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Learning to Predict Error for MRI
Reconstruction

Shi Hu1, Nicola Pezzotti2,3, and Max Welling1

1 University of Amsterdam
2 Philips Research

3 Eindhoven University of Technology

Abstract. In healthcare applications, predictive uncertainty has been
used to assess predictive accuracy. In this paper, we demonstrate that
predictive uncertainty estimated by the current methods does not highly
correlate with prediction error by decomposing the latter into random
and systematic errors, and showing that the former is equivalent to the
variance of the random error. In addition, we observe that current meth-
ods unnecessarily compromise performance by modifying the model and
training loss to estimate the target and uncertainty jointly. We show
that estimating them separately without modifications improves perfor-
mance. Following this, we propose a novel method that estimates the
target labels and magnitude of the prediction error in two steps. We
demonstrate this method on a large-scale MRI reconstruction task, and
achieve significantly better results than the state-of-the-art uncertainty
estimation methods.

Keywords: Deep learning · Uncertainty · MRI reconstruction.

1 Introduction

Healthcare has been increasingly facilitated by artificial intelligence technologies
[3]. Uncertainty is ubiquitous in these technologies, and it can arise due to ran-
domness or imperfect knowledge [15], such as the disagreement among human
annotators, missing entries in electronic health records, or occlusions in MRIs.
Kennedy and O’Hagan [13] lists six sources of uncertainty that affect predictive
outcomes, which include data noise, input variability, model structure and pa-
rameters, optimization, and interpolation. Unfortunately, the current methods
in deep learning [12,19] quantify only two of them, which are data noise and
model parameters; in addition, they use the sum of the two uncertainties to es-
timate predictive uncertainty. Lastly, they need to modify the model structure
and training objective to estimate the target and uncertainty jointly.

In this paper, we show that their estimated predictive uncertainty cannot
highly correlate with prediction error; in addition, if we estimate the target and
uncertainty separately, the performance improves since the model and training
loss are unchanged, and regularization schemes such as early stopping can have
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2 S. Hu et al.

separate effects on the two estimates. Following this, we propose a novel two-
step method where we train one deep model to estimate the target, and another
the magnitude of the prediction error. We demonstrate this method on a large-
scale MRI reconstruction task, and achieve significantly better results than the
state-of-the-art uncertainty estimation methods.

2 Notation

We denote an input by x, a noisy target by y(x), and the true target by h(x). The
noise ε(x) is assumed to be additive and Gaussian, i.e. y(x) = h(x) + ε(x) where
ε(x) ∼ N (0, σ2(x)), and we will refer to the noise level σ(x) as “sigma”. Further,

the estimates are marked with the caret symbol, e.g., ĥ(x) is an estimate of h(x).
Unless otherwise stated, the model structureM, training data D and optimizer
O are all fixed. The expectation of any estimate is taken over the random seed s.
For clarity of notation, we omit these symbols when possible, e.g., the expected
estimate of the true target Es

[
ĥ(x; s,M,D,O)

]
is abbreviated to E[ĥ(x)].

3 An Anatomy of Prediction Error

To estimate the magnitude of the prediction error (or squared error) on unseen
data, we first decompose the prediction error into systematic and random errors,
and analyze the two separately:

y(x)− ĥ(x)︸ ︷︷ ︸
prediction error

= h(x)− E[ĥ(x)]︸ ︷︷ ︸
systematic error

+
[
y(x)− h(x)

]
+
[
E[ĥ(x)]− ĥ(x)

]︸ ︷︷ ︸
random error

. (1)

Systematic error is the difference between the true target and the expected
estimate of the true target [11]. In deep learning, it can be reduced if we have
better knowledge regarding the model structure, or can diminish the gap between
the global optimum and the local optimum obtained by the optimizer. The lack of
knowledge of the model structure and optimization process reflects two types of
epistemic uncertainties, which are called structural and algorithmic uncertainties
[13]. Unfortunately, to the best of our knowledge, neither has been quantified by
the current deep learning methods.

The total random error equals the prediction error minus the systematic
error [11]. The first random error y(x)− h(x) = ε(x) represents the label noise,
which is unpredictable. However, its conditional variance is equivalent to that of
the noisy targets, i.e., σ2(x) = Var[ε(x)] = Var[y(x) − h(x)] = Var[y(x)]. If we
can access multiple noisy targets per x, we can predict their variance through
supervised learning [10]. Otherwise, to estimate σ(x), we need to assume that
it is smooth over x, then predict it along with the true target [20]. Likewise,

the second random error E[ĥ(x)] − ĥ(x) is also unpredictable, but its variance

Var
[
E[ĥ(x)] − ĥ(x)

]
= Var[ĥ(x)] can be estimated using Monte Carlo dropout
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Fig. 1: The error decomposition for a super-resolution prediction (the retina im-
age is shown in the luminance channel in YCbCr colour space). The target noise
is part of the random error, which does not affect the systematic error.

[5,12] or ensemble methods [19]. Previous works [5,12] refer to the two variances
as aleatoric and model (or epistemic) uncertainty.

In summary, systematic error is deterministic, and predictable if the true
target is a smooth function [2]. On the other hand, random error is unpredictable,
so it can be best estimated using its expectation. An illustration of the error
decomposition on a retina image is shown in Fig. 1.

4 What Does the Predictive Uncertainty Quantify?

Due to the random error, the magnitude of the prediction error cannot be pre-
cisely known, so it can be best estimated with the expected squared error that
integrates out the randomness in the label noise and random seed. This error
can be decomposed using the bias-variance decomposition [9] as the following:

E
[
(y(x)− ĥ(x))2

]︸ ︷︷ ︸
expected squared error

= σ2(x) + Var[ĥ(x)]︸ ︷︷ ︸
variance of random error

+ (h(x)− E[ĥ(x)])2︸ ︷︷ ︸
squared systematic error

, (2)

which means it is influenced by both random and systematic errors. However,
several recent works [4,10,12,19] estimate predictive uncertainty by combining
the uncertainties in data noise and model parameters under the law of total
variance as follows:

Var[ŷ(x)]︸ ︷︷ ︸
predictive uncertainty

= E[σ̂2(x)]︸ ︷︷ ︸
aleatoric uncertainty

+ Var[ĥ(x)]︸ ︷︷ ︸
model uncertainty

. (3)
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This predictive uncertainty is equivalent to the variance of the random error, and
therefore does not contain the systematic error. As a result, it underestimates
the squared error on average.

5 A Two-Step Estimation Method

We have shown that the current predictive uncertainty cannot highly correlate
with the squared error, especially when the systematic error is high. In this sec-
tion, we introduce a simple method that estimates the true target and expected
squared error in two steps. We assume that for a given task, the predictive model
and its training objective are known, and our method is as follows. First, we train
the model to estimate only the target. After training, for each training input x,
we compute the squared error e2(x) = (y(x)− ĥ(x))2 as an unbiased estimator of
its expectation E[e2(x)]. Then, we train the same model from scratch to estimate
e2(x), where the loss function can simply be the L1 or L2 loss.

This two-step method has two benefits. First, to estimate aleatoric uncer-
tainty, the current methods [12,19] need to add a second branch to the model to
output σ̂2(x), and incorporate it into the training objective (we refer to this as a
“two-head” model). However, it is challenging to incorporate σ̂2(x) into complex
objective functions, such as the structural similarity index measure (SSIM) loss
[29] commonly used in the MRI reconstruction models [22,23]. Furthermore, if
the original training objective is a combination of multiple losses, it is non-trivial
to include σ̂2(x) without affecting the target prediction accuracy. In comparison,
the two-step method does not need to modify the model or training loss. Sec-
ond, the true target and aleatoric uncertainty are independent quantities, but
the two-head model estimates them jointly using the same set of hyperparame-
ters, including the number of epochs. Since the two estimands can have different
magnitudes, there is no guarantee that they will reach their best estimates si-
multaneously. The two-step method can avoid this problem by applying early
stopping, which prevents overfitting in each step.

6 Experiments

6.1 Datasets

Retina We use the diabetic retinopathy dataset4 for a synthetic single image
super-resolution task, where we predict the high resolution (HR) image from its
low resolution (LR) counterpart. We randomly sample 500 good-quality square
images and resize each to 255× 255 as the HR image, and use the downsampled
85 × 85 image as the LR counterpart (i.e., the upscaling factor is 3). We split
this dataset into 200/100/200 training/validation/test images.

4 https://www.kaggle.com/c/diabetic-retinopathy-detection

https://www.kaggle.com/c/diabetic-retinopathy-detection
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FastMRI The fastMRI dataset [30] contains fully anonymized clinical MR im-
ages and raw MR measurements. We use the multi-coil knee dataset for a re-
construction task, where we predict the fully sampled MR image from its under-
sampled image with 4- or 8-time acceleration. The dataset contains a training,
validation, test and challenge set, but only the first two provide fully sampled
data, which are used for evaluation. Hence, we randomly split the validation
set into a validation and test set. After the split, there are 973/59/140 train-
ing/validation/test MRI volumes.

6.2 Single Image Super-Resolution

We run a set of synthetic experiments on a single image super-resolution task
using the retina dataset, where the HR images used as the training targets
are corrupted by the pixel-wise Gaussian noise ε(x) ∼ N (0, σ2(x)). For ease of
comparison, we use the efficient sub-pixel convolutional neural network (ESPCN)
[25], which is a feedforward network with the mean squared error (MSE) loss:

(y(x)− ĥ(x))2, and it processes the images in the luminance channel in YCbCr
colour space.

We compare the prediction accuracies of the true target and sigma estimates
among the original, two-head, and two-head (2x) models. The first two use the
same number of parameters (excluding the extra branch in the two-head), and
the last uses twice as many proportional to the model structure. To implement
the two-head models, we duplicate the last layer of the ESPCN and append
both to the penultimate layer. The uncertainty estimate is incorporated into
the MSE loss, which becomes the Gaussian negative log-likelihood (NLL) loss:
(y(x)−ĥ(x))2

σ̂2(x) +log σ̂2(x). To avoid the division by zero error, we use the numerical

stable implementation as in [12]. We train 1000 epochs using the Adam optimizer
[14] with learning rate 10−4, though we observe that learning rates do not affect
the relative performance.

The first row of Fig. 2 compares the test errors in the true target estimate
by the three models. When the target noise is negligible, all three have relatively
stable error curves, and the original model consistently outperforms the others.
But when the target noise is high, the original model starts to overfit within 10
epochs, and the accuracy declines faster than the two-heads. This confirms that
the uncertainty estimate σ̂2(x) regularizes the training loss, as suggested by [12].
However, before overfitting, the original model achieved the lowest error among
all. Therefore, rather than training it for a predetermined number of epochs,
we apply early stopping with the validation MSE criterion. As shown in these
plots, early stopping effectively prevents overfitting and leads to better estimates.
Further, the second row of Fig. 2 shows the test errors in the target and sigma
estimates by the two-head (2x) model. As indicated by the two vertical lines,
the best epochs are substantially separated, and the estimand with the smaller
magnitude gets to the optimal faster. Therefore, even with early stopping, we
cannot simultaneously obtain both optimal estimates. As a comparison, we train
a second ESPCN with the same NLL loss to estimate only sigma (i.e., the model
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Fig. 2: First row: test errors in the true target estimate. The stopping epoch
suggested by early stopping for the original model is shown by the vertical dotted
line. Second row: test errors in the target and sigma estimates by the two-head
(2x) model, and best epochs are indicated by the two vertical dotted lines.

structure is unchanged). In this loss, the target estimates are obtained using the
first (original) ESPCN in the previous experiment. For fairness, we use the same
learning rate in the second model, and apply early stopping with the validation
NLL criterion to all models. Table 1 compares the test mean absolute error
(MAE) in the sigma estimate, and the original model achieves the best results
at all noise levels (each result is computed with 4 random seeds).

We have shown that estimating the true target and aleatoric uncertainty
in two steps outperforms the joint model with parameter sharing; in addition,
doubling the number of parameters for the two-head model does not have a
significant impact on the results.

Table 1: Test MAE in the sigma estimate (? means statistically significant).
σ(x) 0 25 50

Original 0.0085 ± 0.0001? 0.1896 ± 0.0114 0.3880 ± 0.0109
Two-head 0.0108 ± 0.0004 0.1909 ± 0.0053 0.3983 ± 0.0375
Two-head (2x) 0.0101 ± 0.0002 0.1966 ± 0.0072 0.4088 ± 0.0167

6.3 MRI Reconstruction

We run the MRI reconstruction experiment on the fastMRI dataset, where no
synthetic noise is added to the targets. We use the Adaptive-CS-Net (ACSNet)
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[22], which won the multi-coil track of the 2019 fastMRI challenge5. It uses a
recurrent neural network to iteratively improve the target estimate in k-space,
and its training loss is a combination of the L1 and SSIM losses in the image
space. There are two output channels in each iteration, which represent the real
and imaginary components of the k-space estimate. A diagram of the model is
shown in Figure 1 of their paper.

We compare with three state-of-the-art predictive uncertainty quantification
methods, which are Monte Carlo dropout (MC-D) [5], Kendall and Gal (K&G)
[12] and deep ensembles (DE) [19]. Since dropout [26] is not used in the AC-
SNet, we follow [30] and insert a dropout layer after each convolution block. To
implement the two-head model, it is not feasible to duplicate the last layer due
to the recurrent model structure; therefore, we use the model’s last two outputs
as the image and uncertainty estimates, and train with the NLL loss. For MC-D
and K&G, we use dropout rates 0.05, 0.1, 0.2 and 0.5, and draw 50 samples for
evaluation. For DE, we follow [19] and train an ensemble of 5 models. We use
the 16GB Nvidia Tesla V100 GPUs, and training one model takes 62 hours and
12GB memory. Due to hardware limits, we cannot implement the fine-tuning
step in the original paper; in addition, we cannot double the number of param-
eters for K&G and DE, or run the adversarial training [7] for DE as it needs
to store the gradients twice per input. However, we have run these experiments
on a U-net [24] model6 and found the memory-intensive experiments bring little
extra benefits. For our method, we follow [19] and train an ensemble of 5 models
to estimate the target, and 1 model to estimate the absolute error with the L1

loss. For an ablation study, we also train 1 model to estimate the target and
1 model the absolute error (results are marked with “Ours (one)” in Table 2).
For ease of comparison, we use Adam with learning rate 10−4 for 40 epochs,
10−5 for 10 more epochs, and apply early stopping with the validation L1 crite-
rion to all models. Some of the fully sampled test MR images are noisy, but we
cannot access the true targets (i.e. clean and fully sampled images), so we use
these noisy targets as ground truths for target evaluation. We note this makes
the error prediction very challenging, since the noise levels greatly vary among
test images. We follow [30] and report the NMSE, PSNR and SSIM results. For
error evaluation, we report the absolute error prediction accuracy in L1 and
MSE. Lastly, since baseline methods do not estimate the systematic error, for
fairness, we calibrate their uncertainty estimates on the validation set by opti-
mizing: α? = min

α

∑
x(|y(x)− ĥ(x)| − αû(x))2, where û(x) is the square root of

the estimated predictive uncertainty, then the calibrated estimate is α?û(x).

Table 2 shows our method achieves the best results in all metrics7. Addition-
ally, we have three remarks. First, MC-D estimates only model uncertainty, and
the accuracy in error estimates improves as the dropout rate decreases (same
for K&G). This suggests the second random error in Eq. 1 is very small, which

5 https://fastmri.org
6 The original U-net code is from: https://github.com/facebookresearch/fastMRI.
7 The high standard deviations (SD) are due to high image noise (we note that most

prior works on this dataset do not report SD, including [30]).

https://fastmri.org
https://github.com/facebookresearch/fastMRI
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Table 2: Target and absolute error estimation results for 4x (top) and 8x (bot-
tom) accelerated MRIs. Dropout rates are indicated after “MC-D” and “K&G”.
Best results are in bold.

Target (4x) Absolute Error (4x)
Method NMSE(10−3) ↓ PSNR ↑ SSIM ↑ L1(10−6) ↓ MSE(10−12) ↓
MC-D 0.05 7.12 ± 5.97 38.46 ± 2.97 0.912 ± 0.062 1.98 ± 0.92 9.62 ± 14.91
MC-D 0.1 7.73 ± 6.14 38.07 ± 2.97 0.909 ± 0.063 2.06 ± 0.89 9.90 ± 13.83
MC-D 0.2 8.28 ± 6.29 37.58 ± 2.76 0.905 ± 0.061 2.25 ± 0.99 11.92 ± 15.67
MC-D 0.5 16.60 ± 17.88 35.91 ± 3.83 0.888 ± 0.072 2.81 ± 1.05 17.69 ± 19.84
K&G 0.05 7.38 ± 5.78 38.11 ± 2.74 0.907 ± 0.063 2.51 ± 0.96 14.55 ± 2.25
K&G 0.1 8.69 ± 6.72 37.24 ± 2.53 0.898 ± 0.063 2.90 ± 1.10 19.70 ± 30.72
K&G 0.2 10.47 ± 7.21 36.22 ± 2.28 0.889 ± 0.062 3.39 ± 1.30 27.51 ± 40.92
K&G 0.5 43.13 ± 11.33 29.67 ± 2.34 0.778 ± 0.070 9.85 ± 4.14 174.60 ± 254.10
DE 7.58 ± 5.41 37.99 ± 2.74 0.905 ± 0.063 1.98 ± 1.01 10.36 ± 17.22
Ours (one) 6.56 ± 6.00 38.87 ± 3.03 0.915 ± 0.063 1.77 ± 0.82 7.77 ± 13.10
Ours 6.34 ± 5.92 39.08 ± 3.11 0.917 ± 0.062 1.74 ± 0.79 7.32 ± 12.59

Target (8x) Absolute Error (8x)
Method NMSE(10−2) ↓ PSNR ↑ SSIM ↑ L1(10−6) ↓ MSE(10−11) ↓
MC-D 0.05 1.23 ± 0.67 35.51 ± 2.43 0.878 ± 0.064 2.74 ± 1.53 2.31 ± 3.49
MC-D 0.1 1.32 ± 0.70 35.22 ± 2.40 0.875 ± 0.063 2.84 ± 1.56 2.34 ± 3.35
MC-D 0.2 1.52 ± 0.76 34.55 ± 2.38 0.867 ± 0.063 3.10 ± 1.65 2.93 ± 4.02
MC-D 0.5 2.92 ± 1.96 32.09 ± 2.83 0.834 ± 0.074 4.20 ± 2.26 4.91 ± 6.45
K&G 0.05 1.54 ± 0.69 34.41 ± 2.30 0.863 ± 0.064 4.50 ± 1.79 5.11 ± 7.94
K&G 0.1 1.91 ± 0.86 33.40 ± 2.31 0.849 ± 0.062 5.24 ± 2.02 6.95 ± 10.39
K&G 0.2 2.23 ± 0.91 32.70 ± 2.31 0.838 ± 0.061 5.81 ± 2.33 8.79 ± 13.26
K&G 0.5 7.37 ± 2.84 27.48 ± 2.66 0.720 ± 0.074 12.82 ± 5.76 35.86 ± 56.94
DE 1.55 ± 0.69 34.35 ± 2.30 0.861 ± 0.063 3.01 ± 1.83 3.04 ± 4.52
Ours (one) 1.21 ± 0.70 35.62 ± 2.48 0.880 ± 0.065 2.54 ± 1.46 2.28 ± 3.95
Ours 1.13 ± 0.68 35.98 ± 2.52 0.884 ± 0.065 2.44 ± 1.38 2.00 ± 3.44

makes sense since we use 50 samples for evaluation. Nevertheless, there is a gap
between their results and ours, as we also estimate the systematic error and
target noise. Second, K&G and DE do not perform well in this task, since they
modified the training objective and used the last two outputs for image and
uncertainty estimates, which changes the dynamics of the model; in addition,
they do not estimate the systematic error. Finally, the calibration improves all
baseline results, except for MC-D 0.05 (4x). In the supplementary material, we
show the uncalibrated baseline results in Table S1, and compare the calibrated
baseline error plots and ours on a random 8x test MRI in Fig. S1.

7 Related Work

To assess the predictive quality without ground truth, the reverse classification
accuracy framework [28], and a regression algorithm using shape and appear-
ance features [16] have been proposed, though these methods are limited to the
segmentation task. Predictive quality can also be evaluated by the calibrated
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confidence, which estimates the frequency of the target falling in a given interval
[8,17,21]. In addition, the generalization error, which measures the prediction ac-
curacy on unseen data, can be estimated by cross-validation, but this is done on
a separate test set [9]. Further, when the estimands are related to each other, the
joint model with parameter sharing can be effective [6]. Lastly, other interesting
uncertainty estimation methods in medical imaging include [1,18,27], etc.

8 Conclusion

Current methods in deep learning estimate predictive uncertainty by the sum of
data and model uncertainties. In this work, we show this estimate cannot highly
correlate with prediction error; in addition, estimating the target and uncertainty
separately outperforms the joint model by the current methods. Following this,
we propose a novel two-step method that can accurately estimate the target
and magnitude of the prediction error on unseen in-distribution data. For future
work, we would like to extend this method to tackle out-of-distribution detection.

Acknowledgements. We thank Tony O’Hagan, Yoshua Bengio and the anony-
mous reviewers for helpful discussions. This research was supported by the NWO
Perspective Grant DLMedIA and in-cash and in-kind contributions by Philips.
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Supplementary Material

Table S1: The uncalibrated baseline absolute error estimation results.
Absolute Error (4x)

Method L1(10−6) ↓ MSE(10−12) ↓
MC-D 0.05 2.34 ± 1.08 14.28 ± 20.39
MC-D 0.1 2.34 ± 0.99 14.41 ± 21.94
MC-D 0.2 2.34 ± 1.13 14.76 ± 19.85
MC-D 0.5 2.36 ± 1.26 15.01 ± 13.51
K&G 0.05 (99.96 ± 0.04) ×104 (99.91 ± 0.07) ×1010

K&G 0.1 (99.97 ± 0.03) ×104 (99.93 ± 0.04) ×1010

K&G 0.2 (99.97 ± 0.06) ×104 (99.93 ± 0.05) ×1010

K&G 0.5 (99.99 ± 0.01) ×104 (99.99 ± 0.01) ×1010

DE 2.31 ± 1.36 12.27 ± 9.18

Absolute Error (8x)
Method L1(10−6) ↓ MSE(10−11) ↓
MC-D 0.05 2.98 ± 1.69 3.16 ± 3.73
MC-D 0.1 3.07 ± 1.68 3.23 ± 4.69
MC-D 0.2 3.62 ± 1.42 4.00 ± 8.14
MC-D 0.5 4.26 ± 2.01 5.88 ± 7.85
K&G 0.05 (99.96 ± 0.03) ×104 (99.92 ± 0.07) ×109

K&G 0.1 (99.97 ± 0.03) ×104 (99.92 ± 0.06) ×109

K&G 0.2 (99.97 ± 0.03) ×104 (99.93 ± 0.05) ×109

K&G 0.5 (99.99 ± 0.01) ×104 (99.98 ± 0.02) ×109

DE 3.52 ± 2.04 3.43 ± 4.72
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Fig. S1: The absolute error predictions on a random 8x test MRI. All plots are
clipped to the same pixel range, and all baseline predictions are calibrated. Our
prediction shows a clear structure, and has the right pixel intensities in both the
foreground and background.
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