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Supplementary Text S1  14 
Literature Review 15 

To assess the extent of awareness of trait repeatability as an important source of bias in 16 

estimates of selection, and the type of estimates that might often be biased, we surveyed the 17 

literature for papers presenting estimates of selection. We decided to take a sample of all such 18 

estimates by focusing on papers published within the journal Evolution in the years 2010-2019 19 

inclusive. Our strategy was first to identify all papers published in that time period that cited 20 

Lande & Arnold (1983). These were then pruned by skimming abstracts to assess if selection 21 

gradients of empirical data were likely to be presented. We then retrieved each paper and read 22 

the methods and results to confirm that gradients were indeed estimated. If so, we assessed the 23 

following variables: the trait(s) that were analysed, labelled as the authors chose and scored as 24 

to type (morphological, life history, physiological, performance, or behavioural) because 25 

repeatability varies considerably among these classes of traits. We used information in the 26 

methods to assess whether traits were mean-centred prior to analysis and whether repeated 27 

measures of the trait were taken (and if so, how many repeats). We further scored whether the 28 

authors used individual values, the mean, or some other technique such as principal components 29 

analysis that combines individual data points (and mean-centres as well), and whether trait 30 

correlations were presented in analyses of correlational selection. We also noted if the author(s) 31 

mentioned measurement error and repeatability in the paper, and if so, if they specified the trait 32 

repeatability. Finally, we noted what type of selection was estimated (directional, quadratic, or 33 

correlational) and any unusual elements of the analysis beyond the standard regression approach 34 

described by Lande & Arnold (1983), such as use of path analysis, linear mixed models, aster 35 

analysis, or bivariate mixed-effects models. 36 

 Our survey resulted in 68 papers producing 311 trait estimates (we did not count 37 

replicate populations or years). Most estimates were on morphological traits (195; 63%), but 38 

38 (12%) were of behavioural traits, 26 (8%) of physiological, 31 (10%) were of life history 39 

characters, and 21 (7%) of performance traits. All traits were used to estimate directional 40 

selection; quadratic selection was also measured for 178 (57%), and correlational selection was 41 

assessed among 107 (34%). Table 1 (Main Text) provides summary statistics over all papers 42 

and Table S1 provides information extracted per paper.  43 
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Table S1. Studies publishing estimates of linear and nonlinear selection in Evolution from 2010 -2019, with species, trait studied, category of trait 44 

(MO=morphological, BEH = Behavioral, LH = Life history, PHY = Physiological, PER = Performance), fitness measure (L = lifetime, typically 45 

survival; E = one measure of an episode of fitness; E2 = at least two measures of episodic fitness), number of measures taken, whether the mean was 46 

used if more than 1 measure (or if ≥2 traits were combined with PCA), whether repeatability was mentioned and its magnitude if known, type of 47 

selection measured (D = directional, Q = quadratic, C = correlational), whether multivariate models were used, if traits were mean-centred before 48 

analysis (? = either authors did not say or simply stated they “standardized” without defining; residuals and PCA were counted as mean-centred) and 49 

if among-trait correlations were provided in cases of non-linear selection. Entries left blank if non-applicable.  50 

Authors Year Citation Species Trait Category Fitness Measures 
Used 
mean 

Mentioned 
repeatability 

Type of 
selection 
measured 

Used 
multivariate 

Traits 
mean-centred 

Trait 
correlations 
estimated 

Reynolds et al. 2010 64(2): 358-369 Silene virginica Petal length MO L 2+ Yes No D,Q,C No  ? No 
    Petal width MO L 2+ Yes No D,Q,C No  ? No 
    Flower height MO L 2+ Yes No D,Q,C No  ? No 
    Corolla length MO L 2+ Yes No D,Q,C No  ? No 
    Corolla width MO L 2+ Yes No D,Q,C No  ? No 

    Stigma exertion MO L 2+ Yes No D,Q,C No  ? No 

van de Pol et al. 2010 64(3):836-851 
Haematopus 
ostralegus 
ostralegus 

Bill shape MO E 1  Yes D No  No  

Cox & Calsbeek 2010 64(3):798-809 Anolis sagrei Body size MO L 1  No D,Q No  ? No 

Siepelski & 
Benkman 

2010 
64(4):1120-

1128 
Pinus flexilis PC1 MO E 2 Yes Yes D No  PCA  

Freeman-Gallant 
et al 

2010 
64(4):1007-

1017 
Geothlypis trichas UV brightness MO E 4 Yes No D No  Yes  

    Mask area MO E 4 Yes 0.9 D No  Yes  

    Bib area MO E 1  0.9 D No  Yes  

    Carotenoid chroma MO E 4 Yes No D No  Yes  

    Yellow brightness MO E 4 Yes No D No  Yes  

Weese et al. 2010 
64(6):1802-

1815 
Poecilia reticulata Body size MO L 1  No D No  Yes  

    Black MO L 1  No D No  Yes  

    Green MO L 1  No D No  Yes  

    Carotenoid MO L 1  No D No  Yes  

    Structural MO L 1  No D No  Yes  

    Total Color MO L 1  No D No  Yes  

Perez & Munch 2010 
64(8):2450-

2457 
Fish sp. Body size MO L ?  No D,Q,C No  Yes No 

      E     No  Yes No 
    Bower base BEH E 1  No D,Q,C No  Yes No 
    Bower platform BEH E 1  No D,Q,C No  Yes No 
    Bower position BEH E 1  No D,Q,C No  Yes No 

Baythavong & 
Stanton 

2010 
64(10):2904-

2920 
Erodium cicutarium Emergence timing MP LH L 6  No D No  ? No 
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    Emergence timing L LH L 6  No D No  ? No 

    Emergence timing Q LH L 6  No Q No  ? No 

    Cotyledon width MP MO L 6  No D No  ? No 

    Cotyledon width L MO L 6  No D No  ? No 
    Cotyledon width Q MO L 6  No Q No  ? No 

    Early leaf number MP MO L 6  No D No  ? No 

    Early leaf number L MO L 6  No D No  ? No 

    Early leaf number Q MO L 6  No Q No  ? No 

    Leaf turnover MP MO L 6  No D No  ? No 
    Leaf turnover L MO L 6  No D No  ? No 
    Leaf turnover Q MO L 6  No Q No  ? No 
    FFdateMP MO L 6  No D No  ? No 
    Ffdate L MO L 6  No D No  ? No 
    Ffdate Q MO L 6  No Q No  ? No 
    Leaves MP MO L 6  No D No  ? No 
    Leaves L MO L 6  No D No  ? No 
    Leaves Q MO L 6  No Q No  ? No 

Sullivan-Beckers 
& Cocroft 

2010 
64(11):3158-

3171 
Enchenopa 

binotata 
Survival LH E 1  No D,Q No  ? No 

    Weight MO E 1  No D,Q No  ? No 

    Signals per bout BEH E 1  0.27 D,Q No  ? No 

    Period BEH E 1  0.1 D,Q No  ? No 
    Whine length BEH E 1  0.06 D,Q No  ? No 
    Pulse rate BEH E 1  0.22 D,Q No  ? No 
    Frequency BEH E 1  0.32 D,Q No  ? No 

Rundle & 
Chenowth 

2011 65(3):893-899 Drosophila serrata CHC1 PHY E 1  No D,Q,C No  Yes No 

    CHC2 PHY E 1  No D,Q,C No  Yes No 
    CHC3 PHY E 1  No D,Q,C No  Yes No 
    CHC4 PHY E 1  No D,Q,C No  Yes No 
    CHC5 PHY E 1  No D,Q,C No  Yes No 
    CHC6 PHY E 1  No D,Q,C No  Yes No 
    CHC7 PHY E 1  No D,Q,C No  Yes No 
    CHC8 PHY E 1  No D,Q,C No  Yes No 
    CHC9 PHY E 1  No D,Q,C No  Yes No 

Sahli & Conner 2011 
65(5):1457-

1473 
Raphanus 

raphanistrum 
Flower number MO E2 1  No D,Q No  Yes No 

    Flower size MO E2 1  No D,Q No  PCA No 
    Anther exsertion MO E2 1  No D,Q No  Yes No 

    Stamen dimorphism MO E2 1  No D,Q No  Yes No 

Postma et al. 2011 
65(8):2145-

2156 
Poecilia reticulata Black patch size MO E 1  No D,Q,C No  ? Yes 

    Fuzzy black size MO E 1  No D,Q,C No  ? Yes 
    Orange size MO E 1  No D,Q,C No  ? Yes 
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    Iridescent size MO E 1  No D,Q,C No  ? Yes 
    Tail size MO E 1  No D,Q,C No  ? Yes 
    Body size MO E 1  No D,Q,C No  ? Yes 

Martin & Pfennig 2011 
65(10):2946-

2958 
Spea multiplicata Denticle rows MO E 1  No D,Q,C No  Yes(residuals) No 

    Orbitohyoideus muscle 
width 

MO E 1  No D,Q,C No  Yes(residuals) No 

    Interhyodieus muscle 
width 

MO E 1  No D,Q,C No  Yes(residuals) No 

    Gut length MO E 1  No D,Q,C No  Yes(residuals) No 

    Mouthpart shape MO E 1  No D,Q,C No  Yes(residuals) No 

    Denticle rows MO E 1  No D,Q,C No  Yes(residuals) No 

Leinonen et al. 2011 
65(10):2916-

2926 
Gasterosteus 

aculeatus 
Lateral plate number MO L 1  No D No  No Yes 

    Spine triangle size MO L 1  No D No  No Yes 
    Head depth MO L 1  No D No  No Yes 
    Head length MO L 1  No D No  No Yes 
    Body depth MO L 1  No D No  No Yes 
    Pelvic girdle length MO L 1  No D No  No Yes 

    Caudal peduncle length MO L 1  No D No  No Yes 

Formica et al. 2011 
65(10):2771-

2781 
Bolitotherus 

cornutus 
Body Size (PC1) MO L 5 PCA No D No  PCA  

    Social Body Size MO L 10+ Yes No D No  PCA  

    Body Size (PC1) MO E 5 PCA No D No  PCA  

    Social Body Size MO E 10+ Yes No D No  PCA  

Crean et al. 2011 
65(11):3079-

3089 
Styela plicata Larval size MO L 3 Yes No D,Q,C No  Yes No 

    Hatch time LH L 1  No D,Q,C No  Yes No 
    Settle time BEH L 1  No D,Q,C No  Yes No 
    Larval size MO E 3 Yes No D,Q,C No  Yes No 
    Hatch time LH E 1  No D,Q,C No  Yes No 
    Settle time BEH E 1  No D,Q,C No  Yes No 

Lorenzi & 
Thompson 

2011 
65(12):3527-

3542 
Polistes biglumis Head width MO L 1  No D,Q No  ? Yes 

    Building effort PER L 1  No D,Q No  ? Yes 
    Brood investment PER L 1  No D,Q No  ? Yes 
    Protective effort BEH L 1  No D,Q No  ? Yes 

Egan et al. 2011 
65(12):3543-

3557 
Belonocnema 

treatae 
Gall size MO L 1  No D,Q No  Yes  

Kulbaba et al.  2012 
66(5):1344-

1359 
Polemonium 
brandegeei 

Herkegomy MO E 1  No D,Q,C No  ? No 

    Corolla tube length MO E 1  No D,Q,C No  ? No 
    Corolla tube width MO E 1  No D,Q,C No  ? No 
    Sex organ height MO E 1  No D,Q,C No  ? No 
    Flower mass MO E 1  No D,Q,C No  ? No 
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    Nectar volume PHY E 1  No D,Q,C No  ? No 
    Sugar content PHY E 2 Yes No D,Q,C No  ? No 

Godsen et al.  2012 
66(7):2106-

2116 
Drosophila 

melanogaster 
CHC1 PHY E 1  No D No  Yes No 

    CHC2 PHY E 1  No D No  Yes No 
    CHC3 PHY E 1  No D No  Yes No 
    CHC4 PHY E 1  No D No  Yes No 
    CHC5 PHY E 1  No D No  Yes No 
    CHC6 PHY E 1  No D No  Yes No 
    CHC7 PHY E 1  No D No  Yes No 

Fitzpatrick et al. 2012 
66(8):2451-

2460 
Mytilus 

galloprovincialis 
Sperm density PER E 2 Yes  D,Q,C No  ? No 

    Sperm head volume MO E 30 Yes  D,Q,C No  ? No 

    Sperm flagellum length MO E 30 Yes  D,Q,C No  ? No 

    Sperm motility PC1 PER E 2 Yes Yes D,Q,C No  PCA No 

    Sperm motility PC2 PER E 2 Yes Yes D,Q,C No  PCA No 

    Sperm age PER E 1  No D,Q,C No  ? No 
    Egg age PER E 1  No D,Q,C No  ? No 

Guerreiro et al 2012 
66(11):3615-

3623 
Mus musculus IL-6 PHY L 1  No D,Q,C No  Yes No 

    Il-10 PHY L 1  No D,Q,C No  Yes No 

Benkman et al 2013 67(1):157-169 
Pinus contorta 

latifolia 
Cone width/length MO E 3 Yes Yes D,Q No  No Yes 

    Cone mass MO E 3 Yes Yes D,Q No  No Yes 
    Distal scale MO E 6 Yes Yes D,Q No  No Yes 
    Scale length MO E 6 Yes Yes D,Q No  No Yes 
    Full seeds PER E 3 Yes Yes D,Q No  No Yes 
    Empty seeds PER E 3 Yes Yes D,Q No  No Yes 
    Seed mass MO E 5 Yes Yes D,Q No  No Yes 

Marshall & Monro 2013 67(2):328-337 
Watersipora 
subtorquata 

Offspring size MO E 1  No D,Q No  ? No 

    Zoiod size MO E 1+ Yes No D,Q No  ? No 
    Senescence size MO E 1  No D,Q No  ? No 

Wacker et al. 2013 
67(7):1937-

1949 
Gobiusculus 
flavescens 

Length MO E 3 Yes Yes D No  Yes  

    Torso area MO E 3 Yes Yes D No  Yes  

    Blue spots MO E 3 Yes Yes D No  Yes  

    Tail length MO E 3 Yes Yes D No  Yes  

Fritzsche & 
Arnqvist 

2013 
67(7):1926-

1936 
Callosobruchus 

maculatus 
Male body size MO E 2 Yes No D No  Yes  

    Male body size MO E 2 Yes No D No  Yes  

    Male body size MO E 2 Yes No D No  Yes  

    Male body size MO E 2 Yes No D No  Yes  

    Female body size MO E 2 Yes No D No  Yes  

    Female body size MO E 2 Yes No D No  Yes  

    Female body size MO E 2 Yes No D No  Yes  

    Female body size MO E 2 Yes No D No  Yes  
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Morrissey & 
Sakrejda 

2013 
67(7): 2094-

2100 
Homo sapiens Birth mass MO E 1  No D,Q,C No  ? No 

    Gestation length LH E 1  No D,Q,C No  ? No 

Kulbaba&Worley 2013 
67(8):2194-

2206 
Polemonium 
brandegeei 

Nectar conc PER E 2 Yes No D,Q No  Yes No 

    Tube length MO E 2 Yes No D,Q No  Yes No 
    Tube diameter MO E 2 Yes No D,Q No  Yes No 
    Herkogamy MO E 2 Yes No D,Q No  Yes No 
    Bird visits PER E 2 Yes No D,Q No  Yes No 
    Pollen in anthers PER E 2 Yes No D,Q No  Yes No 
    Pollen on stigma PER E 2 Yes No D,Q No  Yes No 
    Seeds set PER E 2 Yes No D,Q No  Yes No 
    Seeds sired PER E 2 Yes No D,Q No  Yes No 

Mezquida & 
Benkman 

2014 
68(6):1710-

1721 
Pinus uncinata Cone mass MO E 4 Yes No D No  Yes  

    Full seeds PER E 4 Yes No D No  Yes  

    Empty seeds PER E 4 Yes No D No  Yes  

    Seed mass MO E 4 Yes No D No  Yes  

Sletvold & Agren 2014 
68(7):1907-

1918 
Dactylorhiza 

lapponica 
Height MO E 1  No D No  ?  

    Num Flowers MO E 1  No D No  ?  

    Corolla size MO E 1  No D No  ?  

    Spur length MO E 1  No D No  ?  

    Flowering day LH E 1  No D No  ?  

Gillespie et al 2014 
68(12):3421-

3432 
Narnia femorata Male body size (PC) MO E 7 PCA No D No  PCA  

    Female body size (PC) MO E 7 PCA No D No  PCA  

Ercit & Gwynne 2015 69(2):419-430 
Oecanthus 
nigricornis 

Tegmen width MO L 1  No D,Q,C No  ? No 

    Leg size (PC1) MO L 3 PCA No D,Q,C No  PCA No 
    Pronotum length MO L 1  No D,Q,C No  ? No 
    Head width MO L 1  No D,Q,C No  ? No 

    Tegmen width MO E 1  No D,Q,C No  ? No 

    Leg size (PC1) MO E 3 PCA No D,Q,C No  PCA No 

    Pronotum length MO E 1  No D,Q,C No  ? No 

    Head width MO E 1  No D,Q,C No  ? No 

Campobello et al. 2015 69(4):916-925 Falco naumanni Individual attendance BEH E 1  No D No  Yes  

   Corvus Monedula Individual attendance BEH E 1  No D No  Yes  

   Falco naumanni Conspecific attendance BEH E >2 Yes No D No  Yes  

   Corvus Monedula Conspecific attendance BEH E >2 Yes No D No  Yes  

   Falco naumanni 
Heterospecific 

attendance 
BEH E >2 Yes No D No  Yes  

   Corvus Monedula 
Heterospecific 

attendance 
BEH E >2 Yes No D No  Yes  

Weis et al.  2015 
69(6):1361-

1374 
Brassica rapa Emergence time LH L 1  No D No  Yes  



 

7 

 

    Group emergence LH L >2 Yes No D No  Yes  

Eck et al. 2015 
69(9):2525-

2532 
Manduca sexta Age to 2nd instar LH L 1  No D,Q,C No  ? No 

    Mass at 2nd instar MO L 1  No D,Q,C No  ? No 
    Mass at ecolsion MO L 1  No D,Q,C No  ? No 

Chevin et al. 2015 
69(9): 2319-

2332 
Parus major First egg date BEH E2 1  No D,Q No  ? No 

Reid et al. 2015 
69(11): 2846-

2861 
Melospiza melodia Inbreeding Coefficient BEH L 1+ Yes No D No  Yes  

Akcay et al. 2015 
69(12):3186-

3193 
Melospiza melodia Aggression BEH L 3.2 Yes 0.48 D,Q,C No  ? No 

    Soft song BEH L 3.2 Yes 0.3 D,Q,C No  ? No 

Austen & Weis 2016 70(1):111-125 Brassica rapa Age at flowering LH L 1  No D No  Yes  

    Root mass MO L 1  No D No  Yes  

    Leaves at flowering MO L 1  No D No  Yes  

    Height MO L 1  No D No  Yes  

Marie-Orleach et 
al. 

2016 70(2):314-328 
Macrostomum 

lignano 
Body size MO E 1  0.57 – 0.97 D No  Yes  

    Testes size MO E 1  0.57 – 0.97 D No  Yes  

    Ovary size MO E 1  0.57 – 0.97 D No  Yes  

    Seminal vesicle size MO E 1  0.57 – 0.97 D No  Yes  

    Stylet centroid size MO E 1  0.57 – 0.97 D No  Yes  

    Stylet RWS1 MO E 1  0.57 – 0.97 D No  Yes  

    Stylet RWS2 MO E 1  0.57 – 0.97 D No  Yes  

    Stylet RWS3 MO E 1  0.57 – 0.97 D No  Yes  

Martin 2016 
70(6):1265-

1282 
Cyprinidon sp. DF1 MO L 1  No D,Q No  Yes No 

    DF2 MO L 1  No D,Q No  Yes No 

Outomuro et al. 2016 
70(7):1582-

1595 
Lestes sponsa Wing size MO L 1  No D,Q,C No  Yes No 

    Wing shape PC1 MO L 1  No D,Q,C No  PCA No 
    Wing shape PC2 MO L 1  No D,Q,C No  PCA No 
    Wing size MO E 1  No D,Q,C No  Yes No 
    Wing shape PC1 MO E 1  No D,Q,C No  PCA No 
    Wing shape PC2 MO E 1  No D,Q,C No  PCA No 

Kvalnes et al. 2016 
70(7):1486-

1500 
Alces alces Birth date LH E2 1  No D,Q,C No  Yes Yes 

    Birth mass MO E2 1  No D,Q,C No  Yes Yes 

Wise & Rausher 2016 
70(10): 2411-

2420 
Solanum 

carolinense 
Damage1 MO E 1  No D,Q,C No  Yes No 

    Damage2 MO E 1  No D,Q,C No  Yes No 
    Damage3 MO E 1  No D,Q,C No  Yes No 
    D4 MO E 1  No D,Q,C No  Yes No 
    D5 MO E 1  No D,Q,C No  Yes No 



 

8 

 

    D6 MO E 1  No D,Q,C No  Yes No 
    D7 MO E 1  No D,Q,C No  Yes No 
    D8 MO E 1  No D,Q,C No  Yes No 
    D9 MO E 1  No D,Q,C No  Yes No 
    D10 MO E 1  No D,Q,C No  Yes No 
    D11 MO E 1  No D,Q,C No  Yes No 
    D12 MO E 1  No D,Q,C No  Yes No 

Lange et al. 2016 
70(10):2404-

2410 
Watersipora 
subtorquata 

Early modules LH E 1  No D No  Yes  

    Intermediate modules LH E 1  No D No  Yes  

    Late modules LH E 1  No D No  Yes  

    Growing edge LH E 1  No D No  Yes  

    Onset sensescence LH E 1  No D No  Yes  

Reed et al. 2016 
70(10):2211-

2225 
Parus major Lay date LH E2 variable Yes No D Yes NA  

    Clutch size LH E2 variable Yes No D Yes NA  

Tocts et al. 2016 
70(12):2899-

2908 
Brachyistius 

frenatus 
FA MO L 2  Yes D,Q No  Yes No 

Langeloh et al. 2017 71(2):227-237 Lymnaea stagnalis Growth rate LH E2 2 Yes Yes D,Q No  Yes No 

    PO-like activity PHY E2 2 Yes <0.43 D,Q No  Yes No 

    Antibacterial activity PHY E2 2 Yes <0.43 D,Q No  Yes No 

Thomson et al. 2017 71(3):716-732 
Cyanistes 
caeruleus 

Clutch size(F) LH E2 1+ BLUPS No D No  Yes  

    Male attendance BEH E2 1+ Yes No D No  No  

    Nestling body mass MO E2 6 BLUPS No D No  Yes  

Agren et al 2017 71(3):550-564 
Arabidopsis 

thaliana 
Flowering time LH E 20 Yes No D,Q No  ? No 

Kooyers et al 2017 
71(5):1205-

1221 
Mimulus alsinoides Peduncle length MO E 1  No D No  No  

    Node of flowering MO E 1  No D No  No  

    Plant height MO E 1  No D No  No  

    Number flowers MO E 1  No D No  No  

Tanner et al. 2017 
71(7): 1742-

1754 
Hyla chrysoscelis, Call duration BEH E 3 Yes No D,Q,C No  Yes No 

    Call rate BEH E 3 Yes No D,Q,C No  Yes No 
    Pulse rate BEH E 3 Yes No D,Q,C No  Yes No 
    Dominant freq BEH E 3 Yes No D,Q,C No  Yes No 
    Relative amplitude BEH E 3 Yes No D,Q,C No  Yes No 

Fisher et al. 2017 
71(7):1841-

1854 
Tamiasciurus 
hudsonicus 

Growth rate PER L 1  No D No  Yes  

    Birth date LH L 1  No D No  Yes  
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Kalvnes et al. 2017 
71(8): 2062-

2079 
Passer domesticus Tarsus MO L 1  No D No  Yes Yes 

    Wing MO L 1  No D No  Yes Yes 
    Bill length MO L 1  No D No  Yes Yes 
    Bill depth MO L 1  No D No  Yes Yes 
    Condition MO L 1  No D No  Yes Yes 

O'Brien et al. 2017 
71(11):2584-

2598 
Sagra femorata Hind leg length MO E 1  No D,Q,C No  ? Yes 

    Elytra length MO E 1  No D,Q,C No  ? Yes 

    Residual leg length to 
elytra 

MO E 1  No D,Q,C No  Yes NA 

McCollough et al 2018 72(4):893-905 
Onthophagus 

taurus 
Testes mass MO E 1  No D,Q,C No  Yes No 

    Horn length MO E 1  No D,Q,C No  Yes No 

    Soma mass MO E 1  No D,Q,C No  Yes No 

Hunter et al. 2018 72(4):851-855 Ovis aries Mass MO E 1  Yes D No  No  

Ferris & Willis 2018 
72(6): 1225-

1241 
M.lacinatus x M. 
guttatus hybrids 

Flowering time LH L 1  No D,Q No  Yes No 

    Leaf area MO L 1  No D,Q No  Yes No 
    Leaf lobes MO L 1  No D,Q No  Yes No 

Hamala et al 2018 
72(7):1373-

1386 
Arabidopsis lyrata Flowering time PER L 1  No D,Q No  Yes No 

    Shoot length MO L 1  No D,Q No  Yes No 
    Inflorescence Num MO L 1  No D,Q No  Yes No 
    Fruit maturation LH L 1  No D,Q No  Yes No 

    Flowering cessation LH L 1  No D,Q No  Yes No 

Exposito-Alonzo 
et al.  

2018 
72(8):1570-

1586 
Arabidopsis 

thaliana 
Max Recruitment PER L 1  No D,Q No  Yes Yes 

    Flowering time LH L 1  No D,Q No  Yes Yes 

Taylor et al 2018 
72(10): 2090-

2099 
Urosaurus ornatus Snout-vent length MO L 1  No D,Q No  Yes No 

    Hind-limb length MO L 1  No D,Q No  Yes No 
    Mass MO L 1  No D,Q No  Yes No 
    MaxSprint PER L 2  No D,Q No  Yes No 

Hamann et al.  2018 
72(12):2682-

2696 
Brassica rapa Flowering time LH L 2 Yes No D,Q No  ? No 

    Stem diameter MO L 2 Yes No D,Q No  ? No 

Wang & Althoff 2019 73(2):303-316 
Drosophila 

melanogaster 
ADH activity PHY L 2 Yes No D,Q No  Yes No 

    ADH_P010 PHY L 2 Yes No D,Q No  Yes No 
    ADH_P016 PHY L 2 Yes No D,Q No  Yes No 
    ADH_P1016 PHY L 2 Yes No D,Q No  Yes No 

Ramakers et al. 2019 73(2): 175-187 Parus major 
First-egg date Intercept 

first egg date 
LH L 2 Yes No D Yes Yes Yes 
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    Slope in FED with 
temperature 

LH L 2 Yes No D Yes Yes Yes 

LeGrice et al.. 2019 73(4):762-776 
Lasiorhynchus 

barbicornis 
Body length MO E 1  No D,Q No ? No 

Keith & Mitchell-
Olds 

2019 73(5):947-960 Boechera stricta ConGS-R MO E 1  No D No Yes  

    BC-ratio-R MO E 1  No D No Yes  

    ConGS-C MO E 1  No D No Yes  

    BC-ratio-C MO E 1  No D No Yes  

    ConGS-F MO E 1  No D No Yes  

    BC-ratio-F MO E 1  No D No Yes  

Tonnabel et al. 2019 73(5): 897-912 Murcurialis annua Height MO E 1  No D,Q,C No Yes Yes 
    Diameter MO E 1  No D,Q,C No Yes Yes 
    Mean branch length MO E 2 Yes No D,Q,C No Yes Yes 
    Ped inflorescences MO E 1  No D,Q,C No Yes Yes 
    Peduncle length MO E 5 Yes No D,Q,C No Yes Yes 
    Seeds MO E 1  No D,Q,C No Yes Yes 
    Vegetative weight MO E 1  No D,Q,C No Yes Yes 
    Germination rate MO E 1  No D,Q,C No Yes Yes 

Watts et al 2019 
73(9):1927-

1940 
Schizocosa 
crassipes 

Mass MO E 1  No D No Yes Yes 

    Thorax width MO E 3 Yes No D No Yes Yes 

    Brush area MO E 1  Yes D No Yes Yes 

    Tibial darkness MO E 3 Yes No D No Yes Yes 

    Latency to Signal BEH E 1  No D No Yes Yes 
    Latency to Bounce BEH E 1  No D No Yes Yes 
    Bounce Rate BEH E 1  No D No Yes Yes 
    Bounce Interval BEH E >1 Yes No D No Yes Yes 

    Number Wave Bouts BEH E 1  No D No Yes Yes 

    Total Wave Duration BEH E 1  No D No Yes Yes 

    Mean Wave Duration BEH E >1 Yes No D No Yes Yes 

    Prop. Variance BEH E 1  No D No Yes Yes 

    Cummulative Variance BEH E 1  No D No Yes Yes 

    Courtship Effort (PC1) BEH E 12 PCA No D No Yes Yes 

    Size-ornament (PC2) MO E 12 PCA No D No Yes Yes 

        
Leg-Wave duration 

(PC3) 
BEH E 12 PCA No D No Yes Yes 

51 
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Supplementary Text S2  52 
Calculating bias in directional selection gradients that ignore effects of trait repeatability 53 

We derive here Eqn. 5 (Main Text). We start with reprinting the mathematical relationship 54 

between 𝑏1
∗, the unstandardized linear selection gradient that ignores effects of within-55 

individual variance, the trait’s repeatability (𝑅𝑡), and the true unstandardized linear selection 56 

gradient (𝑏1) (Eqn. 4, Main Text): 57 

 𝑏1
∗ = 𝑏1𝑅𝑡          (S2.1) 58 

Standardized linear selection gradients (𝛽) measure the change in relative fitness per standard 59 

deviation unit trait (Lande and Arnold 1983), calculable by dividing the unstandardized linear 60 

selection gradient by mean fitness (W̅) and by multiplying it by the square-root of the variance 61 

in trait value at the focal level of analysis, thus: 62 

𝛽1
∗ = 𝑏1

∗ √𝑉𝑝𝑡

W̅̅̅
          (S2.2) 63 

The true standardized linear selection gradient (𝛽1) represents the multiplication of 𝑏1 with 
√𝑉𝑖𝑡

W̅̅̅
, 64 

where 𝑉𝑖𝑡 represents the true individual variance in trait values: 65 

𝛽1 = 𝑏1
√𝑉𝑖𝑡

W̅̅̅
          (S2.3) 66 

Eqn. S2.2 may therefore be rephrased as: 67 

𝛽1
∗ =

𝛽1

√𝑉𝑖𝑡
𝑅𝑡√𝑉𝑝𝑡         (S2.4) 68 

Expressing 𝑅𝑡 in its underlying variance components gives:  69 

𝛽1
∗ =

𝛽1

√𝑉𝑖𝑡

𝑉𝑖𝑡
𝑉𝑖𝑡+𝑉𝑒𝑡

√𝑉𝑖𝑡+𝑉𝑒𝑡 = 𝛽1
√𝑉𝑖𝑡

√𝑉𝑖𝑡+𝑉𝑒𝑡

√𝑉𝑖𝑡

√𝑉𝑖𝑡+𝑉𝑒𝑡

√𝑉𝑖𝑡+𝑉𝑒𝑡

√𝑉𝑖𝑡
= 𝛽1

√𝑉𝑖𝑡

√𝑉𝑖𝑡+𝑉𝑒𝑡
  (S2.5) 70 

Re-expressing variance components in terms of repeatability, leads to Eqn. 5 (Main Text): 71 

𝛽1 = 𝛽1
∗ √𝑅𝑡⁄           (S2.6) 72 

 

Supplementary Text S3  73 
Calculating bias in quadratic selection gradients ignoring effects of trait repeatability 74 

To derive the bias in quadratic selection gradients caused by ignoring within-individual 75 

variation, we provide the mathematical relationship between the unstandardized quadratic 76 

selection gradient that ignores the effects of within-individual error (𝑏11
∗ ), the true 77 

unstandardized quadratic selection gradient (𝑏11), and the repeatability of the squared value of 78 

the focal trait 𝑡 (𝑅𝑡2), i.e., we apply Eqn. 4 to an unstandardized quadratic selection gradient: 79 

𝑏11
∗ = 𝑏11𝑅𝑡2          (S3.1) 80 

where 𝑅𝑡2 represents the repeatability of the square  of trait 𝑡. Estimating standardized selection 81 

gradients requires expressing trait values in standard deviation units (Lande and Arnold 1983). 82 

As we have seen above, the standardized trait value (𝑧) equals the raw trait value (𝑡) divided by 83 

the square root of the variance in trait values (√𝑉𝑡), where  𝑧 = 𝑡 √𝑉𝑡⁄ . Z-transforming the raw 84 

trait value (𝑡) thus results in 𝑧2 = 𝑡2 √𝑉𝑡2⁄ . As we show above (Supplementary Text S2), the 85 

bias in the standardized linear gradient represents the square root of the bias in unstandardized 86 

gradients. Applied to quadratic selection gradients:  87 

𝛾11 = 𝛾11
∗ √𝑅𝑡2⁄          (S3.2) 88 

As above, the repeatability of the squared term of trait 𝑡 is attributable to within- and among-89 

individual variance components: 90 

 𝑅𝑡2 =
𝑉𝑖

𝑡2

𝑉𝑖
𝑡2
+𝑉𝑒

𝑡2

         (S3.3) 91 
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where 𝑉𝑖
𝑡2
+𝑉𝑒

𝑡2
 equals the total phenotypic variance in squared trait values (𝑉𝑝

𝑡2
). The 92 

phenotypic variance in squared trait values (𝑉𝑝
𝑡2

) represents the variance of a product (i.e., 93 

𝑉𝑝
𝑡2
= 𝑉𝑝𝑥∙𝑦; where 𝑥 = 𝑦 = 𝑡); this variance can be broken down into the following 94 

components (e.g., Mood et al. 1973; Cacoullos 1989): 95 

𝑉𝑝𝑥∙𝑦 = 𝐶𝑝
𝑥2,𝑦2

+ 𝜇𝑥2𝜇𝑦2 − (𝐶𝑝𝑥,𝑦 + 𝜇𝑥𝜇𝑦)
2

      (S3.4) 96 

Variance of products thus vary as a function of mean trait values (𝜇𝑥, 𝜇𝑦), means of squared 97 

trait values (𝜇𝑥2, 𝜇𝑦2), as well as trait covariances (𝐶𝑝
𝑥2,𝑦2

, 𝐶𝑝𝑥,𝑦). Assuming multivariate 98 

normality, we can apply the following transformation: 99 

𝐶𝑝
𝑥2,𝑦2

= (𝐶𝑝𝑥,𝑦
2 + 2𝜇𝑥𝜇𝑦√𝑉𝑝𝑥𝑉𝑝𝑦)        (S3.5) 100 

Substituting Eqn. S3.5 into S3.4 gives: 101 

𝑉𝑝𝑥∙𝑦 = (𝐶𝑝𝑥,𝑦
2 + 2𝜇𝑥𝜇𝑦√𝑉𝑝𝑥𝑉𝑝𝑦) + 𝜇𝑥2𝜇𝑦2 − (𝐶𝑝𝑥,𝑦 + 𝜇𝑥𝜇𝑦)

2

   (S3.6) 102 

Re-expressing S3.6 in terms of trait values rather than squared trait values gives: 103 

𝑉𝑝𝑥∙𝑦 = (𝐶𝑝𝑥,𝑦
2 + 2𝜇𝑥𝜇𝑦√𝑉𝑝𝑥𝑉𝑝𝑦) + (𝜇𝑥

2 + 𝑉𝑝𝑥) (𝜇𝑦
2 + 𝑉𝑝𝑦) − (𝐶𝑝𝑥,𝑦 + 𝜇𝑥𝜇𝑦)

2

 (S3.7) 104 

Because 𝑥 = 𝑦 = 𝑡, 𝐶𝑝𝑥,𝑦 = 𝑉𝑝𝑥 = 𝑉𝑝𝑦 = 𝑉𝑝𝑡, we can substitute 𝑉𝑝𝑡 for 𝐶𝑝𝑥,𝑦: 105 

𝑉𝑝
𝑡2
= 2(𝑉𝑝𝑡

2 + 2𝜇𝑡𝜇𝑡√𝑉𝑝𝑡𝑉𝑝𝑡) + (𝜇𝑡
2+𝑉𝑝𝑡)(𝜇𝑡

2+𝑉𝑝𝑡) − (𝑉𝑝𝑡 + 𝜇𝑡𝜇𝑡)
2
  (S3.8) 106 

This then simplifies to: 107 

𝑉𝑝
𝑡2
= 2𝑉𝑝𝑡

2 + 4𝑉𝑝𝑡𝜇𝑡
2          (S3.9) 108 

Applying Eqn. S3.9 to the among-individual (𝑉𝑖
𝑡2

) instead of total phenotypic variance in 109 

squared trait values (𝑉𝑝
𝑡2

) gives: 110 

𝑉𝑖
𝑡2
= 2𝑉𝑖𝑡

2 + 4𝑉𝑖𝑡𝜇𝑡
2          (S3.10) 111 

We can now express the factor causing bias in quadratic selection gradients (√𝑅𝑡2; Eqn. S3.2) 112 

in terms of variances in trait values rather than squared trait values:  113 

√𝑅𝑡2 = √
2𝑉𝑖𝑡

2+4𝑉𝑖𝑡𝜇𝑡
2

2𝑉𝑝𝑡
2 +4𝑉𝑝𝑡𝜇𝑡

2 = √
𝑉𝑖𝑡
2+2𝑉𝑖𝑡𝜇𝑡

2

𝑉𝑝𝑡
2   +2𝑉𝑝𝑡𝜇𝑡

2      (S3.11) 114 

This formula shows that bias is much more complex for quadratic versus linear gradients. Bias 115 

in standardized linear selection gradients varies solely as a function of the relative magnitudes 116 

of among- (𝑉𝑖𝑡) and within-individual (𝑉𝑒𝑡) variances and equals the trait’s square-root 117 

repeatability (√𝑅𝑡; Eqn. S2.6). By contrast, bias in quadratic selection gradients varies as a 118 

function of the among- (𝑉𝑖𝑡) and within-individual (𝑉𝑒𝑡) variances, and the square of the mean 119 

trait value (𝜇𝑡
2). Importantly, Eqn. S3.11 implies that bias in quadratic selection gradients is 120 

lowest when the trait mean (𝜇𝑡) equals zero. We show this by comparing bias (√𝑅𝑡2) when the 121 

trait mean is zero versus infinite. When 𝜇𝑡 = 0, Eqn. S.3.11 simplifies into: 122 

√𝑅𝑡2 = √
𝑉𝑖𝑡
2

𝑉𝑝𝑡
2   

= √𝑅𝑡
2 = 𝑅𝑡        (S3.12) 123 

By contrast, when |𝜇𝑡| approaches infinity, √𝑅𝑡2 (Eqn. S3.11) becomes: 124 

lim
|𝜇𝑡|→∞

√𝑅𝑡2 ≈ √
𝑉𝑖𝑡
𝑉𝑝𝑡

= √𝑅𝑡        (S3.13) 125 
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The magnitude of attenuation bias in quadratic selection gradient analyses (√𝑅𝑡2; Eqn. S3.11) 126 

thus varies between 𝑅𝑡 (when 𝜇𝑡 = 0; Eqn. S3.12) and √𝑅𝑡 (when |𝜇𝑡| → ∞; Eqn. S3.13). 127 

Because 𝑅𝑡 is always smaller than √𝑅𝑡, attenuation bias therefore increases with decreasing 128 

value of |𝜇𝑡|, and is, in fact, smallest when 𝜇𝑡 = 0. This insight is important as our literature 129 

review (Text S1) implies that many studies (Table 1) mean-centre traits prior to analysis as part 130 

of trait standardization (i.e., 𝑧 = (𝑡 − 𝜇𝑡) √𝑉𝑝𝑡⁄ ). This transformation effectively replaces 𝜇𝑡 131 

for 𝜇𝑧 = 0 in Eqn. S3.11 and thereby (accidentally) minimizes attenuation bias. 132 

 Mean-centring traits minimizes attenuation bias but also affects the interpretation of the 133 

linear component of a quadratic selection gradient analyses. In a quadratic regression model, 134 

the linear effect (𝑏1) of the trait (𝑡) on absolute fitness (𝑊) represents the slope of the tangent 135 

line where the trait has the value zero as illustrated by the orange dot in Figure S3a, where the 136 

arrow represents 𝑏1 for 𝑡 = 0. A biologically meaningful zero-point represents the population-137 

mean trait value (𝑡̅; dotted line in Fig. S3), because the linear effect of the trait on fitness then 138 

provides information on whether the fitness peak/valley (white star in Fig. S3) is above or below 139 

the population mean trait value (𝑡̅). Said differently, it provides information on the expected 140 

strength of directional selection on the trait. The arrow in Fig. S3b represents the tangent line 141 

at this population-mean value (blue dot), and is calculated by adding 2𝑏11𝑡̅ to 𝑏1 (as defined in 142 

Eqn. 14). Applying this transformation to the scenario presented in Fig S3, would result in 𝛽1 >143 

0 at the population-mean trait value (Fig. S3b), implying that the population mean is below the 144 

optimal trait value, as illustrated. 145 

 
Figure S3. Illustration of a parabolic relationship between trait (𝑡) on absolute fitness (𝑊), where the 146 
dotted line represents the population-mean trait value, the star represents the optimal trait value; (a) the 147 
orange dot represents the tangent line where the trait value has the value zero. (b) the blue dot represents 148 
the tangent line at the population-mean trait value. 149 

 An important question is whether estimates of optimal trait values in stabilising 150 

selection scenarios are also affected by failure to acknowledge biasing effects of within-151 

individual error. The optimal trait value represents the trait value at the vertex of the parabola, 152 

calculable as  
−𝛽1

2𝛾11
 (Bronshtein et al. 2015). The trait value at the parabolic peak calculated while 153 

ignoring biasing effects of within-individual variance (
−𝛽1

∗

2𝛾11
∗ ) is mathematically related to the true 154 

𝑡

𝑊

0

 

𝑏1

𝑡 − 𝑡̅

𝑊

 𝑡

 
 

(a) (b)

0

 𝑡
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trait value at the parabolic peak (
−𝛽1

2𝛾11
) because 𝛾11 = 𝛾11

∗ √𝑅𝑡2⁄  (Eqn. S3.2) and 𝛽1 = 𝛽1
∗ √𝑅𝑡⁄  155 

(Eqn. S2.6), thus: 156 
−𝛽1

2𝛾11
=

−𝛽1
∗

2𝛾11
∗

√𝑅𝑡2

√𝑅𝑡
          (S3.14) 157 

where 
√𝑅𝑡2

√𝑅𝑡
 represents the bias in the trait value at the parabolic peak. Substituting √𝑅𝑡2 for 158 

Eqn. S3.11 gives: 159 

√𝑅𝑡2

√𝑅𝑡
=

√
𝑉𝑖𝑡
2 +2𝑉𝑖𝑡

𝜇𝑡
2

𝑉𝑝𝑡
2   +2𝑉𝑝𝑡𝜇𝑡

2

√𝑅𝑡
         (S3.15) 160 

Eqn. S3.15 simplifies for traits that were mean-centred (using Eqn. S3.12):  161 
√𝑅𝑡2

√𝑅𝑡
=

𝑅𝑡

√𝑅𝑡
= √𝑅𝑡         (S3.16) 162 

Eqn. S3.15 simplifies differently when the mean trait value approaches infinity (using Eqn. 163 

S3.13): 164 

lim
|𝜇𝑡|→∞

√𝑅𝑡2

√𝑅𝑡
≈

√𝑅𝑡

√𝑅𝑡
= 1         (S3.17) 165 

In other words, for variance-standardized traits that are also mean-centred, failure to control for 166 

within-individual error causes an overestimation of the optimal trait value by a factor equal √𝑅𝑡 167 

(Eqn. S3.16). Importantly, Eqn. S3.17 implies that bias in the placement of the parabolic peak 168 

is  greatest when the trait mean (𝜇𝑡) equals zero. Moreover,  Eqn. S3.17 shows that bias in the 169 

placement of the parabolic peak (
√𝑅𝑡2

√𝑅𝑡
) disappears entirely when the mean trait value 170 

approximates infinity (and thus will not happen in practice). Mean-centring traits prior to 171 

analysis therefore decreases attenuation bias in standardized quadratic selection gradients (Eqn. 172 

S3.12) but simultaneously leads to an overestimation of the placement of the parabolic peak 173 

(Eqn. S3.16). 174 

 

Supplementary Text S4  175 

Calculating bias in correlational selection gradients ignoring effects of trait repeatability 176 

To derive the bias in correlational selection gradients, we print the mathematical relationship 177 

between the unstandardized correlational selection gradient ignoring effects of trait 178 

repeatability (𝑏12
∗ ), the true unstandardized correlational selection gradient (𝑏12), and the 179 

repeatability (𝑅𝑡1𝑡2) of the interaction between two traits, trait 1 (𝑡1) and trait 2 (𝑡2), i.e., we 180 

apply Eqn. 4 to an unstandardized correlational selection gradient: 181 

𝑏12
∗ = 𝑏12𝑅𝑡1𝑡2         (S4.1) 182 

Estimating standardized selection gradients requires expressing trait values in standard 183 

deviation units (Lande and Arnold 1983). As we demonstrated above, the standardized trait 184 

value (𝑧) equals the raw trait value (𝑡) divided by the square root of the variance in trait values 185 

(√𝑉𝑡), where 𝑧 = 𝑡 √𝑉𝑡⁄ . Z-transforming 𝑡1 and 𝑡2 leads to 𝑧1𝑧2 = 𝑡1𝑡2 √𝑉𝑡1𝑡2⁄ . We showed 186 

above (Supplementary Text S2) that the bias in the standardized linear gradient is equal to the 187 

square root of the bias in unstandardized gradients. Applying the same logic to correlational 188 

selection gradients, we obtain:  189 

𝛾12 = 𝛾12
∗ √𝑅𝑡1𝑡2⁄          (S4.2) 190 
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As above, the repeatability of the multiplication of the traits is attributable to within- and 191 

among-individual variance components: 192 

𝑅𝑡1𝑡2 =
𝑉𝑖𝑡1𝑡2

𝑉𝑖𝑡1𝑡2
+𝑉𝑒𝑡1𝑡2

          (S4.3) 193 

We noted in Supplementary Text S3, the variance in the multiplication of the two traits (𝑉𝑡1𝑡2) 194 

is equal to the variance of a product; this variance can be broken down into the following 195 

components (Eqn. S3.7): 196 

𝑉𝑡1𝑡2 = (𝐶𝑡1𝑡2
2 + 2𝜇𝑡1𝜇𝑡2√𝑉𝑡1𝑉𝑡2) + (𝜇𝑡1

2 +𝑉𝑡1)(𝜇𝑡2
2 +𝑉𝑡2) − (𝐶𝑡1𝑡2 + 𝜇𝑡1𝜇𝑡2)

2
 (S4.4) 197 

The among-individual variance in the multiplication of the two traits (𝑉𝑖𝑡1𝑡2 ) thus equals: 198 

𝑉𝑖𝑡1𝑡2 = 𝐶𝑖𝑡1𝑡2
2 + 4𝜇𝑡1𝜇𝑡2√𝑉𝑖𝑡1𝑉𝑖𝑡2 + (𝜇𝑡1

2 +𝑉𝑖𝑡1) (𝜇𝑡2
2 +𝑉𝑖𝑡2) − (𝐶𝑖𝑡1𝑡2 + 𝜇𝑡1𝜇𝑡2)

2

(S4.5) 199 

The total phenotypic variance in the multiplication of the two traits (𝑉𝑝𝑡1𝑡2 = 𝑉𝑖𝑡1𝑡2+𝑉𝑒𝑡1𝑡2 ) 200 

instead equals: 201 

𝑉𝑝𝑡1𝑡2 = 𝐶𝑝𝑡1𝑡2
2 + 4𝜇𝑡1𝜇𝑡2√𝑉𝑝𝑡1𝑉𝑝𝑡2 + (𝜇𝑡1

2 +𝑉𝑝𝑡1) (𝜇𝑡2
2 +𝑉𝑝𝑡2) − (𝐶𝑝𝑡1𝑡2 + 𝜇𝑡1𝜇𝑡2)

2

(S4.6) 202 

where 𝐶𝑝𝑡1𝑡2 = 𝐶𝑖𝑡1𝑡2 + 𝐶𝑒𝑡1𝑡2 , 𝑉𝑝𝑡1 = 𝑉𝑖𝑡1 + 𝑉𝑒𝑡1 , 𝑉𝑝𝑡2 = 𝑉𝑖𝑡2 + 𝑉𝑒𝑡2 . We express the bias in 203 

correlational selection gradients (√𝑅𝑡1𝑡2; S4.2) in terms of variances in trait values rather than 204 

trait products by substituting, obtaining:  205 

√𝑅𝑡1𝑡2 = √
𝐶𝑖𝑡1𝑡2
2 +4𝜇𝑡1𝜇𝑡2√𝑉𝑖𝑡1

𝑉𝑖𝑡2
+(𝜇𝑡1

2 +𝑉𝑖𝑡1
)(𝜇𝑡2

2 +𝑉𝑖𝑡2
)−(𝐶𝑖𝑡1𝑡2

+𝜇𝑡1𝜇𝑡2)
2

𝐶𝑝𝑡1𝑡2
2 +4𝜇𝑡1𝜇𝑡2√𝑉𝑝𝑡1

𝑉𝑝𝑡2
+(𝜇𝑡1

2 +𝑉𝑝𝑡1
)(𝜇𝑡2

2 +𝑉𝑝𝑡2
)−(𝐶𝑝𝑡1𝑡2

+𝜇𝑡1𝜇𝑡2)
2  (S4.7) 206 

This formula shows that bias is much more complex for correlational versus quadratic gradients 207 

because bias in the former additionally varies as a function of covariances between the traits 208 

within and among individuals. When traits are mean-centred prior to analysis (i.e., 𝜇𝑡1 = 𝜇𝑡2 =209 

0, Eqn. S4.7 can simplifies into: 210 

√𝑅𝑡1𝑡2 = √
𝑉𝑖𝑡1

𝑉𝑖𝑡2
+𝐶𝑖𝑡1𝑡2

2

𝑉𝑝𝑡1
𝑉𝑝𝑡2

+𝐶𝑝𝑡1𝑡2
2         (S4.8) 211 

Expressing covariances in correlations gives 𝑟𝑖𝑡1𝑡2 =
𝐶𝑖𝑡1𝑡2

√𝑉𝑖𝑡1
𝑉𝑖𝑡2

. Hence, 𝐶𝑖𝑡1𝑡2
2 = 𝑟𝑖𝑡1𝑡2

2 𝑉𝑖𝑡1𝑉𝑖𝑡2 . 212 

Similarly, 𝑟𝑝𝑡1𝑡2 =
𝐶𝑝𝑡1𝑡2

√𝑉𝑝𝑡1
𝑉𝑝𝑡2

. Eqn. S4.8 can thus be rephrased into:  213 

√𝑅𝑡1𝑡2 = √
𝑉𝑖𝑡1

𝑉𝑖𝑡2
+𝐶𝑖𝑡1𝑡2

2

𝑉𝑝𝑡1
𝑉𝑝𝑡2

+𝐶𝑝𝑡1𝑡2
2 = √

𝑉𝑖𝑡1
𝑉𝑖𝑡2

+𝑟𝑖𝑡1𝑡2
2 𝑉𝑖𝑡1

𝑉𝑖𝑡2

𝑉𝑝𝑡1
𝑉𝑝𝑡2

+𝑟𝑝𝑡1𝑡2
2 𝑉𝑝𝑡1

𝑉𝑝𝑡2

= √
𝑉𝑖𝑡1

𝑉𝑖𝑡2
(𝑟𝑖𝑡1𝑡2

2 +1)

𝑉𝑝𝑡1
𝑉𝑝𝑡2

(𝑟𝑝𝑡1𝑡2
2 +1)

=214 

√𝑅𝑡1𝑅𝑡2√
𝑟𝑖𝑡1𝑡2
2 +1

𝑟𝑝𝑡1𝑡2
2 +1

         (S4.9) 215 

This shows that √𝑅𝑡1𝑡2  equals the geometric mean repeatability of the two traits (√𝑅𝑡1𝑅𝑡2) 216 

when the correlations between the two traits do not differ between the levels (i.e., 𝑟𝑖𝑡1𝑡2 =217 

𝑟𝑒𝑡1𝑡2 = 𝑟𝑝𝑡1𝑡2 ) and traits are mean-centred prior to analyses. Therefore, when |𝑟𝑖𝑡1𝑡2| > |𝑟𝑒𝑡1𝑡2 | 218 
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it follows that √𝑅𝑡1𝑡2 > √𝑅𝑡1𝑅𝑡2 ; by contrast, when |𝑟𝑖𝑡1𝑡2 | < |𝑟𝑒𝑡1𝑡2 |, it follows that √𝑅𝑡1𝑡2 <219 

√𝑅𝑡1𝑅𝑡2.  220 

One key question is whether the shape of the selection surface is also affected by failure 221 

to acknowledge biasing effects of within-individual variation. Surface shape is a function of the 222 

ratio of the product of the quadratic selection gradients of two focal traits over the square of 223 

their correlational selection gradient (i.e., 
𝛾11𝛾22

𝛾12
2 ), which describes a saddle-shaped fitness 224 

surface when below one (assuming 𝛾11 and 𝛾22 are both negative) but a fitness peak when above 225 

one (Phillips and Arnold 1989). For mean-centred traits, the shape of the selection surface 226 

calculated while ignoring biasing effects of within-individual variance (
𝛾11
∗ 𝛾22

∗

𝛾12
∗ 2 ) is 227 

mathematically related to true surface (
𝛾11𝛾22

𝛾12
2 ) in the following way: 228 

𝛾11𝛾22

𝛾12
2 =

𝛾11
∗

√𝑅𝑡1
2

𝛾22
∗

√𝑅𝑡2
2

𝑅𝑡1𝑡2

𝛾12
∗ 2 =

𝛾11
∗ 𝛾22

∗

𝛾12
∗ 2

𝑅𝑡1𝑡2

√𝑅𝑡1
2𝑅𝑡2

2

      (S4.10) 229 

The shape of the selection surface is not affected when 
𝑅𝑡1𝑡2

√𝑅𝑡1
2𝑅𝑡2

2

= 1. For mean-centred traits, 230 

√𝑅𝑡2 = 𝑅𝑡 (Eqn. S3.12), √𝑅𝑡1𝑡2 = √𝑅𝑡1𝑅𝑡2√
𝑟𝑖𝑡1𝑡2
2 +1

𝑟𝑝𝑡1𝑡2
2 +1

 (Eqn. S4.9), therefore bias in the 231 

selection surface is described as: 232 

𝑅𝑡1𝑡2

√𝑅𝑡1
2𝑅𝑡2

2

=

𝑅𝑡1𝑅𝑡2(
𝑟𝑖𝑡1𝑡2

2 +1

𝑟𝑝𝑡1𝑡2
2 +1

)

𝑅𝑡1𝑅𝑡2
= 

𝑟𝑖𝑡1𝑡2
2 +1

𝑟𝑝𝑡1𝑡2
2 +1

       (S4.11) 233 

This demonstrates that the bias in the fitness surface is not a function of (geometric mean) 234 

repeatability of the traits for mean-centred traits. Eqn. S4.11 shows instead that the fitness 235 

surface is unbiased when the correlations between the two traits do not differ between the levels 236 

(i.e., 𝑟𝑖𝑡1𝑡2 = 𝑟𝑒𝑡1𝑡2 = 𝑟𝑝𝑡1𝑡2). However, when correlations among individuals are tighter than 237 

those within individuals (i.e., |𝑟𝑖𝑡1𝑡2| > |𝑟𝑒𝑡1𝑡2 |), failure to acknowledge within-individual 238 

variance can cause bias in the shape of the selection surface because it makes the fitness surface 239 

appear more saddle-shaped. Along the same lines, when correlations within individuals are 240 

tighter than those among individuals (i.e., |𝑟𝑖𝑡1𝑡2| < |𝑟𝑒𝑡1𝑡2 |), failure to acknowledge within-241 

individual variance can cause bias in the shape of the selection surface because it makes the 242 

fitness surface appear more peaked. Such simple rules, notably, do not apply when correlational 243 

selection gradient analyses were based on traits that were not mean-centred prior to analyses 244 

because bias in the correlational selection gradient (√𝑅𝑡1𝑡2) is then much more complex (Eqn. 245 

S4.7) thus also any effects on fitness surfaces. 246 

 

Supplementary Text S5  247 
Bias in selection gradients used on mean trait values 248 

Researchers commonly calculate individual-mean trait values prior to conducting phenotypic 249 

selection analyses (Table 1). In what follows, we logically assume that researchers working 250 

with individual-mean trait values would apply trait standardization after rather than before 251 

calculating individual-mean trait values. We note that none of the papers using individual-252 

means in phenotypic selection analyses in our review (Text S1) clarified when standardization 253 



 

17 

 

was applied. However, this would be the only sensible decision when one views the variance 254 

in individual-mean trait values as the best proxy of the among-individual variance.  255 

In previous sections, we derived the equations for bias in linear (Text S2), quadratic 256 

(Text S3), and correlational (Text S4) selection gradients resulting from failure to acknowledge 257 

residual within-individual variance. Based on few additional assumptions, we can readily 258 

modify these equations to be applied to analyses using individual-mean trait values. 259 

Specifically, following Snijders & Bosker (1999), we assumed that the total phenotypic 260 

variance among individual-mean trait values (𝑉𝑝𝑡) can be approximated as: 261 

 𝑉𝑝𝑡 = 𝑉𝑖𝑡 +
𝑉𝑒𝑡

𝑛
         (S5.1)  262 

where 𝑉𝑖𝑡 and 𝑉𝑒𝑡 represent the among-individual and residual within-individual variance in trait 263 

values, respectively, and 𝑛 represents the number of replicate samples collected per individual 264 

(assuming equal replication among all individuals). We further assumed that the phenotypic 265 

covariance between mean traits (𝐶𝑝𝑡1𝑡2
) can then be approximated as (Snijders and Bosker 266 

1999): 267 

𝐶𝑜𝑣𝑝𝑡1𝑡2
= 𝐶𝑜𝑣𝑖𝑡1𝑡2 +

𝐶𝑜𝑣𝑒𝑡1𝑡2

𝑛
       (S5.2)  268 

where 𝐶𝑜𝑣𝑖𝑡1𝑡2  and 𝐶𝑜𝑣𝑒𝑡1𝑡2  represent the among-individual and residual within-individual 269 

covariances between traits. The associated formula for the phenotypic correlation between 270 

individual-mean trait values (𝑟𝑝𝑡1𝑡2
) is therefore (Dingemanse et al. 2012): 271 

𝑟𝑝𝑡1𝑡2
=

𝐶𝑜𝑣𝑖𝑡1𝑡2
+
𝐶𝑜𝑣𝑒𝑡1𝑡2

𝑛

√(𝑉𝑖𝑡1
+
𝑉𝑒𝑡1
𝑛

)(𝑉𝑖𝑡2
+
𝑉𝑒𝑡2
𝑛

)

       (S5.3)  272 

In brief, any equation printed in Texts S2-S4 can therefore be modified to derive bias for 273 

phenotypic selection analyses that used individual-mean trait values, which may be achieved 274 

by replacing (i) 𝑉𝑒𝑡 for  
𝑉𝑒𝑡

𝑛
, (ii) 𝑉𝑝𝑡 for  𝑉𝑝𝑡, (iii) 𝑅𝑡 for 

𝑉𝑖𝑡

𝑉𝑖𝑡+
𝑉𝑒𝑡
𝑛

, (iv) 𝐶𝑒𝑡1𝑡2  for 
𝐶𝑒𝑡1𝑡2

𝑛
 and (v) 𝑟𝑝𝑡 for 275 

𝑟𝑝𝑡. When applied to individual-mean trait values, main formulae for bias in standardized 276 

selection gradients owing to failure to acknowledge within-individual variation consequently 277 

become: 278 

(i) For linear selection gradients: √
𝑉𝑖𝑡

𝑉𝑖𝑡+
𝑉𝑒𝑡
𝑛

 instead of √𝑅𝑡 (Eqn. S2.6). 279 

(ii) For quadratic selection gradients (general formula): √
𝑉𝑖𝑡
2+2𝑉𝑖𝑡𝜇𝑡

2

𝑉𝑝
𝑡

2   +2𝑉𝑝
𝑡
𝜇𝑡
2 instead of Eqn. S3.11. 280 

(iii) For quadratic selection gradients (mean-centred traits): 
𝑉𝑖𝑡

𝑉𝑖𝑡+
𝑉𝑒𝑡
𝑛

 instead of Eqn. S3.12. 281 

(iv) For correlational selection gradients (general formula): 282 

√
2𝐶𝑖𝑡1𝑡2

2 +4𝜇𝑡1𝜇𝑡2√𝑉𝑖𝑡1
𝑉𝑖𝑡2

+(𝜇𝑡1
2 +𝑉𝑖𝑡1

)(𝜇𝑡2
2 +𝑉𝑖𝑡2

)−(𝐶𝑖𝑡1𝑡2
+𝜇𝑡1𝜇𝑡2)

2

2𝐶𝑝�̅�1�̅�2
2 +4𝜇𝑡1𝜇𝑡2√𝑉𝑝�̅�1

𝑉𝑝�̅�2
+(𝜇𝑡1

2 +𝑉𝑝�̅�1
)(𝜇𝑡2

2 +𝑉𝑝�̅�2
)−(𝐶𝑝�̅�1�̅�2

+𝜇𝑡1𝜇𝑡2)
2 instead of Eqn. S4.7. 283 

(v) For correlational selection gradients (mean-centred traits): √
𝑉𝑖𝑡1

𝑉𝑖𝑡2
𝑉𝑝�̅�1

𝑉𝑝�̅�2

√
𝑟𝑖𝑡1𝑡2
2 +1

𝑟𝑝�̅�1�̅�2
2 +1

 instead of 284 

Eqn. S4.9. 285 
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Supplementary Text S6  286 
Estimating quadratic selection gradients with multivariate mixed-effects models 287 

To estimate quadratic selection using a multivariate mixed-effects model, we expand the 288 

bivariate model used to estimate linear selection (Eqn. 9, 10). This introduces a general solution 289 

applicable to further extensions. Quadratic selection gradients calculated using analyses 290 

ignoring within-individual variance (𝛾11
∗ ) would normally be modelled by expanding Eqn. 1 291 

into (Stinchcombe et al. 2008):  292 

𝜔 =  𝛼 + 𝛽1
∗𝑧 +

1

2
𝛾11
∗ 𝑧2 + 𝜀          (S6.1) 293 

This model is applied when each individual’s trait (e.g., tarsus) is measured only once, but 294 

would suffer the problem of attenuation. Unattenuated quadratic selection gradients (𝛾11) may 295 

be acquired by expanding the bivariate into a trivariate mixed-effects model; again, this requires 296 

repeated measures. We propose here to estimate quadratic selection gradients by fitting the 297 

squared term of the trait (𝑡ℎ𝑖
2 ) as a third response. We note an apparent problem: our aim is 298 

estimating the effect of the square of individual-mean trait values (𝑡�̅�
2) on fitness rather than the 299 

effect of individual-means of squared trait values (𝑡𝑖2̅; note the subtle difference in the coverage 300 

of the bar to distinguish the two values). The mixed-model would estimate effects of 𝑡𝑖2̅ not 𝑡�̅�
2; 301 

fitting the squared value of each observation (𝑡ℎ𝑖
2 ) thus seems inappropriate. To assess if this is 302 

indeed a problem, we ran simulations with normally distributed data, for different levels of trait 303 

repeatability, and compared the two metrics. We found that mixed-model estimates of among-304 

individual variance in mean-of-squares accurately approximate simulated variances of the 305 

square of individual-specific values (see Section “Mean-of-squares vs. Square-of-means” 306 

below). The proposed trivariate model has the following phenotypic equation and random 307 

effects structure: 308 

[

𝑡ℎ𝑖
𝑡ℎ𝑖
2

W𝑖

] =  𝜷𝟎 + 𝑰𝒊 + 𝒆𝒉𝒊          309 

 [

𝐼𝑡
𝐼𝑡2

𝐼W

]~𝑀𝑉𝑁(0, Ω𝐼) ∶  [

𝑉𝑖𝑡 𝐶𝑖
𝑡,𝑡2

𝐶𝑖𝑡,W
𝐶𝑖

𝑡,𝑡2
𝑉𝑖

𝑡2
𝐶𝑖

𝑡2,W

𝐶𝑖𝑡,W 𝐶𝑖
𝑡2,W

𝑉𝑖W

] 310 

 [

𝑒𝑡
𝑒𝑡2
𝑒W

]~𝑀𝑉𝑁(0, Ω𝑒) ∶  [

𝑉𝑒𝑡 𝐶𝑒
𝑡,𝑡2

𝐶𝑒𝑡,W
𝐶𝑒

𝑡,𝑡2
𝑉𝑒

𝑡2
𝐶𝑒

𝑡2,W

𝐶𝑒𝑡,W 𝐶𝑒
𝑡2,W

𝑉𝑒W

]     (S6.2) 311 

Importantly, the standardized quadratic selection gradient (𝛾11) to be calculated represents a 312 

partial regression coefficient (Lande and Arnold 1983). The linear (𝑏1) and quadratic (𝑏11) 313 

slopes of the regression of the unstandardized trait on absolute fitness are partial regression 314 

coefficients; their calculation requires information embedded in the among-individual variance-315 

covariance matrix (Ω𝐼):  316 

 𝑏1 = 
𝐶𝑖𝑡,W𝑉𝑖

𝑡2
−𝐶𝑖

𝑡2,W
𝐶𝑖
𝑡,𝑡2

𝑉𝑖𝑡𝑉𝑖𝑡2
−[𝐶𝑖

𝑡,𝑡2
]2

 317 

 𝑏11 = 
𝐶𝑖
𝑡2,W

𝑉𝑖𝑡−𝐶𝑖𝑡,W𝐶𝑖
𝑡,𝑡2

𝑉𝑖𝑡𝑉𝑖𝑡2
−[𝐶𝑖

𝑡,𝑡2
]2

        (S6.3) 318 
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 Mathematically, partial regression coefficients may directly be derived by inverting the 319 

among-individual covariance matrix (Ω𝐴). Briefly, matrix Ω𝐼 (Eqn. S6.2) may be “split” into a 320 

matrix of predictors (Ω𝐴) and a matrix of covariances between predictors (traits) and response 321 

(fitness) (Ω𝐵), here taking the form of: 322 

 Ω𝐴 ∶  [
𝑉𝑖𝑡 𝐶𝑖

𝑡,𝑡2

𝐶𝑖
𝑡,𝑡2

𝑉𝑖
𝑡2

]  323 

 Ω𝐵 ∶ [𝐶𝑖𝑡,W 𝐶𝑖
𝑡2,W]         (S6.4)  324 

Partial regression coefficients (here, the unstandardized selection gradients) are then derived by 325 

multiplying 𝑨−1𝑩 (Bernstein 2005). In Supplementary Text S8 and on Github 326 

(https://github.com/YimenAraya-Ajoy/SelectionBias), we provide R-code to estimate and 327 

invert Ω𝐼 and calculate partial regression coefficients. The standardized quadratic selection 328 

gradient (𝛾11) then represents the multiplication of the unstandardized quadratic selection 329 

gradient (𝑏11; Eqn. S6.3) with 
√𝑉𝑖𝑡2

𝛽0W
: 330 

𝛾11 = 2𝑏11
√𝑉𝑖𝑡2

𝛽0W
         (S6.5) 331 

A similar procedure can be applied to transform the unstandardized linear component 332 

in the quadratic selection model (𝑏1; Eqn. 6.3) into an interpretable standardized linear gradient 333 

(𝛽1). Adding a quadratic term, importantly, changes the meaning of this parameter, now 334 

representing the slope of the tangent where the trait has the value zero. A biologically 335 

meaningful zero-point represents the population-mean trait value, estimated as 𝛽0𝑡 in 336 

formulations like Eqn. S6.2 (illustrated in Fig. S3). Expressing 𝛽1 relative to the population-337 

mean trait value is insightful, for example, when 𝛾11 < 0, the finding that 𝛽1 = 0 implies 338 

stabilising selection with the optimal phenotype matching the population-mean trait value. 𝛽1 ≠339 

0 instead implies the adaptive peak is shifted away from the population-mean (see Fig. S3b), 340 

indicative of directional selection. The unstandardized linear gradient at the population-mean 341 

is the value of 𝑏1 (as defined in Eqn. S6.3) plus 2𝑏11𝛽0𝑡. An insightful standardized value of 𝛽1 342 

is thus calculated by multiplying this sum with, 
√𝑉𝑖𝑡

𝛽0W
 (as in Eqn. 11, Main Text): 343 

 𝛽1 = (𝑏1 + 2𝑏11𝛽0𝑡)
√𝑉𝑖𝑡

𝛽0𝑊
        (S6.6) 344 

The above assumes the trait was not mean-centred prior to analysis (see Discussion); the 345 

correction +2𝑏11𝛽0𝑡 would be unnecessary if it was. 346 

 

Estimating correlational selection gradients with multivariate mixed-effects models 347 

Expanding the model to estimate correlational selection gradients requires modifying Eqn. S6.2 348 

to instead fit two traits (𝑡1, 𝑡2) and their product (𝑡1𝑡2) as response variables. In many cases, 349 

researchers fit both the linear and quadratic of both traits in such models, in which case the 350 

multivariate mixed-model solution would fit six response variables. Unstandardized partial 351 

regression coefficients (here, 𝑏1, 𝑏2, 𝑏11, 𝑏22, and 𝑏12) are again calculated by splitting Ω𝐼 into 352 

Ω𝐴 and Ω𝐵, and multiplying 𝑨−1𝑩. Standardized linear (𝛽1, 𝛽2) and quadratic (𝛾11, 𝛾22) 353 

components are calculated as above (Eqn. S6.5, S6.6), while the standardized correlational 354 

selection gradient is calculated as:  355 

𝛾12 = 𝑏12
√𝑉𝑖𝑡1𝑡2

𝛽0W
         (S6.7) 356 

https://github.com/YimenAraya-Ajoy/SelectionBias
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Where 𝑉𝑖𝑡1𝑡2  equals (Eqn. S4.5): 357 

𝑉𝑖𝑡1𝑡2 = 2𝐶𝑖𝑡1𝑡2
2 + 4𝛽0𝑡1

𝛽0𝑡2√
𝑉𝑖𝑡1𝑉𝑖𝑡2 + (𝛽0𝑡1

2 +𝑉𝑖𝑡1) (𝛽0𝑡2
2 +𝑉𝑖𝑡2) − (𝐶𝑖𝑡1𝑡2 + 𝛽0𝑡1

𝛽0𝑡2
)
2

 (S6.8) 358 

For mathematical derivation see Text S4. A simulated example is described in Supplementary 359 

Texts S7; we provide R-code in Supplementary Text S8 and (future updates) on Github 360 

(https://github.com/YimenAraya-Ajoy/SelectionBias).  361 

 

Mean-of-squares vs. Square-of-means  362 

Above, we propose to estimate quadratic selection gradients by fitting the squared term of the 363 

focal trait (𝑡ℎ𝑖
2 ) as a response variable. Doing so assumes that the variance among-individuals 364 

in means of their squared trait values (𝑡𝑖2̅) approximates the true among-individual variance in 365 

the square of individual-specific trait values (𝑡�̅�
2) of actual interest. Statistical simulations 366 

validated this assumption by demonstrating that the proposed multivariate mixed-effect model 367 

formulation produced unbiased estimates of the among-individual variance in squared values 368 

of individual-specific trait values. 369 

We used the following simulation approach. We started by drawing individual-specific 370 

trait values (𝑡𝑖) from a normal distribution with a mean (𝑡̅) equal to zero and 𝑉𝑖t = 3. We then 371 

simulated 3 phenotypic observations for each of 800 individuals by adding an observation-372 

specific error (drawn from a normal distribution with zero-mean and variance 𝑉𝑒t). Next, we 373 

estimated the among-individual variance in the squared values in three different ways. (1) We 374 

squared the values of each observation, then calculated a mean value for each individual using 375 

all its squared values (𝑡𝑖2̅), and finally, calculated the among-individual variance in this metric 376 

(among-individual variance in “mean-of-squared values”; Fig. S6). (2) We calculated the mean 377 

trait value over all observations per individual, squared this value (𝑡�̅�
2), and then calculated the 378 

among-individual variance in this metric (among-individual variance in “square-of-mean 379 

value”; Fig. S6). (3) We squared the values of each observation and fitted this variable (𝑡ℎ𝑖
2 ) as 380 

a response variable into a mixed-effects model with individual fitted as a random effects, and 381 

estimated the among-individual variance of this metric (“mixed-model estimate”; Fig. S7). We 382 

applied these simulations for two values of repeatability by setting 𝑉𝑒t =
(𝑉𝑖t−𝑅𝑡)

𝑅𝑡
 using 383 

procedures detailed in Supplementary Texts S7 and S8. We repeated this procedure 100 times 384 

for both types of repeatability (𝑅𝑡 = 0.3 and 𝑅𝑡 = 0.7). 385 
 

Fig. S6. The among-individual 

variance in squared values of a 

focal trait estimated in three 

different ways. The dashed line 

represents the true (simulated) 

among-individual variance in 

the square of individual-specific 

values. 
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Results show that the among-individual variance calculated using the mean of squares (white 392 

bars), as well as the among-individual variance calculated using the square of means (light-grey 393 

bars), overestimated the true among-individual variance in squared values of simulated 394 

individual-specific trait values (dotted line) for both levels of repeatability (Fig. S6). By 395 

contrast, the proposed mixed-effects model solution produced unbiased estimates of the true 396 

among-individual variance in trait values. 397 

 

Supplementary Text S7 398 
Linear selection analysis 399 

We used simulations to assess, first, whether classic approaches produced attenuated estimates 400 

of linear selection gradients, and second, whether the proposed solutions (the application of 401 

corrections (Table 1), multivariate mixed-models, or errors-in-variables models would address 402 

this problem (for Results, see Table S7). We first studied a scenario where the absolute fitness 403 

(W) of individual i was a function (𝑏1) of its true mean-centred trait value (𝑡𝑖) (in its natural 404 

scale; e.g., cm) plus an individual-specific stochastic environmental effect (𝑒𝑖) with a variance 405 

of 1 (𝑉𝑒W = 1). 406 

W𝑖 = 𝑏1𝑡𝑖 + 𝑒𝑖         (S7.1) 407 

The individual-specific values (𝑡𝑖) were drawn from a normal distribution with a mean (𝑡̅) equal 408 

to zero and among-individual variance (𝑉𝑖t) defined below. We then simulated 3 phenotypic 409 

observations for each of 800 individuals by adding an observation-specific error drawn from a 410 

normal distribution with zero-mean and residual variance (𝑉𝑒t =
𝑉𝑖t
𝑅𝑡
− 𝑉𝑖t ) three separate times 411 

to each 𝑡𝑖  to produce the three measurements. As in the Main Text, the expected standardized 412 

selection gradient 𝛽1 equalled 𝑏1
√𝑉𝑖𝑡

W̅̅̅
, where 𝑉𝑖t = 3, 𝑏1 = 0.346, and W̅ = 2. Thus, 𝛽1 = 0.3. 413 

We ran simulations with (𝑅𝑡) equal to 0.3 and 0.7 by varying 𝑉𝑒t =
𝑉𝑖t
𝑅𝑡
− 𝑉𝑖t. We used n=100 414 

replicate studies per level of repeatability. Following the generation of each full dataset (with n 415 

= 2400 data points per simulation), we generated two sub-sets of data. The first subset contained 416 

one randomly drawn trait value (of the three produced) per individual. The second subset 417 

contained one mean value per individual calculated using all three observations. Fitness was 418 

transformed into relative fitness and the trait transformed into standard deviation units for the 419 

two sub-sets, where the standardization was applied after calculating trait means for the second 420 

subset (for rational, see Text S5); no transformations were applied to the full dataset. 421 

Subsequently, we ran four analyses. First, we estimated the standardized linear selection 422 

gradient using a linear regression, fitting the standardized trait as a predictor of relative fitness, 423 

on the sub-set containing one random observation per individual. Second, we applied the latter 424 

approach using the mean value per individual. Third, we ran a bivariate mixed-model with 425 

random intercepts for individual identity on the full dataset, fitting the mean-centred trait and 426 

absolute fitness as the two response variables, and estimated the standardized linear selection 427 

gradient using Eqn. 11 (Main Text). We fitted the multivariate mixed-effects models in a 428 

Bayesian framework using MCMCglmm (Hadfield 2010) in the R environment (R-Core-Team 429 

2020). Finally, using RStan, we ran an errors-in-variables models. For all approaches, we 430 

calculated estimation bias as the difference between the observed standardized selection 431 

gradient minus the simulated standardized selection gradient divided by the simulated 432 

standardized selection gradient. We provide R-code in Supplementary Text S8 and (future 433 

updates) on Github (https://github.com/YimenAraya-Ajoy/SelectionBias).  434 

https://github.com/YimenAraya-Ajoy/SelectionBias
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 Estimates of standardized linear selection gradients based on the first subset, containing 435 

one randomly drawn trait value of the three produced per individual, were expected to be 436 

attenuated by √𝑅𝑡 = √
𝑉𝑖𝑡

𝑉𝑖𝑡+𝑉𝑒𝑡
 (Eqn. S2.6). Estimates of standardized linear selection gradients 437 

based on the second subset, containing one mean value per individual calculated using all three 438 

observations, were instead expected to be attenuated by √
𝑉𝑖𝑡

𝑉𝑖𝑡+
𝑉𝑒𝑡
𝑛

 (see Text S5), where n 439 

represents the number of observations per individual equal to three. As a follow-up analysis, 440 

we fitted a univariate mixed-effects model with random intercepts for individual identity to 441 

estimate 𝑉𝑖𝑡and 𝑉𝑒𝑡 from the full dataset. We then corrected the standardized linear selection 442 

gradient estimated for the first subset by dividing it by √𝑅𝑡; the estimate for the second subset 443 

was instead divided by √
𝑉𝑖𝑡

𝑉𝑖𝑡+
𝑉𝑒𝑡
𝑛

. This procedure enabled us to assess whether corrections 444 

applied to published data based on knowledge of trait repeatability could produce unbiased 445 

estimates.  446 

 

Quadratic selection analysis 447 

We expanded our simulation to study how each approach (detailed above) performed when 448 

applied to estimate standardized quadratic selection gradients. We did so by expanding Eqn. 449 

S8.1 to include the effect of the quadratic component of the focal trait on absolute fitness (𝑏2): 450 

W𝑖 = 𝑏1𝑡𝑖 + 𝑏2𝑡𝑖
2 + 𝑒𝑖        (S7.2) 451 

The expected value of 𝛽1 equalled 𝑏1
√𝑉𝑖𝑡

W̅̅̅
. We set 𝑉𝑖t = 3, 𝑏1 = 2.19, and W̅ = 2. Thus, 𝛽1 =452 

1.90. As in Eqn. S6.5, the expected value of 𝛾11 equalled 2𝑏11
√𝑉𝑖𝑡2

W̅̅̅
. As 𝑉𝑖

𝑡2
= 2𝑉𝑖𝑡

2 + 4𝑉𝑖𝑡𝜇𝑡
2 453 

(Eqn. S3.10), 𝛾11 thus equalled 2𝑏11
√2𝑉𝑖𝑡

2+4𝑉𝑖𝑡𝜇𝑡
2

W̅̅̅
. We set 𝑏2=-0.14 and 𝜇𝑡 = 0, thus 𝛽2=-0.3. As 454 

detailed above, we ran simulations with (𝑅𝑡) equal to 0.3 and 0.7 by varying 𝑉𝑒t =
𝑉𝑖t
𝑅𝑡
− 𝑉𝑖t. We 455 

provide R-code in Supplementary Text S8 and (future updates) on Github 456 

(https://github.com/YimenAraya-Ajoy/SelectionBias). 457 

 Estimates of standardized quadratic selection gradients based on the first subset, 458 

containing one randomly drawn trait value of the three produced per individual, were expected 459 

to be attenuated by √𝑅𝑡2 = 𝑅𝑡 (Eqn. S3.12) because we pragmatically mean-centred the trait 460 

prior to analysis. Estimates of standardized quadratic selection gradients based on the second 461 

subset, containing one mean value per individual calculated using all three observations, were 462 

instead expected to be attenuated by 
𝑉𝑖𝑡

𝑉𝑖𝑡+
𝑉𝑒𝑡
𝑛

 (instead of 𝑅𝑡; see above). As a follow-up analysis, 463 

we fitted a univariate mixed-effects model that had as a response variable 𝑡 and random 464 

intercepts for individual identity. We then corrected the standardized quadratic selection 465 

gradient estimated for the first subset by dividing it by 𝑅𝑡 =
𝑉𝑖𝑡

𝑉𝑖𝑡+𝑉𝑒𝑡
; the estimate for the second 466 
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subset was instead divided by 
𝑉𝑖𝑡

𝑉𝑖𝑡+
𝑉𝑒𝑡
𝑛

. This procedure enabled us to assess whether corrections 467 

applied to published data based on knowledge of among- and within-individual variances and 468 

trait means could produce unbiased estimates.  469 

Correlational selection analysis 470 

Finally, we expanded our simulation to study how each approach (detailed above) performed 471 

when applied to estimate standardized correlational selection gradients. We did so by expanding 472 

Eqn. S8.2 to include the linear and quadratic effects of two focal traits (𝑡1, 𝑡2), as well as their 473 

interaction, on absolute fitness:  474 

W𝑖 = 𝑏1𝑡1𝑖 + 𝑏11𝑡1𝑖
2 + 𝑏2𝑡2𝑖 + 𝑏22𝑡2𝑖

2 + 𝑏12𝑡1𝑖𝑡2𝑖 + 𝑒𝑖    (S7.3) 475 

For each trait (𝑡1, 𝑡2), expected values for standardized linear (𝛽1, 𝛽2) and quadratic (𝛽11, 𝛽22) 476 

selection gradients were set as detailed for the linear and quadratic selection examples above. 477 

The expected value of the correlational selection gradient (𝛾12) equalled 𝑏12
√𝑉𝑖𝑡1𝑡2

W̅̅̅
 (Eqn. 18), 478 

where 𝑉𝑖𝑡1𝑡2 = 𝐶𝑖𝑡1𝑡2
2 + 2𝜇𝑡1𝜇𝑡2√𝑉𝑖𝑡1𝑉𝑖𝑡2 + (𝜇𝑡1

2 +𝑉𝑖𝑡1) (𝜇𝑡2
2 +𝑉𝑖𝑡2) − (𝐶𝑖𝑡1𝑡2 + 𝜇𝑡1𝜇𝑡2)

2

(Eqn. 479 

S4.5). We provide R-code in Supplementary Text S8 and (future updates) on Github 480 

(https://github.com/YimenAraya-Ajoy/SelectionBias).  481 

Estimates of standardized correlational selection gradients based on the first subset (one 482 

randomly drawn trait value of the three produced per individual) were expected to be attenuated 483 

by √𝑅𝑡1𝑡2 (Eqn. S4.7). Estimates of standardized correlational selection gradients based on the 484 

second subset (containing one mean value per individual calculated using all three observations) 485 

were instead expected to be attenuated by √
𝑉𝑖𝑡1

𝑉𝑖𝑡2
𝑉𝑝�̅�1

𝑉𝑝�̅�2

√
𝑟𝑖𝑡1𝑡2
2 +1

𝑟𝑝�̅�1�̅�2
2 +1

 (Text S5). Our simulations 486 

assumed a zero correlation between the traits such that the latter attenuation equated √
𝑉𝑖𝑡1

𝑉𝑖𝑡2
𝑉𝑝�̅�1

𝑉𝑝�̅�2

 487 

while √𝑅𝑡1𝑡2 = √𝑅𝑡1𝑅𝑡2 (S4.9). As a follow-up analysis, we therefore two univariate mixed-488 

effects model, with the traits were fitted as response variables, with random intercepts for 489 

individual identity on the full simulated dataset. We then corrected the standardized 490 

correlational selection gradient estimated for the first subset by dividing it by √𝑅𝑡1𝑅𝑡2; the 491 

estimate for the second subset was instead divided by √
𝑉𝑖𝑡1

𝑉𝑖𝑡2
𝑉𝑝�̅�1

𝑉𝑝�̅�2

. This procedure enabled us to 492 

assess whether corrections applied to published data based on knowledge of trait means and 493 

among- and within-individual correlations between traits could produce unbiased estimates.  494 
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Table S7. Estimates of accuracy and precision in linear (𝛽1), quadratic (𝛾11), and correlational 495 

(𝛾12) selection gradients derived from regression models fitting one observed trait value or a 496 

mean of three observed trait values, multivariate mixed-effects models, and errors-in-variables 497 

models. We also show accuracy and precision after applying corrections to regressions. We 498 

calculated bias (i.e., inaccuracy) as the difference between estimated minus true standardized 499 

gradients, divided by the true gradient. This produced a mean percentage (upward/downward) 500 

bias. The coefficient of variation (CV) among 100 datasets simulated for a given scenario was 501 

used to measure imprecision. Estimates are provided for two levels of trait repeatability (R). 502 

Model 
 

R 
 

%Bias 
𝛽1 

CV 
𝛽1 

%Bias 
𝛾11 

CV 
𝛾11 

%Bias 
𝛾12 

CV 
𝛾12 

1 obs 0.3 -45.04 0.07 -70.21 -0.64 -74.63 0.87 

1 obs 0.7 -16.02 0.05 -33.13 -0.25 -31.05 0.23 

Mean of 3 obs 0.3 -24.93 0.05 -42.58 -0.30 -49.35 0.36 

Mean of 3 obs 0.7 -5.97 0.04 -15.03 -0.14 -14.87 0.15 

1 obs corrected 0.3 0.85 0.06 1.32 -0.65 -1.92 0.86 

1 obs corrected 0.7 0.45 0.04 -3.93 -0.24 1.16 0.24 

Mean of 3 corrected 0.3 0.46 0.04 2.78 -0.31 -4.88 0.36 

Mean of 3 corrected 0.7 0.56 0.04 -2.98 -0.14 -1.82 0.16 

Multivariate mixed model 0.3 2.22 0.06 -1.10 -0.77 -7.02 1.61 

Multivariate mixed model 0.7 0.66 0.04 -2.75 -0.20 -2.61 0.21 

Errors-in-variables model 0.3 0.30 0.05 0.87 -0.13 -0.07 0.27 

Errors-in-variables model 0.7 0.42 0.04 -0.25 -0.10 -1.58 0.15 
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