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Abstract

Introduction: Intellectual disability, accelerated aging, and early-onset Alzheimer-

like neurodegeneration are key brain pathological features of Down syndrome (DS).

Although growing research aims at the identification of molecular pathways underly-

ing the aging trajectory of DS population, data on infants and adolescents with DS are

missing.

Methods: Neuronal-derived extracellular vesicles (nEVs) were isolated form healthy

donors (HDs, n=17) andDSchildren (n=18) from2 to17yearsof ageandnEVcontent

was interrogated for markers of insulin/mTOR pathways.

Results: nEVs isolated from DS children were characterized by a significant increase

in pIRS1Ser636, a marker of insulin resistance, and the hyperactivation of the

Akt/mTOR/p70S6K axis downstream from IRS1, likely driven by the higher inhibition

of Phosphatase and tensin homolog (PTEN). High levels of pGSK3βSer9 were also found.
Conclusions: The alteration of the insulin-signaling/mTOR pathways represents an

early event in DS brain and likely contributes to the cerebral dysfunction and intellec-

tual disability observed in this unique population.

KEYWORDS

Alzheimer’s disease, cognitive dysfunction, Down syndrome, Hsa21, insulin signaling, intellectual
disability, mTOR, neurodegeneration, neurodevelopment, PTEN, trisomy 21

1 BACKGROUND

Down syndrome (DS) is the most common genetic form of intellectual

disability, caused by the triplication of chromosome 21 (Hsa21), with

a prevalence of ≈12.8 per 10,000 births (≈1 in 780 newborns).1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Alzheimer’s & Dementia published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

The intellectual disability associated with DS likely results from

alterations of brain development that can be traced back to fetal life

stages. These alterations include widespread defects in neurogenesis,

excessive numbers of astrocytes, dendritic atrophy, and impaired

connectivity.1,2

Alzheimer’s Dement. 2021;1–13. wileyonlinelibrary.com/journal/alz 1
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HIGHLIGHTS

∙ Brain insulin resistance develops early in Down syndrome

(DS) independent of peripheral alterations.

∙ Brain insulin resistance is associated with mTOR hyperac-

tivation in DS.

∙ Neuronal-derived extracellular vesicles (nEVs) allow

detection of alterations of the insulin/mTOR pathway in

DS brain.

∙ PTEN inhibition drives insulin/mTOR alterations in DS

brain.

∙ Alterations of the insulin/mTOR pathway allow discrimi-

nation of DS versus healthy individuals.

Over the last decades, the lifespan of people with DS has signifi-

cantly extended. However, the increased life expectancy brings about

a higher risk of developing Alzheimer’s disease (AD)–like dementia.3,4

Due to the triplication of the amyloid precursor protein gene (APP)

on Hsa21, DS may potentially be envisioned as a genetic form of AD,

similar to its autosomal dominant form.3, 4 Therefore, persons with DS

represent a population to explore the molecular mechanisms underly-

ing intellectual disability as well as neurodegeneration. Several stud-

ies have focused on the identification of neuronal pathways involved

in synaptic plasticity, neurogenesis, and neurotransmission, which are

altered early in life in people with DS.3 However, no single gene or

region ofHsa21has been found to be responsible for all of the common

features of DS.5 This suggests that the coordination of multiple genes

and other factors may be responsible for the development of major DS

phenotypes.3,6

Previous studies support the idea that altered insulin signal-

ing in the brain, referred to as brain insulin resistance, may affect

the molecular pathways involved in synaptic plasticity and adult

neurogenesis.7 Indeed, the development of brain insulin resistance

may lead to a reduction of “mindspan”—the ability of the brain to

preserve mental capabilities throughout life—and increase the risk of

neurodegeneration.8 The mammalian target of rapamycin (mTOR) is

a “master switch” between anabolic and catabolic cellular processes9

through regulating glucose metabolism, bioenergetics, mitochondrial

function, and autophagy, also in response to insulin.10,11 mTOR has

also been involved in long-lasting synaptic adaptations at the basis of

higher-order brain function (ie, synaptic plasticity, memory preserva-

tion, and neuronal recovery).10 Previous studies by our group and by

others indicate that both insulin and mTOR signaling pathways are

impaired early in life in the brain of people with DS12,13 and DS animal

models.14–16 Moreover, crosstalk between insulin signaling and mTOR

pathway has been indicated to play a key role in the maintenance of

mindspan. Therefore, understanding at which time point and through

which trajectory the disturbance of the insulin/mTOR pathway occurs

and persists may indicate therapeutic targets against intellectual dis-

ability and neurodegeneration in people with DS.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using PubMed. The increased incidence of metabolic dis-

orders in Down syndrome (DS) is documented, and sev-

eral studies have examined metabolites and bioenergetic

defects in the DS population. We have cited all the pre-

vious work. However, there is a substantial lack of evi-

dence on the alteration of insulin and mTOR pathways in

DS, particularly in the younger population.

2. Interpretation: This study shows that the analysis of

nEVs can be used to detect early alterations of the

insulin/mTOR pathway in the brain of young DS individ-

uals. These alterations likely worsen intellectual disabil-

ity inDS andmay favor Alzheimer’s disease (AD) develop-

ment with age.

3. Future directions: The evaluation of nEVs content may

be useful to identify novel targets for therapeutic inter-

ventions in DS. This aspect will be strengthened by per-

forming additional studies to explore whether alterations

identified through the analysis of nEVs associate with

worse cognitive outcomes in DS.

In this regard, plasma-resident neuronal-derived extracellular vesi-

cles (nEVs) show great potential as a diagnostic tool.17 EVs are a het-

erogeneous population of vesicles released into the extracellular space

by all cell types, including brain cells for cell-to-cell communication.18

EVs carry surface markers and biologically active cargo molecules that

are specific to their originating tissue/cell and that may reflect the tis-

sue/cell’s physiological state.19,20 Thus the isolation of nEVs from the

bloodmayprovideaminimally invasiveapproach for samplingneuronal

components in DS and may, therefore, be considered a form of “liquid

biopsy.”20

Recently, the characterization of nEVs cargo provided valu-

able information on the molecular alterations underlying AD

neuropathology.17,21 Increased levels of AD biomarkers, such as

amyloid beta (Aβ) and phosphorylated tau (p-tau), were observed in

nEVs from persons with AD relative to controls.22,23 Furthermore, the

analysis of nEVs collected from participants of the Baltimore Longitu-

dinal Study of Aging revealed that markers of brain insulin resistance

were among the strongest individual predictors of AD development,

thereby highlighting a role for altered insulin signaling in AD onset

and progression.17 In addition, high levels of Aβ1-42, pTau181, and
p-s396-Tau were identified in the nEVs of persons with DS compared

with age-matched controls, already in childhood.24

Although a role for insulin/mTOR pathway during brain develop-

ment and in the maintenance of brain functions has been proposed,

no evidence is available in children with DS. In the present study, we

applied amultiplex immunoassay for the simultaneous evaluation of all
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themediators of the insulin/mTORpathway in circulating nEVs isolated

from infants and adolescents with DS and age-matched controls.

2 METHODS

2.1 Study participants

For the present study, we enrolled infants and adolescents with DS

(n = 18) and age-matched healthy donors (HDs, n = 17) from the

Down Syndrome and Pediatric Outpatient Clinic of the Bambino Gesù

Children’s Hospital in Rome (Italy). The study was approved by the

ethics committee of the Bambino Gesù Children Hospital (protocol

ID # 1771_OPBG_2019). We have received and archived written con-

sent for participation/publication fromevery individual whose data are

included. Consent for inclusion in the study was obtained during a visit

to outpatient clinics from all participants.

2.2 nEV isolation

Blood samples were obtained from all participants after overnight

fasting. All blood draws and processing followed established proto-

cols using standard venipuncture procedures. Blood was collected in

ethylenediaminetetraacetic acid (EDTA) polypropylene tubes, and was

centrifuged at 850×g for 15 minutes at 4◦C. Afterward, plasma was

isolated and centrifuged again at 850×g for 15 minutes at 4◦C to

eliminate clots and aggregates. Plasma samples were then divided

into 0.5-mL aliquots and stored at −80◦C until analysis. Preanalyt-

ical factors for blood collection and storage complied with guide-

lines for EV biomarkers.18 Evaluation of fasting glycemia and insu-

linemia (Table 1) was performed on the same plasma samples used

to isolate nEVs. Homeostatic model assessment for insulin resistance

(HOMA-IR) (Table 1) was then calculated by using the following for-

mula: (fasting plasma insulin in mU/L × fasting plasma glucose in

mmol/L)/22.5. nEV isolation was performed as described previously,

with minor modifications.17,25 Plasma samples were thawed on ice

and defibrinated with thrombin (System Biosciences, Inc., Mountain-

view, CA) followed by 30 minutes of incubation at room temperature.

Two-hundred fifty microliters of plasma were diluted 1:1 v/v with Dul-

becco’s calcium andmagnesium-free salt solution (DSB, Thermo Scien-

tific, Inc.,Waltham,MA)with the addition of protease (#P8340, Sigma–

Aldrich, St Louis, MO, USA) and phosphatase inhibitors (#P5726,

Sigma–Aldrich, St Louis, MO, USA). Total EVs were collected using an

Exo-spin Blood kit EX-02 (Cell Guidance, Cambridge, UK) according to

the manufacturer’s instructions, and finally resuspended in 0.5 mL of

ultra-pure distilled water with the manufacturer-recommended con-

centration of protease and phosphatase inhibitors. To immunocapture

L1 cell adhesionmolecule (L1CAM)–positive nEVs, the suspension was

incubated for 1 hour at 4◦C with 4 μg of mouse anti-human CD171

(L1CAM) biotinylated antibody (clone 5G3) (Thermo Scientific, Inc.),

followed by incubationwith 25 μL of Pierce Streptavidin PlusUltraLink
Resin (Thermo Scientific, Inc.) for 30 minutes at 4◦C. After centrifuga-

TABLE 1 Demographic and anthropometric characteristics of
controls (HD) and children with Down syndrome (DS)

HD DS P

N 17 18 .81

Age range 4 – 17 years 2 – 16 years

Age distribution (n) 0 – 5 years: 5 0 – 5 years: 8

6 – 11 years: 8 6 – 11 years: 4

12 – 17years: 4 12 – 17 years: 6

Age (mean± SD) 8.6± 4.4 8.7± 5.2 .68

Sex (M/F) 9/8 10/8 .88

Weight (mean, kg± SD) 31.3± 16.2 30.2± 21.3 .33

Fasting glycemia (mean,

mg/dL± SD)

68.9± 12.7 64.6± 9.8 .16

Fasting insulin (mean,

μU/mL± SD)

8.9± 7.3 8.5± 4.5 .79

HOMA-IR 1.52± 1.08 1.50± 0.92 .95

BMI (kg/m2, mean± SD) 18.7± 5.2 19.8± 4.5 .18

Centile (mean± SD) 59.8± 29.9 46.11± 25.5 .21

Obesity (n) 3 0 .06

Overweight (n) 3 1 .26

NAFLD (n) 0 0 n.s.

BMI, bodymass index;HOMA-IR, homeostaticmodel assessment for insulin

resistance; NAFLD, non-alcoholic fatty liver disease

tion at 800×g for 10 minutes at 4◦C and removal of supernatant, nEVs

were elutedwith 200 μL of 0.1M glycine. Beadswere then sedimented

by centrifugation at 4500×g for 5minutes at 4◦C, and the supernatants

containing nEVs were transferred to clean tubes. pH was neutralized

with 1 M Tris-HCl, and samples underwent two freeze/thaw cycles

with M-PER protein extraction reagent (Thermo Scientific, Inc.) sup-

plementedwith protease and phosphatase inhibitors. The final suspen-

sions containing nEVs proteins were stored at −80◦C. Samples were

thawed and vortexed twice prior to protein measurements. The stored

suspensions were used to determine the total protein concentration

by the Bradford assay (Pierce, Rockford, IL, USA). All investigators

involved in nEV isolation and biomarker quantification were blinded

until all measurements were completed.

2.3 nEVs characterization by dynamic light
scattering

Ten microliters of intact nEVs were used for the determination of the

vesicle hydrodynamic diameter throughdynamic light scattering (DLS).

The mean hydrodynamic diameter (Z-average size), size distribution,

and correlation curve of nEVs in phosphate-buffered saline (PBS; pH

7.2, dilution factor 1:100) were measured at 25◦C using a Zetasizer

Pro (Malvern Panalytical, UK) equipped with a solid state HeNe laser

(λ= 632.8 nm) at the scattering angles of 173◦ and 13◦. Size measure-

ment data were analyzed by the general-purpose algorithm.
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2.4 nEV characterization by transmission electron
microscopy

Intact nEVs were used for morphological evaluation of nEVs. The puri-

fied suspension stored at 4◦C was deposited by drop casting on a For-

mvar copper grid and subsequently stained by Uranyless solution for

1 minute. Transmission electron microscopy (TEM) observations were

performed using a Zeiss EM10 (Zeiss, Oberkochen, Germany) at 60 kV.

2.5 nEVs characterization for EVs and neuronal
markers

The detection of both transmembrane and intravesicular EV markers

is required to confirm the sequential enrichment of EVs from neat

plasma using Exo-spin Blood kit EX-02 sedimentation of total EVs fol-

lowed by immunoprecipitation of nEVs. EV enrichment was confirmed

by showing the presence of transmembrane (cluster of differentiation

81, CD81) and intravesicular EV markers (Alix) as well as the relative

depletion of lipoprotein (apolipoprotein A1, APOA1) in both total and

nEVs compared with EV-depleted plasma. Moreover, enrichment of

EVs of neuronal origin was confirmed by evaluating L1CAM and neu-

ronal nuclear protein (NeuN) levels, as neuronal markers, in nEVs, total

EVs, and EV-depleted plasma samples. The evaluation of the markers

mentioned above was performed by Western blot analysis described

below.

2.6 Western blot analysis

Ten micrograms of proteins for each sample were resolved on Crite-

rion TGX Stain-Free 4-15% 18-well gel (Bio-Rad Laboratories, Her-

cules, CA, USA; #5678084) in a Criterion large format electrophoresis

cell (Bio-Rad Laboratories, #1656001) in Tris/Glycine/SDS (TGS) Run-

ningBuffer (Bio-Rad Laboratories, #1610772). Immediately afterward,

the gel was placed on a Chemi/UV/Stain-Free tray and visualized using

aChemiDocMP imaging System (Bio-Rad Laboratories, #17001402) in

a UV setting. Total protein load was assessed using the Image Lab Soft-

ware (Bio-Rad Laboratories).

Subsequently, proteins were transferred via a TransBlot Turbo

semi-dry blotting apparatus (Bio-Rad Laboratories, #1704150) onto

nitrocellulose membranes (Bio-Rad laboratories, #162-0115). Mem-

branes were blocked with 3% bovine serum albumin in 0.5% Tween-

20/Tris-buffered saline (TBS-t) and incubatedovernight at4◦Cwith the

following antibodies: anti-CD81 (1:1000, Cell Signaling, Bioconcept,

Allschwill, Switzerland, #56039S), anti-Alix (1:1000, Cell Signaling,

Bioconcept, #2171S), anti-L1CAM (1:1000, Cell Signaling, #89861S),

anti-APOA1 (1:2000, ThermoScientific, Inc., #LF-MA0127), anti-NeuN

(1:1000, Thermo Scientific, Inc., #702022), anti-Syntaxin-1A (1:1000,

GeneTex, Irvine, CA, USA; #GTX113559), anti-PSD95 (1:1000, Cell

Signalling, #3450S), and anti-phospho-CaMK IIα Thr286 (1:1000, Cell

Signaling, #12716S). For L1CAM detection, an antibody targeting

the C-terminal region of the protein was used, while nEVs were

immunoprecipitated with an antibody targeting the N-terminal region

(5G3).

After three washes with TBS-t buffer, membranes were incubated

for 60 minutes at room temperature with the appropriate secondary

antibodies conjugated with horseradish peroxidase (1:5000; Sigma–

Aldrich, St. Louis, MO, USA). Membranes were developed with Clarity

enhanced chemiluminescence (ECL) substrate (Bio-Rad Laboratories,

#1705061), and the signal was acquired with Chemi-DocMP (Bio-Rad

Laboratories) and analyzed using Image Lab software (Bio-Rad Labora-

tories). Normalization was performed against total protein load signal.

2.7 Bioplex assay

A magnetic bead–based immunoassay was used to measure levels

of eight phosphoproteins and total target proteins pertaining to the

mTOR signaling pathway in nEVs. All mediators were assayed in mul-

tiplex using theBio-Plex ProCell Signaling protein kinaseB (Akt) Panel,

8-plex (Bio-Rad Laboratories, #LQ00006JK0K0RR) to measure levels

of the following phosphorylated proteins: insulin receptor substrate-

1 at Ser363 (pIRS1Ser636), phosphatase and tensin homolog at Ser380

(Phosphatase and tensin homolog (pPTEN)Ser380), serine/threonine-

protein kinaseAkt-1 at Ser 473 (pAktSer473), glycogen synthase kinase-

3β at Ser9 (pGSK3βSer9), mTOR at Ser2448 (pmTORSer2448), p70 S6

kinase at Thr389 (p70 S6 Kinase (pP70S6K)Thr389), ribosomal pro-

tein S6 kinase beta-1 at Ser235/236 (pS6Ser235/Ser236), and the Bcl2-

associated agonist of cell death at Ser136 (pBADSer136). Experiments

were run on a Bio-Plex System with Luminex xMAP Technology (Bio-

Rad Laboratories) and data were acquired on a Bio-Plex Manager

Software 6.1 (Bio-Rad Laboratories) with instrument default settings.

Median fluorescence intensities (MFI) corrected for the blank back-

ground were obtained for all analytes and results were calculated as

the ratio between the MFI of phosphorylated targets and total pro-

teins.

2.8 Statistical analyses

Data were first tested for equal variance and normality (Shapiro-Wilk

test). Data were not normally distributed and, therefore, the nonpara-

metric Mann-Whitney test was used to compare participants with DS

and healthy donors. A two-tailed alpha value of 0.05 was used to

denote statistical significance.

Correlationswereestimatedby theSpearman test.Multivariate sta-

tistical modeling was then used to differentiate participants with DS

and healthy donors based on levels of the measured mediators. A one-

class classification strategy (also known as class-modeling), based on

the use of the soft independent modeling of class analogies (SIMCA)

method, was adopted.26 SIMCA is particularly suitable for defining the

salient traits of a target category, enabling one to verify whether new

individuals are likely tobelong to that samecategoryornot.Mathemat-

ically, it operates by calculating a principal component (PC) model of

the category of interest (in the present case, healthy donor group), and
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F IGURE 1 Characterization of the plasma-resident neuronal-derived extracellular vesicles (nEVs).. (A) Total protein content, (B) size
distribution, (C) correlation curve, and (D) Z-average size (nm) of nEVs isolated from healthy donors (HDs) and participants with Down syndrome
(DS). Error bars represent standard deviation (SD). In (E-F), morphological study of nEVs. BF-TEM image of nEVs (E). Plot showing the frequency
distribution of the vesicle size histogram (F). Data fit by Gaussian convolution functions (red line). P< .01 statistically significant difference
between experimental and theoretical data fitting. Furthermore, identification of nEVmembranes evidences the presence of the bilayer
membranes (inset in F). In (G), representativeWestern blot images of total EVs (T, isolated with Exo-spin Blood kit EX-02), EV-depleted plasma (P,
supernatant after Exo-spin Blood kit EX-02), and nEVs (after immunocapture with L1CAM) isolated fromHD (n= 3) and DS (n= 3) and probed for
L1CAM, NeuN, Alix, CD81, and APOA1. The two bands detected for L1CAM in nEVs represent the non-glycosylated (∼≈170 kDa) and the
glycosylated form (∼≈220 kDa). In (H), the degree of neuronal enrichment for nEVs compared to total EVs. L1CAMandNeuN and CD81
densitometric values were first normalized for total load and then both L1CAMandNeuN levels were expressed as a ratio with CD81. Data are
presented asmeans± SD. *P< .05 versus Total EVs (Mann-Whitney)

testing each new observation for its degree of deviation with respect

to that model. Specifically, for each individual, a distance to the class

model d is calculated as the combination of two test statistics, namely

T2, which accounts for the Mahalanobis distance of the sample’s score

to the center of the PC space, andQ,which corresponds to the squared

residuals (ie, the squared Euclidean distance of the observation from

its PC analysis projection). Tomake the two terms comparable, prior to

being combined into the overall distance to themodel, they are normal-

ized by division to their critical value at 95% confidence. Accordingly,

verification of whether an individual is likely to be part of the healthy

donor class or not is based on assessing if the distance to the model is

below a predefined criterion. In mathematical terms:

di =

√(
T2i, norm

)2
+ Q2

i, norm ≤

√
2

i indicating thegeneric ith individual and the subscriptnormexplicitly

referring to the above-mentioned normalization.

3 RESULTS

3.1 Demographics and clinical characteristics

Thirty-five participants ranging in age between 2 and 17 years, includ-

ing 18with DS and 17 controls, were enrolled and included in the anal-

ysis. Baseline characteristics of participants are listed in Table 1. Partic-

ipants with and without DS did not differ for any demographic, clinical,

or anthropometric characteristics.

3.2 Characterization of nEVs

nEV preparations were characterized for protein content, size, and

morphology through DLS and TEM, along with immunoblotting anal-

yses for positive and negative EV markers, according to established

criteria18 (Figure 1).



6 PERLUIGI ET AL.

Quantification of the nEVs was performed by measuring the total

protein content, which provides an estimation of nEV amount.18,27

Higher nEV levels were observed in participants with DS relative to

controls (P = .004) (Figure 1A).

The size distribution of nEVs immunocaptured by L1CAMwas stud-

ied with DLS (Figure 1A and 1B). Correlation coefficients of nEVs from

both participant groups were consistent with EVs guidelines18 and so

were mean hydrodynamic diameter values (204 ± 95 nm and 210 ±

96 nm, in controls and participants with DS, respectively) (Figure 1C).

The size of nEVs was comparable between the groups (P= .77).

Bright-field (BF) image TEM showed well-separated nEVs (Fig-

ure 1D). Imaging analyses were performed to accurately measure nEV

size at low magnification to conduct the appropriate statistics.28,29

Quantitative morphometric measurements were performed by gener-

ating a 2D contour map of 419 vesicles distributed on a probed area

of 6220 nm per 4587 nm (Figure 1D). The analyzed size was plotted

in a frequency profile of EVs with spherical shape. The bin distribu-

tions were processed by Gaussian fitting, and the frequency distribu-

tion of isolated nEVs was estimated to be centered around the mean

value of 64 ± 0.71 nm, having a lowest polydispersity of about 1.10%

(Figure 1E). Furthermore, small populations of bins were fitted to esti-

mate amean size of 128± 0.51 nm of the nEVs (Figure 1E). It should be

noted that themean hydrodynamic diameter of nEVs (detected byDLS

measurements) was almost 3-fold greater than the size estimatedwith

TEM, evidencing how the particle behaves in a fluid, thus taking into

account the electric dipole layer that adheres to the vesicle surface.

The purification of nEVs was confirmed by Western blot anal-

ysis showing enrichment for transmembrane and intravesicular EV

markers (ie, CD81 and Alix) and relative depletion of lipoprotein (ie,

APOA1) in total EVs and nEVs compared with EV-depleted plasma

(Figure 1F). A significant increase in neuronal markers levels, that is,

L1CAM (nEVs/total EVs = 2.46) and NeuN (nEVs/total EVs = 1.67), in

nEVs compared with total EVs and EV-depleted plasma confirmed the

enrichment of nEVs by L1CAM immunoprecipitation (Figure 1G). The

degreeofneuronal enrichment is in linewithprevious studies reporting

enrichment values from1.6-fold to5.6-folddependingon themarker.20

In addition, the evaluation of the eluate from the L1CAM immunocap-

ture of nEVs further reveals that nEVs are enriched in L1CAM and

NeuN, whereas EVmarkers, that is, CD81 and Alix, can be observed in

both nEVs and non-neuronal EVs (Supplementary Figure 1).

3.3 nEV biomarker comparison between
participants with DS and controls

The interrogation of nEVs for markers of the insulin/mTOR pathway

revealed higher levels of pIRS1Ser636 (0.58 arbitrary units (A.U.) vs 0.23

A.U, P= .041), pPTENSer380 (0.48A.U. vs 0.19A.U, P= .015), pAktSer473

(0.15 A.U. vs 0.048 A.U, P = .026), pGSK3βSer9 (0.036 A.U. vs 0.013

A.U, P = .017), pmTORSer2448 (0.055 A.U. vs 0.033 A.U, P = .002);

pP70S6KThr389 (0.21 A.U. vs 0.07 A.U, P = .03), pS6Ser235/Ser236 (0.075

A.U. vs 0.019 A.U, P = .02), pBADSer136 (0.55 A.U. vs 0.24 A.U, P = .03)

in participants with DS relative to controls (Figures 2B-I).

To evaluate whether alterations of the insulin/mTOR pathway were

associated with synaptic defects in DS, levels of the three main synap-

tic proteins, that is, Syntaxin-1A (pre-synaptic), PSD95 (post-synaptic),

and the active form of CamK IIα (pCamK IIαThr286, a central regu-

lator of neuronal plasticity30), were evaluated. No significant differ-

ences were observed for Syntaxin-1A (1 A.U. vs 0.77 A.U., P = .50),

PSD95 (1 A.U. vs 0.98 A.U., P = .57), or pCamK IIαThr286 levels (1

A.U. vs 1.07 A.U., P = .46) between DS and controls (Supplementary

Figure 2).

We also evaluated the levels of CD81 and L1CAM in nEVs and

found no significant differences between participant groups (Supple-

mentary Figure 3). To further confirm our results, we normalized

insulin/mTOR pathway markers levels as well as those of synaptic pro-

teins for both CD81 and L1CAM levels, as in previous reports.18,31 Dif-

ferences observed between DS and control participants remained sig-

nificant after CD81 or L1CAM normalization (Supplementary Figures

3 - 5).

Taking advantage from the multiplexing property of the Luminex

platform, we explored whether activation/inhibition of the above-

mentioned mediators was consistent along the pathway. To this

aim, correlation analyses were performed among nEV markers from

both participant groups. Our findings show that nEV biomarkers

are positively and significantly associated with one another in both

participant groups, except for pmTORSer2448 versus pPTENSer380

(P = .1) and pmTORSer2448 versus pBADSer136 (P = .1) in partici-

pants with DS (Figures 3A-D). In addition, a strong negative asso-

ciation was found between pCamK IIαThr286 and both pAktSer243

and pmTORSer2448 in controls but not in participants with DS

(Figures 3A-D).

3.4 nEV biomarker comparison between
participants with DS and controls according to age

To verify whether the observed changes varied according to age, cor-

relation analyses were performed. No significant associations with

age were observed in either participant group (Figures 3A-D). Based

on that, to unravel whether alterations in DS occur in childhood and

remain consistent in older children and in adolescents independent of

age, participantswere categorized according to the age range reported

in Table 1. Although differences were evident between DS and con-

trols, the small sample size of each sub-group did not allow us to per-

form a reliable statistical analysis (data not shown). Hence, participant

age was then categorized according to the median value (7 years for

DS; 8 years for controls), and significantly higher levels of pIRS1Ser636

(0.57 A.U. vs 0.08 A.U., P = .041), pGSK3βSer9 (0.024 A.U. vs 0.009

A.U., P = .02), pmTORSer2448 (0.69 A.U. vs 0.037 A.U., P = .01), and

pS6Ser235/Ser236 (0.06 A.U. vs 0.01 A.U., P = .04) were observed in par-

ticipants with DS below the median age relative to their control peers

(Figures 4A and 4C). A similar pattern was observed in participants

above themedianage, althoughdifferencesdidnot reach statistical sig-

nificance (Figure 4B). No significant differences were observed for any

synaptic proteins (Supplementary Figure 6).
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F IGURE 2 nEV biomarker levels in healthy donors (HDs) and childrenwith Down syndrome (DS). (A) Schematic representation of the
insulin/mTOR pathway. Arrows: activation; lines: inhibition; green circles: phosphorylation sites associated with protein activation; red circles:
inhibitory phosphorylation sites. (B-I) Levels of biomarkers of the insulin/mTOR pathway evaluated in nEVs isolated fromHD (n= 17) andDS
(n= 18) children. Data are presented asmeans± SD. *P< .05 and ** P< .01 versus HD (Mann-Whitney)

3.5 SIMCA analysis

The whole set of measured mediator signals was used to build a mul-

tivariate classification model, with the aim of evaluating whether they

could provide a differentiation between controls and participants with

DS. Through the use of the SIMCA method, a model of the healthy

donor class was built and cross-validated, and it was verified whether

the model could recognize control individuals as part of the category

(sensitivity) and DS participants as not (specificity). The optimal com-

plexity of the PC model for the healthy donor class, after auto-scaling

data pre-treatment, was found to be two components. Based on the

model, it was possible to calculate the values of T2norm and Qnorm for

each control and DS participant and, consequently, their distances to

the category model. These results can be graphically visualized in Fig-

ure 5, where the cross-validated projections of controls and partici-

pants with DS onto the healthy donors model space are displayed. In

the plot, the dashed black line corresponds to the decision threshold

d ≤

√
2. In the calibration phase, themodelwas able to correctly recog-

nize as healthy donors all control participants, corresponding to 100%

sensitivity, while 2 of the 18 participants with DS were incorrectly

accepted by the healthy donor class model, corresponding to a speci-

ficity of 88.9%. In cross-validation, 87.5% sensitivity and 85.4% speci-

ficitywereobtained, as observable in Figure5. The inspectionof contri-

butions of the individual variables to the value of T2norm and Qnorm
32 of

participantswithDScorrectly identifiedasnotbelonging to thehealthy

donor class suggests that in our DS population there are higher levels

of pAktSer473, pBADSer136, pmTORSer2448, pPTENSer380.

Finally, a principal component analysis (PCA) was conducted to

exclude that extreme values observed in DS population were outliers

and thus can be kept in all the analyses (Supplementary Figure 7). PCA

confirmed that extreme values are not outliers and likely account for

the wide variability of pathological phenotypes of DS individuals that

present with variable severity of clinical features1,3.

4 DISCUSSION

Our work reports for the first time a significant alteration of the

insulin/mTOR pathway in infants and adolescents with DS through the

analysis of nEVs. Furthermore, our data show that changes in the lev-

els of protein phosphorylation are consistent across adjacent kinases

of the insulin/mTOR pathway, indicating that the integrity of the sig-

naling cascade is maintained in nEVs. Hence, nEVs are a valuable tool

to investigate the neuronal insulin/mTORpathway through aminimally

invasive approach.

The first striking finding of our study is the significant IRS1 inhibi-

tion observed in nEVs from participants with DS. Inhibition of IRS1 is

a marker of brain insulin resistance.7 From a molecular point of view,

IRS1Ser636 phosphorylation is responsible for the uncoupling between

insulin receptor (IR) and IRS1, which results in the inability of insulin
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F IGURE 3 Correlation analyses in healthy donor (HD) andDown syndrome (DS) groups. Spearman correlation analyses were performed
separately in HD (A-B) andDS groups (C-D) to explore associations among the biomarkers measured in nEVs as well as between biomarker levels
and demographic characteristics of participants. Blue/white/red colors were used for the scheme. Blue represents the highest values, white the
middle, and red the lower values both for Spearman r (A and C) and P values (B andD)

to activate the intracellular pathways downstream of IRS1.11 Brain

insulin resistancemediates synaptotoxic effects and leads to (1) synap-

tic loss, impaired autophagy, and increased neuronal apoptosis7,8,33;

(2) increased production and secretion of Aβ peptides7,34; and (3)

increased tau phosphorylation.7,35,36 Of interest, all of the above-cited

neuropathological alterations have been described in the brain of adult

people with DS (reviewed in3). Moreover, these observations are in

keeping with clinical studies showing that the failure in brain energy

metabolism responsible for cognitive decline during aging or AD could

be driven by the development of brain insulin resistance, particularly at

early stages.7,22

In addition, IRS1 inhibition within the brain seems to occur inde-

pendent of peripheral alterations. Fasting glycemia, insulinemia, and

HOMA-IR—known to represent powerful risk factors for the develop-

ment of brain insulin resistance and cognitive decline7—were within

normal ranges and did not differ between participants with DS and

controls. Similarly, metabolic disturbances/diseases associated with

peripheral insulin resistance, such as overweight, obesity, type 2 dia-

betes, and non-alcoholic fatty liver disease, were not prevalent in our

participant cohort.

Despite IRS1 inhibition, we observed that the activation of Akt,

mTOR, andmTOR-associated targets, that is, P70S6K and S6, was con-

sistently increased in nEVs isolated from participants with DS com-

pared with controls, thus indicating an overactivated state. This obser-

vation confirms previous studies from ours and other groups show-

ing aberrant mTOR signaling in post-mortem brain from people with

DS, with and without AD, and in AD brain.12,37 Hyperactivation of

mTOR has been associated with defects of autophagosome formation

and autophagy and with accumulation of AD pathology markers.1.2,14

Accordingly, published data show defects in endo-lysosomal pathways

in DS38–40 and efficacy of mTOR inhibitors to rescue this abnormality

in primary fibroblast from persons with DS.41 A protective role for EVs

was previously proposed in DS by showing that higher EV release may

be a mechanism to alleviate endo-lysosomal dysfunctions both in mice

and humans.27,42 Enhanced EVs secretion,27,31,42 as observed also in

our work, might serve as a delayed cellular response to reduce the

size and number of endosomal compartments in DS by shedding more

endosomal content into the brain extracellular space.27,42 However, it

is important to highlight that, in addition to themean of increased nEVs

release in DS, the analysis of nEV content provides information about

themolecular alterationsoccurringwithin thebrain, asweobserved for

the insulin/mTOR pathway, thus representing a powerful tool of inves-

tigation.

mTOR is involved in neuronal development and proper functioning

ofmature neurons,43 and changes inmTORactivity are often observed

in neurological diseases, including genetic disorders (eg, tuberous scle-

rosis and fragile X syndrome), epilepsy, brain tumors, and neurodegen-

erative disorders (AD, Parkinson disease, and Huntington disease).44

The analysis of nEVs in children with DS, although at a different age,

recapitulates the main findings obtained from post-mortem brain of
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F IGURE 4 nEV biomarker levels in healthy donors (HDs) and childrenwith Down syndrome (DS) by age category. (A) Levels of biomarkers
for the insulin/mTOR pathway evaluated in nEVs isolated fromHD andDS children were expressed by dividing the two groups into two further
sub-groups according to themedian age.Median age for HDwas 8 years, while for DS children was 7 years. (B-C) Data of the two subgroups above
themedian age (HD= 9, DS= 9) are shown in (B), while those of the two subgroups below themedian age (HD= 8, DS= 9) are shown in (C). Data
are presented asmeans± SD. *P< .05 versus HD (Mann-Whitney)

people with DS.12,45 This is in line with our previous findings and fur-

ther confirms the reliability of shuttling EVs as a source of disease

biomarkers.

Not surprisingly, the hyperactivation of mTOR/P70S6K axis may

be responsible for the observed IRS1 inhibition in DS, similar to what

was reported for AD.37,46,47 Although this feedback loop is intrinsic

to the physiology of insulin signaling, considering that mTOR/P70S6K

dampens excessive IRS1 activation,11 a chronic hyper-activation is

detrimental.11 Within this picture, a role for increased Aβ levels may

also be suggested, since Aβ oligomers were demonstrated to both pro-

mote IRS1 inhibition48 and mTOR hyperactivation49 in AD. Thus aber-

rant, chronic mTOR hyperactivation diverts the feedback mechanism

into reduced insulin sensitivity and leads to a harmful synergistic path

affecting neuronal functions in DS.10

In addition to that, the hyperactivation of Akt/mTOR axis may con-

tribute to dysfunctional synaptic plasticity mechanisms in DS through

CaMK IIα. CaMK IIα is a central regulator of neuronal plasticity and

cognitive functions, such as learning.30 Both insulin and nutrients pro-

mote a transient increase of intracellular Ca2+ levels (that activates

CamK IIα) along with the activation of the Akt/mTOR axis.30,50 Con-

versely, mTOR activation leads to CaMK IIα inhibition through a feed-
back mechanism, thus contributing to CamK IIα regulation.30 Both

hyperactivation and sustained inhibition of CaMK IIα are detrimental

to neurons and synaptic plasticity.51 Hence, the lack of correlations

that we found in DS suggest that crosstalk between the insulin/mTOR

pathway andCaMK IIαmay be disrupted inDS, whichmight contribute

to intellectual disability.

Hyperactivation of the Akt/mTOR axismight also be responsible for

increased BADphosphorylation observed in nEVs isolated frompartic-

ipantswithDS. Indeed, bothAkt and P70S6K are known to phosphory-

late BAD to promote anti-apoptotic signals and, thus, cell survival.52,53

This is the first observation of increased BAD inhibition in DS and is in

agreement with the concept that compensatory events promote sur-

vival mechanisms prior to the development of AD pathology both in

persons with DS and transgenic mice.54–56 Moreover, we previously

reported that pro-apoptotic signalswere significantly increased in per-

sons with DS only after the development of AD pathology.57

In the search for putative candidates responsible for the impair-

ment of insulin/mTOR pathway crosstalk, we suggest that PTEN may

play a role. PTEN is a widely known negative regulator of insulin/PI3K
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F IGURE 5 SIMCAmodel: cross-validated projection of the samples onto the space of the healthy donor (HD) category. In the space spanned
by the two variables T2norm andQnorm, the region associated with the class HD is represented by the area below the dashed black line identifying the
classification threshold. The plot shows that almost all HD participants (blue circles), falling below the line, are correctly identified asmembers of
the class. Likewise, themajority of participants with DS (red circles), falling above the decision line, are correctly identified as not being HD

signaling.58,59 We hypothesize that the significant PTEN inhibition

(pPTENSer380) observed in nEVs from participants with DS would lead

to an accumulation of phosphatidylinositol-3, 4, 5-triphosphate (PIP3),

responsible for sustained overactivation of Akt and its downstream

targets, that is, mTOR. A dysregulation of the axis is also supported

by the lack of a significant association between PTEN and either

mTORSer2448 or BADSer136 in participants with DS, but not in controls,

as well as by SIMCA results, suggesting that PTEN inhibition may pro-

mote an unchecked Akt hyperactivation, which further contributes to

aberrant mTOR activation and BAD inhibition. This proposed scenario

is reinforced by recent observations showing that PTEN inhibition is

coupledwithAkt/mTORhyperactivation in post-mortembrain samples

obtained from people with DS and AD.12,37,45

Observations from the current study also suggest that alterations

of the insulin/mTOR pathway occur quite early in DS brain, already

during the childhood. Because people with DS show intellectual dis-

ability ranging from mild to severe with cognitive functions below

chronological age expectations60 and because the insulin/mTOR path-

way regulates processes associatedwith neuronal plasticity,7,8 we pro-

pose that our results may add new insight about the molecular mech-

anisms responsible for worse cognitive performance in DS children.

We acknowledge that one limitation of the current study is the lack of

correlations with cognitive measures, such as mental age or memory

and learning, and further research is warranted to fully understand the

pathophysiologic processes behind our observations.

In conclusion, our findings contribute to expand the knowledge on

the neuropathological alterations inDSbrain by analyzing a very young

population still poorly characterized. As discussed earlier, defects of

insulin/mTOR pathway, besides being involved in cognitive dysfunc-

tions, are associated with the onset of AD. The pathophysiology of AD

in DS is similar to that of the sporadic and autosomal dominant forms

of AD (reviewed in61). Although longitudinal studies of AD in people

with DS exist,62 the natural history of biomarker changes in DS has not

been established except that in the adult population.4 Hence, we pro-

pose that the analysis of nEVs may lead to the identification of novel

disease biomarkers early in life that may also become targets for ther-

apeutic development in DS.
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