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CHAPTER 2. 

Quantifying 3D vegetation structure in 
wetlands using differently measured airborne 

laser scanning data 
 

 
 
 
This chapter is published as:  
 
Z. Koma, A. Zlinszky, L. Bekő, P. Burai, A.C. Seijmonsbergen & 
W.D. Kissling (2021): Quantifying 3D vegetation structure in wetlands 
using differently measured airborne laser scanning data. Ecological 
Indicators 127: 107752.



Chapter 2 

12 
 

Abstract 
Mapping and quantifying 3D vegetation structure is essential for assessing 
and monitoring ecosystem structure and function within wetlands. Airborne 
Laser Scanning (ALS) is a promising data source for developing indicators 
of 3D vegetation structure, but derived metrics are often not compared with 
3D structural field measurements and the acquisition of ALS data is rarely 
standardized across different remote sensing surveys. Here, we compare a 
set of Light Detection And Ranging (LiDAR) metrics derived from ALS 
datasets with varying characteristics to a standardized set of field 
measurements of vegetation height, biomass and Leaf Area Index (LAI) 
across three Hungarian lakes (Lake Balaton, Lake Fertő and Lake Tisza). 
The ALS datasets differed in whether the recording type was full waveform 
(FWF) or discrete return, and in their point density (4 pt/m2 and 21 pt/m2). A 
total of eight LiDAR metrics captured radiometric information as well as 
descriptors of vegetation cover, height and vertical variability. Multivariate 
regression models with field-based measurements of vegetation height, 
biomass or LAI as response variable and LiDAR metrics as predictors 
showed major differences between ALS recording types, and were affected 
by differences in spatial resolution, temporal offset and seasonality between 
field and ALS data acquisition. Vegetation height could be estimated with 
high to intermediate accuracy (FWF ALS data only: R2 = 0.84; combination 
of ALS datasets: R2 = 0.67), demonstrating its potential as a robust indicator 
of 3D vegetation structure across different ALS datasets. In contrast, the 
estimation of biomass and LAI in these wetlands was sensitive to variation in 
ALS characteristics and to the discrepancies between field and ALS data in 
terms of spatial resolution, temporal offset and seasonality (biomass: R2 = 
0.20–0.22; LAI: R2 = 0.08–0.30). We recommend the use of FWF ALS data 
within wetlands because it captures more vegetation structural details in 
dense reed and marshland vegetation. We further suggest that ecologists 
and remote sensing scientists should better coordinate the simultaneous and 
standardized acquisition of field and ALS data for testing the robustness of 
quantitative descriptors of vegetation cover, height and vertical variability 
within wetlands. This is important for establishing operational and spatially 
contiguous ALS-based indicators of 3D ecosystem structure across 
wetlands. 
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Introduction 
The physical structure of vegetation has a substantial influence on 
ecosystem productivity and on the availability of various carbon 
sources (Hall et al., 2011). Moreover, complex vegetation structure 
provides a greater volume of niche space available for species and 
thus enhances species richness (Moeslund et al., 2019). Hence, 
detailed quantification of vegetation structure is of key importance for 
biodiversity monitoring and for assessing the structure and functioning 
of wetland ecosystems. The time- and cost-efficient sampling of field 
measurements and the development of robust indicators for detecting 
and reporting changes in vegetation structure over broad spatial 
extents is an ongoing challenge for ecology (Pereira et al., 2013). Field 
measurements typically rely on manual methods and are locally 
restricted, e.g. being measured within vegetation plots (Cao et al., 
2014; Hyyppä et al., 2008; Luo et al., 2015; Moeslund et al., 2019). 
Manual methods of measuring vegetation structure can be non-
destructive, e.g. for measuring vegetation height (Hopkinson et al., 
2004; Luo et al., 2015; Nie et al., 2018), or destructive, e.g. by 
harvesting above-ground vegetation to estimate plant biomass 
(Fliervoet and Werger, 1984; Mitchley and Willems, 1995). Some 
vegetation structural parameters such as the Leaf Area Index (LAI) 
and estimates of vegetation cover can be obtained by using digital 
methods such as hemispherical (Jonckheere et al., 2004) or classical 
photography (Liu and Pattey, 2010). Direct field measurements are 
considered to be the most precise methods but obtaining vegetation 
structural parameters in the field is labor-intensive, time-consuming, 
and expensive and thus limited in spatial extent, typically to a few study 
sites. Moreover, areal field surveys in some wetland vegetation types 
(e.g. flooded plains) are particularly difficult. The development of 
quantitative, accurate, and standardized indicators of vegetation 
structure over broad spatial extents therefore requires additional 
approaches such as indirect remote sensing methods (Serbin and 
Townsend, 2020). 
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Remotely sensed data such as Light Detection and Ranging (LiDAR) 
show great potential for estimating vegetation structural parameters in 
a spatially contiguous way (Lefsky et al., 2002; Davies and Asner, 
2014; Moeslund et al., 2019). Particularly, Airborne Laser Scanning 
(ALS) is becoming increasingly available over large spatial extents 
(Valbuena et al., 2020). ALS measurements use the time difference 
between a laser pulse emitted from an airborne sensor and the return 
signal from the vegetation (leaves, branches, stems) or the ground. 
Based on the returned signal the x,y,z coordinates of the objects can 
be calculated, resulting in a 3D point cloud capturing objects and the 
ground. Besides recording the coordinates of each surveyed laser 
return point, the intensity of the reflected light energy is additionally 
recorded. The ALS quality of the measured dataset can vary 
depending on the sensor type and the ALS data acquisition 
parameters (e.g. flight height, pulse rate frequency, scan angle and 
footprint) (Shan and Toth, 2018). Most commercial ALS systems 
deliver discrete return (DR) point cloud data (Ussyshkin and Theriault, 
2011) which record multiple returns per laser pulse (typically 1–5 
saved echoes). In contrast, full waveform (FWF) LiDAR sensors 
digitize the total amount of laser energy returned to the sensor in fixed 
time intervals (1–5 ns) and thus provide a near continuous distribution 
of backscattered laser intensity for each recorded pulse (Mallet and 
Bretar, 2009). To derive ecologically relevant indicators, the 3D point 
clouds need to be further processed, e.g. into LiDAR metrics which 
statistically aggregate the 3D point cloud information within spatial 
units such as raster cells (Bakx et al., 2019; Davies and Asner, 2014; 
Meijer et al., 2020). These LiDAR metrics can quantify vegetation 
height (e.g. maximum z values within a cell) or vertical variability of the 
vegetation structure (e.g. variance of z within a cell). LiDAR metrics 
together with in-situ collected field inventory data enable to quantify 
vegetation height (Hopkinson et al., 2004, 2006; Nie et al., 2018), 
biomass (Hyyppä et al., 2008; Cao et al., 2014) and LAI or vegetation 
density (Luo et al., 2015; Yun et al., 2016). While the development of 
indicators related to vegetation structure derived from ALS data has 
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received a lot of attention in forest ecosystems (Maltamo et al., 2014), 
little attention has yet been given to low-stature ecosystems with 
predominantly herbaceous vegetation. 
 
In the context of wetlands, the use of ALS data for quantifying 
vegetation structure has mostly focused on mapping ecosystem extent 
or on classifying different types of wetland vegetation (Chasmer et al., 
2016; Koma et al., 2021b; Millard and Richardson, 2013; Zlinszky et 
al., 2012). Only a few studies have yet established statistical 
relationships between in-situ field measurements of the 3D vegetation 
structure and ALS-derived LiDAR metrics within wetlands. For 
example, vegetation height was estimated within reedbeds of specific 
lakes in Canada, England and China, using the standard deviation or 
the 99th percentile of z (Nie et al., 2018; Onojeghuo and Blackburn, 
2013; Töyrä et al., 2003). Similarly, vegetation biomass has been 
estimated from height-related metrics (99th of percentile of z) 
combined with hyperspectral (Luo et al., 2017) or other optical remote 
sensing products (Riegel et al., 2013). One study investigated the 
estimation of LAI (Luo et al., 2015) and showed that vegetation height 
and the pulse penetration ratio (a metric reflecting vegetation 
openness) are important LiDAR-based predictor variables. These 
previous studies have focused on specific wetland sites to optimize the 
statistical relationships between field measurements and ALS derived 
metrics, e.g. by maximizing the explained variance (R2) or minimizing 
the root mean square error (RMSE). As a result, various site-specific 
relations for extracting vegetation structural parameters in wetlands 
have been proposed, but it remains largely unknown whether such 
relationships are transferable to other wetland ecosystems and ALS 
data acquisition parameters. 
 
The nation-wide ALS datasets often come with different characteristics 
(e.g. FWF versus DR, or with different point densities), and the 
simultaneous collection of field data is often infeasible (Koma et al., 
2021b). Additionally, the ALS flight campaigns are rarely done every 
year, despite decreasing operational costs. The use of DR data for the 
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detection of low vegetation is also challenging because subsequent 
returns are too short or have too low intensity to be detected (Hladik 
and Alber, 2012; Korpela et al., 2012; Nayegandhi et al., 2006; Shan 
and Toth, 2018). In contrast, FWF data acquisition can provide higher 
quality data (Mallet and Bretar, 2009), but the effect of the recording 
types of ALS data on estimating vegetation structural parameters 
within wetlands has not yet been tested. The variation of point 
densities across ALS datasets can further influence the statistical 
relationships between field measurements and ALS-based metrics: 
high point densities tend to provide accurate estimations of vegetation 
height, but low point densities and large illuminated footprints have 
limitations to penetrate through dense vegetation to the ground (Hladik 
and Alber, 2012; Hopkinson et al., 2005; Luo et al., 2015; Nie et al., 
2018; Onojeghuo and Blackburn, 2013; Töyrä et al., 2003). Moreover, 
ALS sensors are able to capture the amplitude (or intensity) typically 
in the infrared wavelength, but this attribute is usually omitted from 
further data analysis because information for applying radiometric 
calibration is often lacking (Höfle and Pfeifer, 2007). Further issues 
arise from the seasonality in vegetation growth and the temporal offset 
between the ALS acquisition (often during autumn, winter or spring) 
and the collection of in-situ field measurements (often in summer). 
Even though these practical and technical restrictions have been 
recognized in several case studies (Hladik and Alber, 2012; Hopkinson 
et al., 2005; Nie et al., 2018), no study has yet analyzed how ALS 
datasets with different qualities could be used to robustly estimate 
indicators of vegetation structure across wetlands. 
 
Here, we statistically relate ALS datasets with different qualities to a 
standardized set of field measurements of vegetation structure (height, 
biomass and LAI) within wetlands. We focus on three Hungarian lakes 
with their emergent wetland macrophytes, including the common reed 
(Phragmites australis), bulrushes (Typha spec.) and sedges (Carex 
spec.). The ALS data acquisitions for each lake have been measured 
in different years with various flight survey specifications, therefore the 
point densities vary between 4 pt/m2 and 21 pt/m2 and capture either 
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DR or FWF data. Additionally, we manually measured different types 
of vegetation structural parameters in the field using both destructive, 
non-destructive, and imaging methods. Using these different ALS 
datasets and field measurements we (1) developed multivariate 
regression models to quantify vegetation height, biomass and LAI 
using LiDAR metrics derived at different spatial resolutions, and (2) 
analyzed how the characteristics of ALS data and the discrepancies 
between field and ALS data (spatial resolution, temporal offset and 
seasonality) affect the quantification of 3D ecosystem structure.  

Material and methods 
Our study has three main routines for the processing and analysis of 
in-situ field data in relation to the ALS datasets (Fig. S1.1): 1) 
collection, measurement and processing of field data, 2) processing of 
the different ALS datasets, and 3) analysis of the statistical relations 
between the field and ALS data. The ALS data processing and LiDAR 
metrics calculation were carried out using the LidR package (Roussel 
et al., 2020). The scripts used in the processing and analysis are 
available from https://github.com/komazsofi/PhDPaper3_wetlandstr. 

Study area 
The study area comprises three selected lakes in Hungary (Fig. 2.1). 
Lake Fertő is a steppe lake located at the Austrian-Hungarian border 
and covers 315 km2. The water level is very sensitive to short-term 
climate variations due to its shallow depth and small catchment area. 
Lake Tisza is an artificial lake in the eastern part of Hungary. The lake 
covers 127 km2 and was created by damming of the Tisza River. Lake 
Balaton, located in the western part of Hungary, is the largest lake in 
Central Europe and covers 594 km2 area. More than half of the 
shoreline consists of reed-dominated wetlands.  
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Figure 2.1. Study areas and sampling design at three Hungarian lake 

shores (A: Lake Balaton, B: Lake Fertő/Neusiedlersee, C: Lake Tisza). Red 
points indicate point-based measurements of Leaf Area Index (LAI) along 
transects. Yellow squares indicate plots (0.5 m × 0.5 m) in which biomass 

and vegetation height was measured. The background map is derived from 
Google Earth Imagery data. The maps are in the Universal Transverse 

Mercator (UTM) coordinate system zone 33 and 34
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Field data collection 
The field measurements were acquired during the 2016 and 2017 
summer months (June, July and August) across the three lakes (Fig. 
2.1). Individual sample plots were located along 26 transects from the 
lake side to the reedbed interior. Fourteen transects were sampled at 
Lake Fertő, five at Lake Tisza and seven at Lake Balaton, accessed 
with kayak in deeper water and by wading whenever water depth 
allowed. Within the transects two different types of field data were 
collected: i) plot-based and ii) point-based measurements. Plot-based 
sampling was done with seventeen, six and eleven plots at Lake Fertő, 
Lake Tisza and Lake Balaton, respectively. A total of 253 point-based 
measurements were taken, 123 at Lake Fertő, 54 at Lake Tisza and 
76 at Lake Balaton. 
 
Plot-based measurements were obtained within 0.5 m × 0.5 m 
quadrats, with the exact outlines being recorded by a Real Time 
Kinematic Global Positioning System (RTK GPS). First, all reed 
vegetation within the quadrats was harvested. Second, the vegetation 
height in 50 cm intervals was measured using the GPS antenna pole 
(if the vegetation was taller than 2 m the pole base was lifted to 
continue measuring). Biomass was directly measured in the field as 
the total weight of the harvested above-ground vegetation parts 
(including fresh stalks and leaves as well as dry vegetation). The LAI 
measurements were carried out using a digital camera with a fixed 
focus. The digital photos were taken at ground or water level in a 
zenith-facing setup and were processed using the Green Crop Tracker 
software (Liu and Pattey, 2010). 

Acquisition and processing of airborne laser scanning data 
The ALS data were collected from four data acquisition campaigns 
(Table S1.1) and had different data characteristics. At Lake Balaton, 
DR data were captured in April 2014, with an average point density of 
4 pt/m2. The ALS point clouds for Lake Fertő were acquired in 2011 in 
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the leaf off season (December), using a FWF sensor and an average 
point density of 4 pt/m2. Lake Tisza was surveyed in FWF mode both 
in the leaf-off season (March 2012) and the leaf-on season (June 
2013). The average point density was 21 pt/m2 and 18 pt/m2, 
respectively. All ALS data were measured in the infra-red wavelength 
(1064 nm for Lake Balaton, 1550 nm for the other sites). For surveys 
at Lake Fertő and Lake Tisza, a Riegl sensor (http://www.riegl.com/) 
was used, whereas at Lake Balaton a Leica sensor (https://leica-
geosystems.com/) was used. In a pre-processing step, we spatially 
selected the ALS point clouds using a 25 m radius around each field 
observation point (centroid of the quadrat). We then classified the 
selected points into ground and vegetation using the Progressive 
Morphological Filter method (Zhang et al., 2003). To estimate the 
absolute (normalized) height of the vegetation points, the classified 
point cloud was normalized by subtracting the minimum height within 
20 m grid cells from the ALS points. This normalization method is 
advantageous in wetlands (Zlinszky et al., 2012) to avoid errors in 
height calculations if no ground points are found below the reed 
canopy. 
 
We calculated eight LiDAR metrics (Table 2.1) at three different spatial 
resolutions (0.5 m, 2.5 m, and 5 m radius around the field data points). 
If no ALS points were retrieved within the search radius around a field 
observation point, the field observation point was removed from further 
statistical analysis. We categorized the eight derived LiDAR metrics 
into four different feature classes (radiometric information, vegetation 
openness, vegetation height, and vertical variability). The radiometric 
information was not radiometrically calibrated since the flight 
trajectories were unavailable for the ALS datasets. The LiDAR metrics 
were identified from the literature due to their relevance for extracting 
vegetation height, biomass and LAI as well as our understanding of 
the physics of the LiDAR measurement process. 
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Statistical analysis 
All LiDAR metrics were scaled by dividing the mean LiDAR metric by 
their standard deviations. We then analyzed the statistical relationship 
between the derived LiDAR metrics and the field measurements. First, 
a collinearity analysis among the derived LiDAR metrics was carried 
out using Spearman’s Rank correlations (r) (Fig. S1.2). We excluded 
variables that were highly correlated (r > 0.6) to avoid multicollinearity 
between pairs of predictor variables (Moeslund et al., 2019). We then 
fitted multivariate linear regression models at three spatial resolutions 
(0.5 m, 2.5 m and 5 m) using vegetation height, biomass or LAI as 
response variables. We applied a backward variable selection based 
on the Akaike Information Criterion (AIC) to identify the most 
parsimonious model with a minimum set of predictor variables. We 
fitted models using either all field data collected across lakes (Lake 
Balaton, Lake Fertő and Lake Tisza) or using only FWF data (Lake 
Fertő and Lake Tisza). For LAI estimation, we additionally fitted 
separate models for each lake, and for Lake Tisza separate models 
for ALS datasets from March (leaf-off) and from June (leaf-on), 
respectively. We then compared the models between the ALS data 
characteristics and spatial resolutions using explained variance (R2), 
adjusted R-squared (adjusted R2) and Residual Standard Error (RSE). 
We further visualized the predicted and observed crossplots and 
partial dependence plots for the most important relationships in the 
multivariate linear regression models (as identified by standardized 
coefficients). These plots were then used for analyzing the effects of 
different ALS data characteristics and the discrepancies in spatial 
resolution, temporal offset and seasonality between field and ALS 
datasets.  
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Table 2.1. Derived LiDAR metrics for estimating vegetation structure in 

wetlands. Metrics capture radiometric and vegetation structural information 
(openness, height and vertical variability) at 0.5 m, 2.5 m and 5 m radius 
around the in-situ field observation points. z = normalized height value of 

the Airborne Laser Scanning (ALS) point. 
 

Metric class Name of 
LiDAR 
metric 

Metric 
abbreviati
on 

Description Reference 

Radiometric 
information 

Standard 
deviation of 
amplitude 

A_std Standard 
deviation of 
signal strength 
within the 
search radius 

(Moeslund et 
al., 2019) 

Sum 
amplitude 
ratio 

A_cover Ratio of sum of 
the intensity of 
vegetation 
points to the 
sum of intensity 
of points within 
the search 
radius 

 
(Luo et al., 
2015) 

Vegetation 
openness 

Pulse 
penetration 
ratio 

C_ppr Ratio of the 
number of 
ground points 
to the total 
number of 
points within 
the search 
radius 

Vegetation 
height 

99th 
percentile of 
z 

H_99p 99th percentile 
of z within the 
search radius 

(Hopkinson 
et al., 2005; 
Luo et al., 
2017; Nie et 
al., 2018) Mean z H_mean Mean of z 

within the 
search radius 
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Median of z H_media
n 

Median of z 
within the 
search radius 

Vertical 
variability 

Standard 
deviation of 
z 

V_std Standard 
deviation of z 
within the 
search radius 

Variance of 
z 

V_var Variance of z 
within the 
search radius 
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Results 
After the collinearity analysis, three LiDAR metrics were used as 
predictor variables for the multivariate linear regression models: i) the 
99th percentile of height (H_p99), ii) the pulse penetration ratio (C_ppr), 
and iii) the standard deviation of the amplitude (A_std). We presented 
the most parsimonious models based on an Akaike Information 
Criterion (AIC) backward selection of a full model using these three 
LiDAR metrics. Other combinations of non-correlated LiDAR metrics 
were also tested but showed lower explained variances (see Tables 
S1.2 and S1.3). 

Multivariate regression models for estimating vegetation 
structure 
Vegetation height from field measurements was best predicted using 
ALS data within a 0.5 m radius around the field observation points 
(Table 2.2). The AIC-based backward selection showed that the most 
parsimonious model using the FWF ALS data only included the 99th 
percentiles of z (H_99p), with a high explained variance (R2 = 0.83). 
The model combining FWF and DR datasets showed a lower 
explained variance (R2 = 0.63) and required all three initial input 
variables (H_99p, C_ppr and A_std). 
 
For the biomass estimation (Table 2.2), the best R2 was achieved 
using the ALS points within a 5 m radius around the field observation 
points. Only the pulse penetration ratio (C_ppr) was required for both 
models (FWF and FWF combined with DR). The explained variance 
was slightly lower when using only the FWF ALS data (R2 = 0.20) 
compared to using the combined ALS datasets (R2 = 0.22).  
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Table 2.2. Results of multivariate regression models to explain field-based 
measurements of vegetation height, biomass and Leaf Area Index (LAI). 

Separate models are fitted for different airborne laser scanning (ALS) 
datasets (FWF, All) and three different spatial resolutions (0.5, 2.5 and 5 m 
radius around field observation points). Empty rows indicate that a model 
could not be fitted due to the low sample size. For abbreviations of LiDAR 
metrics see Table 2.1. p-value is *** if p<0.01, ** if p<0.05, * if p<0.1, ns = 
not significant. Models with the explained variance (R2) are highlighted in 

bold. R2 = explained variance, Adj. R2 = Adjusted explained variance, RSE 
= Residual Standard Error, p = statistical significance of F-statistic. 

 

ALS 
data  

Radi
us 

Fitted model equation n R2 Adj. 
R2 

RSE p 

Vegetation height 

Input LiDAR metrics (H_p99, C_ppr, A_std) 

FWF 0.5 0.859 H_p99 + 3.057 15 0.83
5 

0.82
2 

0.32
5  

*** 

FWF 2.5 0.661 H_p99 + 0.395 
C_ppr + 3.145 

19 0.43
5 

0.36
5 

0.60
3 

** 

FWF 5 0.490 H_p99 + 3.102 20 0.32
5 

0.28
8 

0.62
6 

*** 

All 0.5 0.983 H_p99 + 0.306 
C_ppr -0.450 A_std + 

3.345 

19 0.67
1 

0.60
5 

0.47
4 

*** 

All 2.5 0.565 H_p99 + 3.019 29 0.30
4 

0.27
8 

0.81
2 

*** 

All 5 0.631 H_p99 - 0.289 
A_std + 3.004 

31 0.28
1 

0.23
0 

0.81
2 

*** 

Biomass 

Input LiDAR metrics (H_p99, C_ppr, A_std) 
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FWF 0.5 - 

FWF 2.5 -0.192 C_ppr + 0.724 19 0.13
1 

0.08 0.45
3 

ns 

FWF 5 -0.243 C_ppr + 0.684 20 0.20
2 

0.15
8 

0.43
4 

** 

All 0.5 - 

All 2.5 -0.201 C_ppr + 0.654 29 0.19
4 

0.16
4 

0.41
7 

** 

All 5 -0.212 C_ppr + 0.632 31 0.21
9 

0.19
2 

0.40
2 

*** 

LAI 

Input LiDAR metrics (H_p99, C_ppr, A_std) 

Lake 
Balat

on 
(Apr.) 

0.5 0.358 C_ppr + 3.668 34 0.06
0 

0.03 1.41
4 

ns 

Lake 
Balat

on 
(Apr.) 

2.5 6.364 H_p99 - 0.836 
A_std + 4.931 

56 0.28
9 

0.26
3 

1.42
3 

*** 

Lake 
Balat

on 
(Apr.) 

5 4.993 H_99p - 0.850 
A_std + 4.539 

57 0.29
0 

0.26
3 

1.39
3 

*** 

Lake 
Ferto 
(Dec.

) 

0.5 - 

Lake 
Ferto 

2.5 -5.143 H_99p + 0.267 
A_std + 2.717 

54 0.08
5 

0.05 1.15
3 

ns 
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(Dec.
) 

Lake 
Ferto 
(Dec.

) 

5 0.4 C_ppr + 3.893 55 0.07
5 

0.05
7 

1.13
7 

** 

Lake 
Tisza 
(Marc

h) 

0.5 - 

Lake 
Tisza 
(Marc

h) 

2.5 -0.565 C_ppr + 3.587 31 0.21
1 

0.18
3 

0.94
2 

*** 

Lake 
Tisza 
(Marc

h) 

5 -0.668 C_ppr + 3.589 32 0.25
8 

0.23
3 

0.93
9 

*** 

Lake 
Tisza 
(Jun.) 

0.5 -0.483 C_ppr + 3.257 35 0.15
4 

0.12
8 

1.00
7 

** 

Lake 
Tisza 
(Jun.) 

2.5 -0.466 C_ppr + 3.074 38 0.20
3 

0.18
1 

0.98
6 

*** 

Lake 
Tisza 
(Jun.) 

5 -0.585 C_ppr + 2.933 39 0.29
6 

0.27
7 

0.95
4 

*** 
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The 5 m radius also produced the best results for LAI (Table 2.2). 
However, the explained variance was very low (R2 < 0.3). The model 
at Lake Balaton included the 99th percentile of height (H_p99) and the 
standard deviation of amplitude (A_std) as predictor variables, 
whereas the models at Lake Fertő and Lake Tisza (both leaf-off and 
leaf-on ALS datasets) only included the pulse penetration ratio 
(C_ppr). The explained variance was low at Lake Balaton (R2 = 0.29) 
and at Lake Tisza (R2 = 0.26 for leaf-off and R2 = 0.30 for leaf-on ALS 
data), and very low at Lake Fertő (R2 = 0.08). 

Effects of different data characteristics  

Matching field samples with airborne laser scanning data 
Sample size was substantially reduced when a search radius of 0.5 m 
was applied to ALS data with a low point density (4 pt/m2). This was 
because no ALS data points were available within a 0.5 m search 
radius around the field observation points. The reduction in sample 
size was largest for the DR ALS data (63%) and substantially lower for 
the low point density FWF ALS data (31%). For the high point density 
(18 pt/m2) FWF ALS data, all samples could be used. With a 5 m 
search radius, the retrieved number of ALS points was sufficient for 
calculating LiDAR metrics and all field observation points could be 
used for the modelling.  

Effects of the characteristics of airborne laser scanning data 
Field-measured vegetation height was better explained by the FWF 
ALS data alone (Fig. 2.2a) then by a combination of FWF and DR ALS 
data (Fig. 2.2b). Nevertheless, in both cases there was a strong 
relationship between the ALS-derived vegetation height (H_p99) and 
the field-measured height (Fig. 2.2c,d). Field-measured biomass was 
similarly explained by the FWF and the combined FWF and DR data, 
but with a low R2 (Fig. 2.3a,b). The relationship between field-
measured biomass and the most important LiDAR variable (pulse 
penetration ratio, C_ppr) was negative (Fig. 2.3c,d), predicting less 
vegetation biomass in more open vegetation. Field-measured LAI was 
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generally best explained by a combination of LiDAR metrics (Table 2), 
with a similar explained variance across lakes, recording types, point 
densities and seasons (Fig. 2.4a,c,d), except for FWF data at lake 
Fertő (Fig. 2.4c). The strongest LiDAR predictor variable of LAI was 
either the 99th percentile of vegetation height (H_99p) or the pulse 
penetration ratio (C_ppr) (Fig. 2.4e–h).  
 
The radius for extracting LiDAR metrics around the field observation 
points influenced the explained variance of the models (Table 2.2). 
Explained variance of field-measured vegetation height was highest 
with LiDAR metrics calculated at a 0.5 m radius (R2 = 0.84) and was 
strongly reduced with a 5 m radius (R2 = 0.28). In contrast, the best 
models for field-measured biomass were achieved with LiDAR metrics 
calculated at a 5 m radius around the field observation points (Table 
2.2). Similarly, the explained variance of LAI models tended to be best 
with a 5 m radius (Table 2.2).  
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Figure 2.2. Visualization of the vegetation height model for full waveform 

data (FWF) and for FWF and discrete return data combined (All). (a,b) 
Prediction plots indicate the relationship between observed and predicted 
vegetation height based on the most parsimonious model (see Table 2.2). 

(c,d) Partial dependence plots show the relationship between field-
measured vegetation height (y-axis) and LiDAR-derived vegetation height 

(Scaled H_p99). Colors of dots correspond to each lake (red = Lake 
Balaton, green = Lake Fertő and blue = Lake Tisza).  
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Figure 2.3. Visualization of the biomass model for full waveform data 

(FWF) and for FWF and discrete return data combined (All). (a,b) 
Prediction plots indicate the relationship between observed and predicted 

biomass based on the most parsimonious model (see Table 2.2). (c,d) 
Partial dependence plots show the relationship between field-measured 

biomass (y-axis) and the LiDAR-derived biomass (Scaled C_ppr). Colors of 
dots correspond to each lake (red = Lake Balaton, green = Lake Fertő and 

blue = Lake Tisza).
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Figure 2.4. Visualization of the Leaf Area Index (LAI) models separated by 
lake (colors) and the recording type of the airborne laser scanner (FWF = 

full waveform data, DR = discrete return data). The month of laser scanner 
recording is given in square brackets. The prediction plots (a,b,c,d) indicate 

the relationship between observed and predicted LAI based on the most 
parsimonious models (see Table 2.2). The partial dependence plots 

(e,f,g,h) show the relationship between field-measured LAI (y-axis) and the 
most important LiDAR predictor variable (Scaled C_ppr). 

 
The temporal offset and seasonality between the field and ALS data 
did not show an effect on the estimation of vegetation height and 
biomass because data points from different lakes tended to be spread 
equally across the prediction plots (Fig. 2.2a,b and Fig. 2.3 a,b). The 
results of the LAI estimation at Lake Fertő (Fig. 2.4b) suggested that 
the temporal offset between the field measurements and the ALS data 
acquisition (5–6 years) might have masked a relationship between 
field data and LiDAR metrics. Seasonality of ALS data acquisition 
didn’t seem to have a strong effect because the FWF-based estimation 
of the LAI at Lake Tisza was equally well explained in March and June 
(Fig. 2.4c–d). 
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Discussion 
Our study quantifies the extent to which ecological field measurements 
of vegetation height, biomass and LAI in wetlands can be related to 
3D vegetation metrics derived from LiDAR. Using ALS data from three 
Hungarian lakes, we show that field-measured vegetation height can 
be effectively estimated using the 99th percentile of z-values from ALS 
data. This holds true across the different lakes at which ALS datasets 
have been obtained with different characteristics (FWF and DR 
recording types, varying point densities). In contrast, the estimation of 
field-measured biomass and LAI with LiDAR metrics proved to be poor 
and sensitive to differences in ALS characteristics as well as to 
discrepancies in spatial resolution, temporal offset and seasonality 
between ALS data acquisition and field sampling. Our results thereby 
provide important insights for the development of LiDAR-based 
ecological indicators of ecosystem structure in wetlands or other 
vegetation that shows similarity in physical structure to wetland 
vegetation.  

Estimating wetland vegetation structure from airborne laser 
scanning 
Our results for vegetation height are promising and in agreement with 
other studies that show that ALS can precisely measure the canopy 
height of emergent macrophytes in wetlands. Reported R2 values in 
previous wetland studies range from 0.4 to 0.85 (Luo et al., 2015; Corti 
Meneses et al., 2017; Nie et al., 2018) and are comparable with our 
results (R2 = 0.84 and 0.67, respectively). However, a range of 
different LiDAR metrics have been used to estimate vegetation height 
in wetlands that are dominated by reed (Phragmites australis). Luo et 
al., (2015) reported that the standard deviation of height is the most 
important predictor variable in a wetland National Park in China, 
whereas Nie et al., (2018), Corti Meneses et al, (2017) and Onojeghuo 
et al., (2010) used the maximum height of reedbeds at a single lake in 
China, Germany and England, respectively. We found that both the 
variance of z and the 99th percentile of z gave promising results for 
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estimating vegetation height across different lakes, as both are highly 
correlated (r = 0.91, see Fig. S2). This suggests that the variance of z 
and the 99th percentile of z are appropriate LiDAR metrics that can 
serve as ecological indicators for vegetation height across wetlands.  
 
The estimation of vegetation biomass with LiDAR metrics only 
achieved a low explained variance in our study (R2 = 0.20–0.22). A 
study by Luo et al. (2017) in a reed (Phragmites australis) dominated 
wetland in China achieved an R2 = 0.56 using only DR ALS data with 
simultaneously measured field data and a larger sample size (n = 75) 
than in our study (n = 31). Another study (Riegel et al., 2013) reported 
R2-values comparable to ours (adj. R2 = 0.18). Both studies (Luo et al., 
2017; Riegel et al., 2013) estimated field-measured vegetation 
biomass with height-related LiDAR metrics (99th percentile of z and the 
mean of z). In contrast, in our study the most relevant metric for 
estimating biomass was the pulse penetration ratio (C_ppr), a 
measure of vegetation openness. This difference could be explained 
by the use of FWF ALS data in our study, which can better capture 
ground points under the reed canopies, compared to DR ALS data 
used in previous studies (Luo et al., 2017; Riegel et al., 2013). This 
could indicate that different LiDAR metrics (99th percentile of z and 
pulse penetration ratio) are relevant to promote as ecological 
indicators for estimating vegetation biomass, depending on which ALS 
recording type is used (DR or FWF).  
 
The LAI could not be estimated well in our study (R2 = 0.08–0.30). In 
contrast, one study (Luo et al., 2015) showed that the LAI could be 
well estimated with LiDAR metrics (R2 = 0.79) at one reed-dominated 
wetland site in China. This difference could be explained by the 
sampling method of the LAI field measurements. Our study used 
photographs from a zenith facing handheld digital camera. This can 
result in distortions which cannot be fully corrected during data pre-
processing. In contrast, Luo et al., (2015) used hemispherical 
photographs of a LAI-2200 Plant Canopy Analyzer device with a 
fisheye optical sensor which can give more precise distortion free 
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images for calculating LAI. Luo et al., (2015) further found that the use 
of the 99th percentile of z performed better than the pulse penetration 
ratio. Our study supports this finding in the case of DR ALS data where 
the AIC model selection excluded the pulse penetration ratio (C_ppr) 
from the LAI estimation. For the development of ALS-based ecological 
indicators that quantify leaf area or other aspects of vegetation cover 
in wetlands, future studies should further test to waht extent the 99th 
percentile of z, th e pulse penetration ratio, or other LiDAR metrics are 
robust and consistent with field-based measurements of LAI. 

Effects of different data characteristics  

Sampling of field data 
Our vegetation height measures are methodologically similar to other 
studies (Corti Meneses et al., 2017; Luo et al., 2015; Nie et al., 2018; 
Onojeghuo et al., 2010). However, our field measurements of biomass 
and LAI differ from other studies. Luo et al., (2017) estimated 
vegetation biomass using an allometric equation with vegetation 
height. This method allowed a fast data collection, since after 
establishing the allometric equation between the dry weight and the 
reed height, only the height needed to be measured on the field. In 
contrast, we measured biomass through harvesting above-ground 
vegetation parts directly in the field. This were a more time-intensive 
field collection method and resulted in a lower sample size compared 
to Luo et al. (2017). The LAI were measured in Luo et al., (2017) using 
a LAI-2200 Plant Canopy Analyzer device, which could lead a more 
accurate measurement results, compare to our method using a zenith 
facing handheld digital camera. However, our LAI measurement 
method could result a more rapid and cost-effective field collection 
method. Future studies should directly compare which estimation 
methods provide the most optimal field collection technique for 
measuring biomass and LAI within wetlands. 
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Effects of characteristics of airborne laser scanning data 
We analyzed the effect of ALS data characteristics for quantifying 
vegetation structure within wetlands. Previous studies have shown 
that DR ALS data with low point densities have difficulties to capture 
ground points under a dense reed canopy (Hopkinson et al., 2004; Luo 
et al., 2015; Nie et al., 2018; Onojeghuo et al., 2010). This is important 
because the accuracy of estimating vegetation height is influenced by 
whether the ALS sensor was able to detect ground points under the 
canopy. Our results suggest that FWF ALS data capture ground points 
sufficiently, even under leaf-on conditions, whereas DR ALS data do 
not. For instance, visual inspection of ALS point clouds from crossplots 
at the three lakes showed that vegetation points are misclassified in 
DR data as ground points (Fig. 2.5a) whereas FWF ALS data correctly 
classify ground points under the reed canopy (Fig. 2.5b–d). The FWF 
ALS data save the whole waveform and the post-processing is thus 
able to detect subsequent returns even with low intensity (Mallet and 
Bretar, 2009). The improved detection of ground points can increase 
the accuracy of the pulse penetration ratio, which is based on the ratio 
of ground points to the total number of points (Table 2.1). This can 
explain its importance as predictor variable for estimating biomass and 
LAI. Higher point densities (Lake Tisza) did not substantially improve 
the explained variance of the models in our study, which indicates that 
low point density FWF ALS data are already able to efficiently capture 
vegetation structural parameters across wetlands. Such FWF data are 
increasingly becoming available through national-scale scanning 
campaigns (Moeslund et al., 2019).  

Discrepancies between field and airborne laser scanning data 
Discrepancies between field and ALS data collection could be a main 
reason for the relatively low explained variance in estimating field-
measured biomass and LAI from LiDAR metrics. In particular, 
discrepancies in the spatial resolution, the temporal offset between 
field and ALS data acquisition, and the seasonal dynamics of 
vegetation growth in wetlands may have an influence on how well 
LiDAR metrics can explain field measurements of vegetation structure. 
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Regarding spatial resolution, our results suggest that both biomass 
and LAI can be best explained from ALS data if LiDAR metrics are 
calculated with a radius that encompasses an area larger than the plot 
size measured in the field. Similar results were obtained by Luo et al. 
(2017) who found the optimal sample radius for calculating LiDAR 
metrics for biomass to be 1.5 m larger than the 1 m × 1 m plot size for 
measuring the field data. The effect of the time difference between 
LIDAR and field data collection is closely connected to changes of 
wetland area and structure at the scale of several years. The structure 
of reed vegetation is expected to be relatively constant as it depends 
mainly on the presence of various ecotypes (Tóth and Szabó, 2012), 
but the location of the reed-water boundary can change up to several 
meters during a year (Zlinszky, 2013). For instance, the reed fronts at 
Lake Balaton are receding with reed die-back (Tóth, 2016), which 
could affect the relationship between field-measured vegetation 
structure and our calculated LiDAR metrics. At Lake Fertő, reed 
encroachment into open water is ongoing, which means that the 
temporal offset between ALS flights and fieldwork could result in field 
plots being surveyed in places where no vegetation was present 
during the flight campaign. The Lake Fertő dataset also had the largest 
time difference between the ALS and the field data (5-6 years).
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Figure 2.5. Visualization of point clouds derived from different Airborne 

Laser Scanning (ALS) datasets for three Hungarian lakes. (a) Lake Balaton 
(discrete return ALS data with 4 pt/m2), (b) Lake Fertő (FWF ALS data with 
4 pt/m2), and (c-d) Lake Tisza (FWF ALS data with 21 pt/m2 in March and 

18 pt/m2 in June). The left side shows the point clouds extracted within a 25 
m radius around each field observation point (indicated with a red triangle) 

and visualized according to the z-value (blue indicates low vegetation 
height and red high vegetation height). On the right, 25 m long crossplots in 

West-East direction with 2 m width are shown (green: non-ground points, 
pink: ground points). DR = discrete return data, FWF = full waveform data, 

pt/m2 = points per square meter, W = west, E = east.
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At Lake Tisza, most vegetation-water transition zones are determined 
by abrupt changes in water depth, e.g. due to flooded river arms. The 
water fronts are thus relatively stable and might be less affected by the 
time offset between the ALS and field data. These results overall 
suggest that the (near-)simultaneous measurement of field data with 
the ALS flight campaign is preferable if the aim of the study is to 
estimate 3D vegetation structural parameters from LiDAR. Regarding 
the seasonal timing of ALS data acquisition, previous studies show 
that ALS datasets acquired in spring and summer can perform similarly 
well when explaining wetland vegetation structure (Luo et al., 2017, 
2015; Nie et al., 2018). However, ALS data collected in winter months 
have been reported to be limited in capturing the full variability of 
vegetation structure in reedbeds (Onojeghuo et al., 2010). This aligns 
with our findings at Lake Fertő where field measurements of biomass 
and LAI obtained in August were not well explained by ALS data 
collected in December. 

Conclusions 
ALS has great potential to measure various aspects of 3D vegetation 
structure in a spatially contiguous way and across broad spatial 
extents. However, appropriate metrics and their relationships with field 
measurements of vegetation structure in wetlands remain little 
explored. We compared a set of field measurements of 3D vegetation 
structure (height, biomass and LAI) from three Hungarian lakes with 
LiDAR metrics derived from ALS point clouds that had varying data 
characteristics (DR or FWF recording type, different point densities, 
acquisition in different seasons) and found that vegetation height can 
be robustly estimated independent of the ALS data qualities. Thus 99th 
percentiles of z LiDAR metric can be used as a robust ecological 
indicator of vegetation height. However, field measurements of 
biomass and LAI were only weakly explained by LiDAR metrics and 
were sensitive to ALS data characteristics (recording type, 
seasonality), the spatial resolution of LiDAR metric calculation, and the 
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temporal offset between field measurements and ALS data 
acquisition. This indicates that the selection of ecological indicators for 
estimating biomass and LAI needs to be assessed according to ALS 
data characteristics.  For the future development of vegetation 
structural indicators from LiDAR in wetlands, we recommend (i) to 
standardize and harmonize field collection protocols for measuring 
aspects of 3D vegetation structure which can be aligned with ALS 
data, (ii) to sample vegetation structure in several small sub-plots 
within larger (e.g. 10 m × 10 m) plots to enhance the alignment of field 
measurements with LiDAR metrics derived from varying point 
densities and ALS recording types, and (iii) to promote the FWF 
recording of ALS data among data suppliers for overcoming difficulties 
of capturing ground points in wetlands. Moreover, a close cooperation 
between ecologists and remote sensing scientists will be crucial for 
achieving this. Our results provide an important step towards the 
operational use of LiDAR for estimating wetland vegetation structure 
and for deriving indicators to monitor biodiversity and ecosystem 
change from ALS data.




