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Scale Model Equations and Optimization for Annular Flow of  Non-Newtonian Fluids between Eccentric and Rotating Cylinders Wei Zhang a, Pooya Khodaparast a, Amin Mehrabian a,*, Amir Shojaei b 
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Abstract A broad range of engineering applications involves helical flow of non-Newtonian fluids between two eccentric cylinders. These applications often require estimation of the frictional pressure losses along the axes of the cylinders. Laboratory flow loops are commonly used to study the flow characteristics at smaller scales of investigation. This study uses the laws of similarity and dimensional analysis to obtain a set of scaling equations between the laboratory and prototype scales of the described annular flow. These equations are derived for four types of fluid rheology, including Newtonian, power-law, Bingham-plastic, and yield power-law. Results are expressed through a set of closed-form formulas that would determine the flow rate and rotational speed of the inner pipe in the laboratory model in terms of the flow rate and pipe rotation speed, as well as other flow parameters of the prototype. The specific forms of these scaling equations are developed in such a way that the dimensionless friction factors of the annular flows at the laboratory model and prototype scales become identical. In the case of the yield power-law fluid, a complete similitude between the two scales requires using a fluid in the laboratory model that is different from the prototype fluid. As such, application of the obtained equations in minimizing the laboratory flow loop size is demonstrated. The study shows that proper selection of the rheological parameters of the fluid in the flow loop model would enable substantial reduction in the geometric scale of the similitude. 
Keywords: Dimensional analysis; Wellbore hydraulics; Flow loop; Rheology  

Introduction Fluid flow along the annulus between two stationary or rotating cylinders occurs in a variety of engineering applications, such as rotating tube heat exchangers [1], journal bearings [2], and circulation of drilling fluids in a subterranean well [3]. Accurate estimation of frictional pressure losses is integral to the design of such systems. Flow regime, geometry, and fluid rheology can all influence pressure loss [4, 5]. Therefore, there is a rich body of literature attempting to systematically estimate the effects of these factors on pressure loss. Solutions to laminar friction loss of power-law fluid flow in a concentric annulus with no rotation are reported in a variety of studies [6–10]. However, these solutions are not entirely straightfor-

ward because the calculations require either an iterative procedure or a numerical integration to find the radial distance across the annulus cross section at which the shear strain rate is zero [11]. In practice, the annulus may be neither concentric nor static when inner pipe rotation, vibration, and whirling occur. Therefore, fluid flow in the annulus may be helical, asymmetric, and non-stationary. The effect of these parameters either individually or in conjunction with one another is reviewed in [12]. Numerical simulation methods have been successfully applied to relax some limitations of the analytical approach [3, 13–16]. The research has since been expanded to consider more complex rheology that includes the fluid yield stress [17–19]. Yield-power law models have attracted considerable attention in the related research on 
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viscoelastic fluids [16, 20–22]. However, analytical solutions for the annular flow of yield power-law fluids are rarely reported in the literature. Whether solved numerically or analytically, pressure loss calculation results are commonly validated or calibrated with experiments [23–25]. Dimensional analysis is usually reserved for laboratory simulation of actual fluid flows with different space and time scales [24, 26]. This study uses dimensional analysis to obtain the scaling equations that describe complete similitude for the flow of Newtonian, power-law, Bingham-plastic, and yield power-law fluids between eccentric rotating cylinders. The dimensionless variables are identified using the Buckingham Π  theorem [27]. While the developed equations are generic, the flow of drilling fluid in a wellbore annulus is a specific application. As such, the dimensional analysis aims at the direct estimation of the friction factor of the prototype (wellbore annulus) by measuring pressure gradients occurring in the laboratory model, e.g., a flow loop device. Fig. 1 shows a laboratory setup consisting of an inner pipe simulating the drill pipe, as well as an outer pipe simulating the borehole. The quantities 𝑅   and 𝑅  are the radii of the outer and inner pipe, respectively, while 𝑒  is the inner pipe eccentricity, 𝜔  is the angular velocity of the inner pipe, and 𝑄  is the 

volumetric fluid flow rate. Full similitude between the flow loop model and the wellbore-flow prototype is attained by establishing geometric, kinematic, and dynamic similarities be-tween the laboratory-scale and wellbore-scale flows. By taking advantage of dimensional analysis and the laws of similarity, the dimensions of the pipes, annular flow rate, and the inner pipe rotation speed in the flow loop experiment can be derived as a function of the corresponding wellbore and drill pipe dimensions, as well as the wellbore flow rate and drill pipe rotation speed. 
Scaling equations 

Newtonian	fluids	Newtonian fluids have a constant viscosity. Fully developed flow of a Newtonian fluid in an eccentric annulus with a rotating inner pipe involves a total of 8 variables and 3 dimensions. These parameters are shown in Table 1. The quantity   is the pressure gradient along the drill pipe, 𝜌 is the fluid density, 𝜇 is the viscosity of the Newtonian fluid, 𝑈 is the axial velocity of the fluid, and 𝜔  is the angular velocity of the inner pipe. Re  is the Reynolds number and Ta denotes the Taylor number, while Euler’s number is defined as Eu . 𝑓 is the flow friction coefficient, 

 Fig. 1. Schematics of fluid flow in prototype (wellbore) and laboratory model (flow loop). 
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which is related to Euler’s number by 𝑓 = 𝐷 /8Δ𝑥 Eu.  Finally, 𝐷   denotes a characteristic length (e.g., effective hydraulic diameter) for fluid flow which may be defined as, 𝐷 = 𝛼(𝑅 − 𝑅 ) (1) where 𝛼  is a dimensionless parameter. A choice of 1 < 𝛼 ≤ 2  is usually made in the fluid mechanics literature [28]. Aside from the eccentricity parameter, the problem involves two parameters with the dimension of length. These parameters include the outer and inner radii of the annulus: 𝑅   and 𝑅  . A generic definition of the problem length scale may be made through linear superposition of 𝑅   and 𝑅  , i.e., 𝐷 = 𝛼 𝑅 + 𝛼 𝑅  . Any arbitrary choices of 𝛼  and 𝛼  would sustain the required geometry similarity ( ,, = ,,   and ,, =,, ). The hydraulic diameter 𝐷  defined in Eq. (1) is in fact a special value of 𝐷  , which is obtained by setting 𝛼 = (−𝛼 ). Alternatively, selecting 𝛼 ≠ 𝛼 =0  or 𝛼 ≠ 𝛼 = 0  would recover 𝑅   or 𝑅   as the problem length scales, respectively. The geometric dimensionless variables—namely, the hydraulic diameter ratio and the dimensionless eccentricity—measure the scaled sizes of the two pipes and the degree of inner pipe eccentricity. The Reynolds number is defined as the ratio of inertial to viscous forces of flowing fluids, while the Taylor number is the rotational counterpart of the Reynolds number. Lastly, the frictional pressure loss factor represents the ratio of the frictional pressure head gradient to the kinematic energy density of the flow. Complete similitude requires model and prototype flows to share identical dimensionless numbers. The following similarities must be attained for this purpose:  

A.	 Geometric	 similarity. This requires the length ratios between laboratory and wellbore flows to be identical, i.e., 𝑅 ,𝐷 , = 𝑅 ,𝐷 ,  (2) 𝑒𝐷 , = 𝑒𝐷 ,  (3) where subscripts 𝑀 and 𝑃 denote the corresponding parameters of the laboratory model and prototype flows, respectively. Therefore, 𝜓  is introduced to represent these ratios, as follows:  𝜓 = 𝑅 ,𝑅 , = 𝑅 ,𝑅 , = 𝐷 ,𝐷 , = 𝑒𝑒  (4) 
B.	Kinematic	similarity. Kinematics of fluid flow in the described system is determined by two characteristic velocities attributed to the inner pipe rotation and pump flow rate. Kinematic similarity ensures that the two systems have the same ratio of these characteristic velocities in the model and prototype. This can be expressed as, 𝜂 = 𝜔 𝑅 ,𝑈 = 𝜔 𝑅 ,𝑈  (5) where 𝜔 is the angular velocity of the inner pipe and 𝑈  is axial velocity of the fluid during annular flow, which can be calculated in turn as 𝑈 = 𝑄𝜋(𝑅 − 𝑅 ) (6) 
C.	 Dynamic	 similarity. The annular fluid Reynolds number, Re =  , and the Taylor number, Ta = , determine the flow regime. These numbers 

Table 1. The variables, dimensions, and dimensionless parameters for Newtonian fluid case. Group Quantity Expression 
Involved variables 𝑚 = 8 𝛥𝑝𝛥𝑥 ,𝜌, 𝜇,𝑅 ,𝑅 , 𝑒,𝜔,𝑈	

Involved dimensions 𝑛 = 3 L(length), T(time), M(mass) 

Dimen
sionles

s varia
bles 

𝑚−𝑛
=5 Geometric 2 Annular diameter ratio 𝐷𝐷  Dimensionless eccentricity 𝑒𝐷 	

Dynamic 3 Reynolds number, Re 𝜌𝑈𝐷𝜇  Taylor number, Ta 𝜌𝜔𝑅 𝐷𝜇  Frictional pressure loss factor, 𝑓 𝐷4𝜌𝑈 Δ𝑝Δ𝑥  
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must be equal in the laboratory and wellbore flows. That is, 𝜌𝑈𝐷𝜇 =  𝜌𝑈𝐷𝜇  (7) and 𝜌𝜔𝑅 𝐷𝜇 = 𝜌𝜔𝑅 𝐷𝜇  (8) Dividing Eq. (7) by Eq. (8) generates Eq. (5). Moreover, 𝑄  can be obtained after substitution from Eq. (6) into Eq. (7): 𝑄 = 𝑄 𝜓 𝜌 𝜇𝜇 𝜌  (9) Likewise, the expression for 𝜔  can be obtained from Eq. (5) or Eq. (8) as follows, 𝜔 = 𝜔 𝜓 𝜌 𝜇𝜇 𝜌  (10) Complete similitude requires simultaneous geomet-ric, kinematic, and dynamic similarities between model and prototype. Under such conditions, and according to the Buckingham Π  theorem, the remaining dimen-sionless group of the problem, i.e., Euler’s number, or alternatively the friction factor of the two flows becomes identical: 𝐷 ,4𝜌 𝑈 Δ𝑝Δ𝑥 = 𝐷 ,4𝜌 𝑈 Δ𝑝Δ𝑥  (11) Substituting 𝑈  from Eq. (6) in Eq. (11) and rearranging the mathematical terms gives 

Δ𝑝Δ𝑥 = 𝜓 𝜌𝜌 𝑈𝑈 Δ𝑝Δ𝑥= 𝜓 𝜌𝜌 𝜇𝜇 Δ𝑝Δ𝑥  (12) 
Eqs. (9), (10), and (12) determine 𝑄   and 𝜔  required for the laboratory measurement, as well as predicted pressure loss of the wellbore annular flow, . 
Power-law	fluids	The rheology of power-law fluids is described by the consistency index 𝐾 and power index 𝑛 [29], 𝜏 = 𝐾𝛾  (13) where τ is shear stress and 𝛾 is the flow shear rate. Consequently, the apparent viscosity of the fluid can be obtained from the apparent viscosity of the power-law fluid [3, 30]: 𝜇 = 𝜏𝛾 (14) The characteristic velocity of the flow is obtained as the vector sum of the mean axial velocity and the tangential velocity at the inner pipe boundary. Similarly, the characteristic shear rate 𝛾   can be obtained by dividing the characteristic velocity by the characteristic length 𝐷  of the annular flow: 
𝛾 = 𝑈𝐷 + 𝜔𝑅𝐷  (15) 

Substituting Eqs. (13) and (15) into Eq. (14) 

Table 2. The variables, dimensions, and dimensionless parameters for power-law fluid case. Group Quantity Expression 
Involved variables 𝑚 = 9 𝛥𝑝𝛥𝑥 ,𝜌,𝑅 ,𝑅 , 𝑒,𝜔,𝑈,𝐾,𝑛	

Involved dimensions 𝑛 = 3 L, T, M 

Dimen
sionles

s varia
bles 

𝑚−𝑛
=6 

Geometric 2 Annular diameter ratio 𝐷𝐷  Dimensionless eccentricity 𝑒𝐷 	Rheological 1 Power index 𝑛 
Dynamic 3 Reynolds number, Re 𝜌𝑈𝐷𝜇  Taylor number, Ta 𝜌𝜔𝑅 𝐷𝜇  Frictional pressure loss factor, 𝑓 𝐷4𝜌𝑈 Δ𝑝Δ𝑥  
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determines the apparent viscosity of flow: 𝜇 = 𝐾𝛾 = 𝐾 𝑈𝐷 1 + 𝜂  (16) The relevant variables, dimensions, and dimension-less groups of the power-law fluid flow in the annulus are summarized in Table 2. The table shows that the power index 𝑛 = 𝑛 = 𝑛   of the power-law fluid serves as the additional dimensionless parameter compared with the Newtonian fluid, while the other dimensionless groups remain the same. Consequently, an additional type of similitude—rheological similar-ity—is required to achieve complete similitude. Substituting Eq. (16) into the expression for the Reynolds number from Table 2 gives 
Re = 𝜌𝑈 𝐷 (1 + 𝜂 )𝐾  (17) Equality of Reynolds numbers, i.e., Re =  Re , yields 𝜌 𝑈 𝐷 , (1 + 𝜂 )𝐾  
                          = 𝜌 𝑈 𝐷 , (1 + 𝜂 )𝐾  (18) 

Substituting 𝑈 from Eq. (6) into Eq. (18) and honoring 𝜂 = 𝜂 = 𝜂 , Eq. (18) reduces to 
𝑄 = 𝑄 𝜓 𝜌 𝐾𝐾 𝜌  (19) 

The expression for 𝜔   can be immediately obtained through 𝜂 = 𝜂 : 
𝜔 = 𝜔 𝜓 𝜌 𝐾𝜌 𝐾  (20) Finally, the equality of the friction factors (or Euler numbers) of the two flow scales yields the following equation for the wellbore pressure loss gradient: Δ𝑝Δ𝑥 = 𝜓 𝜌𝜌 𝑄𝑄 Δ𝑝Δ𝑥  

= 𝜓 𝐾𝐾 𝜌𝜌 Δ𝑝Δ𝑥  (21) 
Yield	power-law	fluids	The constitutive equation of yield power-law fluids is written as [29] 𝜏 = 𝜏 + 𝐾𝛾  (22) where 𝜏  denotes yield stress. By using Eq. (14) and via a procedure similar to the case of power-law fluid, the apparent viscosity of yield power-law fluid can be formulated as 𝜇 = τ 𝛾 + 𝐾𝛾  (23) Table 3 shows the variables, dimensions, and dimensionless parameters for the flow of the yield power-law fluid. Compared to power-law fluids, yield power-law fluids require an additional dimensionless parameter to scale the yield stress parameter in the 

Table 3. The variables, dimensions, and dimensionless parameters for yield power-law fluid. Group Quantity Expression 
Involved variables 𝑚 = 10 𝛥𝑝𝛥𝑥 ,𝜌,𝑅 ,𝑅 , 𝑒,𝜔,𝑈,𝐾,𝑛, 𝜏 	

Involved dimensions 𝑛 = 3 L, T, M 

Dimen
sionles

s varia
bles 

𝑚−𝑛
=7 

Geometric 2 Annular diameter ratio 𝐷𝐷  Dimensionless eccentricity 𝑒𝐷 	

Rheological 2 Power index 𝑛 Hedstrom number, He 𝜌𝐷𝜇 𝜏𝜇  
Dynamic 3 Reynolds number, Re 𝜌𝑈𝐷𝜇  Taylor number, Ta 𝜌𝜔𝑅 𝐷𝜇  Frictional pressure loss factor, 𝑓 𝐷4𝜌𝑈 Δ𝑝Δ𝑥  
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constitutive relation. The Hedstrom number, He , is adopted for this purpose [31, 32]. The dimensionless group for He is expressed as He = 𝜌𝐷𝜇 𝜏𝜇  (24) Consequently, complete rheological similarity between laboratory and wellbore flows of yield power-law fluids will require equality of the corresponding Hedstrom numbers, as well as the power index 𝑛. Likewise, substituting Eq. (15) into the expression of apparent viscosity given by Eq. (23) yields 𝜇 = τ 𝑈𝐷 1 + 𝜂+ 𝐾 𝑈𝐷 1 + 𝜂  (25) 
The Reynolds number is rewritten in terms of flow rate as 

Re = 𝜌𝑄𝜋 (𝑅 − 𝑅 ) 1 + 𝜂
τ + 𝐾 𝑄 1 + 𝜂𝜋(𝑅 − 𝑅 )𝐷  (26) 

Subsequently, the appropriate values for flow rate and angular velocity can be obtained by simultaneous application of the equations Re = Re  (27) and He = He  (28) Substituting the expressions of Re  and He  into Eq. (27) and (28) then simultaneously solving Eqs. (27) and (28) give two new equations: 
𝑄 = 𝑄 𝜓 𝐾 𝜌𝐾 𝜌  (29) 

and 
𝜏 , = 𝜓 𝐾𝐾 𝜌𝜌 𝜏 ,  (30) By securing the kinematic similarity condition 𝜂 = 𝜂  from Eq. (5), the expression for 𝜔  is obtained as 
𝜔 = 𝜓 𝐾 𝜌𝐾 𝜌 𝜔  (31) Interestingly, the expressions of 𝑄   and 𝜔   for the yield power-law fluid are the same as the power-law case but with an additional constraint for yield stress of the experimental model 𝜏 , , as obtained in Eq. (30). Finally,   can be obtained through equality of friction factors as follows: Δ𝑝Δ𝑥 = 𝜓 𝐾𝐾 𝜌𝜌 Δ𝑝Δ𝑥  (32) The Bingham-plastic fluid is a special case of the yield power-law fluid where in Eq. (22), 𝑛 = 1 [29, 33]. Therefore, the scaling equations for Bingham-plastic fluid can be obtained by setting 𝑛 = 1  in Eqs. (29) through (32). A summary of the scaling equations between the model and prototype parameters for the considered fluid rheologies is outlined in Table 4. Here, the ratios of each parameter are defined as 𝑄 =  , 𝜔 = , 𝜏 , = ,,  ,	 𝜇 = , 𝜌 = , and 𝐾 = , while the pressure loss gradient ratio is defined as = / . 
Verification	of	the	scaling	equations	The obtained scaling equations are verified against existing analytical solutions for the pertinent special case problems involving annular or pipe flow of various fluid rheologies. The following solutions are considered 

Table 4. The scaling equations of similitude between the model and prototype. Parameter Newtonian Power-law Yield power-law Bingham-Plastic 
𝑄  𝜓 𝜇𝜌  𝜓 𝐾𝜌  𝜓 𝐾𝜌  𝜓𝐾𝜌  
𝜔  𝜓 𝜇𝜌  𝜓 𝐾𝜌  𝜓 𝐾𝜌  𝜓 𝐾𝜌  
𝜏 , 	 NA NA 𝜓 𝐾 𝜌  𝜓 𝐾 𝜌  Δ𝑝Δ𝑥  𝜓 𝜌 𝜇  𝜓 𝐾 𝜌  𝜓 𝐾 𝜌  𝜓 𝐾 𝜌   
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for this purpose: 
 Analytical solution for laminar flow of Newtonian fluids in an eccentric annulus [34]; It can be verified that Eq. (12) of the current work can be obtained by comparing the lab-scale and wellbore-scale pressure loss gradients using the results of [34]. 
 Analytical solution for laminar flow of a power-law fluid in a concentric annulus [7]; this solution conforms with Eqs. (19) and (21) of the current work. 
 Analytical solution for the laminar flow of yield power-law fluids in a pipe [28]; Eqs. (29) and (32) of the current scaling model can be validated against this solution [28]. 
 Analytical solution for laminar flow of yield power-law fluids and Bingham-Plastic fluids in a rotational viscometer [35]; Eqs. (30) and (31) of the presented similitude model are consistent with their solution [35]. The detailed derivations for the above-outlined verifications are presented in the Appendix. 
Discussion of the results The ratios 𝑄  , 𝜔  , and 𝜏 ,   are the main design parameters of the laboratory-scale model device. The following equation may be obtained by evaluating the ratios between Eqs. (29) and (31): 𝑄𝜔 = 𝑄 /𝑄𝜔 /𝜔 = 𝜓  (33) The same equation can also be obtained by dividing Eq. (9) with Eq. (10). Therefore, the equation applies to all fluid rheology types. Eq. (33) denotes a compromise between the flow rate 𝑄   and inner pipe rotation speed 𝜔   if the objective is to keep the flow loop device size in check. That is to say that a small model device (small 𝜓) would require small 𝑄  and large 𝜔 . The former is a favorable factor in designing the laboratory setup since it allows for using a smaller pump. The latter, however, could impose practical restrictions on the size of the flow loop device since the rotation speed of the device inner pipe cannot grow arbitrarily large. 
Flow	 of	 noncolloidal	 suspension	 of	 particles	 in	 yield	
power-law	fluids	An aspect of the conducted dimensional analysis is to properly select the fluid rheology of the experimental model. The dimensional analysis presented in the previous section indicates that the scaling of the equations for the flow of a yield-power law fluid is generally possible. However, such a scaling requires using a different fluid in the laboratory model than the prototype. A potential challenge of such a scaling practice for yield power-law fluids is that the relations among the fluid rheological parameters—𝑘 , 𝑛  and 

𝜏  —are rather entangled. Existing predictive models for such relations are scant in the literature. A rare case might be noncolloidal suspension of particles in a yield power-law fluid, which is herein considered to further explain the practical implications of the presented scaling equations. The suspension flow of a drilling fluid mixed with solid-particle additives, such as weighting agents as well as drill cuttings, in a wellbore annulus is an example of such a system [36]. The total volume fraction of solids in the wellbore fluid is 𝜙  . The fluid used in the laboratory model is assumed to be the decontaminated wellbore fluid from which the solids are partially removed at the surface facilities of the drilling rig to a new volume fraction, 𝜙 < 𝜙   [37]. Ovarlez, et al. [38] obtained the consistency index and yield stress of a suspension system in terms of the volume fraction of solid particles, 𝜙, in the mixture. These relations can be rearranged to obtain the desired parameter ratios as follows: 𝐾 (𝜙 ,𝜙 )= (1 − 𝜙 𝜙⁄ ) ( / )( ) (1 − 𝜙 )( )(1 − 𝜙 𝜙⁄ ) ( / )( ) (1 − 𝜙 )( )   (34) and 𝜏 , (𝜙 ,𝜙 )= 1 − 𝜙 (1 − 𝜙 𝜙⁄ ) ( / )1 − 𝜙 (1 − 𝜙 𝜙⁄ ) ( / )  (35) 
where 𝜙   is the maximum packing fraction of the suspension flow. A value of 𝜙 = 0.605  is recom-mended in [38]. Here, 𝐾 (𝜙) =  and 𝜏 , (𝜙) = ,,  are the ratios of the fluid consistency index and yield stress at the model and prototype scales. Further, the density of the suspension can be formulated as 𝜌 (𝜙) = 𝜙 𝜌 , + (1 − 𝜙 )𝜙 𝜌 , + (1 − 𝜙 )  (36) where 𝜌 , =   in which 𝜌   is the density of the clean fluid with no suspended solids. Likewise, 𝜌 =  is the ratio of the model fluid density to the fluid density. An equation for the required geometric scale of the laboratory model can be obtained by solving Eq. (30) for 𝜓 after substitution from Eqs. (34) into (36). The resulting expression is written as 𝜓(𝜙 ,𝜙 ) = 1 − 𝜙1 − 𝜙 ⁄ 𝜙 − 𝜙𝜙 − 𝜙 ⁄  

                          1 + 𝜙 𝜌 , − 11 + 𝜙 𝜌 , − 1   (37) Interestingly, the obtained scaling ratio is independent 
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of the fluid power index, 𝑛 . Fig. 2 shows the contour plots of the laboratory model geometric scale 𝜓 versus the normalized solids content of the drilling fluid in the wellbore and the laboratory model. The portion of plot curves pertaining to 𝜙 0.2  is presented in dashed format since in practice the solid volume fraction in the wellbore fluid does not exceed 20% [37]. The plot indicates that for this range of 𝜙 , a substantial reduction in the scaled size of the wellbore annulus is not feasible when the same base fluid as the wellbore fluid is used in the model. This result further stresses the necessity for design and synthesis of alternative fluid chemistry and rheology when aiming for small experimental models of non-Newtonian flow systems. The design optimization scheme which is presented in the following section explores such a possibility. 
Optimization	 of	 experimental	 model	 design	 based	 on	
model	fluid	rheology	A mathematical problem can be formulated in order to obtain the optimal values of a similitude design. By taking the logarithm of Eqs. (29), (30), and (31), the following linear system of equations can be obtained log 𝜏logωlog𝑄 = 12 − 𝑛 2𝑛 2 −2−2 1 −14 − 3𝑛 1 −1∙ log𝜓log𝐾log𝜌  (38) 
where the subscript 𝑟  denotes the ratio of a laboratory model value to the corresponding prototype value, e.g., 𝜔 =  . If a similitude design based on 

selected values of (𝜓,𝐾 ,𝜌 ) is considered, the set of values for 𝜏  , 𝜔   and 𝑄   can be obtained correspondingly. A practical challenge of such a design is that the rheological set of parameters 𝜌, 𝜏   and 𝐾 are interdependent through the designed fluid chemistry, not the scaling laws of mechanics. Therefore, it is not straightforward, if even possible, to adjust the yield stress of a fluid after the other rheological properties (𝐾,𝜌,𝑛) are set at given values. Resultingly, a similitude design based solely on the fluid rheology appears to be more feasible. In this aspect, the following rearrangement of the matrix relation in Eq. (38) is considered:  log𝜓logωlog𝑄 = 12𝑛 −(2 − 𝑛) 2 −𝑛2 −2 0−(4 − 3𝑛) 4 −3𝑛∙ log 𝜏log𝐾log𝜌  (39) 
From an operational standpoint, the experimental model design aims at minimizing the geometric ratio 𝜓 and laboratory flow rate 𝑄 . The rotational speed 𝜔  is constrained by an upper threshold based on the available motor speeds and consideration of the inner pipe vibrations. Given the designed fluid chemistry, certain box constraints for rheological quantities (𝜏 , ,𝐾 ,𝜌 ) may apply. The optimization problem at hand may be mathematically formulated as follows. The objective is to find a vector 𝐱 =log 𝜏 log𝐾 log𝜌  that minimizes 𝑓(𝐱) = 𝛽 log𝜓 + (1 − 𝛽) log𝑄  = 12𝑛 𝛽 (1 − 𝛽)              ∙ −(2 − 𝑛) 2 −𝑛−(4 − 3𝑛) 4 −3𝑛 ∙ 𝐱 (40) 

when subjected to the following constraint for the inner pipe speed, logω = 12𝑛 2 −2 0 ∙ 𝐱 ≤ logω ,  (41) and a set of box constraints for fluid rheology parameters, including 𝐱 ≤ 𝐱 ≤ 𝐱  (42) in which 𝐱 = log 𝜏 , log𝐾 , log𝜌 ,  (43) and 𝐱           = log 𝜏 , log𝐾 , log𝜌 ,  (44) The quantity 𝛽 in Eq. (40) is a weighting factor for this optimization [39]. Linear programming [40] can be applied to obtain the solution to optimization problem as outlined by Eqs. (40) to (44). The solution is independent of the weighting parameter 𝛽, which can 

Fig. 2. Variation of the model scale 𝜓 with normalizedsolid content of the wellbore fluid. 
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be expressed as follows, 𝐱 = log min 𝐾 , 𝜔 , , 𝜏 , log𝐾 ,                                                                                log 𝜌 ,   (45) Substitution of Eq. (45) into Eq. (39) yields 𝜓
=
⎩⎪⎨
⎪⎧𝜔 , 𝐾 ,𝜌 ,  ( ) 𝐾 , 𝜔 , < 𝜏 ,𝐾 ,/𝜏 ,/  𝜌 ,( )/ 𝐾 , 𝜔 , 𝜏 ,

 
 (46) Consequently, substituting Eq. (46) in Eq. (33) determines the model flow rate as follows: 𝑄 , = 𝜓 𝜔 ,𝜔 𝑄  (47) 

Fig. 3 displays the optimized solution given by Eq. (46). The horizontal axis in the plots is the maximum rotational speed ratio 𝜔 ,  , while the vertical axis denotes the fluid power index 𝑛. The assumed values for the consistency index ratio 𝐾 ,   and the yield stress ratio 𝜏 ,   of each plot are displayed. The inner red boundary within the plots represents the locus of discontinuity points on each contour curve. This boundary can be represented by the following equation: 
𝜔 , = 𝜏 ,  𝐾 ,  

/  (48) 
Fig. 3 demonstrates that a higher rotational speed and a smaller power index allows for selecting a smaller scaling ratio, 𝜓 . However, if the rotational speed reaches the threshold defined by Eq. (43), the minimum scaling ratio is only a function of the fluid power index. 

 Fig. 3. Contour plots of the optimized solution for minimum scaling ratio 𝜓 as a function of 1 < 𝜔 , < 100 on a log scale on the horizontal axis and 0.6 ≤ 𝑛 ≤ 1 on the vertical axis. Here, 𝜌 = 1.5. 
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Conclusions Dimensional analysis is used to develop a set of scaling equations between the experimental model and prototype for non-Newtonian fluid flows along the annulus of rotating cylinders. The flow rate, inner pipe rotation speed, and fluid rheology of the scaled model are selected in such a way that full similitude between the two scales of flow is achieved. The following conclusions are drawn:  1. For all the considered fluid types, the scaled values for the flow rate 𝑄  and pipe rotational speed 𝜔  of the laboratory model are linearly proportional to the corresponding parameters of the wellbore-scale prototype, i.e.,	 𝑄   and 𝜔  . The proportionality constant depends on the length ratio 𝜓 , density ratio  , consistency index ratio	  , and power index 𝑛. 2. The scaling expressions for 𝑄   and 𝜔   for yield power-law fluids are the same as the power-law fluid. However, achieving complete similitude requires an additional constraint on the yield stress 𝜏 ,  of the laboratory fluid. 3. A fluid with smaller consistency index and larger yield stress, as well as higher rotational speed of the inner cylinder, serves to reduce the size of the scaled experimental model. 
Appendix A. Verification against the existing 
analytical solutions 

Flow	of	Newtonian	fluids	through	an	eccentric	annulus	Piercy et al. [34] derived the relationship between pressure loss gradient and pumping rate for laminar flow of Newtonian fluids in an eccentric annulus without inner pipe rotation. The derived equations are outlined as follows: 𝑑𝑝𝑑𝑥 = −8𝜇𝑄𝜋 𝑅 − 𝑅 − 4𝑒 𝑀𝐵 − 𝐴  
−8𝑒 𝑀 𝑖exp −𝑖(𝐵 + 𝐴)sinh(𝑖𝐵 − 𝑖𝐴)  (A1) 

𝑀 = (𝐹 − 𝑅 )  (A2) 
𝐹 = 𝑅 − 𝑅 + 𝐸2E  (A3) 
𝐴 = 12 ln 𝐹 + 𝑀𝐹 −𝑀  (A4) and 𝐵 = 12 ln 𝐹 − 𝐸 + 𝑀𝐹 − 𝐸 −𝑀  (A5) The parameters with a length dimension can be 

written in terms of a constant multiplied by the outer radius as  𝑅 = 𝐶 𝑅  (A6) and 𝑒 = 𝐶 𝑅  (A7) Substituting into Eq. (A1) gives 𝑑𝑝𝑑𝑥 = −8𝜇𝑄𝜋𝑅 1 − 𝐶 − 4𝐶 𝑀𝐵 − 𝐴  
−8𝐶 𝑀 𝑖exp −𝑖(𝐵 + 𝐴)sinh(𝑖𝐵 − 𝑖𝐴)  (A8) 

𝑀 = (𝐹 − 𝑅 ) .  = 1 − 𝐶 + 𝐶2C − 1  (A9) 
𝐹 = 𝑅 − 𝑅 + 𝐸2E = 1 − 𝐶 + 𝐶2𝐶  (A10) 
𝐴 = 12 ln 𝐹 + 𝑀𝐹 −𝑀  (A11) and 𝐵 = 12 ln 𝐹 − 𝐸 + 𝑀𝐹 − 𝐸 −𝑀  (A12) The geometric similarity between laboratory and prototype conditions indicates that the two scales have the same values for 𝐶  and 𝐶 . This also indicates that the two scales share the same values for 𝑀 , 𝐹 , A, and B. Therefore, the following relationship can be obtained from Eq. (A8): 𝑑𝑝𝑑𝑥𝑑𝑝𝑑𝑥 = 𝜓 𝜇𝜇 𝑄𝑄  (A13) 

The same relationship can be readily attained by combining Eqs. (9) and (12) of the current work. Therefore, the proposed solution for the Newtonian fluid case is consistent with the analytical solution outlined in [34]. 
Flow	of	Power-law	fluids	through	a	concentric	annulus	The following analytical solution for laminar flow of power-law fluid in a non-rotating and concentric annulus was proposed by Fredrickson and Bird [7] 
𝑄 = 𝑛3𝑛 + 1𝜋𝑅 12𝐾 𝑑𝑝𝑑𝑥                    (1 − 𝛽 ) − 𝜅 (𝛽 − 𝜅 )  (A14) 

The parameter 𝛽 can be determined from the follow-ing integral equation 
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𝛽𝜉 − 𝜉 𝑑𝜉 = 𝜉 − 𝛽𝜉 𝑑𝜉 (A15) 
where 𝜉 =   is the dimensionless radial coordinate and 𝜅 =  is the dimensionless inner radius. The quantity 𝛽 in Eq. (A15) is only a function of 𝜉 and 𝜅. The laboratory model and prototype share the same values of 𝜉  and 𝜅  due to geometric similarity. Therefore, Eq. (A14) can be used to obtain 
𝑄𝑄 = 𝜓 𝐾𝐾 𝑑𝑝𝑑𝑥𝑑𝑝𝑑𝑥  (A16) 

Eq. (A16) agrees with Eqs. (19) and (21) of the current work. 
Flow	of	yield	power-law	fluids	through	a	pipe	The relation between axial velocity and pressure loss gradient for laminar flow of the yield power-law fluids in a static pipe is derived in [28]. The result is expressed through the following closed-form equation 
𝑈 = 𝑅 (𝜏 − 𝜏 )4𝐾 𝜏 4𝑛3𝑛 + 1  
      𝜏 + 2𝑛1 + 2𝑛 𝜏 𝜏 + 2𝑛(1 + 𝑛)(1 + 2𝑛) 𝜏  (A17) 

where the shear stress at the pipe wall 𝜏  is 𝜏 = 𝑅2 Δ𝑝Δ𝑥 (A18) Therefore, the volumetric flow rate becomes 
𝑄 = 𝜋𝑅 (𝜏 − 𝜏 )4𝐾 𝜏 4𝑛3𝑛 + 1  
      𝜏 + 2𝑛1 + 2𝑛 𝜏 𝜏 + 2𝑛(1 + 𝑛)(1 + 2𝑛) 𝜏  (A19) 

Consequently, the ratio between laboratory and prototype flow rates can be expressed as follows: 
𝑄𝑄 = 𝜓 (𝜏 − 𝜏 )(𝜏 − 𝜏 )𝐾𝐾 𝜏 ,𝜏 ,

 
   𝜏 + 2𝑛1 + 2𝑛 𝜏 𝜏 + 2𝑛(1 + 𝑛)(1 + 2𝑛) 𝜏𝜏 + 2𝑛1 + 2𝑛 𝜏 𝜏 + 2𝑛(1 + 𝑛)(1 + 2𝑛) 𝜏  

(A20) 
Substituting Eq. (A18) into Eq. (A20) gives 

𝑄𝑄 = ⎣⎢⎢⎢
⎢⎡𝑅2 − 𝜏 ,Δ𝑝Δ𝑥𝑅2 − 𝜏 ,Δ𝑝Δ𝑥 ⎦⎥⎥⎥

⎥⎤

𝐾𝐾 Δ𝑝Δ𝑥Δ𝑝Δ𝑥
 

𝑅 ,4 + 2𝑛1 + 2𝑛 𝑅 ,2 𝜏 ,Δ𝑝Δ𝑥 + 2𝑛(1 + 𝑛)(1 + 2𝑛) 𝜏 ,Δ𝑝Δ𝑥𝑅 ,4 + 2𝑛1 + 2𝑛𝑅 ,2 𝜏 ,Δ𝑝Δ𝑥 + 2𝑛(1 + 𝑛)(1 + 2𝑛) 𝜏 ,Δ𝑝Δ𝑥
 

 (A21) Dividing Eq. (30) by Eq. (32) leads to the following equation: 𝜏 ,Δ𝑝Δ𝑥 = 𝜓 𝜏 ,Δ𝑝Δ𝑥  (A22) 
Substituting Eq. (A22) into Eq. (A21) yields 
𝑄𝑄 = 𝜓 𝐾𝐾 Δ𝑝Δ𝑥Δ𝑝Δ𝑥  (A23) 

Eq. (A23) is consistent with Eqs. (29) and (32) of the current work. 
Flow	 of	 yield	 power-law	 fluids	 between	 rotating	
cylinders	Chatzimina et al. [35] presented the solution of angular speed for the flow of yield power-law fluids in a rotational flowmeter with a rotating inner pipe, the dimensionless angular speed for the fluid 𝑈   was solved to be  
𝑈 (𝑟 ) = 1 − Bn 1𝜉 𝑐𝜉 − 1 𝑑𝜉 𝑟  (A24) 

where 𝑈 = 𝑈𝜔𝑅  (A25) 
Bn = 𝜏𝐾𝜔  (A26) and 𝑟 = 𝑟𝑅  (A27) The parameter 𝑐 can be solved from 
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Bn = 11𝜉 𝑐𝜉 − 1 𝑑𝜉 (A28) 
with the dimensionless outer radius defined as 𝑅 =. As can be seen, constant 𝑐 is a function of 𝑅 , Bn, and 𝑛. By dividing Eq. (30) by Eq. (31) to the power of 𝑛, the following result is achieved: (Bn) = (Bn)  (A29) Due to the rheological and geometrical similarity, the following equations can also be found: 𝑅 , = 𝑅 ,  (A30) and 𝑛 = 𝑛  (A31) Therefore, the two scales also share the same constant 𝑐 = 𝑐  , which indicates that the prototype and the model achieve dynamic similarity, i.e., the two scales have the same dimensionless angular speed when the dimensionless radius is equal. Reversely, this work shows that when the two scales achieve dynamic similarity, Eq. (A24) is also consistent with the current work. If the prototype and the model achieve dynamic similarity, the two scales should have the same dimensionless angular speed when the di-mensionless radius is equal: 𝑈 , (𝑟 ) = 𝑈 , (𝑟 ) (A32) Eq. (A32) implies the similarity of the tangential velocity profiles, i.e., a complete similitude between the model and prototype. 
Flow	of	Bingham-plastic	fluids	in	a	rotating	annulus	Chatzimina et al. [35] presented the closed-form solution of angular speed for the flow of Bingham-plastic fluids in a rotational flowmeter with a rotating inner pipe.  The dimensionless angular speed of the fluid 𝑈  is reported in [35] as follows: 𝑈 (𝑟 ) = 1 + Bn ln 𝑟+ 𝑅𝑅 − 1 (Bn ln𝑅+ 1) 1𝑟 − 1 𝑟  (A33) 

The advantage of Eq. (A33) over Eq. (A24) is the explicit form of the mathematical expression for the tangential velocity. Therefore, a comparison with the scale model equations of this paper would be more straightforward. The kinematic similarity between the two scales of flow requires identical values of dimen-sionless angular speed at a given 𝑟  . The following equation can subsequently be deduced from Eq. (A33): 

Bn ln 𝑟 + 𝑅𝑅 − 1 (Bn ln𝑅 + 1) 1𝑟 − 1  
= Bn ln 𝑟 + 𝑅𝑅 − 1 (Bn ln𝑅 + 1) 1𝑟 − 1  

 (A34) The two flow scales are also geometrically similar, i.e., 𝑅 , = 𝑅 , . Thus Eq. (A34) can be reduced to Bn = Bn  (A35) Substitution of the expression for Bingham’s number from Eq. (A26) into Eq. (A35) yields 𝜏 ,𝜏 , = 𝐾 𝜔𝐾 𝜔  (A36) Eq. (A36) is consistent with the scaling equations for the Bingham-Plastic fluid in the current work. 
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