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Abstract

Relatively little is known about how the human brain identifies movement of objects while the 

observer is also moving in the environment. This is, ecologically, one of the most fundamental 

motion processing problems, critical for survival. To study this problem, we used a task which 

involved nine textured spheres moving in depth, eight simulating the observer’s forward motion 

while the ninth, the target, moved independently with a different speed towards or away from the 

observer. Capitalizing on the high temporal resolution of magnetoencephalography (MEG) we 

trained a Support Vector Classifier (SVC) using the sensor-level data to identify correct and 

incorrect responses. Using the same MEG data, we addressed the dynamics of cortical processes 

involved in the detection of the independently moving object and investigated whether we could 

obtain confirmatory evidence for the brain activity patterns used by the classifier. Our findings 

indicate that response correctness could be reliably predicted by the SVC, with the highest 

accuracy during the blank period after motion and preceding the response. The spatial distribution 

of the areas critical for the correct prediction was similar but not exclusive to areas underlying the 
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evoked activity. Importantly, SVC identified frontal areas otherwise not detected with evoked 

activity that seem to be important for the successful performance in the task. Dynamic 

connectivity further supported the involvement of frontal and occipital-temporal areas during the 

task periods. This is the first study to dynamically map cortical areas using a fully data-driven 

approach in order to investigate the neural mechanisms involved in the detection of moving objects 

during observer’s self-motion.
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1. Introduction

Rapid and accurate visual detection of moving objects is critical for safe and successful 

interaction with the environment. When the observer is stationary this is straightforward, 

because only the movement of objects is encoded in the motion on the retina. However, 

when the observer is also moving, motion is added to the already existing retinal motion and 

therefore the detection of moving objects in the scene becomes more difficult. Determining 

how the brain can solve this problem, rapidly and accurately, is of tall importance for 

understanding how we can safely interact with our environment and successfully accomplish 

a large number of everyday activities. Those include walking through a dynamic scene, 

crossing the street in traffic, driving among other moving vehicles such as cars or bicycles, 

skiing or when playing many other sports and when we want to intercept or avoid objects 

moving towards us while we are also moving. In these situations, a straightforward way to 

detect the motion specific to the object movement is to subtract the pattern of retinal motion 

due to the observer’s self-motion from the complex retinal motion. For example, the 

observer’s forward motion produces a radial, global pattern of retinal motion referred to as 

optic flow (Gibson, 1950, 1954; Warren and Hannon, 1988).

Visual flow resulting from self-motion can be estimated by using both visual, retinal, and 

non-visual, extra-retinal cues. Several studies of human psychophysics and of physiology in 

nonhuman primates (Gogel, 1990; von Holst and Mittelstaedt, 1950; Wallach et al., 1974), 

including recent studies by Wexler’s (e.g. Wexler et al., 2001) and DeAngelis and 

Angelaki’s groups (e.g. MacNeilage et al., 2012) have explored how non-visual, extra-retinal 

cues about self-movement such as efference copies of motor command, vestibular, or 

proprioception can be distinguished from the retinal motion which resulted from objects 

moving in the environment. While these studies demonstrate that the extraretinal 

information provides helpful cues to an observer in self-motion to detect moving objects, 

there is also evidence that this information is not precise enough for the accurate estimation 

of scene-relative movement of objects (e.g. Tcheang et al., 2005; Wallach et al., 1974; 

Wexler et al., 2003). Furthermore, the non-visual cues are not always available during self-

motion, such as for a passenger in a car that moves at constant speed, or are unreliable, such 

as the motion experienced by an airline pilot (Gibb et al., 2010). A solution to these types of 

problems was proposed by Rushton and collaborators (Rushton et al., 2007; Rushton and 

Warren, 2005) who set out to investigate whether visual only, retinal information, 
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specifically optic flow, can dissociate retinal information resulting from object motion from 

retinal information due to observer’s self-motion. They proposed the Flow Parsing (FP) 

hypothesis, which suggests that the radial optic flow field provides a reliable visual-only cue 

to an observer in forward self-motion which can compensate for the associated retinal 

motion. After parsing out the optic flow from the retinal image, what is left is the motion of 

the objects so that they can be detected by an observer in self-motion (Rushton et al., 2007; 

Rushton and Warren, 2005; Warren and Rushton, 2009a, 2009b, 2007).

Although psychophysical aspects of flow parsing were extensively studied, the 

neurophysiological underpinnings of flow parsing have not yet been fully elucidated. fMRI 

studies (e.g. Arnoldussen et al., 2013; Cardin et al., 2012; Galletti and Fattori, 2003; Pitzalis 

et al., 2019, 2015, 2013, 2010) suggested the importance of several cortical areas (e.g. V3A, 

lateral occipital region (LOR), human motion complex (hMT+), V7, intraparietal sulcus 

(IPS)) for the extraction of object motion from the observer’s self-motion information. In an 

fMRI study Calabro and Vaina (2012) computed partial correlations to investigate the 

cortical networks that interact in solving this type of tasks. They performed cluster analysis 

which revealed four distinct cortical networks: the first, consisted of the bilateral early visual 

cortex (EVC, involving V1 and V2), the second network involved the LOR, V3A, V7, 

kinetic-occipital region (KO/V3B) and hMT+, the third network contained areas responding 

to visual motion in the parietal lobes (intraparietal sulcus (IPS), ventral intraparietal area 

(VIP) and dorsal intraparietal sulcus medial (DIPSM)) and the right hemisphere precuneus, 

while the fourth included several higher level areas around the central sulcus (CS), namely, 

precentral sulcus (preCS), postcentral sulcus (postCS), subcentral sulcus, ventral CS and 

frontal eye field (FEF). These cortical areas were suggested to represent the neural substrate 

supporting the use of scene context in detection of a moving object.

Although these fMRI studies make an important contribution towards pinpointing the 

anatomical and physiological substrate of the detection of moving objects by an observer in 

forward self-motion, because they measure hemodynamic changes in activated brain regions, 

they cannot capture the temporal neural dynamics of the computations involved. Therefore, 

here we used magnetoencephalography (MEG) capitalizing on its high temporal resolution 

to investigate the neural substrates and their dynamics, necessary for detecting a moving 

object while parcelling out the observer’s self-motion. We used the same task as in (Calabro 

and Vaina, 2012, 2011), which involved nine moving textured spheres distributed at different 

depth levels in the 3D space in front of the observer, eight simulating the observer’s forward 

motion while the ninth, the target, had an additional independent motion component moving 

with a different speed towards or away from the observer. Unlike most studies of decision-

making processes which investigate the principled combination of speed and accuracy, our 

experimental paradigm is a Fixed Stimulus Duration (FSD) task where the presentation of 

the stimulus motion is followed by a delay/working memory period before observers can 

enter their response. No feedback was provided on the correctness of observer’ decision.

Here we use a fully data-driven machine-learning method to predict the response correctness 

at each time point during a trial. We contrasted the activity patterns revealed by the machine-

learning approach with the evoked brain activity elicited by subjects performing the task. 

Using the salient evoked activity, a set of regions of interest (ROI) was selected and dynamic 
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connectivity was computed to address the question of what is the neural dynamics 

underlying the detection of an independently moving object when the observer is moving 

forward. We are using a multistage approach to address the time-varying cortical processing 

of this task.

2. Methods

2.1 Participants

MEG data were collected from 9 healthy volunteers. Due to poor data quality or low 

performance accuracy, 3 participants were excluded from the analysis. The final sample 

consisted of 6 participants (2 females, mean age 21.5±1.96 years, age range 19–26 years). 

All participants were right-handed as confirmed by the Edinburgh Inventory of handedness 

(Oldfield, 1971), had normal or corrected to normal vision, and had no history of 

neurological or psychiatric disorders. Stimuli were viewed binocularly. Written informed 

consent was obtained from each individual prior to the experiment. The study received the 

approval from the Boston University and the Massachusetts General Hospital Institutional 

Review Boards and conformed to the principles of the Declaration of Helsinki.

2.2 Experimental design

The psychophysical specifics of the stimulus and the experimental paradigm used in 

functional imaging are described in detail in (Calabro and Vaina, 2012, 2011). The temporal 

succession of the stimuli was as follows (Fig. 1A). First, in the fade-in phase, 9 textured 

spheres gradually appeared on the screen over a 2 seconds time period. Once the spheres 

reached the maximum contrast (at 2000ms) they remained static for 1000ms (the static 

phase), after which the motion phase started and continued for 1000ms. During the motion 

phase, 8 of the spheres moved to simulate forward motion of the observer (at 3cm/sec) while 

the ninth sphere, the target, had an independent motion forward or backward and different 

speeds (2,4,6,8 cm/sec) added to the speed of the observer. Note, all visual properties of the 

target sphere were similar to other non-target spheres. At the end of the motion, the screen 

was cleared for 250ms before all 9 spheres were displayed static at their final locations but 

projected into a single depth plane so that all of them had a constant size. Four of them, the 

target and three other randomly selected spheres were shown as gray disks labeled with 

numerals from 1 to 4. The participant had to respond with a button press which of the 

labeled spheres was the target (four alternatives-forced choice task, 4AFCT). The response 

period lasted for 1450ms. The intertrial interval was 300ms. At all times, a red dot fixation 

mark was present at the center of the display and participants were instructed to fixate their 

gaze on it throughout the length of the trial. In total, 160 trials were presented to each 

participant.

Prior to the MEG study subjects underwent half an hour of training with the same 

psychophysical task that was used in the MEG study to achieve above chance level 

performance (> 25% correct).
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2.3 MEG data acquisition

The MEG data were acquired at the Athinoula A. Martinos Center for Biomedical Imaging, 

Massachusetts General Hospital, with a 306-channel Neuromag Vectorview whole-head 

system (Elekta Neuromag, Finland) comprising 102 triplets of two orthogonally oriented 

planar gradiometers and one magnetometer. The MEG data were recorded in a magnetically 

shielded room (Cohen et al., 2002) with the lights dimmed. The participants were seated 

with the screen centered at a distance of 80 cm. The stimuli were projected with an LP350 

DLP projector (InFocus, Wilsonville, OR) at a resolution of 1024×768 pixels with a refresh 

rate of 75 Hz. The HPI (Head-Position Indicator) coil locations and the participant’s head 

shape were digitized using a Fastrak digitizer (Polhemus Inc., Colchester, VT) integrated 

with the VectorView system. At the beginning of each run the position and orientation of the 

head with respect to the sensor array was determined by localizing the HPI coils on the basis 

of the magnetic fields they generate (Uutela et al., 2001). At least 80 points were sampled on 

the scalp to align the coordinate systems employed in MEG and the anatomical MRI in 

postprocessing. The vertical and horizontal electrooculogram (EOG) signals were also 

acquired to monitor eye-movements and blinks. The data were bandpass filtered between 0.5 

and 200 Hz prior to sampling at 600 Hz.

2.4 MRI data acquisition

T1-weighted MPRAGE (Magnetization Prepared Rapid Gradient Echo) structural images 

were acquired on a 3T scanner (Siemens-Trio, Erlagen, Germany) using an 8-channel phase 

array head coil (distance factor: 50%; slices per slab: 128; FOV: 256; FOV phase: 100; slice 

thickness: 1.33 mm, TR: 2530ms, TE: 3.39 ms).

2.5 MEG data preprocessing

For analysis, the data were bandpass filtered between 1 and 100 Hz offline; a 60 Hz notch 

filter was applied to suppress line-frequency noise. The MEG recordings were divided into 

epochs from the onset of the motion period until the end of the response period. Thus, the 

time point t = 0ms equals the motion onset time, t = 1000 − 1250ms the blank screen period, 

and t = 1250 − 2700ms the response period.

Bad channels and trials with peak-to-peak amplitudes exceeding 2 pT/cm for the 

gradiometers or 6 pT for the magnetometers, or 150 µV in EOG were excluded from the 

analysis. In total, the number of rejected trials was under 15%, leaving between 137 to 160 

trials per subject. The signal-space projection (SSP) method (Uusitalo and Ilmoniemi, 1997) 

was employed to remove heartbeat and eye-movement related artifacts from the data. To this 

end, SSP operators were computed using a principal component analysis of the data 

containing ocular and cardiac artifacts.

2.6 MEG data analysis

2.6.1 Multivariate pattern analysis (MVPA)—Methods based on Multivariate Pattern 

Analysis (MVPA) have been successfully used to decode neural activity (Cichy et al., 2015; 

Haxby et al., 2001; King and Dehaene, 2014; Mohsenzadeh et al., 2019). We used MVPA to 
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decode the MEG signal patterns corresponding to representations necessary for detecting 

and selecting the object moving independently from the observer’s self-motion.

Specifically, at each time point, we trained a linear Support Vector Classifier (SVC) using 

the MEG signals (Fig1B) (Cortes and Vapnik, 1995). An SVC can be described as a 

hyperplane that separates the condition classes as best as possible. SVCs learn a linear 

binary decision rule, ℎ x = sign wTx + b , where the weight vector w and threshold b 

together define a hyperplane L:wTx + b = 0. The function ℎ(x) thus indicates the location of 

a given point x with respect to L and divides the data into two classes.

The SVC algorithm was trained using the M = 204 dimensional planar gradiometer data 

X = x1, …, xN ∈ ℝM × N where N is the number of trials. We used the Python package 

scikit-learn (Pedregosa et al., 2011) with a linear kernel and cost equal to one (C = 1) to find 

the hyperplane (w and b) that best separates the correct and incorrect trials as illustrated in 

Fig 1B. The weight vector was first transformed into a pattern in the data space to identify 

which brain regions it corresponds to (Gramfort et al., 2014; Haufe et al., 2014). This pattern 

was then mapped to the cortical surface using the linear inverse operator presented in 

Section 2.6.2 to yield the cortical patterns shown in Figure 2B.

To train and test the SVC, a five-folded cross validation was used. The average prediction 

accuracy was computed across participants for each time point to characterize the 

classification performance from motion onset to the end of the trial. To assess the accuracy 

of the classifier relative to chance level, the chance level was established as the highest 

proportion of correct responses across participants (75 %).

2.6.2 Source estimation—The sources of MEG signals were estimated in an individual 

cortical surface mesh with 10,242 candidate source locations in each hemisphere, resulting 

in an approximate spacing of 3 mm between source points. The forward solution was 

calculated using a single compartment boundary-element model (Hämäläinen and Sarvas, 

1989). The cortical surfaces for source placement and the inner skull surface for forward 

modeling were obtained with Freesurfer (Fischl et al., 1999). The Dynamic statistical 

parametric mapping (dSPM) approach was employed for source estimation (Dale et al., 

2000). The source orientations were fixed to be normal to the cortical surface. The noise-

covariance matrix was estimated from the t = −500 – 0ms interval prior to the beginning of 

stimulus motion. The linear dSPM inverse operator was used to map the averaged evoked 

activity as a function of time to the cortical mantle. The same procedure was employed to 

visualize the pattern of cortical activity corresponding to the weights of the SVC. The 

source-level data was morphed into a common space to average across subjects (Dale et al., 

1999; Fischl et al., 1999).

The evoked source activity was averaged over time to investigate the brain activity patterns 

elicited by the task of detecting a moving sphere (the target) by an observer in simulated 

forward motion. First, the absolute values of the dSPM maps were averaged across the 

motion period (0–1000ms), blank period (1000–1250ms) and response period (1250–

2700ms). Second, to compare the SVC results with the evoked activity, we averaged the 

source activity within 50ms windows centered at 600ms and 1000ms, all of which were 
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within the motion period. The dSPM source current estimates represent a z-ratio normalized 

by the noise covariance, and we used a threshold of 95% of overall brain activity within the 

selected period to display the areas with the highest activity.

Since several brain areas with high SVC pattern values were not present in the evoked 

thresholded activity, we decided to calculate the average activity over the entire trial (0 – 

2700ms) and also lowered the threshold to 40% to find all the possible ROIs potentially 

relevant to the task. The ROIs were delineated (Supplementary Fig. 1) and their time series 

were used for calculating dynamic connectivity with the aim of validating SVC results. The 

cortical areas were defined based on their anatomical position and relative positions with 

other areas.

2.6.3 Dynamic Granger-Geweke Causality—Dynamic Granger-Geweke Causality 

(DGGC) in the source space was used to determine time-varying directional functional 

connectivity between regions of interest (ROIs) (Lin et al., 2009; Vaina et al., 2010). DGGC 

is a version of Granger-Geweke Causality (Geweke, 1982) computed with a sliding time 

window. In each time window the signals were fitted with an autoregressive (AR) model. To 

compute the Granger score, an AR model was fit to the signal from ROI A, and then 

separately fit to the signal of ROI A including past values of ROI B. The Granger score is 

defined as the negative log ratio of the power of the residual error of the fit of the AR model 

of ROI A including ROI B over the fit with ROI A alone. Thus, if the past values of ROI B 

help predict values of ROI A, then the power of the residual error of the joint model 

decreases, thus increasing the Granger score. For Gaussian signals the Granger Score is a 

measure that reflects information flow from region X to region Y (Barnett et al., 2009). 

Here, we used the Granger scoreas a surrogate for measuring qualitatively the “flow of 

information” between ROIs. The details of the computation of the frequency-domain 

Granger Scores can be found in (Lin et al., 2009).

ROIs were selected based on the brain evoked activity, as explained in Section 2.6.2 and are 

shown in Supplementary Fig. 1. The scores were summed across the gamma band at 1 Hz 

steps from 30 Hz to 80 Hz. We chose to measure the connectivity in the gamma frequency 

band since the gamma oscillations have been reported to play an important role in sensory 

signals processing, attention (Fries et al., 2008; Gray and Singer, 1989; Magazzini and 

Singh, 2018) and working memory (Başar et al., 2001; Honkanen et al., 2015; Jensen et al., 

2007; Kaiser and Lutzenberger, 2005; Miller et al., 2018; Ward, 2003), which are critical for 

the task described here.

To characterize the magnitude of “flow of information” into and out of an ROI, we measured 

the in-degree and out-degree of DGC scores at that ROI. The in-degree of an ROI is given by 

the sum of DGC scores over all the connections to that ROI for each time window. Similarly, 

the out-degree is the sum of all the connections going out of an ROI for each time window.

To smooth the Granger scores, a 200ms uniform sliding window was applied to the in- and 

out-degrees. We defined “hubs” as regions central to the functional network of Granger 

causal connections in each time window, that have significantly high in-degree as “sinks” 

and hubs that have significantly high out-degree as “sources”. In order to identify the hubs, 
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we performed permutation testing. A total of 100,000 random in-degree and out-degree were 

generated by permuting the Granger scores between areas and across time. We calculated the 

95th percentile level to define the threshold significance level, thus any Granger score above 

this threshold would be significant to a p < 0.05 level. We note that the random in-degree 

and out-degree have the same distribution because the incoming connection into one ROI is 

the outgoing connection from another ROI, therefore computing only one common threshold 

is sufficient. In Fig. 4 only significant mean in-degree and out-degree hubs across time-

windows were visualized on the cortical surface with the ROIs marked in green.

Sinks and sources were measured and plotted within each of the time windows. Significance 

of connectivity was assessed using a similar procedure as above, except individual 

connectivity was used as the test statistic instead of in-degree and out-degree. The 95th 

percentile level of connectivity scores was selected as the threshold significance level, as 

above so that any score above this threshold was significant to a p < 0.05 level.

2.6. Data availability

The authors will make the data available upon reasonable request.

3. Results

3.0 Behavior

The average response accuracy across participants while performing the task in MEG was 

60% (range across participants: 50 – 75%), whereas the percent of correct responses in a 

four alternative forced choice task (4AFC) due to chance is equal 25%. The average time of 

response was 910±190ms from the onset of the response period (at 1250ms).

3.1 SVC classification of correct and incorrect trials

SVC was trained to discriminate between trials with correct and incorrect responses for each 

participant by using the sensor signals at a given time point. Fig. 2A illustrates the 

classification accuracy starting from the motion onset, during the 250ms of the blank period 

and until the end of the response period. At each timepoint after the start of motion, the SVC 

accuracy indicates how accurately the classifier could predict whether a participant would 

give a correct or incorrect response. Time periods where classification accuracy was below 

the chance level are marked with a grey shadow area. Fig. 2B shows the source distributions 

corresponding to the SVC patterns used to classify the correct and incorrect responses.

At first, SVC accuracy briefly surpassed the threshold level at 150ms and went back below 

chance. SVC reliably classified the trials with correct responses after 400ms from the motion 

onset, reaching the highest accuracy during the blank period, between 1000–1200ms. The 

SVC pattern had distinct spatial patterns across time. To illustrate the spatial pattern of brain 

activity important for the SVC successful performance, we selected four time points during 

the period where SVC accuracy was above chance level (Fig.2B). At 600ms SVC accuracy 

gets consistently above chance level and the highest values in the SVC pattern were located 

in the left superior temporal sulcus (STS), the right superior parietal lobule (SPL) and the 

posterior central sulcus (PostCS). At 1000ms, which marks the end of the stimulus motion, 
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cortical areas with high values in the SVC pattern expanded extensively across the cortex. In 

the left hemisphere those areas included insula, dorsolateral prefrontal cortex (DLPFC), 

inferior frontal gyrus (IFG) and medial orbitofrontal cortex (mOFC), and in the right 

hemisphere, hMT+, anterior part of the middle temporal gyrus (MTG), STS and 

parahippocampal gyrus (PHG). At the same time, bilateral activation in the central-CS and 

postCS, isthmus of the cingulate gyrus involving retrosplenial cortex (RSC), early visual 

cortex (EVC) including V1 and V2 were also contributing to the high SVC accuracy. At 

1400ms, participants had been for 150ms in the response period during which they had to 

choose which of the four labelled disks corresponded to the target. At this point, frontal 

areas (FEF, IFG) in the right hemisphere were strongly involved, while in the left 

hemisphere the highest values in the SVC pattern were distributed across the temporal and 

parietal-occipital cortex (PO), namely, V3a and V7, STS and left posterior lateral fissure 

(PLF). The activity in EVC at 1400ms was no longer relevant for the correct classification. 

At 1800ms, when on average participants entered their response, the highest values in the 

SVC pattern were mostly seen in the mOFC, superior frontal gyrus (SFG), supplementary 

motor area (SMA), precuneus and supramarginal gyrus mostly in the right hemisphere.

However, our results do not exclude the possibility that some brain areas were activated 

during both conditions (correct and incorrect response). The low SVC accuracy at the 

beginning of the stimulus motion suggests that the activation pattern was similar between 

these two conditions. However, the SVC findings indicate that during periods of time when 

the SVC accuracy surpasses the chance level (as shown in Fig. 2A) there were some cortical 

areas (illustrated in Fig. 2B) that expressed different activity between correct and incorrect 

trials.

3.2 Evoked brain activity during the task of a moving object detection by an observer in 
(simulated) forward self-motion

We investigated brain activation patterns during different stimulus periods (motion, blank 

and response) of this FSD type task to relate them to the areas critical to the classification of 

the correct/incorrect response of the participants. We used a threshold of 95% of maximum 

z-score activation across the whole brain to illustrate the areas most salient for task 

performance.

During the motion period we observed strong bilateral activation in EVC (comprising areas 

V1, V2), V3a/v7, right hMT+ and STS as well as in the right PLF. In addition, we 

investigated cortical activation during the motion period for the same timepoints (600ms – 

Fig.3D and 1000ms – Fig.3E) as used in the SVC analysis. At 600ms, the activation was 

observed in EVC, LOR, hMT+, STS bilaterally, and in the left V3a/V7. However, activation 

in the right hemisphere was much stronger for hMT+ and STS. In addition, higher order 

areas in the right hemisphere were also involved, including IPS, SPL, precuneus and 

posterior lateral fissure (PLF). At 1000ms, at the end of the motion period, the activation 

became lateralized to the right hemisphere featuring hMT+ and STS together with weaker 

focal activations in EVC, precuneus and PostCS. The areas V3a/V7 in the left hemisphere 

also remained active.
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During the 250ms blank period, between the end of the motion period and beginning of the 

response period, the pattern of activity was lateralized to the right hemisphere including 

areas active during the stimulus motion: hMT+, STS, inferior temporal sulcus (ITS), EVC, 

parietal-occipital sulcus (POS) and precuneus.

During the response time period (1250–2700ms) when participants’ task was to decide 

which of the numbered gray disks was the target, the activations were present mostly in the 

frontal cortex. There was also activation in motor related areas such as left CS, SMA as well 

as in left middle cingulate cortex (MCC), right anterior cingulate cortex (ACC) and medial 

orbito-frontal cortex (mOFC).

To localize areas activated under threshold, activation across the entire trial (0–2700ms) was 

averaged and a liberal threshold of 40% was used. The areas whose activation was above 

threshold were labeled (Supplementary Fig. 1) and used later in the DGGC analysis. These 

areas included EVC (V1 and V2) V3a, V7, LOR, hMT+, STS, IPS, PostCS, left CS, 

precuneus, middle cingulate cortex (MCC), FEF and DLPFC. Subcortical areas or areas 

located in the temporal-parietal sulci folding were excluded from the analysis due to their 

unreliability in MEG measurements.

3.3 Connectivity

Gamma-band (30–80 Hz) dynamic Granger causality was averaged across two motion time 

periods (0–600ms and 600–1000ms), the blank and the response periods (Fig. 4). We 

visualized the connectivity in each ROI as a series of proportional area plots showing areas 

with significant in-degree (sources, red circles) and out-degree (sinks, blue circles) 

connectivity. We also report significant connectivity from sources and sinks to other ROIs, 

as illustrated in Supplementary Fig. 3.1. and 3.2.

During the 0–600ms period of the motion period (Fig.4A), EVC (V1 and V2) in both 

hemispheres was the major source of connectivity and also, to a lesser extent, the areas hMT

+, V7 and STS in the right hemisphere. Outgoing connectivity from these sources was 

mostly directed to ROIs which were significant sinks of connectivity (left V3a, bilateral 

LOR, left hMT+, and right FEF). Right hemisphere EVC was also sending information 

bilaterally to the parietal and frontoparietal ROIs (PostCS, CS, MCC, FEF, DLPFC) 

(Supplementary Fig. 3.1).

The motion continued up to 1000ms, and the source patterns from 600 to 1000ms were 

similar to those described in the previous motion period (Fig. 4B). Bilateral EVC (V1 and 

V2) and hMT+, V7 and STS in right hemisphere continued to feed information to significant 

sinks of connectivity (bilateral LOR and V3a, right FEF). However, the number of 

significant sinks in the left hemisphere extended anteriorly to V7, FEF and DLPFC. Most of 

the information flow into these areas was from the biggest sources of connectivity (bilateral 

EVC and right hMT+).

During the blank screen period (1000–1250ms), the outgoing connectivity in EVC decreased 

compared to the earlier time points (Fig. 4C). This would be expected as no visual 

information, other than fixation mark, was available during this time interval and probably 
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working memory was the main cognitive process. In both hemispheres EVC was sending 

information to significant sinks of connectivity (LOR and V3A in the left hemisphere) and 

also provided significant output to higher order parietal and frontal ROIs in both 

hemispheres (IPS, precuneus, PostCS, CS and FEF) (Supplementary Fig. 3.2.) Right PostCS 

was also a significant source broadcasting connections to visual ROIs (right LOR and V3a, 

left hMT+) and to attention-related ROIs (left precuneus and DLPFC, bilateral FEF).

During the response period, EVC and right hMT+ once again appeared to be the largest 

sources of connectivity communicating to significant sinks (bilateral LOR, left V3a and 

right FEF) (Fig. 4D). This may be explained by the fact that the participants were presented 

with visual information (Magazzini and Singh, 2018). Bilateral EVC also had significant 

connection with left temporal (STS), parietal (IPS and PostCS) and frontal (CS, DLPFC, 

FEF) ROIs (Supplementary Fig. 3.1.).

4. Discussion

In the present study we investigated the brain dynamics underlying a psychophysical task 

that involves the detection of a moving object by an observer in forward (simulated) self-

motion. We employed three different approaches to investigate the neurophysiological 

mechanisms implicated in this task. Classical evoked activations maps allowed illustration of 

the neural substrates underlying this task and partially revealed the activation patterns 

reported in our previous fMRI study (Calabro and Vaina, 2012) and others (e.g. Arnoldussen 

et al., 2013; Cardin et al., 2012; Galletti and Fattori, 2003; Pitzalis et al., 2019, 2015, 2013, 

2010). We also investigated directional connectivity among the ROIs with the highest 

evoked activation during different stimulus time periods and the results provided further 

evidence of the communication dynamics involved in the task. Using an unbiased data-

driven approach we investigated on the millisecond level the brain’s spatial patterns critical 

for the successful task performance. The findings of this analysis provide novel insights into 

which areas are relevant to the correct detection of a moving object by an observer in 

forward (simulated) self-motion. Taken together, our findings provide, in a time-resolved 

manner, the cortical ROIs involved in the response correctness of the task and how the 

cortical ROIs mapped with SVC are similar to the ROIs captured by the evoked activity and 

connectivity information flow.

The SVC, evoked activity, and DGGC results provide important insights into the cortical 

dynamics underlying this task. Specifically, we found different cortical activity and 

connectivity patterns within two segments of the motion period. In order to investigate the 

behavioral correlates of these differences, in a post-hoc control test outside the MEG, 

subjects naïve to the task participated in the same psychophysical experiment, with the 

exception that in each test version the motion period was set at different time intervals, from 

100ms to 1000ms. The results demonstrated that the participants’ performance was above 

chance for detecting the target independent of the speed or direction of its motion (and hence 

independent of the task difficulty) when the stimulus motion period was 600ms or more (see 

Supplementary Fig. 2). The control post-hoc behavioral data showed that as the motion 

period got closer to the end (600–1000ms) the correct identification of the target sphere was 

increased. Consistent with these results, the SVC classification raised steadily above chance 
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after 400ms during the stimulus motion period. At 600ms SVC relied mostly on the left 

hemisphere STS, and at 1000ms (end of the motion period), it included several fronto-

parietal regions in the left hemisphere, while in the right hemisphere it included occipital-

temporal regions, and bilaterally the postcentral sulcus.

A hallmark of visual-cognitive brain computations is the ability to act at different time 

scales. In the next two sections we discuss how this leads to incremental acquisition of task 

relevant information over time, resulting in an increased precision of the stimulus 

representation that our brain is able to generate.

4.1 Cortical activity in the first 600ms of the stimulus motion supports the use of the flow 
parsing mechanism for solving the task.

At 600ms into the stimulus motion period, the application of SVC revealed that the main 

ROIs involved in distinguishing correct and incorrect responses were the left dorsal STS, 

right SPL and PostCS. Imaging studies have shown that in humans, SPL is involved in goal 

directed spatial attention orientation (Shomstein et al., 2010) and in attention modulation 

during visual motion (Büchel et al., 1998). The dorsal STS (especially STP) was reported to 

be involved in optic flow processing in the macaque (Anderson and Siegel, 1999; Raffi and 

Siegel, 2004), and, in humans, in biological, object motion and optic flow conditions (Aspell 

et al., 2005; Grossman et al., 2000; Grossman and Blake, 2002, 2001; Howard and Howard, 

1994; Vaina et al., 1998; Vaina and Soloviev, 2004). The activation in these and other areas 

were also observed in evoked brain activity reported in our study.

The visual motion-sensitive areas, especially the right hMT+, and IPS were also active 

during this time period, however, they did not play a role in the SVC prediction of correct 

response. Activations in these areas are consistent with the known brain’s neuronal 

sensitivity to optic flow (e.g. Cardin et al., 2012; Duffy and Wurtz, 1991; Greenlee, 2000; 

Holliday and Meese, 2008; Morrone et al., 2000; Pitzalis et al., 2013, 2010; Vaina et al., 

1998; Wurtz, 1998) which, according to the Flow Parsing hypothesis, are responsible for 

identification and parsing out the retinal global motion resulting from the observer’s forward 

self-motion, attributing the remaining retinal motion to scene relative object motion (Warren 

and Rushton, 2007).

To define the directional functional connectivity among the activated regions of interest in 

this task we conducted a follow up analysis of the cortical computations involved in 

determining time-varying directional functional connectivity between the ROIs active during 

the different time windows. We found that DGGC connectivity in the first motion period (0–

600ms) matched the evoked response, with early visual cortex (V1, V2) and motion-

responsive areas (hMT+, STS) acting as sources in the network. Specifically, there was a 

right-hemisphere bias in the hubness of hMT+ and STS as sources of connectivity. This is in 

line with the literature suggesting right-hemisphere dominance of spatial cognition 

(Hugdahl, 2000; Oleksiak et al., 2011; Smith et al., 1996; Vogel et al., 2003; Walter et al., 

2003).

Together, these results present the picture that most of the computations during 0–600ms 

time period are involved in the processing the visual motion stimulus. The role of early 
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visual regions is to propagate sensory information over dorsal and ventral visual streams as 

was suggested in another MEG study focused on the dynamics visual processing (Nunes et 

al., 2019). Such processing pattern potentially underpins primary evaluation of the stimulus 

that occurs at the beginning of all trials disregarding the outcome. That would explain why 

during this time period the SVC pattern is very sparse and limited to few higher-order 

cortical areas. Nevertheless, our SVC results show that the outcome of a trial can be 

predicted from the activation pattern of these few cortical ROIs (left dorsal STS, right SPL 

and PostCS) within 600ms into the motion stimulus, which is congruent with the results of 

our post-hoc analysis of the behavioral task performance. Consistent with the 

psychophysical mechanism proposed by Rushton and collaborators (Rushton et al., 2007; 

Rushton and Warren, 2005), we suggest that flow parsing is a candidate mechanism for 

implementing our task. The significant overlap between the areas found to be active in our 

study during the first 600ms of the motion period and the areas reported to be engaged in 

flow parsing, as discussed in the introduction, support this hypothesis (Calabro and Vaina, 

2012; Galletti and Fattori, 2003; Pitzalis et al., 2019).

However, it is important to ask the question of whether the optic flow field alone, can fully 

account for observers’ performance, or whether 3D scene-context information is used for 

identifying the target. Royden and collaborators’ psychophysical studies (Royden and 

Connors, 2010; Royden and Moore, 2012) showed that observers are sensitive to target 

deviations (speed and direction) from the optic flow. Calabro and Vaina (2012) investigated 

possible strategies that observers may use to solve the task described here without 

incorporating the 3D scene context. For example, the choice of the target may have been 

based entirely on retinal speed of the spheres. However, in our previous psychophysical 

study we showed that when the distribution of retinal speed was altered, observers’ 

performance did not change (Calabro et al., 2011), thus performance was not determined by 

the absolute retinal speed. Alternatively, observers could have used relative motion among 

the motion vectors (speed and/or direction) and choose for the target the sphere with 

maximum magnitude or moving inward, while the other eight spheres were moving outward 

(simulating the observer’s forward motion). Calabro and Vaina (2012) developed a model in 

which the response to the task, detection of the independently moving sphere, was selected 

by using only relative motion among the nine spheres that constituted the stimulus. They 

performed a large number of simulations to determine whether the subjects’ performance 

could be explained solely by a relative motion strategy (for comparisons between subjects’ 

performance and the model see Fig. 6 in Calabro and Vaina (2012)). Their model showed 

that for approaching (positive) velocities the relative speed strategy could account for 

subjects’ performance, however, for the receding target sphere (negative velocities) the 

model did not provide above chance correct response because in these situations the speed of 

the target nearly always was within the range of the speeds of the spheres whose motion was 

due to the observer’s motion. The same situation occurs if motion in depth cues are 

considered, instead of direction. Thus, Calabro and Vaina (2012) concluded that the poor 

performance on detecting the receiving sphere condition suggests that subjects’ performance 

does not rely on strategies based on relative speed and/ or direction among the moving 

spheres. Consistent with our previous results, the data presented here suggests that to solve 

this task subjects must use more than just relative motion among the spheres. Our results are 
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consistent with mechanism implementing the flow-parsing hypothesis (Rushton and Warren, 

2005; Warren and Rushton, 2009a, 2007), by which the target must be related to the entire 

scene such that its world-centric object motion can be determined.

4.2 Establishment of target representation during the 600–1000ms stimulus motion 
interval

At 1000ms SVC accuracy increased drastically. Compared to the previous time period (0–

600ms), now there was a large number of ROIs with high values in the SVC pattern (IFG, 

insula, DLPFC, mOFC in the left hemisphere, bilateral EVC, CS, PostCS, right hMT+, 

PHG, aMTG). In contrast the evoked activity pattern diminished by the end of the motion 

period. However, several ROIs active at 600ms (hMT+, STS, precuneus, PostCS in the right 

hemisphere, v3a/v7 and POS in the left hemisphere) remained active until the end of the 

motion period. It is likely that evoked activity becomes more focal as the representation of 

the stimulus is finalized after being computed in the previous motion interval. Increase in the 

values in the SVC pattern in the left prefrontal areas suggests that spatial attention and 

memory are involved in maintaining the target location and in inhibiting the observers’ 

tendency to enter their response prior to the response period. This is in agreement with the 

DGGC results during 600–1000ms motion period which indicate that left prefrontal regions 

are significant sinks of connectivity receiving most of the information from EVC and right 

hMT+.

Taken together, our findings suggest a close interplay between the cortical visual areas 

involved in computing optic flow and in detecting the target, and higher order areas involved 

in spatial attention and memory for location. This interaction is critical for the correct 

response, as shown by SVC accuracy curve (Fig.2A) and congruent with previous reports of 

the tight cooperation between spatial attention and working memory and neural substrates 

representing these cognitive domains in building, retrieving and updating mental 

representations (Lepsien and Nobre, 2006; Nobre et al., 2004).

4.3 Active maintenance of target representation in space during the blank period

Given that our experiment design is of FSD type, the blank period is particularly interesting 

since during this time, the response choices are not yet available although participants have 

detected the target. Thus, observers have to retain a representation of the target location 

within the other spheres and inhibit the tendency of entering the response. This may also 

occur during the 1000ms of the stimulus motion, that is if subjects have formulated a 

hypothesis regarding which of the moving spheres corresponds to the target location, they 

still must await the response period (after 1250 sec) and then in a 4AFC enter their decision 

regarding the target identity. Remarkably, the accuracy of the SVC during the blank period 

(1000–1250ms) is highest, suggesting that a stimulus representation characterized by the 

specific brain state on which the SVC relies has been constructed and is available to the 

perceiver. Despite no incoming visual information, the evoked activity during the blank 

period shows activations in EVC (V1, V2), the right hMT+, POS, pSTS and precuneus, 

which are the areas reported to be sensitive to optic flow (Michels et al., 2009; Raffi et al., 

2002; Wada et al., 2016), suggesting that the participants maintain the spatial position of the 

target in working memory for later use to enter their response (during the response time 
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period). The connectivity computed during the blank time-period (Supplementary Fig. 3.2.) 

shows that the PostCS presented outward flow of information towards several areas, 

including both hemisphere V3a, LOR, hMT+, precuneus, FEF, and left DLPFC. Aside from 

the visual and motion processing areas that are mostly involved in computing the stimulus 

representation, there is also activation in the precuneus, which is involved in visuospatial and 

working memory tasks, mental imagery, and spatially-guided behavior (Cavanna and 

Trimble, 2006; Fletcher et al., 1995), and the frontoparietal areas, FEF and DLPFC, known 

to play an important role in spatial attention (Corbetta and Shulman, 2002; Kelly et al., 

2008; Liu et al., 2003; Schall et al., 2004; Serences et al., 2004) and working memory 

(Curtis and D’Esposito, 2003; Fuster, 2000; Goldman-Rakic, 1991).

Given the connections from postCS to the areas listed above (both hemisphere V3a, LOR, 

hMT+, precuneus, FEF, and left DLPFC), we suggest that postCS is central to maintaining 

the target’s spatial location between the end of the stimulus motion and the beginning of the 

response period, whereas, the precuneus and DLPFC are involved in the storage of the 

representation of the motion stimulus computed by motion-responsive areas, such as hMT 

and V3a.

4.4 Visual, motion and frontoparietal ROIs work in unison to generate the response

The average brain activation pattern during response period involved by and large several 

frontal regions: right mOFC, ACC, left CS, SMA, and MCC. Most of these areas are also 

critical for the accurate classification of correct and incorrect trials response as shown by 

SVC (right mOFC, SMA and MCC at 1800ms after motion onset). The mOFC and IFG are 

important for inhibition of motor response (Berlin and Bohlin, 2002; Swick et al., 2008; 

Thompson-Schill et al., 2002). There is evidence from animal studies showing an extensive 

involvement of frontal areas in conditions when delayed response is required and their 

critical impact on task performance (Goard et al., 2016; Kojima and Goldman-Rakic, 1982; 

Miller et al., 1996). It was proposed that the role of prefrontal cortex is to accommodate 

flexibility in the response options before making the final decision (Stokes et al., 2013). 

Based on our findings, we also suggest that from the end of the stimulus motion period to 

the time when response is entered, it is necessary for the frontal regions mentioned above to 

work in concert to retain the target representation while evaluating the answer options to 

decide on the final response.

5. Conclusion

We used a three-prong analysis to elucidate time-varying cortical processing during a task of 

parsing out an object motion while the observer is in simulated forward self-motion. To our 

knowledge, this is the first MEG study to dynamically contrast the brain activity necessary 

for correctly accomplishing the task by employing a data-driven machine learning approach 

and by analyzing the activity evoked by the task performance. Consistent with behavioral 

measures, the classification accuracy of the linear Support Vector Classifier (SVC) 

employed raised steadily above chance after 400ms during the stimulus motion. The SVC 

first relied mostly on the left hemisphere STS, and later into the stimulus involved several 

areas in both hemispheres including fronto-parietal regions on the left and occipital-temporal 
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regions on the right, as well as the postcentral sulcus bilaterally. The evoked activity was 

localized in occipital and parietal areas specialized for motion processing or spatial 

attention, whereas, the areas responsible for the correctness of response also involved 

regions in the frontal lobes. Based on the pattern of information flow revealed by the 

connectivity analysis (DGGC), the interplay between these areas is necessary for computing 

the representation of the stimulus and address task requirements. This study demonstrates 

that the correct response can be predicted with the highest precision only when the 

representation of the target location is computed and actively maintained in working 

memory until the response period.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We elucidate the neural dynamics of detecting a moving object by a moving 

observer.

• Object detection was predicted by machine learning based on motion-

sensitive and fronto-parietal areas.

• Connectivity verified the cortical dynamics which machine learning relied on.
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Fig 1. 
A Moving object detection during simulated observer’s forward self-motion paradigm 

illustration - intertrial period with a red dot fixation mark displayed at the center of the 

screen (300ms), followed by a fade in period (2000ms) when 9 spheres gradually appeared 

on the screen. Once the spheres reached the maximum contrast (at 2000ms) they remained 

static for 1000ms. Then the motion period (1000ms) began and all spheres, but one (the 

target) moved inducing in the observer a perception of forward self-motion. The target 

sphere moved with different speeds and direction than the observer. In a 4 alternatives-

forced choice (4AFC) task participants were asked to identify the target during the response 

period (1450ms) that started after 250ms of the blank screen displayed following the motion 

period. B - Multivariate pattern analysis. Sensor readings at each time point were used to 

train a support vector machine classifier to discriminate trials with correct and incorrect 

responses. To discriminate between classes of features SVC constructs a hyperplane and 

uses data points close to the hyperplane as support vectors to increase the margin between 

classes of points for feature classification (right scatterplot). To facilitate illustration, we 

show only two MEG channels with positive values.
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Fig. 2 - 
Correct detection of a moving object by an observer in forward self-motion can be 

accurately predicted based on brain neuromagnetic activity in the interval of 400 – 2200ms 

after the initiation of stimulus motion. The top of the figure is a schematic illustration of the 

stimulus and experimental paradigm. Colored rectangles indicate the data segments included 

into the analysis. A - the graph illustrates the accuracy of SVC in classifying correct and 

incorrect responses for each timepoint (grey shadow areas indicate time periods when the 

accuracy is below chance). Chance level is marked by the horizontal dotted red line. B - 

SVC pattern mapped on the brain surface at 600ms, 1000ms, 1400ms and 1800ms. They 

illustrate the areas that were most critical for the correct classification of responses.
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Fig. 3 –. 
Brain activation during moving object detection by a forward moving observer: A – brain 

activation pattern averaged across object motion period (0–1000ms); B – brain activation 

averaged across blank screen period (1000ms-1250ms); C – Areas that were the most active 

during the response period (averaged across 1250–2700ms); D – the most active brain areas 

in the middle of the motion period (600ms); E – brain activation at the end of the motion 

period (1000ms). V1, V2 –EVC (early visual cortex), LOR – lateral occipital cortex, hMT+ 

– human motion complex, ITS – inferior temporal sulcus, STS – superior temporal sulcus, 

POS – parietal-occipital sulcus, CS – central sulcus, SMA – supplementary motor area, 

MCC – middle cingulate cortex, ACC – anterior cingulate cortex, mOFC – medial orbito-

frontal cortex, IPS – inferior parietal sulcus, SPL – superior parietal lobule, PLF - posterior 

lateral fissure.
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Fig. 4. 
Incoming and outgoing connectivity between cortical ROIs during the task. The area of each 

circle represents the in-degree and out-degree GC score associated the corresponding ROI 

that it is overlaying. Red circles represent “sources,” which are ROIs with high outgoing 

connectivity and blue circles represent “sinks,” which are ROIs with high incoming 

connectivity. We display GC scores represented by circles only for those areas in which the 

GC scores were above significance threshold computed by a series of permutations (GC 

threshold = 85.7).
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