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ABSTRACT
In this paper, we introduce a methodology for the detection and segmentation of automobiles
in urban scenarios.We use the LiDAR VelodyneHDL-64E to scan the surroundings. Themethod is
comprisedof three steps: (1) remove facades, groundplan, andunstructuredobjects, (2) smooth-
ing data using robust principal component analysis (RPCA), and finally, (3) unstructured objects
model and indexing. The dataset is partitioned into trainingwith 4500 objects and testwith 3000
objects. Mean Shift thresholds, the filter, the Delaunay parameters, and the histogrammodelling
are optimized via ROC analysis. It is observed that the car scan quality affects our method to a
lesser degree when compared with state-of-the-art methods.
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Introduction

Object recognition from point clouds is a challeng-
ing computer vision problem due to noise, sparse data,
and scenarios’ wide variability. Moreover, data acquired
by the LiDAR Velodyne 64E sensors contains partially
scanned objects, making the problem more interest-
ing, and a common practice is to register multiple
point clouds [1]. This paper proposes a method for
the segmentation and recognition of automobiles in
LiDAR generated point clouds. Figure 1(a) shows our
acquisition platform capable of performing a mobile
mapping from static or dynamically. Platform consist
of three data sources: a LiDAR, a panoramic camera,
and a Global Positioning System (GPS). Mobile map-
ping refers to the collection of data from multiple geo-
referenced sources. Applications are numerous, such as
cartography, archaeology, geography, geomorphology,
seismology, and atmospheric physics.

3D modelling of cities can solve traffic problems,
prevent disasters in mines, and help design cities with
organized growth [2]. For example, in [3], the authors
perform 3D building detection and modelling by pro-
cessing airborne LiDAR point clouds. As safety appli-
cations using airborne LiDAR scanning stand out from
the work of [4], the authors’ monitor power-line net-
works for vegetation clearance stating that the safety of
the electrical network infrastructure can significantly
affect our daily lives. In autonomous driving applica-
tions, the work presented in [5] stands out where they
segment and classify objects frompoint clouds obtained
with a LiDAR mounted on the roof of a vehicle. Their

approach combines 2D and 3D techniques reaching
real-time performance at 0.1 FPS. Object segmenta-
tion in 3D point clouds is a growing field of study
due to the need to characterize and recognize objects
scanned with LiDAR or segment sizeable 3D point
clouds. Object segmentation is the early step towards
more advanced robotic behaviours; for example, robots
need to localize objects before attempting tasks such
as grasping, manipulation, or path planning [6–11].
In [12] is proposed as a solution to automate mobile
robots by segmenting the urban scene. In one point
cloud, they stored the building’s facade and the ground,
and on another, they stored the foreground. Finally, the
authors grouped objects such as cars, people, and walls.

Google’s autonomous driving cars [13] can detect
and track obstacles on their way for safe driving. The
equipment of this car includes multiple sensors and
cameras, including a LiDAR that generates a map of
the environment; radars that detect the closeness of
the objects allowing safe in traffic navigation; cam-
eras located on the rear-view mirrors used to detect
semaphore’s lights; GPS, IMU (Inertial Measurement
Unit) and an encoder on one wheel that determines the
precise location of the car. Their system combines laser
measurements with high-resolutionmaps to determine
the location of the car. Our approach is quite different
sincewe aim to segment parked or carsmoving in urban
scenes to perform 3D reconstruction of the scene with-
out the cars leaving the rest of the scene objects such as
facades, trees, lampposts, Etc. In [14], the authors pro-
pose a data fusion system based on scanner laser and
computer vision. The pedestrians are detected using
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a pattern matching approach with the LiDar data and
Histogram of Oriented Gradients (HOG) with cam-
era data. Both detections are fused, and the move-
ment of the pedestrians is computed with Kalman
Filter (KF), and Unscented Kalman Filter (UKF)
approaches.

Regarding indexing and matching 3D point clouds,
[15] introduced a recognition approach based on 3D
interest points’ indexing. A set of interest points rep-
resent each site, where each point contains a descrip-
tor vector. A comparison between two sets of points
decides the similarity between two places. In [16], the
authors proposed a method to detect interest points in
3D meshes using a modified Harris detector. We use a
different approach for the indexing using a histogram
of normal vector directions to the object surface. With
the 3D reconstruction of the urban environment with-
out obstacles such as pedestrians, parked cars, Etc., we
need to automatically detect and remove these obsta-
cles. This work introduces a new method of segmen-
tation, filtering, and detection of automobiles in point
clouds.

1. Object segmentation

Point clouds of urban environments contain struc-
tured and unstructured objects. Structure objects are
the ground and facades; unstructured objects do not
have simple shapes such as trees, pedestrians, cars, Etc.
Our segmentation method first detects and extracts
structured objects from the point clouds, and then,
the remaining points are segmented using Mean Shift.
In [17], the authors provide a detailed assessment of
the Mean Shift algorithm for the tree segmentation
using airborne LiDAR data. Figure 1(b) shows the seg-
mentation algorithm’s modules and their place in our
automobile indexing approach.

1.1. Planes extraction

Points from the ground plane are detected and
extracted from the point cloud using the method
proposed in [18], thenwedetect and extract the facades.
The extraction of the points corresponding to the
ground plane uses a threshold of α. In this work, we
improve the threshold obtained from the measurement
system’s uncertainty using Equation (1) from [19]. It is
common to use the expression (Equation (1)) to cal-
culate an instrument’s measurements; we adapted it to
obtain a reference point that discriminates planes from
other objects. We use the calibration obtained in [20],
where the variance of the sensor calibration is 2.22 cm2,
and a mean error of 1.56 cm.

U = k ∗ uc(y) = k ∗
√
U2
cal + U2

p + U2
w + |b| (1)

Where U2
cal is the calibration variance of the LiDAR

sensor, U2
p is the sum of the errors in the measurement

process, U2
w is the average size of the sidewalk (13 cm),

k is the coverage factor used to obtain a confidence level
p = 94.5% in the uncertainty, and |b| is the mean error.
A threshold α is defined as α = U = 15.46 cm.

We use the normal vector to the ground to define
a new coordinate system for the points. Knowing that
the facades are perpendicular planes to the ground,
we did not use the third coordinate of the segmenta-
tion points. Then, using themodifiedHough transform
[18] we searched for the set of points that model a
plane. The parametric space is given by ρ, θ , which are
the normal vector parameters that pass through the
origin on the modified Hough transform. Finally, we
segmented the unstructured objects using MeanShift
to obtain their location inside the point cloud. This
algorithmgroups a set of dimensionsd, associating each
point with themode or peak of the data set’s probability
density function.

Figure 1. (a) Acquisition Platform. Our system is mounted on the top of a car. The quality of the acquisition data allows us to drive
in urban areas. The LadyBug camera captures 360◦ panoramic images, the GPS provides the location in latitude and longitude, and
the LiDAR performs a 360◦ scan of the scene. (b) Procedure. Our method is composed of three stages: segmentation, filtering, and
indexing. The segmentation stage extracts the ground, perpendicular planes to the ground, and unstructured objects. Filtering is
applied to the objects to remove outliers. We apply an Indexingmethod to the filtered objects by obtaining a Delaunay triangulation
and matching the normals’ histogram against a library of models.
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2. Filtering

We remove from the point cloud, the ground plane, and
the facades; the remaining objects correspond to planes
composed of few points and unstructured objects such
as trees, pedestrians, cars, lampposts, Etc.

In this section, we describe the filtering step that
we apply to the segmented objects. The filtering con-
sists of removing points that affect the estimated normal
vector’s accuracy and lower the detection performance.
Following an approach similar to [21], we estimated the
normal vector in two steps: On the first step, we deter-
mined the neighbourhood size (r of the Equation (6))
for each point; on the second step, we correlated the
estimation on edges and corners. To determine an
appropriate neighbourhood size, we chose an initial r
value and reduced it iteratively until the Equation (6) is
true. Once the size is defined, we estimated a tangent
plane to the neighbourhood and the normal. As a start-
ing point, we obtained the k-nearest neighbours to each
pi. The next step is to adjust a plane to the surface using
RPCA [22]. See Equations (2) and (3). For neighbour
estimation, we usedMahalanobis distance (MD), which
measures data dispersion concerning pw.

pw =
∑

wipi∑
wi

(2)

CMw = 1
n − 1

n∑
i=1

(pi − pw)(pi − pw)TW (3)

where W = {√w1, . . . ,
√
wn} are the weights associ-

ated to each point pi in the neighbourhood. The filtered
point is defined by :

pfi = ((pi − p′
i)
T ∗ v3) ∗ v3 + p′

i (4)

where p′
i = pw + vT1 ∗ (pi − pw) ∗ v3, [U S V] =

svd(CMw), and V = [v1 v2 v3]
The local curvature value is defined as

S =
∑
r

2 ∗ ((pi − p′
i)
T ∗ v3) ∗ v3

r2
(5)

The following equation determines the distance of the
neighbours defined for each point. This distance allows
us to define small threshold distances when the cur-
vature is large and large threshold distances when the
curvature is slight.

|v33 ∗ (pi − (pw + tTmin ∗ v3))| ≤ S|[v2 v3] ∗ (pi − pw)|
2

tmin = mean

⎧⎨
⎩

∑
pi∈neig(P)

v3 ∗ (|pi − pw|)
⎫⎬
⎭ (6)

where pi ∈ neig(P) corresponds to all points at a dis-
tance less than or equal to r from point pi. Filtering
points need to know the initial distance for search

neighbours and the minimum number of neighbour-
hoodpoints. It is required aminimumnumber of points
in a neighbourhood to consider it an object; if not, it
corresponds to a data noisily. These two parameters, the
starting distance r of neighbours and theminimal num-
ber of points at a neighbourhood, are determined by a
ROC analysis

3. Indexing

Different object instances or object classes often have
other geometric shapes. Thus, a geometric descrip-
tor uses an object’s shape based on specific geomet-
ric features to index a particular instance of object or
object class. In [23], the authors propose an approach
that includes a novel formulation of a disparity term
that simultaneously considers the structural similarity
index. The indexation step uses the segmented and fil-
tered objects and our dataset of object models. During
indexing, the 3D objects are modelled and compared
against the models in the dataset.

3.1. Modeling

3D models indexing and searching in a database
is a process of coding and describing 3D models’
shapes. The approach proposed in [24] classifies mov-
ing objects into four classes: vehicle, pedestrian, bicycle,
and the crowd. The authors use LiDAR and camera data
and modelling the information using four number-of-
point-based features, eleven shape features, and nine
statistical features. The orientation of the normal vec-
tor of the tangent plane on each point of the surface
cab describes Objects’ surfaces. In our proposed work,
three steps perform the modelling :

(1) Orientation normalization. Each segmented object
is composed of a set of points Zi oriented
to the data distribution; for this, we calculate
the eigenvectors V = [v1, v2, v3] and eigenvalues
{e1, e2, e3}of Zi set, therefore Z′

i = VTZi.
(2) Delaunay triangulation. We calculate the normals

of each triangle that form the segmented object
{Z′

i}. An object contains a set of normals N =
{n1, n2, . . . , nj} where nj = [Pjx,P

j
y,P

j
z]T .

(3) Finally, we use the directions of the normals to
construct the histograms H(φ, θ) of each object.

Where φ = tan−1
(

Pjx
Pjy

)
and θ = tan−1

(
Pjz√

P2x+P2y

)

3.2. Matching

Unknown objects are modelled by histograms Hi and
match the histograms in the objects dataset Hb. Fol-
lowing the matching approach from [25, 26] we use
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χ2, histogram intersection,Haussler distance, euclidian
distance, and earth mover’s distance.

4. Results

In this section, we present the results of applying our
method to detect vehicles on point clouds of urban
environments.

4.1. Plane extraction

Planes are projected into lines as described in
Section 1.1. We used the modified Hough transform to
search for large sets of points that model lines. Each
point on edge had an associated parametric line, the
intersection of the parametric line designated the exis-
tence and position of collinear points. The higher the
number of collinear points, the higher the probabil-
ity of finding the plane. The extracted facades corre-
sponded to parametric positions with several collinear
points higher than 600 points in this stage. This param-
eter prevents side views of cars from being confused
with facades. However, facades with collinear points
less than 600 were not detected.

Table 1 shows the ground and perpendicular plane
extraction equations where we used the modified
Hough transform. In this table, we show the extraction
of five perpendicular planes and the ground plane.

Follow the ground and the building facade removal;
the remaining points contain unstructured objects and
plane fragments.

4.2. Segmentation of unstructured objects

Our dataset vehicles have 1100 points on average; the
sideways have 300 points on average. Therefore, the
sideways of cars are not detected as facades. If mul-
tiple cars were aligned, the thresholds used to detect
the facades would prevent the segmentation of these
as a plane. Figure 2(a) shows a 3D points cloud where
were extracted ground plane and facades. The remain-
ing points correspond to trees, cars, persons, and small
plane segments.

Figure 2(b) shows the segmented objects usingMean
Shift, points belonging to the same object are painted
with the same colour and labelled automatically (we
repeat the colours to improve visibility). We used a
threshold of 150 points to discard small objects that
usually correspond to noise or far away objects and
poorly defined. The segmentation result passes through
the filtering stage and then to modelling and indexing.

4.3. Filtering

Once the unstructured objects such as pedestrians,
trees, walls, lampposts, telephone booths, and cars are

Table 1. Extraction of structured objects.

Planes A B C D # Points

Ground 0.0038 −0.0091 −1.0000 −177.05 27,278
Plane 1 0.2713 0.9626 0.0137 −611.30 13,957
Plane 2 −0.9122 0.4101 0.0097 404.75 5365
Plane 3 0.2867 0.9578 −0.0117 525.46 8793
Plane 4 −0.0010 0.0003 0.0000 2.3153 982
Plane 5 −0.9132 0.4074 0.0291 −673.52 2347
Unsegmented 21,939
Whole 80,661

Note: The point cloud has a total of 80,661 points, fromwhichwe extract 58,722 points belonging
to the ground and facades. The plane equation is given by AX + BY + CZ +D = 0.

Figure 2. (a) Typical point cloud without structure objects. Due to the threshold values appear some points did not extract and
belong to planes. (b) Mean Shift Segmentation-the points with the same colour belong to the same object. We repeat colours to
improve visibility. We do not consider objects with a size less than 150 points.
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Figure 3. Filtering and Modeling. (a) Moreover, (b) show the points corresponding to a car and a tree, respectively, segmented via
Mean Shift. (c) Furthermore, (d) show the same objects filtered via RPCA. (e) Moreover, (f ) show the meshes obtained with Delaunay
triangulation. (g) Moreover, (h) show the histograms generated with the normals of each triangle.

Table 2. Confusion matrix.

χ2 Statistics Prediction Histogram Intersection Prediction

86.50% 24.05% Cars (P’) 87.69% 26.90% Cars (P’)
13.50% 75.95% Other (N’) 12.31% 73.10% Other (N’)

R.V. Cars (P) Other(N) R.V. Cars (P) Other(N)

Haussler Distance Prediction Euclidean Distance Prediction

84.86% 28.48% Cars (P’) 82.94% 21.52% Cars (P’)
15.14% 71.52% Other (N’) 17.06% 78.48% Other (N’)

R.V. Cars (P) Other(N) R.V. Cars (P) Other(N)

Earth Mover Distance Prediction

75.82% 26.90% Cars (P’)
24.18% 73.10% Other (N’)

R.V. Cars (P) Other(N)

Note: We used a car model as our reference and compared against the remaining objects on the test set. R.V is a real
value.

segmented, they are passed through a filter stage to
reduce noise. The 3D points acquired by the LiDAR
Velodyne 64E are noisy. Several factors introduce the
noise in 3D points; some are LiDAR-object distance,
incidence angle, object-colour, and object-material
[27].

Using ROC analysis, we computed the starting dis-
tance r of neighbours and the minimal neighbourhood

points. The initial distance r is 80 cm, and the min-
imal number of points permit in a neighbourhood
is 14. The filtering method allows a smooth surface
and eliminates points that do not correspond to the
object. Figure 3(a,b) show the objects before filter-
ing and Figure 3(c,f) after filtering. We partition our
dataset into training with 4500 objects and test with
3000 objects and optimize the Mean Shift thresholds,

Figure 4. Performance Comparison. (a) In this plot, we show the best three methods: χ2, Histogram Intersection, and Euclidean
Distance. The area under the curve of the best method is 0.85 belonging to Histogram Intersection. (b) In this plot, we show the
remaining methods: EMD and Haussler Distance.
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the filter, the Delaunay parameters, and the histogram
modelling via ROC analysis.

4.4. Modeling

After object filtering, we modelled the objects using
histograms using the directions of the normal vector.
Using Delaunay triangulation, we extracted the normal
vector of each triangle to build the histograms, and we
optimized the radius of the kernel filter of the Mean
Shift method. Figure 3(c,d) show the filtered point
clouds of a car and a three, respectively. Figure 3(e,e)
show the same objects after triangulation. After trian-
gulation, we can define the unique characteristics of
each object based on its shape. Finally, Figure 3(g,h)
show the histograms of the car and the tree.

We used four types of cars to improve detection:
sedan, compact (size between 4m and 4.7m), SUV, and
hatchbacks. By using different types of cars, we were
able to optimize the algorithm and improve detection.

4.5. Matching

In this work, our interest is to detect cars. We parti-
tion our dataset into 4500 objects for training and 3000
objects for tests. Our objects included: cars, trees, lamp-
posts, pedestrians, walls, or ground segments. Table 2
shows the confusion matrices after applying χ2, his-
togram intersection, Haussler distance, Euclidean dis-
tance, and Earth Mover’s distance on the test set.
Figure 4(a,b) show the ROC curves for the five meth-
ods. The best method was Histogram Intersection, with
an area under the curve (AUC) of 0.8501.We separated
theROCcurves on two graphs to improve visualization.
Table 3 shows the AUC for each of the five methods.

5. Discussion

To evaluate our proposal, firstly, we compare the final
results modifying some of the steps that we consider
most crucial, and we determined the best method for
each step present in the flowchart of the Figure 1(b).
As a second way to evaluate, we compare our results
with other techniques proposed in the literature. The
method proposed in this paper, differs from the ones in
the literature as follows:

The flowchart of the Figure 1(b) shows three princi-
pal processes: Segmentation, 3D processing, and index-
ing. The segmentation process is out of the scope of this
paper.. Table 3 shows the 3D processing and indexing
process evaluation. Comparing the second and third
columns, we can see that the final results are improved
when we filter the 3D points of the segmented object.
We observe in Table 3 that the matching step’s best
metrics are χ2, and the intersection.

In the context of 3D city reconstruction [1, 28], we
joined 3D data acquired in different positions to better

Table 3. The second and third columns show the performance
similarity metrics for each of the five metrics corresponding to
the matching step.

Metric

AUC, procedure
shows in

Figure 1(b)
AUC, without

objects filter step

χ2 0.8460 0.8130
Intersection 0.8501 0.8060
Haussler distance 0.8221 0.8114
Euclidean distance 0.8287 0.8045
Earth Mover’s distance 0.7950 0.7798

Note: The second column shows the results using theproposedprocedure in
Figure 1(b). The third column shows the results without the 3D processing
(Objects Filtering) step shown in Figure 1(b).

Table 4. Number of objects in our database.

Cars Trees Others objects

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Total

Trainnig
197 590 392 26 68 17 476 1022 1712 4500

Test
130 392 260 18 46 12 318 682 1142 3000

define the object in the urban environment. However,
there are several methods for urban object recogni-
tion that use the database KITTI. According to the size,
truncation, and occlusion classes of objects, authors
classify the object in the database KITTI into three
difficulty classes: easy, moderate, and hard. Figure 5
shows the car examples of our database classify our
dataset in easy, moderate, and hard. Table 4 shows the
number of objects in our database for each class.

We compare our method with other state-of-the-art
approaches on the car class of the KITTI validation
set for 3D detection when the authors use the easy
car class, andAverage Precision (AP) Intersection-over-
Union (IoU) 0.7 threshold. Table 5 shows that the car
scan quality affects our method to a lesser degree when
compared with state-of-the-art methods.

6. Conclusion and future works

In this work, we developed a new method for car
detection on LiDAR point clouds. Our method has
three parts: segmentation, filtering, and indexing. Seg-
mentation rules out points belonging to facades and
ground, keeping the remaining objects such as cars,
trees, pedestrians, lampposts. Filtering improves the
quality of the segmented objects by removing outliers.
Indexing models the objects based on histograms of
normal directions. We used a dataset acquired with
our acquisition platform mounted on the top of a car
and driving around the city for training and test. We
partition our dataset in training and test, obtaining a
detection rate of 85.01% on the test set usingHistogram
Intersection.

The future works in this research can be extended to
the construction industry. For this application, we can
be capture 3D point cloud data of construction sites,
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Figure 5. Examples of the cars in our database classify into three difficulty classes: (a) easy, (b) moderate, and (c) hard.

Table 5. Comparison of our method with other state-of-the-
art approaches on the car class of KITTI validation set for 3D
detection.

Automobile detection

Method Sensor Easy Moderat Hard

Multi-View 3D [29] LiDAR-Camera 71.29 62.68 56.56
PointFusion [30] LiDAR-Camera 77.92 63.00 53.27
Frustum PointNets [31] LiDAR-Camera 83.76 70.92 63.65
Deep Continuos Fusion
[32]

LiDAR-Camera 86.32 73.25 67.81

AVOD Feature Pyramid [33] LiDAR-Camera 84.41 74.44 68.65
IPOD [34] LiDAR-Camera 84.10 76.40 75.30
Multi-Task Multi-Sensor
Fusion [35]

LiDAR-Camera 87.90 77.86 75.57

VoxelNet [36] LiDAR 81.97 65.46 62.85
SECOND [37] LiDAR 87.43 76.48 69.10
BirdNet [38] LiDAR 40.99 27.26 25.32
BirdNet+ [39] LiDAR 70.14 51.85 50.03
SAPRNET [40] LiDAR 84.92 75.64 67.70
Voxel-FPN [41] LiDAR 85.64 76.70 69.44
Ours LiDAR 77.68 71.73 72.58

works, or equipment to enable better decision making
in construction project management. In future work,
we will create semantically 3Dmodels from point cloud
data; object recognitionmust be labelled on point cloud
data into object classes, e.g. wall, roof, floor, column,
beam, Etc.

Disclosure statement

No potential conflict of interest was reported by the
author(s).

Funding

To the CONACYT, for supporting project number 669. We
also want to thank Instituto Politecnico Nacional , for sup-
porting project SIP-20210280.

ORCID

Ramirez-Pedraza Alfonso http://orcid.org/0000-0003
-0366-6249
González-Barbosa José-Joel http://orcid.org/0000-0002
-6720-8282
Hurtado-Ramos Juan-Bautista http://orcid.org/0000-0003
-2663-2463

References

[1] García-Moreno AI, Gonzalez-Barbosa JJ, Ornelas-
Rodríguez FJ, et al. Automatic 3D city reconstruction
platform using a LiDAR and DGPS. Oct. 2012. San Luis
Potosi, Mexico. In: Advances in Artificial Intelligent,
MICAI. 2013

[2] Zhou QY, Neumann U. Fast and Extensible Building
Modeling from Airborne LiDAR Data. Nov 5. Irvine,
CA, USA. In: Proceedings of the 16th ACM SIGSPA-
TIAL International Conference on Advances in Geo-
graphic Information Systems (GIS). 2008.

[3] Sun S, Salvaggio C. Aerial 3D building detection and
modeling from airborne LiDAR point clouds. IEEE J Sel
TopAppl EarthObsRemote Sens. 2013;6(3):1440–1449.

[4] Sohn G, Jwa Y, Kim HB. Automatic powerline scene
classification and reconstruction using airborne LiDAR
data. ISPRS Ann Photogramm Remote Sens Spatial
Inf Sci. 2012;I-3:167–172. DOI:10.5194/isprsannals-I-
3-167-2012

[5] Himmelsbach M, Luettel T, Wuensche HJ. Real-time
object classification in 3D point clouds using point fea-
ture histograms. October 15. St. Louis, MO, USA. In:
Intelligent Robots and Systems (IROS). 2009.

[6] Wang C, Xu D, Zhu Y, et al. DenseFusion: 6D Object
Pose Estimation by IterativeDense Fusion. Jan 15. Long
Beach, CA. In: The IEEE Conference on Computer
Vision and Pattern Recognition. 2019.

[7] Chen J, Cho YK, Kira Z. Multi-view incremental seg-
mentation of 3D point clouds for mobile robots. CoRR.
2019. abs1902.06768.

[8] Danielczuk M, Matl M, Gupta S, et al. Segmenting
unknown3Dobjects from real depth images usingmask
R-CNN trained on synthetic point clouds. CoRR. 2018.
abs/1809.05825. Available from: http://arxiv.org/abs/
1809.05825.

[9] Jørgensen TB, Jensen SHN, Aanæs H, et al. An adap-
tive robotic system for doing pick and place opera-
tions with deformable objects. J Intell Robot Syst. 2019
Apr;94(1):81–100. ISSN1573-0409.DOI:10.1007/s10846-
018-0958-6

[10] Ji SQ, Huang MB, Huang HP. Robot intelligent grasp
of unknown objects based on multi-sensor informa-
tion. Sensors. 2019;19(7):1595. DOI:10.3390/s19071
595

[11] Durović P, Grbić R, Cupec R. Visual servoing for low-
cost scara robots using an rgb-d camera as the only
sensor. Automatika. 2017;58(4):495–505. DOI:10.1080/
00051144.2018.1461771

[12] Goron L, Tamas L, Reti I, et al. 3D laser scanning sys-
tem and 3D segmentation of urban scenes. In: Interna-
tional Conference on Automation, Quality and Testing,
Robotics (AQTR); Vol. 1. IEEE; 2010. p. 1–5.

http://orcid.org/0000-0003-0366-6249
http://orcid.org/0000-0003-0366-6249
http://orcid.org/0000-0002-6720-8282
http://orcid.org/0000-0002-6720-8282
http://orcid.org/0000-0003-2663-2463
http://orcid.org/0000-0003-2663-2463
http://arxiv.org/abs/1809.05825


318 R.-P. ALFONSO ET AL.

[13] Guizzo Erico, Google. 2011. HowGoogle’s Self-Driving
Car Works. IEEE Spectrum.

[14] Garcia F, Ponz A, Martín D, et al. Laser scanner
and computer vision fusion for pedestrian detec-
tion in road environment. Rev Iberoam Autom In.
2015;12(2):218–229. DOI:10.1016/j.riai.2015.02.006

[15] Steder B, Grisetti G, Burgard W. Robust place recog-
nition for 3D range data based on point features. In:
International Conference on Robotics and Automation
(ICRA). IEEE; 2010. p. 1400–1405.

[16] Sipiran I, Bustos B. Harris 3d: a robust extension of
the harris operator for interest point detection on 3D
meshes. Vis Comput. 2011;27(11):963–976.

[17] Xiao W, Zaforemska A, Smigaj M, et al. Mean shift
segmentation assessment for individual forest tree
delineation from airborne LiDAR data. Remote Sens.
2019;11(11):1263. DOI:10.3390/rs11111263

[18] Hernández-García DE, González-Barbosa JJ, Hurtado-
Ramos JB, et al. 3D city models: mapping approach
using LiDAR technology. March 1 San Andres Cholula,
Mexico. In International Conference on Electronics,
Communications and Computers (CONIELECOMP).
2011.

[19] BIPM. Evaluation of measurement dataguide to the
expression of uncertainty in measurement. JCGM 100;
2008.

[20] Atanacio-Jiménez G, González-Barbosa JJ, Hurtado-
Ramos JB, et al. Lidar velodyne hdl-64e calibra-
tion using pattern planes. Int J Adv Robot Syst.
2011;8(5):70–82.

[21] Leal E, Leal N, Sánchez G. Estimación de normales y
reducción de datos atípicos en nubes de puntos tridi-
mensionales. Inf tecnol. 2014;25(2):39–46.

[22] Hubert M, Rousseeuw PJ, Vanden Branden K. Robpca:
a new approach to robust principal component analysis.
Technometrics. 2005;47(1):64–79.

[23] Larrey-Ruiz J, Morales-Sánchez J, Larrey-Ruiz L. Effi-
cient combined ssim- and landmark-driven image reg-
istration in a variational framework. Rev int métodos
numér cálc diseño ing. 2019;35(1):1263.

[24] Zhang M, Fu R, Guo Y, et al. Moving object classifica-
tion using 3D point cloud in urban traffic environment.
J Adv Transp. 2020;12(2):1–12. DOI:10.1155/2020/
1583129

[25] Gonzalez-Barbosa JJ, Lacroix S. Rover localization in
natural environments by indexing panoramic images.
August 07.Washington, DC, USA . In IEEE Interna-
tional Conference on Robotics and Automation. 2002.

[26] Luber M. People tracking under social constraints [dis-
sertation]. Universitätsbibliothek Freiburg; 2013.

[27] Bolkas D, Martinez A. Effect of target color and scan-
ning geometry on terrestrial LiDAR point-cloud noise
and plane fitting. J Appl Geod. 2018 Jan;12(1):109–127.
ISSN 1862-9016. DOI:10.1515/jag-2017-0034

[28] García-Moreno A, González-Barbosa J. Reconstrucción
virtual tridimensional de entornos urbanos complejos.
Rev Iberoam Autom In. 2020;17(1):22–33. ISSN 1697-
7920. DOI:10.4995/riai.2019.11203

[29] Chen X,MaH,Wan J, et al. Multi-view 3D object detec-
tion network for autonomous driving. In: 2017 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR); 2017. p. 6526–6534. DOI:10.1109/CVPR.
2017.691

[30] Xu D, Anguelov D, Jain A. Pointfusion: deep sen-
sor fusion for 3D bounding box estimation. In:
2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR); Los Alamitos, CA,
USA. IEEE Computer Society; 2018 Jun. p. 244–253.
DOI:10.1109/CVPR.2018.00033

[31] Qi CR, Liu W, Wu C, et al. Frustum pointnets for 3D
object detection from rgb-d data. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion; 2018. p. 918–927. DOI:10.1109/CVPR.2018.00102

[32] Liang M, Yang B, Wang S, et al. Deep continuous fusion
for multi-sensor 3D object detection. In: Ferrari V,
Hebert M, Sminchisescu C, Weiss Y, editors. Computer
vision – ECCV 2018. Cham: Springer International
Publishing; 2018. p. 663–678. ISBN 978-3-030-01270-0.

[33] Ku J, Mozifian M, Lee J, et al. Joint 3D proposal
generation and object detection from view aggrega-
tion. In: 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS); 2018. p. 1–8.
DOI:10.1109/IROS.2018.8594049

[34] Yang Z, Sun Y, Liu S, et al. Ipod: intensive point-
based object detector for point cloud. Preprint; 2018.
arXiv:1812.05276.

[35] Liang M, Yang B, Chen Y, et al. Multi-task multi-sensor
fusion for 3Dobject detection. In: 2019 IEEE/CVFCon-
ference on Computer Vision and Pattern Recognition
(CVPR); 2019. p. 7337–7345.DOI:10.1109/CVPR.2019.
00752

[36] Zhou Y, Tuzel O. Voxelnet: end-to-end learning for
point cloud based 3D object detection. In: 2018
IEEE/CVFConference onComputerVision andPattern
Recognition; 2018. p. 4490–4499. DOI:10.1109/CVPR.
2018.00472

[37] YanY,MaoY, Li B. Second: sparsely embedded convolu-
tional detection. Sensors. 2018;18(10). ISSN 1424-8220.
DOI:10.3390/s18103337

[38] Beltrán J, Guindel C, Moreno FM, et al. Birdnet: a 3D
object detection framework from LiDAR information.
In: 2018 21st International Conference on Intelligent
Transportation Systems (ITSC); 2018. p. 3517–3523.
DOI:10.1109/ITSC.2018.8569311

[39] Barrera A, Guindel C, Beltrán J, et al. Birdnet+: end-
to-end 3D object detection in LiDAR bird’s eye view.
Preprint; 2020. arXiv:2003.04188.

[40] Ye Y, Chen H, Zhang C, et al. Sarpnet: shape atten-
tion regional proposal network for LiDAR-based 3D
object detection. Neurocomputing. 2020;379:53–63.
ISSN 0925-2312. DOI:10.1016/j.neucom.2019.09.
086

[41] Kuang H, Wang B, An J, et al. Voxel-fpn: multi-scale
voxel feature aggregation for 3D object detection from
LiDAR point clouds. Sensors. 2020;20(3). ISSN 1424-
8220. DOI:10.3390/s20030704


	Introduction
	1. Object segmentation
	1.1. Planes extraction

	2. Filtering
	3. Indexing
	3.1. Modeling
	3.2. Matching

	4. Results
	4.1. Plane extraction
	4.2. Segmentation of unstructured objects
	4.3. Filtering
	4.4. Modeling
	4.5. Matching

	5. Discussion
	6. Conclusion and future works
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


