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ABSTRACT
In this paper, the nonlinear Umodel with time-varying coefficients is investigated and the trans-
formation of the nonlinear model is accomplished by the Newton iterative algorithm. Based on
the nonlinear Umodel, a control algorithmwith cerebellarmodel articulation controller and pro-
portional derivative (PD) in parallel is proposed. The algorithm learns online through a neural
network while optimizing the output of the PD, which ultimately enables the actual output of
the system to track up to the desired output. Considering that the nonlinear object has the char-
acteristic of rapid changewith time, the article improves thePDalgorithmtononlinear PDcontrol
algorithm to complete the design of the system. The algorithmautomatically adjusts theweights
according to the error magnitude to complete the controller parameter adjustment, thus reduc-
ing the error of the system. The simulation results show that the nonlinear PD algorithm is better
than the PD algorithm, meanwhile, the tracking speed and control precision of the system are
improved.
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1. Introduction

Non-linear characteristics are prevalent in the actual
production process and have been studied by a large
number of scholars, who have proposed researchmeth-
ods such as point linearization, segmental lineariza-
tion, inverse step feedback linearization and feed-
back input–output linearization. Segment linearization
means dividing the input/output curve of a nonlin-
ear system into several segments, replacing the cor-
responding segments with linear segments, and then
approximating the corresponding linear segments with
a linear system model [1]. Inverse feedback lineariza-
tion is a composite design that combines controller
inverse step design with feedback linearization [2]. The
input–output linearization is defined based on the order
of the nonlinear system, and the minimum phase non-
linear system is linearized using an output feedback and
coordinate transformation algorithm to complete the
feedback input–output linearization [3]. Neural net-
works have powerful learning ability and fault toler-
ance, and achieve an infinite approximation of con-
trolled objects, and their learning algorithms are sim-
ple and easy for computer implementation, which is
a common modelling method. A neural network lin-
earization design has been proposed, using neural net-
works to compensate for the errors produced by lin-
earization [4,5]. However, some existing methods for
designing nonlinear systems have certain limitations,
as well as modelling errors, poor generalizability, and
complex algorithms. Thus, the nonlinear U model was

developed in this context, which is a polynomial with
time-varying parameters and represents a large class of
smooth nonlinear systems with high generality, high
accuracy and ease of controller design [6,7].

Based on the biological finding that the cerebellum
makes reflexive responses without thinking when con-
trolling limbmovements, scholars have proposed a new
type of neural network, named the cerebellar model
neural network, or cerebellar model articulation con-
troller (CMAC) network for short. CMAC networks
have strong associative capabilities, and the output
of the network is determined by only a small num-
ber of neurons corresponding to the network weights,
the input and output of a CMAC network appears
to be a linear relationship. Such characteristics make
CMAC have fast learning ability, strong fault toler-
ance, fast convergence speed, no local minimal prob-
lems and other characteristics, so it is widely used in
robot arm control, adaptive control, robot control, pat-
tern recognition, signal processing and other fields.
Adaptive fuzzy CMAC neural network controller for
pneumatic artificial muscle-driven spring mass posi-
tion control system [8]. In order to solve the control
problem of uncertain nonlinear systems and the prob-
lem of system mixed interference upper bound that is
difficult to measure in practical applications, a recur-
sive CMAC neural network model decomposition con-
trol algorithm is proposed [9]. In order to compen-
sate the hysteresis nonlinearity inherent in the tele-
scopic actuator caused by the super magnetism and to
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improve its accuracy, a real-time hysteresis compensa-
tion control strategy is proposed by combining CMAC
neural network and proportional integral derivative
(PID) control to achieve high-precision tracking con-
trol [10]. In view of the nonlinear, large inertia and
time-varying characteristics of the temperature control
system of central air-conditioning room, the compos-
ite control of CMAC neural network and single neu-
ron PID was proposed [11]. A nonlinear quantization-
based CMAC neural network algorithm is proposed,
which adaptively designs the conceptual mapping of
CMAC and improves the computational speed and
accuracy of CMAC to meet the needs of nonlinear
real-time control in complex dynamic environments
[12]. To address the nonlinearity and various uncer-
tainty factors in high-precision servo systems, the fast
learning of PD+ feed-forward control+CMACneural
network algorithm is proposed, which ensures fast real-
time tracking and further improves tracking accuracy
[13]. Taking electro-hydraulic servo system as the con-
trol object, the control strategy of combining CMAC
network and PID controller is discussed. The CMAC
neural network is used as a feedforward controller to
achieve the inverse dynamic control [14]. To address the
problem of poor control effect of temperature control
system in metal heat treatment process, a compound
control algorithm based on CMAC and PD is proposed
to realize the fast tuning and self-learning function of
PID parameters [15].

Since the nonlinear objects are not approximated
by the U-model, model accuracy is guaranteed. At the
same time, considering the polynomial expression of
the model, the Newtonian iterative algorithm is used to
transform the model, after which the nonlinear objects
can easily be used to complete the system design using
linear system design [16]. Based on these character-
istics, the U model is widely used. An internal mode
control technique based on theU-model is proposed for
the adaptive control of nonlinear dynamic objects such
as DC motors [17]. Hasan et al. designed an adaptive
controller based on the U-model for a gas equipment
control device and demonstrated that theU-model out-
performed other models by comparing it with other
models [18]. An adaptive U-model online airflow iden-
tification device is proposed to achieve adaptive online
tuning of system parameters [19]. The U model is
applied to an electrically excited synchronous motor,
and an anti-interference controller is designed on the
basis of the U model [20]. In order to improve the
robot’s trajectory tracking speed, a U-model-based tra-
jectory tracking controlmethod is proposed, which also
alleviates the requirement of dynamic mathematical
model and simplifies the design of the robot trajectory
tracking controller [21]. A new U-model-based sliding
mode augmented controlmethod for controlling a class
of single input single output (SISO) dynamic systems
with internal uncertain parameters and external system

control noise/disturbance is proposed [22]. Presents a
weighted multiple U-model control scheme to address
the control problem of some classes of discrete-time
nonlinear systems with large parameter uncertainties
including parameter jumps [23].

The article proposes a design scheme for the parallel
control of CMAC neural networks and traditional PD
to achieve basic control of nonlinear U-model objects.
In order to improve the speed and accuracy of non-
linear system control, on the basis of conventional PD,
a parallel control design of CMAC neural network
and nonlinear PD is proposed to complete the adjust-
ment of system performance, we can learn quickly for
time-varying objects and achieve system convergence
through algorithmic adjustment.

2. Nonlinear U-model

In 2002, the concept of U-model was first explicitly pro-
posed by Prof. Zhu Quanmin in the literature [7], using
a simple generic mapping to convert almost all smooth
nonlinear discrete systems into mathematical expres-
sions that can be used in linear control system design
methods. The model expression is as follows:

y(t) =
M∑
j=0

aj(t)uj(t − 1) + ej(t) (1)

Here, y(t) represents the actual output of the nonlinear
system, j is the order of the input system, u represents
the actual control input of the nonlinear system.M rep-
resents the nonlinear controlled object order, and n rep-
resents the maximum delay of input and output, aj(t)
represents the time-varying coefficient of the nonlin-
ear system as a function between y(t − 1), y(t − 2), · · ·,
y(t − n), u(t − 2), · · ·, u(t − n) and ej(t − 1), ej(t − 2),
· · ·, ej(t − n). ej(t) represents the error caused by the
uncertainties of the nonlinear system, such as mod-
elling, external interference, etc. Further transform the
model of the nonlinear system, assuming

U(t) = y(t) (2)

U(t) =
M∑
j=0

aj(t)uj(t − 1) + ej(t) (3)

The expression (3) is generally regarded as a nonlinear
Umodel. In designing the controller,U(t) in (3) can be
designed using linear control, then solved for u(t − 1)
using Newton’s iterative solution equation, and finally
input into the actual object to get the actual output.

In Figure 1, ym(t) represents the given signal of the
system, compare it with the actual output y(t), and the
difference obtained is used as the input of the con-
troller. The control variables of the system are obtained
by the controller, and the approximate value of the last
time is obtained by Newton iteration, which acts on
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the controlled object and finally outputs y(t). Model
transformation is the part from Newton iteration to
controlled object output.

It can be seen that Newton iteration plays an impor-
tant role in the nonlinear U model control system.

The Newton iteration algorithm is:

xn+1 = xn − f (xn)
f ′(xn)

(4)

suppose x is the root of f (x) = 0, then xn+1 is called
an approximate solution to the n + 1 degree of x, f (xn)
is the value of the function at xn, f ′(xn) is the partial
derivative at xn.

In the article:

u(t − 1)k = u(t − 1)k−1 − y(t) − U(t)
d[y(t)]/du(t − 1)

.

= u(t − 1)k−1

−

M∑
j=0

aj(t)uj(t− 1)−U(t)

d

[
M∑
j=0

aj(t)uj(t−1)

]

du(t−1)

∣∣∣∣∣∣∣∣∣∣∣
uj(t−1)=ujk(t−1)

(5)

k represents the number of iterations.
Compared with other models, nonlinear U model

has many advantages: First of all, the U-model has high
universality; Secondly, the application of Newton iter-
ation can apply the design scheme of linear control
to the design of nonlinear control, providing a good
theoretical support for the large-scale application of U
model. The transformation of the nonlinear U model
does not lose any information of the original controlled
object, so the high accuracy of the model is guaranteed
(Figure 1).

3. CMAC neural network

CMAC neural network consists of three layers: Input
layer, middle layer and output layer. Nonlinear map-
ping technology is used between the input layer and
the middle layer, and linear mapping technology is
used between the middle layer and the output layer.
The nonlinear relationship between input and output
of CMAC network is realized by two basic mappings:
conceptual mapping and practical mapping. This paper

Figure 1. Standard control design drawing for nonlinear U
model.

Figure 2. Structural diagram of cerebellar model neural
network.

adopts SISO CMAC network. The structural diagram
of CMAC neural network is shown in Figure 2.

Concept mapping is a mapping from input space
to concept memory AC. Assuming that the input
space vector is unT , n is the number of quantifica-
tions, and the input space is mapped to c storage
units in AC, and c << n. The mapped vector Rn =
[s1(un), s2(un), · · ·, sc(un)]T . The mapping principle is
that in the input space, two adjacent input data have
partially identical units activated at AC (same output).
The greater the degree of adjacent, the more identi-
cal units; the smaller the degree of adjacent, the fewer
identical units. This mapping is often called local gen-
eralization, where c is the generalization parameter.
Actual mapping is the mapping from the c-cells in A
to the c-cells in AP, which is the actual memory, using
encoder technology. In each of these c units, corre-
sponding weighted values are stored, and the actual
output of the network is finally obtained through the
sum of these c weighted values.

The algorithm of CMAC network is as follows:

y =
c∑

j=1
wj(t)sj(un) (6)

wj(t) is the weighted value of the neural network.
The indicators of weight adjustment is:

J = 1
2c
e(t)2 (7)

In(7), e(t) = rin(t) − yout(t), rin(t) is the mentor sig-
nal, which is the ideal output value.

Adopt the gradient descent method to adjust the
weights online:

�wj(t) = −η
∂J

∂wj(t)
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= −η
rin(t) − yout(t)

c
· ∂yout(t)

∂wj(t)

= η
e(t)
c

(8)

wj(t) = wj(t − 1) + �wj(t)

+ α(wj(t − 1) − wj(t − 2)) (9)

In (9), α is the inertia coefficient.
CMAC network has many advantages in practical

applications: First, it is a neural network based on local
learning, with a small number of weights adjusted each
time and a fast learning speed, which is suitable for
real-time control; second, CMAC has a strong general-
ization capability, that is, similar input produces similar
output, different input gives different output; third, as a
nonlinear approximator, it is insensitive to the order in
which the learned data appear; fourth, it has the ability
of continuous (analog) input and output; fifth, address
programming is adopted. When using serial computer
simulation, it can speed up the response speed. Based
on the above advantages, CMAC has better nonlinear
approximation ability than general neural networks. It
is more suitable for the nonlinear real-time control in
complex dynamic environment.

4. Parallel controller design

4.1. Parallel control design of CMAC neural
network and PD controller

Considering the universality of the controller design,
conventional PD is selected as the controller of the
system, and CMAC neural network is adopted as the
feedforward controller. The parallel composite control
algorithm of neural network and PD is designed to
improve the stability and anti-interference ability of
the control system. The CMAC neural network here is
SISO, and its structure is shown in Figure 3.

The controller is designed to take the given signal
r(t) of the system as the input value of the CMAC neu-
ral network, and adjust the weight value wj(t) by the
difference between the actual output value of the neu-
ral network and the control quantityU(t) of the system.
In addition, PD control can optimize the neural net-
work learning process according to the dynamic char-
acteristics of the system and improve the stability and

Figure 3. CMAC and PD parallel control system structure
diagram.

interference resistance of the controller. At the end of
each control process, the output u2(t) of CMAC neural
network is compared with the system control quantity
U(t) to correct the weight and enter the learning stage
of neural network. The purpose of learning is to mini-
mize the difference between the system control quantity
and the output of the neural network, that is, the sys-
tem control quantity is generated by the neural network
controller. The output of CMAC neural network is:

u2(t) =
c∑

j=1
wj(t) (10)

PD output:

u1(t) = kpe(t) + kde(t) (11)

System control quantity:

U(t) = u1(t) + u2(t) (12)

The performance index function of the network is:

J = 1
2c

(U(t) − u2(t))2 = 1
2c
u12 (13)

According to the gradient descent method, the partial
derivative of wj(t) is obtained as follows:

�wj(t) = −η
∂J

∂wj(t)
= η

U(t) − u2(t)
c

= η
u1(t)
c
(14)

η is the learning rate of the network, which is the nor-
mal number. The iterative algorithm of output weight is
as follows:

wj(t) = wj(t − 1) + �wj(t) + α(wj(t − 1)

− wj(t − 2)) (15)

In (15), α is the coefficient of inertia and is the normal
number.

4.2. Parallel control design of neural network and
nonlinear PD controller

The expression form of the nonlinear U model estab-
lished in this paper is time-varying polynomial, which
needs to quickly adjust the characteristics of the con-
troller. The coefficient learning of neural networks
using conventional PD has some limitations in terms
of speed and is not ideal for the control of nonlin-
ear systems and time-varying parameter perturbations.
Therefore, a parallel control design of CMAC neural
network and nonlinear PD is proposed, in which the
time-varying objects are quickly learned and the system
converges through algorithmic adjustment. The con-
trol system adopts the control structure as shown in
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Figure 4. General system step response curve.

Figure 3. The controller PD is changed to nonlinear PD,
and the output of nonlinear PD is:

u1(t) = kpf e(t) + kdf e(t) (16)

The step response curve for a general system is shown
in Figure 4. The design concept of a nonlinear PID con-
troller can be derived from the analysis of this curve.
In this paper, nonlinear PD control is adopted, so only
proportional anddifferential parameters are introduced
here.

Proportional gain parameter kpf :In phase 0 ≤ t ≤
t1, in order to speed up the response speed of the sys-
tem, the initial value of parameter kpf should be rela-
tively large. Meanwhile, in order to avoid overshoot as
far as possible, when the error value e decreases grad-
ually, parameter kpf should also decrease with it. In
phase t1 ≤ t ≤ t2, in order to increase the reverse con-
trol of the controller and reduce the overshoot of the
system, parameter kpf should be gradually reduced. In
phase t2 ≤ t ≤ t3, in order to make the actual output
of the system return to the desired point quickly and
avoid large inertia, parameter kpf should be gradually
reduced. In phase t3 ≤ t ≤ t4, in order to reduce the
error, parameter kpf should increase, which is the same
as in phase t1 ≤ t ≤ t2. To sum up, the variation rule of
parameter kpf with error e is shown in Figure 4, accord-
ing towhich a corresponding nonlinear function can be
constructed:

kpf (e(t)) = ap + bp(1 − sech(cpe(t))) (17)

In (17), ap, bp, cp are positive real constants. When
e → ±∞, kpf takes themaximum value ap + bp.When
e = 0, kpf takes the minimum value ap; bp is the inter-
val of variation of kpf , and the rate of change of kpf can
be adjusted by changing cp.

Differential gain parameter kdf : In phase 0 ≤ t ≤ t1,
in order to speed up the response and avoid overshoot

as much as possible, parameter kdf should be gradu-
ally increased from small to large. In phase t1 ≤ t ≤
t2, in order to increase the reverse control and reduce
the overshoot, we should continue to increase kdf . At
t2, reduce the parameter kdf , after that, it gradually
increases by kdf again in phase t2 ≤ t ≤ t4, thus inhibit-
ing the overshoot. To sum up, the variation rule of
parameter kdf with error e is shown in Figure 4, and
a nonlinear function is constructed according to the
figure:

kdf (e(t)) = ad + bd
1 + cdexp(dde(t))

(18)

In (18), ad, bd, cd, and dd are positive real constants, the
maximum and minimum values of kdf are ad + bd and
ad, respectively. When e = 0, kdf = ad + bd/(1 + cd),
change dd adjusts the rate of change of kdf . The nonlin-
ear PD parameter change curve is shown in Figure 5.

Nonlinear PD is used to realize the control, mainly
considering the change of P and D parameters with
the change of control error. Especially for the nonlin-
ear objects represented by the time-varying U-model, it
can realize fast real-time control, improve the response

Figure 5. Nonlinear PD parameter change curve.
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speed of the system, improve the control accuracy and
anti-interference ability of the system. The design steps
for parallel control of neural networks and nonlinear
PD are the same as above.

5. System simulation

Simulation 1: Taking the continuous stirred tank reac-
tor as an object, the general model of the system is ẏ =
−(1 + 2a)y + au − uy − ay2. In the formula, y repre-
sents the output of the controlled object, as a dimen-
sionless of the concentration of a component. u repre-
sents the input of the controlled object, as a dimension-
less of flow rate. The above equation is discretized and
processed into the form of U model:

U(t) = a0(t) + a1(t)u(t − 1) + a2(t)u2(t − 1)

+ a3(t)u3(t − 1)

Where,

a0(t) = 0.8606y(t − 1) − 0.0401y2(t − 1)

+ 0.0017y3(t − 1) − 0.000125y4(t − 1)

a1(t) = 0.0464 − 0.045y(t − 1) + 0.0034y2(t − 1)

− 0.00025y3(t − 1)

a2(t) = −0.0012 + 0.0013y(t − 1)

− 0.0001458y2(t − 1)

a3(t) = 0.00002083 − 0.00002083y(t − 1)

CMAC neural network parameters: The quantiza-
tion number n is 100, the learning rate η is 0.9, the
inertial coefficient α is 0.01, and the generalization
parameter c is 8. CMAC concept mapping:

s(t) = round
[
(r(t) − xmin) · n

xmax − xmin

]

where, xmax and xmin are the maximum and mini-
mum values of the input value, where the values are
0.5 and −0.5 respectively. rin(t) is the input value of
the neural network, namely the ideal output value.
The actual mapping of CMAC, where the code map-
ping technique uses the divisor remainder method:
ad(i) = (s(t) + i MOD N) + 1, where, i = 1, 2, · · ·, c,
and N = c. Nonlinear PD parameters: When the input
signal is a square wave, ap = 0.7, bp = 0.1, cp = 0.1,
ad = 0.01, bd = 0.01, cd = 0.1, dd = 0.1. When the
input signal is a triangular wave, ap = 1, bp = 1, cp =
1, ad = 0.1, bd = 0.1, cd = 0.1, dd = 0.1. Fixed PD
parameters: When the input signal is a square wave,
kp = 0.35, kd = 0.01. When the input signal is a trian-
gular wave, kp = 0.4, kd = 0.05.

Figures 6 and 8, respectively, show the output
response of the control system in the case of two con-
trol algorithms. It can be seen from the figure that the

Figure 6. Control effect of the stirrer control system.

Figure 7. Stirrer control system control input signal.

Figure 8. Control effect of the stirrer control system.

improved control algorithm based on the combination
of CMAC and nonlinear PD, compared with the con-
trol method based on the combination of CMAC and
traditional PD, the system output is closer to the ideal
output, and the control accuracy is high. As can be seen
from Figures 7 and 9, the improved control algorithm
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Figure 9. Stirrer control system control input signal.

has a faster system response speed and shorter adjust-
ment time.

Simulation 2: The nonlinearmodel of laboratory liq-
uid level control system is used to verify the rationality
of the controller design. The U model of the system
liquid level control system is:

y(t) = a0 + a1u(t − 1)

where,

a0(t) = 0.9722y(t − 1) − 0.04288y2(t − 2) + 0.1663

× y(t − 2)u(t − 2) + 0.2573y(t − 2)e(t − 1)

− 0.03259y2(t − 1)y(t − 2) − 0.3513y2(t − 1)

× u(t − 2) + 0.3084y(t − 1)y(t − 2)u(t − 2)

+ 0.2939y2(t − 2)e(t − 1)

− 0.1295u(t − 2) + 0.6398u2(t − 2)e(t − 1)

a1(t) = 0.3578 − 0.3103y(t − 1) + 0.1087y(t − 2)

× u(t − 2) + 0.4770y(t − 2)e(t − 1)

The parameter of the CMAC network when the input
signal is sinusoidal: The quantization series n is 100, the
generalization parameter is 8, the learning rate param-
eter is 0.9, the inertia coefficient is 0.01, the weight
values are initialized to 0, and the initial values of kp
and kd are 0.3 and 0.01 respectively. The parameters
of the CMAC network when the input signal is a tri-
angular: The parameters of CMAC network are: the
quantization series n is 100, the generalization param-
eter is 8, the learning rate parameter is 0.85, the inertia
coefficient is 0.01, the weight values are initialized to
0, and the initial values of kp and kd are 0.35 and 0.01,
respectively.

It can be seen from Figures 10 and 12 that the con-
trol algorithm using the combination of CMAC and
non-linear PD has a smaller tracking error, and the
algorithm’s anti-interference ability is enhanced. Sim-
ulation Figures 11 and 13 show that the response speed

Figure 10. Control effect of liquid level control system.

Figure 11. Control input of liquid level control system.

Figure 12. Control effect of liquid level control system.

of the system is accelerated by the improved control
algorithm.

The simulation results show that, because the non-
linear object is time-varying, the nonlinear PD con-
troller can optimize the tracking speed of the time-
varying nonlinear system, obtain the control signalwith
good smoothness, reduce the fluctuation of the system,
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Figure 13. Control input of liquid level control system.

and improve the control accuracy and response speed
of the system.

6. Conclusion

For the time-varying nonlinear U model object, this
paper proposes the design of a nonlinear control sys-
tem with CMAC neural network parallel to conven-
tional PD. The control algorithm can effectively track
the ideal output and obtain a smooth control input.
On this basis, the influence of neural network con-
troller learning speed on system performance is anal-
ysed, and a nonlinear PD control algorithm is pro-
posed. The algorithm automatically adjusts the weights
according to the size of the error according to the
real-time changes of the object, and adjusts the con-
troller parameters online to reduce the error of the
system. This method can optimize the tracking speed
of fast-varying nonlinear systems, improve the con-
trol accuracy of the system, and provide an effec-
tive solution for the control of time-varying nonlinear
systems.
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