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CHAPTER 1

INTRODUCTION

Proteins are challenging physical systems to model because of an interplay between statistical

mechanics that explores conformational space compatible with a protein’s sequence and

evolution that explores sequence space compatible with a protein’s structure and function.

While some aspects of protein structure are amenable to deduction from simple principles,

such as Linus Paulings’ prediction of helical and sheet structure, much of our knowledge of

protein physics comes from a great number of generally weak energetic preferences rather

than hard rules, requiring a more flexible approach to understanding structure and dynamics.

Since the pioneering work of Karplus on molecular dynamics, scientists have attempted to

characterize the wiggling and jiggling of protein atoms by watching them do so on their

computer in order to transfer computational observations to experimental hypotheses. This

thesis will explore new, rigorous methods to characterize both the motions of proteins and

the parameters that control them.

Sampling a conformation from the Boltzmann ensemble of proteins is extremely chal-

lenging owing to three separate factors. The first challenge is to represent the complicated

potential energy surface of the protein. The cooperative folding behavior of proteins[2] in-

dicates that proteins are often finely balanced between widely-separated states, the native

state and the unfolded state. We must represent the energetics of these states carefully in

order to reproduce this behavior. The tremendous number of potential conformations re-

quires us to separate the native state from all other conformations by a large free energy

gap in order to observe the high fraction of the native state observed in the experimental

ensemble.

The second challenge is that a realistic protein potential energy will be subject to the

separation of time scales[7] that typifies protein dynamics. It is plausible that one can

create a unrealistic potential energy function that folds nearly downhill to the native state

for even large proteins with great accuracy; this often is the basis of structure prediction
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methodologies that make no attempt to represent the Boltzmann ensemble of a protein. For

models that seek to represent the totality of protein physics, we likely must accept that

folding is often cooperative, with the attendent extended conformational search.

This thesis and the Upside model described herein tackles the potential and sampling

challenges simultaneously. By carefully designed to be physical, this procedure should mostly

extract physical information from statistical regularities (deviations from randomness) of

the training data. In some cases, however, the potential energy will lack the necessary

flexibility in its functional form to model the underlying physics. In these cases, unphysical

interaction energies of the terms present in the potential may be required to best match

experimental data. While such unphysical interaction energies provide the best prediction of

training data by definition, they may limit the ability of the resulting models to generalize to

related prediction (e.g. while a potential energy may provide the best native-state structure

predictions, it may not generalized to correctly predict the properties of extended states).

A similar situation occurs in other potential functions. Three-molecule interactions are

very important to the energetics of water clusters and water interfaces, yet are absent in many

common water models like TIP3P[3]. To obtain the impressive agreement of water models

to bulk water observables[5], three-molecule interactions must be incorporated into two-

molecule interactions in an averaged sense. This approximation works for many properties

of interest but can give flawed predictions at interfaces. The general solution is to identify

the deficiencies and propose modified potentials to reduce the impact of these errors. The

solution for protein statistical potentials would be similar.

1.1 Computational trends that favor statistical potentials

Modern computational resources are typically characterized by an abundance of floating

point performance divided among many cores. These individual cores run in parallel, and

synchronous communication between the cores is typically quite costly. This description fits

both the multicore CPUs and GPUs within a computer, as well as the numerous but weakly
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coupled computers found in a typical supercomputing cluster. The weakly-coupled nature

of computational elements makes it very difficult to use the entirety of a cluster to quickly

simulate a single physical system, though it can be achieved with enormous engineering

effort[6]. Instead, the natural path forward for utilizing modern computational resources is

to express protein dynamics problems using collections of loosely coupled simulations.

From a traditional protein dynamics points of view, the Folding@Home project addresses

this computational challenge using a large collection of very short simulations to characterize

the dynamic process of proteins using volunteer resources[4]. Interpreting the results of these

simulations is challenging, and often requires an assumption of Markovianity of the dynamics

on a chosen, finite partition of the observed state space of the protein[1]. It is beyond the

scope of this thesis to explore the advantages and limitations of such a method.

Approaches similar to Folding@Home are likely unnecessary for coarse-grained models

of single protein dynamics, because the coarse-graining both reduces the computational

load and increases the simulation decorrelation rate. At the same time, utilizing modern,

large-scale computational resources is hampered by the inability to use more than a few

cores to accelerate the small computation per step of coarse-grained models. This benefits

experimentalists and other less-specialized consumers of computational models, who are

often not well-versed in the operation of supercomputing clusters and hence benefit from the

development of simulation methodology that runs easily on commonly accessible resources.

Instead of focusing enormous computational resources on simulating a single protein, a

natural path forward is to direct the coarse-grained simulations to simultaneously run hun-

dreds or thousands of distinct trajectories. The main approach discussed in this thesis is

to use the simulation trajectories of 102–103 different proteins to identify weaknesses of the

simulation model, and then perturb the potential energy function to increase accuracy. The

costs from such a procedure, if carried out across a large fraction of the PDB, may be quite

large but this significant computation only needs to be performed once. This expensive train-

ing creates an inexpensive-to-simulate model of proteins that enables even non-specialists to
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use easily. The trends in computational resources make this approach increasingly viable, so

long as we may equilibrate of single proteins on a small number of computational cores in

reasonable time. Our newly-created Upside software and parameterized potential described

in this thesis are expressly intended to enable sufficiently-fast PDB-scale training on current

computational resources.

The resulting Upside model of protein physics enables a great variety of protein studies,

from folding to conformational change to binding to predictions of protein structure using

Upside as a strong Bayesian prior on protein structures. The focus of this thesis has been

to develop techniques that allow researchers to easily obtain a sample from the Boltzmann

distribution for proteins of small-to-moderate size. Most of the dividends of this research

program are still to be reaped and a selection of potential applications are discussed in

chapter 5.

1.2 Contributions of this thesis

This thesis makes contributions to both the sampling and parameterization problems for

coarse-grained protein potentials.

In chapter 2, we solve a major limitation of protein simulations, the inability to have

detailed side chain interactions without the difficult equilibration of very rough energy sur-

face. We define and approximate a novel scheme for instantaneously-equilibrated side chain

free ensembles. This side chain free energy allows rapid sampling in the smoother potential

energy surface of the protein backbone conformations for molecular dynamics while retaining

the detailed energetics of the side chain conformations. Importantly, the free energy is inher-

ently many-body, as is typical for interacting systems with pair interactions, capturing the

non-additivity of side chain interactions due to the inability to simultaneously adopt multiple

rotamer conformations simultaneously. As an associated benefit, direct optimization of the

rotamer prediction accuracy of the side chain model yields a side chain rotamer predictor

competitive to the state of the art in accuracy while running two orders of magnitude faster.
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In chapter 3, we address the parameterization challenge by using the contrastive diver-

gence method from machine learning to parameterize a detailed potential for protein folding.

We show that only optimizing near-crystal conformations is sufficient to define a potential

capable of de novo folding of small proteins to high accuracy. Furthermore, we examine the

ability of our model to represent temperature-denatured states of proteins in preparation for

future work on folding pathways. It should be noted that chapters 2 and 3 are intended for

publication, so that they contain redundancies with other parts of the thesis.

Chapter 4 describes the details of the Upside model. In particular, the subtleties of

working with an existing torsional potential for the Ramachandran angles is discussed, as

well as the need for careful treatment of side chain-backbone interactions. We also discuss a

number of decisions in the design of a coarse-grained potential necessary to ensure effective

and rapid sampling.

Integral to the theoretical work described above, we have developed an entirely new simu-

lation package for the simulation and training of coarse-grained physics models, including our

semi-implicit side chain model. This simulation packages applies lessons from the machine

learning community that it is essential to have a single framework for training and testing

statistical models so the same implementation used for protein dynamics can be used to com-

pute the parameter derivatives needed to train the model. This simulation package is also

extensible so that arbitrarily sophisticated potential energy functions or virtual coordinates

may be created, which is intended to be an extensible platform to integrate sophisticated

new sources of information, such as that available from statistical predictions of secondary

or tertiary structure. This software is publically available under an open-source license at

https://psd-repo.uchicago.edu/freed-and-sosnick-lab/upside-md.

Finally, chapter 5 concludes with future work that builds on the methods and perspec-

tives developed in this work. Both future applications to protein dynamics and enhanced

parameterization techniques are presented.
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CHAPTER 2

MAXIMUM LIKELIHOOD SIDE CHAIN PACKING

Work in this chapter has appeared in [10].

2.1 Introduction

Two major challenges must be overcome in order to confront the difficulties of accurately

simulating protein dynamics. The first is the necessity of balancing the large and compet-

ing sources of energy and entropy whose total determines both the thermodynamics and

the native conformation of the protein. The second challenge involves the intensive sam-

pling required to obtain a Boltzmann ensemble of conformations. The sampling challenge

is addressed here by integrating out the side chain free energy to produce a coarse-grained

configuration defined just in terms of the backbone N, Cα, and C atoms. Consequently, back-

bone motions evolve on a smoother coarse-grained free energy surface with greatly reduced

side chain rattling (molecular friction) compared to that for standard all-atom molecular

dynamics simulations (see article on long side chain timescales).

The uncertainty in the position of coarse-grain interactions introduces the difficulty of ac-

curately parameterizing a coarse-grained model to represent the physical interactions. More-

over, all-atom force fields produce conformations that deviate from experiment, especially for

unfolded proteins[20]. Hence, rather than following the customary process of matching the

energies of the coarse-grained model to approximate the already inexact energies of atomistic

force fields or trying to interpret raw statistics for the distribution of interatomic distances in

the Protein Data Bank (PDB)[1] and defining the correct reference state appropriate to the

statistical potential[7], our side chain energies are determined as those that best reproduce

the side chain conformations observed in the PDB given fixed backbone configurations. This

maximum likelihood approach has key advantages: (1) it directly provides an interpretation

of the structural information as a sample from the statistical mechanical ensemble of side
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chain packing, and (2) it can be evaluated quickly since we will show that approximating

the Boltzmann distribution for the side chains in a fixed backbone configuration does not

require laborious discrete sampling of the χ angles. This work also presents a computation-

ally extremely inexpensive, coarse-grained approximation for describing side chain packing,

thereby allowing the model to be directly used as the free energy function for molecular

dynamics simulations. Our method enables rapidly equilibrating coarse-grained simulation

that can nonetheless contain significant molecular detail.

2.2 Constructing and evaluating the energy of the side chains

The positions of the N, Cα, and C atoms constitute the backbone trace. The native backbone

trace determines the fold of the protein, and the free energy of the trace is likely to preserve

the major barriers that determine the slow degrees of freedom in the protein. The strategy

in our method, called Upside, is to perform dynamics simulations of the backbone trace,

while still including sufficient structural details (side chain structures and free energies, etc.)

necessary to compute realistic forces on the three atoms of the backbone trace. This strategy

yields the advantage that the inclusion of the side chain free energy, rather than the side

chains themselves, greatly smooths the potential governing the dynamics of the backbone

trace, especially because of the reduction of steric rattling attributable to the side chains as

they try to sample multiple substates in the condensed state.

First consider a representation of the protein configurations in terms of the coordinates

({bi}, {χi}) where bi represents the positions of the backbone N, Cα, and C atoms on the

i-residue and χi represents the side chain χ-angles on the i-th residue. Since bond lengths

and angles are approximately constant for proteins, the positions of the protein atoms can

be reconstructed with high accuracy from the ({bi}, {χi}) coordinates. Given a potential
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Figure 2.1: Inner loop of Upside calculation. Executing this computational loop in the
present simulations takes between 0.25 CPU milliseconds (BBA) and 0.82 CPU milliseconds
(ubiquitin) per iteration (each simulation replica is run on single 2.60 GHz processor core).
The side chain potential enters into the integration step simply as a complicated, many-body
energy function that may be treated with standard techniques of molecular simulations.
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energy V ({bi}, {χi}), we define the free energy as a function of the backbone configuration,

V̄ ({bi}) = − log

∫
dχ1 · · ·χN e−V ({bi},{χi}). (2.1)

Natural energy units are used so that kBT = 1. An intermediate step of this derivation

requires the introduction of a discrete approximation {χ̃i} for our χ-angles and a discrete

approximation V̄ ({bi}, {χ̃i}) for the potential.

Rather than directly calculate (2.1), we define an intermediate discrete approximation

to V̄ that is amenable to approximation techniques. Consider a discrete coarse-graining

function g so that χ̃i = g(χi), where χ̃i is a small integer (χ̃i ∈ {1, . . . , 6} in this work). The

coarse-grain potential Ṽ is defined so that

e−Ṽ ({bi},{χ̃i}) ≈
∫
dχ1 · · ·χN

(∏
i

δχ̃if(χi)

)
e−V ({bi},{χi}). (2.2)

In principle, any coarse-graining function for the side chains may be used; however the

discrete approximation Ṽ to the potential provides a more accurate approximation whenever

the distribution of χ-angles is sharply peaked (in the true potential V ) within each discrete

state χ̃. See Figure 2.3 for an example of a coarse-graining function and see section 2.4 where

an optimized coarse-graining function f is derived. We make the following assumptions

on the form of Ṽ . First, we assume there is an explicit function yi(bi, χ̃i) for the side

chain coordinates based only on the backbone coordinates and side chain state for residue

i. We may relax the requirements to depend on only a single residue’s backbone position,

but the requirement that yi depend on only a single side chain state χ̃i is firm. These

directed coordinates are approximately side chain centers of mass with direction given by

the Cβ–Cγ bond vector direction. However, a parameterization of these side chain position

functions separately for each amino acid type enables the maximization of the accuracy of

the approximation in equation (2.2). A further assumption is that Ṽ can be expressed in
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the form

Ṽ ({bi}, {χ̃i}) = V backbone({bk})+ (2.3)∑
i

V
(1)
i ({bk}, χ̃i, yi(bi, χ̃i)))+ (2.4)

∑
i,j

V
(2)
ij (yi(bi, χ̃i), yj(bj , χ̃j))), (2.5)

where the pair interaction V
(2)
ij (yi, yj) = 0 for the side chain is taken to vanish beyond a

cutoff Rcutoff. Notice that the dependence of the potential on the backbone is completely

general except the potential is assumed to contain at most a pairwise dependence on the

discrete rotamer states χ̃i. Explicit parameterizations for yi and Ṽ are defined in section 2.5

using the principle of maximum likelihood.

One can simulate the Boltzmann ensemble for Ṽ using molecular dynamics for the back-

bone {bi} and Monte Carlo moves for the side chain states {χ̃i}, but the strong steric

interactions lead to a slow equilibration and dynamics for both the side chains and back-

bone. Since we are predominantly interested in backbone motions, we return to the free

energy V̄ in (2.1), now summing over discrete side chain states instead of integrating over

continuous side chain angles,

e−V̄ ({bi}) ≈
∑

χ̃1,...,χ̃N

e−Ṽ ({bi},{χ̃i}). (2.6)

The potential V̄ represents a further coarse-graining of the system by completely replacing

the influence of the side group with a potential describing the adiabatic free energy of the

side chains for a given fixed backbone conformation. Because V̄ depends only on the (contin-

uous) backbone coordinates, this choice of V̄ enables running standard molecular dynamics

simulations instead of a hybrid of Monte Carlo and molecular dynamics. The potential V̄ is

a much smoother function of the backbone coordinates than the original V ({bi}, {χi}) be-

cause the replacement of the side chain degrees of freedom with the approximate free energy
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of the side chains greatly reduces steric rattling and molecular friction. The reduction of

the ruggedness of the energy landscape enhances diffusion within conformational basins but

preserves the overall structure and barriers of the conformational ensemble.

2.3 Approximating the discrete free energies of the side chains

The benefits of running dynamics with the coarse grained V̄ enter at great cost because

using even three coarse-grained states per side chain implies a summation over 3N χ̃-states

in equation (2.6). Furthermore, the vast majority of those 3N states have steric clashes or

other large energies and, therefore, contribute little to the free energy of the side groups.

To approximate the free energy of the side chains V̄ , it is convenient to express our

problem in the language of Ising models so that we can apply standard techniques developed

in that context. For a fixed backbone configuration {bi},

Ṽ ({bi}, {χ̃i}) = v̄({χ̃i})

=
∑
i

v
(1)
i (χ̃i) +

∑
i,j

neighbors

v
(2)
ij (χ̃i, χ̃j), (2.7)

where the potentials v̄ are written in lowercase to indicate suppression of the dependence

on the fixed backbone coordinates {bi} in order to focus on the side chain contribution.

Notice that with the backbone positions fixed, each single-residue potential v
(1)
i is simply

a vector with as many components as the number of possible states for χ̃i (e.g. length-6

vectors). Similarly, each of the pair potentials v
(2)
ij is a small 6x6 matrix of potential energies

to cover the 36 possibilities. These single and pair potentials are calculated only once before

evaluating the free energy as described in section 2.5. Moreover, the pair summation in

equation (2.7) only applies for residues pairs i and j that are neighbors spatially. A pair

of residues (i, j) are neighbors if inter-residue distance |yi(χ̃i)− yj(χ̃j)| is less than a cutoff

Rcutoff for any of their possible discrete states (χ̃i, χ̃j). In this work, we use Rcutoff = 7Å
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Figure 2.2: Fragment of protein G with associated interaction graph (Rcutoff = 7Å). A pair
of residues has a connection whenever their side chain beads are within Rcutoff for any side
chain states.

for side chain-side chain interactions and Rcutoff = 5Å for side chain-backbone interactions.

The potential Ṽ may be visualized as an energy function on a graph with one discrete

site per amino acid. The graph has a connection between any two residues that are within

the cutoff separation Rcutoff as defined above. This graph is illustrated in Figure 2.2 for a

model protein configuration. The structure of this graph varies dynamically over the course

of a simulation because the definition of neighboring residues depends on the backbone con-

figuration {bi}. The potential varies smoothly as the backbone moves so long as the pairwise

potential functions are continuous in the backbone coordinates. The potential Ṽ is continu-

ous despite the changing connections of the graph, because the strength of the potential for

each interaction approaches zero at Rcutoff just before the connection is eliminated from the

graph. Problems such as this, with discrete potentials on an arbitrary graph, are extensively

studied in both statistical mechanics (as variants of the Ising model) and machine learn-

ing (as undirected graphical models or Markov random fields)[24]. Below we adopt some

well studied approximations from these fields to provide accurate and tractable methods for

computing our coarse-grain potential V̄ .

Two approximations (see [24]) are invoked to compute the free energy from

V̄ = GSC = − log
∑

χ̃1,...,χ̃N

e−v({χ̃i}). (2.8)

The first approximation is to express the free energy GSC in terms of the entropy and average
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energy of the Boltzmann ensemble where the entropy has been replaced by an approximation,

GSC = 〈v̄〉 − S

≈ 〈v̄〉 − Sapprox, (2.9)

where 〈v̄〉 and Sapprox are defined below. Both the average energy and a mutual information

approximation to the entropy may be expressed using the single-residue probabilities pi(χ̃i)

that residue i is in state χ̃i in the Boltzmann ensemble of v̄ and similarly for the joint

probabilities pij(χ̃i, χ̃j). Using pi and pij , the approximate energy and entropy are

〈v̄〉 =
∑
i

∑
χ̃i

pi(χ̃i)v
(1)
i (χ̃i)+

∑
i,j

neighbors

∑
χ̃i,χ̃j

pij(χ̃i, χ̃j)v
(2)
ij (χ̃i, χ̃j) (2.10)

Sapprox =−
∑
i

∑
χ̃i

pi(χ̃i) log pi(χ̃i)+

−
∑
i,j

neighbors

∑
χ̃i,χ̃j

pij(χ̃i, χ̃j) log
pij(χ̃i, χ̃j)

pi(χ̃i), pj(χ̃j)
. (2.11)

The mutual information approximation to the entropy ignores contributions from three-

residue and higher correlations. We intend to minimize the approximate free energy (2.9)

over all putative Boltzmann probability distributions for the side chain states {χ̃i}. Notice

that only the 1-side chain probabilities pi and 2-side chain probabilities pij are required to

compute the average energy and approximate entropy; we do not need the more complicated

full joint probability distribution of the {χ̃i} states for all side chains. In addition to the

mutual information approximation of the entropy, we assume that any pair probability pij

represents possible pair probabilities from a Boltzmann distribution, so that the only task

is to minimize the free energy with respect to the pair probabilities. The only constraints
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imposed are that they must satisfy the obvious consistency conditions for probabilities,

pi(χ̃i) =
∑
j

pij(χ̃j) (2.12)

∑
χ̃i,χ̃j

pij(χ̃i, χ̃j) = 1 (2.13)

∑
χ̃i

pij(χ̃i, χ̃j) =
∑
χ̃k

pjk(χ̃j , χ̃k) (2.14)

pij(χ̃i, χ̃j) = pji(χ̃j , χ̃i). (2.15)

However, use of only the conditions (2.12)-(2.15) is insufficient to ensure that a joint prob-

ability distribution exists for all the variables consistent the with the choices of pi and pij .

As an explicit example,

p12 = p23 =


1/3 0 0

0 1/3 0

0 0 1/3

 (2.16)

p13 =


1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

 (2.17)

obeys conditions (2.12)-(2.15) but is not representable by any probability distribution on

the three residues. This is clear because residue 1 is completely correlated to residue 2, and

residue 2 is completely correlated to residue 3, but residues 1 and 3 are independent, which

is impossible.

Accepting the two approximations for entropy and representability, the free energy be-

comes

GSC ≈ min
{pi},{pij}

(〈v̄〉 − Sapprox). (2.18)

15



Thus, we now have a tractable approximation to free energy of the side chain. We can

minimize that free energy using a self-consistent iteration technique called belief propagation;

see appendix 2.11 for details. The iteration typically converges rapidly, often in 10-20 steps.

Molecular dynamics simulations require calculations of the forces on the backbone coor-

dinates, −dV̄dbi . The derivatives can be computed simply using the chain rule, noting that

several terms will be zero because the pair probabilities minimize the free energy,

dGSC

dbk
=
∂GSC

∂bk
+
∑
i

∂GSC

∂pi

∂pi
∂bk

+
∑
i,j

neighbors

∂GSC

∂pij

∂pij
∂bk

=
∂GSC

∂bk
=
∂〈v̄〉
∂bk

=

〈
∂v̄

∂bk

〉
=
∑
i

∑
χ̃i

pi(χ̃i)
∂v

(1)
i

∂bk
(χ̃i)+

∑
i,j

neighbors

∑
χ̃i,χ̃j

pij(χ̃i, χ̃j)
∂v

(2)
ij

∂bk
(χ̃i, χ̃j) (2.19)

where ∂GSC

∂pi
= ∂GSC

∂pij
= 0 because pi and pij are chosen to minimize GSC. The remaining

simplifications occur because Sapprox is independent of the backbone coordinates. While the

underlying side chain interactions are pairwise additive and vanish outside the cutoff radius

Rcutoff, the free energy (2.9) is a many-body potential that can interact over arbitrary

distances.

Since the approximate free energy due to the side chains is not a convex function of

the probabilities, local minima may arise and impair the the self-consistent iteration from

finding the global minimum. To reduce the danger posed by the presence of local minima,

calculations are begun from a carefully initialized state, as detailed in appendix 2.11. Other

self-consistent approximations exist for the side group free energy, such as tree-reweighted

belief propagation[23], that are typically less accurate but always converge to the global

minimum of their approximate free energy. Another limitation of the present approximation
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Figure 2.3: Example of optimized coarse states for arginine overlaid on the PDB distribution
of the rotamer angles χ1 and χ2. Each of the six coarse states contains only a single fine
state that has high probability, so that the variance of dihedral angles within each coarse
state is small.

scheme arises when a bi-stable or multi-stable energy landscape is possible for the rotamer

states. If well-separated and equally important minima are present for a single backbone

configuration in the rotamer free energy surface, the probabilities only converge to a single

minumum and thus underestimate the entropy of the side chains. While this does not

appear to occur near the native well, we have not extensively searched for special backbone

configurations that would result in bi-stable rotamer energies. The characterization of such

problematic configurations, likely near free energy barriers, is left to future work.

2.4 Optimized mapping to coarse states

The χ-angles for the side chains are partitioned into discrete states in an optimized manner.

The NDRD rotamer library[18] provides a set of approximate discrete states for each residue

type according to their frequencies of occurrence in a non-redundant set of high resolution

protein structures in the PDB. However, the number of rotamer states in the NDRD library

can be quite large. For instance, naively using all 81 rotamers for each arginine, means that

computing the pair interaction vi,j for two arginines would require computing 812 = 6561

energy values. Consequently, instead of using all possible rotamer states, several NDRD ro-

tamer states are combined into 3–6 coarse-grained rotamer states for the sake of manageable

computational cost.
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We choose aggregate the rotamer states of the side chain to minimize the positional

uncertainty of side chain atoms in each state. A search over all possible aggregations is

conducted to find the aggregation that provides the smallest possible error. More formally,

the NDRD rotamer library[18] is used to define the atomic positions x
f
ij(φ, ψ), where i is

the atom (such as Cβ), j is the coordinate (x, y, or z), and f is the fine-grained rotamer

state. Each rotamer state has a probability pf (φ, ψ) specified in the NDRD library from

frequencies in the PDB for each fine-grained rotamer state as a function of the backbone

dihedral angles (φ, ψ). Each fine-grained state f may belong to exactly one coarse-grained

state c (i.e. the c states form a partition of the f states). Given the choice of a coarse-grained

state c, an average is performed over the fine-grained atomic positions, and sum is taken over

the probabilities of all fine-grained states f grouped into c according to the prescription,

qc(φ, ψ) =
∑
s∈t

pf (φ, ψ) (2.20)

ycij(φ, ψ) =
1

qc(φ, ψ)

∑
s∈t

p
f
ij(φ, ψ)x

f
ij(φ, ψ), (2.21)

where qc is the coarse-grained probability and ycij is the coarse-grained atomic position.

The error incurred by coarse-graining is defined as the variance of the atom positions

within each coarse-grained state, weighted by the frequency of occurrence of the coarse-

grained state in the PDB. Specifically, the error σ2(φ, ψ) is defined as,

σ2(φ, ψ) =
∑
s

pf (φ, ψ)

Natom

∑
ij

(x
f
ij(φ, ψ)− yc(f)

ij (φ, ψ))2, (2.22)

where Natom is the number of atoms in the side chain and c(f) is the coarse-grained state c

that contains the fine-grained state f . The error depends implicitly on the state decompo-

sition c(f) and measures the deviation of the atoms within each state. This error favors the

fine-grained states f that have higher frequency of occurrences in the PDB.

The division of fine-grained states into coarse-grained states is restricted for simplicity
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to be independent of the Ramachandran angles for the residue,

σ2 =

∫
pRama(φ, ψ)σ2(φ, ψ) dφ dψ, (2.23)

where pRama(φ, ψ) is the frequency of each Ramachandran angle taken from the PDB coil

library. Note that this error term depends implicitly on the decomposition c(f) and weights

for the (φ, ψ) pairs according to the frequency in the coil library.

An optimal coarse-grained representation of the side chain rotamer states is obtained by

minimizing σ2 for each residue type over all partitions c(f). We force the coarse-graining

c(f) to obey a few conditions, essentially to make sure that c(f) is easily interpretable in

terms of χ1 and χ2 as well as limiting the number of possibilities that must be checked by the

brute-force minimization. In particular, the mapping from coarse-states back to χ1 rotamer

states is unambiguous because no single coarse state contains two different χ1 rotamer states.

We impose the following conditions,

1. c(f) depends only on the χ1 and χ2 rotamer states of f (i.e. if f1 and f2 states differ

only in their χ3 or χ4 states, then c(f1) = c(f2))

2. Each coarse state c must contain only a single χ1 state (i.e. if f1 and f2 have different

χ1 states, then c(f1) 6= c(f2))

3. Each coarse state c must contain a contiguous range of χ2 values. This greatly reduces

the number of possible coarse-grainings for residues with non-rotameric χ2 angles like

asparagine.

Optimizing the decomposition of the coarse-grained state c(f) proceeds by completely enu-

merating all possible decompositions into coarse-grained states that contain no more than

six fine-grained states and by imposing the three conditions.

We optimize the decomposition of the coarse-grained state c(f) by completely enumer-

ating all possible decompositions into coarse-grained states that satisfy the three conditions
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ARG 6 LYS 3
ASN 6 MET 6
ASP 6 PHE 6
CYS 3 PRO 3
GLN 6 SER 3
GLU 6 THR 3
GLY 1 TRP 6
HIS 6 TYR 6
ILE 3 VAL 3

Figure 2.4: Error in the decomposition of rotamer states into coarse-grained states as a
function of the number of side chain states. The position uncertainty is σ. The relative
uncertainty is the position uncertainty for each number of states divided by the accuracy at
3 states. For residues without a rotable χ2, such as valine, it is not possible to coarse-grain.
One, three or six rotamer states are used, depending on the residue type. The computational
time to compute the pairwise interactions and solve for the free energy scales roughly as the
number of coarse rotamer states squared, so there is an incentive to use as few coarse states
as possible. The table (above) summarizes the number of states chosen for each amino acid
type.

above and contain no more than six coarse states.

2.5 Parametric bead locations and interactions

Paralleling the necessity of coarse-graining the rotamer states, side chain atoms also require

coarse-graining in order to obtain an inexpensive side chain model. This reduction in the

number of degrees of freedom may further be justified since the atomic positions of the side

chains are uncertain due to the discretization and aggregation of the rotamer states, meaning

that there is little value in assigning precise positions for all atoms. We instead use a single

oriented bead (location and direction coordinates) to represent each side chain (note that

the direction is independent of the side chain, e.g. in aromatic residues it may be the ring

normal unit vector). The locations and directions of the side chain beads are changed by the

optimizer during the optimization of the potential. The improvement in prediction accuracy

from using optimized side chain positions rather than the static positions is substantial, and

the accuracy of predicting crystallographic rotamer states rose from 48% to 60% as a result
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of using optimized positions.

While the side chain belief propagation can handle essentially any pairwise residue po-

tential, considerable care is required to design an interaction form that complex enough to

represent a wide range of protein physics and adequately represent side chain packing, yet

simple enough to be trained by gradient descent. To do so, we gather key requirements to

develop a simple protein model.

The basic component is a radial pair interaction between side chain beads. This term can

reproduce an effective side chain excluded volume but it is less obvious that such a model

is appropriate to describe attractive interactions. The attractive protein interactions are

often directional, arising from the dipole moments of polar residues and the ring stacking of

aromatic residues. For this reason, we add a separate directional interaction that depends

on the cosine of the angle between the bead direction and the inter-bead separation vector.

The bead direction is chosen by the optimizer, and the starting point of the optimization is

for the bead direction to be the Cβ–Cγ bond vector. This interaction form is sufficient to

capture simple angular-dependent interactions of side chains, providing a large boost to the

ability of the model to handle side chain hydrogen bonding and other dipolar interactions.

Concretely, each interaction pair is described by positions y1 and y2 and directions n1 and

n2. From this the distance r12 = |y1− y2| and displacement unit vector n12 = (y1− y2)/r12

are calculated. The form of the interaction is given by

V = κ( unif(r12)+

ang1(−n1 · n12) ang2(n2 · n12) dir(r12)), (2.24)

where unif, ang1, ang2, and dir are smooth curves. The smooth curves are represented by

cubic splines. The prefactor κ is 1 for interactions between two side chain beads.

For side chain-backbone interactions, however, it is advantageous to have the prefactor

κ depend on the hydrogen bonding state of the backbone residue because the presence of
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Figure 2.5: Left panel depicts side chain interaction coordinates for equation (2.24). Right
panel depicts side chain interactions with backbone hydrogen (blue) and oxygen (red) sites;
axes labels indicated on lower right plot. Within each group of 4 plots, the curves on the
left hand side present the radial components of the interaction. The thin lines provide the
unif(r) interaction and the thick line is the directional interaction unif(r)+dir(r). The right
plots are heat maps of the angular interactions ang1(θH/O) ang2(θSC), where the lower left

corner depicts the interaction where θ1 = θ2 = 0◦. Within each group of 4 plots, the upper
plots represent side chain interactions with hydrogen and the bottom plots represent side
chain interactions with oxygen.
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one hydrogen bond inhibits forming another. Specifically, the interaction between a back-

bone hydrogen or oxygen is given a hydrogen bond confidence score f , a number that is

typically close to 0 for non-Hbonded and 1 for Hbonded residues. We set κ = 1− f so that

the interaction is only turned on for hydrogens or oxygens that are not participating in a

backbone-backbone hydrogen bond. The physical motivation is that the directional interac-

tion primarily describes the effects of the dipole interactions, and in a hydrogen bond the

C=O and N–H dipoles approximately cancel each other. While it is theoretically possible for

the algorithm to learn carefully balanced hydrogen and oxygen interactions that themselves

cancel out on hydrogen bonded pairs, it is much easier to achieve a physically-reasonable

model if we enforce the zeroing of directional interactions with already hydrogen-bonded

pairs.

The side chain-backbone interactions are needed to describe helix capping. We have

observed that a proper description of these capping effects is required to avoid helix fraying.

Furthermore, Harper and Rose[8] have observed that N-terminal capping of a helix by side

chains is more likely to be observed than is C-terminal capping of the side chain. This finding

is consistent with our maximum likelihood training (below), where side chain-amide hydrogen

interactions are fit with stronger (i.e. higher confidence) potentials than side chain-oxygen

interactions. Harper and Rose also note that hydrophobic residues play a strong role in helix

capping by covering exposed protein backbone at the ends of helices. To provide our model

with the freedom to describe this effect, an additional side chain-backbone interaction is

added with three beads representing the hydrophobic portion of the backbone. The location

of the three beads are initialized from the reference position of N, Cα, and C and are

optimized with the rest of the parameters. For this interaction, κ = 1.
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2.6 Maximum likelihood training

2.6.1 Training objective function

The side chain model is trained by the maximum likelihood principle. Specifically, we deter-

mine the set of parameters that maximizes the log probability of the true side chain states χ̃p

in the Boltzmann ensemble of all possible side chain states χ̃ for the fixed backbone positions

Xp for each protein p.

p(χ̃p) =
e−V (χ̃p)∑
χ̃ e
−V (χ̃)

(2.25)

− log p(χ̃p) = V (χ̃p) + log

∑
χ̃

e−V (χ̃)

 (2.26)

= V (χ̃p)−GSC (2.27)

= Egap. (2.28)

The evaluation of Egap requires the evaluation of the free energy of the side chains, a quantity

that is intractable to calculate exactly. Fortunately, our side chain energy (2.18) approxi-

mates the true side chain free energyGSC that appears in (2.27). Furthermore, the expression

for the parametric derivative (2.19) allows for gradient descent optimization to minimize the

average gap energy.

The side chain packing interaction is trained using a large, non-redundant collection of

crystal structures from the PDB with 50–500 residues and resolution less than 2.2Å. From

a training set of protein structures, we extract the sequences sp, backbone trace positions

Xp, and true coarse-grained side chain states the χ̃p for each protein p. The proteins are

further filtered using PISCES[25] so that all pairs of proteins have sequence similarity less

than 30%. Non-globular structures in the dataset are removed, as we suspect that the side

chain packing of these structures are more strongly influenced by other chains in the crystal
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structures. We define non-globular structures as outliers in the linear relationship between

log(Nres) and log(Rg); the outliers are identified using the RANSAC algorithm[6]. After

filtering, 6255 chains remained, containing approximately 1.4 million residues.

2.6.2 Regularization

Since there are 210 types of amino acid pairs and the potential for each pair has 10s of

associated parameters, the model contains more than 10000 parameters just for side chain

pair interactions. When maximizing the likelihood for a system with such a large numbers

of parameters, it is often beneficial to add a penalty term, called a regularizer or a maximum

a posteriori prior, that favors simpler models, greatly reduces overfitting, as well as encour-

ages models that will better generalize to molecular dynamics simulations. Two types of

regularization penalties are contrasted. The first penalty simply encourages lower energies

except at the repulsive core of the interaction.

The second penalty is a lower bound penalty for the energy that very strongly discour-

ages energies below a certain threshold, where the lower bound is chosen to be as strict

as possible without significantly reducing accuracy. The term is needed empirically as the

model sometimes learns very low energies for certain side chain-backbone hydrogen bonding

for residues such as aspartic acid, on the order of -15 kT. We suspect that these large en-

ergies reflect systematic differences between crystallographic structures and the Boltzmann

ensemble of proteins in physiological conditions. If an aspartic acid can hydrogen bond to

the backbone, the electron density of rotamers with unbound states are likely to be quite

small and the crystallographer refining the structure will likely not register the minor alter-

native rotamer (additionally, we do not use multiple states for a single residue). This effect

is likely exacerbated by the low temperature of crystallization. As a result, an unrealistically

favorable energy is learned for side chain-backbone hydrogen bonding. This over-estimation

is allowable if the only objective is accurate predictions of side chain rotamers, but such large

energies (greater than the backbone-backbone hydrogen bond energy by a large amount) are
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problematic when running dynamics. Enforcing a lower bound on the energies suppresses

these large energies.

Ereg =kr

∫
f

(
V (r, θ1, θ2)− 5kT

1.+ er/(0.2Å)−10

)
dr cos(θ1)dθ1 cos(θ2)dθ2+

2

∫
(V (r, θ1, θ2)− Vlb)2

− dr cos(θ1)dθ1 cos(θ2)dθ2 (2.29)

(x)− is zero whenever x is positive and x otherwise. The function f is the logarithm of the

student-t distribution, which is convenient for regularizing while still allowing large energies

when necessary. The hyperparameters kr and Vlb are chosen below based on the results of

the maximum likelihood training.

2.6.3 Optimization and validation

To check for overfitting, 20% of the proteins are randomly chosen to be left out of the

optimization as a validation set. Decisions on the functional form of the interactions and

the regularization parameters kr and Vlb are made based on data that is not used in the

gradient descent optimization.

The Adam optimizer[12] is used to minimize the energy gap. This optimizer is convenient

because it automatically adjusts the gradient descent step size for each parameter according

to the typical scale of the gradient in that dimension. This rescaling is important because

spline coefficients at large radii tend to have much larger gradient magnitudes than param-

eters at small radii. For full details of the optimization including initialization, please see

section 2.10.

2.6.4 Training results

The accuracy of the results is represented in Figure 2.6 as

acc = e−E
total
gap /N total

res . (2.30)
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Figure 2.6: Accuracy of the model (probability assigned to true χ̃ state) versus regularization
strength (essentially the inverse of kr). Regularization as employed in this work does not
appear to improve the accuracy of the side chain packing significantly. The regularization,
especially the lower bound to the energy, may have a strong effect on the accuracy of protein
simulation, even if does not increase packing accuracy.

This represents roughly the geometric mean over residues in the test set of the probability

assigned to the true side chain state.

Figure 2.5 depicts the optimized side chain interactions with backbone hydrogen and oxy-

gen. Most of the trends in the figure can be explained by helix capping motifs described in

[8]. The prominent role of side chain-hydrogen interactions is consistent with the observation

that side chain-backbone hydrogen bonding is more common on the N-terminus than the

C-terminus. The strong valine-oxygen interaction is more puzzling, since we do not expect

strong, favorable interactions of oxygen atoms with hydrophobic residues. The strong valine

interaction may be caused by statistical correlations of valine with the geometry of oxygen

atoms that are associated with the hydrophobic capping of helices by valine. The valine

interaction represents a likely weakness in the training, as the statistical training that maxi-

mizes side chain packing accuracy may not capture the physics that drives protein backbone

dynamics. The physical reasonableness of the other terms, however, is encouraging.

To compare to state of the art side chain prediction methods, we compare to SCWRL4[14]

on its training and validation set of side chains conformations. As per SCWRL’s validation

procedure, the side chains with less than 25th percentile electron density are excluded. To

27



0.00

0.25

0.50

0.75

1.00

GLU SER ARG MET GLN HIS LYS TRP ASN CYS TYR LEU ASP PHE THR VAL ILE

restype

ac
cu

ra
cy

Model No interactions SCWRL4 Upside

Figure 2.7: Comparison of χ1 prediction accuracy for Upside and SCWRL4. The “No
interactions” line represents the accuracy of the only the NDRD rotamer library without
any interactions; this library is used in both Upside and SCWRL. Note that Upside is
approximately 150x faster than SCWRL at side chain prediction, in addition to return a
probability distribution instead of a single answer.

avoid biasing the comparison toward Upside, the SCWRL set of proteins is split so that 20%

of the proteins are withheld for validation, while the rest are used for maximum likelihood

training of Upside. The accuracy metric chosen is to calculate the fraction of side chains,

excluding glycine, alanine, and proline, for which the Upside or SCWRL predicted χ1 angle

agrees with the crystallographic conformation. This accuracy metric is typically used to

assess side chain prediction and is always larger than the geometric mean accuracy used for

Upside training for a properly calibrated method.

As seen in Fig 2.7, Upside is very accurate, predicting the correct χ1 conformation 87.6%

of the time. SCWRL4 is slightly more accurate, achieving 89.4% correct predictions, but

with a number of limitations. First, Upside is approximately 150x faster than SCWRL4 at

predicting side chain conformations with 98% of the accuracy. This enables us to compute

the distribution of side chain positions at every step of molecular dynamics at modest cost.

Second, Upside provides a Boltzmann probability distribution over rotamer states, enable
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molecular dynamics using exact forces from the approximate side chain ensemble. SCWRL4

is not well suited for continuous dynamics because it provides only the lowest energy confor-

mation, causing inevitable discontinuities in any attempt to compute forces using SCWRL’s

predicting side chain conformations.

2.7 Molecular dynamics

Strictly speaking, the parameters obtained from the maximum likelihood training are only

optimal for side chain packing for a fixed, native-like backbone geometry. However, we

believe that they also encode energetics that can be applied to molecular dynamics simula-

tions. Specifically, in the limit that the model is flexible enough to model the true side chain

interactions and there is unlimited training data, the maximum likelihood method would

recover the true side chain interaction. Even without having the true form of the side chain

interaction, the maximum likelihood parameters assign high probability to the observed ro-

tamer states, thereby including at least some of the underlying physics. The degree to which

packing suffices provides a useful energy function to simulate correct backbone structures

will be investigated below.

There are caveats to using side chain packing parameters for protein dynamics, even

though the parameters are in principle governed by the same physics. The first issue is that

a free backbone may move to an unlikely conformation that differs qualitatively from the

configurations in the crystallographic data set (e.g., poorly packed or less dense) and the

parameters may assign an inappropriately low energy to this conformation. This happens

most commonly with the strong parameters of side chain-backbone hydrogen bonding. The

backbone may adjust to enable more side chain-backbone hydrogen bonds than are physi-

cally realistic because this interaction is geometrically-constrained and hence, inordinately

strong. This problematic effect has been observed and may have multiple causes. The first

cause is that insufficient strength in other interactions (such as hydrophobic burial) may pro-

vide insufficient penalty to the unusual configurations that maximize side chain-backbone
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hydrogen bonding. The second cause is that the data are trained on low temperature crystal

structures. Hydrogen bonds and other interactions may stabilize at low temperature, addi-

tional structure may form, and/or the minor populations with side chain-backbone hydrogen

bonds broken may not be identified or present in the electron density. We anticipate that for

the case of side chain-backbone hydrogen bonding, hydrogen exchange protection factors or

NMR observables may be able to resolve the true populations of these interactions. Crystal

packing artifacts, as well as limiting training to crystallizeable sections of proteins, may also

affect the generated parameters. These artifacts are expected to have a weak effect, though

they may bias the model to unphysically bias against unstructured loop regions.

To test the suitability of adapting the side chain packing model to molecular dynamics,

simulations were run from the native state of a set of small, fast-folding proteins (protein

set adapted from [15]. To create a reasonable protein dynamics model, backbone springs,

backbone sterics, hydrogen bond energy, and a basic Ramachandran potential were added

to the side chain model. The Ramachandran potential is derived from a coil library[22] as

a statistical potential. The hydrogen bond strength is chosen using trial simulations. We

choose the hydrogen bond strength −1.8 kT to maximize the median fraction of simulation

frames with RMSD less than 5Å from the native state over the course of a short simulation.

For simulation details, see the appendix 2.10. Note that because alanine and glycine have

no side chain rotamer states, and hence no training to match the native χ-angles can be

conducted, the ALA-ALA, ALA-GLY, and GLY-GLY potentials are completely determined

by the regularization. Interactions of ALA and GLY with other residue types are optimized,

however, as rotamer states of the other residues provide information on the ALA-X and

GLY-X interactions.

The simulations results show that for the majority of proteins, the Upside model does not

assign the lowest free energy to the native structure (Fig 2.9). For most proteins, the native

structure in the Upside model is however temporarily stable, indicative a local minimum of

the free energy surface. The model relaxes quickly to its preferred structure.
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Figure 2.8: Accuracy over short duration simulations. The backbone hydrogen bonding
strength is not determined by the packing optimization, so we search for the strength that
gives the best simulation accuracy. This is the only parameter in the model directly optimized
for simulation accuracy. To assess accuracy, we look at the fraction of each simulation with
RMSD to native of less than 5 Å, and we compute the median accuracy over all proteins in
the test set. All other results shown are for a backbone hydrogen bond energy of −1.8 kT .

Figure 2.9: RMSD to native over replica exchange simulation trajectories with hydrogen
bond energy −1.8 kT .
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2.8 Related Work

In the vast literature of coarse-grained modeling, we highlight several strands of work that

relate to our modeling. The major features of our model include the following: molecular

dynamics on three atoms but with a dynamic ensemble of side chains, optimized discretiza-

tion of the side chain states to best represent the protein interactions in the coarse-grained

model, statistical potential with optimized and state-dependent bead locations and orienta-

tions, training a protein interaction model for folding using side chain packing accuracy, and

a side chain model with an explicit side chain entropy.

A large body of work, exemplified by SCWRL[14], have studied the prediction of side

chain configurations by discrete rotamer states. SCWRL achieves greater than 90% χ1 ac-

curacy for predicting the most likely rotamer states by minimizing the energy that combines

observed rotamer state frequencies and an atomic interaction model[14]. A variety of algo-

rithms have been developed for solving for the highest probability side chain states given the

pair interaction values[4, 26]. Kamisetty et al.[11] have worked on scoring protein interaction

complexes using a self-consistent approximation to the side chain interactions. Earlier sim-

ulation work by Koehl and Delarue[13] use 1-residue mean field techniques to approximate

ensembles of side chain conformations but fail to account for the pairwise correlations of the

side chain rotamer states. All of these works use atomically-detailed descriptions of the side

chains paired with simple or molecular dynamics interaction forms. Their highly detailed

side chain with many χ-angles for each residue makes it difficult to perform dynamics suf-

ficiently quickly for folding, and the use of existing interactions (instead of a newly-trained

interaction model) makes it difficult to use reduced detail to speed computation. There has

also been extensive work in reconstructing backbone positions from side chain beads[5] in

lattice models, but these models do not perform a proper summation over possible rotamer

states.

There have also been a large variety of coarse-grained techniques that use a variety of

non-isotropic potentials for reduced side chain interactions. One of the most successful is the
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coarse-grained united residue model (UNRES)[16]. The model also uses statistical frequen-

cies to determine the positions of the side chains but it emphasizes the parameterization of

the coarse-grained model from physics-based calculations instead of statistical information.

Though the potential form (Gay-Berne) used in UNRES is quite different from our work,

UNRES also uses non-isotropic side chain potentials[19].

Similar to our work, Dama, Sinitskiy, et al.[3] investigate mixed continuous-discrete dy-

namics, where the states of molecules jump according to a discrete Hamilitonian. Their

method differs from our work in a number of important ways: the authors use discrete

jumps in state instead of a free energy summation over all states we employ; they do not

optimize the rotamer states as we do; and they train parameters from force matching of

molecular dynamics trajectories rather than from the statistical analysis of experimental

data in our method.

2.9 Conclusion

We have demonstrated a fast, principled method to coarse-grain discrete side chain states

to create a smooth backbone potential. This procedure results in a considerable decrease

in computational time as it removes the side chain rattling and friction normally associated

with a polypeptide chain moving in a collapsed state. This tracking and instantaneous

equilibration of the side chains is analogous to the instantaneously-equilibrated electronic

degrees of freedom with respect to the nuclear motions employed in the adiabatic Born-

Oppenheimer approximation[2]. Motions are calculated only for three heavy backbone atoms,

yet the model contains considerable structural detail including hydrogen bonds involving

both the backbone and side chains. Further, we have shown how to parameterize both a

tuneable discretization of the rotamer states, and a maximum liklihood procedure to obtain

physically-reasonable parameters for our coarse-grain model from X-ray structures. The

resulting method is capable of rapid molecular dynamics sampling of protein structures.

The importance of optimizing the bead locations and directions in our model illustrates
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the principle that chemical intuition can only be a partial guide to accurate coarse-graining

of protein interactions. The location of the interaction sites has a strong effect on our model’s

ability to achieve high-packing accuracy, and we expect similarly strong effects to be observed

had we directly optimized for backbone conformational accuracy.

While the side chain packing optimization shows promise as a route to accurate and

inexpensive molecular simulation, pairing the resulting potentials with simple Ramachandran

and hydrogen bond potentials can maintain the structure of a minority of small proteins

tested. Future work will develop co-training of both side chain and backbone parameters to

improve simulation accuracy.

2.10 Simulation and optimization details

All simulations are run with Upside, a custom simulation engine that implements the belief

propagation of side chain interactions as well as the parameter derivatives needed for gradient

descent. Upside is freely available and open source[9].

The temperature is 0.7 natural units. The Ramachandran potential uses the NDRD

TCB coil library[22]. The backbone hydrogen bond interaction uses both distance and

angle criteria to determine hydrogen bonds. The H-O bond distance interaction starts at

approximately 1.4Å and ends at 2.5Å. Both the N-H-O and H-O-C criteria half-heights are

at approximately 47 degrees off of collinear.

We use Verlet integration with a time step of 0.009 units. We use the random number

generator Random123 [17] to implement the Langevin dynamics with a thermalization time

scale of 0.135 time units. The thermalization time scale (related to Langevin friction) is

chosen to maximize the effective diffusion rate of chains while effectively thermostatting the

simulation. As Langevin dynamics with any friction coefficient produces the same Boltzmann

ensemble, we chose to maximize equilibration of our system rather than attempt to match a

solvent viscosity.

The derivative calculations need for regularization and coordinate transforms necessary
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to ensure positive coefficients are handled with the Theano framework[21].

The cutoff radius for side chain-side chain interactions is 7Å, and the cutoff radius for

side chain-backbone interactions is 5Å. The distance splines are zero-derivative-clamped

cubic splines with a knot spacing of 0.5Å. The angular splines have a knot spacing of 0.167

in cos θ, which ranges over [−1, 1].

We use the following settings for the Adam optimizer: minibatch size 256 proteins,

α = 0.03, β1 = 0.90, β2 = 0.96, ε = 10−6. Positivity constraints on the angular coefficients

are enforced by a exponential transform. The regularization integrals over all space are

approximated by sums at the knot locations of the radial and angular splines.

2.11 Belief propagation

For convenience, this appendix contains a brief description of the equations used to imple-

ment belief propagation for the side chain free energies. Given 1-residue energies vi(χ̃i) and

2-residue energies vij(χ̃i, χ̃j), we seek probabilities pi(χ̃i) and pij(χ̃i, χ̃j) to minimize the

free energy (2.18).

It is helpful to first understand the intuition behind the belief propagation process. We

seek a consistent set of one- and two-side chain probabilities for the residues compatible with

the interaction potential (2.7). The probability of each residue state χ̃i for residue i is deter-

mined by two factors. The first factor is the 1-residue energy vi(χ̃i) that would determine

the probabilities exactly in the absence of interactions. The second factor is consistency

with the side chain states of the residues in contact with residue i, where consistency is

determined by the potentials vij(χ̃i, χ̃j). Using these factors, the probabilities for residue i

are estimated as

pi(χ̃i) ∝ e−vi(χ̃i)−
∑
j wij(χ̃i) (2.31)

wij(χ̃i) = − log
∑
χ̃j

e−vij(χ̃i,χ̃j)pj(χ̃j) (2.32)
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where wij(χ̃i) is the effective 1-body potential that residue i feels due to the interaction with

residue j. The wij depends implicitly on the probability distribution pj(χ̃j) of residue j, so

the equations (2.31) and (2.32) must be solved by self-consistent iteration until convergence of

the {pi}. This algorithm is distinguished from a standard mean-field iteration, which would

be identical except the mean-field algorithm would set wij(χ̃i) =
∑
χ̃j
pi(χ̃j)vij(χ̃i, χ̃j). It

should be emphasized that, despite the appeal of the intuitive explanation above, the real

justification of belief propagation is that the process minimizes the approximate free energy

(2.18) as derived in [27]. The iteration is described more formally below, including a damping

term λ to suppress oscillations during the self-consistent iteration.

For 1-residue beliefs, define bri (χ̃i) to be the round r “belief” that the i-th residue is in

state χ̃i. For the 2-residue beliefs, we have two beliefs for each pair of interacting residues

(i.e. any pair of residues that have non-zero interaction in any rotamer states). Define brij(χ̃j)

to be the round r belief for the residue pair (i,j) that residue j is in state χ̃j . The belief

bji(χ̃i) is defined similarly.

To initialize the algorithm at round 0, we take

b0i (χ̃i) = e−vi(χ̃i) (2.33)

b0ji(χ̃i) =
∑
χ̃j

e−vij(χ̃i,χ̃j)b0j (χ̃j). (2.34)

We compute the round r + 1 beliefs from the round r beliefs according to the following

equations.

br+1
i (χ̃i) = λbri (χ̃i) + (1− λ)

e−vi(χ̃i)
∏
j b
r
ji(χ̃i)∑

χ̃i
e−vi(χ̃i)

∏
j b
r
ji(χ̃i)

(2.35)

br+1
ji (χ̃i) = λbrji(χ̃i) + (1− λ)

∑
χ̃j

e−vij(χ̃i,χ̃j)brj(χ̃j) (2.36)

The products in equation (2.35) should be understood as taken only over residues j that

interact with residue i. The damping constant λ suppresses oscillatory behavior that hin-
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der convergence (λ = 0.4 is used in the present work). The equations are iterated until

|br+1
i (χ̃i)− bri (χ̃i)| < 0.001 for all residues i and states χ̃i.

From the converged beliefs bi(χ̃i) and bij(χ̃j), we can compute the marginal probabilities

pi(χ̃i) = bi(χ̃i) (2.37)

pij(χ̃i, χ̃j) =

bi(χ̃i)
bji(χ̃i)

e−vij(χ̃i,χ̃j) bj(χ̃j)
bij(χ̃j)∑

χ̃i,χ̃j
bi(χ̃i)
bji(χ̃i)

e−vij(χ̃i,χ̃j) bj(χ̃j)
bij(χ̃j)

. (2.38)

The free energy of the model is obtained by using the marginal probabilities above in equation

(2.18).

2.12 Details of test proteins

Mutations from the indicated PDB structures are indicated in bold. The NuG2 sequence is

from reference [15].
Name PDB ID Length Sequence

alpha3d 2a3d 73 MGSWAEFKQRLAAIKTRLQALGGSEAELAAFEKEIAA

FESELQAYKGKGNPEVEALRKEAAAIRDELQAYRHN

BBA 1fme 28 EQYTAKYKGRTFRNEKELRDFIEKFKGR

BBL 2wxc 47 GSQNNDALSPAIRRLLAEWNLDASAIKGTGVGGRLTREDVEKHLAKA

homeodomain 2p6j 52 MKQWSENVEEKLKEFVKRHQRITQEELHQYAQRLGLNEEAIRQFFEEFEQRK

lambda 1lmb 80 PLTQEQLEDARRLKAIYEKKKNELGLSQESVADKMGMGQS

GVGALFNGINALNAYNAALLAKILKVSVEEFSPSIAREIY

NTL9 2hba 39 MKVIFLKDVKGMGKKGEIKNVADGYANNFLFKQGLAIEA

protein B 1prb 53 TIDQWLLKNAKEDAIAELKKAGITSDFYFNAINKAKTVEEVNALKNEILKAHA

protein G 1pga 56 MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE

NuG2 (Shaw) 1mi0 57 MDTYKLVIVLNGTTFTYTTEAVDAATAEKVFKQYANDAGVDGEWTYDAATKTFTVTE

protein L 2ptl 61 VTIKANLIFANGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEYTVDVADKGYTLNIKFAG

ubiquitin 1ubq 76 MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPP

DQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

WW domain 2f21 33 KLPPGWEKRMSADGRVYYFNHITNASQWERPSG
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CHAPTER 3

CONTRASTIVE DIVERGENCE

3.1 Introduction

A major challenge is to extract from the collection of crystallized proteins a suitable potential

that captures the physics that lead to the protein structures. We attack this problem directly

by showing that a strong connection exists between the shape and location of the native

basin and the rest of the protein’s conformational landscape, and this connection is strong

enough to train a potential energy function accurate enough for de novo folding simulations.

Furthermore, the resulting potential is inexpensive enough to converge simulations of small

proteins while running for hours to days on a single computer.

Traditional reference-state methods for determining statistical potentials are difficult to

use correctly or to systematically improve. These methods compute a statistical potential

using the ratio of the observed counts of residues at a specific distance as compared to the

“reference” probability distribution that would be observed when the potential is absent.

As Hamelryck[9] points out, these methods can be formally valid, but the true reference

frequency depends on all of the other potential energy terms. This creates a self-consistency

problem as the reference state for each potential depends on the values of all other potentials.

The traditional solution to this difficulty is to avoid self-consistency by simply postulating a

reference frequency as is done, for example, in the DOPE model[21]. The great difficulty in

providing a good reference state for even simple coordinates is reflected in the great variety of

reference states that have been proposed in the literature. To use the self-consistent reference-

state method correctly requires computations significantly more involved than those proposed

in this work, and this is probably too expensive for current computational resources.

In contrast to traditional reference-state methods, we develop a trajectory-based method

to parameterize protein force-fields. Separately fitting individual parameters in the force-

field inevitably leads to balance issues. Large-scale issues of energy balance, such as the
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hydrogen bond terms overwhelming the side chain interactions to make very long helices,

may fought by weighting each term in the force-field, but more subtle issues, such as the

balance between hydrophobic and charged interactions within the side chains terms, will be

missed. The essence of these ideas is that the only way to correctly parameterize a statistical

potential is to jointly choose the parameters to optimize the resulting protein ensemble. A

contribution of this paper will be to show that we do not need to be able to converge

the entire ensemble from proteins in our training set, but we may focus our attention on

fluctuations near the native well. By choosing parameters to optimize the near-native basin

of the protein, we will obtain a balanced and accurate set of parameters that is sufficient to

fold proteins.

Further, trajectory-based training fundamentally alters the relationship between the com-

putational speed of a model and its accuracy. Traditionally, the level of detail in both atoms

represented and interaction terms are increased in order to increase accuracy, leading to

slower simulation for more accurate models. When optimizing parameters based on finite

trajectories, this speed-accuracy tradeoff is replaced to some extent by a speed-accuracy

synergy. Models that can be equilibrated more quickly, in CPU-time, are more thoroughly

explored by finite trajectories and therefore optimized closer to the ideal parameters for

the set functional form. Furthermore, training with inexpensive models allows us to opti-

mize using trajectories from approximately 500 crystal structures in the Protein Data Bank

(PDB). We use the Upside model that has been shown to equilibrate extremely quickly while

retaining molecular detail, as shown in chapter 2.

We will use a two part strategy for building our model. First, we will describe a physically-

plausible coarse-grained model that incorporates many of the key features of protein struc-

ture and folding. To find the parameters to populate our model, we will rely on holistic

assessment of accuracy, rather than parameterizing based on transfer studies or quantum

calculation. We incorporate proven techniques from the machine learning community, who

train very complex models on few examples with success in de novo prediction. Our modi-
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fied contrastive divergence method is capable of training the model from exploration around

the native state. Even though we only trained for a very limited metric of quality (local

exploration), our parameters are plausible as evidenced by the reasonable folding thermody-

namics.

We make the following contributions in this paper. We give a clear and proper statistical

framework that is practical for training highly detailed protein models. We extend previous

contrastive divergence work with molecular dynamics, handling of crystallographic artifacts,

and much larger number of parameters. We characterize the ability of contrastive divegence

to handle extreme numbers of force-field parameters in a simulation setting. We demon-

strate that careful statistical handling of the parameters results in a model with transferable

accuracy in three ways: (1) it extends to de novo folding despite only being trained on native

stability, (2) it produces cooperative folding without being trained for it, and (3) it produces

realistic unfolded states with high Rg, which has proven difficult for molecular dynamics

models.

3.2 Coarse-grained model

This section recapitulates the Upside model and describes the differences between the Upside

model used in this chapter, and the model used for folding simulations in the previous

chapter. For exhaustive details of the Upside model, see chapter 4.

The key insight of chapter 2 is that a suitable self-consistent free energy can be defined

from the side chain interactions, and that free energy provides an smooth potential for the

simulation of backbone dynamics. Our previous work parameterized the model to maximize

the accuracy of side chain conformations. While these parameters are used as the initial

parameters for optimization, all interaction parameters are retrained in the current work

except for the locations and directions of the side chain beads. Our current work extends

the Upside model with an additional pseudo-solvation term and better-adapted backbone

Ramachandran potential.
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The majority of interaction parameters belong to the pair interactions between side

chains. All of the pairwise interactions have the same functional form

V = κ( unif(r12)+

ang1(−n1 · n12) ang2(n2 · n12) dir(r12)), (3.1)

where unif, ang1, ang2, and dir are arbitrary curves represented by cubic splines represented

by cubic splines. For details of the distance coordinate r12 and the angular coordinates n1,

n2, and n12, see the Fig. 2.5. There are
(20

2

)
= 210 types of amino acid pairs and 62 spline

coefficients per pair, giving 13020 side chain-side chain interaction parameters. There are

also five interaction sites on the backbone, roughly representing the H, O, N, Cα, and C

atoms, with 54 parameters per interaction due to a smaller cutoff radius. The total number

of side chain-backbone interaction parameters is 5400. The cutoff radius of the side chain-

side chain interactions is 7Å and the cutoff radius for the side chain-backbone interactions

is 5Å. The smaller cutoff radius for side chain-backbone interactions encourages the model

to use this term to describe side-chain backbone sterics and hydrogen bonding, as well as

reducing the computation expense from these terms.

We add an additional term, similar in spirit to reference [1], to capture solvation effects in

a simple-minded way. For each residue, we compute the number of side chain beads within

an approximate hemisphere above the Cβ . While we could include other heavy atoms in the

hemisphere calculation, it would needlessly increase the cost of the calculation. To handle

the uncertainty of rotameric state that can affect the count of side chain beads, the count

for different rotameric states are weighted by the prior probabilities of the rotamer states.
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Mathematically, the count is given by

Ni =
∑
j

|i−j|>2

∑
χi

p(χi)S(|yi(χi)− yCB
i | − (8. Å), (1. Å))

S(angle(yi(χi)− yCB
i , vCB

i ) + 0.1, 1.), (3.2)

where S is sigmoid-like cutoff function. Low values of Ni are typical of residues exposed to

solvent and high values of Ni are characteristic of buried residues. A arbitrary energy curve

is coupled to the value of Ni so that

Venv =
∑
i

venv
ai (Ni). (3.3)

While many more sophisticated solvation potentials have been derived, this term has the

advantages being very fast and easily optimized by the contrastive divergence procedure,

while remaining flexible enough to represent many of the solvation effects omitted by the

side chain potential.

The core backbone Ramachandran potential is a simple
∑
i V

rama
i (φi, ψi), where V rama

i

depends on the chemical identity of the i − 1, i, and i + 1 residues. The Ramachandran

potentials are based on the turn, coil, or bridge (TCB) Ramachandran probability models

in the NDRD backbone library[26] and an additional frequency model of Ramachandran

angles for sheet residues. The single trained parameter in the model related to the backbone

configuration controls the mixing ratio of TCB angles from the NDRD library with the sheet

libraries that we parameterized. We introduced extra sheet probability to our backbone

model to counteract an observed tendency for our model to overstabilize helices during

folding. Both the NDRD probabilities and our sheet probabilities are dimer models that

depend only on a single left or right flanking residue, and the following formula is used to
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Figure 3.1: Cartoon of the contrastive divergence algorithm

convert the base probabilities into the potential

V rama
i (φi, ψi) = − log(pTCB

ai−1aiai+1
(φi, ψi) +

e−w

2
(f

right
aiai−1 + f left

aiai+1
)psheet
ai−1aiai+1

(φi, ψi)) (3.4)

pai−1aiai+1(φi, ψi) =
1

2
(p

right
aiai−1(φi, ψi) + pleft

aiai+1
(φi, ψi)) (3.5)

where f left
aiai+1

is the fraction of (ai,ai+1) dimers in the PDB where the i-th amino acid

is in a β-sheet secondary structure. Note that this model uses the arithmetic average to

combine dimer probabilities rather than the geometric average recommended in the NDRD

model. Using the arithmetic average results in smoother, less sharply peaked probabilities

to encourage the side chain potential to exert more influence over the backbone geometry.

The backbone non-bonded interactions are governed by a hydrogen-bonding potential

and a steric repulsion. The hydrogen bonding potential depends on both distance and angle

for the participating atoms, and the energy of forming a hydrogen bond is a single parameter

that is chosen by contrastive divergence. The backbone atoms N, Cα, C, and Cβ feel an

repulsive interaction at approximately 1.5Å.

3.3 Contrastive divergence method

This section describes contrastive divergence heuristically. For a mathematical derivation,

see section 3.16.
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The motivation of contrastive divergence is to consider two ensembles, one closely linked

to the crystal structures and one free to diffuse away under Langevin dynamics. Under

an ideal physical model, the crystal-based ensemble and the free ensemble would be quite

similar, up to artifacts of crystallographic structure determination. For an inexact coarse-

grained model, systematic differences will arise between the crystal ensemble and simulation

ensembles. For example, the simulation ensembles may have a higher number of backbone-

backbone hydrogen bonding than are present in crystal structures. In such a case, making

the energy of forming a hydrogen bond less favorable will shift the simulation ensemble

to better resemble the crystal ensemble. Such a modification of the potential will have

additional effects; weakening the hydrogen bonding interaction may increase the amount of

hydrophobic burial. Thus, we iteratively modify all the parameters to shift the simulation

ensemble to better match the crystal ensemble. The algorithm converges when there is no

parameter that can distinguish the simulation ensemble from the crystal ensemble.

The unrestrained simulation ensemble is obtained through finite-time Langevin dynamics.

For each protein in the training set, the simulation ensemble given by 5000 time units of

dynamics, of which the first half is discarded as equilibration. This corresponds to about

ten minutes of wall-clock time for each simulation. Unless the native state is particularly

unstable, this time is insufficient to explore the conformational landscape much beyond the

native basin. Instead this typically creates a locally-equilibrated ensemble that relaxes the

crystal conformation and explores fluctuations in the near-crystal conformational basin.

The crystal ensemble is traditionally defined in contrastive divergence as consisting solely

of the true data points. This δ-function distribution is problematic for protein structures

because of the sharpness of the protein energy function. A slight inaccuracy in the crystal-

lographic reconstruction, or a slightly incorrect geometry in the Upside protein interactions,

will cause a very unfavorable energy. Furthermore, due to crystal packing and reconstruc-

tion artifacts, we would always expect some relaxation of the crystal structure under aqueous

conditions. To reduce the impact of these issues, we replace the exact ensemble of crystal
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structures with the ensemble of running Langevin dynamics restrained to be near the crystal

structure, approximately 1Å RMSD.

To shift the free simulation ensemble toward the crystal ensemble, we change parameters

αi in proportion to the amount that they differentiate the simulation and crystal ensembles,

αi+1 = αi +
ε

M

M∑
a=1

(〈
dV

dαi
(X)

〉
restrained

−
〈
dV

dαi
(X)

〉
free

)
. (3.6)

The quantity
〈
dV
dαi

(X)
〉

restrained
−
〈
dV
dαi

(X)
〉

free
represents a pseudo-derivative of the free

energy of restraining the simulation to be near the crystal structure. In the limit that the

simulation duration is infinite, this difference is the exact derivative of the free energy. In

practice, this difference chooses a suitable direction to improve the parameters.

3.4 Handling crystallographic artifacts

The derivation of contrastive divergence presented above makes the assumption that the

conformations Xa are equilibrium samples from the Boltzmann distribution of each protein,

but in reality, we must work with crystal structures of proteins. While it has been shown

that that the static diversity of crystal structures for different proteins conveys significant

information about the dynamic ensembles of individual proteins [12]. Crystal structures

deviate in a number of systematic ways from equilibrium samples, but we are most concerned

about crystal packing artifacts, crystallizability bias, and errors in published structures.

We expect that our bias in working only with crystallizable sequences, thus missing

intrinsically disordered regions from training, likely biases the resulting potential to disfavor

coil states. The loop-stabilizing effects of crystal packing somewhat counteract this effect,

as it allows longer loop regions to exist in crystal structures.
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Figure 3.2: Progress of contrastive divergence training. In all plots, the blue curves indicate
larger step-size training and the green plots indicate smaller step-size fine-tuning. The upper
left plot show the decline in minibatch-averaged RMSD over the course of the optimization.
The remaining plots show the convergence of the hydrogen bonding and side chain-side
chain parameters over the optimization. The larger step-size optimization of the side chain
parameters uniformly shows large oscillations that inhibit convergence.
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3.5 Optimization

For practical reasons, the contrastive divergence simulations are run for a short time that does

not permit complete exploration of configuration space. Each contrastive divergence simu-

lation is run for 4000 time units, corresponding to approximately ten minutes of wallclock

time per iteration. The simulations use temperature replica exchange with eight replicas to

enhance barrier crossing of the contrastive divergence[20], while the temperature intervals

of the replicas scale with 1/
√
Nres to encourage good replica exchange efficiency for proteins

of various sizes. The progress of the replica exchange is monitored by the average best-fit

RMSD-to-crystal over the simulation for each minibatch.

The initial parameters from the potential come from optimizing side chain accuracy of

the model using a procedure similar to our work in the previous chapter. The contrastive

divergence training rapidly improves this model as there is a quick decline in average RMSD

over a minibatch from 5Å to 3Å. This decline is accompanied by rapid movement of the

parameters, especially the hydrogen bond strength. At the same time, the side chain param-

eters show much greater fluctuations. This is likely because there are far fewer interactions

for any particular pair of residue types (say ALA-GLY) than there are hydrogen bond inter-

actions. For this reason, we expect the gradients of the side chain-side chain parameters to

be far noisier than those of the hydrogen bond interactions. To reduce the fluctuations and

fine-tune the results, we reduce the optimizer step size by a factor of four after two epochs.

While the change in the observed RMSD has become small, there are indications that we

have not converged the value of the parameters and thus are stopping the contrastive di-

vergence early. Earlier tests showed that continuing the contrastive divergence to complete

convergence does not necessarily produce better results, which has been observed in [5]. Par-

ticulary, if large barriers have been built around the native states by contrastive divergence,

there may be little relaxation of the conformation during the short simulations of contrastive

divergence and hence little useful information to optimize the parameters. Instead, the fur-

ther fine-tuning of the contrastive divergence results may reduce the accuracy of the model
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by further optimizing against only very near-native results. Secondly, early stopping of opti-

mization has been observed in a number of contexts to function as a regularizer that favors

simpler models[6].

There is a curious behavior of the hydrogen bond strength, where it appears to converge

to a significantly smaller value during the fine-tuning than during the larger optimizer steps.

We speculate that the extra noise in the side chain interactions during the larger optimizer

steps may in aggregate cause stronger side chain interactions for the protein. This would

necessitate a large hydrogen bond energy to balance against the side chain interactions.

3.6 Accuracy of de novo Folding

The previous training only optimized the parameters’ ability to hold a protein conformation

for a short period of time, less than ten minutes of wallclock time. While contrastive di-

vergence training has been shown to train models well for many machine learning problems

[4], the accuracy must be demonstrated for our model. As a stringent test of the protein

model and our training procedure, we attempt de novo folding of a benchmark set of small,

fast-folding proteins similar to those used in [15, 1]. Before training, we removed all proteins

from the training set that were homologous to any protein in the benchmark set to ensure

that this would be a de novo prediction. The proteins are simulated using replica exchange

using 16 replicas for approximately three days of wall-clock time with one processor per

replica.

Two replica exchange simulations are launched for each protein with the lowest tem-

perature of the replicas the same as the contrastive divergence temperature. The first is

initialized from the native configuration of the protein to assess the stability of the exper-

imental structure. The second simulation is initialized from a random unfolded state with

φ and ψ angles chosen uniformly at random. The range of temperatures were chosen to be

large enough to span to signficant populations of unfolded states for all proteins.

We judge the accuracy and equilibration of the model from the histogram of best-fit
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Figure 3.3: RMSD distributions after equilibration phase. Green indicates simulations
started from the crystallographic native structure and red indicates simulations started from
a random unfolded state.
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Name Length Lowest RMSD (Å)
alpha3d 73 2.0
BBA 28 0.7
BBL 47 1.7
homeodomain 52 1.5
lambda 80 4.3
NTL9 39 2.6
protein B 53 1.7
protein G 56 3.7
NuG2 (Shaw) 57 0.9
protein L 61 2.6
ubiquitin 76 2.0
WW domain 33 0.9

Table 3.1: Lowest RMSD for de novo folding simulations.

RMSD deviations from the native structure after discarding the initial third of the simulation

as equilibration. When the native-initialized and unfolded-initialized structures have similar

RMSD distributions, the simulation has likely converged. In protein L and ubiquitin, we note

that the ensembles are relatively far from convergence as the native- and unfolded-initialized

simulations disagree strongly in their RMSD distributions.

It should be noted that, while no parameters are set based on observing the benchmark

folding results, decisions on the functional form of energies are made based on the effect

on folding results. While we expect that any statistical bias toward higher accuracies that

arises from making force-field decisions after seeing folding results is small, we do note these

“researcher degrees of freedom”[22] for full disclosure.

Multiple conformations are observed for many of the simulated proteins. This is con-

sistent with the known properties of maximum likelihood training, where inability of the

functional form of the model to represent the true Boltzmann distribution of the model

will result in smaller, broader energy functions and thus unsurprising to see multiple con-

formations in the ensemble. Since contrastive divergence is an approximation to maximum

likelihood, it is unsurprising that it inherits this conservative property.
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3.7 Structural characterization of low temperature

conformations

To characterize the structural ensemble at low temperature, we cluster each trajectory into

five clusters and choose a conformation in a high density region of each cluster to represent

the cluster, as detailed in section 3.15.

The majority of the proteins, excluding BBL, show a small number of well-defined and

stable basins that represent the dominant conformations of Upside for each protein. These

well-defined clusters are clearly indicated in the principal component plots in Fig. 3.12. While

the simulation often produces many of the these conformations quickly, the equilibration of

their populations takes time, likely dominating the relaxation time of the RMSD distribu-

tions. Still, this relaxation time is on the order of hours to days of wallclock time, making it

extremely quick in comparison to typical molecular dynamics simulations.

As indicated by the clustered structures, the Upside simulations tend to correctly repre-

sent the secondary structure of the proteins even as it provides a small number of distinct

tertiary arrangements. This tertiary diversity is illustrated in the mirror three helix bundles

for α3d and protein B, as well as the subtle re-arrangements in NuG2. As these structures

coexist with similar probabilities at low temperature, we hypothesize that the short-time

contrastive divergence we are using does not provide a sufficient library of large changes in

the tertiary structure to enable the potential to properly distinguish the various conforma-

tions. It is difficult for short-time simulation to produce sweeping changes that preserve

secondary structure but cause permutations of the tertiary structure.

As these results are obtained with an almost untuned backbone energy fucntion (only

a single scalar parameter to control the amount of sheet in the Ramachandran potential),

it is likely that loop conformations would be significantly improved with a more carefully

tuned backbone potential. Presumably the backbone potential can be optimized using the

same contrastive divergence procedure as we have used in this work. It remains only to
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Figure 3.4: Structures of the native state (N) and a representative structure within each
cluster of the de novo trajectory in the lowest temperature replica. The clusters are ordered
by average RMSD-to-native within the cluster. Representative are chosen from regions of
high density in the principal component analysis plots of the trajectory.
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Figure 3.5: RMSD trajectories within each cluster, indicated by color. Clusters are ordered
by the average RMSD-to-native. Within each cluster, the data points are in trajectory order.

choose a suitable backbone model, such as TorusDBN[3], that allows sufficient freedom for

the optimization. In future work, we intend to co-adapt an existing backbone statistical

potential to the Upside energy as part of the contrastive divergence procedure.

3.8 Melting behavior and unfolded states

The point of the contrastive divergence training is to capture the energy of fluctuations

about the native state of the protein. As we have shown above, the energies learned by

contrastive divergence are sufficient to assign significant probability to the native state at

low temperatures. We are also interested in the melting and folding behavior of the model,

specifically whether the excited states of the model are consistent with experimental data.

The model typically exhibits concerted melting behavior over a small range of tempera-

tures. While the temperature of the model in Upside is not exactly comparable to a physical

temperature, it is reasonable to assume T = 1 corresponds roughly to a temperature of 300 K.

The ubiquitin transition occurs over a temperature range of approximately 0.07 temperature
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Figure 3.6: Time vs RMSD at the temperature of peak heat capacity. Heat capacity for each
temperature is estimated by the fluctuation formula Cp = (varE)/T 2.

Figure 3.7: Fraction of formed HBonds vs Rg at the temperature of peak heat capacity
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Figure 3.10: Heat capacity as a function of temperature. Heat capacity for each temperature
is estimated by the fluctuation formula Cp = (varE)/T 2.

units, which equates to approximately 20 K in temperature. All the properties described

below emerge spontaneously from training the model for low-temperature accuracy with

contrastive divergence.

Furthermore, our temperature-denatured states have high Rg near the midpoint of the

transition, consistent with experimental results and inconsistent with many all-atom molec-

ular dynamics folding simulations [23, 11]. We indicate two different unfolded Rg, one at the

peak of the heat capacity and the other at a high temperature, where the heat capacity is

near its unfolded baseline (temperature in each case depends on the protein studied). Our

Rg at the peak of the heat capacity is about 15% under the experimental values and the Rg

at high temperature is approximately 10% above the experimental expectation. Both values

are significantly larger than previous atomistic molecular dynamics.
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Figure 3.11: Constant temperature reversible folding trajectory of ubiquitin at a tempera-
ture of 1.003. Note that the structure becomes completely extended at high RMSD before
returning to a structure with an RMSD-to-native of 2.3Å.

3.9 Accuracy of de novo Folding

We are able to show constant temperature, reversible folding to the experimental native state

for a number of proteins in our test set. This is illustrated in Figures 3.6 and 3.11. Each of

the simulations are run on a single core for a few days. The time scales of folding implied by

these reversible folding trajectories implies that the time scales of the contrastive divergence

simulations are far less (often a factor of 100 or more) than required to equilibrate these

proteins. It is clear that the contrastive divergence is not optimizing over all conformations

of the system, but only local fluctuations. The reversible folding at constant temperature

also indicates that we have an model to explore folding pathways in reversible conditions.

The power of our optimization procedure also means that we can take a number of qualitative

models and make them quantitative by optimizing the parameters for de novo folding, so

that we can explore folding pathways for a number of reasonable folding models without

having to resort to strong native bias.

We have a model that produces a wide range of protein-like behavior for folding, but

it is not yet clear which parts of the model are associated with which behavior, so that

we lack a truly reduced description of the protein physics that identifies certain features as

key (I could argue that this is not possible since statistical correlations tend to confound
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mechanistic description in ways that practitioners do not appreciate). Given that these

features are produced without any specific attempt to generate them suggests that we are

approaching a good model of protein dynamics. Furthermore, contrastive divergence, though

its relationship to maximum likelihood, is tuned to pick up fluctuation scales in addition to

the best structure. Emprically, we have noticed that a large increase in cooperativity is

observed by going to optimized, precise side chain locations for the side chain model, as

show in the previous chapter. This suggests that we are able to predict the improvement in

the behavior of the protein physics by observing an increase in side chain prediction accuracy,

which is a much easier criterion to assess. Future work will address the quality of predicted

pathways and observables for individual proteins.

Note that conditional on low hydrogen bonding, the Rg at high temperature and at the

peak heat capacity are quite similar. This suggests the increase in Rg for the unfolded state

as temperature increases is driven by a reduction in backbone-backbone hydrogen bonds

rather than side chain effects.

Based on the above results, there are two facts that must be reconciled. The first fact

is the sharp phase transition with a single peak for the heat capacity. The shape of the

phase transition, but not its amplitude, is consistent with a cooperative folding transition.

Additionally, the relationship of average Rg to average number of hydrogen bonds is ap-

proximately linear over the transition region. The second fact is the large residual hydrogen

bonding in the denatured state at the heat capacity peak, which suggests that the transition

is quite non-cooperative. We propose that this may be explained by the essential feature

of the contrastive divergence process, that it must balance the competing energy terms of

the model so that no one energy dominates. We suspect that the very close temperatures

of disrupting tertiary contacts by leaving the native state and then melting hydrogen bonds

results from balancing the interaction energies of side chains pair interactions and backbone-

backbone hydrogen bonds. A small tweak to the contrastive divergence training may be

able to push the temperature of melting secondary structure lower so that the folding is
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significantly more cooperative.

3.10 Related Work

The most similar work to ours is a contrastive divergence optimization of a Gō-like protein

potentials sampled with crankshaft Monte Carlo moves[19, 27]. These works optimized only

tens of parameters using contrastive divergence, and the resulting model is only used to fold

protein G and 16-residue peptides.

Early work focused on training protein energy terms against a library of decoys. Such

efforts are problematic for a number of reasons. The first is realistic molecular dynamics

energy functions have extremely rugged energy landscapes, so that the energy of a decoy

may be much higher than another structure less than an angstrom away in RMSD. This

ruggedness means that it is improper to score decoy prediction by energy without first relax-

ing the decoys to the center of the nearby energy well. The significance of using unrelaxed

decoys depends on how close the decoy generation model is to the force field being trained.

Another difficulty is that the conformational space of proteins is vast; where it not so, finding

the lowest energy conformation for a given energy model would be easy. As a result, decoy

sets are unable to exhaust conformational space and are likely to miss some conformations

that incorrect protein energy functions find extremely favorable. These effects suggest that

the best decoy set may be obtained simply by conformational sampling of the protein en-

ergy function. Decoy generation may provide convenient seed structures for exploration, but

ultimately protein conformational sampling is needed to evaluate potential energy functions

and suggest directions for improvement.

A more technical distinction against traditional protein training methods, such as Z-

score optimization [16], is that it is relatively unimportant to know how well the model

handles average decoys. The important task is to produce a low energy ensemble (those

structures no more than a few kBT above the relaxed experimental structure) having a high

population of low RMSD structures. While improving Z-score should correlate with a better
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conformational ensemble early in training, in later training it will likely become important to

focus on the remaining conformations that are lower in energy than the native, irrespective of

the effect on Z-score. Finally, we note that Z-score is inherently defined relative to a decoy

ensemble (it is near meaningless with respect to the Boltzmann ensemble of the model).

The Z-score is not defined comparing the native to all other conformations, as denatured

conformations are exponentially more numerous than folded conformations. Instead, one

must define a class of decoy structures that are somehow folded-protein-like in order to

define the Z-score. Methods based on simulations ensembles and the associated probability

density (such as maximum likelihood and contrastive divergence) are well-defined and do

not need to create a class of decoys.

There has been previous work on estimating protein statistical potentials using simu-

lation trajectories. Following the long history of work for using contrastive divergence on

machine learning models, [18] have applied contrastive divergence to few-parameter protein

models. The present work extends these methods to handle large-scale molecular dynamics

training, where the scale is large in both the number of parameters and the amount of pro-

tein simulation training used. Furthermore, we go beyond existing work by demonstrating

that our method is able to fit a model transferable to realistic unfolded states and thermal

melting behavior, consistent with a cooperative, pseudo-first-order model of protein folding.

There have been several attempts to train a force-field usingmaximum likelihood. These

methods are inherently limited by the need to compute the derivative of the free energy, which

involves a summation over an equilibrium sample of the configurations. Such a requirement

necessitates a very long simulation to update parameters. Still, the maximum likelihood

approach can be viable when used with very small proteins on which the simulations converge

quickly. A variant of maximum likelihood is given in [31], where decoys are generated and a

maximum likelihood model is fit to adjust the parameters to distinguish between near-native

and far-from-native conformations (smoothed with a Gaussian cutoff of nearness). The

potential is trained on a single protein, tryphtophan cage, and then the resulting potential
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is applied to a number of α-helical proteins.

3.11 Conclusions

These data suggest that the Upside model may be representing the physics of protein folding

well enough to be useful far from its training temperature. In particular, future work will

investigate if the folding pathways of the Upside model are consistent with experimental

data.

We have shown that extremely short simulations, paired with optimization of contrastive

divergence, are capable of parameterizing an accurate coarse-grained potential. Replica

exchange molecular dynamics with this energy is capable of folding many small, fast-folding

proteins to sub-3Å accuracy in a matter of days on a single machine. Training the model

by contrastive divergence is successful precisely because the Upside model has extremely

quick equilibration for many proteins. The usual trade-off in molecular simulation is to

choose between accurate, expensive simulation models (such as explicit water molecular

dynamics) and inexpensive, less accurate models. With contrastive divergence training of

the model, the situation is reversed to some extent. Less expensive models allow more

extensive exploration during the training phase, which allows the contrastive divergence

better maximize the accuracy of the chosen parameters. Coarse-grained models must still

retain sufficient flexibility to represent the underlying physics, but faster models will come

closer to their ideal parameters due to the enhanced exploration. Simultaneously, we have

show that very large numbers of parameters (approximately 25000 in our case) are no obstacle

to producing accurate proteins models using trajectory-based training. While overfitting is

still a real concern, the severity is greatly reduced because contrastive divergence is training

against the vast possibilities of alternative protein conformations explored by conformational

sampling. Overstrengthing any particular interaction will lead to that interaction being

present in a large number of the structures found by molecular simulations, which will cause

negative feedback in the training that reduces the magnitude of that parameter. By this
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mechanism, contrastive divergence automatically obtains balanced parameters such that no

particular interaction overwhelms the others. Even if we have clear experimental evidence

about the strength of a few interactions (such as backbone-backbone hydrogen bonding),

it is inadvisable to force those known interactions to their experimental values. It is more

important for the different interaction terms to have balanced strength than to have precise

accuracy for a subset of the model.

We have also clearly shown that straightforward contrastive divergence training produces

a protein model with both cooperative folding behavior and highly-expanded unfolded states.

These correlations to experiment are notable precisely because the contrastive divergence op-

timizations is only concerned with native state stability, not the properties of the unfolded

state or the folding transition. Instead, these properties emerge from the training sponta-

neously, and do not depend on an accurate solvation model. Based on these successes, it is

likely that this methodology can be easily extended to treat disordered regions of proteins,

possibly after augmenting the training set with examples of well-characterized disordered

systems.

Despite the success of this training procedures, there are also a number of weaknesses that

will be addressed in future work. In the machine learning literature, contrastive divergence

is noted to obtain peak accuracy before fully converging then declining accuracy afterwards

[20]. This is attributed to growing interaction strengths as training proceeds that result

in larger barriers that reduce exploration of the model. With reduced exploration, the

contrastive divergence trains against less interesting alternative structures. There have been

many suggestions in the literature and many point to continuous simulations that do not

reset to the native structure on every iteration, termed Persistent Contrastive Divergence[25].

We intend to explore such alternatives with larger computing resources to better maximize

the accuracy that we can extract from the Upside model.

Future work will also attempt to address equilibration difficulties for α/β-proteins. These

difficulties are typified by the underconverged simulations of protein L and ubiquitin in the
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benchmark simulations. More expensive training like persistent contrastive divergence may

still be unable to train optimal parameters when simulations like those of protein L are un-

coverged after three days of continuous simulation. The origin of the sampling difficulty may

be traced to the sharp folding transition in these proteins. Temperature-based techniques

for accelerating simulation convergence, such as replica exchange, are noted to have diffi-

culties accelerating first-order phase transitions [8]. The essential reason is that few to no

replicas have any significant population in the transition state energies between folded and

unfolded conformations. As first-order, cooperative folding transitions are experimentally

well-supported [13], we would like to preserve this emergent property of our model rather

than modifying the training to somehow avoid it. Instead, we intend to pursue alternative

sampling techniques, such as Wang-Landau sampling [29, 28], that are known to gracefully

handle first-order phase transitions. With accelerated sampling, we may expect improve

accuracy from contrastive divergence.

3.12 Simulation details

The force is integrated using Verlet integration with a time step of 0.009 time units. Tem-

perature is maintained using a Langevin thermostat with a thermalization timescale of 0.135

time units.

The Adam optimizer is used to perform gradient descent on the objective function, using

the contrastive divergence pseudo-gradient in place of the true maximum likelihood gradient.

The Adam parameters used are β1 = 0.8, β2 = 0.96 and ε = 10−6. The α parameter is varied

based on the type of term to ensure stability, αSC = 0.5, αenv = 0.1, αHBond = 0.02, and

αsheet = 0.03. The α parameters are multiplied by 0.25 for the fine-tuning optimization.

Regularization and derivative propagation for contrastive divergence optimization are

handled using the Theano library[24].
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3.13 Training data and optimization

The contrastive divergence training is conducted with 456 crystal structures from the Protein

Data Bank. The initial selection of structures uses the PISCES server[30] to select proteins

with X-ray resolution less than 2.2Å and pairwise sequence similarity less than 30%. In

structures with multiple chains, a single chain is chosen by the PISCES server. To avoid

non-globular proteins or proteins with strong interactions with other subunits in the struc-

ture, random sample consensus linear regression [7] is used to identify outliers based on the

relationship between logNres and logRg. Only chains with between 50 and 100 residues are

used to encourage fast relaxation during the contrastive divergence simulations. All proteins

homologous to proteins in the benchmark folding set are eliminated from the training set.

Additionally, all proteins with backbone gaps, either missing residues due to diffuse electron

density or non-standard amino acids that Upside does not handle, are also excluded from

the training set.

The final training set of 456 proteins is divided into 38 groups of 12 proteins each. These

groups, called minibatches, called minibatches are an essential feature of algorithms derived

from stochastic gradient descent. The idea is that it is very wasteful to compute the gradient

direction in equation (3.6) using all 456 proteins. Using all of the proteins would give an

extremely precise estimate of the gradient that nonetheless could only be used to make

a small change in the objective because of the non-linearity of the Boltzmann ensemble

to changing parameters. Instead, it is better to use a few proteins at a time to obtain a

inexpensive, noisy estimate of the gradient then take a small step in that direction. As

long as the parameter step sizes decrease appropriately, the noise of the minibatch gradients

will average out and the iteration will converge. To avoid overfitting, the minibatches are

cycled through sequentially so that each minibatch is only re-used every 38 steps (a full pass

through the minibatches is termed an epoch). We use the Adam optimizer[14] to accelerate

convergence of the parameters.
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Figure 3.12: Scatter plot of the first two principal components for the lowest temperature
replica of each trajectory, after discarding the first 1/3 of the simulation. The cluster of each
conformation is indicated by colors, using the same color scheme as Fig. 3.5, and the cluster
representative is indicated by a plus sign.

3.14 Details of test proteins

The test proteins are the same as those described in Section 2.12.

3.15 Clustering of protein structures

Figures 3.4 and 3.5 require a clustering of the low temperature structures as well the choice

of a representative conformation for each cluster.

To cluster each trajectory, the conformations are mapped to their Cα contact matrices,

defined so that the ij entry of the contact matrix is 1 if the position of the residue i Cα

is within 8Åof the residue j Cα. The contact matrix is unrolled into a long vector, so

that each conformation is represented by a 0/1-vector of length Nres(Nres+1)/2. Principal

component analysis is used to make these long vectors to five dimensions, scaled by the

relative size of their variance components so that. This five-dimensional representation

typically shows well-defined clusters for the trajectories we study. The resulting principal
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components representation of the conformations is partitioned into five clusters using the

k-means++[2] implemenation in scikit-learn[17]. The choice of five clusters is arbitrary and

may not be ideal to represent a natural clustering for any particular protein. The clustering

is merely intended to roughly map the low temperature structures.

Representative conformations are chosen for each cluster as regions of high density in the

first two principle components. For each cluster, the smoothed probability density in the

first two principle components is estimated using a kernel density estimate with bandwidth

given by 20% of the standard deviation in the cluster. The representative conformation for

the cluster is chosen to be the conformation with the high probability density of its first two

principle components according to this measure.

3.16 Derivation of contrastive divergence

We derive the contrastive divergence method as a series of approximations to the problem

of best approximating the probability distribution of observed PDB structures using a force-

field of an imperfect, fixed form.

We begin by assuming that we have a large collection of protein sequences {sa} and

their associated Boltzmann distributions ptrue
sa (Xa) under physiological conditions, where a

represents an arbitrary label to enumerate the proteins and Xa represents the configuration

of the protein (in our case, we are only interested in the backbone trace for Xa). Note that

the “true” Boltzmann distribution is an unobservable idealization of the conformational

ensemble of a protein under physiological conditions, and we further idealize that the true

Boltzmann distribution is derived from from an extremely-complicated true potential V true
sa

by statistical mechanics,

ptrue
sa (Xa) =

exp(−V true
sa (Xa))

exp(−Gtrue
sa )

(3.7)

Gtrue
sa = − log

∫
e−V

true
sa (X) dX. (3.8)
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The subscript sa indicates that both the potential V true
sa and free energy Gtrue

sa depend

on the sequence of the protein. We may think of this as an artifact of working in the

coarse-grained coordinates of the backbone trace, where the energy V true
sa really represent

the free energy of the backbone coordinates after integrating away the solvent and side chain

degrees of freedom. An analogous situation occurs in parameterizing all-atom molecular

dynamics, where the “energy” of the system really represents the free energy of the system

after integrating over the electronic degrees of freedom. Our goal is to define a parametric

V
approx
s (X) that approximates the V true

s for any sequence s. We drop the subscript s below

where there is no chance of confusion.

For an approximate potential V approx, such as the Upside model defined above, it is

almost certain that V approx does not have enough flexibility in its functional form to match

all of the Boltzmann distributions pa for any sequence sa. We must instead find a V approx

that is “close” to V approx. Defining the Boltzmann distribution of V approx in the same

manner as that of V true,

p
approx
sa (Xa) =

exp(−V approx
sa (Xa))

exp(−Gapprox
sa )

(3.9)

G
approx
sa = − log

∫
e−V

approx
sa (X) dX, (3.10)

we may use the Kullback-Leibler(KL) divergence to measure the information theoretic-

closeness of the associated Boltzmann distributions. This measure is defined by

KL(ptrue, papprox)

=

∫
ptrue(X) log

ptrue(X)

papprox(X)
dX

= 〈− log papprox(X) + log ptrue(X)〉true

= 〈(V approx(X)−Gapprox)−

(V true(X)−Gtrue)〉true. (3.11)
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In the last equation, we note that the KL divergence is simply the average energy difference

between the true and approximate potentials (after subtracting the free energies to normalize

the probabilities), where the average is taken over the true Boltzmann distribution. This

makes the KL divergence highly non-symmetric between the true and approximate potentials.

If the approximate potential is high (unfavorable) where the true potential is low, this will

make the KL divergence much larger. Regions of configuration space where the true potential

is high contribute little to the average since these regions will have low probability in the true

Boltzmann ensemble. The key fact when minimizing KL divergence is that if the approximate

distribution lacks the freedom to exactly match the true distribution, then the minimizing

distribution will be weaker than the true distribution (i.e. less sharp) to avoid assigning

highly unfavorable energy to configurations that are likely in the true distribution.

We unfortunately lack knowledge of the true energy ptrue, so that we are unable to

compute the expectation needed for the KL divergence for a concrete V approx. Instead of

minimizing the KL divergence, we can instead minimize

〈V approx(X)−Gapprox〉true, (3.12)

since the remaining term 〈V true(Xa) − Gtrue〉true is independent of the approximating po-

tential. This expectation value is still intractable since we do not know ptrue. We instead

approximate

ptrue(X) ≈ pempirical(X) =
1

M

M∑
a=1

δ(X −Xa), (3.13)

where δ is the Dirac delta function and M is the number of proteins. We can approximate
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minimizing the KL divergence by instead minimizing

〈V approx(X)−Gapprox〉empirical

=
1

M

M∑
a=1

∫
δ(X −Xa)(V approx(X)−Gapprox) dX

=
1

M

M∑
a=1

(V approx(Xa)−Gapprox). (3.14)

Minimize the expression (3.14) is exactly the method of maximum likelihood. The derivation

given above illustrates two points via the connection to KL divergences. The first is what

happens when the approximating energy V true cannot capture the nuances of V approx. In

this case, the model will be overly broad so as not to assign high energy to any configurations

that have low energy under V true. The second salient point is that with only a finite number

of samples, pempirical may be a poor approximation to ptrue. Whether that is the case

depends on the ability of V approx to wrap itself tightly near the δ-functions associated with

each sample. This is the origin of overfitting, which is especially problematic with large

numbers of parameters.

We can now take the derivative with respect to an arbitrary forcefield parameter αi in

preparation to perform gradient descent to minimize (3.14). This gradient is given by

d

dαi

1

M

M∑
a=1

(V approx(Xa)−Gapprox)

=
1

M

M∑
a=1

(
dV approx

dαi
(Xa)− dGapprox

dαi

)

=
1

M

M∑
a=1

(
dV approx

dαi
(Xa)−

〈
dV approx

dαi
(X)

〉
approx

)
, (3.15)

where we have used the standard statistical mechanics identity dG/dαi = 〈dV/dαi〉. While

we have obtained a concrete expression for gradient descent in (3.15), we still have a ma-

jor stumbling block. Computing the expectation of the derivative of the potential at Xa is
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straightforword given a functional form for V approx, but obtaining even a reliable approxi-

mation for
〈
dV approx

dαi
(X)

〉
approx

is extraordinarily difficult. To approximate the expectation

value with a finite sample, we would need to obtain Boltzmann samples from our current

approximating potential. Even obtaining the single most likely configuration for our ap-

proximating potential is equivalent to finding the native state of the model, and this is very

difficult for realistic pairwise potentials. Making matters more difficult, we would need to

find the Boltzmann ensemble for all the proteins in our training set, and keep those Boltz-

mann ensembles up to date as we use gradient descent to optimize our potentials. This

represents an extreme expense and it is unrealistic to obtain good converged estimates for〈
dV approx

dαi
(X)

〉
approx

over the whole training set for anything but the simplest models of

proteins. Note also that we cannot simply construct a large list of structures at some time

and reweight those structures according to the potential, since the potential is constantly

changing. Reweighting ensembles is only valid over very small neighborhoods of parameter

space, and this procedure would depend on being able to generate an exhaustive survey of

candidate structures FOOTNOTE there are contrastive divergence variants that attempt

such a thing but they really work based on the driving effect of the changing potential as

seen in [25].

The contrastive divergence method[10] works based on a key insight. We do not need an

accurate approximation to (3.15), so long as the derivative points in direction of parameter

space that improves the potential accuracy (i.e. any direction is acceptable as long as it is

not uphill). The authors propose replacing Boltzmann average
〈
dV approx

dαi
(X)

〉
approx

with

a finite-time Fokker-Planck average over a very short period of time for a simulation that

originates at the data point Xa. In the Monte Carlo (MC) dynamics that the authors use,

even one MC step is sufficient to produce decent optimization of the model. In our case, we

replace their small number of MC steps with a short time simulation using replica exchange

Langevin dynamics. As the duration of the simulation is increased, our derivative estimate

will converge to the true derivative (3.15).
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CHAPTER 4

THE UPSIDE MODEL FOR COARSE-GRAINED PROTEIN

PHYSICS

4.1 Introduction

The purpose of this chapter is to give a detailed account of the Upside model for protein

physics and to explain the myriad aspects of the potential energy function. Modelling choices

are made both for physical realism and for the ability to stably integrate Hamilton’s equa-

tions using the Verlet algorithm. Detail-averse readers may skip this chapter without com-

promising their understanding of the rest of the text, although they are encouraged to read

subsection 4.3 for a description of interesting effect when converting between Ramachandran

frequencies and Ramachandran potentials.

While this chapter does not describe the software implementation of the Upside model

in detail, descriptions of the components of the Upside potential will include a reference to

the class in the Upside program that implements them.

4.2 Basic backbone terms

4.2.1 Bond springs

Harmonic potentials are used to restrain the N–Cα, Cα–C, and C–N distances to physical

values. Upside uses the standard form of a harmonic potential,

Vbond(x1, x2) =
1

2
k(|x1 − x2| − r0)2, (4.1)

where the equilibrium distance r0 is chosen to be 1.453Å, 1.526Å, and 1.300Åfor the three

types of bond springs, respectively. The spring constant k is chosen to be 48. energy units

/ Å2. While the bond distances are based on crystallographic data, the choice of spring
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constant is made in an attempt to maximize the allowable Verlet time step. Since bond

vibrations are often the highest frequencies in a molecular system, the step size for molecular

simulation is often chosen to avoid instability of the Verlet integrator due to instabilities in

integrating the motion of bonded atoms. Hence, simulation efficiency may be increased by

increasing the integrator time step after reducing the spring constant for bonded atoms. A

limit on the extent to which the bond spring constant may be reduced is discussed in the

next section.

Bond springs are implemented in the DistSpring class.

4.2.2 Angle springs

Angle springs are used to restrain the bond angles for N–Cα–C, Cα–C–N, and C–N–Cα

groups. The form of the potential is

Vangle(x1, x2, x3) =
1

2
k( ̂(x1 − x2) · ̂(x3 − x1)− a0)2. (4.2)

Note that the dot product gives cos θ where θ is the bond angle. The integration stability

of using the more standard θ instead cos θ to be investigated, as angular springs can cause

integrator instability when the spring constant k is high (in Upside, k is chosen to be 175.).

Note that this angular term limits the allowable spring constant for the distance springs at a

fixed integration time step. When one of the flanking atoms in an angular spring approaches

the central atom, the force due to the angular potential increases proportional to 1/r. Since

these high forces are likely to push the system outside the stability conditions of the Verlet

integrator, a sufficiently high spring constant must be used for the distance restraints to

avoid near approach of atoms participating in an angular interaction.
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The equilibrium value a0 is given by

aN–Cα–C
0 = cos 109.5◦ (4.3)

aCα–C–N
0 = cos 120◦ (4.4)

aC–N–Cα
0 = cos 120◦. (4.5)

Angle springs are implemented in the AngleSpring class.

4.2.3 Dihedral springs

Dihedral springs are used to restrain the ω dihedral angles. They use the functional form

Vdihedral(x1, x2, x3, x4) =
1

2
k(minimage(dihedral(x1, x2, x3, x4)− θ0))2, (4.6)

where minimage(φ) adds a multiple of 2π to φ to give an angle in the range [−π, π]. Simu-

lations employ only fixed cis or trans angles without interconversion since the derivative of

this potential is discontinuous at the antipodal point to the equilibrium value. While the

fixed-ω constraint is limiting for describing the Boltzmann ensemble of unfolded proteins, it

is natural for describing kinetics as cis/trans interconversion takes place over much longer

time scales than most small-protein folding. The dihedral springs could be modified to have

a continuous derivative using the potential

V modified
dihedral (x1, x2, x3, x4) = kmodified(1− cos(dihedral(x1, x2, x3, x4)− θ0)), (4.7)

in analogy with the von Mises distribution on the circle. A pair of these potentials could

be used to implement cis/trans interconversion, but this would require changes to the Ra-

machandran potentials which distinguish cis- and trans-proline.

The equilibrium θ0 is chosen to 0 or π as appropriate. The spring constant k is chosen to

be 30. Note that the dihedral springs place constraints on the spring constants of the angular
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springs. If either of the internal angles of the dihedral group approach π (collinear atoms),

the derivative of the dihedral potential varies rapidly as the dihedral angle is undefined for

collinear atoms. The angle potential spring constants must be sufficiently large to avoid

these integration instabilities.

Dihedral springs are implement in the DihedralSpring class.

4.3 Ramachandran angle potential

There are a variety of physical effects and statistical correlations in protein structures that

can be represented using a Ramachandran potential, which requires careful care to capture

only those effects that at not subsequently captured by the side chain potential.

The conceptually simplest method to construct to construct a Ramachandran poten-

tial is to first create a statistical model of the backbone conformations of protein in the

Protein Databank, such as the TorusDBN[2] model. By taking the negative logarithm of

such a model, one may obtain a potential energy surface for sampling from the probabil-

ity model. While such a model is conceptually straightforward to construct, it is fraught

with problems for interpreting the physicality of such a potential. Separately parameteriz-

ing the Ramachandran potential forces all other potential terms to model only the terms

statistically independent to the potential described by the Ramachandran angles. Such a

division is simple for terms like the bond springs between backbone atoms. Physically, there

is little important correlation to be expected between bond fluctuations and Ramachandran

propensities. The situation for side chain and hydrogen bonding terms is quite a bit more

complicated. Consider determining the helical fraction for a short peptide sequence in solu-

tion. A sufficiently powerful, statistical Ramachandran probability model may capture the

helicity of this peptide correctly (i.e. the helical probability of the peptide matches that of

experiment). While this would be a success of probability modeling for Ramachandran po-

tential, it is a challenge for the hydrogen bond and side chain potentials of the model. Since

the helicity is correct using only the Ramachandran potential, the hydrogen bond potential
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and side chain potential must contribute nothing in aggregate to the helical probability of

the peptide. This is obviously unphysical, as surely the hydrophobicity of the residues or the

strength of hydrogen bond interactions are largely responsible for determining the helicity of

the peptide. Indeed, the effects have been moved out of the physical side chain and hydrogen

bonding interactions to be put in the Ramachandran potential. While this may work for

an isolated peptide with no tertiary structure, it is extremely hard to make such a model

transferable to larger systems, where the hydrophobic effects that must be omitted for the

peptide may be driving the formation of tertiary structure. This problem is quite general

to statistical potentials. Given the dihedral angles of protein, it is possible to recover the

atomic positions of the backbone to high accuracy, especially if care is taken to avoid steric

clash. For this reason, a sufficiently sophisticated statistical Ramachandran potential is able

to describe arbitrary protein physics, yet the stated purpose of Ramachandran potentials is

only to capture sequence local interactions.

The above argument shows that it is imperative to limit the capacity of the Ramachan-

dran potential to avoid capturing protein physics that should be described in the hydrogen

bonding and side chain interactions. Yet, it is not clear that the appropriate course of action

is to use similar dihedral potentials to those used in all-atom molecular dynamics. These

potentials are parameterized from quantum calculations of the energies of backbone torsions

and depend heavily on the side chain interactions to set local conformational preferences.

Such direct energetic models put a great strain on the side chain interactions to describe

the secondary structure, such as the secondary structure preferences of β-branched residues.

While this is appropriate for an all-atom model, it may be difficult to describe these con-

formational preferences in a coarse-grained model. Unfortunately, we must anticipate which

effects are likely to be described by the remaining terms of the Upside potential when we

choose the form of the Ramachandran potential.
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We use a simple form for the Ramachandran potential

VRama(φ1, ψ1, . . . , φN , ψN ) =
∑
i

Vaai−1,aai,aai+1(φi, ψi). (4.8)

This dynamically-independent residue model for the Ramachandran angles is unable to

model long-range correlations that are needed to describe secondary structure formation,

so that the hydrogen bond and side chain interactions are responsible for much of the driv-

ing force of secondary structure formation. It still influences secondary structure preference

through angular probabilities. The construction of the Vaai−1,aai,aai+1 potentials is a bit

involved, however. The starting point for Upside’s Ramachandran model is the NDRD Ra-

machandran libraries [7]. These libraries model the Ramachandran probabilites of a residue

given the identity of the residue and the identity of its left or right neighbor (i.e. dimer

maps), which are modeled using a hierarchical Dirichlet mixture. The Dirichlet mixture

implies that the probability density is a (possibly-infinite) sum of Gaussian-like functions,

which allows the probability model to be continuous and differentiable for all inputs. The

model is hierarchical in the sense that it uses a hierarchical Bayesian prior so that the prior

distribution for a dimer is influenced self-consistently by the one-body distributions of each

residue type.

One of the most important modelling decisions for the Ramachandran interaction is the

choice of what residues in the PDB to use for our statistical model. As we explained above, it

makes little sense to use all of the PDB residues, since we hope only to model the interactions

that are missed by our side chain model. A popular choice is a so-called “coil library”, that is

to model only those residues which have coil structure according to the DSSP classification

[4]. This choice is only one among many, and it is not clear that it strikes the optimal

balance needed to capture only the protein physics not treated elsewhere in the model. We

use a slightly more parameteric approach. Our starting point is a library of residues in

the turn, coil, and bridge DSSP states (TCB states), which is modeled in [7]. This library
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separately provides fL
aa1,aa2(φ2, ψ2), which is the smoothed Ramachandran frequency for

residues of type aa2 given that there is a residue of type aa1 preceding it in sequence, and

fR
aa2,aa3(φ2, ψ2), which is the smoothed Ramachandran frequency for residues of type aa2

given that there is a residue of type aa1 following it in sequence. To combine these to two

frequencies into an approximation of the triplet frequency, we use a simple mixture

fmixture
aa1,aa2,aa3(φ2, ψ2) =

fL
aa1,aa2(φ2, ψ2) + fR

aa2,aa3(φ2, ψ2)

2
. (4.9)

This mixture is more diffuse than that we would obtain using the stricter ratio rule recom-

mended in [7],

fmixture
aa1,aa2,aa3(φ2, ψ2) ∝

fL
aa1,aa2(φ2, ψ2) ∗ fR

aa2,aa3(φ2, ψ2)

f1-residue
aa2 (φ2, ψ2)

, (4.10)

where the 1-residue frequency is used to avoid double-counting effects that depend only one

residue. While either rule is reasonable, we have noted better results from the less peaky

distributions obtained with the mixture rule.

Since these Ramachandran models empirically tends to create very helical Upside models,

we add an additional parameter λ to increase the proportion of β-sheet angles in the model.

To do so, we have fit a simple gaussian kernel density estimate for angles classifed as sheet

in DSSP, as well as the fraction faa1,aa2 of residues of each dimer type that are in β-sheets in

a representative sample of the PDB. We combine the TCB Ramachandran frequencies and

the sheet frequencies according to weighted mixture,

ffinal
aa1,aa2,aa3(φ2, ψ2;λ) =

(1− g)fTCB
aa1,aa2,aa3(φ2, ψ2) + g ∗ e−λf sheet

aa1,aa2,aa3(φ2, ψ2)

(1− g) + g ∗ e−λ , (4.11)

where g is the average of the DSSP sheet frequencies of the dimers (aa1, aa2) and (aa2, aa3).

The purpose of this combining rule is to only add sheet frequencies for residues observed to

be in the sheet conformation in the PDB. The parameter λ gives the contrastive divergence
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Figure 4.1: Probability density of Ramachandran angles for the central residue of a free
alanine chain with no Ramachandran potential for the central residue (colors scale gives the
probability density values in units of 1/degrees2). The chain experience only short-range
excluded volume interactions, and interactions between adjacent residues are excluded from
the potential. The depression near φ = ψ = 0 occurs due to a high probability of i− 1, i+ 1
steric overlap when the i-th residue is near the origin of φ/ψ space.

optimization a way to tune the amount of added sheet bias to compensate partially for the

effect of other terms in the model. To obtain the final Ramachandran energy term, we

perform a naive Boltzmann inversion (with a small modification below) to give

Vrama(φ1, ψ1, . . . , φN , ψN ) = −
∑
i

log ffinal
aai−1,aai,aai+1

(φi, ψi;λ), (4.12)

where λ is a single tuneable parameter.

The Ramachandran coordinates φ and ψ are implemented in the RamaCoord, and the

Ramachandran potential is implemented in the RamaMapPot.

4.3.1 Reference state correction for Ramachandran modeling

The potential V in (4.12) is sufficient to ensure that the Ramachandran frequencies of the

Boltzmann distribution are equal to the ffinal functions in the case that the only other terms

are the bond, angle, and dihedral springs given above. The situation is more complicated

when even short-range steric interactions are present to give proper atomic radii to the N,

Cα, and C atoms of the backbone, interactions which are described in more detail below.

86



The bias of Ramachandran angles for a small peptide with zero Ramachandran potential is

depicted in Fig. 4.1, which shows a preference against angles near φ = ψ = 0. The edge

of the bias region is sufficient to significantly alter the helical probability of proteins. The

bias depends only weakly on the Ramachandran potential of the flanking residues. For this

reason, we correct the bias by added a reference state potential

V ref
rama =

∑
i

log f ref(φi, ψi). (4.13)

Because the dependence on the Ramachandran distribution of the flanking residues is weak,

there is no need to iteratively correct the bias.

4.4 Hydrogen bonding potential

Since the configuration of the protein chain is represented only by N, Cα, and C, we lack

the amide hydrogen (H) and carbonyl oxygen (O) atoms necessary to represent the physics

of hydrogen bonding. We remedy this difficiency by noting that the position of these atoms

can be reconstructed to high accuracy from the position of the backbone atoms. To find the

position of H and O, we compute

xH = xN + (0.88Å)dH (4.14)

xO = xC + (1.24Å)dO (4.15)

dH = sp3(xC, xN, xCα) (4.16)

dO = sp3(xCα , xC, xN) (4.17)

sp3(x1, x2, x3) = unitvec (unitvec(x2 − x1) + unitvec(x2 − x3)) (4.18)

unitvec(x) =
x

|x| . (4.19)

The coordinate computation is implemented in the Infer H O class, and the resulting coor-

dinates are used heavily in subsequent Upside potential calculations. The directions dH and
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dO are the N–H and C–O bond vectors respectively, which are used to assess angular com-

ponents of both hydrogen bonding and side chain interactions. In Upside, the N-terminal

and proline residues have no amide hydrogen, while the C-terminal residue has no carbonyl

oxygen. No capping is currently implemented in Upside.

Given the position and bond vectors for the hydrogen and oxygen atoms, a hydrogen

bond score for each possible hydrogen bond is computed according to

hij = radial(|xH
i − xO

j |) angular(dHO
ij · dO

i ) angular(−dH
i · dHO

ij ) (4.20)

dHO
ij = unitvec(xH

i − xO
j ) (4.21)

radial(r) = sigmoid

(
r − (1.4Å)

0.10Å

)
sigmoid

(
(2.5Å)− r

0.125Å

)
(4.22)

angular(a) = sigmoid

(
a− 0.682

0.05

)
. (4.23)

The hydrogen bonding score hij is non-symmetric in i and j and quantifies the extent to

which residue i and residue j form a hydrogen bond as the donor and acceptor, respec-

tively. The hydrogen bond score is in the range [0, 1], where the hydrogen bond score is one

approximately when 1.4Å < r < 2.5Å, θHOC < 47◦, and θOHN < 47◦.

Given the hydrogen bond score of each possible hydrogen bond, a hydrogen bond score in

the range [0, 1] is assigned to each hydrogen or oxygen atom. This score can be interpreted

as the confidence that the atom is participating in some hydrogen bond. We compute the

atomic hydrogen bond score as

sH
i = 1−

∏
j 6=i

(1− hij) (4.24)

sO
j = 1−

∏
i 6=j

(1− hij). (4.25)

The asymmetry between the definitions of sH
i and sO

j reflects the asymmetry in the definition

of hij . Interpreting hij as a probability of the event that residues i donates a hydrogen
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bond to residue j and assuming that all such events are independent, (4.24) represents the

probability that residue i is a hydrogen bond donor for any other residue. This score is

constrained to the range [0, 1] and the sum of these scores provides a differentiable count of

the number of hydrogen bonds.

The Upside energy for backbone-backbone hydrogen bonding is given by

Vhbond = Ehbond

∑
i

(sH
i + sO

j ), (4.26)

where Ehbond is a scalar quantity that approximately represents half of the energy of forming

a single hydrogen bond. The hydrogen bond scores are further used in the side chain potential

energy functions.

The hydrogen bond score is implemented in the ProteinHBond class and the backbone-

backbone hydrogen bond energy is implemented in the HBondEnergy class.

4.5 Placement of candidate side chain sites

4.5.1 Residue position and orientation for side chain placement

For specified χ-angles, the side chain atomic positions are fixed relative to the position and

orientation of N, Cα, and C atoms. We want to define the position and orientation of our

interaction sites in a side chain reference frame with N, Cα, and C in defined positions, then

apply rigid body rotation and translation to move the side chain interaction sites to their

appropriate positions for a given backbone structure.

In Upside, we define the reference backbone positions (in Å) to be

xref
N = (−1.21,−0.26, 0.) (4.27)

xref
Cα

= (−0.02, 0.56, 0.) (4.28)

xref
C = ( 1.23,−0.30, 0.). (4.29)
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The transformation between the reference frame backbone and the current configuration of

residue i is given by a rotation matrix Ui and a translation i, which are chosen to minimize

the RMSD,

Ui, ti = arg min
U,t

1

3

∑
a∈(N,Cα,C)

|xa − (Uxref
a + t)|2. (4.30)

The tranformation Ui and ti are computed independently for each residue i using the quater-

nion algorithm of [5]. The computation of the alignment is handled by the AffineAlignment

class.

Given data (scalars, vectors, or points) in the reference frame of residue i, we compute

equivalent data in the simulation frame of the residue using the usual rules for covariant

transformation of spatial data. Scalar values, such as the probabilities of individual χ rotamer

states, are invariant under transformation. Vectors, such as bond vectors, are rotated by

Ui. Points, quanties which define a position in space, are transformed by both Ui and i.

Summarizing,

si = sref
i scalar transformation (4.31)

di = Uid
ref
i vector transformation (4.32)

xi = Uix
ref
i + ti point transformation. (4.33)

The placement of (optionally Ramachandran-dependent) data in simulation frame is handled

by the PlacementNode class.

The current definition of the Upside potential uses Ni, Cαi , and Ci as its configuration

space with Ui and ti as computed values, but this may not be the most efficient choice for

simulation. Very little would change in the model if Ui (likely in quaternion form) and ti were

considered the dynamical variables and Ni, Cαi , and Ci were computed values. Indeed, using

the rigid body coordinates as the dynamical variables may allow larger and more efficient
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integrator steps. While using rigid body coordinates as dynamical variables has not yet been

pursued due to the added technical challenge of rigid body integration and thermostatting, it

is a promising area to speed simulation. If handled properly, it is likely that the Boltzmann

ensemble of the protein would be hardly affected for quantities of interest.

4.5.2 Backbone sites

Backbone steric interactions are described using an ordinary pair interaction,

Vsteric =
∑
i+1<j

∑
a∈(N,Cα,C,Cβ)

∑
b∈(N,Cα,C,Cβ)

4 sigmoid

(
|xia − xjb|2 − (3Å)2

(3Å)(0.1Å)

)
, (4.34)

where xia is the position of the atom a of residue i. The position of atoms are actually

placed using the rigid body placement described above (necessary for Cβ but also true for

the other atoms).

Backbone sterics are implemented in the BackbonePairs class.

4.6 Interactions that contribute to side chain placement

As described in the previous chapters, the rotamer states of the side chains are determined

by self-consistent belief propagation on single and pair interactions. Below, we describe the

individual interactions that combine to determine the interaction energies of the side chain

states. The subscript χ will be used to indicate the rotamer state for each iteraction residues,

so that xχi represents the position of residue i corresponding to rotamer χi.

This section will avoid discussing in detail energy functions describe in previous chapters.

4.6.1 Rotamer prior probabilities

The Ramachandran-dependent rotamer prior probabilities are adapted from [6] by summing

the probabilities of fine-grained states within each coarse-grained state used in Upside. The
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implementation as a scalar (non-rotated) residue potential is straightforward, except to note

that the probabilities are converted to 1-residue energies using a negative logarithm transform

Vprior({χi}) = −
∑
i

log pχi(φi, ψi). (4.35)

The purpose of this energy is to account for within-residue side chain-backbone inter-

actions that may be more difficult for Upside to model using only pair interactions. For

example, β-branched amino acids have strong χ preferences due to the need accommodate

the backbone.

This potential is implemented using a scalar component of a PlacementNode class. The

same placement class handles placing the location and direction for each of the side chain

beads.

4.7 Side chain-backbone interactions

There are two terms for side chain-backbone interactions, both of which uses the pair inter-

action form defined in section 2.5.

The first term controls the interaction with the hydrogen and oxygen atoms with the side

chains. The position and direction of these atoms are given in section 2.5. The interaction is

modulated by κi = (1− si)2, where the si is given by (4.24) or (4.25) as appropriate, so that

the side chain interaction only occurs for atoms not already participating in a backbone-

backbone interaction. This interaction is implemented in the HBondCoverage class.

The second term allows the interaction of side chain atoms with three sites (position and

direction) on the protein backbone. The form of the interaction is identical to the hydrogen

and oxygen interaction, except κi = 1 so that there is no modulation of this interaction.

The interaction sites are initialized at the N, Cα, and C locations but move somewhat as

they are optimized in the side chain maximum likelihood training. This interaction is also

implemented by the HBondCoverage class but with different parameters than above.
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4.8 Side chain-side chain interactions

The side chain-side chain interactions also the follow the form of (2.24) and are not mod-

ulated. The side chain-side chain interactions are implemented in the RotamerSidechain

class. Though the capability is currently unused, the model supports having multiple beads

for each side chain. This may improve the modeling of residues such as lysine or threonine

that have a mixture of polar and hydrophobic interactions.

4.9 Computing the side chain energy

The belief propagation algorithm for computing the side chain free energy is detailed in 2.11.

An important detail is that the belief propagation is not a convex optimization, and so

the stationary point to which the algorithm converges may be dependent on the initialization

of the algorithm. We initialize the algorithm to the probabilities implied by the 1-rotamer

energies, including the prior frequency energy and all the side chain-backbone interactions.

Note that the latter interactions are 1-rotamer interactions despite representing the interac-

tions of two beads, since each involves only a single side chain. The strong accuracy of the

prior probability of each rotamer at predicting crystallographic rotamer states [6] suggests

that initializing the rotamer probabilities to the 1-body probabilities has a high likelihood

of ensuring convergence to the global minimum of the approximate side chain free energy.

The theoretical soundness of the belief propagation free energy would be enhanced by

monitoring the belief propagation to identify if the optimization converges to different basins

on successive steps of the Verlet integration of the backbone. Such basin hopping will be

noted in an anomalously large change in the free energy resulting from a discrete change in

basin to which the algorithm converged. There is no guarantee that the old and new basins

have equal free energies; rather they may be artifact of sliding down one hill or another by

chance. If a large upward jump in energy were noted, presumably it could be treated with

Monte Carlo accept or reject step to some accuracy (possibly by embedding the algorithm
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in a hybrid Monte Carlo framework[3]). As such jumps are expected to be rare, though a

careful study has not been performed, this potential source of error is currently uncontrolled.

The solve for marginals method in the RotamerSidechain class computes the belief

propagation solution for the side chain ensemble.

4.10 Environment Interaction

The Upside model as described above has no explicit solvation energy, only those effects

implied by the attraction of hydrophobic side chains to the backbone and other hydrophobic

side chains. Most approximate solvation interactions are designed for atomic simulation and

are inappropriately expensive for Upside. Furthermore, many models need to be modified

to deal with the reduced level of detail inherent in Upside’s representation of the protein.

Instead, the solvation model is quite similar to the simple model presented in [1], except that

the solvation potential is modified to be differentiable and to be optimized by contrastive

divergence. We call the term an environment interaction because it reflects the energy of the

typical environment of a given residue type, with the intention that this reflects a reasonable

energy for solvation.

4.10.1 Counting surrounding residues

We define a count of surrounding residues in a similar manner to [1] but modify the con-

struction so that it is differentiable.

The main component of the environment interaction is to count the number of side chains

beads within a fixed radius of the Cβ atom in a hemisphere above the atom. We define

bi =
∑
j

pχj (φj , ψj) sigmoid

(
|xji| − (8Å)

1Å

)
sigmoid

(
d

Cβ

i · x̂ji + 0.1

1.0

)
(4.36)

xji = xSC
j − x

Cβ

i , (4.37)
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where x
Cβ

i is the position of the Cβ on residue i and d
Cβ

i is the corresponding Cα–Cβ bond

vector. The sigmoid parameters are chosen to approximately maximize distinctiveness of

the bi burial distributions for different residue types. In a well-formed definition of burial,

the burial distribution for a hydrophobic residue like valine should be very distinct from the

burial distribution of a charged residue like aspartic acid.

The side chain probability pχj (φj , ψj) appearing in the definition (4.36) is the prior

probability of the side chain bead, not the marginal probability from belief propagation.

The derivative of the marginal probabilities with respect to the side chain positions are

complex, much moreso than the derivative of the free energy with respect to the side chain

positions. Furthermore, for intellectual self-consistency, the side chain rotamers ensemble

should account for burial interactions. Unfortunately, belief propagation is not defined for

many-body interactions, such as would arise from a nonlinear function of the burial bi.

It would be possible to extend belief propagation to handle many-body terms at a lower

level of approximation, although it is not clear how accurate such an approximation would

be and whether it would be guaranteed to converge. Due to the derivative difficulties of

using the marginal probabilities without perturbing for burial and the intellectual difficulties

of extending belief propagation to handle many-body terms, we simply avoid the issues

by using only the prior (in the sense of equation (4.35), not the values of the previous

step) probabilities to define the environment interactions. The precise probabilities used to

define burial are unlikely to compromise the ability of the bi to distinguish hydrophobic and

hydrophillic residues.

The burial calculation is implemented in the EnvironmentCoverage class.
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4.10.2 Computing the non-linear energy

Given the burial values bi, the environment energy is an arbitray smooth function of the

burials, parametrized as a natural cubic spline. The total burial energy is given by

Vburial =
∑
i

vaai(bi), (4.38)

where the vaai function depends only on the residue type aai of residue i. This function

should be considered as a method to correct the deficiencies in the model of the hydrophobic

effect implied by the pairwise side chain energies. As a solvation model, it is very crude

but the limits of the model are partially compensated by the co-training of the environment

energy with the side chain energies, so that at least the energy terms are co-adapted.

The environment energy is implemented in the NonlinearCoupling class.
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CHAPTER 5

FUTURE DIRECTIONS

The probabilistic view of protein coarse-graining is most vibrant and important when we

take seriously that the potential energy encodes a Boltzmann distribution, and work directly

to understand and optimize the full ensemble. Given the growing scale of computational

resources as well as large experimental data sets, we expect the methods espoused in thesis

to increase in importance. Furthermore, the rigorous coarse-graining typified in our side chain

interaction methods allow us to cross the boundary between the sharp detail of individual

interactions and smoother landscape of slow-degrees of freedom. Such methods will allow

the field to simulataneously attack the sampling and parameterization challenges of protein

simulation. In the future, we expect a synergy between computational speed and simulation

accuracy to supplant their current adversarial relationship precisely due to the ability to

rigorously coarse-grain simulations.

This thesis has demonstrated a path forward to use statistical information for rigorous

coarse-grained simulation of protein physics. We expect that the Upside model and associ-

ated software will be a strong starting point both for de novo prediction of structure and

dynamics as well as an integration point to meld experimental observables (NMR chemi-

cal shifts, evolutionary features, mutational data, etc.) with a strong and sensible prior on

protein structure. We further expect that the side chain free energy approximations that

we have developed will expand to a rich vein of methods which blur the distinction be-

tween included and omitted degrees of freedom in coarse-grained methods. Finally, as the

total throughput of molecular simulation increases, we expect that the parameterization of

even all-atom molecular dynamics will come to represent a more equal hybrid of quantum

and statistical information, and that experiences in pure statistical models like Upside will

greatly inform practitioners about the strengths and limitations of statistical training to

inform protein dynamics.
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5.1 Future improvements to the Upside model and training

5.1.1 Enhanced equilibration for simulations and training

The ability to both train and run the Upside model is limited by the time required to equi-

librate a simulation trajectory. While the Upside model is designed for fast equilibration, it

may still take days or longer to equilibrate the Boltzmann ensemble for some proteins, even

those with fewer than 100 amino acids. Currently, the only enhanced sampling techniques

used in Upside are replica exchange and pivot moves. Replica exchange, however, is ineffec-

tive at accelerating the sampling of first-order phase transitions[2], and most small protein

folding is approximately a first-order phase transition[3]. Instead of temperature-enhanced

sampling, energy-enhanced sampling using the Wang-Landau[6] and other methods should

provide faster decorrelation for the Upside model.

Currently, Upside makes no use of multi-core parallelism outside of replica exchange.

While this is reasonable for very small proteins where the overhead of parallelism can be

significant, there are many potential applications of Upside to larger systems for both protein

association and conformational change that are greatly limited by the single-threaded nature

of Upside. The Upside model is amenable to parallelization. Most of the computational

cost occurs in evaluating the spline interactions necessary for the side chain interactions, a

trivially-parallelizable task. Future work will address parallelism in the Upside model.

Finally, persistent contrastive divergence[5] may be used to enhance the decorrelation

of structures during the contrastive divergence training. In this scheme, the individual

contrastive divergence trajectories are not reset on each pass through the training set, and

new proteins simulations are initialized from the last structure of their previous simulations.

This allows much greater exploration of the energy landscape. As long as the parameters do

not change too quickly, as controlled by the decorrelation time of the protein simulations,

this method can converge to the true maximum likelihood potential energy rather than the

approximately fluctuation-optimal potential energy that terminates contrastive divergence
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optimization.

5.1.2 Improved treatment of hydrogen bonding

Upside assigns a fixed enthalpy to the formation of a backbone-backbone hydrogen bond, a

term which assigns zero enthalpy to all other states. Hydrogen bond partners in a protein

are conceptually in one of three states – protein-protein hydrogen bonded, protein-solvent

hydrogen bonding, or desolvated in a hydrophobic environment. Desolvation of the hydrogen

bond donor or acceptor is expected to be energetically costly, while the relative energy of

protein-protein and protein-solvent hydrogen bonding is far less clear. Since Upside has only

a single energy associated to backbone-backbone hydrogen bonding, this energy must both

prevent donor or acceptor desolvation and describe the energetic balance between solvent

hydrogen bonding to backbone hydrogen bonding. Adding an additional desolvation penalty

should allow a much smaller energy difference between protein-protein and protein-solvent

hydrogen bonding without risking an unphysical collapse that produces large numbers of

desolvated hydrogen bonds.

5.1.3 Understanding the important physics of protein folding

Coarse-grained modeling is often seen as a way to extract and understand the essential

elements of protein structure and dynamics, but the success or failure of a single coarse-

grained model often provides only cryptic evidence for the importance of the interactions

that it describes. Upside can successfully fold many proteins without the solvation-like

environment term. It is unreasonable to conclude that the partial success of a no-solvent

model proves that solvation is unimportant to protein folding. Instead, it just shows the

ability of side chain pair interactions to mask the absence of the solvation terms. Only by

constraining the model to reproduce a large number of experimental observables, such as side

chain packing and unfolded-state physics in addition to structure prediction, may we start to

understand the truly essential elements of protein folding. The ability of the Upside model
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to make a wide range of experimental predictions, both dynamic and ensemble-averaged,

will allow us to explore the important physics of protein folding using a variety of terms that

include or exclude different types of protein physics while re-training to achieve the optimal

parameters for each model. By systematic experimentation, we should be able to better

characterize the essential elements of protein folding.

5.2 Applications of the Upside model

Since Upside is a general method for protein simulations, there are a wide variety of potential

future applications. We highlight a few applications that are either novel or uniquely suited

to Upside’s strengths.

5.2.1 Prediction of native state fluctuations and hydrogen exchange

Since the contrastive divergence training of Upside inherently samples the near-native states

of proteins, we expect the model to be especially accurate at describing the subglobal fluc-

tuations of the native state commonly found through hydrogen exchange. Using replica

exchange or even simple constant temperature simulation, we can map the local unfoldings

and other conformational changes of proteins to compare our ensemble to the predictions

of hydrogen exchange. Such a comparison should have the dual benefits of enhancing our

understanding of the Upside model as well as helping to interpret the results of experiments

with local unfoldings. This would will likely require understanding the effects of denaturant

in the Upside model, a subject of future research.

5.2.2 Prediction of protein-protein binding

Upside’s high accuracy and computational speed make it a natural candidate to explore

protein-protein association, especially in cases where flexibility is needed to form the binding

interface. While the interaction parameters derived from contrastive divergence on single-
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domain proteins should be fairly transferable to protein-protein association, it is not clear

that these parameters would be sufficiently accurate to make a state of the art prediction

method for protein association. Instead, we may use crystal structures of protein complexes

to fine-tune the interaction parameters through contrastive divergence. This work is ongoing

with Nabil Faruk and early results are promising.

5.2.3 Co-prediction of structure for homologous sequences

As a result of extensive genetic sequencing, it is common to have a collection of homologous

protein sequences without knowing the structure of any sequence in the collection. Further-

more, if the sequences are sufficiently similar, the sequences likely have similar structures.

We would like to have a method to leverage the ensemble of homologous sequences to enhance

the accuracy of structure prediction for each member of the collection.

Effective methods have been developed by other researchers[4] in the case that hundreds

to thousands of homologous sequences are available. In that case, residues typically in

contact in the protein structures will have correlated residue types, reflecting the need to

maintain relationships such as having opposite charge or occupying a given volume. When

there are sufficiently many structures to resolve these statistical correlations, residue contacts

can be predicted with good accuracy[7]. Typically, these statistical methods make little use

of the properties of protein structures; in many techniques, the contact predictions are even

invariant to random shuffling of the residue order.

In the case where only a few homologous sequences are available, say two to ten proteins,

there is little hope to statistical correlations of the sequences without strong assumptions

about the nature of protein structures. We propose to use Upside as a strong Bayesian prior

to aid the structure prediction. The simplest scheme directly incorporates the assumption

that homologous sequences have closely related contact matrices into the potential energy

function. We may simulate all of the homologous mutants as nearly-independent simulations.

The potential energy would consist of independent Upside potential energies for each protein
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augmented by an energy term that increased the probability of a contact in proportion to

the number of other proteins that also formed that contact for corresponding residues in a

multiple sequence alignment. In the case of a single protein, this represent ordinary structure

prediction through simulation. In the case of multiple proteins, each protein feels a force

encouraging it to adopt (a superset of) the average contact matrix of all of the homologous

sequences. The key idea is that homologous proteins will each have a low free energy for

the true native structure, but each protein may also have low free energy for incorrect

structures. So long as the incorrect structures are different for different homologues, they

will add incoherently to the potential, and thus every structure except the true native will

be weakened by the additional potential.

The advantages of the proposed technique are significant. This technique is far more data-

efficient than statistical analysis. Even using two sequences is likely to greatly enhance the

accuracy of structure prediction. Additionally, this cooperative folding incorporates strong,

well-calibrated information about protein structures from the Upside model, an independent

source of information from the statistical correlations. Finally, this method does not assume

that the contact matrices of homologous proteins are extremely similar; each protein is free

to have its own structure and contact matrix, which may be helpful in case a minority of

proteins are strongly incompatible with the structures of the majority of the collection.

5.2.4 Computational simulation of mutational scans

Given the high efficiency of Upside simulation, we can directly simulate the large collection

of mutants studied in a typical mutational scan. A typical method to study these proteins

is an alanine-scan to compute φ-values at each residue. Instead of predicting the results

through careful study of a wild-type protein simulations[1], we may perform an em in silico

alanine-scan by running each of the mutant in Upside at reasonable computational cost.

Such studies are likely to provide much greater insight both into the nature of the observed

fractional φ-values as well as the trustworthiness of Upside simulation for the protein in
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question.

5.2.5 Prediction of conformational change

Pathway prediction can be performed in molecular dynamics using a variety of techniques,

but the efficiency and accuracy of these methods are typically strongly tied to the ability

of the scientist to propose a reasonable starting trajectory for atomic molecular dynamics.

We expect that Upside will be useful for studying conformational change, both in studying

conformational changes difficult to sample with atomic molecular dynamics and to provide

suitable initial trajectories that can be further refined with atomic methods.
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