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ABSTRACT

Power constraints have become arguably the biggest obstacle for the performance scaling

of computing machines. No matter what scale of computing system – A mobile phone or

supercomputer – they are all power restricted in one way or another to ensure normal opera-

tion. While various computing systems may require different power management techniques,

the goal of such systems is invariant and contains two folds of requirement: (1) guarantee

computing system operates under a certain power budget/cap, and (2) efficiently make use

of the limited power to deliver high performance. Thus, the challenge can be formalized to a

classic constrained optimization problem – given power consumption constraints, maximize

the performance of computing systems. In this dissertation, we focus on solving this problem

for server systems from single-node level to large-scale. More specifically, this dissertation

contains 3 projects addressing power capping challenge at different scales.

First, we propose PUPiL, a hardware/software hybrid power control system to address

the power challenge at the node level. It makes the key observations of tradeoffs between

existing software-based and hardware-based approaches: (1) hardware techniques provide

significantly faster response time – quickly enforcing power limits and, (2) software provides

much greater flexibility – by tailoring resource usage to the current application workload –

leading to high performance efficiency. PUPiL combines the best of software and hardware

approaches, achieving significantly higher performance with nearly same response time as

hardware approach.

Second, we propose PowerShift , a distributed power management system to address the

emerging challenge of power capping dependent applications in large-scale systems. Pow-

erShift , to our knowledge, is the first work to identify the unique challenge of dependent

distributed workloads and presents a family of three techniques for this scenario, demon-

strating improved performance, reduced energy, and dynamic adjustment to tail behavior

and system noise.

x



Last, PoDD , a hierarchical distributed power control system inspired by both PUPiL

and PowerShift , is proposed to further overcome major limitations in power capping de-

pendent applications. It incorporates learning/hardware hybrid node-level power capping

with system-level power shifting to deliver significantly higher performance than prior works

and no longer requires offline application profiles because of building power models online,

greatly improving practicality and performance efficiency.

The 3 power management frameworks systematically study the problem of maximizing

performance in power constrained systems. The key ideas and insights are highly general

to guide the design of real world power control systems for a wide range of workloads and

platforms. All implemented systems are open-source and evaluated to be practical, scalable,

reliable and also not limited to particular applications and systems, which hopefully will

serve as a base model/system to future research on power capping.
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CHAPTER 1

INTRODUCTION

1.1 Thesis Statement

This dissertation address the indispensable need for power budgeting/capping techniques in

computing systems focusing on server systems from single-node scale (a server) to large-scale

computing system (datacenter or supercomputer consists of tens of thousands of servers).

The challenge of the power constraint problem are two folds: (1) how to enforce the system re-

specting power limit, and (2) more challengingly, how to achieve optimal performance under

power caps. At node level, we propose using adaptive feedback control system that coordi-

nates software and hardware power capping technique for high performance efficiency and

timely system response. At large-scale level, we introduce a hierarchical power management

framework to coordinate node-level power optimization and system-level power shifting. The

node-level power optimization involves learning optimal resource allocation from hardware

performance counter, which requires no code instrumentation nor application profiles. The

power shifting involves an original 3-group power shifting mechanism to address the unique

challenge of dependent distributed applications.

1.2 Challenges

Power constraints have become first-class concerns in computing systems. From a single

processor on our phone to gigantic million-node supercomputers, they are all restricted with

power budgets. Thus, there is an increasing need for power control systems to help computing

systems running within budget while delivering high performance. Since power constraint

problems are different for systems of different size, following paragraphs break the problem

down into single node power capping and distributed power capping.

1



1.2.1 Node-level Power Capping Challenge

At node-level, modern processors are constrained by dark silicon – their abundance of tran-

sistors enables them to draw more power than they can safely sustain [25, 98]. For example,

the Exynos 5 processor (in the Samsung Galaxy S4 phone) has a 5.5W peak power – nearly

2× its sustainable heat dissipation, limiting peak speed to less than 1 second [87]. At the

other end of the spectrum, future exascale supercomputers have a predicted operating bud-

get of 20 MW [6], making power management a central challenge of supercomputer operating

systems [95].

These physical constraints create a need for power control systems which guarantee the

processor operates within a strict power cap. Research power capping systems have been

implemented in software [13, 15, 29, 54, 76, 77, 79, 103]. The need for power capping has

become so great, however, that Intel processors now support power capping in hardware

with their Running Average Power Limit (RAPL) interface [16].

Whether implemented in hardware or software, there are two essential properties for a

power capping system. The first is timeliness – the speed with which a new cap can be

enforced. The second is efficiency – the performance delivered under the cap. Without

timeliness, critical operating bounds can be violated, damaging the hardware. Without

efficiency, application performance suffers unnecessarily. It is, of course, trivial to implement

a power cap while ignoring performance – simply turn the machine off.

In general, hardware approaches provide superior timeliness – hardware reacts much

faster than software – while software approaches have superior efficiency – they find the

highest performance set of resources to activate within the power cap. Hardware’s timeliness

is due to the relatively simple circuits that control key power indicators like processor voltage

and frequency. Software’s efficiency derives from its ability to consider the complex interac-

tions between multiple resources, allowing it to solve the constrained optimization problem

of scheduling the highest performance resource configuration which obeys the power cap.

2



However, none of the software-only or hardware-only approaches achieves both satisfying

efficiency and timeliness.

1.2.2 Distributed Power Capping Challenge

At the distributed level, next generation exascale supercomputers are predicted to have a

strict operating budget of approximately 20 MW, but the total power dissipation at full

utilization would far exceed this budget [6]. These systems require sophisticated, distributed

power-capping mechanisms to assure their power budget will not be exceeded; the United

States Department of Energy (DoE) has therefore declared power management a key chal-

lenge for exascale [95].

While power concerns create new problems, exascale’s increased capacity creates new

opportunities. Specifically, instead of sequentially running dependent jobs that communicate

through disk, the size of exascale supercomputers allows these jobs to be coupled [2, 6, 12, 51,

95]. That is, two formerly independent jobs can now be run simultaneously and communicate

at runtime. For example, scientific simulations can now be run with in situ data analysis

or visualization providing scientists the insight needed to alter the simulation as it runs

[2, 12]. Additionally, separately developed physics simulations can now be run together,

sharing their results to provide much greater fidelity [51]. In fact, the DoE has declared

resource management for coupled application workloads an additional concern for exascale

[6, 95]. There are three challenges to maximizing performance for coupled applications under

a power cap:

1. The coupled applications have distinct power and performance tradeoffs. Thus, optimal

performance requires imbalanced power allocation and finding the highest performance

power allocation is not trivial. Specifically, the couple’s performance is dependent on the

slowest job, so a power allocation that provides good performance for an application in

one couple may be sub-optimal when that application is part of a different couple.
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2. Such coupled applications almost invariably go through distinct phases of communication

and computation and a power manager should adapt to these phases.

3. For some couples and power budgets, performance improvement is not possible due to

diminishing returns in one application’s power/performance trade-off space. The chal-

lenge here is tp recognize when performance cannot be improved and reallocating power

to save energy.

Unfortunately, existing work on enforcing power caps across large scale systems does not

account for coupled applications. For example, several approaches increase overall system

performance with unbalanced power allocations [45, 49, 89]. Other approaches shift power

as independent applications transition through compute and IO phases [84]. While unbal-

anced allocation and phase-adaptation are important for coupled applications they are not

sufficient. In brief, coupled applications obey the basic principles of pipeline parallelism:

the couple’s speed is determined by the slowest application. Thus, optimizing coupled appli-

cation performance under a power cap often requires slowing down the faster application to

shift more power to the slower. This requirement to slowdown a fast application is unique to

coupled applications and is not supported by prior power shifting approaches, which consider

only one application at a time [45, 82], or optimize for multiple, independent applications

[49, 84, 89]. Furthermore, due to the couple’s interaction, sometimes it is not possible to

increase performance through any amount of power shifting. Here, the couple scheduler

should reduce total power usage to save energy.

1.3 Contributions

This dissertation studies two major problems in the spectrum of optimizing performance

under power caps: (1) the efficiency and timeliness tradeoffs in power capping single node

server system, (2) maximizing performance of dependent workloads in power-constrained dis-

tributed systems. For each problem, we propose and implement original power management
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systems to address its unique challenges. All systems are designed to work for various real

world applications and platforms. Evaluations on real computing systems with a number of

important applications show great advantages of performance efficiency and other properties

of our systems. The key idea and insights in the thesis, hopefully, can offer help to or be

built upon by future research in this area. More specifically, we tackle these two problems

with three distinct, yet continuous projects:

• PUPiL, maximizes performance under a power cap for single node server. By observing

the tradeoffs between software-only and hardware-only power capping techniques in

terms of performance efficiency and timeliness, it proposes a hybrid software/hardware

approach to take advantage of the benefits from both worlds.

• PowerShift , optimizes performance for dependent distributed applications under system-

wide power caps. To the best of our knowledge, PowerShift is the first work to consider

coupled applications in distributed power capping. We point out the fundamental prin-

ciple to optimize for coupled applications: to keep each application running at even

speed. Following this idea, PowerShift offers 3 different power capping frameworks to

handle dependent workloads.

• PoDD , further optimizes for dependent distributed applications for performance and

practicality in two major aspects: (1) hierachical power capping system to coordinate

advanced node-level power capping (inspired by PUPiL) with system-level power shift-

ing (inspired by PowerShift), (2) requires no prior knowledge of application profiles by

online model building.

This following sections detail each of the 3 contributions.

1.3.1 PUPiL

In this project, we explore the node-level power capping techniques. A key observation is:

in general, hardware approaches provide superior timeliness –hardware reacts much faster
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than software – while software approaches have superior efficiency – they find the highest

performance set of resources to activate within the power cap. We explore the tradeoff

between timeliness and efficiency in power capping approaches. Specifically, we advocate a

hybrid approach that includes both software and hardware components, using each to address

the challenge to which it is best suited. PUPiL’s hybrid approach provides the timeliness

of hardware with significantly greater efficiency. The performance gains are particularly

high when enforcing power caps in the oblivious multi-application scenario. In both single

and cooperative multi-application workloads, PUPiL provides at least 18% greater mean

performance compared to RAPL (the state-of-the art hardware power capping technique). In

oblivious multi-application workloads, PUPiL provides at least 2.4x the mean performance.

The fundamental contribution of PUPiL is an empirical demonstration of the need for

software and hardware to work together to maximize performance under power caps. The

combined software/hardware approach proposed in this project demonstrates it is possible

to achieve significant performance gains over Intel’s state-of-the-art, commercial hardware

approach – especially for multi-application workloads.

Besides contribution mentioned above, this project makes the following contributions:

• Develops a decision framework to maximize performance under a power cap.

• Evaluates this implementation on a real system in multiple usage scenarios.

• Identifies workload properties where Intel’s RAPL power capping system fails to deliver

the best performance.

• Makes all scripts, code, and data collection tools from this evaluation available as open

source, so others can test or extend these results1.

1. All source code, scripts, inputs, and patches are available at:
https://github.com/PUPiL2015/PUPIL.git.
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1.3.2 PowerShift

This project addresses the emerging challenge of coupled workloads running under a system-

wide power cap in distributed computing scenario. The unique performance characteristics

of coupled applications – that the couple’s speed is determined by the slowest application

– throws off the prior works in this area, which either optimize for single application or

independent applications [4, 9, 24, 33, 45, 49, 82, 84, 89]. PowerShift is the first work, to

our knowledge, to address the unique challenges of coupled applications with PowerShift, a

family of three techniques for shifting power between dependent applications in a distributed

system. All three respect the system-wide power cap and maximize the couple’s performance

by shifting power from the faster application to the slower one, until both run at the same

rate. All techniques rely on existing node-local power cap enforcement (e.g., [52, 54, 79,

109]) PowerShift-S is a static technique that sets power caps based on individual application

profiles. PowerShift-C is a centralized dynamic approach in which a single decision maker

dynamically shifts power. PowerShift-D is a distributed dynamic approach where nodes put

surplus power into a shared pool, and nodes that need more power take from the pool.

These techniques provide different tradeoffs in overhead, flexibility, and adaptability. We

implement PowerShift on a real 26 node system. We compare SLURM, a state-of-the-art,

power-aware job scheduler [89] and PowerShift to a Fair approach that evenly divides power

among all nodes. Results show that PowerShift improves mean performance up to 17% over

Fair approach and up to 14% over SLURM . Additional results demonstrate that Pow-

erShift detects when no performance improvement is possible and instead reduces energy.

Furthermore, PowerShift D & C adapt to system noise and tail behavior, automatically

shifting power to nodes that have unexpected extra load or long tails, improving perfor-

mance by 36% and 30%, respectively. Finally, we show that PowerShift is topology-oblivious

and works equally well if the coupled applications are physically separate or mapped to

different power domains on the same node. In summary, PowerShift makes the following
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contributions:

• First work to identify the unique challenge of coupled applications.

• Proposes PowerShift, a family of power capping frameworks for coupled applications.

• Evaluaton shows PowerShift achieves 7-14% performance gain over SLURM, 18% en-

ergy saving for 5% performance loss, 30-36% performance gain in noisy environment

• Evaluation and comparison between 3 power capping frameworks offer insights of fun-

damental design tradeoffs on overhead, flexibility, and adaptability.

• Open-source all scripts, code, and data collection tools for future research to be built

on 2.

1.3.3 PoDD

Coupled applications are predicted to be one of the most important workloads in exscale

supercomputer [95], and the system power budget is predicted to be 20MW [6]. While

PowerShift has started to address this problem, PoDD further addresses two major chal-

lenges to significantly improve performance efficiency and practicality. Specifically, 2 major

limitations in PowerShift are:

• Dependence on offline application profile greatly makes it less practical in real life systems.

• Hardware-only power capping at node-level results in sub-optimal performance.

We propose PoDD , a dynamic power management system addressing the challenge of

coupled applications. It delivers high performance by incorporating advanced original node-

level power capping technique to coupled-workloads-aware system-level dynamic shifting. It

no longer requires prior knowledge of application profiles by building power performance

model online. Furthermore, it does not need any code instrumentation. Finally, it greatly

mitigates tail effect in distributed environment, is resilient to system noise and scales well

2. All source code, scripts, inputs, and patches are available at:
https://github.com/huazhe/powershift.git.
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large number of nodes. We implement PoDD on a 49 node distributed system and evaluate

it against 4 widely-used/state-of-the-art power control systems: Fair, SLURM, PowerShift-S

and PowerShift-D. The evaluation shows PoDD improves mean performance over emphFair

by 28%, which outperforms SLURM by 21% , outperform PowerShift-S by 19%, and out-

perform PowerShift-D by 14%. Our evaluation on noisy environment and scalability also

shows PoDD is resilient to system noise and predicted to have a 20X scalability over current

49-node system. Evaluations show great flexibility of PoDD , that it is topology-oblivious

and works well whether coupled applications are physically separate or co-located.

To sum up, PoDD makes following contributions:

• Proposes an original machine learning classifier and hardware hybrid node-level power

capping technique.

• Deploys a hierarchical power control system that coordinates advanced node-level

power capping with system-level power shifting.

• Builds performance power model online to derive optimal power distribution for cou-

pled applications, releasing the dependence on prior application profiles.

• Evaluation shows an average 14% speedup over the state-of-the-art approach Power-

Shift , flexible – topology-oblivious, scalable – at least 20x scale potential, reliable –

resilient to system noise.

• Open-source 3.

3. All source code, scripts, inputs, and patches are available at: https://github.com/podd2019/podd.git.
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CHAPTER 2

PUPIL: MAXIMIZING PERFORMANCE UNDER A POWER

CAP AT NODE-LEVEL

This chapter introduces PUPiL, a software and hardware hybrid power capping approach

for single node systems.

Power and thermal dissipation constrain multicore performance scaling. Modern proces-

sors are built such that they could sustain damaging levels of power dissipation, creating a

need for systems that can implement processor power caps. A particular challenge is develop-

ing systems that can maximize performance within a power cap, and approaches have been

proposed in both software and hardware. Software approaches are flexible, allowing multi-

ple hardware resources to be coordinated for maximum performance, but software is slow,

requiring a long time to converge to the power target. In contrast, hardware power capping

quickly converges to the power cap, but only manages voltage and frequency, limiting its

potential performance.

We propose PUPiL, a hybrid software/hardware power capping system. Unlike previous

approaches, PUPiL combines hardware’s fast reaction time with software’s flexibility. We

implement PUPiL on real Linux/x86 platform and compare it to Intel’s commercial hardware

power capping system for both single and multi-application workloads. We find PUPiL

provides the same reaction time as Intel’s hardware with significantly higher performance.

On average, PUPiL outperforms hardware by from 1.18–2.4× depending on workload and

power target. Thus, PUPiL provides a promising way to enforce power caps with greater

performance than current state-of-the-art hardware-only approaches.

The rest of this chapter are organized as follows: First, Chapter 2.1 discusses the re-

lated works in this domain. Next, Chapter 2.2 introduces motivational examples. Then,

Chapter 2.3 demonstrate the system design and algorithms. After that, Chapter 2.4 and

Chapter 2.5 shows the experimental setup, results, and discuss its reason and insight. Fi-
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nally, Chapter 2.6 concludes this work.

2.1 Related Work

As power and energy become first order concerns of computing systems, a number of ap-

proaches have been proposed for managing these critical issues. Some approaches focus on

minimizing energy, which can reduce costs in data centers and servers [42, 63, 85, 99, 104] or

increase battery life in mobile and embedded platforms [30, 37, 44, 53, 70, 83, 97, 106]. These

techniques provide performance guarantees (e.g., for meeting quality-of-service or real-time

requirements) and minimize power consumption or energy, but they do not provide power

guarantees and cannot implement power caps.

To help facilitate energy management, several OS projects have added operating system

support for monitoring and allocated energy. The Quanto project facilitates tracking energy

usage in networked embedded devices [31]. The Cinder OS allows energy usage to be tracked

and allocated across multiple applications in a system [81]. The Koala project also allows

energy to be tracked and allocated while supporting several different policies for optimizing

energy and performance [90]. Similarly, power containers support fine-grain tailoring of

heterogeneous resources to varying workloads [86]. LEO is a hierarchical Bayesian learning

framework that produces extremely accurate estimates of an application’s performance and

power consumption [69]. The Coop-I/O project allows applications to coordinate with the

operating system to schedule I/O operations in the most energy efficient manner possible

[102]. The GRACE OS meets performance requirements for media while minimizing energy

[97, 106]. None of these projects, however, explicitly support maximizing performance under

a power constraint, which is the subject of this paper. JouleGuard provides energy guarantees

(but not power) by coordinating application behavior with system resource usage [37].

While energy reduction can decrease costs and increase battery life, it is a separate con-

cern from meeting power limits. Operating within power limits has become essential as
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multicore scalability is increasingly limited by power and thermal management [25, 98]. The

physical realities of power dissipation in modern processors have led to hardware designs

characterized by dark silicon. That is, modern processors cannot physically power all tran-

sistors at their maximum speed without damage. Thus, some of those transistors are kept

dark (meaning they are not powered at all) or dim (meaning they are powered at less than

full speed) [94].

These physical realities create a need to limit processor power dissipation. This concern is

important enough that Intel’s SandyBridge and later processors support power management

in hardware [16, 0]. A number software systems have also been proposed to perform power

control or capping.

Cluster level solutions which guarantee power consumption include those proposed by

Wang et al. [100] and Raghavendra et al. [76]. These approaches require some node-level

power capper and node-level systems have been developed to manage different individual

components including DVFS for a processor (the Soft-DVFS approach in our evaluation) [54],

per-core DVFS in a multicore [48], processor idle-time [32, 111], and DRAM [23].

Several researchers have noted that coordinating multiple components provides greater

performance under a power cap than management of a single component in isolation [3, 36,

39, 59, 63, 72]. Thus, approaches have been proposed which provide power guarantees while

increasing performance through coordinated management of multiple components, includ-

ing processor and DRAM [13, 21, 22, 29, 57, 83], processors speed and core allocation [15,

79], combining DVFS and scheduling [77, 103], memory and disk speed [58] and combining

DVFS and process placement [64]. The VirtualPower project coordinates power manage-

ment, virtual machine placement, and server consolidation to meet power constraints in a

virtualized data center [72]. Despite differences in mechanisms, these techniques all solve a

common problem: select the highest performance set of resources that respect a given power

limit. All of these projects found higher performance is available through the coordination
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of multiple resources. With these results, it is not surprising that a hardware solution alone

would not achieve high efficiency for some applications.

We take the position that power management should not solely be the domain of hard-

ware, but must be supported by both hardware and software coordinated through the oper-

ating system.. The different resources required by different application workloads are simply

too complicated for hardware to handle alone [26]. Hardware should be used to quickly

enforce power limits, as hardware can simply act faster than software. Software techniques,

however, should be used to determine the set of resources to activate that achieve the best

performance under the power limit, considering the current workload. This paper has pre-

sented a general, decision-based approach for performing this coordination.

PUPiL complements other approaches which schedule applications to minimize energy

[40, 65, 101, 112]. PUPiL determines what set of resources to activate, but it does not

explicitly assign those resources to applications. Instead, it lets the underlying operating

system scheduler perform that work. In this paper, that scheduler was simply the default

Linux scheduler. It is likely that further performance gains could be achieved by coupling

PUPiL with advanced energy-aware schedulers.

2.2 Motivational Example

Table 2.1: Server resources.

Processor Cores Sockets Speeds (GHz) TurboBoost

Xeon E5-2690 8 2 1.2–2.9 yes

HyperThreads Memory Controllers Socket TDP (W) Configurations

yes 2 135 1024

This example highlights the different tradeoffs in hardware and software power capping

approaches and motivates the need for a hybrid design. We run the x264 video encoder on

an Intel Linux/x86 system. We compare the timeliness and efficiency of both Intel’s RAPL

hardware and a software approach that can adjust many settings (presented in Chapter 2.3).
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Figure 2.1: Tradeoff between timeliness and efficiency from hardware and software power
capping, running x264.

Our test system is a dual-socket server with two Intel SandyBridge Xeon E5-2690 pro-

cessors and 64GB of RAM. These processors support RAPL, but also have a number of

configurable resources which affect power and performance tradeoffs, listed in Table 2.1.

Each processor supports 15 frequency settings plus TurboBoost. Each is 8 cores, with hy-

perthreading, giving a total of 32 virtual cores across both sockets. These processors have a

thermal design power (TDP) of 135 Watts, but experimentally we find it extremely rare for

any workload to sustain that power consumption.

To illustrate the difference between hardware and software power capping, we set a 140

Watt power cap total for both sockets. RAPL must achieve this power consumption by

driving each socket to 70 Watts (this is the optimal solution without thread migration,

over which RAPL has no control). In contrast, the software approach configures a range

of parameters: 1) how many sockets to use, 2) how many cores to use on each socket, 3)

whether to use hyperthreads or not, 4) how many memory controllers to use, and 5) the

frequency of each socket. For both the hardware and software approaches we measure power

and performance (in frames encoded per second) as a function of time.
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Figure 2.1 illustrates the results, with power shown in the top chart and performance

shown on the bottom. Each chart shows time on the x-axis. The hardware approach is

represented by the solid line, and the dashed line represents the software approach. Clearly,

both approaches meet the power cap – RAPL hits the cap quickly while the software approach

operates below the cap for approximately 20 seconds, briefly exceeds it, and finally settles

at 140 Watts.

The performance results, however, show that once the software approach converges, it

delivers 20% more performance than RAPL. Specifically, after convergence, the software ap-

proach averages approximately 41 frames per second while RAPL averages approximately

33.5 frames per second. Software outperforms hardware because it recognizes that hyper-

threads do not help this application on this system. Using hyperthreads results in greater

power consumption and a small performance loss. The software approach recognizes that

it should not make use of hyperthreads and instead it increases the speed of the cores it is

using without hyperthreads. Of course, it takes software a long time to recognize and adjust.

These results demonstrate the need for a hybrid approach that enforces power caps with

hardware’s speed, but has software’s flexibility to adapt resource usage to the particular

application (or applications) running on the system.

2.3 Power Capping Methodologies

This section introduces the different power capping approaches we explore in this paper. It

first discusses our software approach. It then describes RAPL, a state-of-the-art hardware

power capping system. Finally, it introduces PUPiL, a hybrid of software and hardware

approaches.

We assume that a computer system is configurable; i.e., it has resources or other parame-

ters whose usage can be tuned to navigate performance/power tradeoffs. For each approach,

the goal is to configure these resources to meet a power cap in a timely and efficient man-

15



ner. Timeliness means the cap is quickly enforced. Efficiency means the system delivers

maximum performance under the cap.

All three power capping approaches (software, hardware, and PUPiL) operate based on

feedback. These approaches observe their environment, decide on a response, and act to

implement their decisions. This feedback loop is repeated continually, allowing the power

capping system to react to application phase changes or other environmental fluctuations.

We use this observe-decide-act framework as a basis for understanding the methodologies of

the three different power capping approaches addressed in this paper.

2.3.1 Software Power Capping

This section discusses how the software system implements observation, decision, and action.

Observe

In the observation phase, the software collects power and performance feedback.

Power feedback can come from any number of power monitoring mechanisms. For exam-

ple, external power meters such as a WattsUp device can be used. Other alternatives include

on-board power monitoring devices, such as the INA231 [46], or on-chip power monitoring,

which is available commercially from Intel [16] and through research prototypes [88].

Performance feedback can also come from a number of sources. High-level performance

feedback can come directly from appropriately instrumented applications [38]. It could also

come from any number of other sources, including hardware counters that measure floating

point computation rate or simply instructions per second [92, 96]. While the methodologies

in this paper will work with any metric, the authors personally advocate the use of high-level

application-specific feedback, if available as such allows a power capping system to ensure

efficiency in terms of real application progress.

One issue with feedback is that real systems are noisy. To meet the efficiency challenge,
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a power capping system should ensure that it is reacting to persistent phenomena and not

some transient effect that momentarily disturbs performance. That is, the system should

distinguish between a fundamental change in application workload and a temporary timing

fluctuation (e.g., due to a page fault). The power capper should adjust in the first case, but

ignore the second case.

To address noise and ensure that the system acts on meaningful feedback, the software

approach employs a deviation based filter to remove outliers. Specifically, the software

approach measures performance over a window, filters any data that falls more than 3-

standard deviations from the mean, and averages the rest. Assuming, X is the list of

performance measurements collected, µ is the average of unfiltered X, σ is the standard

deviation of unfiltered X, then Xfeedback is the performance feedback used by the system

to make decisions:

µ =

∑

iXi

N
(2.1)

σ =

√

∑

i

(

X i − µ2
)

N
(2.2)

Xfeedback =

∑

j∈AXj

size(A)
(2.3)

A =
{

j | |Xj − µ| < 3σ
}

(2.4)

Decide

In the decide phase, the software selects a resource configuration. One way to select the

best configuration would be to simply walk through all configurations until we find the

highest performance configuration that respects the power cap. This approach has the twin

drawbacks that it fails to meet the timeliness challenge and it may fail to respect the power

cap. In general, the number of possible resource configurations will grow exponentially as

we add more resources. Thus exhaustive search is simply not feasible.
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Algorithm 1 Walking the decision framework.

Require: Set of ordered resources R
Require: Power cap P

Put system in minimal resource configuration
U ← R ⊲ the set of untested resources
while U 6= ∅ do ⊲ While untested resources
〈perfold, powold〉 ← GetFeedback()
r ← RemoveNext(U) ⊲ next resource in order
set r to highest setting
wait r.d time units ⊲ Account for resource delay
〈perfcur, powcur〉 ← GetFeedback()
if perfcur < perfold then

return r to lowest setting
else

if powcur > P then
s← BinarySearchResourceSettings(r)
set r to s

⊲ This may return the resource to its lowest setting.
end if

end if
end while

Any software approach must find a more intelligent way to explore the configuration

space. In this paper, we propose a novel decision framework. To begin, the system orders

the available resources (the ordering process is described below). It then starts in the lowest

resource configuration. Proceeding through resources in order, the approach puts the next

resource into its highest setting. Feedback is measured in this new configuration. The

software compares the performance feedback of the current configuration to that of last

configuration to decide whether 1) performance has improved by using this new resource

and 2) the resource usage respects the power cap. Algorithm 1 specifies the decision making

process.

Algorithm 1 requires an ordered set of resources. The order is determined by Order()

(detailed in Algorithm 2). The algorithm first sets the system to the smallest resource

configuration. It then puts the resources into a set of untested resources. While this ordered

set of untested resources is non-empty, the algorithm measures power and performance (using

the helper function GetFeedback()). It then takes the next resource in order and sets it to

its highest configuration setting (using the Set() helper function), waits a resource-specific
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amount of time, and then measures the feedback again. If this resource provided higher

performance, then the algorithm fine tunes the resource setting, otherwise it returns to the

lowest setting for this resource. The fine tuning process involves performing a binary search

on resource settings to find the highest performance setting that is under the power cap (the

BinarySearchResourceSettings() helper function).

We use binary search on a resource-by-resource basis to avoid exhaustive search’s over-

head. This is an engineering tradeoff. Component-wise binary search is fast, but can get

stuck in local extrema and miss the global optimal solution. In exchange, however, it scales

well even as the number of configurable resources grows. In practice, this approach works

well because resources tend to have a single peak. For example, not all applications can use

all cores, but there tends to be a single best core count with no local extrema.

There are four helper functions for this approach. Three are straightforward and their de-

tailed descriptions are omitted for space. We provide a brief overview here. The GetFeedback()

function simply measures and returns power and performance data. The Set() function is

used to configure the resource. The BinarySearchResourceSettings() function simply does a

binary search on the available configurations for a resource. Its goal is to find the highest

performance setting that respects the power cap. The ordering function is the fourth helper

and it is described below.

The ordering function is essential to Algorithm 1. The software approach establishes the

ordering based on the potential impact of each resource. Higher impact resources have prece-

dence over lower impact resources. Algorithm 2 shows the algorithm used for establishing

this order. The intuition is to allocate power first to higher impact resources so that we can

tune the performance from coarse-grained knobs to fine-grained knobs. We evaluate impact

of a resource by the performance improvement that it delivers when activated individually.

The one exception is DVFS, which is used at the end to fine-tune power within the cap. To

determine impact, we calibrate the system using a well-understood, embarrassingly parallel
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Algorithm 2 Ordering Resources in Calibration.

Require: Set of resources R excluding DVFS
Require: a calibration benchmark without inter-thread communication

Put system in minimal resource configuration
U ← R ⊲ the set of disordered resources
while U 6= ∅ do ⊲ While disordered resources

r ← RemoveNext(U) ⊲ next resource in random order
set r to highest setting
wait r.d time units ⊲ Account for resource delay
perfr ← GetFeedback()
return r to lowest setting
add r to O

end while
Sort r in O by perfr
Add DVFS to the last in O return O ⊲ The set of ordered resources

application. Based on our results, the ordering is insensitive to different applications; i.e.,

the decision tree finds a near-optimal configuration using the same calibrated ordering for

all applications. The detailed process for establishing the order is shown in Algorithm 2.

Act

In the act phase, the software implements the resource allocation proposed by the decision

phase. For example, if the decision phase decides to test a resource, the act phase is re-

sponsible for actually assigning that resource to the active applications. To implement the

act phase, the software requires two pieces of external information. The first is a timing

information about how long to expect from when the resource is allocated to when its effects

can be observed. This information is required so that the software does not take a new ob-

servation before the resources have actually had an effect. The second piece of information

is a function that implements the resource allocation. As most resources are allocated in

system-specific ways, this function is necessary to maintain the generality of the approach

and let it work on multiple systems.

Given this information, the action phase simply consists of setting the resource config-

uration to that specified by the decision phase and then putting the decision framework to
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sleep for the time it will take to see the resource effects. To increase efficiency, the software

keeps track of the previous resource allocation and only changes those resource settings which

changed since the last decision.

2.3.2 Hardware Power Capping

We briefly outline the approach taken by Intel’s RAPL system [16], in terms of observation,

decision, and action. RAPL receives a power cap and a time interval through a machine

specific register (MSR). RAPL observes various low-level hardware events and estimates

power consumption from those event counts. RAPL determines an energy budget that

would meet the desired power cap during the specified time interval. For example, if the

time interval is 0.5 seconds and the power cap is 100 Watts, the energy budget is 50 Joules.

RAPL sub-divides the user-specified time interval into a set of smaller intervals. For

each of these fine-grained intervals, RAPL calculates the remaining energy budget for the

remaining time in the user-specified interval and decides the best possible processor speed

and voltage. Given this decision, RAPL sets DVFS to the decided state and waits for the

next fine-grained interval. More detail on RAPL operation is available in the literature [16].

It is instructive at this point to compare the hardware and software approaches. Software

is clearly flexible, the approach in Algorithm 1 will work with any set of available resources

– the only requirement is that we must be able to establish an order on these resources. The

drawback of software is that configuring the system requires executing Algorithm 1, which

can be costly (as shown in Figure 2.1). In contrast, RAPL observes only power feedback

(not performance), makes decisions by solving a linear equation, and acts by only tuning

voltage and frequency only. All three steps can be done within milliseconds and this ensures

the timeliness of hardware approach. However, because RAPL lacks performance feedback

and considers only DVFS, this hardware approach cannot deliver the highest performance

for many applications.
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Figure 2.2: PUPiL’s approach to hybrid hardware/software power capping.

2.3.3 PUPiL’s Hybrid Power Capping

Our goal is to obtain the efficiency of the software approach and the timeliness of hardware

approach. Thus, we propose PUPiL, a hybrid power capping system that incorporates

software and hardware to achieve the benefits of both.

Timeliness

We need the system to respect the power cap as soon as the cap is set. To achieve this

timeliness, hardware power capping approach has to be in charge of capping the power

instead of the much slower control loop of software approach. Thus, we set the power cap

in hardware first, before exploring other resources. Meanwhile, to avoid interference with
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the hardware approach, we remove processor speed and voltage from the set of resources

controlled by software. Leaving hardware in charge of voltage and speed ensures timeliness

and reduces the configuration space software much search.

Figure 2.2 illustrates PUPiL’s hybrid decision framework. The major difference between

the software-only approach and Figure 2.2’s is that the hybrid approach explicitly sets RAPL

before exploring the configuration space determined by the non-DVFS resources. To achieve

this in practice, we modify Algorithm 1 so that it first sets the RAPL power cap.

Efficiency

We need to find the optimal configuration for the running application. This requires two

modifications to the decision algorithm shown in Algorithm 1.

First, the power cap is now met by hardware so PUPiL need only manage performance.

Thus, the hybrid approach excludes all the power condition checks in Algorithm 1 – PUPiL

assumes RAPL ensures the power cap.

Second, power distribution among different chips in a multi-socket environment has to

be reconsidered. Hardware power capping caps power on a per-socket manner. However,

when we consider thread migration as a tunable parameter, the optimal configuration for an

application or workload is often asymmetric, so it is necessary to distribute power accordingly

instead of using a default even distribution. PUPiL, therefore, uses a core-number based

power distribution across different chips. More specifically, PUPiL distributes the dynamic

power (power cap minus static power) proportional to the core number being used by each

chip. PUPiL achieves this by setting corresponding hardware power cap to each chip. Thus,

whenever there is core number configuration adjustment, power distribution adjusts with it.
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2.4 Experimental Setup

This section describes benchmarks, system, metrics, and points of comparison we use to

evaluate PUPiL.

2.4.1 Benchmarks

We use 20 benchmark applications from three different suites including PARSEC (x264,

swaptions, vips, fluidanimate, blackscholes, bodytrack) [7], Minebench (ScalParC,

kmeans, HOP, PLSA, svmfe, btree, kmeans fuzzy) [71], and Rodinia (cfd, nn, lud, particle-

filter)[11]. We also use a partial differential equation solver (jacobi) and the swish++

search web-server [41] and dijkstra [47]. These benchmarks test a range of important

modern applications, both compute-intensive and memory-intensive. All applications run

with up to 32 threads (the maximum supported in hardware on our test machine). In

addition, all workloads are long running, taking at least 10 seconds to complete. This

duration gives us plenty of time to take measurements of system performance and power.

2.4.2 Platform

We use a dual-socket Intel/Linux system with a SuperMICRO X9DRL-iF motherboard and

two Xeon E5-2690 processors (see Table 2.1). This motherboard supports setting RAPL’s

power capping feature. The system runs Linux 3.2.0. We use the msr module, to access the

model specific registers that implement RAPL. We use the cpufrequtils package to set the

processor’s clock speed. These processors have eight cores, fifteen DVFS settings (from 1.2

– 2.9 GHz), hyper-threading, and TurboBoost. In addition, each chip has its own memory

controller, and we use the numactl library to manage memory controller use. In total, the

system supports 1024 user-accessible configurations, each with its own power/performance
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Table 2.2: System configurations.

Configuration Settings Max Speedup Max Powerup

cores per socket 8 7.9 2.1
sockets 2 2.0 1.7
hyperthreading 2 1.9 1.2
mem controllers 2 1.8 1.1
clock speeds 16 3.2 3.4

tradeoffs1. The thermal design power for these processors is 135 Watts.

Given those specifications, the following resources are configurable: the clock speed of

each socket, core use per socket, hyperthreading, the number of sockets in use, and the

number of memory controllers in use. Manipulating thread affinities allows us to change the

cores per socket, the active sockets and the use of hyperthreading.

As described in Chapter 2.3, implementing the software decision system requires ordering

the set of resources under consideration. Table 2.2 lists these resources in the order estab-

lished by Algorithm 2. For each resource in the table, it lists the speedup and power up

(increase in power, analogous to speedup) measured during the ordering process.

2.4.3 Evaluation Metrics

Our goal is to evaluate the timeliness and efficiency of various power capping approaches. To

compare approaches, we must quantify these properties. We evaluate timeliness by measuring

settling time. We evaluate efficiency by measuring the performance achieved by a workload

under a power cap.

1. 16 cores, 2 hyperthreads, 2 memory controllers, and 16 speed settings (15 DVFS settings plus Turbo-
Boost)
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Timeliness

Settling time is a standard metric for a control system [35]. Given a power cap, it may take

some amount of time for the controller to stabilize the system at that power. We call the

period after which the system stabilizes the steady state and we denote the time at which the

system enters steady state as tss. If the controller begins work at time t0, then the settling

time is simply:

settle = tss − t0 (2.5)

Efficiency

Efficiency is the performance delivered under a power cap. We evaluate efficiency using

weighted speedup. This is a standard metric for multi-application workloads that weights the

performance each application achieves in a multi-application scenario by the performance it

would achieve in isolation. This metric has been demonstrated to be both consistent and

fair [27].

2.4.4 Points of Comparison

To evaluate PUPiL, we compare it to several other techniques:

• RAPL: The primary approach with which we compare.

• Soft-DVFS: This is a software approach that sets the DVFS settings using the

cpufrequtils package. Our implementation is modeled on a prior approach proposing

a software-based DVFS control system [54].

• Soft-Modeling: This is a software approach that models the power for different

configurations in an offline manner. That is, it uses multiple regression to estimate the

power and performance of an application as a function of assigned resources (in this

case, clockspeed, memory controllers, sockets, cores per socket and hyperthreads). This

approach is an extreme case of a predictive model that needs no feedback information
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at runtime.

• Soft-Decision: This is the software-only decision framework described in Chap-

ter 2.3.1.

• Optimal: This is determined by running each application in every possible system

configuration and measuring its performance. The optimal configuration achieves the

best speed for a given power cap.

2.5 Experimental Evaluation

This section evaluates PUPiL’s timeliness and efficiency. To enable others to perform sim-

ilar evaluations, we have made the software and scripts used to perform this evaluation

available online. We begin by evaluating single application workloads and then address

multi-application workloads.

2.5.1 Single Application

To evaluate power control methods for single application workloads, we launch each applica-

tion under a power cap and measure both its performance and settling time. We evaluate 5

different processor power caps: 60, 100, 140, 180, and 220 Watts. When setting the caps for

both RAPL and Soft-DVFS, we split the power budget between both sockets evenly as this

is the optimal allocation when no other resource is considered. Soft-Decision and PUPiL are

free to divide the power cap among the sockets as they see fit when they migrate threads.

There are no Soft-DVFS or Soft-Modeling data for the 60W cap. For Soft-DVFS, even

the lowest p-state exceeds the 60W power cap when using all cores and hyperthreads. For

Soft-Modeling, the errors for this cap are extremely large; approximately 70% of the data

points for this technique exceed the power cap. This demonstrates a disadvantage of a

system that uses no online feedback to correct its models. It has no ability to recover when

the models have high error. PUPiL, in contrast, uses a very simple model but the feedback
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Figure 2.3: Performance of several power control techniques normalized to optimal.

constantly corrects.

2.5.2 Performance

Figure 2.3 shows the performance delivered under each cap for each application. This figure

contains one chart for each power cap. The x-axis shows the benchmark, the y-axis shows

performance normalized to optimal (1 is the best possible performance). The charts show

one bar for each of RAPL, Soft-DVFS, Soft-Modeling, Soft-Decision, and PUPiL.

While results vary per application and power cap, the general trends show that Soft-

Decision provides higher performance than RAPL with Soft-DVFS and Soft-Modeling com-

parable to RAPL. Furthermore, the hybrid approach generally provides the highest per-

formance. The harmonic mean performance for each power cap and power controller is

summarized in Table 2.3. This table shows PUPiL consistently outperforms RAPL and
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Table 2.3: Comparison of Harmonic Mean Performance.

Power Cap RAPL Soft-DVFS Soft-Modeling Soft-Decision PUPiL

60W .54 - - .70 .71
100W .68 .66 .66 .80 .85
140W .74 .71 .65 .87 .89
180W .78 .74 .76 .88 .92
220W .79 .75 .85 .91 .94
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Figure 2.4: Settling times for several power control techniques.

Soft-DVFS across all power caps by at least 18% (at the 180W cap) and at most 32% (at

the 60W cap).

Soft-Modeling takes the advantage historical power data and configures the machine

based on the predicted power. It, however, has no guarantee of respecting power cap because

it has no feedback mechanism. For some applications and power caps (e.g., HOP, swish++

at 100W), it outperforms all other approaches by exceeding the power cap. The average

performance of Soft-Modeling is still not good compared to Soft-Decision and PUPiL, despite

the fact that it sometimes exceeds the caps. Furthermore, Soft-Decision is very close to

PUPiL. These results confirm that multi-resource approaches out perform systems that only

manipulate DVFS, whether in software or hardware.

Clearly RAPL performs well on some applications (e.g., btree and svmfe) and poorly

on others (e.g., dijkstra and kmeans). Figure 2.5 shows the computation (in instructions

per second) and memory bandwidth (in GB/s) for each benchmark. Blue dots represent
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applications for which RAPL does well (is within 10% of optimal for the 140 W cap) and

red dots show applications for which RAPL achieves poor efficiency (greater than 10% from

optimal). Clearly simple notions like memory-bound or compute bound are not good pre-

dictors of RAPL efficiency. For example, RAPL performs poorly on STREAM (which has the

highest memory bandwidth), yet does well with jacobi (which has the second highest mem-

ory bandwidth). RAPL generally performs well for applications that have ample parallelism

and scale well to use all 32 virtual cores. RAPL generally performs poorly on applications

with scaling issues or limited parallelism. For such applications, it is better to restrict the

resources they are using and increase the speed of this small subset.

0 20 40 60 80
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RAPL near optimal

RAPL > 10% from optimal

Figure 2.5: Benchmark
characteristics.

For example, kmeans scales well with more cores on a socket.

When kmeans is allocated cores on both sockets, however, inter-

socket communication becomes a bottleneck, so kmeans contin-

ues to issue instructions and burn power but without increasing

speed. RAPL and Soft-DVFS must reduce clock speed to meet

the power cap. In contrast, both Soft-Decision and PUPiL rec-

ognize that the second socket decreased performance, and they

restrict kmeans to a single socket but increase its speed, resulting

in higher performance.

2.5.3 Settling Time

For each application and power cap we measure settling time.

Soft-Modeling is omitted as there is no settling time for this offline

approach. Figure 2.4 shows the settling times for all approaches and applications under the

140 Watt cap. Results for other caps are similar (only 1-2% different) and are omitted for

space. Each application is shown on the x-axis and settling time (measured in milliseconds)

is shown on the y-axis (in a logarithmic scale).
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Table 2.4: Multi-application Workloads.

Name Benchmarks

mix1 jacobi, swaptions, bfs, particlefilter

mix2 cfd, bfs, fluidanimate, jacobi

mix3 blackscholes, cfd, jacobi, fluidanimate

mix4 particlefilter, blackscholes, swaptions, btree

mix5 x264, dijkstra, vips, HOP

mix6 STREAM, fuzzy-kmeans, HOP, dijkstra

mix7 STREAM, kmeans, vips, HOP

mix8 kmeans, dijkstra, x264, STREAM

mix9 jacobi, swaptions, fussy-kmeans, vips

mix10 cfd, bfs, x264, HOP

mix11 jacobi, blackscholes, dijkstra, fuzzy-kmeans

mix12 btree, particlefilter, kmeans, STREAM

The data in Figure 2.4 demonstrates the tremendous advantages in timeliness that RAPL

has over Soft-Decision. On average, across all benchmarks, RAPL’s settling time is 356 ms.

In contrast, Software-Decision averages 95,000 ms, a difference of approximately 260 × and

soft-DVFS averages 7,300ms, a difference of approximately 13 ×. These results demonstrate

the claims of timeliness made in the introduction to the paper. RAPL has significant time-

liness advantages over software approaches. PUPiL, however, is able to maintain RAPL’s

timeliness advantages, averaging 365 ms. The small increase in overhead is due to the fact

that the power cap is now set through PUPiL’s software interface rather than directly setting

the register in hardware.

These results demonstrate the main claims in the introduction. Specifically, RAPL’s

hardware approach addresses the timeliness challenge. The software approach achieves effi-

ciency gains compared to hardware. The mean performance advantage is at least 18%, while

for specific applications (e.g., kmeans, dijkstra) the gains can be over 2×. Finally, PUPiL’s

hybrid approach meets both the timeliness and efficiency challenges, combining hardware’s

low settling time with software’s high performance.
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2.5.4 Multi-Application Workloads

We evaluate RAPL and PUPiL on multi-application workloads. We begin by dividing our

benchmarks into two sets: ones for which RAPL delivers near-optimal performance (blue

dots from Figure 2.5), and ones for which RAPL is more than 10% from optimal (red dots in

Figure 2.5). We create multi-application workloads by randomly selecting applications from

the two sets. Specifically we create 12 separate mixes, each consisting of four applications.

For the first four mixes (1–4), all applications are drawn from the set for which RAPL is near

optimal. The mixes 5–8 are all taken from applications for which RAPL performs poorly. The

applications in mixes 9–12 include two applications from each set. Table 2.4 summarizes the

workloads: each is given a name – mixN – and we list the applications used in that workload.

We evaluate the multi-application workload by launching all applications at the same time.

We use the weighted speedup for efficiency metrics as described in Chapter 2.4.3.

We evaluate two separate multi-application scenarios: cooperative and oblivious. In the

cooperative scenario, we assume all applications know that they are running with other

applications; each is launched with only 8 threads, so that the total number of active threads

is equal to the number of virtual cores. In the oblivious scenario, we assume that each

application is launched without regard to the other applications in the system and each

requests 32 threads, for a total of 128 alive in the system. We compare the performance

achieved by RAPL and PUPiL in these two scenarios.

Cooperative Performance

The performance for the cooperative multi-application scenario is shown in the left column

of Figure 2.6. There is a chart for each power cap. The y-axes show the ratio of PUPiL

to RAPL weighted speedup (higher means PUPiL outperforms RAPL) for each application

mix (shown on the x-axes).

The performance comparison for the cooperative scenario reveals similar trends to the
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Figure 2.6: Ratio of PUPiL to RAPL performance in cooperative (left) and oblivious (right)
multiapp scenarios.

Table 2.5: Ratio of PUPiL to RAPL Performance.

Power Cap Cooperative Oblivious

60W 1.43 2.53
100W 1.21 2.56
140W 1.18 2.44
180W 1.18 2.46
220W 1.21 2.43

single-application scenarios. There are several mixes for which PUPiL and RAPL achieve

similar performance and others where PUPiL far outperforms RAPL. Table 2.5 shows the

ratios of PUPiL to RAPL performance across all mixes for each power cap. In the cooperative

scenario, PUPiL outperforms RAPL by at least 18% across all power budgets.

Single-application performance is not necessarily a good indicator of multi-application

performance. For each power cap there are examples where PUPiL far outperforms RAPL.

For example, across all power caps PUPiL achieves much higher performance for mix2. This

happens despite the fact that all applications in mix2 are drawn from the set for which RAPL
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provides good individual performance. This result shows that multi-application workloads

can have complicated behavior and it justifies the need for an adaptive approach, like PUPiL,

that can accommodate the unexpected.

Oblivious Performance

Figure 2.6’s left column shows the performance for the oblivious multiapp scenario. Re-

call that in the oblivious scenario, each application requests 32 threads. The performance

results show that PUPiL provides significantly better performance than RAPL in the obliv-

ious multi-application case. The summary results across all performance caps are shown in

Table 2.5, which indicates that PUPiL achieves at least 2.4× better aggregate performance

than RAPL. Furthermore, this advantage can jump up to as much as 6× for some application

mixes.

These results demonstrate that in a system that reflects the oblivious multi-application

workload – where every application is trying to claim as many resources as possible – RAPL

by itself is simply not sufficient to provide high performance under the power cap. Instead,

the flexibility of a system like PUPiL is needed to carefully manage resource usage and de-

liver high performance. The reason for PUPiL’s higher performance is that these oblivious

workloads typically bottleneck on some non-computational resource. This bottleneck is usu-

ally either intersocket communication bandwidth or memory bandwidth. This bottlenecking

in the multi-application scenario is similar to what we have seen in the single application

case, but now the consequences are more dire. We explore the reasons for this more in the

next section.

Detailed Multiapp Data

This section presents some low-level metrics collected to explain the performance difference

between PUPiL and RAPL in the oblivious multiapp case. To look for major differences
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Table 2.6: PUPiL and RAPL Multiapp Performance.

Workload Spin Cycles (%) Memory Bandwidth (GB/s)
RAPL PUPiL RAPL PUPiL

mix7 15 0.23 14.6 23.8
mix8 54 .48 17.5 30.3
mix12 33 .40 14.3 27.0

between RAPL and PUPiL we use Intel’s VTune tool to collect low-level metrics for the

application mixes under both RAPL and PUPiL control.

VTune collects a tremendous amount of data on applications, but when looking at the

metrics, two things stood out: spin cycles and memory bandwidth. This data is shown in

Table 2.6 for the three mixes where PUPiL outperforms RAPL by the greatest amount.

For each mix, the table shows the percentage of time spent executing spin cycles, cycles for

which the processor is retiring instructions, but no forward progress is being made (e.g.,

test-and-set instructions which fail the test). The table also shows the achieved memory

bandwidth in MB/s for these three mixes.

Table 2.6 shows that under RAPL control these mixes spend significantly larger portions

of their time spinning and achieve a significantly smaller memory bandwidth. We believe the

problem is that one of the applications in these mixes uses polling synchronization during a

fairly long serial portion of operation. The other applications appear to be largely memory

limited and are either embarrassingly parallel (no or limited synchronization) or use condition

variables to synchronize. Therefore, these other applications need memory bandwidth and

yield the CPU when they cannot make progress. The one application that does polling

synchronization, however, ruins the behavior of the entire system, as when it gets the CPU

it holds it for its entire scheduling quantum while making minimal forward progress. This

behavior limits the ability of the other applications to make progress as well. When the mix

is scheduled on fewer cores, however, its overall performance increases dramatically. In this

case, the polling benchmark (1) has much less contention, (2) finishes its work faster, and

(3) yields the cores to other applications more often, boosting the overall performance.
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Figure 2.7: Energy efficiency of several power control techniques normalized to optimal.

2.5.5 Energy Efficiency

We compare RAPL’s and PUPiL’s energy efficiency. We report performance divided by

power, which shows how much work can be done per joule. Single application workloads

results are shown in Figure 2.7. As before, we normalize efficiency of all approaches to

the optimal. Soft-decision and PUPiL produce 1.15-1.3× energy efficiency compared to

RAPL or Soft-DVFS. Figure 2.8 shows the multi-application workload results. PUPiL has

a 5–40% improvement of energy efficiency compared to RAPL across different power caps.

These results show PUPiL produces good energy efficiency even though saving energy is not

PUPiL’s primary purpose.
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Figure 2.8: Ratio of PUPiL to RAPL energy efficiency in cooperative (left) and oblivious
(right) multiapp scenarios.

2.5.6 Sensitivity and Overhead Analysis

Throughout this section we investigate several factors which affect the results. Our results

examine sensitivity to various power caps. Performance under very low power caps is difficult

for any power management system. In addition, PUPiL provides consistent performance

improvements in both single and multiapp scenarios. Further, the use of diverse workloads

demonstrates that some applications achieve high performance with RAPL alone, while

others need the greater flexibility of PUPiL’s hybrid approach.

In a feedback based system, overhead can take two forms: 1) the number of measurements

that need to be taken before the system converges and 2) the impact on the converged system.

Our results account for both forms of overhead. All reported results include the power and

performance impact of the power capping systems themselves. The first type of overhead is

measured directly in terms of settling times shown in Figure 2.4. Both software approaches

have very high, likely unusably high, overhead by this metric. The second type of overhead
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is accounted for by the comparison to optimal in Figure 2.3. This figure shows that the

performance impact of the PUPiL runtime system is acceptable in that PUPiL produces the

closest to optimal performance.

2.6 Conclusion

This paper investigates hardware and software power capping techniques. We find that

hardware techniques provide significantly faster response time – quickly enforcing power

limits – while software can provide much greater flexibility – by tailoring resource usage to

the current application workload. We have used these observations to formulate and evaluate

a hybrid hardware/software power capping system called PUPiL. We evaluate PUPiL and

compared it to a pure software approach and to Intel’s state-of-the-art hardware approach.

Across a number of power targets and workloads, we find that PUPiL achieves nearly the

same response time as the hardware approach and the flexibility of the software approach.

In both single and cooperative multi-application workloads, PUPiL provides at least 18%

greater mean performance than RAPL. In oblivious multi-application workloads, PUPiL

provides at least 2.4× the mean performance. We conclude that delivering performance

under a power cap cannot be left to hardware alone, but requires the cooperation of both

hardware and software. We have developed one such cooperative approach and released the

code and test cases so that others can use it, compare against it, or extend it.
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CHAPTER 3

POWERSHIFT : PERFORMANCE & ENERGY TRADEOFFS

FOR DEPENDENT DISTRIBUTED APPLICATIONS UNDER

SYSTEM-WIDE POWER CAPS

This chapter presents PowerShift , a family of three techniques for shifting power between

dependent applications in a distributed system.

Large scale parallel machines are subject to system-wide power budgets (or caps). As

these machines grow in capacity, they can concurrently execute dependent applications that

were previously processed serially. Such application coupling saves IO and time as the

applications now communicate at runtime instead of through disk. Such coupled applications

are predicted to be a major workload for future exascale supercomputers; e.g., scientific

simulations will execute concurrently with in situ analysis. While support for system-wide

power caps has been widely studied, prior work does not consider the impact on coupled

applications.

We study techniques for maximizing coupled application performance under a system-

wide power cap and implement them on a 26-node cluster. We compare to SLURM, a state-

of-the-art job scheduler that considers power, but not coupling. The proposed techniques

increase mean performance over SLURM by 7–14%. Unlike existing approaches, the proposed

techniques also recognize when it is not possible to increase performance and, instead, reduce

energy, achieving 18% energy reduction for a 5% performance loss. Finally, the dynamic

techniques are resilient to tail behavior and system noise, improving performance in noisy

environments by 30–36%.

The rest of this chapter are organized as follows: First, Chapter 3.1 discusses the re-

lated works in this domain. Next, Chapter 3.2 introduces motivational examples. Then,

Chapter 3.3 demonstrate the 3 system framework and algorithms. After that, Chapter 3.4
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presents the experimental setup, results, and discuss its reason and insight. Finally, Chap-

ter 2.6 concludes this work.

3.1 Related Work

Large-scalde computings systems are limited by power consumption. Power and energy

management is extremely important for data centers [18, 28, 36, 69, 100] and it has long

been important for mobile and embedded systems [30, 31, 37, 44, 55, 68, 81, 90, 107].

For HPC and data center power management, hooks exist at multiple levels; e.g., the pro-

cessor [16], load balancer [10], enclosure [78, 100], and the installation itself [28]. Raghaven-

dra et al. present a method for ensuring that power management systems at multiple levels

coordinate to stabilize at the desired power [76].

Apart from simply respecting a power cap, though, it is important to deliver performance.

Several approaches examine the problem of maximizing performance subject to a power cap.

Again, this work can be done at the processor-level [39, 43, 79, 109], DRAM [16], storage [52],

and across a data-center [61, 72]. At the data-center or cluster-level, power can be saved by

consolidating workloads to use fewer physical machines [19, 49, 62, 66, 67, 105], coordinating

co-existing applications [80], and scheduling with green power [34] Other approaches shift

power from different components within the data center (e.g., from processor to memory)

to ensure that those components that provide the biggest speedup get sufficient power [63].

These approaches do not consider dependent jobs, but simply work to maximize independent

applications’ throughput.

Scheduling jobs under a power cap has recently become a major concern for HPC oper-

ating systems [9, 24] and job schedulers [4, 33]. Recent work suggests that HPC workloads

can actually achieve higher performance by over-provisioning large-scale installations—such

that using all nodes at full capacity would drastically violate the power budget—and severely

power capping the individual nodes [82].
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Next generation exascale supercomputers are predicted to have a strict operating budget

of approximately 20 MW, but the total power dissipation at full utilization would far exceed

this budget [6]. These systems require sophisticated, distributed power-capping mechanisms

to assure their power budget will not be exceeded; the United States Department of Energy

(DoE) has therefore declared power management a key challenge for exascale [95].

While power concerns create new problems, exascale’s increased capacity creates new

opportunities. Specifically, instead of sequentially running dependent jobs that communicate

through disk, the size of exascale supercomputers allows these jobs to be coupled [2, 6, 12, 51,

95]. That is, two formerly independent jobs can now be run simultaneously and communicate

at runtime. For example, scientific simulations can now be run with in situ data analysis

or visualization providing scientists the insight needed to alter the simulation as it runs [2,

12]. Additionally, separately developed physics simulations can now be run together, sharing

their results to provide much greater fidelity [51]. In fact, the DoE has declared resource

management for coupled application workloads an additional challenge for exascale [6, 95].

Unfortunately, existing work on enforcing power caps across large scale systems does not

account for coupled applications.

Closest to PowerShift is a collection of prior work that shifts power unevenly among jobs

in HPC systems. Power Routing shifts power to maintain throughput and minimize power

infrastructure; it does not support dependent applications [75]. SLURM will shift power

from nodes operating below their budget to those at the budget [89]. Another approach is

aware of application-level semantics and will shift power from processes executing IO (and

thus not using their full power allocation) to those doing computation (i.e., at their power

limit) [84]. Inadomi et al. propose variation-aware power shifting that shifts power within a

single parallel job to compensate for manufacturing variations [45].

While these approaches and PowerShift all move power from one process to another,

PowerShift is unique in its ability to speedup dependent, coupled applications. The key
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Figure 3.1: Performance/power for cluster and pigz.

difference is that PowerShift will move power from one process operating near its cap to

another that is also near its cap. This ability is essential for speeding up coupled applications

whose performance is dependent on the slower application. To the best of our knowledge no

other power shifting system will shift from one high-power process to another to speed up

dependent applications.

3.2 Motivational Example

To highlight the challenges of maximizing coupled jobs’ performance under a power cap we

run the cluster scientific simulation (from the Gadget 2.0 suite) as a frontend job coupled

with pigz, a parallel version of gzip, as a backend job. We compare 3 approaches: Fair,

PowerShift-S, PowerShift-C. The Fair approach allocates equal power to all nodes so that

the cluster power cap is respected.

We test on a 26-node cluster. Each node is a dual-socket with Xeon E5-2670 v3 processors,

256GB of RAM and 10 GigE Ethernet NIC, supporting Intel RAPL technology [16]. Each

processor is 12 cores, with hyperthreading, for a total of 48 virtual cores across both sockets.

These nodes are connected with a 32-port software-defined 40 GigE switch.

We set a 1820W cluster power budget. The offline profiles shown in Figure 3.1 illustrate

the different performance and power tradeoffs for cluster and pigz. There is one power

cap (when the lines cross) where the front and backend performance is equal, and this case
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Figure 3.2: Fair (top) vs. PowerShift-S (bottom).

would require no work. To the left of that cap, we can increase performance by shifting

power from cluster to pigz. To the right of that cap, we can decrease energy by shifting

power away from pigz, as cluster has reached the point of diminishing returns.

cluster iteratively produces output. To reduce storage space, pigz compresses each

output. To produce the charts, we report performance as iteration/s. PowerShift itself

does not measure performance. As shown, when the global power cap is 1820W cluster

reaches 0.258 iteration/s, whereas pigz achieves only 0.143 iteration/s; i.e., pigz is about

half cluster’s speed.

3.2.1 Static Power Shifting

Figure 3.2 compares Fair and PowerShift-S, highlighting the importance of shifting power

from the fast application to the slow one so that they run at the same speed. The top

figure shows Fair and the bottom shows PowerShift-S. We run the coupled workload for

10 iterations, the backend beginning after the first frontend iteration finishes. Fair divides

the power budget equally among all nodes. At the beginning of the couple’s execution,

PowerShift-S uses the individual profiles to determine an unbalanced power distribution
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Figure 3.4: PowerShift-S (top) vs. PowerShift-C (bottom).

such that the jobs finish close together.

With Fair, cluster is much faster than pigz, requiring 4000 seconds. The couple,

however, only finishes when pigz is done—at around 7000s. PowerShift-S allocates pigz

more power to balance performance, resulting in around 6000s elapsed time, as shown in

Figure 3.3. Here, pigz still runs fairly slower than cluster, because there is a physical

limit—imposed by the hardware—on the power we can shift from cluster to pigz.
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3.2.2 Dynamically Shifting Unused Power

Figure 3.3 shows that PowerShift-S is much faster than Fair, but PowerShift-C is faster still.

To illuminate this performance gain, Figure 3.4 compares PowerShift-S and PowerShift-C.

For visibility, this figure shows just the first 1800 seconds of execution, highlighting the

importance of dynamic power shifting to take advantage of application phases. The upper

portion of Figure 3.4 highlights the two distinct phases within one pigz iteration: (1) a

power-hungry phase that compresses data and (2) a low-power phase that waits for more

data. PowerShift-S does not make runtime adjustment and cannot take advantage of pigz’s

low-power phase. PowerShift-C, however, detects unutilized power and shifts it to cluster

for a dramatic speedup. Under PowerShift-C, pigz’s second phase also finishes much faster

and the reason will be introduced in next section. Therefore, PowerShift-C completes the

couple much faster (in about 4000s, see Figure 3.3).

This figure exemplifies power shifting that is not supported by current solutions. When

pigz enters its low-power phase, power can be shifted away from those nodes without perfor-

mance loss. Current schedulers can recognize this. The issue is that when pigz transitions

back to a power-hungry phase, PowerShift has to reallocate power from cluster to pigz

despite the fact that both are operating at or near their assigned budgets. Power shifting

between nodes operating at their caps is a unique challenge of supporting coupled application

performance, not supported by prior work.

3.2.3 Dynamically Shifting Power to Tail Nodes

Dynamic power monitoring also allows shifting power to tail nodes. In coupled applications,

tail nodes ruin the performance of not just their own application, but the entire couple. Fig-

ure 3.5 shows a histogram of completion times for one pigz iteration under both PowerShift-S

and PowerShift-C. Static power distribution has a longer tail, with one node completing in

the 600-700s range while the maximum completion time for dynamic scheduling is 500s.
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Figure 3.6: Tail node power time series comparing PowerShift-S (top), to PowerShift-C
(bottom).

Thus, dynamic power shifting in coupled applications both shifts power from one appli-

cation to another and to tail nodes in either application. Figure 3.6 shows the time series of

one tail node in the pigz application. As noted, pigz has two phases. In the second, most

of the backend nodes finish and wait for a few tail nodes. The tail nodes under PowerShift-S

continue running at the same speed and slow down the entire couple. PowerShift-C detects

that a few nodes do not go to idle in this phase, so it shifts power from the idle nodes to

both the frontend application and the tail nodes. As the bottom figure shows, the tail node

gets more power during the second phase and therefore finishes much faster.
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3.3 Power Management Approaches

We discuss the 5 distributed power capping approaches we evaluate. We briefly review Fair

and SLURM [89]. We then describe our couple-specific approaches: a static power manager

using an offline power profile and two dynamic managers, one using a centralized decision

mechanism, the other making distributed decisions.

All approaches assume there is a node-level power capping mechanism. Many exist in the

literature [54, 79, 109] and Intel RAPL (Runtime Average Power Limiting) is a commercial

example available on all current Intel processors [16]. The Fair and the Static approach

do not involve any runtime operation, while other approaches (SLURM, centralized, and

distributed) make runtime power measurements. The dynamic approaches follow a standard

three step feedback process: (1) observe the current power, (2) decide on a response, and

(3) act to implement the decisions.

3.3.1 Fair Power Allocation and SLURM

In the Fair approach, the system has no prior knowledge of the applications running on top

of it. Therefore, it allocates power evenly to all nodes. Furthermore, at runtime, Fair has

no mechanism to make changes adaptively. SLURM is an open-source job scheduler used by

many supercomputers and clusters. SLURM provides an integrated system for power cap-

ping. SLURM starts with the same initial power distribution as Fair, then monitors actual

power consumption, and redistributes power from nodes operating below their fair budget

to those that are at their budget. This heuristic improves the throughput of independent

applications, but is often sub-optimal for coupled applications as the couple’s performance

is defined by the slowest application.
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Figure 3.7: PowerShift-S overview.

3.3.2 PowerShift-S: Static Power Allocation

PowerShift-S, the static approach, takes advantage of offline application profiles based on

two key concepts:

1. The couple’s performance is determined by the slower of the frontend and backend

applications.

2. All applications have monotonically non-decreasing power/performance tradeoffs; i.e.,

performance may level off with increasing power, but will never get worse.

We assume that we have profiled each application in isolation in the cluster to obtain power

performance profiles, but we have never seen the coupled applications together. The profile

only requires performance and power information. Scalability is not an issue, as the profile

just captures performance as a function of node-level power cap, which does not change with

the number of nodes. For this paper, we sample performance at 15 evenly spaced power

caps, 3 evenly spaced input sizes, and apply quadratic regression to build the model.

Figure 3.7 overviews the high level design. Given the individual application profiles and

a total system power budget, PowerShift-S maximizes performance by choosing the optimal
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Algorithm 3 PowerShift-S Decision Algorithm

Require: Power budget P , Max shiftable power Pm

Require: Accuracy threshold A
Require: Performance improvement threshold T
Require: Sf = {(poweri, perfi)|i = 1, 2, ..., n} for frontend app
Require: Sb = {(poweri, perfi)|i = 1, 2, ..., n} for backend app

Fit Sf ,Sb into functions Ff (power) = perf , Fb(power) = perf
powf = powb = P/2
perff = Ff (powf ), perfb = Fb(powb)
δ = perff − perfb ⊲ assume perff >= perfb
if Ff (powf − pows) >= Fb(powb + pows) then

powf = powf − pows, powb = powb + pows

else
powf = powf − pows, powb = powb + pows

while |δ| > A do ⊲ binary search for optimal power
pows = pows/2
if Ff (powf ) > Fb(powb) then

powf = powf − pows, powb = powb + pows

else
powf = powf + pows, powb = powb − pows

δ = Ff (powf )− Fb(powb)
end if

end while
end if
Power distribution: 〈powf ,powb〉
Final performance: perffinal = min(Ff (powf ), Fb(powb))
Fair performance perffair = min(Ff (P/2), Fb(P/2))
if perffinal > (1 + T ) ∗ perffair then

⊲ decide to enter performance or energy mode
Return (powf , powb) ⊲ Enter performance mode

else
search for Sf ,Sb, find the highest energy efficiency power state, powf and powb, that satisfy

Ff (powf ) >= (1− T ) ∗ perffair and Fb(powb) >= (1− T ) ∗ perffair
⊲ Enter energy mode

end if

static power distribution between the frontend and backend applications. In some cases,

PowerShift-S recognizes that there is no additional performance to be gained, so it enters

an energy savings mode that maintains a user-defined performance, while reducing energy.

Algorithm 3 shows the basic logic of PowerShift-S. It requires the power budget P from the

user and the maximum power that can be shifted from one application to the other based on

the system Pm. It also requires two parameters: (1) the power accuracy A—the tolerance

for error as application performance can usually not be perfectly matched—and (2) the

performance improvement threshold T—the minimum performance improvement over the
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Fair approach required to avoid energy savings mode.

The algorithm first does a binary search for the highest performance power distribu-

tion between the front and back end applications. The power distribution returned is

〈powf , powb〉, which are distributed evenly among the front and backend nodes. The per-

formance achieved here is called perffinal, the performance under Fair is called perffair.

When perffinal > (1 + T ) ∗ perffair—i.e., there is acceptable performance gain—it enters

performance mode and returns power distribution 〈powf , powb〉. Otherwise, it enters energy

mode, where it searches all profile data points for each application to find the highest energy

efficiency such that Ff (powf ) >= (1 − T ) ∗ perffair and Fb(powb) >= (1 − T ) ∗ perffair.

It returns the most energy efficient power state within at least (1− T ) of max performance

for both applications. In our implementation, we choose A = 0.5, because such a small

difference has little effect on performance. We choose performance improvement threshold

T = 3%. The larger T is, the more PowerShift-S prefers to optimize for energy, and the

smaller T is, the more it prefers to optimize for performance.

A simple proof of the optimality is as follows: By concept 2, above, both applications

have monotonically non-decreasing performance as a function of power. Then, at the optimal

state, if we reallocate power from one end to the other, one application slows down, and the

other speeds up. But by concept 1, performance is determined by the time when both

applications finish; i.e., the slower application is the performance limiter. Therefore, any

power shifting from the optimal state will increase the overall runtime.

3.3.3 Dynamic Power Shifting

We propose 2 dynamic power management approaches: PowerShift-C and PowerShift-D.

Critically for coupled applications, both approaches can take power from high-performance

nodes to shift to slower nodes with the result of speeding up the entire couple. PowerShift-

C has a single centralized decision maker. In PowerShift-D decisions are distributed and
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Figure 3.8: PowerShift-C overview.

each node has its own local decision maker. Both approaches take advantage of the offline

profiles and their initial power distribution state is the same as PowerShift-S. In energy

mode, runtime power shift is disabled, because any power state change will cause the coupled

applications to move away from the most energy-efficient power state.

PowerShift-C: Centralized Power Shifting

Figure 3.8 overviews the system design. PowerShift-C starts with the optimal static power

from PowerShift-S and operates on a typical control loop: observing its environment, de-

ciding on a response, and acting to implement its decisions. During observation, it collects

each nodes power usage. To decide a new power distribution, it first groups all nodes into

3 power priority groups (described below) and then it shifts power from those nodes that

either (1) have lower priority or (2) simply have unused power to the nodes that are hungry

for power with a higher priority. Finally, it acts by sending new power capping information

to each node.

Algorithm 4 details PowerShift-C. The algorithm requires a power margin M ; any node
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Algorithm 4 PowerShift-C decision algorithm.

Require: Node number N , power margin M
Require: Optimal static power budget B = {bi|i = 1, 2, ...N}

while application couples not finished do
{powi|i = 1, 2, ...N} ← GetAveragePower()
Power budget of last iteration {bli|i = 1, 2, ...N} ⊲ the average power of each node since last iteration
Group all nodes into 3 priority groups
Group 1 ← {Nodei|powi < bi −M}

⊲ Nodes with extra power
Group 2 ← {Nodei|powi >= bi −M, bli >= bi}

⊲ Nodes at power limit
Group 3 ← {Nodei|powi >= bi −M, bli < bi}

⊲ Nodes at power limit needing more power
if Group 1’s extra power > Power needed by Group 3 then

Shift all needed power from Group 1 to Group 3
Any extra power from Group 1 goes to Group 2

else
Shift power exceeding B from Groups 1 & 2 to Group 3
Any extra power is divided between Group 2 and 3
Sleep(t) ⊲ make power shifting every t time

end if
end while

that consumes power within M of its local power cap is defined to be intensively using power.

Otherwise, the node can reduce power. The central decider first groups each node into 1 of

3 priority classes by its distance to its own power cap and whether its current power cap is

higher than the optimal static power cap. Higher group numbers mean the node needs power

more urgently. Group 1 has power to spare. Group 2 is operating at or near their power

cap, but will not increase the couple’s performance with extra power. Group 3 is operating

at or near the power cap and increased power will increase the couple’s performance. A

key difference between PowerShift and prior work, is that PowerShift will move power from

Group 2—which has high power utilization—to Group 3—which also has high utilization.

Existing schedulers, like SLURM, will only shift from low utilization nodes to high utilization

nodes, making them unsuitable for coupled applications.

After assigning nodes to priority groups, the algorithm checks the shiftable power of each

group to make sure that on the next iteration, all nodes in Group 3 will at least get power

equivalent to their optimal static power budget. If necessary, the algorithm will force Group
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2 to reduce power in favor of Group 3; otherwise, extra power will go to Group 2. Finally,

the decision engine idles for a time interval t. This idling both reduces overhead and allows

the nodes to settle into their new power consumption.

Front and backend nodes get different amounts based on their performance derivative.

F () is the performance power function generated by offline data, pf is the power acquired

by frontend node and pb is the power acquired by backend node.

δFf (powf )

δpowf
:
δFb(powb)

δpowb
= pb : pf (3.1)

This shifting power ratio ensures that all nodes in one end (front or back) get extra power

proportional to the performance growth of the other end. Thus, PowerShift allocates less

power to the end where performance scales faster and more power to the end that scales

worse so that both ends work at the same rate.

For power margin M and time interval t in Algorithm 4, we use 2 Watts and 1 second.

Choosing M decides how aggressively we want to shift power. Lower M results in higher

aggressiveness, at the risk of possibly removing power from nodes that need it. Higher M

means lower aggressiveness, at the risk of not being able to fully utilize the unused power.

For the time interval, larger intervals make the system reaction time longer and it may miss

short duration power shifting opportunities. A shorter time interval exaggerates the system

noise but provides more opportunities to react.

PowerShift-D: Distributed Power Shifting

PowerShift-D distributes power shifting. Figure 3.9 overviews the system architecture. The

key data structure is a power pool that contains unused power. In contrast to PowerShift-C,

PowerShift-D does not have any centralized component. Instead, each node has its own local

decision maker to shift power. All local power deciders talk to the power pool asynchronously
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Algorithm 5 PowerShift-D algorithm.

Require: Power margin M
Require: Optimal static power budget of itself B

while not finished do
Current power pc ← GetAveragePower()
Power budget of last iteration b
Define power state of itself
Group 1: pc < b−M ⊲ have extra power
Group 2: pc >= b−M , b > B ⊲ at power limit
Group 3: pc >= b−M , b < B ⊲ at power limit, need power
Read ppool and urgency flag F
if Group 1 then

Post extra power to power pool
else

if Group 3 then
Grab unused power from power pool
When ppool < B − b, increment F
After needed power is satisfied, decrement F

else
When F = 0, take from power pool
When F 6= 0, post b−B to power pool

end if
end if
Sleep(t)

end while

and make decisions based on their own power state and the power pool.

The power pool structure serves as a bulletin board to all the local deciders. It has a

floating point variable F to post how much power is in the pool and one integer variable I to

post how many nodes are in Group 3 (from above) if any. When I = 0, nodes Groups 2 & 3

take power from the power pool. Otherwise, only nodes in Group 3 can take power from the

pool, and nodes in Group 1 or 2 have to give up power exceeding their initial power budget

if any. Group 3 nodes will always get the power they need. If there is not enough power in

the pool, Group 2 nodes will have to release power (even if they are at their budget).

We maintain the invariant that any node adding power to the pool must first reduce its

local power usage and any node taking power must decrement unused power in the pool

before raising its local power usage. This simple invariant ensures the global power budget

is respected with local decision making. Our implementation uses sockets to communicate

between local nodes and the power pool.
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Figure 3.9: PowerShift-D overview.

Algorithm 5 shows the local power decision systems. The rule to choose the power margin

M is same as in PowerShift-C. The time interval t is different here. Since every local decider

can have different values, we use 2 seconds for nodes in Groups 1 and 2, and 1 second for

nodes in Group 3, to allow the node to get out of an urgent state faster. PowerShift-D

can easily integrate with local power managers by coordinating its interaction with the pool

with the decisions of the local power manager. Other approaches are not compatible with

independent, local power managers.

3.3.4 Extension Beyond Two Applications

A simple modification version of PowerShift-S can work on any arbitrary number of de-

pendent applications. In each loop iteration, we shift power from the fastest application

to the slowest, with the goal that all applications run at the same speed. In this way, the

binary search for the optimal performance extends across all applications and get the power

55



distribution of each.

PowerShift-C and -D are also trivially extended to any number of dependent applications:

the global or local decider follows the same algorithm regardless of the number of applications.

This scalability to multiple applications for the dynamic cases is easy because the algorithms

do not reason about front and backend applications. Instead they reason about priority

levels which are set based entirely on a node’s behavior relative to its assigned power cap.

This flexibility does rely on the stated assumption that performance is monotonically non-

decreasing with increasing power consumption.

3.3.5 Complexity, Guarantees, and Discussion

Algorithmic Complexity

1. Fair is O(1).

2. PowerShift-S is O(n ∗ logPm), given n profile data points and Pm maximum shiftable

power. It uses binary search to find the optimal power distribution.

3. PowerShift-C : Executes the PowerShift-S algorithm once at launch. At each iteration,

it executes Algorithm 4, which is O(N), where N is the number of nodes.

4. PowerShift-D : Executes the PowerShift-S algorithm once at launch. The communica-

tion with the power pool is O(1).

The complexity of PowerShift-S grows with larger n (more profile data points). We do not

consider this a scaling problem, because only a small n is needed to have a good picture

of power and performance tradeoffs for each application. In our implementation, we use

n = 15. Additionally, this algorithm is only executed once before launch. PowerShift-C ’s

complexity, however, grows with N , the number of nodes. In a larger cluster, N might be

thousands or tens of thousands. The centralized approach may suffer from overload. In that

case, we have to provide more computing power and hardware to the central decider or have

a multi-tier central decider to solve the scaling problem. This linear scaling does not occur
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with PowerShift-D, which essentially parallelizes the power distribution process, leading to

an approach that naturally scales with the number of nodes.

Guarantees

1. Fair : equal power distribution between frontend and backend; equal power distribution

between each node; and assurance that the global power budget is met.

2. PowerShift-S : the maximum performance static power distribution with at least T

speedup over Fair. When T speedup is not achievable, the most energy efficient power

distribution within (1− T ) of Fair ’s performance.

3. PowerShift-C and PowerShift-D, both provide speedup when the applications have un-

balanced power needs over time or across different nodes. In energy-saving mode, these

approaches have the same guarantees as PowerShift-S. Due to the simple invariants

that nodes first lower their power before contributing to the global power budget and

first take from the global power budget before raising their power, these approaches

also ensure that the global power cap is respected.

Topology-obliviousness These guarantees are topology-oblivious. While we have assumed—

for simplicity of discussion—that the front and backend applications are on physically sep-

arate nodes, they can actually be scheduled in any manner such that their power control

is independent. For example, front and backend processes could be scheduled on separate

sockets in a node, or separate cores in a chip, if the processor supports independent core-

level power caps. Our empirical analysis shows that performance is the same under different

mappings (see Chapter 3.4.4).

3.4 Experimental Evaluation

This section evaluates the performance efficiency of PowerShift. It also examines the energy

efficiency when the offline decider chooses to enter energy-saving mode and how the dynamic

versions of PowerShift can improve performance in the presence of tail-nodes and system
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Figure 3.10: Performance for different PowerShift strategies under different power caps.

noise.

3.4.1 Experimental Setup

BenchmarksWe use 9 individual applications including two cosmological simulation bench-

marks, cluster and galaxy from Gadget 2.0 [91], a hydrodynamic simulation benchmark

lulesh [50], a visualization application VisIt [14], a data mining application kmeans [8],

a data compression application pigz [1], and three MapReduce [17] applications: teragen,

terasort, and teravalidate [74]. These benchmarks test a range of important cluster

applications, both compute-intensive and memory-intensive. All applications run with up to

48 threads per node (the maximum supported on our test machine). All workloads are long

running, taking at least a few minutes to complete.

We pair applications from this pool. The frontend applications are: cluster, galaxy,
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lulesh. The backend applications are: VisIt, kmeans, pigz. These nine pairs are represen-

tative of the emerging HPC trend of coupling scientific simulation benchmarks with in situ

analysis or visualization [2, 12]. The 3 MapReduce applications pair among themselves. In

each pair, the output of the frontend application is sent to the backend application as input.

In total, we have 11 pairs of coupled applications.

Platform and Metrics We use the 26-node cluster described in Chapter 3.2. All nodes

run Linux 3.13.0. We use RAPL [16] for both power monitoring and capping. The bulk of

our results use an execution model where frontend and backend applications are deployed to

physically separate nodes. We reiterate, however, that PowerShift is topology-oblivious. We

explore a different mapping—where front and backend applications are mapped to different

sockets in the same physical nodes in Section 3.4.4. We use 1/runtime as our performance

metric, and 1/energy as our energy efficiency metric. All comparisons, normalize to the Fair

approach.

3.4.2 Performance

We evaluate our eleven coupled applications with five different cluster power budgets ranging

from 1820W to 2860W. In all approaches, the sum of the node-level power caps is less than

or equal to the cluster power budget at all times.

Table 3.1 shows harmonic mean performance under each power cap for SLURM and

PowerShift. SLURM performs better than Fair at lower power caps and worse at higher

power caps, but PowerShift uniformly outperforms both SLURM and Fair. SLURM’s per-

formance suffers for two reasons. First, moving power from nodes with low-power phases

to power-hungry nodes, violates the principal that shifts power from the faster application

to the slower one, because the power-hungry one is not necessarily the slower one. Second,

SLURM does not have a mechanism to return the power back to the node that gave it up

when that node shifts to a phase that requires more power. For example, when running
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Table 3.1: Comparison of performance under power caps.

Power Cap SLURM PowerShift-S PowerShift-C PowerShift-D

1820W 1.25 1.28 1.49 1.38
2080W 1.09 1.15 1.24 1.22
2340W 0.99 1.06 1.11 1.11
2600W 0.95 1.01 1.07 1.06
2860W 0.95 1.04 1.04 1.05

Har. Mean 1.03 1.10 1.17 1.15

the cluster-pigz couple, cluster is always power hungry and pigz alternates between

power-hungry phase and low-power phase. Once pigz enters the low-power phase the first

time, all the unutilized power is shifted to cluster and never returns. As a result, when

pigz re-enters its power-hungry phase, it suffers great performance loss. This effect hap-

pens at both low and high power budgets, however, when the power budget is low, it turns

out that focusing all power budget on one application has fairly good performance. But at

higher power budgets, the speedup of focusing all power on one application at a time is much

smaller and often worse than fair.

The key to PowerShift’s performance is that it understands coupling. In the static

case, this understanding allows some performance gain over SLURM. In the dynamic case,

PowerShift is designed so that it will shift power from one high-power application to another.

This design manifest itself in PowerShift’s three priority groups (Chapter 3.3.3). This unique

feature of PowerShift allows it to shift power back from cluster to pigz in the above example

and achieve much greater performance than SLURM.

PowerShift-S consistently outperforms Fair by 1–28%, with higher speedup under lower

power budgets. PowerShift-C outperforms Fair by 4–49%, while PowerShift-D outperforms

Fair by 5–38%. When the power budget is relatively low, the performance scales better with

power, so PowerShift has more potential to boost the slower application’s performance. For

higher power budgets, it is more likely that application performance stops scaling even with

more power. As an extreme example when the power budget is set to the total of each node’s

maximum power, the overall performance cannot grow.
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Figure 3.10 shows the performance delivered under each power budget for each coupled

application pair. This figure contains one chart for each power cap, the x-axis shows the

couple, the y-axis shows performance normalized to Fair. The charts show one bar for each of

PowerShift-S,PowerShift-C, and PowerShift-D. While results vary per application and power

cap, the general trends show that:

1. All PowerShift approaches outperform Fair.

2. PowerShift-C and PowerShift-D provide higher performance than PowerShift-S across

all power budgets.

3. For lower power budgets, PowerShift-C out-performs PowerShift-D on average. At

higher power budgets, PowerShift-D can out-perform PowerShift-C.

As shown in Figure 3.10, PowerShift-C and PowerShift-D consistently outperform Power-

Shift-S—by as much as 20%. Applications with long tails receive the biggest benefits

from runtime power shifting. In our case, applications having significant I/O phases—e.g.,

MapReduce, VisIt, and Lulesh—or applications having both phases and long tails—e.g.,

pigz—all get big speedups with dynamic, runtime power shifting compared to PowerShift-

S ’s static allocation.

The tradeoffs between the dynamic approaches PowerShift-C and PowerShift-D are not

as obvious but they do show:

1. At lower power budgets, PowerShift-C outperforms PowerShift-D. In PowerShift-D,

the power pool may not ever be fully drained, but PowerShift-C uses global knowledge

to allocate all power. At low power budgets, a small amount of unallocated power left

in PowerShift-D ’s pool can have a large effect on performance.

2. If an application has distinct phases—where each node frequently goes from a power-

saturated state to a power-hungry state or vice versa—PowerShift-D reacts faster than

PowerShift-C. First, each local decider in PowerShift-D acts asynchronously, providing

faster reaction to local power state changes. Second, local decisions have their own
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control frequency. In our tests, the local decider runs at double the frequency in the

power-hungry state compared to the power-saturated state.

3. As the cluster grows, the central decider in PowerShift-C may have too much work and

generate workload imbalance if co-located with frontend or backend nodes. Eventually,

it will need a separate node.

3.4.3 Coupling’s Effects on Optimal Power

The prior sections show thatPowerShift boosts performance compared to fair power distri-

bution. We now demonstrate that power shifting is a hard problem by showing that power

allocations that work well for an application in one couple are poor when that application is

coupled with a different application; i.e., optimal power allocation is both application- and

couple-dependent.

Figure 3.11 shows the optimal power distribution when the three scientific frontend ap-

plications are paired with the three different backend applications. There are three charts,

one for each of the front-end applications. The x-axis shows power and the y-axis shows

performance. There is a labeled mark for each backend application showing its optimal

static power assignment when coupled with that frontend. As the figure shows, the different

frontends place different requirements on the backends. For example, when coupled with

lulesh, VisIt needs the least power of the three backends. When coupled with cluster,

however, VisIt needs the most power of all backends. These results show that the front and

backends cannot be optimized in isolation, but require consideration of the application couple

as a whole.

3.4.4 Results with Co-located Front and Backends

This section evaluates PowerShift in a different topology: when frontend and backend ap-

plication processes are mapped to separate sockets on the same physical nodes. Other than
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Table 3.2: Performance with co-located couples.

Power Cap PowerShift-S PowerShift-C PowerShift-D

1820W 1.26 1.49 1.46
2080W 1.18 1.36 1.32
2340W 1.04 1.11 1.10
2600W 1.01 1.10 1.10
2860W 1.01 1.06 1.07

Har. Mean 1.09 1.20 1.19

this process-to-node allocation, the experiments are the same as in Section 3.4.2. Table 3.2

summarizes the results, showing that with a different mapping topology, PowerShift has very

similar results and properties. The mean speedups compared to Fair are 1.09, 1.20, and 1.19

for PowerShift-S,PowerShift-C, and PowerShift-D, respectively.

3.4.5 Considering Three Dependent Applications

We illustrate how PowerShift can scale beyond two dependent applications. In this example,

cluster generates scientific simulation data, VisIt turns this data into a movie, and pigz
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Table 3.3: Performance of three dependent applications.

Performance Energy Efficiency
Power Cap PowerShift-S PowerShift-D PowerShift-S PowerShift-D

1820W 1.55 1.65 - -
2080W 1.15 1.21 - -
2340W 1.07 1.09 - -
2600W 1.03 1.01 - -
2860W .99 .99 1.02 1.02

Har. Mean 1.13 1.15 - -

compresses the movie for storage. Table 3.3 shows the performance and energy efficiency

of PowerShift-S and PowerShift-D normalized to Fair. PowerShift-C is omitted in this

experiment, because its overhead grows significantly beyond two applications. For power caps

1820W, 2080W, 2340W, 2600W, PowerShift enters performance mode. At the 2860W cap

it enters energy-saving mode. The results are consistent with those for coupled applications.

Under lower power caps, PowerShift tends to enter performance mode boosting performance

significantly. Under higher power caps, the potential performance gain is less and it tends to

favor energy saving. By harmonic mean, PowerShift-S improves performance of Fair by 13%,

while PowerShift-D achieves a 15% improvement. These results indicate that PowerShift still

achieves significant performance gains when working with more than two applications.

3.4.6 Energy Savings with High Power Budgets

This section evaluates the energy efficiency when PowerShift enters energy-saving mode. The

performance improvement threshold T , discussed in Chapter 3.3.2 is a key impact factor for

energy savings. The results in Figure 3.10 show T = 3%; i.e., only very small performance

loss is allowed. We now evaluate the energy savings when T = 10%.

Table 3.4 shows the performance loss and energy efficiency for all pairs of coupled appli-

cations under the maximum cluster power budget. PowerShift achieves 18% higher energy

efficiency with only 5% performance loss based on harmonic mean. The reason for this sav-

ings is that with higher threshold T , a wider range of power states can be searched for the
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Table 3.4: Energy efficiency with larger threshold T.

Benchmark performance energy efficiency

cluster-kmeans 1.02 1.31
cluster-VisIt 0.94 1.21
cluster-pigz 0.93 1.23

galaxy-kmeans 0.92 1.33
galaxy-VisIt 0.94 1.41
galaxy-pigz 0.92 1.42

lulesh-kmeans 0.99 1.07
lulesh-VisIt 0.96 1.06
lulesh-pigz 0.96 1.07

teragen-terasort 1.01 1.04
terasort-teravalidate 1.01 1.03

Har. Mean 0.95 1.18
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Figure 3.12: Performance under system noise.

most energy-efficient one.

We note that our earlier results show diminishing performance returns for high power

budgets (see Table 3.1). The results in this section, however, indicate that PowerShift still

provides a benefit at high power budgets if users are willing to sacrifice some performance

to save energy. In this case, PowerShift improves energy efficiency by 18% on average and

by as much as 42% for individual couples. These results indicate that PowerShift provides

performance gains at low power budgets or energy savings with high power budgets.
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3.4.7 PowerShift’s Resilience to System Noise

System noise is inevitable in any computing system and prevalent at the large scale of

clusters and supercomputers [5]. System noise comes from many kinds of physical and

human sources, but its defining characteristic is unpredictability. It often results in great

performance fluctuation or slow down on random nodes. It is one of the biggest reasons

that large scale systems have severe tail problems. In coupled scientific computations, this

system noise slows down not just a single node, but the entire couple.

Figure 3.12 shows the performance results of running all eleven couples in a noisy environ-

ment. We create the noise by randomly picking a node and running an additional 8-thread

program, stressing the computing resources on one node of the cluster but leaving all other

nodes in their usual state. This method of generating noise is general, PowerShift does not

detect the new application, it simply detects increased power usage on one node. Thus this

method could be a stand-in for many other noise sources, including temperature fluctuations

or manufacturing variation [45].

All experiments are under the 1820W system-wide power budget and everything is nor-

malized to Fair. PowerShift-C and PowerShift-D consistently outperform Fair and average

1.36 and 1.30 speedup, respectively. PowerShift-S, however, only has 1.07 speedup and in

some cases, is beaten by Fair. Fair can outperform PowerShift-S because the static power

distribution derived by the offline decider is not optimal once the second application starts.

In Fair, however, the stressed node may belong to the slower application, and therefore, may

not necessarily slow down the process. Both PowerShift-C and PowerShift-D deal with tail

nodes by shifting power from other finished or light-workload nodes. These results indicate

that dynamic power shifting makes a distributed system significantly more resilient to system

noise without requiring any application-level changes.

Although omitted for space, we have tested many different noise levels. The included

data shows that PowerShift produces a big benefit for even a small noise level. Our omitted
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Table 3.5: Comparison of overhead.

workload Power Core Utilization

idle 24.52W 0
central decider 25.75W 4.725%
local decider 24.58W 0.323%

experiments show that the higher the noise, the better the dynamic approaches do compared

to static allocation.

3.4.8 Overhead and Scalability analysis

We show the runtime overhead of the central decider from PowerShift-C, and the local decider

PowerShift-D. We have discussed the likelihood of scaling problems in Chapter 3.3.5. At

our experimental scale, the overhead of both approaches are negligible. Table 3.5 shows the

power and core utilization overhead of both approaches running on power traces. The central

decider has 1.23W and 4.725% core utilization overhead. The local decider has 0.06W and

0.323% core utilization overhead. As the node number grows, local deciders’ workload is

constant, whereas the central decider’s workload grows linearly with node number, shown

in Chapter 3.3.5. All our results shown in the Chapter 3.4 include PowerShift ’s overhead;

i.e., the PowerShift software is running with the jobs it manages on the same machines.

These results show that the centralized decision mechanism is practical at small scale, while

the distributed mechanism is lower overhead and more likely to scale to large systems. As

the system scale grows, interconnection latency is critical to ensure strong scaling. In our

design, it is very easy to account for the latency overhead to the frontend. Increased network

overhead will result in longer IO phases for the frontend application. This trend will likely

make the static scheme worse (since it uses single-application profiles), but PowerShift-C

and -S should dynamically adjust to find the optimal. Therefore, we believe in a higher

latency interconnection environment, there are more opportunities for dynamic shifting.
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3.5 Conclusion

This paper presents PowerShift, a family of techniques for shifting power among nodes run-

ning coupled, distributed applications under a system-wide power budget. Specifically, we

propose a static scheme, a centralized dynamic scheme, and a distributed dynamic scheme.

The static scheme is low overhead, but is not able to adjust to tail behavior or application

phases. Both dynamic schemes do adjust, with the centralized scheme generally achieving

higher performance—with higher overhead—while the distributed dynamic scheme trades

some performance for reduced overhead and increased flexibility. Compared to prior ap-

proaches, PowerShift provides two advances: (1) instead of just shifting from low-power

to high-power nodes, PowerShift will shift power away from high utilization nodes to other

high utilization nodes that need power more; and (2) PowerShift can recognize when it is not

helpful to shift power and instead it will reduce energy. Our results confirm that PowerShift

has practical benefits, demonstrating improved performance, reduced energy, and dynamic

adjustment to tail behavior and system noise. We believe the coupled workloads addressed

in this paper will become increasingly important in both data centers and supercomputers

because they reduce IO burden and take advantage of system scale. PowerShift represents

one way of improving the performance, energy efficiency, and tail tolerance of this class of

application.
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CHAPTER 4

PODD: POWER-CAPPING DEPENDENT DISTRIBUTED

APPLICATIONS

This chapter describes PoDD , a distributed power management system to maximize perfor-

mance for dependent applications.

Large scale computer systems are constrained by system-wide power budgets (or caps).

As these systems scale out, they are able to concurrently execute dependent applications that

were previously processed serially. Such application coupling reduces IO traffic and overall

runtime as the applications now communicate at runtime instead of through disk. Coupled

applications are predicted to be a major workload for future exascale supercomputers; e.g.,

scientific simulations will execute concurrently with in situ analysis. As researchers just

began to study system-wide power caps for coupled applications, existing work has major

limitations: (1) depending on prior application profiles, (2) not coordinating/optimizing

node-level power capping technique with system-level power management.

We propose PoDD to address the unsolved challenges for coupled applications. PoDD

enforces a system-wide power cap for coupled applications and maximizes performance. We

implement it on a 49-node cluster and compare it to SLURM, a state-of-the-art job scheduler

that considers power, but not coupling, and PowerShift , from last chapter. PoDD increase

mean performance over SLURM by 14–22%, over PowerShift by 11–13%. Finally, PoDD is

resilient to tail behavior and system noise, improving performance in noisy environments by

up to 44%.

The rest of this chapter are organized as follows: First, Chapter 4.1 briefly overviews

the background and the contribution of this work. Second, Chapter 4.2 introduces some

closely related works that we use to compare against and discusses the major limitations

within them that motivates this work. Then, Chapter 4.3 demonstrates the system and

algorithm design. After that, Chapter 4.4 presents the experimental setup, results, and
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discuss its reason and insight. Next, Chapter 4.5 summarizes related works in this area.

Finally, Chapter 4.6 concludes this work.

4.1 Introduction

Exascale computing systems are predicted to provide new opportunities, which will be real-

ized by addressing new challenges. One of the most exciting opportunities is that abundant

computing resources will allow a promising new execution model for previously sequential

dependent jobs. Specifically, applications can be coupled so that they run concurrently and

communicate through the network rather than running them sequentially and communicat-

ing through the file system [2, 6, 12, 51, 95]. For example, scientific simulations now could

be coupled with in situ data analysis or visualization [2, 12]. The US Department of En-

ergy (DoE) has declared resource management for coupled applications a key challenge for

exascale computing [6, 95].

Among the challenges raised by exascale are the related concerns of power constraints and

node-level complexity [95]. At the processor level, computing density is out-pacing cooling

capacity, so if all transistors on a chip were used simultaneously, it would generate more heat

than can be dissipated and damage itself [25, 98]. At the same time, large-scale computer

systems—e.g. datacenters, supercomputers—are constrained by facility-level power budgets.

Experts predict that exascale supercomputers will need to operate in a 20-80 MW power

budget [6].

To address these power concerns, hardware manufactures have made individual nodes in-

creasingly configurable. Almost all processors now support power management either through

exposing voltage and frequency settings to software or exposing an interface that allows soft-

ware to explicitly set power limits [16]. Additionally, aggressive power gating means that

performance and power tradeoffs can be further tuned by idling (or choosing not to use)

node-level resources like the number of active sockets, the number of active memory con-
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trollers, the number of cores per socket and whether hyperthreads are enabled or disabled

[109]. For exascale systems, the challenge is determining the node-level configurations that

respect the system-wide power budgets while delivering the maximum possible performance.

In this paper we explore the specific challenges of coordinating node and system level power

management to maximize the performance of coupled applications.

While a great deal of research explores power control for large-scale systems, most does

not account for dependent or coupled workloads. For instance, some research aims to increase

overall system throughput by better utilizing hardware resources [49], reallocating unused

power [89], balancing compute and IO power [84], or mitigating the impact of manufactur-

ing variability [45]. While these studies resolve important issues (unbalanced allocation and

phase-adaptation) for power capping distributed systems, they all assume independent work-

loads. Dependent/coupled workloads, however, follow a fundamentally different performance

principal from independent ones. Specifically, for coupled applications the overall speed is

determined by the slowest application. Therefore, under a global resource constraint—like a

system-level power budget—coupling-aware power management must speedup up the slowest

application until each is running at the same speed [20]. None of the works mentioned above

is aware of the relative speed between coupled applications nor able to shift power from the

faster application to the slower one.

The only work addressing power management for coupled applications that we are aware

of is PowerShift [110]. While PowerShift represents a family of related algorithms, its dis-

tributed, dynamic approach delivers higher performance under power caps than approaches

that are not coupling-aware, while offering promising scalability. Unfortunately, PowerShift

has two major drawbacks that limit both usability and the maximum delivered performance.

First, PowerShift requires users to provide offline profiles of the power and performance trade-

offs for both applications in the couple. This requirement means that both applications will

have to be run many times before coupled together under the power cap. Second, Power-
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Shift only manages a single node-level resource: processor voltage and frequency. Focusing

on a single node-level resource makes PowerShift’s implementation simple, but it limits the

potential performance gains. For example, several prior works have shown that coordinating

DVFS with other node-level resources (like socket, core, and memory usage) leads to much

higher performance for the same power budget [13, 15, 21, 22, 29, 57, 77, 79, 83, 103, 109].

To overcome the limitations of prior approaches and achieve higher performance for cou-

pled applications with system-wide power caps, we propose PoDD , a dynamic, hierarchical

power management system. PoDD requires no offline profiling data or code instrumentation.

PoDD operates in three phases. It first classifies applications based on their optimal resource

usage. It then performs a binary search to determine optimal power/performance tradeoffs

for the coupled applications. In the final phase, it uses an efficient, distributed power alloca-

tion scheme to dynamically adjust power usage and account for application phases, system

noise, and tail behavior. PoDD amortizes the cost of classification and online profiling by

dedicating one node in the system to learning; all application nodes send performance counter

information to the dedicated node, which coalesces the data and returns classification results

for the applications in the couple.

We implement PoDD on a 49 node system and evaluate it against 4 widely-used/state-

of-the-art power control systems: Fair, SLURM [89], Optimal Static Power Allocation [110]

and PowerShift [110]. We normalize all results to Fair power allocation, which simply divides

the power budget equally among all nodes. We find that:

• SLURM improves mean performance by 6%.

• Optimal Static Allocation improves mean performance by 8%.

• PowerShift improves mean performance by 12%.

• PoDD improves mean performance by 28%.

• PoDD mitigates tail effects and system noise, improving mean performance by 31% and

44% under these conditions.
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• PoDD is topology-oblivious—it works well whether coupled applications are physically

separate or co-located.

Furthermore, our scalability analysis estimates that PoDD could scale to at least 1000 nodes.

PoDD ’s primary contribution is a design, implementation, and evaluation of a power

management system that addresses the three challenges of (1) optimizing node-level perfor-

mance for a power budget, (2) distributing a system-level power budget, and (3) dynamically

adjusting power to achieve high performance for coupled applications. While prior work has

addressed some subsets of these challenges, to the best of our knowledge PoDD is the first

work to address all three holistically. Furthermore, PoDD provides a solution that requires

minimal input from users.

4.2 Background and Motivation

Many distributed power capping approaches have been proposed. In this section, we briefly

introduce several prior power management systems, which we will use to evaluate PoDD .

Then, we point out two major limitations of prior work and describe how PoDD overcomes

them. Chapter 4.5 contains a full treatment of related work.

4.2.1 Prior Power Capping Approaches

We survey four distributed power capping approaches from the literature. The first two

are widely-used, real-world power control systems: Fair and SLURM [89]. Next, we review

two system designs within the PowerShift family, the first power capping system designed

for coupled applications: PowerShift-S is a static approach, PowerShift-D is a dynamic

approach.

Fair power allocation refers to evenly dividing the whole system power cap among each

node without knowledge of what applications are running. Moreover, Fair allocation has no

mechanism to make any runtime power adjustments. Fair is widely used as the default power
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capping model in data center, supercomputer, or other large-scale systems. This heuristic is

simple to implement and works as a one-size-fits-all approach that is workload independent.

Fair allocation, however, cannot tune power allocation for different workloads. We use Fair

as our experimental baseline.

SLURM is a state-of-art job scheduler for large-scale distributed systems with an intel-

ligent, integrated power capping mechanism. SLURM essentially starts the same as Fair—

with power divided evenly across all nodes—and monitors runtime power consumption to

redistribute power using a simple heuristic. Specifically, SLURM divides nodes into two

groups: those using less power than their assigned cap and those operating near their cap.

SLURM dynamically reduces the power budget of the nodes in the first group and splits the

excess power among nodes in the second group. This heuristic takes advantage of unused

power to increase overall throughput of independent applications, but is often sub-optimal

in situation of coupled applications for the overall performance is determined by the slowest

application, which we demonstrate in detail in the following sections.

PowerShift is a family of power management solutions designed for coupled application

workloads [110]. All PowerShift approaches require offline profiles of each application’s

performance and power tradeoffs. Furthermore, PowerShift only manages node-level DVFS

and does not consider any other node-level resources. We are concerned with two variations

of PowerShift : a static (PowerShift-S ) and a dynamic (PowerShift-D) approach.

PowerShift-S takes advantage of offline power and performance profile, to predict the

optimal static power allocation between coupled applications. More specifically, the profiles

capture performance as a function of node-level power cap and PowerShift-S takes in the

profiles and derives the power allocation to make coupled applications run as close to the same

speed as possible. This approach, however, does not make any runtime power adjustment,

so it is not adaptive to runtime changes and often fails to make full use of a given power

budget because it cannot correct for any errors.
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PowerShift-D is a dynamic power management system with decentralized decision makers

distributed at each local node. There are two key designs in PowerShift-D : a power pool,

and power priority groups. The power pool is a data structure that coordinates the dynamic

power shifting between nodes. Each local node can reduce its own cap and add power to

the pool or request a higher power cap by attempting to extract power from the pool. All

nodes are divided into power priority groups, to guide their power intake/output from the

pool. Unlike SLURM which only shifts power cap from nodes that are not using their full

budget, PowerShift-D has an additional priority group allowing it to shift power from a fast

application operating at its budget to a slow application also operating at its budget.

This ability to shift power from nodes operating at their budget is the key insight for

PowerShift. Using this approach PowerShift offers more than 10% performance gain on

average compared to SLURM for dependent applications.

4.2.2 Major Limitations and Solutions

PowerShift, to our knowledge, is the first work to address the challenge of dependent dis-

tributed applications. However, there are two major limitations within PowerShift :

• Its dependence on offline application profiles greatly limits the practicality of this ap-

proach in real systems.

• Its hardware-only (DVFS only) power capping at the node-level limits opportunities for

additional performance through more intelligent node-level management.

In the following sections, we will demonstrate each of the challenges and motivate its

solution.

Online Power Performance Profiling

Relying on offline profiles has several drawbacks: (1) they may simply not be available, (2)

collecting them can be very costly, especially in large scale system and (3) for applications
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that dramatically change behavior when given different input and/or arguments, offline

profiles are misleading. Thus, there is a need for a practical approach to automatically

constructing these profiles online.

Since power capping systems operate in a feedback control loop—constantly monitoring

performance and adjusting resources or processor frequency to maintain the cap—it is natural

to collect power and performance data online and with enough data points, build a predictive

model. The optimization tradeoff is how many data points to collect—fewer data points

reduces overhead, but possibly at a cost of higher error in the predictions. Researchers have

proposed several techniques for building predictive models of system power and performance.

Some collect hardware performance counters and make predictions based on an empirical

model [93]. Several approaches applying advanced learning techniques including mutilinear

regression [73], probabilistic graphical models [69], and even deep learning [60]. In our case,

the nodes running the same application are power capped evenly, so the search space of

our problem is very small. For example, in a cluster of nodes with 120 W TDP and 50 W

minimum power limit, the most power space we need the model to cover is from 70 W. In

practice the space is even smaller as one application will be faster and cover the lower end

of the range, while the other application will be slower and want more power. In this space,

we find a binary search model works well as it needs only a few observation data points

and provides a maximum power error of 2 W (the largest difference between desired and

measured power) and has minimal overhead because of the simplicity. We will demonstrate

and evaluate this binary search model in detail in later sections.

Optimizing Node-level Power Capping

We now highlight the benefits of incorporating more complex node-level power management

over simply deploying hardware power capping. Because different parallel application may

favor different system configurations—e.g. using hyperthreading or not, using dual socket
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Figure 4.1: Performance of different node configurations.

or not, which memory controllers to use—each application has its unique requirement for

computing, memory, and IO resources. Figure 4.1 compares the performance of a scientific

simulation, galaxy, across different node-level configurations. Each marker in the figure is

one run of galaxy with different configurations (i.e., different sockets, hyperthreads, memory

controllers). For each configuration, we set the power cap from 100 W to 240 W per node.

As we can see here, galaxy clearly favors a non-default resource allocation (single socket,

no hyperthreading, with dual memory controllers). The optimal configuration achieves a

58% performance improvement under the same power cap. In such cases, only setting the

hardware power cap would result in sub-optimal configuration and great performance loss.

Achieving better performance, calls for more complex node-level power capping to coordi-

nate multiple resources. The PUPIL power management system demonstrates the benefit of

this coordinated approach over common approaches that only consider processor voltage and

frequency [109]. One key constraint in the PUPiL system design, however, is that it requires
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users to add instrumentation to the application code so that the power management can

measure performance. Inspired by the performance potential demonstrated both in PUPiL

and in Figure 4.1, we choose to develop a system that can coordinate multiple node-level

resources without requiring code instrumentation. Specifically, we combine a machine learn-

ing classifier with hardware capping to enforce the power cap. The classifier makes decision

about which configuration is more suitable for current application based on online monitored

hardware performance counters. In such a way, we not only eliminate code instrumentation,

but also keep the classifier’s overhead low and suitable for online decision-making. Again,

more detailed introduction and evaluation of the machine learning classifier follows in the

next sections.

4.3 Framework

PoDD is a hierarchical, distributed, dynamic power management system that handles the

unique challenges of maximizing performance for dependent application workloads. PoDD

addresses these challenges through (1) classifying application response to node level-resources,

(2) building models of power/performance tradeoffs online, and (3) coordinating node- and

system-level power capping. Furthermore, PoDD requires neither prior knowledge of appli-

cation behavior nor code instrumentation. This section describes the key techniques used in

PoDD .

For naming simplicity we refer to the two parts of an application couple as the front- and

back-ends. The front-end produces data that is consumed by the back-end, so the couple

represents a short pipeline. The couple’s overall performance will thus be determined by the

slowest end, and an ideal resource management system would apportion resources such that

each end takes the same time. Under a power cap, then, the power management system

should move power from the fastest application to the slowest so that the front and back-

ends take the same time. Several works have demonstrated that such a power distribution
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Figure 4.2: Overview and comparison of PowerShift-D (left) and PoDD (right).

is optimal [20, 110].

PoDD uses three phases to achieve a near-optimal power allocation. In the first phase,

PoDD collects hardware performance counter data from each node and passes that data

to a configuration classifier to predict the optimal node-level configuration for the front-

and back-ends, respectively. Here a configuration represents a usage of node-level resources

(other than power, which will be managed separately); e.g., a configuration might be the use

of two memory controllers, 1 socket and hyperthreads. In the second phase, PoDD builds

models of the power and performance tradeoffs for the front- and back-ends. This second

phase determines an optimal static assignment of power to the front- and back-ends, and

thus augments the optimal configurations from the first phase with power information. At

the end of this phase, the front- and back-end nodes may have different power allocations

and different node-level resources in use. The third and final phase performs dynamic power

shifting by coordinating node- with system-level power management. In this final phase,

power will dynamically shift from fast to slow nodes with the goal of having the front- and

back-end complete at the same time. PoDD is designed so that the first and second phase

take relatively little time; most of the couple’s execution will be in the third phase, which

performs dynamic power shifting.
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Table 4.1: Overview of performance counters monitored.

Performance Counter Description

EXEC Instructions per nominal CPU cycle
IPC Instructions per cycle

FREQ Frequency relative to nominal CPU frequency
AFREQ FREQ excluding when CPU is sleeping
L3MISS L3 cache line miss
L2MISS L2 cache line miss
L3MPI L3 cache line miss per instruction
L2MPI L2 cache line miss per instruction
READ Memory read traffic
WRITE Memory write traffic
INST Instruction retired

PhysIPC% IPC relative to maximum IPC
INSTnom% Relative instructions per nominal cycle
TotalQPIout QPI data traffic estimation
QPItoMC Ratio of QPI traffic to memory traffic

Each phase has a key enabling technique. The first phase uses multi-level classification to

determine optimal resource usage. The second phase uses binary search over possible power

distributions to determine optimal static power allocations. The third phase uses power

priorities and a power pool to distribute dynamic power management among the constituent

nodes. The classification, search, and integration of these components are unique contribu-

tions of this paper. The power priorities and power pool used here were first proposed in the

prior PowerShift system [110]. Figure 4.2 shows the overview design of PoDD and compares

it to PowerShift. As shown in the figure, the key difference is that PoDD automatically

determines optimal node-level configurations and static power-performance tradeoffs so that

users do not need to perform any profiling or code instrumentation. In other words, PoDD

automatically collects the data and constructs the models required to use PowerShift’s dy-

namic power management scheme. We now discuss each phase and its key component in

detail.

4.3.1 Phase 1: Configuration Classification

To achieve better overall performance, PoDD incorporates more complex node-level power

capping than prior approaches, which simply rely on hardware to manage processor voltage
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Table 4.2: Classifier models explored.

Classifier model Description

SVM-linear Support vector machine with linear kernel
SVM-poly Support vector machine with polynomial kernel
SVM-rbf Support vector machine with rbf kernel
KNN K-nearest neighbor classifier
RF Random forest, using a bunch of decision trees for classification
ET Extra-tree classifier, a variation of RF, using extreme randomized decision trees
AB AdaBoost, boosted with decision trees
LR Logistic regression classifier

and frequency. Our two goals for this phase are: (1) classifying application performance

without code instrumentation and (2) minimizing overhead.

To achieve these goals, PoDD monitors hardware performance counters at runtime and

uses a machine learning classifier to predict the most suitable configuration for the cur-

rent workload. This approach is particularly promising for our use case, because (1) the

performance counter info can be easily collected without code instrumentation and (2) the

application can be classified after a brief period, reducing overhead. We use Intel’s Perfor-

mance Counter Monitor (PCM) to collect performance counter data at runtime. Table 4.1

shows the overview of system-level performance counters that we monitor. The counter

information is normalized to produce per instruction rates (if needed). For example, the

READ and WRITE counts are translated into memory traffic per instruction by dividing

the measured data by the total instructions retired during the monitor phase.

Each hardware counter information serves as one feature for the classifier. They further

go through a series of pre-learning procedures: noise filtering, data standardization, PCA

(principal component analysis), feature selection. At that point they are fed into the classifier

to predict suitable configuration for current application.

Two-level classifier: A key design choice is to have a two-level classifier that predicts

computing and memory resources separately instead of treating the problem as a multi-class

classification. This choice of two-level classification means that, instead of predicting all con-

figuration preferences (socket allocation, use of hyperthreads, memory controller allocation)
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at once, we break predication into two parts: (1) predicting computing resource preferences

(socket allocation and hyperthread usage) and (2) predicting memory resource preferences.

We choose this two-level classification because classifying compute and memory needs

simultaneously makes the problem harder. The difficulty arises in part from the fact that

memory and compute resources are not completely independent. For example, low IPC

may result from either poor compute resource allocation or from an application that con-

stantly misses in the cache. In the first case, IPC will improve by allocating more compute

resources. In the second case, more computing resources will consume more power, but

without increasing performance.

For completeness we did test a multi-class classifier that would predict both memory and

compute resource needs. That approach, however, has much worse accuracy than the ap-

proach we use. The multi-class classifier achieves 80% recall with less than 70% precision. In

comparison, the multi-level classifier we use in PoDD achieves 95% recall and 74% precision.

We further discuss the choice of classifier in the next paragraph.

Model selection: We have compared eight popular classifier models shown in Table 4.2.

In all cases, we perform classification after pre-processing the hardware PCM data by per-

forming noise filtering, data standardization, PCA (principal component analysis), and fea-

ture selection. All models are tuned by hyper-parameter search. The key evaluation criteria

to be noted here is that high recall rate is a must, and the higher precision the better. In

other words, our system can tolerate false positives but is more sensitive to false negatives.

The intuition is that the system will use dynamic feedback, so if it selects a sub-optimal

configuration (a false positive) the low performance will be detected and corrected (at the

penalty of briefly running slower than necessary). However, if we have false negatives, there

will be an optimal configuration which the system will never use. limiting the potential

performance gains.

Thus, we tune all models with the goal of 95% recall rate if possible, and then we
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Figure 4.3: Recall and precision of 8 learners for classifying computing and memory resources.

compare the precision between them. Figure 4.3 shows the recall and precision for both

predicting computing and memory resources using 8 different learning models. ”C” stands

for computing resources and ”M” stands for memory resources. As the chart shows, svm-rbf

delivers above 95% recall with the highest precision for both resources.

Feature transformation and selection: Figure 4.4 shows the result of the Principal

Component Analysis (PCA) procedure. PCA is a common orthogonal transformation ap-

proach to eliminate correlation among raw feature data. This process is important when

we use hardware performance counters as input, because there are quite a few correlated

counters, e.g. EXEC vs. FREQ vs.AFREQ, L3Miss vs. READ/WRITE, etc. Another

benefit of PCA is, with feature selection, computation overhead is minimized and predica-

tion rate is optimized by filtering out noisy features. In general, the higher variance carried

by the top few components, the better it is. In this case, the top 8 components found by

PCA carry more than 99.8% variance, and the top 5 components carry more than 98.1%.

Table 4.3 shows the cross-validated averaged recall and precision using different number of

top X components as feature input. The performance increases until the component number

reaches 5. This data implies that components beyond the 5th are very likely to add noisy

or redundant features to the model. Therefore, in PoDD , we use the top 5 components as

input features to minimize overhead and increase accuracy performance.
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Figure 4.4: Eight features explain more than 99.8% of variance.

Table 4.3: Accuracy comparison of using top X components.
Top X components Recall Precision

1 0.912 0.861
2 0.941 0.727
3 0.963 0.824
4 0.963 0.852
5 0.963 0.885
6 0.948 0.860
7 0.941 0.848
8 0.941 0.848

In summary, during the classification process, hardware performance counter data is

collected and normalized. This data is sent to the learning node, which collects all node-

level data for both front and back end applications. The data is coalesced and used to classify

each application in terms of the optimal configuration of compute and memory resources.

These predicted optimal configurations are then sent to all individual nodes. After this

phase, each node should have an optimal resource configuration, and PoDD transitions to

the next phase: building power/performance tradeoff models.

4.3.2 Phase 2: Online Model Building

One of PoDD ’s key design features is finding the optimal power distribution between front-

and back-ends online. This process requires modeling how both the front- and back-ends

performance changes with changing power allocations. These models are then used to deter-

mine a power distribution between front- and back-ends such that each completes its work

at close to the same time.
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Two key factors make online model building natural with PoDD :

• It is easy to collect the data points needed for building.

• In coupled applications it is easy to detect the synchronization points between front- and

back-end applications and the time taken to arrive at those points is a good performance

indicator.

Similar to the classifier, we want the power/performance model builder to have high

accuracy and low overhead. For this component, however, accuracy means the predicted

performance under some power cap should be fairly close to the true value. Low overhead

means both fast convergence and low computational overhead to construct the model. We

compared three different methods of online model building and tested their accuracy and

overhead (the details are in Chapter 4.4.6). Of these three the binary search approach had

the highest accuracy and close to the lowest overhead because the range of power distribu-

tions PoDD has to explore online is quite small. There is an underlying assumption here,

however, which is that after classification determines optimal node-level resource usage, the

power/performance tradeoff space is convex. In practice, we find that classification’s high

recall and dynamic feedback does a good job eliminating local optima (e.g., the non-optimal

points in Figure 4.1) and the convexity assumption holds across all the applications we tested.

Algorithm 6 details the binary search algorithm as implemented for this specific problem.

All the power caps mentioned are per-node power caps, and the two parameters to be set by

users are the power resolution and performance resolution. Power resolution is a threshold

for how close the system should get to the desired power budget. Performance resolution

is a threshold for determining when the front- and back-end applications are considered to

be running at the “same” speed. Due to system noise and variance we never expect the

front- and back-ends to actually complete at exactly the same time. In our case, we use 2 W

as the power resolution, since lower numbers do not impact performance; for performance

resolution, we use 2%, meaning that if the coupled applications reach a synchronization point
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Algorithm 6 Binary Search Model Algorithm

Require: Power cap P , maximum power limit Pmax, minimum power limit Pmin
Require: Power resolution Rpwr, performance resolution Rperf
Require: Power cap for frontend and backend Pfront, Pback
Require: Current performance and power for frontend and backend applications:
(powerf , perff ),(powerb, perfb)
Feedback (powerf , perff ),(powerb, perfb), when Pfront = Pend = P
δpower = MIN(Pmax − P, P − Pmin)/2 ⊲ max shiftable power
r = perff > perfb?1 : −1 ⊲ r reverses power shifting
while δpower > Rpwr and δperf > Rperf do

Pfront = Pfront − r ∗ deltapower
Pback = Pback + r ∗ deltapower
Apply power caps Pfront and Pback.
Get feedback: (powerf , perff ), (powerb, perfb).
δpower = δpower/2 ⊲ decrease search range by 2
δperf = |perff − perfb|/MAX(perff , perfb)
r = perff > perfb?1 : −1

end while

Return optimal static power distribution (Pfront, Pback)

within 2% difference of each other, we consider them to be running at same speed.

4.3.3 Phase 3: Dynamic Power Shifting

In this phase, PoDD dynamically tunes the power allocation. At this point, power can be

shifted between front-end application nodes and back-end nodes, or between nodes running

the same application to account for tail-latency or system noise. While the first two phases

of PoDD represent original work, this phase builds of the dynamic power shifting builds

off PowerShift’s distributed, dynamic power management infrastructure. Specifically, PoDD

integrates PowerShift’s : power priority grouping and power pool, but gets optimal power

distribution from the online model of phase 2, instead of offline profiles. Furthermore, each

local node now executes with a resource configuration learned by Phase 1’s classifier instead

of the node’s default configuration.

Power priorities: There are 3 priority groups:
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1 Nodes operating below their assigned power cap.

2 Nodes operating near the power cap for which the online profile predicts additional power

will not improve couple performance.

3 Nodes operating near the power cap for which the online profile predicts that additional

power will improve couple performance.

Power is always shifted from lower priority groups to higher ones. This grouping mech-

anism allows PoDD to reallocate power between nodes that operating near power limit,

however, with different speedup effect on overall performance, which is the key optimization

of the dynamic mechanism for dependent applications.

Power pool: This shared data structure coordinates power shifting between local nodes.

It keeps track of the minimum information needed: how much power is in the pool (unused

power) and how many nodes are in Group 3. This structure is the key to enforce strict

system-wide power limit, as it keeps the invariant that any node giving up power to the

pool must first lower its local power cap and any node taking power from the pool can only

increase its local power cap after decreasing the power from the shared pool.

Each local node operates in a classic control loop: observing its environment, deciding

on a response, and acting to implement its decision. In observation phase, it collects local

power consumption. Then in decision phase, it first places itself into one of the three power

priority groups. It then sends the power and priority group information to the shared power

pool. Upon receiving the response from power pool, it decides its local power allocation

for the resources learned by the configuration classifier. This process of observing power,

interacting with the pool and adjusting the local power cap is repeated continually as the

coupled application executes. In this manner PoDD constantly fine tunes its power allocation

and can adapt to phases within an application, application tail latency, and system noise.
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Figure 4.5: Performance for different power management systems under different power caps.

4.4 Experimental Evaluation

This section introduces our experimental setup and compares the performance efficiency of

PoDD to 4 prior works: Fair, SLURM, PowerShift-S (which statically allocates power based

on offline profiles), and PowerShift-D (which dynamically allocates power, but still requires

offline profiling). This section also shows how different design choices within PoDD affect

the system. Finally, we show the advantage of PoDD dealing with tail effects.

88



4.4.1 Experimental Setup

Benchmarks There are 8 individual applications we use for evaluation, including 3 scientific

simulation applications: cluster and galaxy from the cosmological simulation suite Gadget

2.0 [91]and the hydrodynamic simulation benchmark lulesh [50]. We use 3 different appli-

cations as proxies for in situ analysis and visualization: a scalable visualization application

VisIt [14], a data compression benchmark pigz [1], and an unsupervised learning algorithm

kmeans [8]. We also explore 2 Spark [108] applications from SparkBench [56]: SparkKmeans

and SparkSQL. These benchmarks feature important workloads in distributed systems, with

different resource needs, including compute-intensive, memory-intensive, and IO-intensive

applications. We then create pairs of these 8 application to represent the emerging workloads

of coupled applications. All coupled pairs are in the form of frontend-backend, where the

backend application takes the output of frontend application as input. Overall, we have 15

pairs: cluster-VisIt, cluster-kmeans, cluster-pigz, cluster-SparkKmeans, cluster-SparkSQL,

galaxy-VisIt, galaxy-kmeans, galaxy-pigz, galaxy-SparkKmeans, galaxy-SparkSQL, lulesh-

VisIt, lulesh-kmeans, lulesh-pigz, luelsh-Sparkkmeans, SparkSQL-SparkKmeans. All appli-

cations are launched with 48 threads per node, which is the maximum number of virtual

cores in our test servers. Additionally, all applications are relatively long-running, taking at

least a few minutes up to several hours.

Platform Our test system is a 49-node cluster. Each node is a dual-socket server, with

2 Intel Skylake Xeon Gold 6126 CPUs. The nominal clockspeed is 2.60 GHz. Each node

has 256 GB of RAM divided between dual memory controllers. All nodes support Intel

RAPL technology for enforcing power caps in hardware through DVFS. Each processor has

12 physical cores, with hyperthreading, giving a total of 48 virtual cores across both sockets.

These nodes are connected with 32-port software-defined 10 GigE switches.

Metrics We use 1/runtime as our performance metric. All performance numbers are nor-

malized to Fair.
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Table 4.4: Comparison of performance under power caps.

Power Cap SLURM PowerShift-S PowerShift-D PoDD

5760W 1.08 1.11 1.16 1.33
6720W 1.07 1.07 1.13 1.29
7680W 1.06 1.08 1.12 1.31
8640W 1.05 1.09 1.12 1.27
9600W 1.04 1.03 1.07 1.21

Har. Mean 1.06 1.08 1.12 1.28

4.4.2 Performance

PoDD and 4 other power management systems are evaluated with our couples across 5

different system power budgets from 5760W to 9600W. While the system-level power budget

is enforced by all 5 approaches—i.e., the sum of 48 node-level power is always less than or

equal to the system-level budget—the performance varies.

Table 4.4 summarizes the overall harmonic mean performance normalized to Fair for

each of the evaluated power managers under different power caps. All approaches outper-

form Fair. SLURM achieves 6% speedup from dynamically reallocating extra power without

awareness of application coupling. PowerShift-S achieves 8% speedup from distributing opti-

mal static power between frontend and backend clusters. PowerShift-D exploits both of these

advantages and achieves 12% speedup on average compared to Fair. in comparison, PoDD

outperforms Fair by 28% on average. The large speedup of PoDD compared to PowerShift-D

shows how beneficial it is to coordinate system-level power shifting with advanced node-level

power capping.

We note that PowerShift-D outperforms SLURM because SLURM always shifts power

from nodes with extra power to nodes running near their power cap. PowerShift-D, on the

other hand, shifts power from nodes running relatively fast to nodes running relative slowly,

allowing the power-hungry nodes running unnecessarily fast to release power to the other

nodes. PoDD improves over PowerShift by incorporating node-level resource classification

into the framework so that each node is not only allocated optimal power, but also configured

into optimal resource settings.
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Figure 4.5 shows the performance delivered by each power management system across 5

power budgets for each coupled application pair. All numbers are normalized to that of Fair.

The 5 charts from top to bottom shows results of system power budgets ranging from 5760W

to 9600W. The x-axis shows the couple and the y-axis shows the normalized performance.

The grouped bars stand for SLURM, PowerShift-S, PowerShift-D, and PoDD from left to

right. We note three observations from the figure:

1. Almost all approaches outperform Fair, except 2 data points where running lulesh-vi-

sit with PoDD , the performance is slightly worse, but still within 3%.

2. While a specific application pair might favor one power management approach over

another, PoDD significantly outperforms PowerShift and SLURM on average.

3. For all power management approaches, the performance speedup is generally higher at

relatively lower power caps, and lowest at the highest power cap.

Here we explain the reasoning for each of these observations. First, Fair ensures each

node is allocated even power throughout the whole execution. Such power distribution

almost always leads to sub-optimal performance for coupled applications as different appli-

cations have different power/performance tradeoffs so evenly allocated power in fact results

in uneven speeds. For the lulesh-visit couple, however, at the two highest power caps

both applications already run at maximum speed under Fair. Therefore, no power shifting

would further speedup either of the coupled applications and the overhead of PoDD (and

other power management approaches) slightly degrades performance.

Second, we consider why some application couples respond better or worse to different

power management systems. galaxy and cluster favor using a single socket per node

without hyperthreading. Because PoDD is the only approach that adjust these node-level

resources, it is capable of (1) achieving much higher performance for the nodes running

these applications and (2) freeing up additional power from these nodes to shift to the node

running the other application in the couple. lulesh and kmeans are both compute-intensive
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benchmarks; when paired with applications offering extra power, their performance greatly

improves. However, when they are coupled together, there is little power shifting opportunity

because both want more power. visit and pigz have significant I/O phases, and during

those phases they are able to offer extra power to the other application in the couple. Also,

pigz favors a single memory controller—where most applications favor two—which offers

additional configuration optimization opportunities for PoDD . At the same time, pigz has a

dramatic tail effect due to workload imbalance. This imbalance favors the dynamic runtime

power shifting. Lastly, the Spark workloads do not have distinct I/O phases, but they do

have decent amounts of I/O time scattered across their whole execution time. Even these

small I/O times can be utilized by fine-grained dynamic power shifting system.

Finally, the reason all power capping approaches performs relatively better at lower power

caps are twofold. First, the performance of applications tend to scale better with power at

lower power cap, as many power performance tradeoff functions are concave. Second, at

higher power caps, the shiftable power is limited. For example, at 200 W per node, as the

maximum power cap is 240W, there is only 40W to be shifted around.

Overall, PoDD outperforms Fair by 28%, SLURM by 21%, and PowerShift by 14%.

These results demonstrate the necessity to optimize power allocation between coupled ap-

plications, dynamically shift power at runtime, and coordinate advanced node-level power

capping with dynamic system-wide power shifting.

4.4.3 Running with Offline Profiles

While offline profiles are not always available, they often exist for a number of applications

run repeatedly in large-scale systems. For example, it would be trivial to modify PoDD to

output its internal power and performance profiles for each application and reload them if the

application was run again. In this section, we evaluate PoDD ’s performance when profiles

are provided. Essentially, when offline profiles are provided, PoDD would skip phase 1 and
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Table 4.5: Comparison of PoDD with or without profiles.

Power Cap PoDD PoDD with profile

5760W 1.33 1.38
6720W 1.29 1.35
7680W 1.31 1.33
8640W 1.27 1.28
9600W 1.21 1.21

Har. Mean 1.28 1.31
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Figure 4.6: Runtime distribution with work imbalance.

phase 2 optimization, and directly enter phase 3 with optimal node-level configuration and

power distribution between coupled applications. Table 4.5 shows the benefit if offline profiles

are available. All numbers are still normalized to Fair. PoDD with profiles gives another

3% performance improve on average by eliminating the overhead during the convergence of

the learning phase and online model building phases. On the other hand, this also reflects

how much of overhead learning classifier and online model builder creates.

4.4.4 Resilience to Tail Effects

Tail effects are a critical issue in distributed workloads, appearing when some small number

of nodes has much longer execution time than the majority. These tail nodes drag down

overall application performance. In coupled applications, tail nodes slow down both the

application to which they belong and the couple.

There are various sources that cause tail effects including: system noise and workload
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Figure 4.7: Runtime distribution with system noise.

Table 4.6: Comparison with different topology mapping.

Power Cap PowerShift-D PowerShift-D co-located PoDD PoDD co-located

5760W 1.15 1.23 1.58 1.60
6720W 1.21 1.31 1.68 1.68
7680W 1.15 1.25 1.76 1.70
8640W 1.15 1.24 1.80 1.65
9600W 1.08 1.15 1.66 1.58

Har. Mean 1.15 1.24 1.69 1.64

imbalance. System noise can come from many forms of physical and human sources and it is

inevitable in distributed systems [5]. Workload imbalance has always been one of the great

challenges in designing distributed applications. Due to the variations of application input

and parameters and hardware variety, perfect work balance is hard to achieve. Many prior

works mitigate workload imbalance in various ways, PoDD ’s dynamic power management is

naturally resilient to these issues.

Figure 4.6 shows the runtime distribution of the nodes running the pigz application,

which is known to have tail effect due to workload imbalance. We have collected the execution

time of each node for 3 runs of pigz in different coupled pairs under 7680W system-wide

power budget. We normalize the execution time of each node to the longest one using Fair,

and accumulate the frequency of execution time, which is reported as percentage over the

number of all nodes. As we can see from the chart, comparing PoDD to Fair, the numbers

in range of [0.6, 1] (tail nodes) decrease dramatically from 18.7% to 3.5%. The averaged

coupled performance speedup is 31.3%.

Next, we evaluate the performance under system noise. We emulate system noise by

randomly picking two nodes in the pigz cluster and run a 24-thread program on each of
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Table 4.7: Comparison of online profiling techniques.

Model Name Accuracy Convergence Speed overhead

binary-search upper bound 2W 4 single core, less than 1s
quadratic Average 3W 3 single core, less than 2s
logarithm Average 2W 4 single core, less than 2s

Table 4.8: Overhead analysis.

Resource Idle usage Average usage Peak usage

CPU 0.10% 0.65% 5.25%
Memory 0.70% 0.75% 1.24%

Network I/O 0.18% 0.20% 0.83%

those nodes stressing the computing resources. All other nodes are left in their usual state.

This method of generating noise is general, similar (though likely less pronounced) effects

could come from other sources such as temperature fluctuations or manufacturing variation.

While PoDD is not explicitly aware of the inserted system noise, it detects the increased

power pressure on the 2 nodes. Figure 4.7 reports the runtime distribution under system

noise, all other experimental parameters are the same as those in Figure 4.6. Comparing

PoDD to Fair, the numbers in range of [0.6, 1] decrease remarkably from 8.3% to 0%, and the

averaged coupled performance speedup is over 44%. PoDD achieves these results because it

naturally reallocates power from both nodes that finish early and from the other application

in the couple to speed up these two tail nodes. This dynamic power management greatly

mitigates tail effects in distributed workloads; improving not just the performance of the

directly effected but also the overall performance of the coupled pair.

4.4.5 Topology-obliviousness

PoDD is topology-oblivious, meaning the approach can support multiple mappings of applica-

tions to physical hardware as long as the power control of the hardware assigned to front and

back end applications is independent. For simplicity of discussion the majority of evaluation

assumes different applications are mapped on physically separate nodes, such separation is

not a requirement. In this section shows we evaluate when front and backend application
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Table 4.9: Power management system capability comparison.

System Distributed Dependent-aware Dynamic No offline profiles No code instrumentation

Fair X X X X X

PUPiL [109] X X X X X
SLURM [89] X X X X X

PowerShift-S X X X X X

PowerShift-D X X X X X

PoDD X X X X X

are scheduled on same nodes but different sockets. Specifically, we evaluate the one appli-

cation couple for which PoDD shows great speedup—galaxy-visit—across 5 power caps.

Table 4.6 shows the results: that PoDD still has great speedup over PowerShift-D ; however,

the relative improvement is less, since the performance of PowerShift-D increased in the

co-located case. The reason is that in the co-located case, the configurable resources are

fewer because there is no option to reduce socket usage. Therefore, PowerShift-D happens

to be forced to use a better resource allocation than before. Nevertheless, these results show

PoDD performs well invariant of mapping topology.

4.4.6 Online Model Builder

In this section, we demonstrate a comparison for 3 different approaches to online model

building in terms of their accuracy, convergence speed, and computation overhead. Accuracy

is quantified by power error (W) from optimal power allocation. Convergence speed is

quantified by how many data points the model needs to converge. Computation overhead

is evaluated by how much of computation resources the models need. Table 4.7 shows the

overall comparison. As discussed in Chapter 4.3.2, our power range of each end is limited

to 35 W, binary search is the best fit in this case, because of high accuracy, low overhead

and comparable convergence speed. More complex learning models—e.g., [60, 69]–are not

suitable in our case, simply due to comparable or even worse convergence speed with much

bigger overhead.
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4.4.7 Scalability analysis

The controller node is in charge of learning node-level configurations, building online pow-

er/performance models, and managing the power pool. For our test system, we have 48-node

computing node with one controller node. We evaluate the computing, memory, and net-

work I/O stress on the controller node and the time spent exclusively on the controller node

(normalized to the entire execution time). Table 4.8 shows the resource utilization overview.

The idle usage serving as a baseline, is the average usage when machine is nominally idle.

The average usage is averaged over all experimental runs and over the entire execution time.

Peak usage is the average peak usage of each run over all runs. As we can see, none of

the resources are even close to being challenged under the stress of supporting a 48-node

system. The low utilization is because we chose to use a less costly approach and minimize

data exchange. Based on these results, we predict the controller node could handle at least

1000 nodes without severe resource contention. One potential limiting factor, however, is

the network latency as the cluster grows larger and we need to make real time adjustment.

4.5 Related Work

Power constraints have become one of the biggest concerns in computer systems at all scales.

At node-level, researchers have proposed both software-based approach and hardware-

based approaches to control power. Early software approaches manage individual compo-

nents including DVFS for a processor [54], per-core DVFS in a multicore system [48],

processor idle-time [32, 111], DRAM [23], and storage [52]. The coordination of multiple

system components consistently out performs approaches that only consider a single compo-

nent in isolation. Examples include approaches that coordinate processor and DRAM [13,

21, 22, 29, 57, 83] processor speed and core allocation [15, 79], combining DVFS and schedul-

ing [77, 103], memory and disk speed [58] and combining DVFS and process placement [64].

Two recent approaches provide general interfaces to coordinate arbitrary sets of resources to
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deliver maximum performance for a given power cap [39, 43]. These approaches, however,

require offline profiles of power and performance tradeoffs.

For hardware-based approaches, the most widely used and studied is Intel’s RAPL—

Runtime Average Power Limiting—system, supported in SandyBridge and later processors

[16]. Hardware approaches have the advantage of converging to desired power state faster

than software approaches. However, they are not able to achieve optimal performance due

to only tuning a single resource: DVFS, or processor frequency and voltage. To get the

combined benefits of software and hardware, researchers have developed techniques for co-

ordinating the two to achieve high performance with fast convergence [109].

Early work on cluster-level power capping largely ignored performance concerns and fo-

cuses on coordinating different levels of the system (data center, rack, server) to ensure

power constraints are respected [0]. Given this foundational work to establish system-wide

power budgeting, follow up projects could explore improving performance given those bud-

gets. Examples include consolidating workloads to use fewer physical machines [61, 72], job

scheduling to achieve resource efficiency [4, 18, 19, 33, 80], and hardware over-provisioning,

such that nodes in the system need to be power capped to avoid power loss [82]. Despite dif-

ferences in methodologies, these systems all try to deal with single application or independent

applications and none address the coupled applications studied in this paper.

The closet work to PoDD , is PowerShift [110]. To the best of our knowledge, Power-

Shift is the first work to propose a power capping solution that specifically addresses the

challenges of coupled application workloads. Earlier sections of the paper describe the dif-

ferences between PoDD and PowerShift in great detail and demonstrate the performance

improvements that PoDD obtains.

Table 4.9 shows the capability comparison of several related power management systems

and PoDD . Again, PoDD offers a practical approach for coupled applications running under

system power budget in a large-scale system, delivering high performance efficiency, requiring
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no prior application profiles, no code instrumentation with decent scalability.

4.6 Conclusion

This paper presents PoDD , a hierarchical, distributed, dynamic power management system

to address the emerging challenge of power capping for coupled workloads in large-scale

system. It makes 3 main breakthroughs: (1) developing a novel node-level power capping

technique that monitors hardware performance counter and learns the optimal resources al-

location using a classifier, (2) coordinating node-level power capping with system-level power

shifting for maximized performance, and (3) requires no application profile by building power

performance model online. Under a variety of power caps running a mixture of different cou-

pled workloads, PoDD outperforms several state-of-the-art approaches while showing great

resilience to tail effects and system noise. The performance improvements available with

PoDD demonstrate the benefits of (1) developing power management for coupled workloads

(such as future multiphysics and in situ analysis), (2) coordinating node-level power opti-

mization with system-level power shifting, and (3) dynamically shifting power. We hope this

work inspires future research and further improvements to these critical problems.
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CHAPTER 5

CONCLUSION

This dissertation systematically studies an essential part of modern computing systems –

power capping/budgeting techniques with focus on server-based systems. Power capping

gets increasingly important as power has become arguably the number one constraint for

performance scaling of computing machines. Meanwhile, it is challenging for 2 reasons:

(1) Strictly limiting power consumption is a challenging problem, (2) Enforcing the power

cap only is not enough, high performance is required for power capping systems. In the

dissertation, we start addressing this problem by looking at the single server system. PUPiL,

a dynamic hardware/software hybrid power control system, maximized the performance

while enforcing the power cap in a timely way. Then, we divert attention to the other end of

spectrum – large-scale systems, more specifically, the emerging challenge of power capping

coupled workloads in a distributed system. The proposed PowerShift , a family of techniques

for shifting power among nodes running coupled, distributed applications under a system-

wide power budget, is the first work to address the unique challenge of coupled workloads and

greatly improves the overall performance over any prior power capping technique. Finally,

we propose PoDD , a hierarchical distributed dynamic power capping framework, to further

address two major challenges for coupled applications. PoDD releases the restriction of

prior application profiles, optimizes the performance using a hierarchical architecture to

coordinate node-level optimization and system-level power shifting, and evaluated to be

flexible (topology-oblivious), robust (resilient to system noise and tail effect). The following

paragraphs summarize each project in detail.

PUPiL investigates hardware and software power capping techniques. We find that hard-

ware techniques provide significantly faster response time – quickly enforcing power limits –

while software can provide much greater flexibility – by tailoring resource usage to the current

application workload. We have used these observations to formulate and evaluate a hybrid

100



hardware/software power capping system – PUPiL. We evaluate PUPiL and compared it to

a pure software approach and to Intel’s state-of-the-art hardware approach. Across a number

of power targets and workloads, we find that PUPiL achieves nearly the same response time

as the hardware approach and the flexibility of the software approach. In both single and

cooperative multi-application workloads, PUPiL provides at least 18% greater mean perfor-

mance than RAPL. In oblivious multi-application workloads, PUPiL provides at least 2.4×

the mean performance. We conclude that delivering performance under a power cap cannot

be left to hardware alone, but requires the cooperation of both hardware and software. We

have developed one such cooperative approach and released the code and test cases so that

others can use it, compare against it, or extend it.

PowerShift presents a family of techniques for shifting power among nodes running cou-

pled, distributed applications under a system-wide power budget. Specifically, we propose a

static scheme, a centralized dynamic scheme, and a distributed dynamic scheme. The static

scheme is low overhead, but is not able to adjust to tail behavior or application phases.

Both dynamic schemes do adjust, with the centralized scheme generally achieving higher

performance—with higher overhead—while the distributed dynamic scheme trades some

performance for reduced overhead and increased flexibility. Compared to prior approaches,

PowerShift provides two advances: (1) instead of just shifting from low-power to high-power

nodes, PowerShift will shift power away from high utilization nodes to other high utilization

nodes that need power more; and (2) PowerShift can recognize when it is not helpful to shift

power and instead it will reduce energy. Our results confirm that PowerShift has practical

benefits, demonstrating improved performance, reduced energy, and dynamic adjustment to

tail behavior and system noise. We believe the coupled workloads addressed in this paper

will become increasingly important in both data centers and supercomputers because they

reduce IO burden and take advantage of system scale. PowerShift represents one way of

improving the performance, energy efficiency, and tail tolerance of this class of application.

101



PoDD , inspired by both PUPiL and PowerShift , demonstrates a hierarchical distributed

dynamic power capping framework, that overcomes two major limitations in prior works: (1)

dependence on offline profiles, and (2) not exploiting node-level optimization, without any

code instrumentation. It delivers high performance by incorporating advanced original node-

level power capping technique to coupled-workloads-aware system level dynamic shifting. It

no longer requires prior knowledge of application profiles by building power performance

model online. Finally, it greatly mitigates tail effects in distributed environments, is resilient

to system noise and scales well to large numbers of nodes. We implement PoDD on a 49

node distributed system and evaluate it against 4 widely-used/state-of-the-art power con-

trol systems: Fair, SLURM, PowerShift-S and PowerShift-D. The evaluation shows PoDD

improves mean performance over Fair by 28%, which outperforms SLURM by 21%, outper-

form PowerShift-S by 19%, and outperform PowerShift-D by 14%. Our evaluation of noisy

environments and scalability also shows PoDD is resilient to system noise and predicted to

have a 20X scalability over the current 49-node system. Evaluations show great flexibil-

ity of PoDD , that it is topology-oblivious and works well whether coupled applications are

physically separate or co-located.

5.1 Future Work

This dissertation addresses the challenge of power capping computing systems from a single

node machine to a large-scale system. As new technologies emerge, there are new challenges

in this area. Here, we introduce 4 major problems.

5.1.1 Node-level Challenge

Different applications have unique requirement and/or preference for system resource or ar-

chitecture. General-purpose computing systems try to handle all workloads with fair perfor-

mance, however, deliver sub-optimal performance and energy efficiency compared to custom
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accelerators. Thus, on one hand, general-purpose machines are highly configurable (per-core

on-chip DVFS, configurable memory, configurable network) to better fit different workloads,

on the other hand, many specialized hardwares are built to greatly speed up specific type

of workloads, e.g. GPUs for video, machine learning or other high floating-point-need work-

loads. The incorporation of accelerators offers great opportunities for power capping systems

to further efficiency, but also creates a new challenge: the configuration space explodes (for

each new custom accelerator, the configuration space grows exponentially), it is extremely

difficult to find the right configuration to operate on. At the very high level, the problem

to find the configuration delivering the highest performance under a certain power cap is

NP-hard. Many heuristics have been proposed to target different system, workload, etc.

So the challenges are, with the emerging hardwares, architectures, workloads, the power

management system have to keep up with new heuristics.

5.1.2 Large-scale Challenge

datacenters or supercomputers consist of hundreds of thousands of servers, so a centralized

control strategy is not feasible, because a single server would not be able to handle the

control work for all the servers. A hierarchical (tree structure) control strategy could be one

of the solutions. So in a tree-structured hierarchical control system, the root is the global

controller and the leaves are each server. For example, In PoDD , the controller system is

predicted to be able to handle 1k nodes, which can be the controller talking to the leaves.

And they will further talk to their parent controller node, and eventually, all information is

gathered at the global controller. Each layer of the tree should have a different power capping

strategy since they are dealing with different entities and with different constraints. Thus,

building such hierarchical power control system is not easy. And one particular challenge is

the necessity to mitigate network latency. As the tree scales out, it takes several hops for

the information from servers to reach the global controller. This latency could be 10s up to
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minutes depending on the scale. It means the global picture is greatly delayed, which makes

real time decision-making infeasible. Researchers need to figure out a way to allow each layer

of controllers to make real time decisions without having the real time view of the resources

it is controlling.

5.1.3 Large-scale Reliability Challenge

The power management system is responsible for keeping machines in normal operating state,

that we have to consider rare cases where controller node itself goes down due to unexpected

reasons. In order to make sure servers in the fleet running within the power budget, they

need to be controlled all the time. Thus, we need to have backup controllers running with

the master controller. Basically, a distributed controller pool will be needed in this case,

when some controller goes offline, other can take its place. Another challenge comes with

this mechanism, is classic synchronization between master controller and backup ones.

5.1.4 Performance Model

Performance monitoring is very important for optimizing system efficiency. In power man-

agement system, it almost always needs some kinds of performance monitoring. While most

of existing performance monitoring approaches are either requiring software level assistance

(e.g. code instrumentation) or have poor accuracy (e.g. use IPS/IPC as performance indi-

cator), to model the performance with hardware performance counter information is very

beneficial: (1) it is low overhead and requires no software level knowledge, and (2) more and

more hardware counters have been exposed to users, and with suitable learning techniques,

the accuracy can be potentially improved.
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