9 Supplementary Text S5
10 Supplementary Text S6
11 Supplementary Text S7
Supplementary Text S8

Supplementary Text S1

Literature Review

To assess the extent of awareness of trait repeatability as an important source of bias in estimates of selection, and the type of estimates that might often be biased, we surveyed the literature for papers presenting estimates of selection. We decided to take a sample of all such estimates by focusing on papers published within the journal Evolution in the years 2010-2019 inclusive. Our strategy was first to identify all papers published in that time period that cited Lande \& Arnold (1983). These were then pruned by skimming abstracts to assess if selection gradients of empirical data were likely to be presented. We then retrieved each paper and read the methods and results to confirm that gradients were indeed estimated. If so, we assessed the following variables: the trait(s) that were analysed, labelled as the authors chose and scored as to type (morphological, life history, physiological, performance, or behavioural) because repeatability varies considerably among these classes of traits. We used information in the methods to assess whether traits were mean-centred prior to analysis and whether repeated measures of the trait were taken (and if so, how many repeats). We further scored whether the authors used individual values, the mean, or some other technique such as principal components analysis that combines individual data points (and mean-centres as well), and whether trait correlations were presented in analyses of correlational selection. We also noted if the author(s) mentioned measurement error and repeatability in the paper, and if so, if they specified the trait repeatability. Finally, we noted what type of selection was estimated (directional, quadratic, or correlational) and any unusual elements of the analysis beyond the standard regression approach described by Lande \& Arnold (1983), such as use of path analysis, linear mixed models, aster analysis, or bivariate mixed-effects models.

Our survey resulted in 68 papers producing 311 trait estimates (we did not count replicate populations or years). Most estimates were on morphological traits ($195 ; 63 \%$), but $38(12 \%)$ were of behavioural traits, $26(8 \%)$ of physiological, 31 (10%) were of life history characters, and $21(7 \%)$ of performance traits. All traits were used to estimate directional selection; quadratic selection was also measured for $178(57 \%)$, and correlational selection was assessed among 107 (34\%). Table 1 (Main Text) provides summary statistics over all papers and Table S1 provides information extracted per paper.

Table S1. Studies publishing estimates of linear and nonlinear selection in Evolution from 2010 -2019, with species, trait studied, category of trait (MO=morphological, BEH = Behavioral, LH = Life history, PHY = Physiological, PER = Performance), fitness measure (L = lifetime, typically survival; $\mathrm{E}=$ one measure of an episode of fitness; $\mathrm{E} 2=$ at least two measures of episodic fitness), number of measures taken, whether the mean was used if more than 1 measure (or if ≥ 2 traits were combined with PCA), whether repeatability was mentioned and its magnitude if known, type of selection measured ($\mathrm{D}=$ directional, $\mathrm{Q}=$ quadratic, $\mathrm{C}=$ correlational), whether multivariate models were used, if traits were mean-centred before analysis (? = either authors did not say or simply stated they "standardized" without defining; residuals and PCA were counted as mean-centred) and if among-trait correlations were provided in cases of non-linear selection. Entries left blank if non-applicable.

Authors	Year	Citation	Species	Trait	Category	Fitness	Measures	Used mean	Mentioned repeatability	Type of selection measured	Used multivariate	Traits mean-centred	Trait correlations estimated
Reynolds et al.	2010	64(2): 358-369	Silene virginica	Petal length	MO	L	$2+$	Yes	No	D,Q,C	No	?	No
				Petal width	MO	L	$2+$	Yes	No	D,Q,C	No	?	No
				Flower height	MO	L	$2+$	Yes	No	D,Q,C	No	?	No
				Corolla length	MO	L	$2+$	Yes	No	D,Q,C	No	?	No
				Corolla width	MO	L	$2+$	Yes	No	D, Q, C	No	?	No
				Stigma exertion	MO	L	$2+$	Yes	No	D, Q, C	No	?	No
van de Pol et al.	2010	64(3):836-851	Haematopus ostralegus ostralegus	Bill shape	MO	E	1		Yes	D	No	No	
Cox \& Calsbeek	2010	64(3):798-809	Anolis sagrei	Body size	MO	L	1		No	D, Q	No	?	No
Siepelski \& Benkman	2010	$\begin{gathered} 64(4): 1120- \\ 1128 \end{gathered}$	Pinus flexilis	PC1	MO	E	2	Yes	Yes	D	No	PCA	
Freeman-Gallant et al	2010	$\begin{gathered} 64(4): 1007- \\ 1017 \end{gathered}$	Geothlypis trichas	UV brightness	MO	E	4	Yes	No	D	No	Yes	
				Mask area	mo	E	4	Yes	0.9	D	No	Yes	
				Bib area	мо	E	1		0.9	D	No	Yes	
				Carotenoid chroma	мо	E	4	Yes	No	D	No	Yes	
				Yellow brightness	мо	E	4	Yes	No	D	No	Yes	
Weese et al.	2010	$\begin{gathered} 64(6): 1802- \\ 1815 \end{gathered}$	Poecilia reticulata	Body size	MO	L	1		No	D	No	Yes	
				Black	mo	L	1		No	D	No	Yes	
				Green	мо	L	1		No	D	No	Yes	
				Carotenoid	мо	L	1		No	D	No	Yes	
				Structural	мо	L	1		No	D	No	Yes	
				Total Color	MO	L	1		No	D	No	Yes	
Perez \& Munch	2010	$\begin{gathered} 64(8): 2450- \\ 2457 \end{gathered}$	Fish sp.	Body size	MO	L	?		No	D,Q,C	No	Yes	No
						E					No	Yes	No
				Bower base	BEH	E	1		No	D, Q, C	No	Yes	No
				Bower platform	BEH	E	1		No	D, Q, C	No	Yes	No
				Bower position	BEH	E	1		No	D,Q, ${ }^{\text {d, }}$	No	Yes	No
Baythavong \& Stanton	2010	$\begin{gathered} 64(10): 2904- \\ 2920 \end{gathered}$	Erodium cicutarium	Emergence timing MP	LH	L	6		No	D	No	?	No

				Emergence timing L	LH	L	6
				Emergence timing Q	LH	L	6
				Cotyledon width MP	MO	L	6
				Cotyledon width L	MO	L	6
				Cotyledon width Q	MO	L	6
				Early leaf number MP	MO	L	6
				Early leaf number L	MO	L	6
				Early leaf number Q	MO	L	6
				Leaf turnover MP	MO	L	6
				Leaf turnover L	MO	L	6
				Leaf turnover Q	MO	L	6
				FFdateMP	MO	L	6
				Ffdate L	MO	L	6
				Ffdate Q	MO	L	6
				Leaves MP	MO	L	6
				Leaves L	MO	L	6
				Leaves Q	MO	L	6
Sullivan-Beckers \& Cocroft	2010	$\begin{gathered} 64(11): 3158- \\ 3171 \end{gathered}$	Enchenopa binotata	Survival	LH	E	1
				Weight	MO	E	1
				Signals per bout	BEH	E	1
				Period	BEH	E	1
				Whine length	BEH	E	1
				Pulse rate	BEH	E	1
				Frequency	BEH	E	1
Rundle \& Chenowth	2011	65(3):893-899	Drosophila serrata	CHC1	PHY	E	1
				CHC2	PHY	E	1
				CHC3	PHY	E	1
				CHC4	PHY	E	1
				CHC5	PHY	E	1
				CHC6	PHY	E	1
				CHC7	PHY	E	1
				CHC8	PHY	E	1
				CHC9	PHY	E	
Sahli \& Conner	2011	$\begin{gathered} 65(5): 1457- \\ 1473 \end{gathered}$	Raphanus raphanistrum	Flower number	MO	E2	
				Flower size	мо	E2	
				Anther exsertion	MO	E2	
				Stamen dimorphism	мо	E2	1
Postma et al.	2011	$\begin{gathered} 65(8): 2145- \\ 2156 \end{gathered}$	Poecilia reticulata	Black patch size	MO	E	
				Fuzzy black size	мо	E	
				Orange size	мо	E	

				Iridescent size	MO	E	1		No	D,Q,C	No	?	Yes
				Tail size	MO	E	1		No	D,Q,C	No	?	Yes
				Body size	мо	E	1		No	D,Q,C	No	?	Yes
Martin \& Pfennig	2011	$\begin{gathered} 65(10): 2946- \\ 2958 \end{gathered}$	Spea multiplicata	Denticle rows	MO	E	1		No	D,Q,C	No	Yes(residuals)	No
				Orbitohyoideus muscle width	MO	E	1		No	D,Q,C	No	Yes(residuals)	No
				Interhyodieus muscle width	MO	E	1		No	D,Q,C	No	Yes(residuals)	No
				Gut length	мо	E	1		No	D,Q,C	No	Yes(residuals)	No
				Mouthpart shape	мо	E	1		No	D,Q,C	No	Yes(residuals)	No
				Denticle rows	mo	E	1		No	D,Q,C	No	Yes(residuals)	No
Leinonen et al.	2011	$\begin{gathered} 65(10): 2916- \\ 2926 \end{gathered}$	Gasterosteus aculeatus	Lateral plate number	MO	L	1		No	D	No	No	Yes
				Spine triangle size	мо	L	1		No	D	No	No	Yes
				Head depth	MO	L	1		No	D	No	No	Yes
				Head length	MO	L	1		No	D	No	No	Yes
				Body depth	MO	L	1		No	D	No	No	Yes
				Pelvic girdle length	MO	L	1		No	D	No	No	Yes
				Caudal peduncle length	MO	L	1		No	D	No	No	Yes
Formica et al.	2011	$\begin{gathered} 65(10): 2771- \\ 2781 \end{gathered}$	Bolitotherus cornutus	Body Size (PC1)	MO	L	5	PCA	No	D	No	PCA	
				Social Body Size	MO	L	10+	Yes	No	D	No	PCA	
				Body Size (PC1)	MO	E	5	PCA	No	D	No	PCA	
				Social Body Size	MO	E	$10+$	Yes	No	D	No	PCA	
Crean et al.	2011	$\begin{gathered} 65(11): 3079- \\ 3089 \end{gathered}$	Styela plicata	Larval size	MO	L	3	Yes	No	D,Q,C	No	Yes	No
				Hatch time	LH	L	1		No	D,Q,C	No	Yes	No
				Settle time	BEH	L	1		No	D,Q,C	No	Yes	No
				Larval size	MO	E	3	Yes	No	D,Q,C	No	Yes	No
				Hatch time	LH	E	1		No	D,Q,C	No	Yes	No
				Settle time	BEH	E	1		No	D, Q, C	No	Yes	No
Lorenzi \& Thompson	2011	$\begin{gathered} 65(12) \text {):3527- } \\ 3542 \end{gathered}$	Polistes biglumis	Head width	MO	L	1		No	D,Q	No	?	Yes
				Building effort	PER	L	1		No	D, Q	No	?	Yes
				Brood investment	PER	L	1		No	D, Q	No	?	Yes
				Protective effort	BEH	L	1		No	D, Q	No	?	Yes
Egan et al.	2011	$\begin{gathered} \text { 65(12):3543- } \\ 3557 \end{gathered}$	Belonocnema treatae	Gall size	MO	L	1		No	D, Q	No	Yes	
Kulbaba et al.	2012	$\begin{gathered} 66(5): 1344- \\ 1359 \end{gathered}$	Polemonium brandegeei	Herkegomy	MO	E	1		No	D,Q,C	No	?	No
				Corolla tube length	мо	E	1		No	D,Q,C	No	?	No
				Corolla tube width	MO	E	1		No	D,Q,C	No	?	No
				Sex organ height	MO	E	1		No	D,Q,C	No	?	No
				Flower mass	MO	E	1		No	D, Q, C	No	?	No
							4						

				Nectar volume Sugar content	$\begin{aligned} & \text { PHY } \\ & \text { PHY } \end{aligned}$	E	1 2	Yes	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \mathrm{D}, \mathrm{Q}, \mathrm{C} \\ & \mathrm{D}, \mathrm{Q}, \mathrm{C} \end{aligned}$	No No	$\begin{aligned} & ? \\ & ? \end{aligned}$	No No
Godsen et al.	2012	$\begin{gathered} 66(7): 2106- \\ 2116 \end{gathered}$	Drosophila melanogaster	CHC1	PHY	E	1		No	D	No	Yes	No
				CHC2	PHY	E	1		No	D	No	Yes	No
				СНС3	PHY	E	1		No	D	No	Yes	No
				CHC4	PHY	E	1		No	D	No	Yes	No
				CHC5	PHY	E	1		No	D	No	Yes	No
				CHC6	PHY	E	1		No	D	No	Yes	No
				CHC7	PHY	E	1		No	D	No	Yes	No
Fitzpatrick et al.	2012	$\begin{gathered} 66(8): 2451- \\ 2460 \end{gathered}$	Mytilus galloprovincialis	Sperm density	PER	E	2	Yes		D,Q,C	No	?	No
				Sperm head volume	MO	E	30	Yes		D, Q, C	No	?	No
				Sperm flagellum length	MO	E	30	Yes		D, Q, C	No	?	No
				Sperm motility PC1	PER	E	2	Yes	Yes	D, Q, C	No	PCA	No
				Sperm motility PC2	PER	E	2	Yes	Yes	D, Q, C	No	PCA	No
				Sperm age	PER	E	1		No	D, Q, C	No	?	No
				Egg age	PER	E	1		No	D, Q, C	No	?	No
Guerreiro et al	2012	$\begin{gathered} 66(11): 3615- \\ 3623 \end{gathered}$	Mus musculus	IL-6	PHY	L	1		No	D,Q,C	No	Yes	No
				$11-10$	PHY	L	1		No	D, Q, C	No	Yes	No
Benkman et al	2013	67(1):157-169	Pinus contorta latifolia	Cone width/length	MO	E	3	Yes	Yes	D, Q	No	No	Yes
				Cone mass	MO	E	3	Yes	Yes	D, Q	No	No	Yes
				Distal scale	MO	E	6	Yes	Yes	D, Q	No	No	Yes
				Scale length	MO	E	6	Yes	Yes	D,Q	No	No	Yes
				Full seeds	PER	E	3	Yes	Yes	D,Q	No	No	Yes
				Empty seeds	PER	E	3	Yes	Yes	D, Q	No	No	Yes
				Seed mass	MO	E	5	Yes	Yes	D,Q	No	No	Yes
Marshall \& Monro	2013	67(2):328-337	Watersipora subtorquata	Offspring size	MO	E	1		No	D, Q	No	?	No
				Zoiod size	MO	E	1+	Yes	No	D, Q	No	?	No
				Senescence size	MO	E	1		No	D,Q	No	?	No
Wacker et al.	2013	$\begin{gathered} 67(7): 1937- \\ 1949 \end{gathered}$	Gobiusculus flavescens	Length	MO	E	3	Yes	Yes	D	No	Yes	
				Torso area	MO	E	3	Yes	Yes	D	No	Yes	
				Blue spots	MO	E	3	Yes	Yes	D	No	Yes	
				Tail length	MO	E	3	Yes	Yes	D	No	Yes	
Fritzsche \& Arnqvist	2013	$\begin{gathered} 67(7): 1926- \\ 1936 \end{gathered}$	Callosobruchus maculatus	Male body size	MO	E	2	Yes	No	D	No	Yes	
				Male body size	MO	E	2	Yes	No	D	No	Yes	
				Male body size	MO	E	2	Yes	No	D	No	Yes	
				Male body size	MO	E	2	Yes	No	D	No	Yes	
				Female body size	MO	E	2	Yes	No	D	No	Yes	
				Female body size	MO	E	2	Yes	No	D	No	Yes	
				Female body size	MO	E	2	Yes	No	D	No	Yes	
				Female body size	MO	E	2	Yes	No	D	No	Yes	
							5						

Morrissey \& Sakrejda	2013	$\begin{gathered} \text { 67(7): } 2094- \\ 2100 \end{gathered}$	Homo sapiens	Birth mass	MO	E	1		No	D, Q, C	No	?	No
				Gestation length	LH	E	1		No	D,Q,C	No	?	No
Kulbaba\&Worley	2013	$\begin{gathered} 67(8): 2194- \\ 2206 \end{gathered}$	Polemonium brandegeei	Nectar conc	PER	E	2	Yes	No	D,Q	No	Yes	No
				Tube length	MO	E	2	Yes	No	D,Q	No	Yes	No
				Tube diameter	MO	E	2	Yes	No	D, Q	No	Yes	No
				Herkogamy	MO	E	2	Yes	No	D, Q	No	Yes	No
				Bird visits	PER	E	2	Yes	No	D, Q	No	Yes	No
				Pollen in anthers	PER	E	2	Yes	No	D, Q	No	Yes	No
				Pollen on stigma	PER	E	2	Yes	No	D,Q	No	Yes	No
				Seeds set	PER	E	2	Yes	No	D, Q	No	Yes	No
				Seeds sired	PER	E	2	Yes	No	D,Q	No	Yes	No
Mezquida \& Benkman	2014	$\begin{gathered} 68(6): 1710- \\ 1721 \end{gathered}$	Pinus uncinata	Cone mass	MO	E	4	Yes	No	D	No	Yes	
				Full seeds	PER	E	4	Yes	No	D	No	Yes	
				Empty seeds	PER	E	4	Yes	No	D	No	Yes	
				Seed mass	MO	E	4	Yes	No	D	No	Yes	
Sletvold \& Agren	2014	$\begin{gathered} 68(7): 1907-1918 \\ 1918 \end{gathered}$	Dactylorhiza lapponica	Height	MO	E	1		No	D	No	?	
				Num Flowers	MO	E	1		No	D	No	?	
				Corolla size	мо	E	1		No	D	No	?	
				Spur length	мо	E	1		No	D	No	?	
				Flowering day	LH	E	1		No	D	No	?	
Gillespie et al	2014	$\begin{gathered} 68(12): 3421- \\ 3432 \end{gathered}$	Narnia femorata	Male body size (PC)	MO	E	7	PCA	No	D	No	PCA	
				Female body size (PC)	мо	E	7	PCA	No	D	No	PCA	
Ercit \& Gwynne	2015	69(2):419-430	Oecanthus nigricornis	Tegmen width	MO	L	1		No	D,Q,C	No	?	No
				Leg size (PC1)	мо	L	3	PCA	No	D,Q,C	No	PCA	No
				Pronotum length	мо	L	1		No	D,Q,C	No	?	No
				Head width	мо	L	1		No	D,Q,C	No	?	No
				Tegmen width	мо	E	1		No	D,Q,C	No	?	No
				Leg size (PC1)	MO	E	3	PCA	No	D,Q,C	No	PCA	No
				Pronotum length	мо	E	1		No	D,Q,C	No	?	No
				Head width	MO	E	1		No	D, Q, C	No	?	No
Campobello et al.	2015	69(4):916-925	Falco naumanni	Individual attendance	BEH	E	1		No	D	No	Yes	
			Corvus Monedula	Individual attendance	BEH	E	1		No	D	No	Yes	
			Falco naumanni	Conspecific attendance	BEH	E	>2	Yes	No	D	No	Yes	
			Corvus Monedula	Conspecific attendance	BEH	E	>2	Yes	No	D	No	Yes	
			Falco naumanni	Heterospecific attendance	BEH	E	>2	Yes	No	D	No	Yes	
			Corvus Monedula	Heterospecific attendance	BEH	E	>2	Yes	No	D	No	Yes	
Weis et al.	2015	$\begin{gathered} 69(6): 1361- \\ 1374 \end{gathered}$	Brassica rapa	Emergence time	LH	L	1		No	D	No	Yes	
							6						

Kalvnes et al.	2017	$\begin{gathered} \text { 71(8): } 2062- \\ 2079 \end{gathered}$	Passer domesticus	Tarsus	MO	L	1		No	D	No	Yes	Yes
				Wing	мо	L	1		No	D	No	Yes	Yes
				Bill length	мо	L	1		No	D	No	Yes	Yes
				Bill depth	мо	L	1		No	D	No	Yes	Yes
				Condition	мо	L	1		No	D	No	Yes	Yes
O'Brien et al.	2017	$\begin{gathered} 71(11): 2584- \\ 2598 \end{gathered}$	Sagra femorata	Hind leg length	MO	E	1		No	D,Q,C	No	?	Yes
				Elytra length	MO	E	1		No	D,Q,C	No	?	Yes
				Residual leg length to elytra	MO	E	1		No	D,Q,C	No	Yes	NA
McCollough et al	2018	72(4):893-905	Onthophagus taurus	Testes mass	MO	E	1		No	D,Q,C	No	Yes	No
				Horn length	MO	E	1		No	D, Q, C	No	Yes	No
				Soma mass	MO	E	1		No	D, Q, C	No	Yes	No
Hunter et al.	2018	72(4):851-855	Ovis aries	Mass	MO	E	1		Yes	D	No	No	
Ferris \& Willis	2018	$\begin{gathered} 72(6): 1225- \\ 1241 \end{gathered}$	M. lacinatus $\times M$. guttatus hybrids	Flowering time	LH	L	1		No	D, Q	No	Yes	No
				Leaf area	мо	L	1		No	D, Q	No	Yes	No
				Leaf lobes	MO	L	1		No	D, Q	No	Yes	No
Hamala et al	2018	$\begin{gathered} 72(7): 1373- \\ 1386 \end{gathered}$	Arabidopsis lyrata	Flowering time	PER	L	1		No	D, Q	No	Yes	No
				Shoot length	MO	L	1		No	D, Q	No	Yes	No
				Inflorescence Num	мо	L	1		No	D, Q	No	Yes	No
				Fruit maturation	LH	L	1		No	D, Q	No	Yes	No
				Flowering cessation	LH	L	1		No	D, Q	No	Yes	No
Exposito-Alonzo et al.	2018	$\begin{gathered} 72(8): 1570- \\ 1586 \end{gathered}$	Arabidopsis thaliana	Max Recruitment	PER	L	1		No	D, Q	No	Yes	Yes
				Flowering time	LH	L	1		No	D, Q	No	Yes	Yes
Taylor et al	2018	$\begin{gathered} \text { 72(10): :2090- } \\ 2099 \end{gathered}$	Urosaurus ornatus	Snout-vent length	MO	L	1		No	D, Q	No	Yes	No
				Hind-limb length	MO	L	1		No	D, Q	No	Yes	No
				Mass	MO	L	1		No	D, Q	No	Yes	No
				MaxSprint	PER	L	2		No	D, Q	No	Yes	No
Hamann et al.	2018	$\begin{gathered} 72(12): 2682- \\ 2696 \end{gathered}$	Brassica rapa	Flowering time	LH	L	2	Yes	No	D, Q	No	?	No
				Stem diameter	MO	L	2	Yes	No	D, Q	No	?	No
Wang \& Althoff	2019	73(2):303-316	Drosophila melanogaster	ADH activity	PHY	L	2	Yes	No	D, Q	No	Yes	No
				ADH_P010	PHY	L	2	Yes	No	D, Q	No	Yes	No
				ADH_P016	PHY	L	2	Yes	No	D, Q	No	Yes	No
				ADH_P1016	PHY	L	2	Yes	No	D, Q	No	Yes	No
Ramakers et al.	2019	73(2): 175-187	Parus major	First-egg date Intercept first egg date	LH	L	2	Yes	No	D	Yes	Yes	Yes

				Slope in FED with temperature	LH	L	2	Yes	No	D	Yes	Yes	Yes
LeGrice et al..	2019	73(4):762-776	Lasiorhynchus barbicornis	Body length	MO	E	1		No	D, Q	No	?	No
Keith \& MitchellOlds	2019	73(5):947-960	Boechera stricta	ConGS-R	MO	E	1		No	D	No	Yes	
				BC-ratio-R	MO	E	1		No	D	No	Yes	
				ConGS-C	MO	E	1		No	D	No	Yes	
				BC-ratio-C	мо	E	1		No	D	No	Yes	
				Congs-F	мо	E	1		No	D	No	Yes	
				BC-ratio-F	мо	E	1		No	D	No	Yes	
Tonnabel et al.	2019	73(5): 897-912	Murcurialis annua	Height	MO	E	1		No	D, Q, C	No	Yes	Yes
				Diameter	MO	E	1		No	D,Q,C	No	Yes	Yes
				Mean branch length	мо	E	2	Yes	No	D, Q, C	No	Yes	Yes
				Ped inflorescences	мо	E	1		No	D, Q, C	No	Yes	Yes
				Peduncle length	мо	E	5	Yes	No	D, Q, C	No	Yes	Yes
				Seeds	мо	E	1		No	D, Q, C	No	Yes	Yes
				Vegetative weight	мо	E	1		No	D, Q, C	No	Yes	Yes
				Germination rate	мо	E	1		No	D, Q, C	No	Yes	Yes
Watts et al	2019	$\begin{gathered} 73(9): 1927-1940 \\ 1940 \end{gathered}$	Schizocosa crassipes	Mass	MO	E	1		No	D	No	Yes	Yes
				Thorax width	MO	E	3	Yes	No	D	No	Yes	Yes
				Brush area	мо	E	1		Yes	D	No	Yes	Yes
				Tibial darkness	мо	E	3	Yes	No	D	No	Yes	Yes
				Latency to Signal	BEH	E	1		No	D	No	Yes	Yes
				Latency to Bounce	BEH	E	1		No	D	No	Yes	Yes
				Bounce Rate	BEH	E	1		No	D	No	Yes	Yes
				Bounce Interval	BEH	E	>1	Yes	No	D	No	Yes	Yes
				Number Wave Bouts	BEH	E	1		No	D	No	Yes	Yes
				Total Wave Duration	BEH	E	1		No	D	No	Yes	Yes
				Mean Wave Duration	BEH	E	>1	Yes	No	D	No	Yes	Yes
				Prop. Variance	BEH	E	1		No	D	No	Yes	Yes
				Cummulative Variance	BEH	E	1		No	D	No	Yes	Yes
				Courtship Effort (PC1)	BEH	E	12	PCA	No	D	No	Yes	Yes
				Size-ornament (PC2)	мо	E	12	PCA	No	D	No	Yes	Yes
				Leg-Wave duration (PC3)	BEH	E	12	PCA	No	D	No	Yes	Yes

Supplementary Text S2

Calculating bias in directional selection gradients that ignore effects of trait repeatability
We derive here Eqn. 5 (Main Text). We start with reprinting the mathematical relationship between b_{1}^{*}, the unstandardized linear selection gradient that ignores effects of withinindividual variance, the trait's repeatability $\left(R_{t}\right)$, and the true unstandardized linear selection gradient (b_{1}) (Eqn. 4, Main Text):

$$
\begin{equation*}
b_{1}^{*}=b_{1} R_{t} \tag{S2.1}
\end{equation*}
$$

Standardized linear selection gradients (β) measure the change in relative fitness per standard deviation unit trait (Lande and Arnold 1983), calculable by dividing the unstandardized linear selection gradient by mean fitness (\bar{W}) and by multiplying it by the square-root of the variance in trait value at the focal level of analysis, thus:
$\beta_{1}^{*}=b_{1}^{*} \frac{\sqrt{V_{p_{t}}}}{\overline{\mathrm{~W}}}$
The true standardized linear selection gradient $\left(\beta_{1}\right)$ represents the multiplication of b_{1} with $\frac{\sqrt{V_{i_{i}}}}{\bar{W}}$, where $V_{i_{t}}$ represents the true individual variance in trait values:
$\beta_{1}=b_{1} \frac{\sqrt{V_{i_{t}}}}{\bar{W}}$
Eqn. S2.2 may therefore be rephrased as:
$\beta_{1}^{*}=\frac{\beta_{1}}{\sqrt{V_{i_{t}}}} R_{t} \sqrt{V_{p_{t}}}$
Expressing R_{t} in its underlying variance components gives:
$\beta_{1}^{*}=\frac{\beta_{1}}{\sqrt{V_{i_{t}}}} \frac{V_{i_{t}}}{V_{i_{t}}+V_{e_{t}}} \sqrt{V_{i_{t}}+V_{e_{t}}}=\beta_{1} \frac{\sqrt{V_{i_{t}}}}{\sqrt{V_{i_{t}}+V_{e_{t}}}} \frac{\sqrt{V_{i_{t}}}}{\sqrt{V_{i_{t}}+V_{e_{t}}}} \frac{\sqrt{V_{i_{t}}+V_{e_{t}}}}{\sqrt{V_{i_{t}}}}=\beta_{1} \frac{\sqrt{V_{i_{t}}}}{\sqrt{V_{i_{t}}+V_{e_{t}}}}$
Re-expressing variance components in terms of repeatability, leads to Eqn. 5 (Main Text):
$\beta_{1}=\beta_{1}^{*} / \sqrt{R_{t}}$

Supplementary Text S3

Calculating bias in quadratic selection gradients ignoring effects of trait repeatability
To derive the bias in quadratic selection gradients caused by ignoring within-individual variation, we provide the mathematical relationship between the unstandardized quadratic selection gradient that ignores the effects of within-individual error (b_{11}^{*}), the true unstandardized quadratic selection gradient $\left(b_{11}\right)$, and the repeatability of the squared value of the focal trait $t\left(R_{t^{2}}\right)$, i.e., we apply Eqn. 4 to an unstandardized quadratic selection gradient:
$b_{11}^{*}=b_{11} R_{t^{2}}$
where $R_{t^{2}}$ represents the repeatability of the square of trait t. Estimating standardized selection gradients requires expressing trait values in standard deviation units (Lande and Arnold 1983). As we have seen above, the standardized trait value (z) equals the raw trait value (t) divided by the square root of the variance in trait values $\left(\sqrt{V_{t}}\right)$, where $z=t / \sqrt{V_{t}}$. Z-transforming the raw trait value (t) thus results in $z^{2}=t^{2} / \sqrt{V_{t^{2}}}$. As we show above (Supplementary Text S2), the bias in the standardized linear gradient represents the square root of the bias in unstandardized gradients. Applied to quadratic selection gradients:
$\gamma_{11}=\gamma_{11}^{*} / \sqrt{R_{t^{2}}}$
As above, the repeatability of the squared term of trait t is attributable to within- and amongindividual variance components:

$$
\begin{equation*}
R_{t^{2}}=\frac{V_{i_{t^{2}}}}{V_{i_{t^{2}}}+V_{e_{t^{2}}}} \tag{S3.3}
\end{equation*}
$$

where $V_{i_{t^{2}}}+V_{e_{t^{2}}}$ equals the total phenotypic variance in squared trait values $\left(V_{p_{t^{2}}}\right)$. The phenotypic variance in squared trait values $\left(V_{p_{t^{2}}}\right)$ represents the variance of a product (i.e., $V_{p_{t^{2}}}=V_{p_{x \cdot y}}$; where $x=y=t$); this variance can be broken down into the following components (e.g., Mood et al. 1973; Cacoullos 1989):
$V_{p_{x, y}}=C_{p_{x^{2}, y^{2}}}+\mu_{x^{2}} \mu_{y^{2}}-\left(C_{p_{x, y}}+\mu_{x} \mu_{y}\right)^{2}$
Variance of products thus vary as a function of mean trait values (μ_{x}, μ_{y}), means of squared trait values $\left(\mu_{x^{2}}, \mu_{y^{2}}\right)$, as well as trait covariances $\left(C_{p_{x^{2}, y^{2}}}, C_{p_{x, y}}\right)$. Assuming multivariate normality, we can apply the following transformation:
$C_{p_{x^{2}, y^{2}}}=\left(C_{p_{x, y}}^{2}+2 \mu_{x} \mu_{y} \sqrt{V_{p_{x}} V_{p_{y}}}\right)$
Substituting Eqn. S3.5 into S3.4 gives:
$V_{p_{x \cdot y}}=\left(C_{p_{x, y}}^{2}+2 \mu_{x} \mu_{y} \sqrt{V_{p_{x}} V_{p_{y}}}\right)+\mu_{x^{2}} \mu_{y^{2}}-\left(C_{p_{x, y}}+\mu_{x} \mu_{y}\right)^{2}$
Re-expressing S 3.6 in terms of trait values rather than squared trait values gives:
$V_{p_{x \cdot y}}=\left(C_{p_{x, y}}^{2}+2 \mu_{x} \mu_{y} \sqrt{V_{p_{x}} V_{p_{y}}}\right)+\left(\mu_{x}^{2}+V_{p_{x}}\right)\left(\mu_{y}^{2}+V_{p_{y}}\right)-\left(C_{p_{x, y}}+\mu_{x} \mu_{y}\right)^{2}$
Because $x=y=t, C_{p_{x, y}}=V_{p_{x}}=V_{p_{y}}=V_{p_{t}}$, we can substitute $V_{p_{t}}$ for $C_{p_{x, y}}$:
$V_{p_{t^{2}}}=2\left(V_{p_{t}}^{2}+2 \mu_{t} \mu_{t} \sqrt{V_{p_{t}} V_{p_{t}}}\right)+\left(\mu_{t}^{2}+V_{p_{t}}\right)\left(\mu_{t}^{2}+V_{p_{t}}\right)-\left(V_{p_{t}}+\mu_{t} \mu_{t}\right)^{2}$
This then simplifies to:
$V_{p_{t^{2}}}=2 V_{p_{t}}^{2}+4 V_{p_{t}} \mu_{t}^{2}$
Applying Eqn. S3.9 to the among-individual $\left(V_{i_{t^{2}}}\right)$ instead of total phenotypic variance in squared trait values $\left(V_{t^{2}}\right)$ gives:
$V_{i_{t^{2}}}=2 V_{i_{t}}^{2}+4 V_{i_{t}} \mu_{t}^{2}$
We can now express the factor causing bias in quadratic selection gradients ($\sqrt{R_{t^{2}}}$; Eqn. S3.2) in terms of variances in trait values rather than squared trait values:
$\sqrt{R_{t^{2}}}=\sqrt{\frac{2 V_{i_{t}}^{2}+4 V_{i_{t}} \mu_{t}^{2}}{2 V_{p_{t}}^{2}+4 V_{p_{t}} \mu_{t}^{2}}}=\sqrt{\frac{V_{i_{t}}^{2}+2 V_{i_{t}} \mu_{t}^{2}}{V_{p_{t}}^{2}+2 V_{p_{t}} \mu_{t}^{2}}}$
This formula shows that bias is much more complex for quadratic versus linear gradients. Bias in standardized linear selection gradients varies solely as a function of the relative magnitudes of among- $\left(V_{i_{t}}\right)$ and within-individual $\left(V_{e_{t}}\right)$ variances and equals the trait's square-root repeatability ($\sqrt{R_{t}}$; Eqn. S2.6). By contrast, bias in quadratic selection gradients varies as a function of the among- $\left(V_{i_{t}}\right)$ and within-individual $\left(V_{e_{t}}\right)$ variances, and the square of the mean trait value $\left(\mu_{t}^{2}\right)$. Importantly, Eqn. S3.11 implies that bias in quadratic selection gradients is lowest when the trait mean $\left(\mu_{t}\right)$ equals zero. We show this by comparing bias $\left(\sqrt{R_{t^{2}}}\right)$ when the trait mean is zero versus infinite. When $\mu_{t}=0$, Eqn. S.3.11 simplifies into:
$\sqrt{R_{t^{2}}}=\sqrt{\frac{v_{i_{t}}^{2}}{V_{p_{t}}^{2}}}=\sqrt{R_{t}^{2}}=R_{t}$
By contrast, when $\left|\mu_{t}\right|$ approaches infinity, $\sqrt{R_{t^{2}}}$ (Eqn. S3.11) becomes:
$\lim _{\left|\mu_{t}\right| \rightarrow \infty} \sqrt{R_{t^{2}}} \approx \sqrt{\frac{V_{i_{t}}}{V_{p_{t}}}}=\sqrt{R_{t}}$

The magnitude of attenuation bias in quadratic selection gradient analyses $\left(\sqrt{R_{t^{2}}}\right.$; Eqn. S3.11) thus varies between R_{t} (when $\mu_{t}=0$; Eqn. S3.12) and $\sqrt{R_{t}}$ (when $\left|\mu_{t}\right| \rightarrow \infty$; Eqn. S3.13). Because R_{t} is always smaller than $\sqrt{R_{t}}$, attenuation bias therefore increases with decreasing value of $\left|\mu_{t}\right|$, and is, in fact, smallest when $\mu_{t}=0$. This insight is important as our literature review (TextS1) implies that many studies (Table 1) mean-centre traits prior to analysis as part of trait standardization (i.e., $z=\left(t-\mu_{t}\right) / \sqrt{V_{p_{t}}}$). This transformation effectively replaces μ_{t} for $\mu_{z}=0$ in Eqn. S3.11 and thereby (accidentally) minimizes attenuation bias.

Mean-centring traits minimizes attenuation bias but also affects the interpretation of the linear component of a quadratic selection gradient analyses. In a quadratic regression model, the linear effect $\left(b_{1}\right)$ of the trait (t) on absolute fitness (W) represents the slope of the tangent line where the trait has the value zero as illustrated by the orange dot in Figure S3a, where the arrow represents b_{1} for $t=0$. A biologically meaningful zero-point represents the populationmean trait value (\bar{t}; dotted line in Fig. S3), because the linear effect of the trait on fitness then provides information on whether the fitness peak/valley (white star in Fig. S3) is above or below the population mean trait value (\bar{t}). Said differently, it provides information on the expected strength of directional selection on the trait. The arrow in Fig. S3b represents the tangent line at this population-mean value (blue dot), and is calculated by adding $2 b_{11} \bar{t}$ to b_{1} (as defined in Eqn. 14). Applying this transformation to the scenario presented in Fig S3, would result in $\beta_{1}>$ 0 at the population-mean trait value (Fig. S3b), implying that the population mean is below the optimal trait value, as illustrated.

Figure S3. Illustration of a parabolic relationship between trait (t) on absolute fitness (W), where the dotted line represents the population-mean trait value, the star represents the optimal trait value; (a) the orange dot represents the tangent line where the trait value has the value zero. (b) the blue dot represents the tangent line at the population-mean trait value.

An important question is whether estimates of optimal trait values in stabilising selection scenarios are also affected by failure to acknowledge biasing effects of withinindividual error. The optimal trait value represents the trait value at the vertex of the parabola, calculable as $\frac{-\beta_{1}}{2 \gamma_{11}}$ (Bronshtein et al. 2015). The trait value at the parabolic peak calculated while ignoring biasing effects of within-individual variance $\left(\frac{-\beta_{1}^{*}}{2 \gamma_{11}^{*}}\right)$ is mathematically related to the true
trait value at the parabolic peak $\left(\frac{-\beta_{1}}{2 \gamma_{11}}\right)$ because $\gamma_{11}=\gamma_{11}^{*} / \sqrt{R_{t^{2}}}($ Eqn. S3.2 $)$ and $\beta_{1}=\beta_{1}^{*} / \sqrt{R_{t}}$ (Eqn. S2.6), thus:
$\frac{-\beta_{1}}{2 \gamma_{11}}=\frac{-\beta_{1}^{*}}{2 \gamma_{11}^{*}} \frac{\sqrt{R_{t^{2}}}}{\sqrt{R_{t}}}$
where $\frac{\sqrt{R_{t^{2}}}}{\sqrt{R_{t}}}$ represents the bias in the trait value at the parabolic peak. Substituting $\sqrt{R_{t^{2}}}$ for Eqn. S3.11 gives:
$\frac{\sqrt{R_{t}{ }^{2}}}{\sqrt{R_{t}}}=\frac{\sqrt{\frac{V_{i_{t}}^{2}+2 V_{i_{t}} \mu_{t}^{2}}{V_{p_{t}}^{2}+2 V_{p} p_{t} \mu_{t}^{2}}}}{\sqrt{R_{t}}}$
Eqn. S3.15 simplifies for traits that were mean-centred (using Eqn. S3.12):
$\frac{\sqrt{R_{t^{2}}}}{\sqrt{R_{t}}}=\frac{R_{t}}{\sqrt{R_{t}}}=\sqrt{R_{t}}$
Eqn. S3.15 simplifies differently when the mean trait value approaches infinity (using Eqn. S3.13):
$\lim _{\left|\mu_{t}\right| \rightarrow \infty} \frac{\sqrt{R_{t^{2}}}}{\sqrt{R_{t}}} \approx \frac{\sqrt{R_{t}}}{\sqrt{R_{t}}}=1$
In other words, for variance-standardized traits that are also mean-centred, failure to control for within-individual error causes an overestimation of the optimal trait value by a factor equal $\sqrt{R_{t}}$ (Eqn. S3.16). Importantly, Eqn. S3.17 implies that bias in the placement of the parabolic peak is greatest when the trait mean $\left(\mu_{t}\right)$ equals zero. Moreover, Eqn. S 3.17 shows that bias in the placement of the parabolic peak $\left(\frac{\sqrt{R_{t}}}{\sqrt{R_{t}}}\right)$ disappears entirely when the mean trait value approximates infinity (and thus will not happen in practice). Mean-centring traits prior to analysis therefore decreases attenuation bias in standardized quadratic selection gradients (Eqn. S3.12) but simultaneously leads to an overestimation of the placement of the parabolic peak (Eqn. S3.16).

Supplementary Text S4

Calculating bias in correlational selection gradients ignoring effects of trait repeatability

To derive the bias in correlational selection gradients, we print the mathematical relationship between the unstandardized correlational selection gradient ignoring effects of trait repeatability $\left(b_{12}^{*}\right)$, the true unstandardized correlational selection gradient $\left(b_{12}\right)$, and the repeatability $\left(R_{t_{1} t_{2}}\right)$ of the interaction between two traits, trait $1\left(t_{1}\right)$ and trait $2\left(t_{2}\right)$, i.e., we apply Eqn. 4 to an unstandardized correlational selection gradient:
$b_{12}^{*}=b_{12} R_{t_{1} t_{2}}$
Estimating standardized selection gradients requires expressing trait values in standard deviation units (Lande and Arnold 1983). As we demonstrated above, the standardized trait value (z) equals the raw trait value (t) divided by the square root of the variance in trait values $\left(\sqrt{V_{t}}\right)$, where $z=t / \sqrt{V_{t}}$. Z-transforming t_{1} and t_{2} leads to $z_{1} z_{2}=t_{1} t_{2} / \sqrt{V_{t_{1} t_{2}}}$. We showed above (Supplementary Text S2) that the bias in the standardized linear gradient is equal to the square root of the bias in unstandardized gradients. Applying the same logic to correlational selection gradients, we obtain:
$\gamma_{12}=\gamma_{12}^{*} / \sqrt{R_{t_{1} t_{2}}}$

As above, the repeatability of the multiplication of the traits is attributable to within- and among-individual variance components:
$R_{t_{1} t_{2}}=\frac{V_{i_{t_{1}} t_{2}}}{V_{i_{t_{1} t_{2}}}+V_{e_{t_{1} t_{2}}}}$
We noted in Supplementary Text S3, the variance in the multiplication of the two traits ($V_{t_{1} t_{2}}$) is equal to the variance of a product; this variance can be broken down into the following components (Eqn. S3.7):
$V_{t_{1} t_{2}}=\left(C_{t_{1} t_{2}}^{2}+2 \mu_{t_{1}} \mu_{t_{2}} \sqrt{V_{t_{1}} V_{t_{2}}}\right)+\left(\mu_{t_{1}}^{2}+V_{t_{1}}\right)\left(\mu_{t_{2}}^{2}+V_{t_{2}}\right)-\left(C_{t_{1} t_{2}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}$
The among-individual variance in the multiplication of the two traits $\left(V_{i_{1} t_{2}}\right)$ thus equals:
$V_{i_{t_{1} t_{2}}}=C_{i_{t_{1} t_{2}}}^{2}+4 \mu_{t_{1}} \mu_{t_{2}} \sqrt{V_{i_{t_{1}}} V_{i_{t_{2}}}}+\left(\mu_{t_{1}}^{2}+V_{i_{t_{1}}}\right)\left(\mu_{t_{2}}^{2}+V_{i_{t_{2}}}\right)-\left(C_{i_{t_{1} t_{2}}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}$
The total phenotypic variance in the multiplication of the two traits $\left(V_{p_{t_{1} t_{2}}}=V_{i_{t_{1} t_{2}}}+V_{e_{t_{1} t_{2}}}\right)$ instead equals:
$V_{p_{t_{1} t_{2}}}=C_{p_{t_{1} t_{2}}}^{2}+4 \mu_{t_{1}} \mu_{t_{2}} \sqrt{V_{p_{t_{1}}} V_{p_{t_{2}}}}+\left(\mu_{t_{1}}^{2}+V_{p_{t_{1}}}\right)\left(\mu_{t_{2}}^{2}+V_{p_{t_{2}}}\right)-\left(C_{p_{t_{1} t_{2}}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}$
where $C_{p_{t_{1} t_{2}}}=C_{i_{t_{1} t_{2}}}+C_{e_{t_{1} t_{2}}}, V_{p_{t_{1}}}=V_{i_{t_{1}}}+V_{e_{t_{1}}}, V_{p_{t_{2}}}=V_{i_{t_{2}}}+V_{e_{t_{2}}}$. We express the bias in correlational selection gradients $\left(\sqrt{R_{t_{1} t_{2}}} ; \mathrm{S} 4.2\right)$ in terms of variances in trait values rather than trait products by substituting, obtaining:
$\sqrt{R_{t_{1} t_{2}}}=\sqrt{\frac{c_{i_{1} t_{2}}^{2}+4 \mu_{t_{1}} \mu_{t_{2}} \sqrt{V_{i_{1}} V_{i_{2}}}+\left(\mu_{t_{1}}^{2}+V_{i_{1}}\right)\left(\mu_{t_{2}}^{2}+V_{i_{t_{2}}}\right)-\left(c_{i_{1} t_{2}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}}{c_{p_{t_{1} t_{2}}}^{2}+4 \mu_{t_{1}} \mu_{t_{2}} \sqrt{V_{p_{1}} V_{p_{t_{2}}}}+\left(\mu_{t_{1}}^{2}+V_{p_{t_{1}}}\right)\left(\mu_{t_{2}}+V_{p_{t_{2}}}\right)-\left(c_{p_{t_{1} t_{2}}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}}}$
This formula shows that bias is much more complex for correlational versus quadratic gradients because bias in the former additionally varies as a function of covariances between the traits within and among individuals. When traits are mean-centred prior to analysis (i.e., $\mu_{t_{1}}=\mu_{t_{2}}=$ 0, Eqn. S4.7 can simplifies into:
$\sqrt{R_{t_{1} t_{2}}}=\sqrt{\frac{V_{i_{t_{1}}} V_{i_{t_{2}}}+C_{i_{t_{1}} t_{2}}}{V_{p_{t_{1}}} V_{p_{t_{2}}}+C_{p_{t_{1} t_{2}}}^{2}}}$
Expressing covariances in correlations gives $r_{i_{1} t_{2}}=\frac{C_{i_{t_{1} t_{2}}}}{\sqrt{V_{i_{1}} V_{i_{2}}}}$. Hence, $C_{i_{t_{1} t_{2}}}^{2}=r_{i_{t_{1} t_{2}}}^{2} V_{i_{t_{1}}} V_{i_{t_{2}}}$. Similarly, $r_{p_{t_{1} t_{2}}}=\frac{c_{p_{t_{1} t_{2}}}}{\sqrt{V_{p_{t_{1}}} V_{p_{t_{2}}}}}$. Eqn. S4.8 can thus be rephrased into:
$\sqrt{R_{t_{1} t_{2}}}=\sqrt{\frac{V_{i_{1}} V_{i_{t_{2}}}+c_{i_{1} t_{2}}}{2}} \frac{V_{p_{t_{1}}} V_{p_{t_{2}}}+C_{p_{t_{1} t_{2}}}^{2}}{2}=\sqrt{\frac{V_{i_{t_{1}}} V_{i_{t_{2}}}+r_{i_{1} t_{2}}^{2} V_{i_{t_{1}}} V_{i_{t_{2}}}}{V_{p_{t_{1}}} V_{p_{t_{2}}}+r_{p_{t_{1} t_{2}}}^{2} V_{p_{t_{1}}} V_{p_{t_{2}}}}}=\sqrt{\frac{V_{i_{t_{1}}} V_{i_{t_{2}}}\left(r_{i_{t_{1}} t_{2}}^{2}+1\right)}{V_{p_{t_{1}}} V_{p_{t_{2}}}\left(r_{p_{t_{1} t_{2}}}^{2}+1\right)}}=$
$\sqrt{R_{t_{1}} R_{t_{2}}} \sqrt{\frac{r_{t_{t_{1} t_{2}}+1}^{2}+1}{r_{p_{t_{1} t_{2}}^{2}}^{2}+1}}$
This shows that $\sqrt{R_{t_{1} t_{2}}}$ equals the geometric mean repeatability of the two traits $\left(\sqrt{R_{t_{1}} R_{t_{2}}}\right)$ when the correlations between the two traits do not differ between the levels (i.e., $r_{i_{1} t_{2}}=$ $\left.r_{e_{t_{1} t_{2}}}=r_{p_{t_{1} t_{2}}}\right)$ and traits are mean-centred prior to analyses. Therefore, when $\left|r_{i_{1} t_{2}}\right|>\left|r_{e_{t_{1} t_{2}}}\right|$
it follows that $\sqrt{R_{t_{1} t_{2}}}>\sqrt{R_{t_{1}} R_{t_{2}}}$; by contrast, when $\left|r_{i_{t_{1} t_{2}}}\right|<\left|r_{e_{t_{1} t_{2}}}\right|$, it follows that $\sqrt{R_{t_{1} t_{2}}}<$ $\sqrt{R_{t_{1}} R_{t_{2}}}$.

One key question is whether the shape of the selection surface is also affected by failure to acknowledge biasing effects of within-individual variation. Surface shape is a function of the ratio of the product of the quadratic selection gradients of two focal traits over the square of their correlational selection gradient (i.e., $\frac{\gamma_{11} \gamma_{22}}{\gamma_{12}^{2}}$), which describes a saddle-shaped fitness surface when below one (assuming γ_{11} and γ_{22} are both negative) but a fitness peak when above one (Phillips and Arnold 1989). For mean-centred traits, the shape of the selection surface calculated while ignoring biasing effects of within-individual variance $\left(\frac{\gamma_{11}^{*} \gamma_{22}^{*}}{\gamma_{12}^{*}}\right)$ is mathematically related to true surface $\left(\frac{\gamma_{11} \gamma_{22}}{\gamma_{12}^{2}}\right)$ in the following way:
$\frac{\gamma_{11} \gamma_{22}}{\gamma_{12}^{2}}=\frac{\gamma_{11}^{*}}{\sqrt{R_{t_{1}^{2}}}} \frac{\gamma_{22}^{*}}{\sqrt{R_{t_{2}^{2}}}} \frac{R_{t_{1} t_{2}}}{\gamma_{12}^{*}{ }^{2}}=\frac{\gamma_{11}^{*} \gamma_{22}^{*}}{\gamma_{12}^{*}{ }^{2}} \frac{R_{t_{1} t_{2}}}{\sqrt{R_{t_{1}^{2} R_{2}^{2}}}}$
The shape of the selection surface is not affected when $\frac{R_{t_{1} t_{2}}}{\sqrt{R_{t_{1}^{2}} R_{2}^{2}}}=1$. For mean-centred traits, $\sqrt{R_{t^{2}}}=R_{t}($ Eqn. S3.12 $), \sqrt{R_{t_{1} t_{2}}}=\sqrt{R_{t_{1}} R_{t_{2}}} \sqrt{\frac{r_{i_{t_{1} t_{2}}+1}^{2}}{r_{p_{t_{1} t_{2}}}^{2}+1}}$ (Eqn. S4.9), therefore bias in the selection surface is described as:
$\frac{R_{t_{1} t_{2}}}{\sqrt{R_{t_{1}^{2}}^{2} t_{t_{2}}^{2}}}=\frac{R_{t_{1}} R_{t_{2}}\left(\frac{r_{i_{t_{1} t_{2}}}^{2}}{r_{p_{t_{1} t_{2}}+1}^{2}}\right)}{R_{t_{1}} R_{t_{2}}}=\frac{r_{i_{t_{1} t_{2}}}^{2}+1}{r_{p_{t_{1} t_{2}}^{2}}^{2}+1}$
This demonstrates that the bias in the fitness surface is not a function of (geometric mean) repeatability of the traits for mean-centred traits. Eqn. S 4.11 shows instead that the fitness surface is unbiased when the correlations between the two traits do not differ between the levels (i.e., $r_{i_{1} t_{2}}=r_{e_{t_{1} t_{2}}}=r_{p_{t_{1} t_{2}}}$). However, when correlations among individuals are tighter than those within individuals (i.e., $\left|r_{i_{1} t_{2}}\right|>\left|r_{e_{1} t_{2}}\right|$, failure to acknowledge within-individual variance can cause bias in the shape of the selection surface because it makes the fitness surface appear more saddle-shaped. Along the same lines, when correlations within individuals are tighter than those among individuals (i.e., $\left|r_{i_{t_{1} t_{2}}}\right|<\left|r_{e_{t_{1} t_{2}}}\right|$), failure to acknowledge withinindividual variance can cause bias in the shape of the selection surface because it makes the fitness surface appear more peaked. Such simple rules, notably, do not apply when correlational selection gradient analyses were based on traits that were not mean-centred prior to analyses because bias in the correlational selection gradient $\left(\sqrt{R_{t_{1} t_{2}}}\right)$ is then much more complex (Eqn. S4.7) thus also any effects on fitness surfaces.

Supplementary Text S5

Bias in selection gradients used on mean trait values
Researchers commonly calculate individual-mean trait values prior to conducting phenotypic selection analyses (Table 1). In what follows, we logically assume that researchers working with individual-mean trait values would apply trait standardization after rather than before calculating individual-mean trait values. We note that none of the papers using individualmeans in phenotypic selection analyses in our review (Text S1) clarified when standardization
was applied. However, this would be the only sensible decision when one views the variance in individual-mean trait values as the best proxy of the among-individual variance.

In previous sections, we derived the equations for bias in linear (Text S2), quadratic (Text S3), and correlational (Text S4) selection gradients resulting from failure to acknowledge residual within-individual variance. Based on few additional assumptions, we can readily modify these equations to be applied to analyses using individual-mean trait values. Specifically, following Snijders \& Bosker (1999), we assumed that the total phenotypic variance among individual-mean trait values $\left(V_{p_{\bar{t}}}\right)$ can be approximated as:

$$
\begin{equation*}
V_{p_{\bar{t}}}=V_{i_{t}}+\frac{V_{e_{t}}}{n} \tag{S5.1}
\end{equation*}
$$

where $V_{i_{t}}$ and $V_{e_{t}}$ represent the among-individual and residual within-individual variance in trait values, respectively, and n represents the number of replicate samples collected per individual (assuming equal replication among all individuals). We further assumed that the phenotypic covariance between mean traits $\left(C_{p_{\bar{t}_{1} \bar{t}_{2}}}\right)$ can then be approximated as (Snijders and Bosker 1999):
$\operatorname{Cov}_{p_{\bar{t}_{1} \bar{t}_{2}}}=\operatorname{Cov}_{i_{t_{1} t_{2}}}+\frac{\operatorname{Cov}_{e_{t_{1} t_{2}}}}{n}$
where $\operatorname{Cov}_{i_{t_{1} t_{2}}}$ and $\operatorname{Cov}_{e_{t_{1} t_{2}}}$ represent the among-individual and residual within-individual covariances between traits. The associated formula for the phenotypic correlation between individual-mean trait values ($r_{\bar{t}_{1} \bar{t}_{2}}$) is therefore (Dingemanse et al. 2012):
$r_{p_{\bar{t}_{1} t_{2}}}=\frac{\operatorname{Cov}_{i_{t_{1} t_{2}}}+\frac{\operatorname{Cov}_{e_{t_{1}} t_{2}}}{n}}{\sqrt{\left(V_{i_{t_{1}}}+\frac{V_{e_{t_{1}}}}{n}\right)\left(v_{i_{t_{2}}}+\frac{V_{e_{e_{2}}}}{n}\right)}}$
In brief, any equation printed in Texts S2-S4 can therefore be modified to derive bias for phenotypic selection analyses that used individual-mean trait values, which may be achieved by replacing (i) $V_{e_{t}}$ for $\frac{V_{e_{t}}}{n}$, (ii) $V_{p_{t}}$ for $V_{p_{\vec{t}}}$, (iii) R_{t} for $\frac{V_{i_{t}}}{V_{i_{t}}+\frac{v_{e_{t}}}{n}}$, (iv) $C_{e_{t_{1} t_{2}}}$ for $\frac{C_{e_{t_{1} t_{2}}}}{n}$ and (v) $r_{p_{t}}$ for $r_{p_{\bar{t}}}$. When applied to individual-mean trait values, main formulae for bias in standardized selection gradients owing to failure to acknowledge within-individual variation consequently become:
(i) For linear selection gradients: $\sqrt{\frac{V_{i_{t}}}{V_{i_{t}}+\frac{V_{e}}{n}}}$ instead of $\sqrt{R_{t}}$ (Eqn. S2.6).
(ii) For quadratic selection gradients (general formula): $\sqrt{\frac{V_{t_{t}}^{2}+2 V_{i_{t}} \mu_{t}^{2}}{V_{p_{\bar{t}}}^{2}+2 V_{p_{\bar{t}}} \mu_{t}^{2}}}$ instead of Eqn. S3.11.
(iii) For quadratic selection gradients (mean-centred traits): $\frac{V_{i_{t}}}{V_{i_{t}}+\frac{v_{t}}{n}}$ instead of Eqn. S3.12.
(iv) For correlational selection gradients (general formula): $\left.\left.\sqrt{\frac{2 c_{i_{t_{1}} t_{2}}^{2}}{2}+4 \mu_{t_{1}} \mu_{t_{2}} \sqrt{V_{i_{t_{1}}}^{2} V_{\bar{t}_{1} \bar{t}_{2}}}+4 \mu_{t_{1}} \mu_{t_{2}}}+\left(\mu_{t_{1}}^{2}+V_{i_{t_{1}}}\right)\left(\mu_{\bar{t}_{\bar{t}_{1}}}^{2}+V_{i_{t_{t_{2}}}}\right)-\left(c_{i_{t_{1} t_{2}}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}{ }_{t_{1}}^{2}+V_{p_{\bar{t}_{1}}}\right)\left(\mu_{t_{2}}^{2}+V_{p_{\bar{t}_{2}}}\right)-\left(c_{p_{\bar{t}_{1} \bar{t}_{2}}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}\right) ~ i n s t e a d ~ o f ~ E q n . ~ S 4.7 . ~$
(v) For correlational selection gradients (mean-centred traits): $\sqrt{\frac{v_{t_{t_{1}}} V_{i_{t_{2}}}}{V_{\bar{t}_{1}}} V_{p_{\bar{t}_{2}}}} \sqrt{\frac{r_{t_{t_{1}} t_{2}}^{2}+1}{r_{p_{\bar{t}_{1} \bar{t}_{2}}}^{2}+1}}$ instead of Eqn. S4.9.

Supplementary Text S6

Estimating quadratic selection gradients with multivariate mixed-effects models

To estimate quadratic selection using a multivariate mixed-effects model, we expand the bivariate model used to estimate linear selection (Eqn. 9, 10). This introduces a general solution applicable to further extensions. Quadratic selection gradients calculated using analyses ignoring within-individual variance $\left(\gamma_{11}^{*}\right)$ would normally be modelled by expanding Eqn. 1 into (Stinchcombe et al. 2008):
$\omega=\alpha+\beta_{1}^{*} z+\frac{1}{2} \gamma_{11}^{*} z^{2}+\varepsilon$
This model is applied when each individual's trait (e.g., tarsus) is measured only once, but would suffer the problem of attenuation. Unattenuated quadratic selection gradients $\left(\gamma_{11}\right)$ may be acquired by expanding the bivariate into a trivariate mixed-effects model; again, this requires repeated measures. We propose here to estimate quadratic selection gradients by fitting the squared term of the trait $\left(t_{h i}^{2}\right)$ as a third response. We note an apparent problem: our aim is estimating the effect of the square of individual-mean trait values $\left(\bar{t}_{i}^{2}\right)$ on fitness rather than the effect of individual-means of squared trait values $\left(\overline{t_{l}^{2}}\right.$; note the subtle difference in the coverage of the bar to distinguish the two values). The mixed-model would estimate effects of $\bar{t}{ }_{l}^{2}$ not \bar{t}_{i}^{2}; fitting the squared value of each observation $\left(t_{h i}^{2}\right)$ thus seems inappropriate. To assess if this is indeed a problem, we ran simulations with normally distributed data, for different levels of trait repeatability, and compared the two metrics. We found that mixed-model estimates of amongindividual variance in mean-of-squares accurately approximate simulated variances of the square of individual-specific values (see Section "Mean-of-squares vs. Square-of-means" below). The proposed trivariate model has the following phenotypic equation and random effects structure:

$$
\left[\begin{array}{c}
t_{h i} \\
t_{h i}^{2} \\
\mathrm{~W}_{i}
\end{array}\right]=\boldsymbol{\beta}_{\mathbf{0}}+\boldsymbol{I}_{\boldsymbol{i}}+\boldsymbol{e}_{\boldsymbol{h i}}
$$

$$
\left[\begin{array}{c}
I_{t} \\
I_{t^{2}} \\
I_{\mathrm{W}}
\end{array}\right] \sim M V N\left(0, \Omega_{I}\right):\left[\begin{array}{ccc}
V_{i_{t}} & C_{i_{t, t^{2}}} & C_{i_{t, \mathrm{~W}}} \\
C_{i_{t, t^{2}}} & V_{i_{t^{2}}} & C_{i_{t^{2}, \mathrm{~W}}} \\
C_{i_{t, \mathrm{~W}}} & C_{i_{t^{2}, \mathrm{~W}}} & V_{i_{\mathrm{W}}}
\end{array}\right]
$$

$$
\left[\begin{array}{c}
e_{t} \tag{S6.2}\\
e_{t^{2}} \\
e_{\mathrm{W}}
\end{array}\right] \sim M V N\left(0, \Omega_{e}\right):\left[\begin{array}{ccc}
V_{e_{t}} & C_{e_{t, t^{2}}} & C_{e_{t, \mathrm{~W}}} \\
C_{e_{t, t^{2}}} & V_{e_{t^{2}}} & C_{e_{t^{2}, \mathrm{~W}}} \\
C_{e_{t, \mathrm{~W}}} & C_{e_{t^{2}, \mathrm{~W}}} & V_{e_{\mathrm{W}}}
\end{array}\right]
$$

Importantly, the standardized quadratic selection gradient (γ_{11}) to be calculated represents a partial regression coefficient (Lande and Arnold 1983). The linear (b_{1}) and quadratic $\left(b_{11}\right)$ slopes of the regression of the unstandardized trait on absolute fitness are partial regression coefficients; their calculation requires information embedded in the among-individual variancecovariance matrix $\left(\Omega_{I}\right)$:
$b_{1}=\frac{C_{i_{t, \mathrm{~W}} V_{i^{2}}}-C_{i_{t}, \mathrm{~W}} C_{i_{t, t}}}{V_{i_{t}} V_{i_{t^{2}}}-\left[C_{i_{t, t^{2}}}\right]^{2}}$
$b_{11}=\frac{C_{i_{t^{2}, \mathrm{~W}}} V_{i_{t}}-C_{i_{t, \mathrm{~W}}} C_{i_{t, t^{2}}}}{V_{i_{t}} V_{i_{t^{2}}}-\left[C_{i_{t, t^{2}}}\right]^{2}}$

Mathematically, partial regression coefficients may directly be derived by inverting the among-individual covariance matrix (Ω_{A}). Briefly, matrix Ω_{I} (Eqn. S6.2) may be "split" into a matrix of predictors (Ω_{A}) and a matrix of covariances between predictors (traits) and response (fitness) $\left(\Omega_{B}\right)$, here taking the form of:

$$
\begin{align*}
& \Omega_{A}:\left[\begin{array}{cc}
V_{i_{t}} & C_{i_{t, t^{2}}} \\
C_{i_{t, t^{2}}} & V_{i_{t^{2}}}
\end{array}\right] \\
& \Omega_{B}:\left[\begin{array}{ll}
C_{i_{t, \mathrm{~W}}} & C_{i_{t^{2}, \mathrm{~W}}}
\end{array}\right] \tag{S6.4}
\end{align*}
$$

Partial regression coefficients (here, the unstandardized selection gradients) are then derived by multiplying $\boldsymbol{A}^{-1} \boldsymbol{B}$ (Bernstein 2005). In Supplementary Text S 8 and on Github (https://github.com/YimenAraya-Ajoy/SelectionBias), we provide R-code to estimate and invert Ω_{I} and calculate partial regression coefficients. The standardized quadratic selection gradient (γ_{11}) then represents the multiplication of the unstandardized quadratic selection gradient (b_{11}; Eqn. S6.3) with $\frac{\sqrt{V_{i_{t^{2}}}}}{\beta_{0_{\mathrm{W}}}}$:
$\gamma_{11}=2 b_{11} \frac{\sqrt{V_{i_{t^{2}}}}}{\beta_{0_{\mathrm{W}}}}$
A similar procedure can be applied to transform the unstandardized linear component in the quadratic selection model (b_{1}; Eqn. 6.3) into an interpretable standardized linear gradient $\left(\beta_{1}\right)$. Adding a quadratic term, importantly, changes the meaning of this parameter, now representing the slope of the tangent where the trait has the value zero. A biologically meaningful zero-point represents the population-mean trait value, estimated as $\beta_{0_{t}}$ in formulations like Eqn. S6.2 (illustrated in Fig. S3). Expressing β_{1} relative to the populationmean trait value is insightful, for example, when $\gamma_{11}<0$, the finding that $\beta_{1}=0$ implies stabilising selection with the optimal phenotype matching the population-mean trait value. $\beta_{1} \neq$ 0 instead implies the adaptive peak is shifted away from the population-mean (see Fig. S3b), indicative of directional selection. The unstandardized linear gradient at the population-mean is the value of b_{1} (as defined in Eqn. S6.3) plus $2 b_{11} \beta_{0_{t}}$. An insightful standardized value of β_{1} is thus calculated by multiplying this sum with, $\frac{\sqrt{V_{i_{t}}}}{\beta_{0_{\mathrm{W}}}}$ (as in Eqn. 11, Main Text):

$$
\begin{equation*}
\beta_{1}=\left(b_{1}+2 b_{11} \beta_{0_{t}}\right) \frac{\sqrt{V_{i_{t}}}}{\beta_{0_{W}}} \tag{S6.6}
\end{equation*}
$$

The above assumes the trait was not mean-centred prior to analysis (see Discussion); the correction $+2 b_{11} \beta_{0_{t}}$ would be unnecessary if it was.

Estimating correlational selection gradients with multivariate mixed-effects models

Expanding the model to estimate correlational selection gradients requires modifying Eqn. S6.2 to instead fit two traits $\left(t_{1}, t_{2}\right)$ and their product $\left(t_{1} t_{2}\right)$ as response variables. In many cases, researchers fit both the linear and quadratic of both traits in such models, in which case the multivariate mixed-model solution would fit six response variables. Unstandardized partial regression coefficients (here, $b_{1}, b_{2}, b_{11}, b_{22}$, and b_{12}) are again calculated by splitting Ω_{I} into Ω_{A} and Ω_{B}, and multiplying $\boldsymbol{A}^{-1} \boldsymbol{B}$. Standardized linear (β_{1}, β_{2}) and quadratic (γ_{11}, γ_{22}) components are calculated as above (Eqn. S6.5, S6.6), while the standardized correlational selection gradient is calculated as:
$\gamma_{12}=b_{12} \frac{\sqrt{V_{i_{t_{1} t_{2}}}}}{\beta_{0_{\mathrm{W}}}}$

Where $V_{i_{t_{1} t_{2}}}$ equals (Eqn. S4.5):

$$
\begin{equation*}
V_{i_{t_{1} t_{2}}}=2 C_{i_{t_{1} t_{2}}}^{2}+4 \beta_{0_{t_{1}}} \beta_{0_{t_{2}}} \sqrt{V_{i_{t_{1}}} V_{i_{t_{2}}}}+\left(\beta_{0_{t_{1}}}^{2}+V_{i_{t_{1}}}\right)\left(\beta_{0_{t_{2}}}^{2}+V_{i_{t_{2}}}\right)-\left(C_{i_{t_{1} t_{2}}}+\beta_{0_{t_{1}}} \beta_{0_{t_{2}}}\right)^{2} \tag{S6.8}
\end{equation*}
$$

For mathematical derivation see Text S4. A simulated example is described in Supplementary Texts S7; we provide R-code in Supplementary Text S8 and (future updates) on Github (https://github.com/YimenAraya-Ajoy/SelectionBias).

Mean-of-squares vs. Square-of-means

Above, we propose to estimate quadratic selection gradients by fitting the squared term of the focal trait $\left(t_{h i}^{2}\right)$ as a response variable. Doing so assumes that the variance among-individuals in means of their squared trait values $\left(\overline{t_{l}^{2}}\right)$ approximates the true among-individual variance in the square of individual-specific trait values (\bar{t}_{i}^{2}) of actual interest. Statistical simulations validated this assumption by demonstrating that the proposed multivariate mixed-effect model formulation produced unbiased estimates of the among-individual variance in squared values of individual-specific trait values.

We used the following simulation approach. We started by drawing individual-specific trait values $\left(t_{i}\right)$ from a normal distribution with a mean (\bar{t}) equal to zero and $V_{i_{\mathrm{t}}}=3$. We then simulated 3 phenotypic observations for each of 800 individuals by adding an observationspecific error (drawn from a normal distribution with zero-mean and variance $V_{e_{\mathrm{t}}}$). Next, we estimated the among-individual variance in the squared values in three different ways. (1) We squared the values of each observation, then calculated a mean value for each individual using all its squared values $\left(\overline{t_{l}^{2}}\right)$, and finally, calculated the among-individual variance in this metric (among-individual variance in "mean-of-squared values"; Fig. S6). (2) We calculated the mean trait value over all observations per individual, squared this value $\left(\bar{t}_{i}^{2}\right)$, and then calculated the among-individual variance in this metric (among-individual variance in "square-of-mean value"; Fig. S6). (3) We squared the values of each observation and fitted this variable $\left(t_{h i}^{2}\right)$ as a response variable into a mixed-effects model with individual fitted as a random effects, and estimated the among-individual variance of this metric ("mixed-model estimate"; Fig. S7). We applied these simulations for two values of repeatability by setting $V_{e_{\mathrm{t}}}=\frac{\left(V_{i_{\mathrm{t}}}-R_{t}\right)}{R_{t}}$ using procedures detailed in Supplementary Texts S7 and S8. We repeated this procedure 100 times for both types of repeatability ($R_{t}=0.3$ and $R_{t}=0.7$).

Fig. S6. The among-individual variance in squared values of a focal trait estimated in three different ways. The dashed line represents the true (simulated) among-individual variance in the square of individual-specific values.

Results show that the among-individual variance calculated using the mean of squares (white bars), as well as the among-individual variance calculated using the square of means (light-grey bars), overestimated the true among-individual variance in squared values of simulated individual-specific trait values (dotted line) for both levels of repeatability (Fig. S6). By contrast, the proposed mixed-effects model solution produced unbiased estimates of the true among-individual variance in trait values.

Supplementary Text S7

Linear selection analysis
We used simulations to assess, first, whether classic approaches produced attenuated estimates of linear selection gradients, and second, whether the proposed solutions (the application of corrections (Table 1), multivariate mixed-models, or errors-in-variables models would address this problem (for Results, see Table S7). We first studied a scenario where the absolute fitness (W) of individual i was a function $\left(b_{1}\right)$ of its true mean-centred trait value $\left(t_{i}\right)$ (in its natural scale; e.g., cm) plus an individual-specific stochastic environmental effect $\left(e_{i}\right)$ with a variance of $1\left(V_{e_{\mathrm{W}}}=1\right)$.
$\mathrm{W}_{i}=b_{1} t_{i}+e_{i}$
The individual-specific values $\left(t_{i}\right)$ were drawn from a normal distribution with a mean (\bar{t}) equal to zero and among-individual variance $\left(V_{i_{\mathrm{t}}}\right)$ defined below. We then simulated 3 phenotypic observations for each of 800 individuals by adding an observation-specific error drawn from a normal distribution with zero-mean and residual variance $\left(V_{e_{\mathrm{t}}}=\frac{V_{i_{\mathrm{t}}}}{R_{t}}-V_{i_{\mathrm{t}}}\right)$ three separate times to each t_{i} to produce the three measurements. As in the Main Text, the expected standardized selection gradient β_{1} equalled $b_{1} \frac{\sqrt{V_{i_{t}}}}{\overline{\mathrm{~W}}}$, where $V_{i_{\mathrm{t}}}=3, b_{1}=0.346$, and $\overline{\mathrm{W}}=2$. Thus, $\beta_{1}=0.3$. We ran simulations with $\left(R_{t}\right)$ equal to 0.3 and 0.7 by varying $V_{e_{\mathrm{t}}}=\frac{V_{i_{\mathrm{t}}}}{R_{t}}-V_{i_{\mathrm{t}}}$. We used $\mathrm{n}=100$ replicate studies per level of repeatability. Following the generation of each full dataset (with n $=2400$ data points per simulation), we generated two sub-sets of data. The first subset contained one randomly drawn trait value (of the three produced) per individual. The second subset contained one mean value per individual calculated using all three observations. Fitness was transformed into relative fitness and the trait transformed into standard deviation units for the two sub-sets, where the standardization was applied after calculating trait means for the second subset (for rational, see Text S5); no transformations were applied to the full dataset. Subsequently, we ran four analyses. First, we estimated the standardized linear selection gradient using a linear regression, fitting the standardized trait as a predictor of relative fitness, on the sub-set containing one random observation per individual. Second, we applied the latter approach using the mean value per individual. Third, we ran a bivariate mixed-model with random intercepts for individual identity on the full dataset, fitting the mean-centred trait and absolute fitness as the two response variables, and estimated the standardized linear selection gradient using Eqn. 11 (Main Text). We fitted the multivariate mixed-effects models in a Bayesian framework using MCMCglmm (Hadfield 2010) in the R environment (R -Core-Team 2020). Finally, using RStan, we ran an errors-in-variables models. For all approaches, we calculated estimation bias as the difference between the observed standardized selection gradient minus the simulated standardized selection gradient divided by the simulated standardized selection gradient. We provide R-code in Supplementary Text S8 and (future updates) on Github (https://github.com/YimenAraya-Ajoy/SelectionBias).

Estimates of standardized linear selection gradients based on the first subset, containing one randomly drawn trait value of the three produced per individual, were expected to be attenuated by $\sqrt{R_{t}}=\sqrt{\frac{V_{i_{t}}}{V_{i_{t}}+V_{e_{t}}}}$ (Eqn. S2.6). Estimates of standardized linear selection gradients based on the second subset, containing one mean value per individual calculated using all three observations, were instead expected to be attenuated by $\sqrt{\frac{V_{i_{t}}}{V_{i_{t}}+\frac{V_{e}}{}+}}$ (see Text S5), where n represents the number of observations per individual equal to three. As a follow-up analysis, we fitted a univariate mixed-effects model with random intercepts for individual identity to estimate $V_{i_{t}}$ and $V_{e_{t}}$ from the full dataset. We then corrected the standardized linear selection gradient estimated for the first subset by dividing it by $\sqrt{R_{t}}$; the estimate for the second subset was instead divided by $\sqrt{\frac{V_{i_{t}}}{V_{i_{t}}+\frac{V_{e_{t}}}{n}}}$. This procedure enabled us to assess whether corrections applied to published data based on knowledge of trait repeatability could produce unbiased estimates.

Quadratic selection analysis

We expanded our simulation to study how each approach (detailed above) performed when applied to estimate standardized quadratic selection gradients. We did so by expanding Eqn. S8.1 to include the effect of the quadratic component of the focal trait on absolute fitness $\left(b_{2}\right)$:
$\mathrm{W}_{i}=b_{1} t_{i}+b_{2} t_{i}^{2}+e_{i}$
The expected value of β_{1} equalled $b_{1} \frac{\sqrt{V_{i_{t}}}}{\overline{\mathrm{~W}}}$. We set $V_{i_{\mathrm{t}}}=3, b_{1}=2.19$, and $\overline{\mathrm{W}}=2$. Thus, $\beta_{1}=$ 1.90. As in Eqn. S6.5, the expected value of γ_{11} equalled $2 b_{11} \frac{\sqrt{V_{i_{t^{2}}}}}{\overline{\mathrm{~W}}}$. As $V_{i_{t^{2}}}=2 V_{i_{t}}^{2}+4 V_{i_{t}} \mu_{t}^{2}$ (Eqn. S3.10), γ_{11} thus equalled $2 b_{11} \frac{\sqrt{2 V_{i_{t}}^{2}+4 V_{i_{t}} \mu_{t}^{2}}}{\overline{\mathrm{~W}}}$. We set $b_{2}=-0.14$ and $\mu_{t}=0$, thus $\beta_{2}=-0.3$. As detailed above, we ran simulations with $\left(R_{t}\right)$ equal to 0.3 and 0.7 by varying $V_{e_{\mathrm{t}}}=\frac{V_{i_{\mathrm{t}}}}{R_{t}}-V_{i_{\mathrm{t}}}$. We provide R-code in Supplementary Text S 8 and (future updates) on Github (https://github.com/YimenAraya-Ajoy/SelectionBias).

Estimates of standardized quadratic selection gradients based on the first subset, containing one randomly drawn trait value of the three produced per individual, were expected to be attenuated by $\sqrt{R_{t^{2}}}=R_{t}$ (Eqn. S3.12) because we pragmatically mean-centred the trait prior to analysis. Estimates of standardized quadratic selection gradients based on the second subset, containing one mean value per individual calculated using all three observations, were instead expected to be attenuated by $\frac{V_{i_{t}}}{V_{i_{t}}+\frac{V_{e}}{}}$ (instead of R_{t}; see above). As a follow-up analysis, we fitted a univariate mixed-effects model that had as a response variable t and random intercepts for individual identity. We then corrected the standardized quadratic selection gradient estimated for the first subset by dividing it by $R_{t}=\frac{V_{i_{t}}}{V_{i_{t}}+V_{e_{t}}}$; the estimate for the second
subset was instead divided by $\frac{V_{i_{t}}}{V_{i_{t}}+\frac{e_{e_{t}}}{n}}$. This procedure enabled us to assess whether corrections applied to published data based on knowledge of among- and within-individual variances and trait means could produce unbiased estimates.

Correlational selection analysis

Finally, we expanded our simulation to study how each approach (detailed above) performed when applied to estimate standardized correlational selection gradients. We did so by expanding Eqn. S 8.2 to include the linear and quadratic effects of two focal traits $\left(t_{1}, t_{2}\right)$, as well as their interaction, on absolute fitness:
$\mathrm{W}_{i}=b_{1} t_{1_{i}}+b_{11} t_{1_{i}}^{2}+b_{2} t_{2_{i}}+b_{22} t_{2_{i}}^{2}+b_{12} t_{1_{i}} t_{2_{i}}+e_{i}$
For each trait $\left(t_{1}, t_{2}\right)$, expected values for standardized linear $\left(\beta_{1}, \beta_{2}\right)$ and quadratic (β_{11}, β_{22}) selection gradients were set as detailed for the linear and quadratic selection examples above.
The expected value of the correlational selection gradient $\left(\gamma_{12}\right)$ equalled $b_{12} \frac{\sqrt{V_{i_{1} t_{2}}}}{\overline{\mathrm{~W}}}$ (Eqn. 18), where $V_{i_{t_{1} t_{2}}}=C_{i_{t_{1} t_{2}}}^{2}+2 \mu_{t_{1}} \mu_{t_{2}} \sqrt{V_{i_{t_{1}}} V_{i_{t_{2}}}}+\left(\mu_{t_{1}}^{2}+V_{i_{t_{1}}}\right)\left(\mu_{t_{2}}^{2}+V_{i_{t_{2}}}\right)-\left(C_{i_{t_{1} t_{2}}}+\mu_{t_{1}} \mu_{t_{2}}\right)^{2}$ (Eqn. S4.5). We provide R-code in Supplementary Text S 8 and (future updates) on Github (https://github.com/YimenAraya-Ajoy/SelectionBias).

Estimates of standardized correlational selection gradients based on the first subset (one randomly drawn trait value of the three produced per individual) were expected to be attenuated by $\sqrt{R_{t_{1} t_{2}}}$ (Eqn. S4.7). Estimates of standardized correlational selection gradients based on the second subset (containing one mean value per individual calculated using all three observations) were instead expected to be attenuated by $\sqrt{\frac{V_{i_{1}} V_{i_{t_{2}}}}{V_{p_{\overline{\bar{T}_{1}}} p_{\bar{t}_{2}}}} \sqrt{\frac{r_{i_{t_{1} t_{2}}}^{2}+1}{r_{\bar{t}_{\bar{t}_{1}} \bar{t}_{2}}^{2}}+1} \text { (Text S5). Our simulations }{ }^{2}}$ assumed a zero correlation between the traits such that the latter attenuation equated $\sqrt{\frac{v_{t_{t_{1}}} V_{i_{t_{2}}}}{V_{p_{\bar{t}_{1}}} V_{p_{\bar{t}_{2}}}}}$ while $\sqrt{R_{t_{1} t_{2}}}=\sqrt{R_{t_{1}} R_{t_{2}}}$ (S4.9). As a follow-up analysis, we therefore two univariate mixedeffects model, with the traits were fitted as response variables, with random intercepts for individual identity on the full simulated dataset. We then corrected the standardized correlational selection gradient estimated for the first subset by dividing it by $\sqrt{R_{t_{1}} R_{t_{2}}}$; the estimate for the second subset was instead divided by $\sqrt{\frac{v_{t_{t_{1}}} V_{i_{t_{2}}}}{V_{\bar{t}_{1}} V_{\bar{t}_{t_{2}}}}}$. This procedure enabled us to assess whether corrections applied to published data based on knowledge of trait means and among- and within-individual correlations between traits could produce unbiased estimates.

Table S7. Estimates of accuracy and precision in linear (β_{1}), quadratic (γ_{11}), and correlational $\left(\gamma_{12}\right)$ selection gradients derived from regression models fitting one observed trait value or a mean of three observed trait values, multivariate mixed-effects models, and errors-in-variables models. We also show accuracy and precision after applying corrections to regressions. We calculated bias (i.e., inaccuracy) as the difference between estimated minus true standardized gradients, divided by the true gradient. This produced a mean percentage (upward/downward) bias. The coefficient of variation (CV) among 100 datasets simulated for a given scenario was used to measure imprecision. Estimates are provided for two levels of trait repeatability (R).

Model	R	\%Bias β_{1}	CV β_{1}	\%Bias γ_{11}	CV γ_{11}	\%Bias	CV
		0.3	-45.04	0.07	-70.21	-0.64	-74.63
γ_{12}							
1 obs	0.7	-16.02	0.05	-33.13	-0.25	-31.05	0.23
1 obs	0.3	-24.93	0.05	-42.58	-0.30	-49.35	0.36
Mean of 3 obs	0.7	-5.97	0.04	-15.03	-0.14	-14.87	0.15
Mean of 3 obs	0.3	0.85	0.06	1.32	-0.65	-1.92	0.86
1 obs corrected	0.7	0.45	0.04	-3.93	-0.24	1.16	0.24
1 obs corrected	0.3	0.46	0.04	2.78	-0.31	-4.88	0.36
Mean of 3 corrected	0.7	0.56	0.04	-2.98	-0.14	-1.82	0.16
Mean of 3 corrected	0.3	2.22	0.06	-1.10	-0.77	-7.02	1.61
Multivariate mixed model	0.6						
Multivariate mixed model	0.7	0.66	0.04	-2.75	-0.20	-2.61	0.21
Errors-in-variables model	0.3	0.30	0.05	0.87	-0.13	-0.07	0.27
Errors-in-variables model	0.7	0.42	0.04	-0.25	-0.10	-1.58	0.15

References

Bernstein, D. S. 2005. Matrix Mathematics: Theory, Facts, and Formulas - 2nd Edition. Princeton University Press.
Bronshtein, I. N., K. A. Semendyayev, G. Musiol, and H. Mühlig. 2015. Handbook of Mathematics. Springer-Verlag, Berlin Heidelberg.
Cacoullos, T. 1989. Excercises in Probability. Springer Verlag, New York.
Dingemanse, N. J., N. A. Dochtermann, and S. Nakagawa. 2012. Defining behavioural syndromes and the role of "syndrome deviation" to study its evolution. Behavioral Ecology and Sociobiology 66:1543-1548.
Lande, R. and S. J. Arnold. 1983. The measurement of selection on correlated characters. Evolution 37:1210-1226.
Mood, A. M., F. A. Graybill, and D. C. Boes. 1973. Introduction to the Theory of Statistics 3rd Edition. McGraw Hill.
Phillips, P. C. and S. J. Arnold. 1989. Visualizing multivariate selection. Evolution 43:12091222.

R-Core-Team. 2020. A language and environment for statistical computing. . R Foundation for Statistical Computing, Vienna, Austria.
Snijders, T. A. B. and R. J. Bosker. 1999. Multilevel analysis - an introduction to basic and advanced multilevel modelling. Sage, London.
Stinchcombe, J. R., A. F. Agrawal, P. A. Hohenlohe, S. J. Arnold, and M. W. Blows. 2008. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing ? Evolution 62:2435-2440.

