

All eligible volunteers will be given written and verbal information regarding study 

participation. All will be asked to give written consent with a minimum 24 hours to consider 

entering the study. Consent will be taken by Dr Rostron or Dr Roy. Pseudoanonymised data 

(linked by a unique study code) will be entered on an excel database. 

 

 

Ineligible and non-recruited participants 
 

For volunteers found to be ineligible at screening, or eligible but not subsequently entered 

into the study, the reason for ineligibility or non-recruitment will be entered on the excel 

database.  Only anonymised data will be entered on to the database and this will include 

gender, age, “ineligible” or “non-recruitment” and the associated reason. If found ineligible, 

permission will be sought from participants to contact their GP with the results of screening 

tests and any further action required.  

 

Study visit 1 (day 0) 

 
Volunteers satisfying study criteria, wishing to proceed with the study, and providing written 

informed consent will attend the integrated critical care unit (ICCU), City Hospitals 

Sunderland on an agreed day. Volunteers will be asked to refrain from caffeine or alcohol for 

24 hours before the study and during study visit 1. Volunteers will spend a full day (10 hours) 

in the Intensive Care Unit at City Hospitals Sunderland. A brief history (regarding symptoms 

of any acute illness) will be sought. In female participants, a repeat urinary pregnancy test 

will be performed and will be reviewed by a medical practitioner who will offer appropriate 
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advice. Only those participants who have a negative test will be allowed to proceed with the 

study. Vital signs (pulse rate, blood pressure, temperature, respiratory rate and oxygen level) 

will be monitored at baseline and every 30 minutes throughout the day. A venous cannula will 

be inserted into each arm. Intravenous fluid (Hartmann’s solution, a solution with 

concentration of salts similar to that of blood) will be administered via one of the intravenous 

cannulae. Systemic inflammation will be induced by intravenous injection of a bolus of 

2ng/kg of U.S reference E. coli endotoxin into the other intravenous cannula. Participants can 

eat and drink at any point following injection of endotoxin, but will be asked to refrain from 

caffeine and alcohol during the day of study visit 1. 80ml will be drawn at baseline, 90 

minutes, 6 and 10 hours. 20ml of blood will be drawn at 4 hours following injection of 

endotoxin. Volunteers are advised to use a suitable method of contraception for 48 hours 

following injection of LPS. 

 

Study visit 2 (day 1) 

 
Volunteers will be asked to attend the ICCU at City Hospitals Sunderland. All will undergo a 

brief history, examination and blood sampling (20mls). 

 

Study visit 3 (day 7) 

 
Volunteers will be asked to attend the ICCU at City Hospitals Sunderland. All will undergo a 

brief history, examination and blood sampling (20mls). 

 

Study Assessments: processing and analysis of blood samples 

 
Screening visit blood samples will be sent to the hospital laboratories at City Hospitals 

Sunderland for assessment of full blood count, urea and electrolytes, liver function tests and 

C-reactive protein (CRP) (8mls). A sample will also be taken for mitochondrial haplogroup 

typing (2mls) which will be performed at the Centre for Life, Newcastle University 

 

Blood samples will be taken at baseline, 90 minutes, 4, 6 and 10 hours after administration of 

intravenous LPS.  Blood sample volume that will be drawn will be approximately 80mls will 

be drawn at baseline, 90 minutes, 6 and 10 hours.  
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20mls at 4 hours. Full blood count analysis and measurement of serum CRP and procalcitonin 

(PCT) will be done in the hospital laboratories at City Hospitals Sunderland NHS Foundation 

Trust. All other sampling will be performed at Newcastle University. Assessment of free 

mitochondrial DNA (mtDNA) will performed at the Centre for Life, all other scientific 

processing and analysis will be undertaken in the Medical School, Newcastle University. 

 

Sampling at baseline, 90 minutes, 6 and 10 hours: 

 

• Full blood count (2mls) 
• Serum (9 mls) for CRP, PCT, cytokines and free mtDNA 
• Flow cytometry (4 mls) 
• Prothrombotic markers (5mls) 
• Transcriptome (RNA sequencing), epigenome (ATAC sequencing) and proteome 

analysis (mass cytometry) of peripheral blood leukocytes (60mls) isolated by flow 
cytometry. 

 

 

Sampling at 4 hour, 24 hour and 7 day time points: 

 

• Full blood count (2mls) 
• Serum (9 mls) for CRP, PCT, cytokines and free mtDNA 
• Flow cytometry (4 mls) 
• Prothrombotic markers (5mls) 

 

 

The total volume of blood sampled over the study period (390ml) will be similar to the 

volume of blood drawn for the donation of blood. Scientific samples will be stored in a locked 

freezer, in swipe-card protected premises in the Institute of Cellular Medicine.  Freezers are 

accessible to the research team, and to individuals who maintain university research freezers 

and their governance. Samples will be destroyed after five years, unless we believe there is 

advantage to keeping them, in which case we will take advice from sponsor as how to 

proceed. 

 

Data Analysis 

 
Data from analysis of blood samples will be compared between haplogroup H and non-H 

haplogroups for all time-points along with changes from baseline. 
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Risk Assessments 

 

Blood sampling 

 

Blood sampling can be accompanied by discomfort or by vasovagal symptoms. Risks are 

minimised through all samples being taken in a fully supported medical facility. Blood will be 

drawn whilst the volunteer is positioned on a bed or in a self-reclining chair. Volunteers 

feeling syncopal will be positioned supine and venepuncture will be discontinued. The total 

volume of blood to be sampled over the entire study is less than the volume required for a 

standard blood donation. 

 

Intravenous administration of LPS 
 

LPS will be administered to volunteers whilst they are monitored in the integrated critical care 

unit (ICCU) at City Hospitals Sunderland. Participants will be observed for 10 hours 

following LPS administration. 

 

Expected symptoms include chills, headache, photophobia (aversion to bright lights), myalgia 

(muscle aches), arthralgia (joint pains), nausea (feeling sick), and rarely, vomiting. Peak 

symptom intensity occurs around 1 - 2 hr post-injection, abating afterwards to baseline by 6 - 

8 hr. No severe or sustained adverse 

effects secondary to endotoxin at this dose have been reported. Less than 5% of volunteers 

feel the need to treat these symptoms with medicines such as paracetamol/acetaminophen or 

non-steroidal agents by mouth or IV (e.g., aspirin, ibuprofen). Such agents may alter the 

inflammatory response and their use should be recorded. Other adverse signs include fever, 

increase or decrease in heart rate and decrease in blood pressure (hypotension), medications 

required to treat adverse effects will be readily available (e.g. intravenous fluid in the event of 

a significant episode of hypotension or paracetamol in the event of significant symptoms of 

fever). Significant hypotension only occurs rarely (less than 1 in 1000 volunteers) and is 

rapidly treated by the administration of an intravenous fluid bolus. 

 

Vital signs will be measured at baseline, then every 30 minutes until six hours following LPS 

administration and then hourly thereafter until participants are allowed home. Symptoms 

scores for nausea, muscle aches, headache and chills will be recorded. 
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3. Burden of time 

 

Volunteers wil be required to attend for a screening visit, a ten hour study day for induction of 

inflammation, observation and sampling, followed by two further study visits for follow-up 

and sampling. Volunteers will required to attend the Integrated Critical Care Unit of City 

Hospitals Sunderland for study visits. The host institution and follow-up study visits will 

facilitate safety monitoring for volunteers. In recognition of the burden on the volunteer in 

terms of time, volunteers will be offered £250 on study completion. 

 

Adverse Events 

 
Our research group has experience with the LPS challenge models. We have 

successfully administered 60µg of inhaled LPS to young, healthy participants with no 

significant adverse events recorded (16).  

 

Intravenous LPS has been administered to healthy volunteers for over 40 years. There is a 

substantial body of evidence to support the safe administration of higher doses (4ng/kg) of 

intravenous LPS than we intend to use in this study. 

Nevertheless, we feel that we must remain vigilant in detecting and recording any adverse 

events as a result of exposure to LPS or other procedures undertaken. Whilst recognising that 

this current work is not a clinical trial, our groups' previous work (which included a clinical 

trial) benefited from classifying and monitoring adverse events in the manner described 

below, and we have elected to continue using this terminology in this research. 

 

Definitions 

An adverse event (AE) is any untoward medical occurrence in a study participant. 

A serious adverse event (SAE) is any untoward medical occurrence in a study participant or 

effect that: 

• results in death 
• is life threatening (i.e. the subject was at risk of death at the time of the event; it does not 

refer to an event which hypothetically might have caused death if it were more severe) 
• requires admission to hospital as an in-patient beyond one calendar day or requires the 

volunteer to stay longer than 12 hours following injection of lipopolysaccharide 
• results in persistent or significant disability or incapacity 
• is a congenital anomaly or birth defect 
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If an adverse event is detected, a member of the research team will make an assessment of 

seriousness as defined by the above definitions. If the event is deemed to be serious (SAEs) a 

member of the research team will then consider if the event was: 

• Related – that is it resulted from administration of research procedures and/or 
• Unexpected – that is a type of event that is not identified as an expected occurrence 
 

Detecting and reporting AE and SAEs 
 

All AEs and SAEs will be recorded from the time a participant consents to join the study until 

24 hours after completing the final study assessments. A medically qualified member of the 

research team will ask about the occurrence of AEs/SAEs during the study. Information to be 

collected includes type of event, onset date, researcher assessment of implications, if any, for 

safety of participants and how these will be addressed, date of resolution as well as treatment 

required, investigations needed and outcome. All information will be recorded in the 

participants study file. 

An AE/SAE may necessitate discontinuation of a given part of the study (but progression 

through the remainder of the study) or complete and immediate discontinuation of any further 

participation. All participants will maintain the right to discontinue or completely withdraw 

from the study at any time for any reason, or without stating a reason. The reason and 

circumstances for premature discontinuation (where known) will be documented in the 

participant’s study file. 

 

If a SAE has occurred, the research team must report the information to Newcastle upon Tyne 

Hospitals R&D within 24 hours.  The SAE form must be completed as thoroughly as possible 

with all available details of the event, signed by the Investigator or designee.  The SAE form 

should be transmitted by fax or by hand to the office.  

NUTH R&D is responsible for reporting SAEs that are considered to be related and 

unexpected as described above to the Research Ethics Committee (REC) that approved the 

study (main REC) within 15 days of becoming aware of the event using the NRES Reporting 

of SAE Form. The Co-ordinator of the main REC should acknowledge receipt of related, 

unexpected safety report within 30 days. 
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Discharge criteria 

 
The attending clinician will ensure that the participant's symptoms have settled and that their 

observations are trending to normal (all altered parameters, e.g., elevated heart rate and 

temperature, demonstrating consistent reduction toward baseline values) prior to sanctioning 

the end of observation and subsequent discharge. After bolus injection of 2ng/kg LPS 

symptoms normally fully abate by 6 - 8 hr. Individual observations follow overlapping but 

discrete time-courses. These have normally returned to baseline by 10hr. All monitoring and 

venous cannulae will be removed and haemostasis will be ensured. It will be confirmed that 

the participant is happy to be discharged home and has the contact details of the research team 

in case of any concern. 

 

 

End of study 

 
The study will be completed on day 7 of the final volunteer. Scientific analysis of samples in 

accordance with the experimental plan may be performed after this. 

 

Process if new information is available 

 
If any further information becomes available that leads to further studies then consent will be 

obtained from volunteers and ethic approval will be sought. 

 

Criteria for terminating the project 

 
In the event of a serious adverse event, the project will be terminated. 
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Chief Investigator: 
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3rd Floor, William Leech Building 
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Does the DNA of our cell’s batteries influence our response 

to bacteria? 

 
PARTICIPANT INFORMATION SHEET 

 

HELPING YOU DECIDE WHETHER TO ENTER THIS 

STUDY 
 

 

 

INTRODUCTION 

 

You are being invited to take part in a research study.  Before you decide it is important for 

you to understand why the research is being done and what it will involve.  Please take time 

to read the following information carefully. Talk to others about the study if you wish.  

• Part 1 tells you the purpose of this study, outlines what will happen to you if you take 
part, and informs you about the conduct of the study. 
 

• Part 2 gives you more detailed information about what will happen to you if you take 
part. 
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Please ask us if there is anything that is not clear or if you would like more information.  Take 

time to decide whether or not you wish to take part. 

 

PART 1 
What is the purpose of the study? 

Sepsis (previously known as septicaemia or blood poisoning) is a common medical 

emergency. It is severe, life-threatening infection. Internationally, it claims the lives of eight 

million people every year, 44000 of which are in the United Kingdom. Sepsis arises when the 

body’s response to an infection, the inflammatory response, injures its own tissues and 

organs. It can lead to shock, failure of the body’s organ and death especially if not recognized 

early and treated promptly. The proportion of people who die when they have sepsis is greater 

than that of other causes of admission to critical care. One of the major difficulties is that we 

have limited understanding of the body’s early response to infection. 

In order to function, the body’s organs are dependent on cellular energy production. A major 

source of energy is the cell’s mitochondria, they are the batteries for the body’s organs. The 

efficiency of these batteries is determined by the DNA (mitochondrial DNA) that codes for 

the mitochondrial proteins that make up the energy producing apparatus.  

This study seeks to determine if an individual’s mitochondrial DNA also has an effect on the 

inflammatory response to a purified bacterial cell wall component that stimulates a mild, 

transient inflammatory response. 

All studies will take place in the Integrated Critical Care Unit at City Hospitals Sunderland, 

using established methods. 

 

Why have you been chosen? 

You have been chosen because you are a healthy individual who has responded to the e-mail 

we sent out to Newcastle University mailing lists or to adverts placed on university notice 

boards. 

 

What will happen to you if you take part? 

You will attend for a screening visit. If the screening visit is satisfactory and you want to 

proceed to the study you will then be asked to return for 3 separate study visits, over a week. 

The procedures we would like you to have are: 

• Blood samples. Some of the samples will be used to measure the numbers of cells in the 
blood and the levels of markers of inflammation. They will be analysed in the clinical 
laboratories in City Hospitals Sunderland. The remainder and the majority of the blood 
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samples will be transferred by the research team to Newcastle University. They will be 
used to assess mitochondrial DNA in the blood (this will occur at the Centre for Life, 
Newcastle University) and which populations of the cells of the immune system change 
and how they change in response to LPS (this will occur at the Medical School, 
Newcastle University)  

• Intravenous injection of lipopolysaccharide (LPS). LPS is a product made by certain 
bacteria and is just one small component of the bacterium – i.e. you would not be 
injected with actual bacteria that may cause an infection but a small, non-infectious 
component of the bacterium. The aim is to cause a mild, transient inflammatory 
response in the blood, which will result in temporary flu-like symptoms (typically 
lasting up to six hours).  

Greater detail about each of these is found in Part 2. 

Do you have to take part? 

No. It is up to you to decide whether or not to take part.   

You are free to withdraw from the study at any time and without giving a reason.  A decision 

not to take part, or withdraw at any time, will not affect the health care you receive at any 

stage, now or in the future. 

 

How long can you take to decide? 

You should take as much time as you wish. 

 

Do you have to complete all of the tests described? 

While we obviously prefer to obtain all of the samples described, you are under no obligation 

to have any of the tests. You can complete all of the tests, or you can decline as many of the 

tests as you wish.  

 

Involvement of your GP 

With your permission, we shall inform your GP by letter that you are taking part in our study. 

With your permission, should any abnormal clinical results emerge during your tests, we 

would inform you and your GP. 

 

Will any genetic tests be done? 

Yes. Part of our research aims to determine how ‘mitochondrial DNA’ behaves in response to 

inflammation. Mitochondria are the ‘batteries of cells', providing the cell with energy. Some 

research studies have suggested that mitochondrial DNA in white blood cells may respond 

differently during inflammation. We seek to test this in more detail in the current study. We 

shall not, at any point, be testing DNA for genes associated with specific medical conditions. 
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What are the potential benefits of taking part? 

There is no direct benefit to you.  

 

Is there any reimbursement for taking part? 

Yes. We shall reimburse any travel costs. There is no reimbursement for attending the 

screening visit, but we will offer a payment of £250 for completing the subsequent study 

days. You are not obliged to take this if you do not wish to. 

 

Can you access the results of the research? 

Yes. We will be happy to send you a summary of the overall results of the study after its 

completion, should you so wish. If you would like us to do this, please contact Professor 

Simpson at the address shown below. 

 

 

 

What will happen to the results of the research study? 

We intend for the results to be published in medical/scientific journals and presented at 

medical/scientific meetings. All information in the public domain will be anonymous (i.e. you 

cannot be identified from these publications/presentations). We intend that the results of the 

study will inform the design of future studies and treatments for people with sepsis.  

 

What if there is a problem? 

If you have a concern about your treatment by members of staff during the study, you should 

ask to speak with the researchers who will do their best to answer your concerns (see contact 

details below for Professor Simpson). If you remain unhappy and wish to complain formally, 

you can do this through the NHS Complaints Procedure. Details can be obtained from your 

hospital. 

In the unlikely event that something goes wrong and you are harmed during the study there 

are no special compensation arrangements. If you are harmed and this is due to someone’s 

negligence then you may have grounds for a legal action for compensation against the 

NHS/Newcastle University but you may have to pay for your legal costs. The normal NHS 

complaints mechanisms will still be available to you.  

 

Will any material be stored? 
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Yes, but only with your permission. We propose to store the liquid portion from blood 

samples (plasma/serum), some of the cells and their products and the mitochondrial DNA. 

These will be kept in an anonymised form (i.e. you cannot be identified from the samples). 

We propose to keep your samples for up to 5 years after completion of the study.  

At 5 years we propose to destroy the samples and images. However, as medicine advances 

and new information becomes available, we occasionally find good reasons to perform 

additional tests on stored samples in the future. Should this situation arise we may ask to use 

your samples again, but this would be on the strict condition that we explain the nature of any 

further research we intend to carry out, the type of tests we wish to perform and that you give 

permission for this, that the information would be anonymous (i.e. you could not be identified 

from them) and that we obtain new and separate permission from an ethics committee. 

 

Will your taking part in this study be kept confidential? 

Yes. Your information and samples will be given a study identity number, and all the 

information would remain strictly confidential.   

All information that is collected about you during the course of the research will be kept 

strictly confidential. We will keep a record that you have taken part in the study (name, date 

of birth, email address) but will not keep any other personal information about you save that 

required in the medical screening. All documents, samples and information about you will be 

pseudo‐anonymized with a study code known only to the research team. Professional 

standards of confidentiality will be adhered to and the handling, processing, storage and 

destruction of data will be conducted in accordance with the Data Protection Act (1998). 

Ultimately the information we acquire may be published in journals or presented at 

conferences but it will not be possible to identify you or any other participant from these 

publications. 

 

Who is organising and funding the research? 

The research team is made up of clinicians and staff from Newcastle University, City 

Hospitals Sunderland NHS Foundation Trust and Newcastle Upon Tyne Teaching Hospitals 

NHS Trust. The research is funded by Newcastle University. 

 

Who has reviewed the study? 

The scientific basis of the study was independently reviewed by doctors/scientists at 

Newcastle University. The study has also been independently reviewed and approved by a 

local Research Ethics Committee and the regional Research and Development Office. 
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Is there an independent doctor you can approach for further information? 

If you would like to discuss any aspect of this research with an experienced researcher who is 

not linked in any way to this study, please feel free to contact: 

Dr Stephen Wright 

Consultant in Anaesthesia and Intensive Care Medicine 

Freeman Hospital 

Freeman Road 

NE7 7DN 

Tel: 0191  

stephen.wright@nuth.nhs.uk 

 

 

 

This completes Part 1 of the Participant Information 

 

If the information in Part 1 has interested you and you are considering participation, please 

continue to read the additional information in Part 2 before making your decision. 

 

THANK YOU FOR TAKING THE TIME TO READ THIS 

INFORMATION AND FOR CONSIDERING TAKING PART 
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Does the DNA of our cell’s batteries influence our response 

to bacteria? 

PARTICIPANT INFORMATION SHEET 

 

PART 2 
 

 

What will happen to you if you take part? 

You will attend for a screening visit to see if you satisfy all the necessary conditions for the 

study. If you continue to take part you would come back at a later date for 3 separate study 

visits. 

 

Screening visit 

On a day suitable to you, you would come to the Pre-assessment clinic at City Hospitals 

Sunderland. The purpose of this visit is to check that you do not have any features which 

might exclude you from our study, and to answer any questions you may have. Please also 

note that you should not be taking part in any other medical research studies at the time. 

A doctor from the research team will take a short medical history and examine your heart and 

lungs. 

You would also have:  

• Simple measurements of heart rate, blood pressure and temperature 
• Measurement of the oxygen level in the blood (this involves placing a probe on your 

finger and does not involve needles) 
• A blood sample taken to check your ‘full blood count’ (which tells us about your white 

blood cells) and blood biochemistry. The volume of blood needed is equivalent to two 
teaspoons. 

• For female participants a urine test to exclude pregnancy. The result will be reviewed 
by a medical practitioner and appropriate advice will be given. 

 

 

The information obtained will be kept confidential by the research team. We shall inform you 

if we find any unexpected abnormalities and, with your permission, inform your general 

practitioner. If we are satisfied that there are no reasons to prevent you taking part, and if you 

still wish to participate in the study, you will be asked to return for the actual study. 
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Study visits in Summary 

 

Study Visit 1:  

Venue: Integrated Critical Care Unit (ICCU) City Hospitals Sunderland 

Time: 11 hours 

You will be asked to refrain from alcohol and caffeine for 24 hours before this visit. You will 

also be asked to fast from midnight before injection.  

• Confirmation of consent 

• Pregnancy test if female to confirm that the volunteer is not pregnant. The test will be 
reviewed by a medical practitioner and appropriate advice will be given. 

• Brief medical history and examination of heart and lungs 

• Insertion of intravenous cannulae, one in each arm 

• Baseline blood tests 

• Administration of intravenous fluid 

• Administration of lipopolysaccharide into a vein through a cannula 

• You will be allowed to eat and drink following lipopolysaccharide injection but asked 
to refrain from caffeine and alcohol during study visit 1. You will be allowed to bring 
your own food with you, alternatively sandwiches will be provided at meal times. 

• Observation over the following 10 hours, within ICCU, City Hospitals Sunderland 
(including measurement of blood pressure, heart rate, temperature and oxygen level) 

• Blood tests taken at 90 minutes, 4 hours, 6 hours and 10 hours after administration of 
LPS (blood tests will be taken from a cannula placed in your vein at the baseline blood 
test, so such that we can take blood more than once from a single use of a needle). 

 

Study visit 2: the day after visit 1 

Venue: Integrated Critical Care Unit (ICCU) City Hospitals Sunderland 

Time: Approximately 30 minutes 

• Brief medical history and examination of heart and lungs 

• Blood test 

 

Study visit 3: 7 days after visit 1 

Venue: Integrated Critical Care Unit (ICCU) City Hospitals Sunderland 

Time: Approximately 30 minutes 

• Brief medical history and examination of heart and lungs 

• Blood test 
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At the end of this visit, your involvement in the study will be complete.  

A more detailed explanation and potential symptoms associated with each procedure are 

described in the next section. 

 

Blood sampling  

 

At the screening visit we shall take a single blood sample using a needle. The amount of 

blood on the screening day will be approximately 10mls. 

 

On Study visit 1, you will have a cannula placed in each arm. One will be for administration 

of intravenous LPS, the other will be for administration of intravenous fluid and multiple 

blood samples.  Blood will be taken at baseline, then at 90 minutes, 4 hours, 6 hours and 10 

hours after the administration of intravenous LPS. The volume of blood we require at 

baseline, 90 minutes, 6 hours and 10 hours will be 80mls (about one third of a cup full) and 

the volume we require at 4 hours will be 20ml (about a tablespoon full) The total volume that 

we require during study visit 1 will be approximately 340ml 

 

On study visit 2, we shall take a single blood sample using a needle. The amount of blood on 

the screening day will be approximately 20mls (about a tablespoon full).  

 

On study visit 3, we shall take a single blood sample using a needle. The amount of blood on 

the screening day will be approximately 20mls (about a tablespoon full).  

  

Therefore, the maximum amount of blood that a volunteer can be asked to provide over the 

course of this entire study (including screening visit) is approximately 390mls. To place this 

in context, this is similar to a standard blood donation to the Blood Transfusion Service..  

 

 

Intravenous injection of LPS 

LPS is a product made by certain bacteria and is just one small component of the bacterium – 

i.e., you would not be injected with actual bacteria that may cause an infection but a small, 

non-infectious component of the bacterium. The dose of LPS we use is 2 nanograms per kg 

bodyweight. (A nanogram is 1 x 10 -9g and is the mass of an average human cell, and the 

human body is made up of trillions of human cells).  This dose has proved to be extremely 
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informative and safe in previous studies. We would be pleased to supply you with further 

literature from such studies if you wish. Your pulse, blood pressure, temperature and oxygen 

levels will be recorded after the injection of LPS..  

 

The LPS is used to cause a mild inflammatory response in the blood for a few hours only. 

Volunteers may feel slightly tired or have a warm, flushed or ’flu-like’ feeling a few hours 

afterwards. They may also feel like their heart rate has increased or decreased. Some but not 

all of volunteers may feel sick or have a headache, but this only lasts for a few hours. About 1 

in 20 volunteers may feel the need to take medicines such as paracetamol  or ibuprofen for 

symptom relief.  

 

Rarely (less than 1 in 1000) volunteers may experience a drop in blood pressure, this will be 

corrected by intravenous fluid. 

 

After the intravenous LPS you will rest in the integrated critical care unit for approximately 

10 hours. During this period you will have blood samples (as described above) and 

intermittent recording of your pulse, blood pressure, temperature and oxygen levels. 

 

You will be provided with a 24-hour telephone number to contact in the unlikely event that 

you feel unwell.  

 

 

 

Contact Details 

 

Should you wish any further information, please contact: 

 

Professor John Simpson 

Professor of Respiratory Medicine 

Institute of Cellular Medicine 

3rd Floor, William Leech Building 

Medical School, Newcastle University 

Framlington Place 

NE2 4HH 
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Tel: 0191 222 7770 

Email: j.simpson@newcastle.ac.uk 

 

 

This completes Part 2 of the Participant Information 
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Does the DNA of our cell’s batteries influence our response 

to bacteria? 
 

 CONSENT FORM 
 

PARTICIPANT NUMBER  

 

TO BE COMPLETED BY THE PARTICIPANT (please initial each box): 

 

1. I Confirm that I have read and understood the Participant information sheet, 

dated  …………………. version ………. for the above study.  I have had the 

opportunity to consider information, ask questions and have had those questions 

answered fully. 

 

[      ] 

2. I understand that my participation is voluntary and that I am free to withdraw 

at any time, without giving any reason, and without my medical care or legal 

rights being affected.      

 

[      ] 

3. I understand that information gathered for the purpose of the study will be 

kept in a secure confidential file. I agree that this file may be looked at by 

researchers involved in this study or, where relevant, by regulatory authorities 

overseeing the research. I understand that my personal data will be processed 

and stored in compliance with the 1998 Data Protection Act.  

 

[      ] 

 

4. I agree to a clinical history and examination at each study visit and if 

clinically indicated 

[      ] 

 

5. I agree to the injection of  lipopolysaccharide (LPS) into a vein through a 

cannula 

[      ] 

 

6. I agree to have blood tests, as outlined in the participant information sheet, 

and I am aware that while this includes some DNA analysis none of that DNA 

testing is about specific medical conditions  

 

[      ] 
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7. I agree that my blood may be stored for up to 5 years after completion of the 

study and that these will be stored in a secured, confidential way 

 

 

[      ] 

8. I agree that my samples may be used in future studies, on condition that I 

understand the nature of any further research and the types of tests that will be 

done, that I cannot be identified from my samples, and that new ethical 

approval is granted for those studies 

 

[      ] 

9. I agree that the research team may inform my general practitioner of any 

abnormal screening results or any adverse events during the study 
[      ] 

10.  I understand that relevant sections of my medical notes and data collected 

during the study, may be looked at by individuals from the research team, from 

regulatory authorities or from City Hospitals Sunderland NHS Foundation 

Trust, where it is relevant to my taking part in this research. I give permission 

for these individuals to have access to my records. 

 

11. I agree that the research team may inform my general practitioner of my 

participation in the study  

[      ] 

 

 

 

[      ] 

 
12. I agree to take part in this study [      ] 

 

13. 7. I can confirm that I have retained a copy of the consent form and another 

copy has been retained by the research team and will be filed in the investigator 

site file 

[      ] 

_______________________   _______________________  

 ________________ 

Participant’s Name    Signature    

 Date 

_______________________   _______________________  

 ________________ 

Researcher’s Name    Signature    

 Date 



 263 

 
  



 264 

APPENDIX C.  

 

The protocol, participant information sheets, consent forms and data collection sheet 

used to obtain blood samples from individuals who were critically ill. 
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INTRODUCTION 

Infections acquired during a stay within an intensive care unit (ICU) are common, affecting 

approximately 20% of patients (Vincent et al., 1995). Large-scale international studies have 

demonstrated that the risk of developing a hospital-acquired infection increases with the 

duration of ICU stay.  Those individuals who develop an infection have twice the ICU mortality 

rate (25% vs .11%, p<0.001) and an overall longer duration of stay when compared to 

individuals who do not develop an infection (Vincent et al., 2009; Lambert et al., 2011). 

 

There are two reasons for this susceptibility to infection.  Firstly, the use of necessary 

interventions such as mechanical ventilation and central venous lines increases the risk.  

Secondly, however there is mounting evidence that these patients have a dysfunction of their 

innate immune response.  Dysfunction in several types of white blood cell within the ICU has 

previously been demonstrated and associated with an increased risk of developing an infection 

with the ICU. Complement mediated neutrophil dysfunction, a deactivation of monocytes (loss 

of HLA DR expression) and an increase in regulatory T cells that act to counter the 

inflammatory response have all be demonstrated in critically ill patients on the ICU.  All were 

associated with an increased risk of developing a hospital-acquired infection (Conway Morris 

et al., 2013). 

 

Empirical antibiotics are often used in ICUs to ensure adequate coverage of critically ill patients 

and are often continued even after a specific pathogen is identified (Garnacho-Montero et al., 

2014).  Understandably critical care clinicians will often prioritise the health of their patient over 

the need to limit antibiotic use because of the rise of bacterial strains resistant to antibiotics 

(Martin-Loeches et al., 2017).  There is an urgent need to identify alternative treatments that 

are not antibiotics, but to do this the basic mechanisms underpinning the susceptibility of 

critically ill patients to infection need to be further understood. 

 

Monocytes, one of the white blood cells involved in the innate immune response, are now 

divided into at least three subclasses that have different functional properties: classical, 

intermediate and non-classical.  Classical are the most involved in bacterial killing, they display 

the most phagocytic activity, release the widest range of reactive oxygen species and the most 

cytokines. Intermediate monocytes have been shown to express the most HLA class II 

molecules whilst non-classical monocytes have been shown to ‘patrol’ the endothelium and 

may have a role in tissue repair (Ziegler-Heitbrock, 1996a; Auffray, 2007; Ziegler-Heitbrock et 

al., 2010a; Wong, 2011).  

 

Although classical monocytes are best suited to bacterial killing, previous work demonstrates 

that critically ill patients have a reduction in this subclass and instead have an expansion in 
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the proportion of non-classical monocytes (Fingerle, 1993; Fingerle-Rowson, 1998).  The 

cause of this change in monocyte subclass is not currently understood. 

 

Human studies show that recombinant macrophage-colony stimulating factor (MCSF) can 

increase the proportion of non-classical monocytes in vivo.  MCSF is present at high levels 

during sepsis and may explain the increase in the non-classical (Saleh, 1995).  

 

This study will investigate the mechanisms that lead to an increased susceptibility to 
infection in critically ill patients; with the aim of identifying therapeutic targets for 
improving their innate immune response and reducing the frequency of infections.  

ORIGINAL HYPOTHESIS 

We hypothesize that individuals who are critically ill have an increased susceptibility to 

infection due to a defect in their innate immunity.   In particular the reduction in classical 

monocytes and concurrent predominance of circulating non-classical monocyte contributes to 

the impaired immune response.  We believe that the increase in MCSF is the cause of the 

switch in monocyte subset and could potentially offer a novel therapeutic target. 

STUDY DESIGN 

 
Participant Enrolment and Selection 
Individuals who have been admitted to the intensive care unit (ICU) and would be suitable for 

the study will be identified by their clinical care team or research nurse.  The individual, or their 

next of kin, will be given a copy of the study’s participant information sheet and consent form.  

If they wish to be included in the study they will be recruited following written informed consent.  

 
Setting 
The intensive care units (ICU) at City Hospitals Sunderland NHS Trust (CHSFT) and The 

Newcastle upon Tyne Hospitals NHS Foundation Trust (NUTH). 

 
Inclusion criteria 

• Expected to remain in the ICU for longer than 24 hours 

• Expected to survive in the ICU for longer than 24 hours 

• Provision of written informed consent (either from the participant or next of kin) 

• Requires organ support (either inotropes, ventilator, non-invasive ventilator, 

haemofiltration) 

• They or their relatives/legal representative will be provided written, informed consent 

 
Exclusion criteria 

• <16 years of age 

• Pregnancy 
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• Known infection with human immunodeficiency virus 

• Haematological malignancy 

• Concurrent use of immunosuppressant medication other than corticosteroids (allowed 

up to prednisolone 10mg/kg or equivalent) 

 
Consent 
Individuals eligible for the study will be identified by the clinical care team or research nurses 

and will be given verbal and written information regarding the study.  All individuals who are 

approached will be given time to consider the information received prior to consent.  All study 

subjects will be enrolled after giving signed informed consent.  In those individuals where it is 

not possible to for them to give consent, the next of kin or appropriate legal representative will 

be approached.  Wherever possible retrospective consent will be sought when an individual 

recovers. Consent will also include storage of blood for further testing, which will relate to this 

investigation. 

 
 
Management of ineligible participants 
For individuals found to be ineligible for the trial the reason for ineligibility or non-recruitment 

will be recorded.  Only anonymised data will be entered on to the database and this will 

include gender, age, “ineligible” or “non-recruitment” and the associated reason.  
 
Sampling 
Study participation will involve two visits, each of less than 1 hour. 

 

Study visit 1  

This will occur following recruitment and include:  

1. Data collection & preparation  

a. Details will be obtained from the subject through a medical interview and/or 

review of the medical notes; which will include but will not necessarily be limited 

to: age, sex, ethnicity, cause for the ICU admission, co-morbidities and 

concurrent medications.   

2. Blood sampling 

a. Blood will be sampled following initial recruitment.  20 mL of blood will be 

collected. The most likely risk is that blood sampling may contribute to the 

development of anaemia in the participant.  This risk has been minimised by 

limiting the amount of blood taken to 20 mL.  This is similar to what is taken in 

a routine clinical blood test.  

b. Blood sampling can be accompanied by discomfort or by vasovagal symptoms. 

To minimise these risks samples will be taken wherever possible from an 
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indwelling line (an arterial line will be used preferentially if present, if not then a 

venous line). For the majority of this population the participant will be semi-

recumbent in a hospital bed and sedated.  In those few individuals who are not, 

samples will be taken with them in a bed or self-reclining chair.  Participants 

who feel syncopal will be positioned supine and venepuncture will be 

discontinued. 

c. Plasma will be removed and frozen (at -80oC) for future testing 

d. The cell fraction will used to isolate white blood cells for future testing. 

e. Stored blood samples will be labelled with a unique anonymous identifier 

3. Post procedure 

a. Subjects will be monitored by an ICU nurse 

Study visit 2: 

Where applicable this visit will occur within the next working day of discharge from the ICU 

between usual working hours.  It will include: 

1. Blood sampling – 20 ml of blood will be taken and processed as detailed above. 

2. Post procedure - subjects will be monitored as following usual venepuncture with 

regular observations. 

 

Adverse Events 
Our research group has experience with taken blood samples from patients on the intensive 

care unit.  Nevertheless, we feel that we must remain vigilant in detecting and recording any 

adverse events as a result of any procedures undertaken.  

 

Whilst recognising that this current work is not a clinical trial, our groups' previous work (which 

included a clinical trial) benefited from classifying and monitoring adverse events in the manner 

described below, and we have elected to continue using this terminology in this research. 

 
Definitions 

An adverse event (AE) is any untoward medical occurrence in a study participant. 

A serious adverse event (SAE) is any untoward medical occurrence in a study participant or 

effect that: 

• results in death 

• is life threatening (i.e. the subject was at risk of death at the time of the event; it does 

not refer to an event which hypothetically might have caused death if it were more 

severe) 

• results in persistent or significant disability or incapacity 
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If an adverse event is detected, a member of the research team will make an assessment of 

seriousness as defined by the above definitions. If the event is deemed to be serious (SAEs) 

a member of the research team will then consider if the event was: 

• Related – that is it resulted from research procedures and/or 

• Unexpected – that is a type of event that is not identified as an expected occurrence 

 

Detecting and reporting AE and SAEs 

All AEs and SAEs will be recorded from the time a participant consents to join the study and 

for up to an hour following venepuncture. Research nurses or members of clinical care team 

will inform the research team of any concerns that may constitute an AE or SAE. Information 

to be collected includes type of event, onset date, researcher assessment of implications, if 

any, for safety of participants and how these will be addressed, date of resolution as well as 

treatment required, investigations needed and outcome. All information will be recorded in the 

participants study file. 

 

An AE/SAE may necessitate discontinuation of a given part of the study (but progression 

through the remainder of the study) or complete and immediate discontinuation of any further 

participation. Such an event may include, but not be limited to, a vasovagal response to 

venepuncture.  All participants will maintain the right to discontinue or completely withdraw 

from the study at any time for any reason, or without stating a reason. The reason and 

circumstances for premature discontinuation (where known) will be documented in the 

participant’s study file. 

 

If a SAE has occurred, the research team must report the information to Newcastle upon Tyne 

Hospitals R&D within 24 hours.  The SAE form must be completed as thoroughly as possible 

with all available details of the event, signed by the Investigator or designee.  The SAE form 

should be transmitted by fax or by hand to the office.  

 

NUTH R&D is responsible for reporting SAEs that are considered to be related and unexpected 

as described above to the Research Ethics Committee (REC) that approved the study (main 

REC) within 15 days of becoming aware of the event using the NRES Reporting of SAE Form. 

The Co-ordinator of the main REC should acknowledge receipt of related, unexpected safety 

report within 30 days. 

 
Each AE should be clinically assessed for causality based on the information available, i.e. the 

relationship of the AE to the study should be established. All adverse events judged as having 

a reasonable suspected causal relationship to the study (i.e. definitely, probably or possibly 

related) are considered to be adverse reactions. If any doubt about the causality exists, the 
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local Principal Investigator should consult the Chief Investigator. In the case of discrepant 

views on causality between the Principal Investigator and others, the main REC and other 

bodies will be informed of both points of view. 

 
Data analysis 
 

Statistical analysis 

Measurements of biomarker blood levels and proportions of monocyte subclass will be 

expressed within 95% confidence limits. Comparisons will be made between the two 

dependent timepoints using a paired t test and statistical significance identified by a nominal p 

value of <0.05. Statistical analysis will be performed using standard University software.  We 

intend to write a prospective statistical analysis plan ahead of embarking on experiments with 

statistical help from the university (Dr Joy Allen, Senior Research Associate-Methodologist, 

Newcastle University). 

 

Power Calculations 

This is an exploratory pilot analysis. 

 
 

Outcome Variables 

The primary outcome variable will be the measurement of monocyte subclasses during critical 

illness and on recovery.  As well as the measurement of MCSF at both timepoints.  Secondary 

outcomes will include the effects of critical illness on the function of immune cells and their 

interactions with the coagulation system and the endothelium (blood vessel lining). 

 
Research team and project management 
The proposed project will be conducted by Professor John Simpson, Dr Anthony Rostron, Dr 

Marie-Hélène Ruchaud-Sparagano, Mr Jonathan Scott and Dr Kathryn Musgrave.  Statistical 

work will be assisted by statisticians from the University.   

EXPECTED VALUE OF RESULTS 

To increase our understanding of the basic mechanisms under-pinning the susceptibility of 

critically ill individuals to infection. 

 

To identify novel therapeutic targets to improve the innate immune response in the critically ill. 
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PARTICIPANT INFORMATION SHEET: The Effects of Critical Illness on the Innate Immune System 

 

Researchers: Dr Kathryn Musgrave, Dr Anthony Rostron and Prof John Simpson 

 

You are being invited to take part in a research study.  Before you decide it is important for you to 
understand why the research is being done and what it will involve.  Please take time to read the 

following information carefully.  Ask us if there is anything that is not clear or if you would like more 
information. 

Thank you for reading. 

PART ONE 
 

What is the background and purpose of the study? 
Patients in an intensive care unit are more likely to develop an infection compared to other patients in a hospital.  

We believe that this is, in part, because of a problem with how their body fights infection. To treat infection we 

give antibiotic medicines but some bacteria are becoming resistant to these medicines.  It is therefore important 

that we find alternative treatments. 

 

White blood cells are essential to detect and fight infection.  Monocytes are a type white blood cells, they help to 

fight infection but it is not yet fully understood how monocytes interact with other cells in the body to trigger the 

body’s defence mechanisms.  We will take samples of blood to allow us to analyse the ways in which monocytes 

- and other types of white cells - react to infection. 

 

This study aims to better understand why patients staying in an intensive care unit are more likely to develop 

infections. We hope that this will allow us to identify ways in which the system could be helped to stop the 

increased number of infections in these patients. 

 

Why have you been invited to take part? 
You have been asked to take part because you are currently a patient on an intensive care unit and have been 

identified by the doctors and nurses looking after you.  

Do you have to take part? 
It is up to you to decide whether to take part.  If you do, you will be given this information sheet to keep and be 

asked to sign a consent form. You are still free to withdraw at any time and without giving a reason.  A decision 

to withdraw at any time, or a decision not to take part, will not affect the standard of care received by you now or 

at any stage in the future.  
 

How long can you take to decide? 
You should take as much time as you wish. 

 

What will happen to you if you take part? 
If you decide to take part in the study, you will be asked to provide written consent.  

What do I have to do? 
The study will involve two visits from a researcher.  At the first visit there will be discussion about your medical 

history and a blood sample will be taken.  At the second and final visit a further blood sample will be taken. 
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What are the possible disadvantages and risks of taking part? 
The taking of blood samples and may cause mild discomfort and bruising but wherever possible a tube already 

present in a blood vessel will be used. 

 
What are the possible benefits of taking part? 
There will be no direct benefits to you. 
 

Is there any reimbursement for taking part? 
No.  
 

What will happen when the study ends? 
You will continue with your usual care at the hospital. 
 

 

What if there is a problem? 
Any complaint about the way you have been dealt with during the study or any possible harm 

you might suffer will be addressed.  
 

Will your taking part in this study be kept confidential? 
Yes. All the information about your participation in this study will be kept confidential.  
 

Contact details 
Should you wish further information Dr Kathryn Musgrave (Haematology Registrar and 

Clinical Research Associate) or Prof John Simpson (Professor of Respiratory Medicine) will 

be happy to answer your questions. The best contact number is 0191 222 7770. 
 

This completes Part 1 of the Information Sheet. If the information in Part 1 has interested you 

and you are considering participation, please continue to read the additional information in 

Part 2 before making your decision.  Thank you. 
 

 

 

 

 

  



 278 

PART TWO 
 

What will happen if I wish to take part in the study? 
There will be two visits from the researcher. 

 

First visit (occurs once consent is given) 

During this visit there will be: 

4. Medical interview and review of medical records 
a. Discussion with a doctor where details are collected relating to but limited by: age; sex; 

ethnicity; cause for the ICU admission; other health problems; concurrent medications.  
5. Blood test 

a. A blood sample of 20ml (about a tablespoon) with be taken, this is a small amount that 
is similar to the amount of blood taken during a routine blood test.  

b. Wherever possible blood will be taken from a tube that is already in place in a blood 
vessel 

c. We will process the blood sample to isolate the white blood cells from other parts of the 
blood, the other part will be stored for subsequent analysis.  

d. Stored blood samples will be labelled with a unique anonymous identifier 
e. The blood will be taken by a medically qualified professional (either a nurse or a doctor). 

 

Second visit (occurs the next working day following discharge from the intensive care unit) 

During this visit there will be: 

1. Blood test 
a. A further blood sample of 20ml will be taken. 
b. This second sample allows us to compare how the white blood cells behave once an 

individual has recovered from illness 
 

What will happen if I don’t want to carry on with the study? 
Participation in this study is completely voluntary and you can decide to withdraw from the study at any time. 

Withdrawing from the study will not affect the care that you get from the NHS at any stage in the future. 

What if there is a problem? 
If you have a concern about your treatment by members of staff during the study, you should ask to speak with the 

researchers who will do their best to answer your concerns (a contact number is at the end of Part 1 of the 

Information Sheet). If you remain unhappy and wish to complain formally, you can do this through the NHS 

Complaints Procedure. Details can be obtained from your hospital. 

In the unlikely event that something goes wrong and you are harmed during the study there are no special 

compensation arrangements.  If you are harmed and this is due to someone’s negligence then you may have 

grounds for a legal action for compensation against the NHS/Newcastle University but you may have to pay for 

your legal costs.  The normal NHS complaints mechanisms will still be available to you.  

Will your taking part in the study be kept confidential? 
All information that is collected about you during the research will be kept strictly confidential. 

Will your GP be informed that you are taking part in the study? 
No. 
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Will any genetic tests be done? 
Yes. The genetic tests will help us understand how blood cells respond to illness. We shall not, at any point, be 

testing for genes associated with specific medical conditions.   
 

Will any information and material be stored? 
Yes, but only with your permission.  Information about you will be collected and entered onto a secure database.  

Access to this database will be password protected and only available to your doctors and the research staff.  All 

data stored on computers will not use your name – you will be given a unique study number under which all data 

and test results will be entered.   

Any blood that we obtain as part of the research will be processed in Professor Simpson’s research laboratory at 

Newcastle University.  We shall store the liquid component of blood (called serum or plasma) in freezers.  The 

samples will only be labelled with your unique study number (i.e. your name will not appear).   

It is possible that in the future new tests will become available that will help to predict the development of blood 

clots or infection.  Should this situation arise we may use your samples again, but this would be on condition that 

you agree to this, that you could not be identified from the sample except by our research team, and that we obtain 

fresh and separate permission from a Research Ethics Committee.  The Ethics Committee is completely 

independent from this study. 

We may share samples with other investigators or commercial organisations in the UK or internationally, to help 

further understanding of severe infection. If this is happens, the samples shared would be anonymous and external 

investigators or organisations would not be able to identify you. The anonymised data collected as part of the study 

may also be used to understand the sample analyses.  

This study is being overseen by Newcastle upon Tyne Hospitals NHS Foundation Trust.   

Authorised persons from the Trust or from other legally authorised regulatory bodies may 

look at some parts of your medical records and the data collected for the study.   This is to 

ensure the quality of the work being carried out. All will have a duty of confidentiality to you 

as a research participant and nothing that could reveal your identity will be disclosed outside 

the research site.   

What will happen to the results of the research study? 
We intend for the results of this study to be published in medical/scientific journals and presented at 

medical/scientific meetings. All information in the public domain will be anonymous and it will not be possible to 

identify you from these publications/presentations.  

Who is organising and funding the research?   
This study has been funded by Professor Simpson’s research group through an educational grant and will be 

overseen by the Newcastle Upon Tyne Hospitals NHS Foundation Trust and Newcastle University.  

 

Who has reviewed the study?  
This study has been reviewed by the Newcastle and North Tyneside Research Ethics 

Committee.  
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What if something goes wrong?  
 

If you have any concerns about any aspect of this study, you should contact the local Principal 

Investigator (Prof John Simpson, telephone number 0191 222 7770), who will do their best to 

answer your questions. If you remain unhappy and wish to complain formally, you can do this 

through the normal NHS Complaints Procedure.  
 

If something does go wrong and you are harmed due to someone’s negligence, then they you 

may have grounds for a legal action against their NHS Trust, but you may have to pay legal 

costs.  
 

Is there an independent doctor you can approach for further information? 
If you would like to discuss any aspect of this research with an experienced researcher who is not linked in any 

way to this study, please feel free to contact Dr Ian Forrest, Consultant Respiratory Physician, Newcastle upon 

Tyne Hospitals NHS Foundation Trust. 

Alternatively, you may prefer to raise your concerns through the Patient Advise and Liaison Service 

(PALS).  This service is confidential and can be contacted on Freephone: 0800 032 0202 

  

Alternatively, if you wish to make a formal complaint you can contact the Patient Relations Department through 

any of the details below: 

 

Telephone:          0191 223 1382 or 0191 223 1454 

Email:                   patient.relations@nuth.nhs.uk 

Address:              Patient Relations Department 

The Newcastle upon Tyne Hospitals NHS Foundation Trust 

The Freeman Hospital 

Newcastle upon Tyne 

NE7 7DN 

 

 

Thank you for taking the time to read this information.  

If you agree to take part in the study you will be given a copy of this information to keep, along with a copy of 

your signed consent form. 

 

 
 

mailto:patient.relations@nuth.nhs.uk
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PARTICIPANT CONSENT FORM: Investigating the effects of critical illness on the innate 
immune system 

 
Participant Number:______________ 
 

 
Researchers: Dr Kathryn Musgrave, Dr Anthony Rostron and Prof John Simpson 

 
 

 
  confirm that I have read and understood the information sheet dated 30/11//2017  

(version 1.0) for the above study.  I have had the opportunity to consider the 
nformation, ask questions, and have had these answered satisfactorily. 
 
 

  understand that my participation is voluntary and that I am free to withdraw at any 
time, without giving any reason, without my medical care or legal rights being affected.  
 

 
  understand that relevant sections of any of my medical notes and data collected during 

the study may be looked at by responsible individuals from regulatory authorities or 
from the NHS Trust.  I give permission for these individuals to have access to my 
records and understand that all information will be treated as confidential and in a way 
compliant with the Data Protection Act. 
 
 

  agree to a 20ml blood sample being taken on two occasions 
 
 

  agree to storage, in an anonymised fashion, of my blood samples for 5 years  
 

 
  agree to storage of information about my medical condition for 5 years 

 
 

  agree that my samples may be used in future studies, on condition that I understand 
the nature of any further research and the types of tests that will be done, that I cannot 
be identified from my samples, and that new ethical approval is granted for those 
studies. 
 

 f I become more unwell and I am no longer able to understand that the study is 
continuing, I agree that all the information and samples already collected can still be 
used and I agree that the second blood sample can be taken. 
 

 
 
 
 
 
   
Name of Patient Signature Date  
 
 
 
    
Name of Person taking consent Signature Date 

  
1 for participant; 1 for researcher; 1 for case notes 

 
 

Please initial in the box 
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PERSONAL CONSULTEE DECLARATION FORM:  
Investigating the effects of critical illness on the innate immune system 

 
 

Participant Number:______________ 
 

 
Researchers: Dr Kathryn Musgrave, Dr Anthony Rostron and Prof John Simpson 

 
 
1. I (__________________) have been consulted about (_________________ )’s  
participation in this research project. I confirm that I have read and understand the 
information sheet dated 30/11/17 (Version 1.0) for the above study. I have had the 
opportunity to consider the information, ask questions and have had these 
questions answered satisfactorily.    

 
 

2. I understand that his/her participation is voluntary and that I am free to withdraw 
them at any time, without giving any reason, without their medical care or legal 
rights being affected. 

 
 
3. I understand that relevant sections of any of his/her medical notes and data 
collected during the study may be looked at by responsible individuals from 
regulatory authorities or from the NHS Trust.  I give permission for these 
individuals to have access to their records and understand that all information will 
be treated as confidential and in a way compliant with the Data Protection Act. 

 
 
4. I agree to a 20ml blood sample being taken on two occasions 

 
 
       5. I agree to storage, in an anonymised fashion, of his/her blood samples for 5 years  
 

 
        6. I agree to storage of information about his/her medical condition for 5 years 
 

 
7. I agree that these samples may be used in future studies, on condition that 
he/she understand the nature of any further research and the types of tests that 
will be done, that his/her cannot be identified from the samples, and that new 
ethical approval is granted for those studies. 

 
 

 
 
   
Name of Consultee Signature Date  
 
 
Relationship to participant: ____________________________________________________ 
 
 
 
 
   
Name of Person taking consent Signature Date 

  
1 for consultee; 1 for researcher; 1 for case notes 

 

Please initial in the box 
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PROFESSIONAL CONSULTEE DECLARATION FORM:  
Investigating the effects of critical illness on the innate immune system 

 
 

Participant Number:______________ 
 

 
Researchers: Dr Kathryn Musgrave, Dr Anthony Rostron and Prof John Simpson 

 
 
1. I (__________________) have been consulted about (_________________ )’s  
participation in this research project. I confirm that I have read and understand the 
information sheet dated 30/11/17 (Version 1.0) for the above study. I have had the 
opportunity to consider the information, ask questions and have had these 
questions answered satisfactorily. I am independent of this study.    

 
 

2. I understand that his/her participation is voluntary and that I am free to withdraw 
them at any time, without giving any reason, without their medical care or legal 
rights being affected. 

 
 
3. I understand that relevant sections of any of his/her medical notes and data 
collected during the study may be looked at by responsible individuals from 
regulatory authorities or from the NHS Trust.  I give permission for these 
individuals to have access to their records and understand that all information will 
be treated as confidential and in a way compliant with the Data Protection Act. 

 
 
4. I agree to a 20ml blood sample being taken on two occasions 

 
 
       5. I agree to storage, in an anonymised fashion, of his/her blood samples for 5 years  
 

 
        6. I agree to storage of information about his/her medical condition for 5 years 
 

 
7. I agree that these samples may be used in future studies, on condition that 
he/she understand the nature of any further research and the types of tests that 
will be done, that his/her cannot be identified from the samples, and that new 
ethical approval is granted for those studies. 

 
 

 
 
   
Name of Consultee Signature Date  
 
 
Professional title: ____________________________________________________ 
 
 
 
 
   
Name of Person taking consent Signature Date 

  
1 for consultee; 1 for researcher; 1 for case notes 

 

Please initial in the box 



 284 

  
             

 

RECOVERED CAPACITY CONSENT FORM:  
Investigating the effects of critical illness on the innate immune system 

 
Participant Number:______________ 
 

 
Researchers: Dr Kathryn Musgrave, Dr Anthony Rostron and Prof John Simpson 

 
 

 
  confirm that I have read and understood the information sheet dated 30/11//2017  

version 1.0) for the above study.  I have had the opportunity to consider the 
nformation, ask questions, and have had these answered satisfactorily. 
 
 

  understand that my participation is voluntary and that I am free to withdraw at any 
ime, without giving any reason, without my medical care or legal rights being affected.  

 
 

  understand that relevant sections of any of my medical notes and data collected during 
he study may be looked at by responsible individuals from regulatory authorities or 

from the NHS Trust.  I give permission for these individuals to have access to my 
records and understand that all information will be treated as confidential and in a way 
compliant with the Data Protection Act. 
 
 

  agree to a 20ml blood sample being taken on two occasions 
 
 

  agree to storage, in an anonymised fashion, of my blood samples for 5 years  
 

 
  agree to storage of information about my medical condition for 5 years 

 
 

  agree that my samples may be used in future studies, on condition that I understand 
he nature of any further research and the types of tests that will be done, that I cannot 

be identified from my samples, and that new ethical approval is granted for those 
studies. 
 

 f I become more unwell and I am no longer able to understand that the study is 
continuing, I agree that all the information and samples already collected can still be 
used and I agree that the second blood sample can be taken. 
 

 
 
 
 
 
   
Name of Patient Signature Date  
 
 
 
    
Name of Person taking consent Signature Date 

  
1 for participant; 1 for researcher; 1 for case notes 

 
 

Please initial in the box 
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DATA COLLECTION SHEET                         Participant 

Number:____________________ 

Age (years): ___________ 

 

Sex (delete as appropriate):    MALE/FEMALE 

 

Ethnicity (tick as appropriate): 

 

White     _______________  

 

Black or Black British   _______________ 

 

Asian or Asian British    _______________ 

 

Mixed     _______________ 

 

Other (please specify)   _______________ 

  

Does not wish to disclose  _______________ 

Cause of admission to the Critical Care Unit: _________________________________________ 

 

Co-morbidities: 

DEMOGRAPHICS 

ADMISSION DETAILS 
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Current Medications: 

Are they currently requiring: (tick all that apply) 

 

Invasive ventilation     Non-invasive ventilation

  

 

 

Inotropic support     Haemofiltration/dialysis 

 

Do they have a diagnosis of sepsis?  (delete as appropriate):    YES/NO 

 

If yes, please complete the below section: 

 

Presumed focus of infection________________________________________________ 

 

Was the focus of infection found through (complete all relevant parts): 

 

Clinical presentation 

 

Please give details:________________________________________________________ 

 

________________________________________________________________________ 

 

 

Radiological evidence 

 

DIAGNOSIS OF SEPSIS 
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Please give details:________________________________________________________ 

 

________________________________________________________________________ 

 

 

Microbiological evidence 

 

Please give details:________________________________________________________ 

 

________________________________________________________________________ 

 

 

Complete the following table using data recorded now and during the first 24 hours of 

admission (choose the worst recorded levels). 

 

  

Worst recorded in 

first 24hrs of ICU 

admission 

At first study visit 

Clinical condition 
  

Age     

Severe organ dysfunction or 

immunocompromise prior to admission 

(see below)*     

Acute renal failure?     

Post elective surgery?     

Post emergency surgery?     

 
    

Observations     

Glasgow Coma Score (GCS)     

Temperature     

Mean arterial pressure (MAP)     

PROGNOSTIC SCORE  
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Heart rate     

Respiratory rate     

FiO2     

PaO2     

PaCO2     

Urine output (mL per day)     

 
    

Blood tests     

arterial pH     

Haematocrit     

white blood count     

Platelets     

Serum sodium     

Serum potassium     

Creatine     

Bilirubin     

 
    

Inotropes (tick all that apply):     

Dobutamine     

Dopamine (≤5μg/kg/min)     

Dopamine (>5μg/kg/min)     

Epinephrine (≤0.1μg/kg/min)     

Ephinephrine (>0.1μg/kg/min)     

Norepinephrine (≤0.1μg/kg/min)     

Norephinephrine (>0.1μg/kg/min)     

* Definitions of immunocompromise and organ dysfunction (tick all that apply): 

 

All must have occurred prior to this admission 
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Tick all that 

apply 

Cardiovascular dysfunction 

NYHA class IV (Severe limitations. Experiences symptoms even 

while at rest.)   

    

Renal dysfunction 

need for chronic dialysis   

    

Liver dysfunction 

biopsy proven cirrhosis   

portal hypertension   

previous upper GI bleed secondary to portal hypertension   

previous coma secondary to hepatic failure   

    

Respiratory dysfunction 

severe exercise restriction due to chronic restrictive, obstructive 

or vascular disease   

chronic hypoxia or hypercapnia   

secondary polycythaemia   

severe pulmonary hypertension   

respirator dependent   

    

Immunocompromise 

received radiation therapy   

long-term steroid use   

disease that affects the immune system    

Please note:  high dose steroid therapy (>equivalent prednisolone 10mg/kg), 

haematological malignancy and HIV infection are exclusion criteria for this study 

 

END 
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