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A B S T R A C T

The Kumbh Mela festival is the largest mass gathering in the world that is celebrated every three years. In
2016, it attracted over 70 million people to Ujjain, India. The Mahakal temple is the ‘‘heart’’ of the festival
that attracts a huge number of pilgrims and needs to accommodate with massive crowds. These types of events
pose significant safety challenges as large-scale mass gatherings are often associated with risks such as crowd
crushes. There have been a number of serious incidents documented in recent history such as the Hajj crush at
Mina, Mecca, Saudi Arabia (2006 and 2015), the Lame Horse crush during a fire at Perm, Russia (2009), the
Love Parade disaster at Duisburg, Germany (2010), and the Kumbh Mela stampede at Allahabad, Uttar Pradesh,
India (2013) to name a few. Safety assurance at events of such tremendous size is closely connected with crowd
control and understanding the general behaviour of the crowd. One of the basic challenges in understanding
crowd dynamics is being able to predict crowd flows at a particular location based on past/present flows from
another location. There are several existing methods and models used to predict and manage crowd flow.
In this paper, we introduce a novel method for short-term crowd flow prediction and show that it decreases
the prediction error by 13% as compared to existing methods. The model is based on ensemble learning
where we demonstrate that a combination of complementary methods with different a-priory assumptions can
create better estimations. Utilizing a unique data set derived from CCTV camera recordings of pilgrims that
we collected during the Kumbh Mela 2016 festival, we tested different methods from artificial intelligence
and computational modelling, such as simple shift of time-series (time-shift), agent-based modelling, machine
learning methods, and show how combinations of these different methods as an ensemble provide synergy
to obtain better predictions. Our results demonstrate that agent-based modelling, when combined with other
models, provides better predictive power especially in complex scenarios. These results point to something
fundamental about the information contained within and generated by these methods. We anticipate that
our research could be a starting point for further research of informational synergetic aspects of models and
predictors.
. Introduction

The Kumbh Mela is a mass Hindu pilgrimage, also known as the
estival of chalice (Khanna et al., 2013) that happens every three years
n one of four designated places in India, with each place chosen once
or the festival every twelve years. Kumbh Mela is the biggest mass
athering in the world (Baranwal et al., 2015) and attracts millions
f people every year: 100 million people in Allahabad in 2013 and
0 million in Ujjain in 2016. This accumulation of people at such a
arge scale is associated with certain risks that the government, and
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organizers need to carefully manage. An analysis of the last 40 years
(Soomaroo and Murray, 2012) defines five main challenges for mass
gathering safety that also apply to the Kumbh Mela: (a) overcrowding
and crowd management, (b) fire safety (Sridhar et al., 2015), (c)
medical preparedness and healthcare (Cariappa et al., 2015), (d) event
access points and (e) emergency response (Greenough, 2013; Sridhar
et al., 2015). Indeed, for such a large-scale event, global management
and planning should also be included (Baranwal et al., 2015; Mehta
et al., 2014).
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The term Kumbh Mela comes from Sanskrit (Kumbha — a pitcher,
ela — fair). During the pilgrimage, people take a dip in the river and

ake part in different activities such as visiting sacred places including
emples. In Ujjain, the Mahakal Temple plays a key role. It is the heart
f the festival and attracts a majority of the pilgrims that in turn leads
o the accumulation of significant concentrations of the crowd inside
relatively small and confined space. These factors are our motivation

or considering the Mahakal temple (Fig. 1) as the focus of our research.
Incidents related to ineffective preparation and poor crowd man-

gement are frequent and dangerous. Injuries can be prevalent and
ife threating e.g., tissue damage, asphyxia, heatstroke, insulation etc.
World Health Organization, 2015). Overcrowding especially becomes
ven more critical in religious festivals due to the sheer volume of
articipants as well as participants’ average age and health state (Turris
t al., 2014). Hence, simulations of real-world data can help to develop
eal world understanding of crowd dynamics. A crowd simulation of the
ove Parade disaster in 2010 (Zhao et al., 2020) has been implemented
ased on the data from official reports. Bratsun in Bratsun et al. (2013)
imulated the disaster in Lame Horse in 2009 based on synthetic data
nd official reports. Authors in Mordvintsev et al. (2014) simulated
rowd evacuation during the flood in St. Petersburg. Helbing et al.
2007) performed observation and empirical study of crowd dynamics
uring Hajj in 2006.

Our aim is to introduce a novel method for short-term crowd flow
rediction that improves prediction quality. In this research, we define
rowd flow as the number of people moving from one location to
nother inside a confined space (in our case, a corridor) with reference
o a ‘‘marker’’ per unit time. One could imagine this marker as a straight
ine that is virtually drawn perpendicular to the corridor, making it
ossible to count the number of people crossing this line per unit time.
e emphasize that we only look into the movement of a crowd in a

orridor where there could only be two general directions: pedestrian
lows moving in opposite directions and sharing the same corridor
pace.

One popular method for analysing crowds is through the use of
gent-based modelling (Bratsun et al., 2013; Turris et al., 2014). This
ethod has major advantages such as: (a) modelling and simulation of

ndividual agents with their own behaviour, (b) capability to take into
ccount complex geometry and space, including walls and obstacles.
owever, this method is often complex and computationally demand-

ng as compared to alternative approaches. It also requires extensive
nput and validation data in order to gain sufficient confidence in the
rediction. There are a number of existing tools and applications of
gent based modelling and a comprehensive review can be found in
usse and Thalmann (2001) and Duives et al. (2014).

Flow prediction is also possible using machine learning algorithms.
mong the machine learning algorithms that we used for this research,
nly the recurrent neural network has been applied to crowd flow
efore Duives et al. (2019). However, the application of machine learn-
ng is more common in vehicular traffic flows (Smith and Demetsky,
994; Vlahogianni et al., 2005; Zheng et al., 2006). Unlike agent-based
odelling, machine learning approaches are based on a completely
ifferent philosophy, rather than providing a mechanistic description
f the system, machine learning identifies patterns, and correlations in
he system’s input and output.

Since there seems to be no single ideal method for modelling
rowd dynamics, we would assume that models that are derived from
arious methods based on different philosophies, would make different
redictions for different situations. We emphasize that in the context of
ur work, methods refer to techniques that are applied, but not limited
o, modelling crowd dynamics. Models, on the other hand, are what

we refer to as ‘‘products’’ or outcomes when a method or a collection
of methods used in predicting crowd dynamics are used together to
better understand a phenomenon. Hence, perhaps different methods
may work better under different conditions.

Automating the generation of crowd behaviours has been the focus

of several recent works that made use of data-driven, approaches

2

(Zhong et al., 2017, 2015, 2014). The core idea is to learn via examples
from video data. The examples are then used in the simulation as
behavioural rules to generate agents’ movement. Approaches that aim
at learning global motion patterns of crowds from video data have
been proposed in [25–30]. Global motion patterns can be integrated
with the crowd simulation model in order to generate realistic crowd
behaviours. However, the knowledge learned by these methods are
highly scenario-specific (e.g. examples and global motion patterns),
such that once the scenario is changed, the learned knowledge may no
longer be able to generate the desired crowd dynamics.

We hypothesize that by combining these methods, it may be possible
to increase the quality of the prediction. This technique of combining
different models is known as ensemble learning and it has been studied
(Dietterich, 2000) in statistics and machine learning. The application
of ensemble learning to understand crowds is a relatively unexplored
area. In fact we are not aware of existing attempts other than our own
published research (Kiselev et al., 2016) especially at combining seem-
ingly disparate models like state-of-the-art machine learning methods,
time shift model, and agent based modelling. Unlike our previous work,
which combines different agent-based models, our current research
combines models based on different philosophies and evaluates this
approach on real data obtained from the Kumbh Mela festival.

The paper is structured as follows: data set collection, processing,
and post-processing are presented in Section 2. The methods used
in modelling, such as time-shift modelling, agent-based modelling,
machine learning algorithms, and ensemble models, are presented in
Section 3. Results are presented in Section 4. Finally, we give our
summary and conclusion in Section 5.

2. Data set

2.1. Data collection

Data collection in the Mahakal Temple was divided in two stages:

Stage 1: construction of a 3D model of the temple by taking the
measurements of all rooms and corridors. See Figs. 1 and 2.

Stage 2: crowd flow video data collection

In Stage 1, every necessary measurement (i.e. of walls, corridors,
etc.) was conducted using a high-resolution laser rangefinder with an
accuracy of 0.003 m. Stage 2 was performed during one of the most
crowded days of the festival (May 5, 2016), also known as ‘‘Vaishakh
Shukla’’. Video data was collected during peak time which involved
90 min, from 15:00 to 16:30. The data set includes 5 videos from
CCTV cameras captured during the same period inside the Mahakal
temple. Fig. 2 shows the main flow of the pilgrims. We emphasize that
there are two flows of pilgrims merging (blue and yellow Sections)
between Cameras 3 and 5, where the flow from the VIP entrance
(yellow, Camera 4) merges the crowd flow from the general entrance
(blue). Segments in Fig. 2 correspond to paths between cameras, for
example segment 01–02 runs from Camera 01 to Camera 02 etc. Flows
are unidirectional and pilgrims cannot leave the flow or merge except at
one merge point, where pilgrims coming from Marbal Galiyara (Camera
03) as well as from the Ramp (Camera 04) merge towards Sabha
Mandap ramp (see Fig. 2). This means there should be conservation of
mass.

Below we summarize the details for each camera including the
resolution, FPS, and a short description of the viewing angle. Fig. 3
shows example images from each of the cameras where we see a
significant variance in quality and coverage of the cameras.

Camera 01 - ‘‘Main Gate’’, 1920x1080, 25FPS. Entrance in the tem-
ple. The video is of high quality and the angle and position of the
camera are also good. However, there are nonlinear distortions

in the angle of the camera.
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Fig. 1. 3D view of Mahakal Temple and crowd near the entrance.
Fig. 2. Scheme of flows in the temple. Paths from one camera to another are represented by different colours. Red is from Camera 01 to Camera 02, green is from Camera 02
to 03, blue is from Camera 03 to 05, and yellow is from Camera 04 to Camera 05. The crowd moving from Camera 03 and 04 merges and proceeds towards where Camera 05
is located.
Camera 02 - ‘‘Fc Barricade’’, 1920x1080, 25FPS. Corridor next to the
entrance. The video is also of high quality and the angle and
position of the camera are also relatively good.

Camera 03 - ‘‘Marbal Galiyara to Ramp’’, 960x576, 20FPS. Gallery.
Video is of average quality but has good position and angle.

Camera 04 - ‘‘Ramp Turn’’, 960x576, 25FPS. Gallery. Video quality
is also average and has nearly the same position as Camera 04.
However, the camera is directed towards the turn, where the VIP
pilgrims merge with the main flow. Due to water sprays inside
the temple, this video appears foggy.
3

Camera 05 - ‘‘Sabha Mandap ramp’’, 1920x1080, 20FPS. Room be-
fore sanctuary. Video quality is high but it has a low framerate.
However, both position and angle are good, which makes this
camera still useful.

2.2. Data processing

Data processing comprises of two stages. Stage 1 pertains to detect-
ing individuals in the video, and Stage 2 predicts the trajectories of
movement of each individual. The final result is the crowd flow.
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Fig. 3. Cameras, red lines are virtual detectors.
In order to extract pedestrian data or the number of pedestrians
rossing a specific corridor in the temple from the videos, we position
‘‘marker’’ denoted by a red (or white) virtual line shown in Fig. 4,

nd count the number of pedestrians crossing this marker.
Detecting individuals in the videos was challenging due to frequent

verlapping of objects as well as the changes in the linear size of the
bjects or the people, and the level of lighting in the videos. In order to
mprove the quality of the image, we calibrated the cameras by filming
he calibration target (Heikkila and Silven, 1997; Zhang, 2000). The
alibration target is a standard ‘‘chess board’’ square pattern that has
40 squares (70 black and 70 white) and each square has a dimension
f 5x5 cm.

In order to address this concern, we applied tracking-by-detection
ethod (Breitenstein et al., 2011; Andriluka et al., 2008). This algo-

ithm uses the current position of the object from the detector and
reates a model of movement for the object. It then searches for the
ame object in the subsequent frames. The process of getting crowd
low from raw videos are summarized by the following steps.

1. Detecting the people in each video frame.
2. Tracking people between video frames, and assigning ‘‘tracks’’

that are defined as the paths the individuals take when moving
from one location to another as indicated by the green lines in
Fig. 4.

3. Counting the number of people ‘‘flowing’’ or moving through
each camera with the use of the tracks mentioned in 2.

In Step 1, the choice of which object should be detected is crucial
n determining the quality of measurement. In our case, people, who
re part of and moving with the crowd, cannot always be observed in
ull as their faces may not always be directed towards the camera. This
s sometimes due to the angle and direction at which the camera was
nstalled. Therefore, we chose to use heads as the object for detection.

e utilized two methods for head detection: ACF (aggregate channel
eatures), and HOG (histogram of oriented gradients).

In Step 2 we use head detection to track the people between video
rames. The movement of a particular individual can be tracked from
rame to frame, and this is what we call a ‘‘trajectory ’’.

Finally, for Step 3, in order to measure crowd flow, we set up a
irtual barrier, such as the white line shown in Fig. 4, where each
erson’s ‘‘trajectory’’ is counted when it crosses this marker.

For the two detection methods that we applied, we tuned the
arameters with grid search (Tuning the hyper-parameters: Exhaustive
rid Search) method to find the best performance for our videos. In
4

Fig. 4. Detection, tracking, and crossing example.

ACF (Dollar et al., 2012; Dollár et al., 2014), we utilized 4 training
stages, a negative sample factor of 5, and 2048 maximum number of
weak learners. However, the quality of the result is not enough to build
tracks between frames. The main reason for this is that there is no
enough contrast between the objects we try to detect (i.e., heads) and
the background. HOG (Dalal and Triggs, 2005), where 5 and 20 cascade
stages, 0.01–0.2 acceptable false alarm rates, and 0.995 minimum true
positive rate are utilized, shows better results than ACF. However, it
produces many false positives as it can also detect other objects in the
background.

Since using HOG alone gives a significant number of false positives,
we opted to couple HOG with a convolutional neural network (CNN).
That is, we fit HOG in such a way that it gives us a significant amount
of positive detections in general. This pertains to a maximum number
of both true and false positives. We then employ a convolutional neural
network, based on the method described in Gao et al. (2016), to classify
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Table 1
Video processing results.

Method Detection Mean
Average
Precision

Total RMAE
(# of people per
15 seconds)

Ground truth – –
ACF 0.27 9.38
HOG 0.14 4.67
HOG & CNN 0.45 3.84

the detections and filter out false positives. To do this all detections
were divided in two groups: training and test. For learning, the data
was divided: 80% of the data was used for training, while 20% was
used for testing. The training part of the data was manually processed
to classify them as true positives and false positives in preparation for
the learning of the classifier: first class — true positive, second class
— false positive.

In order to assess the quality of the detection, we look at the mean
average precision for the methods that we used. Mean average precision
is a standard metric for object detection problems. High mean average
precision implies that the method is able to detect substantially more
relevant objects (heads) than irrelevant ones (non-heads). Ideally, we
hope to develop a method with high mean average precision.

To summarize, the mean average precisions for each method are
as follows: ACF:0.27, HOG:0.14 and HOG with neural network:0.45.
Our results show that HOG coupled with the neural network exhibits
the highest mean average precision as compared to other methods that
were tested. We further compare the performance of each method by
looking at predicted trajectories against data in Stage 2.

The second stage of data processing pertains to the prediction of
the trajectories that the movement of individuals creates. In order to
do this, we applied a Kalman filter with the following specification: the
motion model used assumes that people travel at a constant velocity.
The initial location of a person was set as the centroid of a box
that bounds their head. The initial estimate for the uncertainty of
the variance is set to 2.1. Deviation between the selected and actual
model is 5.5, and the variance for inaccuracy is set to 100, parameters
are tuned with grid search (Tuning the hyper-parameters: Exhaustive
Grid Search) method. Fig. 5 shows the estimated flow for all methods
compared against the flow observed from the cameras.

The final product of video processing is the crowd flow. We then
look at the mean absolute error of the crowd flow as a metric to
determine the performance of the models. The mean absolute errors
between the real data (observation) and the methods used are 3.84 for
HOG & CNN, 4.67 for HOG and 9.38 for ACF. Based on our results,
HOG & CNN predicts better than the other methods, while ACF is the
lowest performing method among the three.

To summarize, to accomplish Stage 1 (detection of individuals in
the video) if the data processing, first we utilize a detector algorithm
that returns rectangular frames where each frame is centred around
a detected head from the videos. A tracking algorithm then builds
trajectories connecting the rectangular frames of the same objects that
were detected between video frames. This is followed by a simple
algorithm that counts the number of crossings through a virtual line.
The output data is represented by events that are plotted through time,
where each event corresponds to the number of crossings detected
through the virtual line. We see Fig. 5 that the method implemented
for detection and tracking gives results that are reliable enough to be
used for our flow prediction. The mean average precision and the total
root mean absolute error (RMAE) between the predicted crowd flow
against the observed data for all methods used in video processing are

summarized in Table 1.

5

2.3. Data analysis

What we have so far is a series of events plotted over a continuous
time frame. In order to make sense of this data, we do post-processing
to generate a time-series of crowd flow for each camera as summarized
by the following steps: (1) selection of discreetness and discretization,
(2) normalization, and (3) filtering.

Discretization is necessary because the data that we have is repre-
sented in a continuous time and still needs to be transformed into a
time series. To select the discreetness of the time series, two conditions
should be considered: (a) stability of the time series, and (b) normality
of the distribution. Selection of discretization was based on the mean
absolute deviation and standard deviation of the resulting time series
(see Appendix A). The next step is data normalization. This step can
only be applied between specific cameras where people cannot leave
or merge with the flow. To normalize the flow, say for Camera 2 with
respect to Camera 1, we use a coefficient that is calculated through the
following equation:

𝑘𝑛2 =

∑𝑡=𝑇
𝑐1
𝑡=0

𝑓 (𝑡)

∑𝑡=𝑇+𝑙
𝑐2
𝑡=𝑙

𝑓 (𝑡)
(1)

here the summation of crowd flow 𝑓 (𝑡) for Camera 1 (𝑐1) from time
= 0 to 𝑡 = 𝑇 is divided by the summation of crowd flow 𝑓 (𝑡) for

Camera 2 (𝑐2) from the lag time 𝑡 = 𝑙 to 𝑡 = 𝑇 + 𝑙.
Since the processed data contains noise and errors (due to measure-

ment, analysis, and discretization) we still see abrupt changes in the
time series. To reduce these abrupt changes, data filtering is applied. A
widely known method that addresses this concern is the Kalman filter
(the application of Kalman filter here is not related to the application of
Kalman filter in Section 1.2). Fig. 6 shows an example of a time series
for Camera 02 that has been processed using Kalman filter. The time
series data for all cameras are presented in Appendix D.

We then have estimated basic metrics for all pairs of cameras in the
temple. The Distance (𝐷) between cameras was measured physically.
The average time 𝑇𝑎𝑣𝑔 was estimated using cross correlation analysis.

ross correlation was utilized on the data sets for each pair of cameras,
here the highest value in each pair’s correlation is picked as the
verage time shift (see Appendix C for details). The average speed 𝑉𝑎𝑣𝑔

for every scenario was calculated given the segment’s distance and
time. In order to check time shift calculations, we manually selected
and tracked two pilgrims across all cameras: the first pilgrim has a
speed lower than average (𝑇1, 𝑉1), while the second pilgrim has speed
hat is higher than average (𝑇2, 𝑉2).

Table 1 shows all pairwise metrics calculated for the cameras. For
nstance, the label 01–02 refers to Cameras 01 and 02 respectively.
istance 𝑫 corresponds to the distance between the two cameras
easured in metres, 𝑻 1 and 𝑻 2 are the times it takes for pilgrim 1 and

pilgrim 2 to travel distance 𝑫 respectively, while 𝑽 1 and 𝑽 2 are their
corresponding speeds. 𝑻 𝒂𝒗𝒈 and 𝑽 𝒂𝒗𝒈 refer to the average travel time
and average speed of all the pilgrims traversing the entire distance.
Turns refer to the number of corners, while complexity factors list
down some specifics in the route. We pick combinations of Cameras
01–02, 02–03, and (3&4) - 05 as Scenarios 1, 2, and 3, respectively
(see Table 2).

3. Modelling methods

Having processed the time series data, we now proceed with for-
mulating the short-term crowd flow predictions for specific spatial
points (e.g. positions of CCTV cameras or other detectors) as a time
series prediction, where one point in the timeseries corresponds to
the number of people passing the virtual line within the selected time
window (we used 15 s, see Appendix A; e.g. one data point — ‘25
people per 15 s’). We then predict the output timeseries of crowd flow
based on the input time series of crowd flow. To make short-term crowd
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Fig. 5. Evaluation of processing methods against observed data.
Fig. 6. Filtered and unfiltered data.
Table 2
Measurements and observations for all camera pairs.

01 – 02 02 – 03 (03&04) – 05

𝑫, m 18 259 58
𝑻 𝒂𝒗𝒈, s 45 345 90
𝑻 1, s 36 256 77
𝑻 2, s 51 321 65
𝑽 𝒂𝒗𝒈, m/s 0.4 0.75 0.64
𝑽 1, m/s 0.5 1.01 0.75
𝑽 2, m/s 0.35 0.8 0.89

Turns 1 5 6

Complexity factors – long path, police control merging of flows, pilgrims pray

Scenario 1 2 3
3

o
d
p
g

flow predictions, we test a number of different approaches: (a) time
shift, (b) machine learning algorithms, (c) agent-based modelling, and
(d) their ensembles.

Each method has its own limitations and constraints. For instance,
time shift is limited to cases when people cannot leave the crowd
when moving between two specific points due to the assumption of
conservation of mass. Machine learning methods do not explicitly make
such assumptions. However, their performance is fully determined by
the quality of training data available. Agent-based model, on the other
hand, attempt to capture the system in a mechanistic and physical way
— this includes a full specification of the space and assumptions made
about the behaviour and mobility of the people. This, in principle,
assuming the model is valid and correct, could offer advantages since
it can take into account complex geometries (corridors, bottlenecks
etc.), gaps in the data and better deal with discontinuities in the
flow. Another advantage of agent-based models is their capability of
predicting not only values of flow or density at specific points, but also
estimating fields and being able to recover values at arbitrary points.
The drawback is that agent-based models are often hard to validate,
require large amounts of data and are computationally intensive. These
approaches differ not only on the underlying mathematics, but are
developed on fundamentally different philosophies, which means they
are likely to make better or worse predictions in different situations.

Our approach is to try and combine these methods to profit from
possible synergies in the methods. To do this, we combine these differ-
ent approaches in an ensemble model. The result is a new approach to
short-term prediction of crowd flow dynamics.
6

Fig. 7. Time shift. The predicted time series is a simple shift of the time series by
some delta 𝒍. Hence, the predicted output 𝒚𝒕+𝒍 is simply the value at 𝒙𝒕.

.1. Time shift

The simplest method we employ is a shifted flow, where we move
r shift the time series forward by some delta. Despite its limitations
ue to the simplistic underlying assumption, this method can give low
redictive error for simple cases over short and non-complex building
eometries (e.g. a short straight corridor). The model shifts the time-

series (or sums them in cases when there are two input timeseries like
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Fig. 8. Cross correlation between Camera 01 and 02 for different time shifts (minutes).
merging flows). The simple formalization is presented in Eq. (2), where
�̂�𝑡+𝑙 is the output value at time 𝑡 + 𝑙, 𝑙 is the shift value (lag), and 𝑥𝑡 is
he input at time 𝑡. The method is illustrated in Fig. 7.

�̂�𝑡+𝑙 = 𝑥𝑡 (2)

To calculate the time shift value of crowd flows between two
djacent cameras, we utilized cross-correlation (see Fig. 8). The details
f the cross-correlation are shown in Appendix C. Fig. 9 shows an
xample result for Cameras 01 and 02 (Scenario 1). Here, the result
f the time shift (and cross-correlation) gives maximum correlation for
time shift of 45 s (0.75 min in Fig. 9). Given the average speed of

he individuals is 0.4 m/s and the distance between the two cameras is
8 m, this result seems consistent. In Fig. 9, we see the fit of a smoothed
low for Camera 1 shifted by 45 s to overlap with Camera 2. Results for
ll three scenarios are presented in Section 4.

.2. Machine learning methods

Machine learning methods can also be used to construct a short-term
orecast of the dynamics of the crowd at the control points (for CCTV
ameras or other detectors).

In order to apply machine learning methods to timeseries, we have
o consider that the order of the datapoint is important. For a machine
earning model 𝑓

(

𝑥𝑡
)

that outputs the prediction �̂�𝑡+𝑙 (see Eq. (3)) at
imestep 𝑡 + 𝑙, where 𝑡 is time, and 𝑙 is lag. 𝑡𝑚𝑎𝑥 is the total time, the

machine learning algorithm solves an optimization task by minimizing
the cost function in Eq. (4). 𝑦𝑡+𝑙 is the so-called ground truth or the
data being modelled and �̂�𝑡+𝑙 is the model prediction, and 𝑡𝑚𝑎𝑥 − 𝑙 is
the number of objects in the training data set. The cost function for
regression models represents the summation of the square of the error
between the actual data and the predicted values divided by the total
number of objects in the training data set. The same logic is applied
here as in the time shift model.

�̂�𝑡+𝑙 = 𝑓 (𝑥𝑡) (3)

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 1
𝑡𝑚𝑎𝑥 − 𝑙

𝑡𝑚𝑎𝑥
∑

𝑡=𝑙
(�̂�𝑡+𝑙 − 𝑦𝑡+𝑙)2 (4)

In this paper, we apply five commonly used machine learning meth-
ods. These are linear regression, gradient boosting regression, dense neural
network, long short-term memory network, and support vector regression.

Linear regression is a simple approach for studying and modelling
linear relationship between a target (true answer) and one or multiple
predictors (Wetherill and Seber, 1977). Gradient boosting is a method
that builds a model by iteratively boosting (training with bootstrapping
and aggregation) weak models (normally decision trees) into a stronger
model (Friedman, 2002). Artificial neural networks are based on con-
nected artificial neurons that transform input signals with so-called
‘‘activation functions’’ to produce output signals used in the predictions
(Hinton, 1990). We take advantage of a fully connected layer, which
7

learns from all combinations of features in previous layers, in a Dense
Neural Network.

One of the appeals of recurrent neural network over traditional
neutral network is that recurrent neural networks are able to connect
the present task to the previous ones. This capability of recurrent neural
networks is particularly useful in timeseries data because most likely a
particular event in a timeseries depends on the previous events. One
could imagine that in videos, the present frame might be explained by
the previous video frames. However, as the gap between the frames
become larger, connecting the two states from frames becomes chal-
lenging and prediction becomes more difficult. This is where Long
Short-Term Memory Network comes in. It is a special type of recur-
rent neural network that is capable of learning long-term dependencies.
Hence it is able to remember information for a long period of time. For
a comprehensive discussion, see Hochreiter and Schmidhuber (1997).
Support Vector Regression uses the same principles as the Support
Vector Machine where the decision boundary is chosen based on the
data points closest to the hyper plane or the support vectors (Smola and
Schölkopf, 2004). Support vector regression is different from a simple
linear regression in that instead of minimizing the error between the
predictions and ground truth, it tries to fit the error within a certain
threshold. That is, decision boundaries are established as margin of
tolerance for the data points in order to decide for a better fitting
model.

For this paper we used the Scikit Learn1 (Pedregosa et al., 2011)
(version 0.18.2) as a toolkit for the linear regression and support
vector regression, XGBoost2 (version 0.6) was used as implementation
of gradient boosting, and Tensor Flow3 for neural networks (multi-layer
perceptron).

Time series data is always characterized by the correlation between
observations that are located close to each other in the timeseries (auto-
correlation). However, traditional cross-validation methods, including
KFold, assume that samples are independent. Thus, it is important to
ensure the predictions are evaluated on the ‘‘future’’ data. We therefore
use KFold especially implemented on timeseries data. This means that
we train our models on the ‘‘past’’ data, which we define as our training
data set and validate our model on the ‘‘future’’ data or the test data
set.

In Scikit Learn implementation, this cross-validation method that
specifically deals with timeseries data is called TimeSeriesSplit (Pe-
dregosa et al., 2011). Thus, cross-validation for timeseries was used to
optimize hyperparameters (i.e. parameters of the model, that cannot be
estimated from data) of machine learning algorithms.

Model optimization was implemented by using the grid search
method, which employs an exhaustive search through a defined hy-
perparameter space and has an implementation in Scikit Learn. After

1 http://scikit-learn.org.
2 https://xgboost.readthedocs.io.
3 https://tensorflow.org/.

http://scikit-learn.org
https://xgboost.readthedocs.io
https://tensorflow.org/
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Fig. 9. Shifted flow for Camera 01, compared to Camera 02.
Fig. 10. Object-feature matrix. The features used to predict output 𝒚𝒕+𝒍 are 𝒙𝒕 as well as data points up until 𝒕 − 𝒏 time steps away in the input timeseries data.
testing, we used the following parameters for each of the methods:
(a) Scikit Learn implementation of linear regression does not require
additional parameters, (b) neural network with adaptive learning at
learning rate 0.001, and one hidden layer with 10 neurons, (b) for
XGBoost, we used 100 estimators and a learning rate of 0.001.4

The input for the machine learning model is an object-feature
matrix, where the objects are the data points in the timeseries of the
‘‘past’’ data. The output of the machine learning model is the time
series in the ‘‘future’’ data set. The set of features chosen for the model
corresponds to the data points in the time series (𝑥𝑡) and the lagging 𝑛
data points (𝑥𝑡−𝑛) in the time series. A summary of the object-feature
matrix and a visualization of how the output (𝑦𝑡) is mapped back to the
input timeseries is shown in Fig. 10. The motivation for this is that we
assume that the outcome 𝑦𝑡 may also be predicted by the data prior to
𝑥𝑡 in the timeseries.

4 Note that linear regression has no parameters.
8

3.3. Agent-based model

The agent-based crowd simulation is based on the PULSE framework
(Karbovskii et al., 2018, 2015). The agent-based model models the
set of individual agents and the environment. Agents are autonomous
independent entities, and their state determines the state of the system.
The environment has spatial and temporal parameters (Voloshin et al.,
2015) that include the start and end of the simulation, as well as the
simulation time step 𝜏 and different objects, such as points of interest
(e.g. the sanctuary, in the case of the temple), obstacles (including walls
and fences), points of inflow and outflow (entrances and exits). Every
agent has three sub-models executed at each time step: (1) Decision:
deciding or ‘where to go’, (2) Navigation: path planning and or ‘how to
go’ (3) Movement: moving to the next waypoint while avoid collisions.
Decision making in this case is quite simple as agents are designed to
follow the prescribed path around the temple until the agent reaches

the exit of the temple (see Fig. 11).
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Fig. 11. Agent-based simulation visualization.

The navigation model receives input data about the target point of
ovement (from the prescribed path) and returns the desired direc-

ion of movement — typically in the direction of the path at some
ndividual preferred speed. We use navigation fields (Patil et al., 2011)
xactly for this purpose in our agent-based model. The navigation field
s calculated for each point of interest. The field is represented by

regular grid, where each cell contains a vector with a direction of
ovement for agents in the area.

In order to move an agent in space and avoid collisions with the
alls and other agents, an appropriate model should be used. To handle

ow and high crowd densities, we used a hybrid model based on forces
nd rules specified by HiDAC (High Density Autonomous Crowds)
Pelechano et al., 2007). This model is based on the popular Social
orce model (Helbing and Molnar, 1995; Viswanathan et al., 2014), but
ne of its advantages is that it incorporates an addition rule mechanism,
hich helps to avoid oscillations at very high density. The position 𝑟𝛼

of each agent 𝛼 on the time 𝑡 + 1 is calculated by Eq. (5):

𝑟𝛼 (𝑡 + 1) = 𝑟𝛼 (𝑡) +𝑤𝛼 (𝑡) ⋅ 𝑣𝛼 (𝑡) ⋅ 𝜏 ⋅ 𝐹𝑎(𝑡) + 𝐹𝑅
𝛼 (𝑡) (5)

where 𝑡 — current time, 𝑟𝛼 (𝑡) — current position of agent 𝛼, 𝑤𝛼 (𝑡) —
topping rule, helping to avoid undesirable oscillation behaviour, 𝑣𝛼 (𝑡)

current speed, 𝜏 — simulation step, 𝐹𝑎(𝑡) — normalized desired
irection of the agent, 𝐹𝑅

𝛼 (𝑡) — repulsion forces. 𝐹𝑎(𝑡) is calculated by
q. (6), and 𝐹𝛼 (𝑡) by Eq. (7):

̂𝑎 (𝑡) =
𝐹𝛼 (𝑡)
|

|

|

𝐹𝛼 (𝑡)
|

|

|

(6)

𝐹𝛼 (𝑡) = 𝐹𝛼 (𝑡 − 1) + 𝐹𝐴𝑡
𝛼 (𝑡)𝜔𝐴𝑡 +

∑

𝛽(≠𝛼)
𝐹 𝑇 𝑎
𝛼𝛽 (𝑡)𝜔

𝑇 𝑎 +
∑

𝐵
𝐹 𝑇 𝑜
𝛼𝐵 (𝑡)𝜔

𝑇 𝑜 (7)

here 𝐹𝛼 (𝑡 − 1) — value of this force on previous step, it helps to avoid
harp changes of trajectory, 𝐹𝐴𝑡

𝛼 (𝑡) — attraction force to current goal,
⃗𝑇 𝑎
𝛼𝛽 (𝑡) i 𝐹 𝑇 𝑜

𝛼𝐵 (𝑡) — tangential forces, which help to avoid obstacles and
ther agents; 𝜔𝐴𝑡, 𝜔𝑇 𝑎, 𝜔𝑇 𝑜 — weights. A more detailed description
f the HiDAC model is presented in Pelechano et al. (2007). As input
ata, the model takes one or multiple (in case of merging flows) time
eries that are used for agent generation to reproduce pilgrims flow.

.4. Ensemble method

Each model, or method, has its own advantages and disadvantages.
owever, the general quality of the final result can be improved by
9

ombining multiple individual models. This is known as the ensemble
ethod or ensemble learning.

Ensemble learning pertains to a machine learning paradigm that
rains multiple learners to solve the same problem. The ensemble
ethod combines multiple models to make better predictions than

hose that can be obtained from the individual component algorithms.
he ensemble method is a widely-used approach in machine learning
nd statistics that has been shown to improve the predictive power of
he final model (Dietterich, 2000; Opitz and Maclin, 1999).

There are fundamental reasons why applying ensemble learning
ould help us build better models. This is explained in detail in Diet-
erich (2000), we briefly list the main reasons below:

(1) statistical — ensemble models can get the average from dif-
erent answers, taking weights into account, which reduces the risk of
rong answers

(2) computational — sub-models can suffer due to local optima,
specially if they are based on local search. Ensembles can give better
pproximation by running a local search from many different points;

(3) representational — in the case when the answer is not in
he hypothesis space of separate models, ensemble modelling helps by
pproximating multiple answers

There are multiple different ensemble methods, but the following
amilies of ensemble methods are the most widely used (Pedregosa
t al., 2019; DeFilippi, 2018; Hastie et al., 2009): bagging, boosting, and
tacking methods.
Bagging typically starts by ‘‘bootstrapping’’ or taking a random

ub-sample of data for each model in a way that all models are a
ittle different from each other. A bootstrap sample is pooled together
hrough subsampling from the training data set with replacement in
uch a way that the sample size is the same as that of the training data
et. Hence, for a bootstrap sample, some examples from the training
et may appear, but others may not. Each model then has different
bservations that are based on the bootstrap process.
Boosting, on the other hand, is an ensemble technique where the

redictors are not randomly and independently sampled, but rather
equentially. This type of ensemble technique makes use of the fact that
ubsequent predictors learn from the shortcomings of prior predictors.
s opposed to the bagging method where observations are chosen based
n a bootstrap process, boosting chooses observations based on error.

Stacked generalization, or stacking, is an ensemble method that
ombines multiple models to one meta-model or ensemble model. Bag-
ing and boosting are often applied to homogeneous models. However,
e are dealing with heterogeneous models, or models that are of
ifferent nature. Therefore, we use the stacking ensemble method. The
dea behind stacking is illustrated in Fig. 12.

There are no strict steps in preparing a stacking model, but the
ollowing summarized steps are explicitly or implicitly required (De-
ilippi, 2018; Hastie et al., 2009): Preparing the ensemble model using
tacking consists of the following steps.
Step 1: the data set is split into 40–40–20 parts, where the first data

et (40%) is where the individual models are trained and validated
sing k-fold cross validation, second data set (40%) is used to train
nd validate the ensemble model, and the third data set is used to test
he ensemble model (20%).
Step 2: individual models are trained and cross validated using data

et 1.
Step 3: predictions using individual models serve as the input for the

nsemble model.
Step 4: stacked models are trained and cross validated using data set

.
Step 5: test data is prepared so that it conforms with the object-

eature matrix of the ensemble model.
Step 6: predict using the ensemble model.
Step 7 : ensemble model is validated using the test data set.

We discuss the steps in details below.
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Splitting the data (Step 1) is required to avoid overfitting when
reparing and validating the individual models and the ensemble model
o achieve a generalizable model. More so, training and validating

model on the same data set may increase the risk of overfitting.
verfitting is a methodological mistake, and this happens when the
odel is prepared and validated on the same data. Hence, we make
se of the first 40% of the data set (Data Set 1) in order to train the
ndividual models as well as doing Kfold cross validation, the second
0% of the data set (Data Set 2) to train and validate the ensemble
odel, and the remaining 20% of the data set as training data to

alidate the final results of the ensemble model.
Since we are working with timeseries data, the manner at which

he data is split should also be sequential. That is, all data points are
rdered in time so that the training data points have earlier timestamps
han the test data set.

The next step is (Step 2) individual model preparation where each of
he models are trained (machine learning models) or calibrated (agent-
ased models) and cross-validated using data set 1. The predictions
rom the individual models are (Step 3) then used as input to the

ensemble model. In other words, each feature in the object-feature
matrix of the ensemble model corresponds to the predictions made
using the individual models. For instance, the result from the agent-
based model can be considered one feature (feature 1) for ensemble
model, while the result from the linear regression is another feature
(feature 2), and so on. The stacked model is then trained and validated
(Step 4) using data set 2.

For the ensemble model, we simply used linear regression to predict
the output. The order of features used in the ensemble model can
either be important or not. This depends on the particular ensemble
model used. In our case, we tried all machine learning models we have
mentioned in Section 2.3 and found that the order in which the features
were used has no effect on both the models that we used and the chosen
ensemble model.

Step 5 involves preparing the test data set to conform with the

object-feature matrix of the ensemble model. Specifically, each column m

10
in the new test data set corresponds to the predictions made using
individual model on the original test data set. The ensemble model is
(Step 6) then used to make predictions and (Step 7) validates on the
new test data set.

4. Experiments: prediction of Mahakal temple crowd flow

In our experimental work, we focused on the following combi-
nations of cameras: 01–02, 02–03, and 03&04–05. These pairs were
chosen based on the quality of video data we have collected. The
better the quality is, the more useable it is for further processing and
interpretation. Moreover, we observed a low correlation between the
time series for other pairs of cameras (see Appendix C).

Scenario 1: walking from Camera 01 to Camera 02
Scenario 2: walking from Camera 02 to Camera 03
Scenario 3: merging of flow from Cameras 03 and 04 and the

ubsequent movement of the merged flow to Camera 05
This raises an important question — Would a combination of different

ethods give better predictions due to the synergetic effects for different
ases? In order to answer this, we performed a series of experiments as
ollows. Each individual model was applied independently to predict
he flow between each pair of cameras. We then constructed the
nsemble model using up to a maximum of 3 combinations of models
nd compared how they performed in comparison with the individual
odels they are made of. We assumed that different combinations

f individual models in the ensemble exhibited synergy and that the
ombinations that made up the ensemble model can somehow influence
he prediction in a positive way.

We used a dummy predictor that predicts the mean of the training
et as base case scenario in order to compare the performance among
ur models. We evaluate the quality of our prediction based on coef-
icients of correlation and the error between the calculated result and
eal data. We repeated our experiments 1000 times for the agent-based

odel.
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Fig. 13. Best predictions for: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. Here we show the Pearson correlation coefficient and the error. Aliases specified on the legend are
as follows: ‘abm’ — agent based model, ‘nnl’ — long short term memory network, ‘nnd’ — dense neural network, ‘gbm — gradient boost method, ‘svm’ — support vector
machine, ‘lin’ — linear regression, ‘shft’ — shifted flow, ‘fact’ — observed data, ‘dummy’ — dummy regression.
The results of the best-performing models are presented in Fig. 13.
Recall that Scenario 1 involves walking from Camera 01 to Camera
02. Scenario 2 is from Camera 02 to Camera 03, which is a relatively
longer path compared to the other paths. Scenario 3 incorporates a
merging of flows coming from Cameras 03 and 04 and the subsequent
movement of the merged flow to Camera 05. Our results in Fig. 13
show that the ensemble of gradient boost method and long short-
term memory network in Scenario 1 as well as the ensemble of
agent-based model, linear regression, and long short term memory
network in Scenario 3 exhibit high correlation. The lowest prediction
error corresponds to Scenario 1. This is not surprising because Scenario
1 is a relatively simple corridor compared to the corridors in Scenarios
2 and 3. Scenarios 2 and 3 exhibit higher errors in terms of prediction.
However, the results of the ensemble model in Scenario 3 follows
closely the trend of the data as compared to that in Scenario 2.
11
Interestingly, the agent-based model is a part of the ensemble that
best predicts complex scenarios. We assume this is because the agent-
based model has the capability of incorporating an explicit model of
the environment into its algorithm, so that it can better deal with
more complex corridor, thereby making it possible to create better
predictions in more complicated scenarios. On the other hand, this
type of algorithm strongly depends on the complexity of the scenarios
(see Table 1 for complexity factors), such as police control of crowd
flow that is done manually (Scenario 2), and instances when pilgrims
randomly stop to pray (Scenario 3). This type of behaviour was not
included in the model.

More interesting results can be observed with the ensemble models
(see Fig. 14). First off, by just looking at how the individual models
perform, we show that gradient boost method exhibits the lowest error
in Scenario 1, support vector regression in Scenario 2, and agent-based
modelling in Scenario 3. Shift model, on the other hand performs the
worst among all models especially in Scenarios 1 and 3. This is no
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Fig. 14. Error Simulation results for scenarios: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. Aliases specified on the legend are as follows: ‘abm’ — agent based, ‘nnl’ — long
hort term memory network, ‘nnd’ — dense neural network, ‘gbm’ — gradient boost method, ‘svm’ — support vector machine, ‘lin’ — linear regression, ‘shft’ — shifted flow,
fact’ — observed data, ‘dummy’ — dummy regression.
urprise as the shift model naively assumes that the rate of movement
f the crowd is uniform in all areas of the temple.

Interestingly, combining the top 2 best performing individual mod-
ls in Scenarios 1 (gradient boost and neural network long-short mem-
ry) and 3 (agent based modelling and linear modelling) improved
he predictive power of the ensemble model. It is also apparent that
ombinations of models that incorporate agent-based modelling have
etter predicative power than all the other combinations in Scenarios
and 3. Notice that these combinations of models with the agent-based
odel occupy the upper half of the plot in Scenarios 2 and 3. Our

esults suggest that agent-based modelling, especially when combined
ith other models, provides better predictive power especially in com-
lex scenarios such as those of 2 and 3. Recall that Scenario 2 is a
ong corridor that incorporates several corners. Scenario 3, on the other
and, involves merging of flows. One more advantage of agent-based
odelling over the machine learning methods is its versatility in in-

orporating physical details in the simulation environment. Obstacles,
ay, for instance be added to the complexities of the scenarios. See
arbovskii et al. (2019) for a detailed study on the impact of obstacles
n crowd movement.

Finally, we observe that the worst-performing model is the dense
eural network (fully connected). Even when it is combined with other
odels, it performs poorly even as a component of an ensemble in

cenario 2. However, its performance is better when combined with
tronger models in Scenarios 1 and 2. In general, the predictive power
s improved when better-performing models are coupled with weaker
odels via ensemble modelling than better-performing models alone.
his is because ensemble models average out biases and reduce the
ariance, and at the same time reduce the likelihood of overfitting.

One should always be wary of overfitting. We look especially into
his aspect by computing for the difference between the training metric
nd the test metric. Hence, higher values for overfit also imply greater
xtent of overfitting. See Fig. 15.

Our results show that gradient boosting appear to be consistently
he most overfitted across all three scenarios. Interestingly, although
gent-based modelling alone shows overfitting in all three scenarios,
ncorporating agent-based modelling in any of the combinations of

odels show less overfitting in Scenario 3.

12
The best combination for the ensemble seems to be scenario-
dependent. That is, ensemble models performing under specific sce-
narios gave the best results. This implies that different combinations
of models could better describe different scenarios. Although it seems
clear at this point that ensemble models indeed provide better results in
predicting crowd dynamics, understanding how and more importantly
why certain combinations of models work as they are, calls for a rigor-
ous and systematic investigation through setting up more experiments.
Due to the limitation in our data, we can only provide speculations as
to why certain combinations of models perform well like they do in
specific scenarios.

In order to study the emerging synergy in more detail, we plotted
the errors for the best-performing ensembles, their respective compo-
nents, and the dummy regression against the ground truth. See Figs. 15
and 16. We show that applying ensemble learning increases the quality
of prediction and reduces the error.

Two things play a major role when combining models: (1) complex-
ity of the scenario and (2) quality of the models. On the one hand,
agent-based models for flow prediction are limited to specific locations
such as the entry and exit points of crowd movement. Although the
models we used, such as the gradient boost method, long-short term
memory network, dense neural network, support vector regression,
linear regression, and time shift model give good results for simple sce-
narios and moderate results for complex scenarios, agent-based model,
on the other hand, shows stable results for the complex scenarios
but its error is relatively high on its own. Unlike other models, the
agent-based model can in principle consider more complex factors,
including police control, pilgrim behaviour such as praying etc. We
emphasize that modelling these detailed processes is beyond the scope
of the current research. Moreover, agent-based models can give spatial
predictions, such as fields of flow and density, which opens up new
avenues for analysis. More importantly, the use of multiple models
could significantly increase the quality of prediction.

5. Discussion & conclusion

Major events and gatherings as massive as the Kumbh Mela festival

pose risks to crowd safety that should be addressed efficiently. Ensuring
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Fig. 15. Overfit Simulation results for scenarios: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3. Aliases specified on the legend are as follows: ‘abm’ — agent based, ‘nnl’ — long
short term memory network, ‘nnd’ — dense neural network, ‘svm’ — support vector machine, ‘lin’ — linear regression, ‘shft’ — shifted flow, ‘fact’ — observed data, ‘dummy’
— dummy regression.

Fig. 16. Simulation errors for best ensembles and their components for: (a) Scenario 1; (b) Scenario 2; (c) Scenario 3.
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Fig. 17. Overlay of graphs for: (a) humidity, temperature and CO2 measurements inside the temple; (b) change of crowd flow prediction correlation and error between measure
oints 01–08 (stationary cameras). Grey vertical lines represent cameras’ positions.
afety in these types of events would mean looking closely into crowd
ontrol and more importantly understanding how the crowd behaves.
here are numerous existing methods and models that predict crowd
ehaviour, where each model has its own defined limitations.

We introduce a novel method for short-term crowd flow prediction
nd showed its advantages as well as disadvantages in comparison to
eparate methods. We show that methods hinged on disparate philoso-
hies (agent-based modelling tries to understand how a system works,
hile machine learning algorithms learn to search general laws on
mpirical data) have different predictive power for different scenar-
os. Utilizing a unique data set that we collected during the Kumbh
ela festival, we use different models from a wide area of artificial

ntelligence to show how proper combinations of such a diverse set of
odels could provide synergy to obtain better prediction. We increase

he quality of prediction by 13%, depending on the complexity of
he scenario and emphasize that agent-based model combined with
ther models provided better predictive power in complex scenarios.
e anticipate that our research would be a starting point for further

nvestigation of model synergy and predicting crowd flow. We hope
hat our research would inspire other researchers to look into our model
s well as encourage stakeholders to share data sets that could be useful
o further develop the concepts we have presented in our work.

Additionally, different environmental conditions such as ambient
actors including air temperature, humidity, availability of space, num-
er of people in confined environments (Wells et al., 2016), can influ-
nce movement, interpersonal behaviour, and the decision making of
eople. Having acquired the results for the estimation of accuracy of
rowd flow and density predictions, we decided to draft them in terms
f other characteristics referring to space or the environment: humidity,
emperature, and level of CO2. We summarize our findings in Fig. 17.

The chart shows that CO2 and humidity curves tend to have similar
rofiles. Their values peak and match between Cameras 01 and 02,
hich can be attributed to the congestion near the metal detectors.
etween Cameras 02 and 03, which is a longer path, CO2 follows the
hape of humidity. Here, error and correlation values change inversely
t almost the same ratio and then almost doubles between the 03–05
nterval. Given the measured prediction accuracy and ambient factors,
e hypothesize that these might be correlated. However, since it is
ard to justify a direct connection between the described variables,
e assume that environmental factors may be linked to the prediction
ccuracy with a mediator variable. At this point, due to the limitation in
ata, it is difficult to conclude if indeed high levels in humidity and CO2
ould cause disturbance in the crowd, significant enough to increase

he error in our predictions.
We will look into how these environmental factors coupled with

he dynamics of the crowd can affect prediction accuracy in our future
14
Fig. 18. Discreetness plot.

Fig. 19. Stationarity test.

work. Of additional interest is the development of models capable of
reproducing the relationship between characteristics of environment
and dynamics of the crowd.

Exploring the advantage of using more advanced agent-based mod-
els could be an interesting direction to look into. Since this after all is
a spatial model, we could then closely look into field predictions and
utilize flow fields and incorporate more detailed behaviours. Data as-
similation techniques to correct field predictions can also be useful for
various cases, e.g. optimization (Butakov et al., 2015). Finally, looking
more in detail into informational synergy of the models coming from
different philosophies, as well as multiple synthetic cases on synthetic
data could help us and future researchers to better understand the
predictability of the human crowd. This overall could lead to increasing
the understanding of crowd behaviour and hopefully improve safety in
mass gatherings.
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Fig. 20. Cross correlation functions for cameras pairs (full time series).

Fig. 21. Discrete normalized & filtered time series for all cameras.
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Appendix A. Discreetness of time series

Our choice of discreetness is based on Jianhong and Xiaohong
(2011), where mean absolute deviation and standard deviation for time
series for different discreetness. The discreetness plot specifically for
our data set is presented in Fig. 18. We choose the discreetness as 15 s,
since it shows stability. To check the normality of distribution, we used
the Shapiro–Wilk test as it gives favourable results with a score of at
least 0.95 for each time series.

Appendix B. Stationarity test

Even though the flow of pilgrims changes within the day, this can be
considered stationary in our data set, since the standard deviation and
rolling mean are also stationary (Fig. 19). In addition, we performed
Dickey–Fuller test to check the stationarity hypothesis. The test results
to a 𝑝-value < 0.05, hence, we rejected the null hypothesis which
assumes that the flow is non-stationary in our data. In fact, the process
is quasi-stationary. This means that the process is stationary at a
specific point of observation, but not stationary in general (i.e. pilgrim
flow is not static in general, could change in the evening, at lunch, etc.).

Appendix C. Cross-correlation analysis

See Fig. 20.

Appendix D. Prepared time series for all cameras

See Fig. 21.
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