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Introduction

Face perception may be the most advanced part of our visual system. In our life, we see
more faces than any other object [78]. We recognize and remember humans by their
facial appearance and we sustain benign social interactions using our facial expressions.
We are also able to identify in-group versus out-group members based on facial features
[88]. The use and exchange of facial information is an indispensable part of our society
enabling interpersonal interaction and group processes.

Information about faces may substantially influence people’s social judgments and
such influence may persist regardless of cognitive efforts. People can make dispositional
inferences on how faces look like. These inferences can be irresistible even when people
are explicitly urged against it [214]. Moreover, seemingly superficial judgments derived
from faces can influence crucial decisions that are usually presumed as deliberate
and calculative. Outsiders’ facial perception of organizational leaders can predict the
economic value and market performance of the leaders’ affiliated organizations [154].
When voters have no prior knowledge about the electoral candidates, judgments merely
based on faces can predict the outcomes of the United States Congress elections [183].
Such crucial decisions based on how faces look like can be made within 100 ms [198]
and are the same regardless of culture [215].

In addition, the human face is one of the mostly used forms of biometrics and is
applied to the recognition of body or behavioural characteristics. This is because a face,
as a ubiquitous biometric, can be extracted in unconstrained (in-the-wild) environments
while providing robust discriminative features [65, 124]. Automatic face analysis is
of great importance because it can provide an automatic interpretation of interactions
between humans and machines. With the development of computer hardware and new
technology, face-based applications have been successfully applied in daily life such as
access control, social networks, and video surveillance. In the last decade, major ad-
vances occurred in face related research, with many systems being capable of achieving
high accuracy and speed in constrained environments. However, face applications in
real-world scenarios are still very challenging, because the face acquisition process is
dependent on a wide range of imaging conditions.

In summary, there are several key factors that may have significantly impeded
performances on face analysis systems:

* Head pose variations may introduce projective deformations and self-occlusion.
Extreme poses may lead to severe occlusion or skewed aspect ratios of face




1. Introduction

Figure 1.1: Examples of faces under extreme recording variations. Images are taken
from UFDD [130] and MAFA [53].

bounding boxes [166, 209].

* Facial occlusion can negatively influence the performance of face-based appli-
cations. It may reduce the amount of information available for detection and
may introduce noise [53, 190]. The challenging part is to obtain robustness for
different occlusion types.

» Age variation is an important but easily ignored factor. Obviously, the appearance
and geometrical variations of faces change over time. Although the aging process
of human faces causes common features, like wrinkles and age spots, they may
differ from person to person. This is because the facial aging process can be
affected by personal (e.g., mental state, occupation) and social factors (e.g., living
environment) [140].

» Imbalanced distribution of face datasets is an important factor for automatic face
analysis. It originates from demographic characteristics of humans and usually
manifests itself in a long-tailed distribution manner. Most samples concentrate
around a small range of categories [84]. Learning systems which are trained on
imbalanced datasets may be biased towards the majority part within the dataset.
Hence, rare samples of face attributes may be considered as outliers or noise.

We now elaborate on the impact of each of the mentioned problems for different
research tasks.

Face detection is the first step for all face applications. It it one of the first computer
vision tasks with early works dating back decades ago [200]. The task can be generally
defined as detecting and localizing an unknown number of faces in images. Most early
studies are highly rigid because they are based on strong assumptions like no occlusion,
plain backgrounds, and frontal facing. The increasing availability of data captured
without constrained settings (‘in-the-wild’) has contributed to tremendous progress of
face studies for varying imaging conditions (see Figure 1.1). The advancement of face
detection methods also benefits from the rapid progress in deep learning [149].

In order to improve robustness against challenging variations in unconstrained
datasets, data augmentation is a logical step [120, 125]. Data augmentation expands
the dataset synthetically without changing the original labels [179, 189]. It can increase
intra-class variations for imbalanced datasets [123]. Data augmentation for face-related
datasets can be roughly classified into three categories: generic transformation, local,
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and global facial attribute manipulations. Local attribute manipulation mainly operates
on local face areas. It includes modifications for hairstyle, makeup, and occlusion
(e.g., facial hair, glasses). Global facial attributes manipulation includes pose, gender,
expression, and age. Global attributes manipulations is more challenging because it
affects all face regions [162].

Generic data augmentation may not always be effective. For example, a common
way to generate facial occlusion is to randomly crop parts of the original face images.
However, cropping can only reduces the information of faces but is unable to provide
realistic occlusion samples. Simply over-sampling of original datasets may cause
over-fitting in the training process.

For relatively complex data augmentation, parameterized model based methods have
been proven to be very effective. Parameterized models are built based on previously
collected face datasets. Early parametric 2D face models like Eigenfaces [170, 185],
Fisherfaces [9], Active Shape Models [29], or Active Appearance Models [30] have
facial shape and appearance which can be manipulated in linear spaces. Later, Blanz
and Vetter [11] propose a 3D face morphable model (3DFMM), the first generative
3D face model that uses linear subspaces to model shape and appearance variations
[12, 127]. A 3DFMM normally has a parameterized shape and appearance model. The
model coefficients are moderated by probability densities [143]. A face can be defined
by a set of coefficients. 3DFMM has been widely used in face reconstruction and face
synthesis. From the data perspective, the creation of 3DFMM heavily relies on accurate
3D face scans which are collected under constrained settings. For example, the latest
Basel Face Model [57] has only 300 individuals. Moreover, most of the subjects are
young Caucasians. 3DFMM with unconstrained data is rarely considered. This leads
to the main drawback of 3DFMM, that is, the lack of variations. From a methodology
perspective, the generative power of 3DFMM is also limited by its own formulation.
Most of 3DFMMs are still based on statistical PCA models. The facial variations are
naturally nonlinear in the real world. For example, facial expressions or occlusion do
not correspond to a linear assumption of PCA-based models. Thus, a PCA model does
not have the capacity to simulate facial variations well [95]. The challenge of rendering
photo-realistic face images lies in the difficulty of modeling hair, eyes, and the mouth
cavity (e.g., teeth or tongue). Further challenges are the absence of facial details like
wrinkles in the geometry. These factors degrade the quality of the final rendering results.

Another way to induce more variations is to use generative methods [45, 196, 203].
Generative adversarial network (GAN) has gained a lot of attention [61, 90]. The
modification traits from GAN-based methods become more and more subtle. A number
of GAN-based methods are used to manipulate face attributes [26, 39, 86]. Methods like
StyleGAN [94] and its extensions [96] manage to control a number of complex facial
attributes like identity, gender, and head pose during the training process. However, these
facial characteristics are highly correlated (e.g. male and mustache). The manipulation
of these models may not be sufficient to change attributes like facial appearance,
shape (e.g., length, width, etc.) or expression (e.g., raise eyebrows, open mouth, etc.)
independently. Although these methods have generated photo-realistic synthetic face
images, the provided level of control of the features is unsatisfactory for real-world
applications [58].

The aging effect on appearance and geometrical variations of human faces is irre-
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1. Introduction

versible [51]. Numerous factors have been shown to influence facial aging effects such
as ethnicity, gender, dietary habits, occupation, and climate conditions [140]. Early work
on automatic age estimation for still images mainly used biological-related features,
while age estimation for videos often uses handcrafted features and temporal dynamics.
The rapid development of deep neural networks have constantly improved the perfor-
mance of age estimation. Despite the remarkable progress of deep learning based age
estimation, their application in unconstrained scenarios is still imperfect. Challenging
variations like extreme poses, occlusion, and blurring may limit the applicability of
these age estimation methods. Moreover, most of the age estimation algorithms focus
on still images. Only a limited number of methods are applied on face videos. One of
the main reasons is the lack of large-scale face video datasets with age annotation. The
underlying reason is that it is almost impossible to provide accurate annotation for image
or videos collected from the Internet [72]. In contrast, the performance of age estimation
does not benefit much from data augmentation. Compared to other relatively simple
variations, generic data augmentation methods are not able to provide the necessary
and complex features (like wrinkles or age spots) for age estimation systems. Recently,
generative model based methods provide more realistic aging effects [45, 138, 196, 203].
However, the level of control from generative methods is not sufficient to systematically
modify the aging effects in synthetic data.

With the rapid progress in 3D face reconstruction and face manipulation, it is exciting
to see that more and more photo-realistic face variations can be synthesized. However,
the question remains: can we distinguish which face is authentic? Al-synthesized face
data is rising as a highly controversial topic [98, 102]. These Al-synthesized methods
are often referred to as deep fakes. Using modest amounts of data and computing power,
anyone is now able to automatically generate deep fake videos [3, 76, 146, 174]. For
example, Channel 4 provided a controversial deep fake video of Queen Elizabeth giving
a Christmas speech [10]. Most people in our society may not be aware of deepfakes. It
can be easily used to spread disinformation [14, 35]. The misuse of deepfakes poses
a substantial threat to social security and interpersonal trust [13, 93]. California state
had already officially made it illegal to use deepfakes to impact political activities. It is
crucial to distinguish manipulated faces from pristine face images [142].

Face manipulation methods can be generally classified into four categories:

* Entire face synthesis: This kind of manipulation methods focuses on generating
entire non-existent face images, usually through powerful GAN based methods.
Typical example of these methods is StyleGAN [95]. StyleGAN adds style vector
to Progressive-GAN [94] to gain more control over the generation process. The
application of StyleGAN to generate non-existent faces has drawn great public
attention.

* Facial reenactment: This kind of methods transfers the expressions or motion
from a source video to a target video while keeping the identity of the target person.
One representative is Face2Face [180], which modifies the facial expressions of
the target video by a source actor and generates the manipulated output video in a
photo-realistic fashion in real time.

 Attribute manipulation: This type of methods, also known as face editing or




face retouching, consists of modifying some facial attributes such as hair color
[119], viewpoints [86], gender, age [6], glasses [163], etc. This manipulation
process is usually carried out through generative model such as the StarGAN
approach proposed by [26]. One typical example is the popular FaceApp appli-
cation. Users could modify various types of makeup, glasses, or hairstyles in a
virtual environment.

* Identity manipulation: Instead of changing facial local attributes or expressions,
identity manipulation aims at replacing the facial identity information of a target
subject with the face of source subject. This category is known as face swapping
[122]. It became popular on social media with wide-spread consumer-level
applications like Snapchat filter. There are also deep learning based methods
which are known as DeepFakes [38], e.g., the recent viral mobile application
ZAO.

Most of face manipulation methods normally need a pair of faces from source and target
individuals. The final results are contingent on the source and target images. Even using
the same pair of subjects, different modification methods may generate different outputs.
This is because each method has different processing regions or architectures. On the
other side, when the same modification method is applied on different pairs of data, the
results can have various types of artifacts like face attribute mismatches. The reason
is that each face has different variations in pose, lighting, or ethnicity. This process
resembles the neural style transfer operation between content and reference images
[52].

Recent research has shown that supervised deep learning approaches can achieve im-
pressive face forgery detection performance. To detect manipulated faces, the common
approach is data-driven. The generalization is normally restricted to a small range of
manipulation artifacts. Another category of deep network based methods is to capture
features from the generation process. The features include artifacts or cues introduced
by the backbone network architecture [102]. These methods normally rely on a large
amount of training data, and the performance decreases dramatically when new types
of manipulations are presented, even though they are semantically close. The underly-
ing neural networks quickly overfit to manipulation-specific artifacts. Thus, extracted
features are highly discriminatory for a given task but lack generalization capabilities
for unseen examples. This weakness can be alleviated by fine-tuning a pre-trained
network with new task-specific data, but this also means that large amounts of new data
are required [31]. Also, a significant performance gap can be observed when tested
on compressed, low-resolution, or blurry data [151], which is crucial to detect fake
media content on social media. All proposed learning-based methods need some form
of fine-tuning on a dataset with manipulations aligning the samples from the training
and test set. But the underlying datasets are limited in variations like face attribute, pose,
or occlusion.

Based on existing research, it is feasible to accurately identify certain kinds of
artifacts. However, artifacts such as imaging variations or face attributes do not persist
across all generated results for a single generation method. Methods that simply try to
detect certain artifacts are not able to handle unseen ones. The generalization of face
forgery detection is the key to overcome the challenges posed by deep fakes.




1. Introduction

Normally, face datasets have a relatively large volume. Just like the demographic
information in the real world, the distribution of these datasets is always long-tailed and
imbalanced. Therefore, there is always a large portion of subjects or facial attributes,
of which the samples are insufficient and under-represented [210]. In conventionally
trained deep networks, training with highly imbalanced data leads to biased classifiers.
Although the minority categories constitute a small portion of the whole dataset, they can
play a significant role in the prediction error of trained models. Such biased predictions
can have severe consequences in applied settings. For instance, Gender Shades [16]
found that gender classification systems from IBM, Microsoft, and Face++ had worse
performance for darker-skinned females than lighter-skinned males. A similar study
[171] also found that Amazon’s face recognition system was more likely to misclassify
colored than white Congress members. A government study further [63] demonstrates
that most one-on-one matching systems had higher false positive rates for Asian and
African faces than Caucasian faces. Concerning these consequential effects of face
studies, the imbalanced issue of datasets should be better scrutinized.

Current methods for handling the imbalanced issue typically adopt class re-balancing
strategies such as re-sampling and re-weighting the training scheme based on the
information in the dataset [83, 97, 182, 224]. For re-sampling based methods, they can
be classified into oversampling and down-sampling. Oversampling strategy focuses on
the effect of minority samples. Intuitively, more data would lead to better performance
of the model. However, it might cause over-fitting. Down-sampling normally reduces
samples from majority categories, but this strategy has the risk to exclude useful feature
variations in the sampling process. As for re-weighting based methods, they focus on
the training process such as the design of loss functions. These methods normally rely
on the frequency of each class from the dataset. The goal is to provide a smoother
version of the training scheme towards the imbalanced dataset. However, the challenge
is to determine the actual weights for different samples in various distributions. It is
difficult to estimate the effective number of samples for each category [33].

1.1 Research Outline and Questions

In this thesis, we aim to address the following research questions:

Although face detection has already achieved impressive results for constrained
datasets, face detection of images taken from faces with varying imaging conditions is
still challenging. In existing datasets for face detection, the majority of data vary to a
limited extent. Collecting and annotating real-world face datasets with various attributes
is expensive and impractical. It is also difficult to fully control the imaging variations
or to avoid errors during the annotation process. Current generative methods cannot
provide the level of control to systematically manipulate different variations. We pose
our first research question:

Question 1: Can we systematically manipulate variations in synthetic data to comple-
ment the real dataset and achieve better performance for the face detection task?

In Chapter 2, we provide an overview of how object features from images influence
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face detection performance, and how to choose synthetic data to address specific features
based on 3D face models. First, we provide a 2D synthetic face data generator with
fully controlled features. We systematically evaluate the influence of occlusion, scale,
viewpoint, background, and noise by using this synthetic image generator. We consider
three representative deep network face detectors for our analysis. Comparing different
configurations of synthetic data on face detection systems, it shows that our synthetic
dataset could complement face detectors to become more robust against specific fea-
tures in the real world. Our analysis also reveals that a variety of data augmentation is
necessary to address differences in performance.

Pose variation could considerably change the appearance of faces and may cause
(self) occlusion. The lack of unconstrained face datasets with age labels is also a bottle-
neck for age estimation to improve robustness against challenging imaging conditions.
One of the main difficulties is to accurately annotate a face image or video with age
labels from the Internet. Therefore, we focus on our second question:

Question 2: How can we alleviate the negative influence of pose variations when pre-
dicting age?

In Chapter 3, we propose an age estimation method for handling large pose varia-
tions for unconstrained face images. To attenuate the effect of pose, our method is based
on facial uv texture maps reconstructed from original video frames. A Wasserstein-
based GAN model is used to complete the full uv texture presentation. Age is further
predicted from the completed uv mappings such that the proposed AgeGAN method
simultaneously learns to capture the facial uv texture map and age characteristics. In
order to train our method, we created the UvAge dataset: the largest video dataset of
face with age annotations (together with identity, gender, and ethnicity labels). The
dataset contains in-the-wild videos from celebrities recorded in a variety of imaging
settings. In total, we collected 6898 video segments from 516 celebrities in 57 events.
This in-the-wild dataset contributes to future research in age estimation. Extensive
experiments demonstrate that our proposed approach outperforms other advanced age
estimation methods.

With the rapid development of generative methods, it becomes very challenging to
distinguish real face images from modified images. Recently, supervised deep learning
approaches show good performance. However, these methods normally train on large
scale datasets. When facing new types of manipulations, the performance degrades
dramatically. The backbone neural network architecture quickly overfits to modification-
specific artifacts. The extracted features are highly discriminatory for the given task but
lack transfer ability for unseen modification examples. In most cases, existing methods
can handle certain types of methods or a limited range of artifacts. However, artifacts
such as imaging variations or face attributes do not persist among all generated results
for the same modification method. This problem leads to our third question:

Question 3: Can we find a robust method to distinguish deep fake data from multiple
domains?
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Our task is to distinguish manipulated from real face images from multiple domains.
The main drawback of existing face forgery detection methods is their limited gener-
alization ability due to differences in domains. Therefore, in Chapter 4, we propose
a novel framework to address the domain gap induced by multiple deep fake datasets.
Both neural style transfer and face manipulation need a pair of source and target for
processing. Inspired by the application from style transfer task, we use maximum mean
discrepancy (MMD) loss to align the different feature distributions. MMD loss is able to
reduce the influence of manipulation specific artifacts. The center and triplet losses are
also incorporated to enhance generalization of the network. This addition ensures that
the learned features are shared by multiple domains and provides better generalization
abilities to unseen deep fake samples. Evaluations on various deep fake benchmarks
show that our method achieves the best overall performance.

Dataests for face related research often exhibit highly-skewed label distributions of
face attributes. As for age estimation, the ages of the recorded persons in real-world
videos usually have a long-tailed distribution. The majority of age groups are normally
young people. The amount between the majority and minority normally have an imbal-
anced ratio. Therefore, the training process of age estimation systems becomes biased
towards the majority age group. And the performance on the minority labels are largely
ignored. Moreover, only a few methods consider the performance of age estimation on
videos. Our fourth question is then postulated as follow:

Question 4: How can we mitigate the influence of imbalanced distribution and improve
the performance of video based age predictions?

Most of the existing methods for age estimation largely ignore the negative influence
of age imbalance. In Chapter 5, we address the problem of age imbalance in videos from
a transfer learning perspective. We use a deep clustering module to both learn a proper
data representation and transfer information from the majority groups. To provide a more
balanced prediction, we use soft label assignment to represent the target age distribution.
Each age is assigned with a specific degree of contribution. This avoids hard constraints
on target age labels, leading to better solutions of the annealing clustering process.
We also consider the influence of different variations (pose, expression etc.) for age
estimation. Evaluations of our method on both constrained and unconstrained video
datasets establish its effectiveness.

1.2 Origins

In this section, we list the publications each chapter is based on

Chapter 2 is based on the following paper:

e J. Han, S. Karaoglu, H.-A. Le, and T. Gevers. Object features and face
detection performance: Analyses with 3d-rendered synthetic data. In 2020
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25th International Conference on Pattern Recognition (ICPR), pages 9959—
9966. IEEE, 2021

Chapter 3 is based on the following paper:

* J. Han, W. Wang, S. Karaoglu, W. Zeng, and T. Gevers. Pose invariant
age estimation of face images in the wild. Computer Vision and Image
Understanding, 202:103123, .

Chapter 4 is based on the following paper:

* J. Han and T. Gevers. Mmd based discriminative learning for face forgery
detection. In Proceedings of the Asian Conference on Computer Vision,
2020.

Chapter 5 is based on the following paper:

* J. Han, W. Wang, and T. Gevers. Deep imbalanced learning for age estima-
tion from videos. Under review at Computer Vision and Image Understand-
ing, .

1.3 Thesis Overview

In this thesis, we explore how to improve the performance of several face systems
when confronting challenging variations. In Chapter 1, we provide an introduction and
background information on the theme, and we list the main research questions of this
dissertation.

In Chapter 2, we provide a synthetic face data generator with fully controlled varia-
tions and proposed an experimental comparison of main characteristics that influence
face detection performance.

In Chapter 3, we introduce a new dataset UvAge for age estimation and provide
a W-GAN based approach (AgeGAN) to simultaneously estimate the real age and
complete the partial uv textures from original frames.

In Chapter 4, we propose a maximum mean discrepancy (MMD) based architecture
for cross-domain face forgery detection.

In Chapter 5, we introduce an end-to-end framework to predict ages from face
videos. Clustering based transfer learning is used to provide proper prediction for
imbalanced datasets.

Chapter 6 concludes this thesis and proposes directions for future work.







Analysis for Object Features and Face
Detection Performance

2.1 Introduction

Face detection is one of the most studied topics in the field of computer vision. It plays
a fundamental role in basically all face related applications. Face detection requires
first to determine whether there is a face in an image or a video and then to return
the precise location of the face. A number of effective face detection systems have
been rapidly emerged in recent years. It is impractical to evaluate on every recently
proposed detection system, we are fortunate that most of the leading approaches shared
a common methodology [85]. Deep network based object detection system can be
roughly classified as two categories: 1) Two step face detector is the most representative
detector based on deep network. Region proposal is the fundamental step for all these
kind of methods. The first stage normally proposes candidate bounding boxes. In
the second stage, features are extracted from each candidate box for the following
classification and bounding-box regression tasks. 2) One step face detector doesn’t need
a region proposal unit before classification. Its light-weighted structure is more time
efficient but less accurate.

Face detection still confronts challenges from features in scale, head pose, expres-
sion, facial occlusion and illumination. In existing datasets for face detection like FDDB
[91], MAFA [53] and Wider Face [204], the majority of data normally belong to a
limited range of variations. The faces did not sufficiently represent extreme poses, scale
or heavy occlusion, to train a robust detector against all potential variations. Previous
researchers designed different face detectors to address specific types of features in
real-world situations. The rapid development of deep learning essentially relies on
the availability of large-scale annotated datasets. Collecting and annotating real-world
datasets with different attributes is unpractical. It is also difficult to fully control the
imaging variations in such datasets, or to avoid errors during the annotation process. A
bias from ground truth may lead to far-reaching impact in deep networks.

Data augmentation deals with aforementioned issue by artificially inflating the train-
ing set with label preserving transformations [179, 189]. A variety of data augmentation
methods have shown effectiveness in face related tasks [120, 125]. In this paper, we
aim to address the issue by using synthetic data, as complementary to real data, to
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Figure 2.1: An overview of render pipeline. We manipulate pose, background, occlusion,
and illumination on original 3D models, and then render 3D models into 2D images.

create fully controlled conditions with automatic and error-less annotation. We develop
a synthetic data generator based on 3D face models. The 2D face synthesis process
contains varied viewpoint, scale, illumination, occlusion and background. We manipu-
lated all these features or attributes in 3D scenes, to make the rendered images more
realistic than direct manipulation on 2D. With the help of synthetic data, we are able to
systematically investigate the effects of different features. Then the face detectors are
trained on the combination of real data and synthetic data to address the features. Based
on our experiments, we also identified some potential deficiencies of the current face
detection systems. Our work can also be an example to analyze other detectors.
Our contributions are:

* We provide a 2D face synthetic data generator with manipulated features (on
pose, scale, background, illumination, and occlusion), which enables specified
examinations of face detector performances.

* We conduct detailed analyses between feature and performance, which can be a
guide to compare performances of other face detectors.

e QOur analyses also reveal some weaknesses of the current face detectors and
suggest using synthetic data for future improvement on robustness.

2.2 Related Work

2.2.1 Face detection

Face detection can be considered as a special case of object detection. Two thorough
surveys related to object detection can be found in [80] and [85]. Most face detectors
are designed to address specific characteristics in real-world scenarios, in terms of, for
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2.3. Problem Formalization

example, scale [75, 177, 208, 217, 218], occlusion [53, 190], pose [166] or lighting
condition [221]. A certain face detector may be only suitable for datasets with corre-
sponding characteristics and is almost impossible to be robust against features of all
datasets.

We will briefly discuss several typical detectors and the features they mainly deal
with. To handle large variations of scale, Hybrid Resolutions (HR) face detector is
designed to detect faces with extreme scale by using contextual information and an
image pyramid [81]; Single Stage Headless (SSH) detector [131] is a fast one-step
detector based on scale-invariant design. To detect occluded faces, a local linear
embedding method is used to reduce noise and recover the lost cues from occlusion
in [53]; Face Attention Network [190] uses a special attention network with reduced
background information and data augmentation to address face occlusion.

2.2.2 Face specific data augmentation

Basic geometric and photometric data augmentation methods, like flipping, rotation,
resizing, cropping, color jittering, have been widely used in deep learning based face
applications. Detailed surveys about face specific data augmentation can be found in
[108, 193]. Previous research converges to support the effectiveness of synthetic data in
improving the performance in face related applications [1, 100, 136]. Masi et al. [123]
introduce face appearance variations with pose, shape and expression for effective face
recognition. Lv et al. [120] propose multiple data augmentations for face recognition,
including synthetic variations for hairstyle, glasses, poses and illumination.

Then, the problem shifts to the generation of synthetic face images. Face editing
includes shape morphing [11, 158], relighting [167, 194], pose normalization [77, 209,
225], and expression modification [ 146, 180]. GAN-based methods can provide realistic
results of facial attribute manipulation [26, 163] but is yet bounded with the limitation
of its training images. The training images merely cover a narrow range of variations,
and cause some artifacts in generation.

2.3 Problem Formalization

In order to investigate the influences of object features systematically, we generate
synthetic face data targeting a specific feature for face detectors. In section 2.3.1, we
introduce the influence of several major object features on face detectors. Then we
provide basic information about face detectors in our experiments in section 2.3.2. In
section 2.3.3, we explain how we synthesize face images based on 3D face models.

2.3.1 Challenging object features

We will briefly discuss several features which have major effect on face detection
performance.

Pose could significantly change the appearance of faces. Extreme pose can lead to
heavy occlusion or skewed aspect ratio of face bounding boxes [209].

13



2. Analysis for Object Features and Face Detection Performance

Scale is very challenging to deep network based modern object detectors. For
example, the features between a 10px tall face and a 1000px tall face are essentially
different [81]. Pyramid architecture and multi-scale inference are currently the common
approaches to detect faces of extreme scales [169].

Context information plays a fundamental role in providing the precise location of
faces. Normally, surrounding regions of faces provide complementary information on
object appearance and high-level features [25]. However, faces in unconstrained settings
may be surrounded or occluded by different distracting objects.

Facial occlusion decreases information available for detection and introduces addi-
tional noise. Facial occlusion can be divided into two different categories: landmark
occlusion and heavy occlusion. Landmark occlusion means that only a few landmarks
like eyes or mouths are occluded, while most parts of the faces are still visible. In
contrast, heavy occlusion represents situations where more than half of the face is
missing due to occlusion, image border or extreme pose. It is most challenging when the
occlusion comes from other faces. A detector may identify several partially occluded
faces as one face [53].

Blur and low resolution usually impede face detectors from retrieving available
information. In some practical applications, images may be distorted in collection,
storage, or transmission, leading to degraded quality of images [223]. In some extreme
cases, mere outline of faces can be identified.

2.3.2 Face detectors

We provide an overview about the face detectors in our experiment.

Faster RCNN is the most representative object detector based on a deep network.
However, its initial design does not have additional settings targeted at challenging
features [149] in the face detection task.

Single Stage Headless (SSH) [131] detector is an extremely fast one-step face
detector, designed to be scale invariant. To accelerate the inference process, it has a
light-weighted structure. This strategy jeopardizes the detector’s performance when
confronted with other potential variations.

Hybrid Resolutions (HR) face detector [81] has good performance on tiny face
detection by using wide-range contextual information and testing on multiple resolutions.
Its architecture resembles RPN [149] and uses both feature pyramid and image pyramid.
However, HR face detector is extremely sensitive to tiny distracting objects from the
background. HR also heavily relies on contextual information to locate faces. For faces
with limited information (e.g., heavily occluded, extremely small or blurry), complex
background could hinder precise detection. Even though HR can sometimes perform
well when dealing with blurry or extreme pose, it is insufficiently robust in the detection
of occluded faces, especially when occlusion stems from other faces.

2.3.3 Face synthesis

Here we give a brief introduction on how we rendered images from 3D face models. Our
synthetic data generation is based on a new 3D face dataset called 3DU Face Dataset. It
has 700 3D face mesh models with high-resolution texture of 435 different individuals.
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Feature Faster RCNN SSH HR
landmark occlusion v
complex background v
extreme pose
extreme scale
heavy occlusion
blur
extreme illumination
misleading objects
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Table 2.1: Three advanced face detectors and challenging characteristics they can
handle.
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2. Analysis for Object Features and Face Detection Performance

Some people have multiple records taken at different times. Most models of this dataset
are taken in varying conditions. For future research and applications, each model is
annotated by humans with 50 landmarks.

An overview of our render pipeline can be found in Figure 2.1. The rendering
pipeline is built on Blender. To change the viewpoints, we rotated the model with
different Euler angles with the camera staying in the same position. The parameters
of pitch, yaw and roll are selected randomly within different ranges. For face scale
variation, the distance between camera and face models is selected randomly from
a uniform distribution. The ground truth for face detection is generated from 3D
landmarks. The annotation policy is the same as in Wider Face. Our rendering pipeline
can also be applied on other 3D face models.

In the current research, we consider face occlusion as a crucial factor in face
detection. The common way to add occlusion is to crop face images. However, cropping
reduces the information of faces and cannot provide reasonable noise as in real occlusion
samples. We randomly add different 3D objects like sunglasses, hats, and helmets in the
3D scenes before we start rendering. With the anchoring of landmarks, all the objects
can be placed in a reasonable location to simulate the landmark occlusion. Face region
has been divided into three different parts of head, eye and mouth, to simulate occlusion.
We can generate more than 1000 different combinations of occlusion for each model.

2.4 Experiments

2.4.1 Experimental setup

We conduct experiments to systematically investigate how configuration of data aug-
mentation influences performance of face detection. We test on advanced face detection
benchmarks MAFA, UFDD and Wider Face. The face detection methods include Faster
RCNN, SSH and HR. Despite the common practices of training and testing on the same
datasets, here we first train the face detectors on synthetic data and then test on real data.
We validate on a subset of the real data training part. After comparing the performance
on real data with different rendering parameters, we attain a suitable configuration for
one specific dataset. We use these augmented synthetic data to improve performance on
real data. The metric for all the experiments is AP (average precision). We keep the
original parameters and settings including data augmentation for each detector.

2.4.2 Datasets

We briefly introduce three face detection datasets used in our experiments and their fea-
tures. In Table 2.2, we listed and compared features of these face detection benchmarks,
which are derived from their official introductions. For all three datasets, we follow
official settings for splitting train and test set.

MAFA is a representative dataset of facial occlusion, which is mainly composed of
various level of occlusions [53]. Most informative features from facial attributes are
missing in faces with heavy occlusion. The highly diversified masks which generate the
occlusion can bring in diversified types of noises. To exclude the interference of pose,
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2.4. Experiments

Feature MAFA UFDD Wider
landmark occlusion v v
complex background
extreme pose
extreme scale

heavy occlusion v

blur v

extreme illumination
misleading objects

NN N SENENEN
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Table 2.2: Three face detection benchmarks and their challenging characteristics.

MAFA only includes a narrow range of head poses. Faces are labeled as “Ignore” if
they are very difficult to be detected. In total, MAFA has 30811 images which include
at least one masked face. In order to evaluate the occlusion degree, four major regions
(eyes, nose, mouth and chin) are considered. Depends on the number of facial regions
have been occluded, three occlusion levels are defined, including weak occlusion (1 or
2 regions), medium occlusion (3 regions), and heavy occlusion (4 regions).
Unconstrained Face Detection Dataset (UFDD) contains faces in different weather
conditions (Rain, Snow, and Haze) and other challenging features concerning lens
impediments, motion blur and defocus blur [130]. Additionally, it has a collection of
distracting images to enhance difficulty. In total, it has 6425 images with 10897 face
bounding boxes annotated. For most of previous datasets, each image normally has at
least one annotation for face. These confounding images from UFDD might contain
objects which look similar to human faces such as animal faces or include no faces.
Therefore, UFDD is very good target to fully analyze the robustness of face detectors.
In UFDD, the most challenging part is extreme lighting condition and blur.

Wider Face has been the most demanding benchmark for face detection till now [204].
It includes diverse events with a variety of backgrounds. The massive number of faces
included has extreme poses, exaggerated expressions, heavy occlusion and extreme
lighting conditions. All these features, especially scale, are difficult to handle for most
face detectors. Table 2.3 shows the basic characteristics of faces, irrespective of invalid
faces, in the Wider Face validation partition. Successively, the easy partition only has
large faces; the medium partition additionally contains medium faces; and the hard
partition includes the whole dataset.

Partition Large Medium Tiny
Height  50-400 (96.6%) 30-50 (99%) 10-30 (99%)
Width  20-300 (96.3%) 10-70 (99.7%) 8-20 (95%)
Number 7211 6108 18636

Table 2.3: Face scale information of the validation set in Wider Face. We distinguish
three face categories based on height and width. Proportion information represents the
percentage of faces that fits within the scale interval.
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2. Analysis for Object Features and Face Detection Performance

Feature Faster RCNN SSH HR
landmark occlusion v
complex background v
extreme pose
extreme scale
heavy occlusion
blur
extreme illumination
misleading objects
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Table 2.4: Three advanced face detectors and challenging characteristics they can
handle.

2.5 Experiment Setup

2.5.1 Settings of rendering process

This section is to demonstrate the basic settings of our rendering process. The 3D
models are not changed in terms of shape or texture in experiments. We choose 100
fixed 3D models as experimental subjects and set the default for pitch, roll and yaw
randomly in ranges of (-15, 15), (-15, 15), (-60, 60), respectively. For each face model,
the rotation origin is the center of its landmarks, irrespective of invalid landmarks. All
the face models are aligned by using landmarks with an anchor model. The anchor
model is aligned to the global axis in Blender. Within a fixed range (from 1 to 48 faces),
we randomize the number of faces in each image. The distance between each model
and camera is randomly selected within the range of 0 to 20 meters. The size of the
faces is larger than 10 x 8 pixels. 50 HDR images (no humans) are taken from Shape
Net [19] and used as backgrounds for rendering. These images provide environment
lighting and background variations for the synthetic images. The background dataset
includes both indoor and outdoor scenes. Back face culling is applied to avoid artifacts
in the rendered results.

2.5.2 Settings of face detectors

We provide a summary how face detectors differ in their performances in tackling
different variations in Table 2.4. This information is based on experiments of their
methods. We presume a good detection performance if we manage to fill the gap
between real and synthetic data. There are massive parameters in our rendering pipeline,
it is therefore highly unlikely to find the optimal setting to simulate one specific real
dataset. However, after comparing the performance on real data with different rendering
parameters, we attain a suitable and effective configuration for testing on one specific
dataset. At last, we use these augmented synthetic data to improve the performance on
real data.

We do not employ Faster RCNN or SSH. Faster RCNN is a generic detector without
multi-scale testing, of which the performance can not reflect all the changes in variations.
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Figure 2.3: Performance comparison on the basic settings of our render pipeline. It
includes the effect of training data size on both (a) Wider Face validation set and (b)
MAFA test set. (c) and (d) respectively show the effects of objects and background on
Wider Face validation with HR.

SSH is designed to be a scale-invariant one-step detector, which can handle scale well
but not other variations. For all the following comparison experiments, when we focus
on one variation in the dataset, the rest variations are kept the same.

Different face detectors have their own approaches to augment data, like flipping,
cropping, or transforming. We keep their original operations or hyper-parameters as
much as possible. For all the following experiments with SSH and HR, we deploy on
one single GPU [7]. For Faster RCNN, we use the implementation from [34].

2.6 Evaluation on Object Features

Based on our own rendering pipeline, we are able to generate all kinds of synthetic
datasets with fully controlled configuration. We can investigate in-depth the effect of
various data augmentations. Compared with other detectors, the architecture of HR is
specially designed for face detection. HR would be a suitable option to reveal all the
effects of different data augmentations. The following experiments in this section are all
based on HR. For all experiments, we study one feature at the time. The other features
are kept the same.

2.6.1 Effect of render settings

First, we test some basic settings of our rendering pipeline. We diversify image numbers
to test the influence of training dataset size on performance. As shown in Figure 2.3.(a),
the quantitative increase of synthetic images cannot continuously improve performance.
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Figure 2.4: Performance comparison on other features. Only (b) tests on MAFA test
set, while the remaining are on Wider Face validation set. (a) shows the results after
adding small-portion extreme pose into training dataset; (b) shows the results of adding
different types of occlusion. “w/o Ignored” means face with label “Ignored” are not
included; (c) shows the results of adding occlusion from other faces. (d) shows the
results of adding different noise from down-sampling or up-sampling;

Since the variation in synthetic data are not as much as in real data, simply increasing
synthetic images may lead to over-fit. In the training process, large faces generate
more positive samples than tiny faces. A larger training sample is more helpful for
tiny faces. Due to the fact that most of faces from Wider Face have extreme scale, we
also test on MAFA with different training dataset sizes in Figure 2.3.(b). It shows that
the performances on both occluded faces and entire dataset (including occluded and
unoccluded faces) saturate after adding more training images. Moreover, background
is crucial for object detection tasks. HDR images provide higher resolution and less
sharp results than real images. HDR images also have their own bias in respect to
other images; the quantitative increase of HDR images does not improve performance
constantly (see Figure 2.3.(d)). In Figure 2.3.(c), we further investigate the influence
of the number of 3D objects. It shows that the number of 3D models does not strongly
influence the performance, probably because of potential bias of our 3D models.

2.6.2 Effect of pose

We investigate the effect of head pose on Wider Face because it has a wide range of
pose. To this end, we set different ranges for pitch, roll and yaw. As shown in Figure
2.2, a narrow range of head pose provides better performance. Despite some extremes,
most faces only have a small range of pose. When head pose becomes too extreme,
performance starts degrading. Then we add different portions of face images with
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extreme orientation to the training dataset in Figure 2.4 (a). A lower ratio of extreme
data boosts the performance on “easy” and “medium” faces.

2.6.3 Effect of occlusion

We test two different kinds of face occlusion respectively. The first kind is from
other objects except faces. MAFA concentrates on occluded face images, so we test
on MAFA test set in three different settings: baseline condition with no occlusion,
landmark occlusion setting, and mixed occlusion setting (including landmark and heavy
occlusion). As shown in Figure 2.4 (b), the performance on MAFA test set improves
drastically after adding occlusion in the synthetic training dataset. HR becomes more
robust after training on synthetic faces with landmark and heavy occlusions. Some
occlusion examples can be found in Figure 2.1.

The second kind of occlusion is from other faces or human body parts. We choose
Wider Face validation set to test the effect. This is because many images in Wider Face
are group pictures, and some image may have hundreds of overlapped faces. We only
set the threshold for the overlap between synthetic faces, to avoid other large faces to
cover the tiny faces. As shown in Figure 2.4 (c), after adding occlusion from other faces,
the performance of HR for hard level in Wider validation set improves substantially.

2.6.4 Effect of noise

Every benchmark has its own configurations when established. Wider Face dataset has
a bias during its collection process: the original images downloaded from search engine
are resized to one predetermined width of 1024 pixels, which causes every image to
have noise from down-sampling or up-sampling. Therefore, we first render images with
multiple resolutions (as Set A, B and C as below) , and then re-size them to one fixed
resolution (1024 x768). Set A includes various high-resolution images (4096, 3072,
2048). Set B has various high- and low-resolution images (4096, 3072, 2048, 512, 256,
128). And Set C has various low-resolution images (512, 256, 128). We demonstrate
the influence of noise at all the difficulty levels of Wider Face in Figure 2.4 (d). The
performance at all the difficulty levels of Wider Face has been improved, especially for
tiny faces. In general, set A achieved the best performance because its pattern resembles
tiny faces in Wider Face.

2.7 Improve Performance through Synthetic Data

In this part, we show how to use our synthetic data to improve performance on real
datasets. We train on a combination of Wider Face and synthetic data and then test on
another dataset. Visualization of our detection results can be found in Figure 2.6.

2.7.1 Performance comparison on synthetic data

Before we start using synthetic data to complement real data, we first investigate the
performance of different sets of synthetic data. The configurations for each set are as
follows: s7 is our basic settings for rendering with light occlusion. s, combines s; with
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Figure 2.5: Performance comparison on different sizes of synthetic data in training on
MAFA test set with different detectors. “w/o Ignored” means face with label “Ignored”
are not included;

extra occlusion from other faces in the rendering process. s3 adds additional blurry
results from down-sampled high resolution images into s5. In Table 2.5, we compare
the performance of three synthetic data sets on Wider Face validation set. These
three synthetic datasets si, ss, s3 are combined with real data to improve detection
performance for UFDD and Wider Face respectively in Section 2.7.3 and 2.7.4.

Set Easy Medium Hard
s1 0.795 0.742  0.502
sy 0.818 0.774  0.53

s3 0.828 0.796  0.627

Table 2.5: Average precision from HR trained on different sets of synthetic data. These
three sets are combined with real data to improve detectors’ performance.

2.7.2 Evaluation on MAFA

We only use mixed face occlusion (that is landmark and heavy occlusion as in Section
2.6). The synthetic images for data augmentation follow the setting of MAFA training
set as closely as possible. We presume the training data size would have an effect on the
performance. As shown in Figure 2.5, the performances of different detectors improve
to some extent with the increase of synthetic data. We do note that when we add more
synthetic data, the performance saturates and drops, however. Our tentative explanation
is the inherent bias in our synthetic data.
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expression blur pose scale

Figure 2.6: Qualitative results on different features of a real dataset. We visualize
examples of each feature. The green bounding boxes are ground truth. The bounding
boxes with other colors are predictions with different confidence intervals.

2.7.3 Evaluation on UFDD

We show the influence of our data augmentation in Table 2.6. Three different synthetic
sets are combined with real data to improve detectors’ performance. “r”” denotes the
detector is trained on real data. “r + s1”” denotes the detector is trained on a combination
of real data and synthetic data set s;. s; is our basic settings for rendering with light
occlusion. so combines s; with extra occlusion from other faces in the render process.
s3 adds additional blurry results from down-sampled high resolution images into Ss.
After merging synthetic data and real data together, the performance of Faster RCNN,
which was trained on real data, has been improved significantly on r + s; and r + ss.
Given that Faster RCNN was not trained on different scales, the noise of s3 impedes it
performance. As for SSH, its architecture and parameters heavily relies on Wider Face.
The features in UFDD is too difficult for its light-weight structure. Unsurprisingly, its
performance becomes saturated after being trained on real data. After adding synthetic
data, its performance is even worse than Faster RCNN. Faces in UFDD are not very
challenging to HR; the performance therefore only changes slightly after using our data
augmentation.

Detectors r r+S81 r+So T+ S3
Faster RCNN 0.64 0.745 0.742 0.64
SSH 0.681 0.682 0.672 0.674

HR 0.721 0.733 0.721 0.736

Table 2.6: Performance comparison on different data augmentations on UFDD test set
with different detectors.
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Figure 2.7: Performance comparison on different data augmentations on Wider Face
validation set with different detectors.

2.7.4 Evaluation on Wider Face

We still use the same setting as in Section 2.6 to perform data augmentation for Wider
Face. The performance comparisons are showed in Figure 2.7. Faster RCNN is a
generic object detector without multi-scale inference, so it is supposed to generate
fewer predictions than HR and SSH. After we add synthetic data, the performance
substantially improves on all difficult levels. The performances of HR and SSH nearly
saturate after being trained on real data. Although their architectures aimed at Wider
Face dataset, our synthetic data can still improve performance to a certain extent.

2.8 Analysis

2.8.1 Analysis of object features

In general, proper amount of well-structured synthetic data can be a good complement
to real data in training face detectors. The settings of synthetic data need to be similar
with configurations of real data. If targeting at a single feature, the increase of data
quantity cannot yield a consistent improvement on performances. For a more complex
dataset like Wider Face, synthetic face images are generated with a comprehensive
combination of several features.

The advantage of synthetic data is that the variations in dataset can be fully controlled
in different practical situations. The dataset could be adjusted depending on specific
requirements. Although, admittedly, there is always a domain gap between synthetic
data and real data, synthetic data can provide a large-scale dataset with annotation
conveniently and precisely. Our results on multiple challenging benchmarks with
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different advanced detectors highlight the applicability of synthetic data as complement
to real data, to equip face detectors against various features.

2.8.2 Analysis of face detectors

Based on our detection results, we analyze the performance of three detectors respec-
tively. Faster RCNN is an object, instead of face, detector. It does not adjust settings
of anchors for any face detection benchmarks, and has much fewer predictions with-
out multi-scale inference. Despite that, our synthetic data augmentation substantially
improves its performance on multiple challenging datasets.

SSH is the representative of one-step face detector. Even though SSH is a face-
targeted detector, adding our synthetic data augmentation cannot help it outperform
Faster RCNN in most detection tasks except in hard level of Wider Face. Specialized
in scale, SSH sometimes has imperfect performance when encountering other features.
Detectors have a trade-off between speed and performance. SSH pursues fast speed in
inference process so that its light weight architecture cannot handle other features.

Of crucial importance, although HR face detector already has excellent performance
in terms of all kinds of features, our synthetic data still boosts its performance. However,
HR has a drawback that is extremely sensitive to tiny distracting objects given its
tiny-face-targeted architecture. In general, HR generates more false positives than other
detectors. The design of HR restricts the generalization on normal faces.

2.8.3 Analysis of false positives

False positive is a primary factor that jeopardizes performance. In Figure 2.8, we plot
some false positive examples from our detection results. There are two major sources
of false positive in our detection results.

The first source is annotation. Different datasets have their own annotation policy.
This deviation may turn our reasonable predictions into false positives. For example,
annotation of occluded faces in Wider Face estimated the region of entire faces (Figure
2.8 (¢)). In comparison, UFDD often annotates the visible part of the occluded faces
(Figure 2.8 (b)), while MAFA uses square annotation, which may contain background
information surrounding faces (Figure 2.8 (a)). Moreover, a human annotator sometimes
cannot annotate all the tiny and blurry faces in the background. In Figure 2.8 (f), for
example, there are only three annotations for nearly a hundred faces. We detected more
blurry and tiny faces than those annotated.

The second source of false positives is misleading objects, such as round-shaped
objects and human body parts. Because real data has much more diverse and complex
background than synthetic data. All of our synthetic images are rendered from 3D face
models. Most 3D face models only depict the upper part of human bodies. Therefore,
our rendering results are inherently unrepresentative of other human body parts or
clothes. As a result, other human body parts (see Figure 2.8 (e)) and some accessories
from clothes would become a major source of false positives.
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) | ®

Figure 2.8: False positive examples of our detection results. The green bounding boxes
are ground truth. The bounding boxes with other colors are predictions with different
confidence intervals, and the red bounding boxes are false negative examples. (a) is a
square annotation example from MAFA test set. (b) and (c) are occlusion annotations
respectively in UFDD and Wider Face. (f) only has three annotations in ground truth
but actually has way more unlabeled faces. Please zoom in to see some small detections.
(d), (e) and (g) are some examples from real dataset.
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2.9 Conclusion

In this chapter, we proposed an experimental comparison of main characteristics that in-
fluence face detection performance. We customized synthetic dataset to address specific
types of features (scale, pose, occlusion, blur, etc.), and systematically investigated the
influence of different features on face detection performance. Through our analyses, we
also identified some potential deficiencies of the current face detection architectures. To
conclude, there are often challenging features in real-world face detection. By providing
an overview of the relationship between object features and face detection performances,
we hope to assist researchers to choose more appropriate synthetic data when addressing
challenging real-life variations.

27






Pose Invariant Age Estimation of Face
Images in-the-wild

3.1 Introduction

Age estimation is an important topic in computer vision with various applications
in areas of, for example, human-computer interaction [68], surveillance and social
networking sites. Aging is an irreversible process that causes both appearance and
geometrical variations on human faces [5]. Facial aging process can be both affected by
personal (e.g., mental/physical states) and situational factors (e.g., living environment).

Age estimation tasks can be classified into two categories: biological and apparent
age estimation. Traditional age estimation for still images widely employs biologically
inspired features [66, 103], while estimation using videos often utilizes handcrafted
features and temporal dynamics [40, 42].

In recent years, deep neural network based methods have achieved remarkable
performances in multiple face-related tasks. Despite the advancement of deep learning
based age estimation, the application of these methods in unconstrained scenarios is
still far from ideal. Image variations like extreme occlusion, illumination and blur
may negatively influence the performance of these age estimation methods. Moreover,
most of the age estimation algorithms focus on still images. Only a limited number of
methods are applied to face videos. One of the main reasons is the lack of large-scale
face video datasets with age annotation.

In this paper, we introduce a new video dataset named UvAge, which contains face
videos in-the-wild for the purpose of age estimation. This dataset comprises videos of
celebrities from the Internet. Information extracted from Wikipedia provides us with
the identity, age, gender and ethnicity labels for each video. Compared with previous
single-setting video datasets (e.g., UvA-Nemo dataset from [41], the newly created
dataset is a one-of-a-kind dataset containing recordings in-the-wild for a substantial
variety of scenarios. In addition to this new dataset, we also propose a new method for
age estimation of face videos.

Our method is using a pose invariant representation. To obtain such a representation,
a face uwv texture representation is computed from the video frames [48], which results
in a pose invariant texture image containing the estimated frontal view of the face. As
head pose changes may cause self-occlusion, the uv map may be negatively affected by
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Figure 3.1: Overview of our proposed method. The original frames are obtained from
the video segments. 3D face uv texture is retrieved from reconstruction pipeline. Input
of the network is the self-occluded uv texture. Age is predicted based on the completed
uw texture from inpainting module

missing face parts. To address this problem, we use a Wasserstein GAN based network
to complete the missing parts of the uv texture map. Compared to standard inpainting
tasks, the occlusion-included missing face regions are highly irregular. Therefore, the
GAN based approach (AgeGAN) learns to complete missing regions and estimates the
age at the same time.

Our contributions are:

* The creation of the UvAge Dataset, the largest video dataset containing face
videos in-the-wild with identity, age, gender, ethnicity labels for each video.

* A new GAN-based approach (AgeGAN) to complete the facial uv texture and to
estimate the age.

* Our proposed method outperforms state-of-the-art age estimation methods on the
UvAge dataset.

3.2 Related Work

3.2.1 Age datasets

Deep learning for age estimation heavily depends on the availability of large-scale
age datasets with annotation. A number of early datasets like the Productive Aging
Laboratory (PAL) database [129], Adience [46], VADANA [172], Gallagher group
photos [51] and PubFig [101] categorize images into different age groups. In the
FG-NET dataset [140], each subject has more than 10 photos taken at different ages.
MORPH-II [150] is one of the largest longitudinal face image dataset. Cross-Age
Celebrity Dataset (CACD) [23] is a cross-age dataset of celebrities. IMDB-WIKI dataset
[153] is composed of celebrities’ images from IMDB and Wikipedia. CLAP2016 [47]
is collected via crowd sourcing, which provides the mean age and variance (considered
as ground truth) for each image. The MegaAge [219] dataset used the FG-NET data
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as reference to label images from other large scale face datasets. AFAD [135] dataset
focused on Asian people age to mitigate ethnicity homogeneity in existing datasets. FIA
[59] database was created with subjects’ age and gender while only a limited number of
participants and a narrow range of ages are avaliable. AGFW-v2 [45] is an extension of
AGFW [134], which contains still images and 100 videos of celebrities. The UvA-Nemo
dataset is developed to analyze the temporal dynamics of spontaneous/pose smile videos
for different ages [41], collected under constrained conditions (regarding camera setting,
face pose and illumination). When face video datasets are recorded under constrained
(vs. unconstrained) settings, it is more feasible for methods to concentrate on age
related features, which, however, fails to capture the influence of other variations (e.g.,
occlusion, pose, blur) in real-world scenarios. Moreover, these previous video datasets
are largely confined to the collection policies with constraints on ethnicity, occupation
and living environment in subjects’ aging process.

3.2.2 Age estimation

Systematical reviews on age estimation can be found in [51, 140, 148]. Most age
estimation methods are based on still images. Regression based methods are the most
straightforward approach to estimate ages [116], while they usually do not adopt the
ordinal property embedded in the age information. Ranking based approaches instead
tend to make use of informative ordinal relationship between age labels [20, 21, 24]. In
order to adapt to the recent progress of deep neural network, some methods deem age
estimation as classification task by considering age or age groups as independent classes
[105]. Label distribution learning (LDL) is an alternative to the classification-based
age estimation problem [55, 56, 206]. Compared to the standard classification problem,
age labels are ordinal and comparable. LDL based methods are capable of predicting a
range with different confidence levels instead of a single value. [139] introduced the
mean-variance loss to provide concentrated estimation. [110] add bridge connections
into a random forest model to enforce the continuity among neighbor nodes of trees.
[216] proposes a light-weighted and effective age estimation method based on cascade
network.

Nonetheless, only a few methods uses videos for age estimation till now. [67] used
local binary features to extract spatio-temporal information of faces in videos. [144]
combined spatial and temporal features in age estimation of videos. [40, 42] investigated
aging characteristics in facial dynamics.

3.2.3 Face attributes completion and manipulation

Most completion approaches rely on extracted features to search for patches from
context and then synthesize the contents to the matched patches. This strategy performs
particularly well for background inpainting. Performance of these approaches are
bounded to existing features of the known regions. However, similar patterns may not
always appear in the original partial images when completing missing face images.
Inpainting for faces is extremely challenging when the missing attribute is unique and
does not replicate any part of the background. [113] directly generates contents to
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complete missing regions for faces instead of searching relevant patches. [39] proposes
a GAN based approach to complete missing parts in facial uv texture.

Face attributes manipulation is a promising direction for generative methods. Effec-
tive manipulation on facial attributes can be considered as data augmentation to improve
the performance of face-related tasks. [196] proposes a conditional GAN-based method
with an identity preserved module to simulate the aging process. [203] used a pyramid
architecture of GAN to generate face age progression. [138] considered face aging
problem as an image style transfer task. [45] proposed a deep reinforce learning based
approach to generate facial age progressing effects in videos.

3.3 The UvAge dataset

3.3.1 Collection

To acquire biological ages of subjects, our approach focuses on videos of celebrities. It
is generally difficult to obtain accurate age information of people from videos because it
is almost impossible to obtain the precise recording time of a specific video or people’s
birth information. To solve this problem, we collected videos of celebrities which
were recorded in identifiable events. First, from Wikipedia pages, we selected a vast
number of traceable events of different topics (e.g World Cup, Academy awards, G20
summit). The Wikipedia pages of selected events provide name lists of the related
celebrities. From the celebrities’ own Wikipedia pages subsequently, we obtained their
respective birth information. Accordingly, their age information is inferred from the
time of the event and their year of birth. Finally, videos are collected from the Internet
using key words like “2018 World Cup Luka Modri¢ interview”, “2016 G20 Hangzhou
summit Barack Obama speech”. After the raw videos are collected, irrelevant videos
are manually removed. Each video is segmented into separate video shots, while each
segment captures a single person. The final dataset contains persons with different
professions (e.g., politicians, entrepreneurs, sportsman, actors, and the like).

To better understand the influence of extreme cases on the performance of age
estimation, hard videos are identified with extreme imaging conditions like image blur,
extreme scale and strong illumination. The number of videos for each celebrity is
not constrained. For each video segment, the following labels are provided: identity,
biological age, gender, ethnicity and occupation.

3.3.2 Statistics

The UvAge dataset consists of 6898 video segments from 516 subjects. There are
2176 videos of 212 female subjects. We split the dataset into 396, 65 and 55 subjects
for training, validation and testing respectively. We used the pre-trained weights
from IMDB-WIKI to guide our splitting process. Specific information about different
partitions are presented in Table 3.2. The video distribution for each individual was not
strictly balanced due to the fact that available videos of each celebrity on the Internet
were considerably different. We try to balance all the partitions in subjects, videos and
performance domains. The splitting process followed the subject-exclusive protocol.
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Dataset MMI [187] CMU FIA [59] UvA-Nemo [41] UvAge

subject number 25 180 400 516
video number 2005 6470 1240 6898
age range 20-32 18-57 8-76 16-83
illumination constrained constrained constrained  unconstrained
pose constrained unconstrained mostly frontal unconstrained
ethnicity - - mostly Caucasian all
occupation no no no yes

Table 3.1: Comparison among different face video datasets with age annotation. Here
we compare the proposed UvAge dataset with previous datasets on crucial indicators.

Figure 3.2: Age distribution of UvAge dataset. The horizontal axis is age. The vertical
axis is the number of subjects. Blue bars represent males and red bars represent females.

3.3.3 Comparison with existing datasets

Most face video datasets with age annotation are not designed for age estimation;
Therefore, they often fail to consider all the aspects that could affect the age estimation
performance. We compare UvAge dataset with previous datasets in Table 3.1. In
comparison with other face age video datasets like MMI Facial Expression Database
[187] and CMU Face In Action (FIA) [59] database, our dataset includes a larger
diversity of subjects and a wider age range. The video source and age labeling process
of AGFW-v2 [45] video subset is quite similar to our collection process. However, their
data (with 100 videos) is restricted in investigating the influence of different variations.
Another dataset UvA-Nemo is primarily targeted at collecting facial expression videos.
Therefore, the videos of UvA-Nemo dataset are recorded under constrained lighting
conditions with high resolution cameras. The poses of subjects are mostly frontal and
do not change much across frames. Due to its recording policy, participants comprising
UvA-Nemo are largely homogeneous with relatively low inter-subject variation.

3.4 Our Method

Our age estimation method aims to provide a pose-invariant age estimation pipeline.
Pose variation could significantly change the appearance of faces and add extra occlusion.
Compared with 2D images, 3D face uv textures are insusceptible to face orientation,
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which can considerably attenuate the interference of pose.

PRNet [48] is used to reconstruct the face uwv texture to represent the 2D faces from
the original frames. uv texture assigns 3D texture into 2D space with universal per-pixel
alignment for all textures. A common approach to create uv texture is to unwrap 3D
texture in a cylindrical manner. Each vertex in a 3D shape has a corresponding 2D
texture coordinate. The reconstructed uv texture is partially invisible due to the effect of
self-occlusion from the face itself. We assume that a completed uv texture map provides
better visual features for age estimation. Using a wv texture map as input of a network
facilitates concentration on the feature associated with ages and reduces the influence
of pose variation. We presume that the central region of the face uv texture map is the
most influential feature for ages. Thus, we use the cropped face uv in our experiments.

3.4.1 Inpainting module

The application of inpainting in real-world scenarios can be extremely challenging.
While most previous inpainting networks train on large-scale datasets with synthesized
missing regions, of which the size and shape of missing regions are controllable, the
shape of missing regions in our task is highly irregular, more so when some uv textures
have more than 50% parts missing. Moreover, the ground truth of synthesized missing
regions is available so that the network can be forced to learn how to extract the
background to fill in the missing parts. In contrast, the uv textures of faces in original
frames are not available in our task. Therefore, we need a stable inpainting network as
basic architecture.

We use a modified Wasserstein GAN-based inpainting network from [211] to com-
plete the missing part in face uv texture. It is a coarse-to-fine network achieving good
results on different inpainting tasks with regular shape masks. A binary mask image M
is used to represent the missing region. The value is O for the missing pixels and 1 for
the rest. The inpainting network is pre-trained on a subset of uvdb dataset [39] with an
irregular shape mask to contract the convergence progress. The inpainting output is

Tyen = Iopi % M + Ippeq * (1 — M). 3.1)

where 1,,,.; is the original input uv image, I},4 is the output from the inpainting network,
and I, is the final uv texture for predicting ages. IV denotes the batch size.

In order to complete large missing regions, we also introduce symmetry loss on
completed images. Human faces share horizontal features. Therefore, we enforce the
generated part to resemble the symmetrical part horizontally. As shown in equation
3.2, If1;p is the horizontally flipped version of I,,,; and I, is the output image from
the inpainting network. Total variational loss [92] is also added into the final loss to
improve the quality of generated images.

1
Loym = w7 1M * (Lyiip — Igen)ll2- (3.2)

3.4.2 Age prediction module

The age prediction module of our architecture is adapted from VGG16 [168]. Similar to
[139], the age loss function has three parts: softmax loss, mean loss and variance loss.
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Normal classification task would penalize all the prediction values equivalently except
for the ground truth. We additionally penalize the mean and variance of predicted age
distribution, which can lead the network to output a compact age prediction distribution
towards the ground truth. Age loss is added to the generator part of the total loss
function. Age is predicted based on the completed uv texture map.

The mean and variance of the predicted distribution from network is calculated by
equations 3.3. y; € {1,2,...K} denotes the ground truth age for each input image,
J € {1,2,..K} is the age label and p; ; is the probability of input image ¢ belonging to
class j.

K K
Yi = Zj *Pig, vary = Zpi,j * (9i — yz‘)2~ (3.3)
j=1

j=1

Mean loss and variance loss are further obtained by equations 3.4 and 3.5, respec-
tively.

1 N
Lmean = %F Yi — Yi 2, 3.4
N 2 (Ui — ys) (3.4)
1 N
Luvar = ;vari. (3.5)

Our loss function for the age prediction task is in equation 3.6.
Lage = MLes + A2 Limean + A3Lyar- (36)

In equation 3.7, L« is the final loss function of the generator. Ly is the WGAN-
GP loss [64].

Lg=Lw_g+ Lage + >\4Lsym + A5 L. (37)

3.5 Experiments

3.5.1 Implementation details

We use the Dlib frontal face detector to obtain a face bounding box for each frame. The
side length of the bounding box is extended by 20% before inputting it to the network.
For our AgeGAN, the input size of the cropped wv is 192 * 192. The mask image
has the same shape as the cropped uv. The subset of uvdb for pre-training is 2000
images. The parameters for our loss function are given by A1 = 10, Ao = 2, A3 = 0.05,
M = le™®, A5 = le~*. The learning rate is 0.0001. The batch size is 16. The age
prediction module uses pretrained models on Imagenet.
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Train Validation Test

Subjects number 396 65 55
Video number 5469 712 717
MAE 9.23 9.01 9.99

Table 3.2: Here we compare some basic information between different partitions of
UvAge dataset. The MAE (mean average error) is from pretrained weights on IMDB-
WIKI.

Methods ~ Valid Test
DEX [153] 10.49 8.39
SSR-Net [205] 9.18 7.71
MV [139] 8.83 6.65
DRF [164] 7.57 6.15
Ours 7.45 5.82

Table 3.3: Comparison between the different methods. Here we compare our method
with other age estimation architectures.

3.5.2 Comparision with other methods

For all the following experiments, we use the Mean Absolute Error (MAE; unit: year)
to measure the performance of the age estimation methods. This is the average of the
absolute deviation between the prediction and the ground truth age.

We train and evaluate our method on UvAge dataset. To focus on the most rep-
resentative feature of age estimation, we crop the central region from the original uv
texture. Random noise is added to replace the missing part. Some irregular masks are
then selected from other real partial wv’s to simulate the missing effect. The missing
region in each mask image or input uv image is not allowed to be larger than 50%.

The performance comparison of the different age estimation methods is shown in
Table 3.5.2. We report performance on both validation and test set of UvAge dataset. All
experiments are based on the same split of the UvAge dataset. We compare our method
with DEX [153], SSR-Net [205], DRF [164, 165] and MV [139]. All the methods are
using pretrained weights from ImageNet. The performance of SSR-Net is slightly worse
than DRF and MV. The architecture of SSR-Net avoids large amount of neurons and
leads to a more compact model. However, the light-weight structure may not be robust
enough to handle the challenging variations in UvAge dataset. DRF uses a VGG based
random forest architecture for age estimation. The convergence of both the backbone
architecture and the random forest method is crucial to the final performance.

Compared to other methods, our method facilitates improved accuracy in age
estimation. A completed and frontal uv texture can help the network to retrieve the
most influential feature for age estimation. Our method is robust to the influence of
pose changes.
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Figure 3.3: Inpainting results from our method. The first row contains the self-occluded
uv textures and the second row shows the inpainted results.

Methods DEX DRF Ours
MAE 4.785 4.610 4.53

Table 3.4: We compare our approach to other age estimation methods on CACD test
subset.

3.5.3 Ablation study

To further analyze the improvement of the proposed method, we conduct more exper-
iments as listed in Table 3.5. We remove the inpainting module from our method to
examine the effect of simply training on cropped uv images. It shows that training on
completed uv images is better than training on self-occluded uv images. The inpainting
module generates more useful information for age estimation.

3.5.4 Evaluation on CACD

We run additional experiments on Cross-Age Celebrity Dataset (CACD) [23] dataset.
The purpose of this dataset to collect face age images with large gaps. Compared to
other existing dataset, age gaps from the same subject are larger. Images from CACD
are collected based on images from Internet, it contains some noisy images. We train our
age estimation pipeline on reconstructed uv textures from CACD train subset. In Table
3.4, we show the performance comparison on CACD test subeset with other methods.

Train set  Valid Test
Cropuvs ~ 9.90 7.59
Completed uvs 7.45 5.82

Table 3.5: Comparison of different training settings.
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3.5.5 Quantitative analysis

To investigate the performance on extreme challenging cases, we select all the images
with a MAE larger than 20 years from our experiment results. Most of these poor
predictions are images of senior people. The network tends to give younger predictions
for these individuals. The UvAge dataset follows a subject-exclusive protocol. For some
large age label (larger than 70), only a few individuals are included. Due to personal
and situational factors, each individual’s aging progress could be significantly different
from others.

3.5.6 Qualitative analysis
Face completion

In Figure 3.3, we plot a number of results for our inpainting process. The first row
contains the self-occluded wv textures and the second row is the result after inpainting.
The missing regions for face textures are irregular shapes. Generally, the missing part
in the central region of faces is better recovered by the inpainting network. Local face
attributes like nose or mouth can be inpainted in a reasonable way. Some artifacts
are found around the boundary of missing regions. There are also some failing cases
when missing regions on faces are too extreme. The network cannot extract enough
information from the background and may add some background noise to the missing
part.

Age estimation

In Figure 3.4, we plot a number of original 2D frames with their predictions and ground
truth. Generally, the hard cases are from two categories: imaging variation and personal
factor. Imaging variation like blur or extreme illumination can impact every step in our
method.

As for personal factors, human faces share some common features for different
ages. However, the aging process for each person can be different. Even people of the
same age could have quite different appearance. These effects are caused by personal or
situational factors. Additionally, makeup is negatively influencing the age estimation
pipeline.

3.6 Conclusion

In this chapter, we introduced the largest in-the-wild video dataset for age estimation.
It contains unconstrained videos from celebrities in different events. To make age
prediction more robust against pose variation, face uv textures are reconstructed from
the 2D frames of videos. We provide a W-GAN based approach (AgeGAN) to simulta-
neously estimate the real age and complete the partial uv textures. Serial experiments
demonstrate the effectiveness of our proposed method.
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82 (65)
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56 (39) 82 (52) 71 (50) 70 (57) 76 (54)

Figure 3.4: Hard video examples from UvAge Dataset. We plot the face region which
is cropped from original frames. The numbers below each image show the ground-truth
and prediction, i.e., ground-truth age (estimated age).
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MMD based Discriminative Learning for
Face Forgery Detection

4.1 Introduction

With the rapid development of face manipulation and generation, more and more photo-
realistic applications have emerged. These modified images or videos are commonly
known as deep fakes [152]. Even human experts find it difficult to make a distinction
between pristine and manipulated facial images. Different generative methods exist
nowadays to produce manipulated images and videos. In fact, it’s easy to generate
new types of synthetic face data by simply changing the architectural design or hyper
parameters. Attackers don’t need to have profound knowledge about the generation
process of deep fake (face) attacks [3]. Therefore, it is of crucial importance to develop
robust and accurate methods to detect manipulated face images.

Face forensic detection is to distinguish between manipulated and pristine face
images. Using the same pair of subjects, different manipulation methods may generate
significantly different outcomes (see Figure 4.1). If the same modification method is
applied on different pairs of data, the results can have quite diverse artifacts due to
the variations in pose, lighting, or ethnicity. Because these artifacts do not exist in all
samples, simple artifacts-based detection systems are not sufficiently robust to unseen
artifacts in the test set. Other methods choose to exploit cues which are specific for the
generative network at hand [191, 212]. When the dataset is a combination of multiple
domains of deep fake data like FaceForensics++, each category of manipulated face
images can be a different domain compared to the rest of the data. Performance may be
negatively affected by this cross-domain mismatch. In summary, the major challenges
of face forensics detection are: 1) The difference among positive and negative samples
is much smaller than the difference among positive examples. 2) The artifacts including
imaging variations and face attributes do not persist across all generated results for a
single generation method.

Our paper focuses on detecting manipulated face images which are produced by
generative methods based on neural networks. To distinguish real and fake face images
is equivalent to performance evaluations of different generative methods. To this end,
the maximum mean discrepancy (MMD) is used to measure different properties and to
analyze the performance of different generative adversarial networks [202]. The face
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99 9e®

Pristine FS DF F2F NT

Figure 4.1: Visualization of a number of samples from FaceForensics++. The first row
shows pristine and generated face images and the second row contains face masks used
to add the modifications. “DF”: “DeepFakes”; “NT”: “Neural Textures”; “FS”: “Face
Swap”; “F2F”: “Face2Face”. Although NT and F2F share the same face mask, NT only
modifies the region around the mouth.

manipulation process requires a pair of faces from source and target subjects. This
process resembles the neural style transfer operation between content and reference
images [52]. The final results are contingent on the source and target images. Inspired
by [114], we use a MMD loss to align the extracted features from different distributions.
A triplet loss is added to maximize the distance between real and fake samples and to
minimize the discrepancies among positive samples. Center loss is further integrated to
enhance the generalization ability. In order to fully investigate the performance of the
proposed method, we evaluate our method on several deep fake benchmarks: DF-TIMIT
[99], UADFV [111], Celeb-DF [115], and FaceForensics++ [152].
Our main contributions are:

* We propose a deep network based on a joint supervision framework to detect
manipulated face images.

* We systematically examine the effect of style transfer loss on the performance of
face forgery detection.

* The proposed method achieves the overall best performance on different deep
fake benchmarks.

4.2 Related Work

4.2.1 Face manipulation methods

In general, face manipulation methods can be classified into two categories: facial
reenactment and identity modification [152]. Deep fake has become the name for all
face modification methods. However, it is originally a specific approach based on an
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auto-encoder architecture. Face swap represents methods that use information of 3D
face models to assist the reconstructing process. Face2Face [180] is a facial reenactment
framework that transfers the expressions of a source video to a target video while
maintaining the identity of the target person. NeuralTextures [181] is a GAN-based
rendering approach which is applied to the transformation of facial expressions between
faces.

4.2.2 Face forgery detection

A survey of face forensics detection can be found in [184]. Several methods are proposed
to detect manipulated faces [28, 36, 147, 192]. While previous literature often relies on
hand-crafted features, more and more ConvNet-based methods are proposed. There are
two main directions to detect face forgery.

The most straightforward approach is data-driven. Forensic transfer [31] uses the
features learned from face forensics to adapt to new domains. [132, 173] combine
forgery detection and location simultaneously. [87] uses a modified semantic segmen-
tation architecture to detect manipulated regions. Peng et al. [222] provide a two
stream network to detect tampered faces. Shruti et al. [3] concentrate on detecting fake
videos of celebrities. Ghazal et al. [128] proposes a deep network based image forgery
detection framework using full-resolution information. Ekraam et al. [155] propose a
recurrent model to include temporal information. Irene et al. [4] propose an optical flow
based CNN for deep fake video detection.

Another category of deep network-based methods is to capture features from the
generation process. The features include artifacts or cues introduced by the network
[102]. The Face Warping Artifacts (FWA) exploit post processing artifacts in generated
videos [111]. Falko et al. [126] use visual artifacts around the face region to detect
manipulated videos. [133] proposes a capsule network based method to detect a wide
range of forged images and videos. Xin et al. [207] propose a fake video detection
method based on inconsistencies between head poses. [18, 37] exploit the effect of
illumination. [191] monitors neuron behavior to detect synthetic face images. [212]
uses fingerprints from generative adversarial networks to achieve face forensic detection.
And [109] proposes a framework based on detecting noise from blending methods.

4.2.3 Domain adaptation

Domain adaptation has been widely used in face-related applications. It aims to transfer
features from a source to a target domain. The problem is how to measure and minimize
the difference between source and target distributions. Several deep domain generaliza-
tion methods are proposed [106, 186] to improve the generalization ability. Rui et al.
[160] propose a multi-adversarial based deep domain generalization with a triplet con-
straint and depth estimation to handle face anti-spoofing. Maximum mean discrepancy
(MMD) [62] is a discrepancy metric to measure the difference in a Reproducing Kernel
Hilbert Space. [107] uses MMD-based adversarial learning to align multiple source
domains with a prior distribution. [114] considers neural style transfer as a domain
adaptation task and theoretically analyzes the effect of the MMD loss.
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Figure 4.2: Overview of the proposed method. Inputs of the network are frames of
manipulated face videos. A deep network is used to extract features. Here we use the
cross-entropy loss for binary classification. A MMD loss is added to learn a generalized
feature space for different domains. Moreover, the triplet and center losses are integrated
to provide a discriminative embedding.

4.3 Method

4.3.1 Overview

Most current forensic detection approaches fail to address unique issues in face ma-
nipulation results. The learned features may not generalize well to unseen deep fake
samples. Some approaches choose to extract features from the modification process
(e.g., detecting artifacts in manipulated results). Nevertheless, artifacts are dependent on
the discrepancy between source and target face images. The discrepancy may originate
from differences in head pose, occlusion, illumination, or ethnicity. Therefore, artifacts
may differ depending on the discrepancies between source and target face images.
Other methods choose to exploit characteristic cues induced by different generative
models. However, any minor changes in the architecture or hyper-parameter setting
may negatively influence the forgery detection performance. In contrast, our aim is a
generic approach to forgery detection.

To this end, we propose a ConvNet-based discriminative learning model to detect
forgery faces. A maximum mean discrepancy (MMD) loss is used to penalize the
difference between pristine and fake samples. As a result, extracted features are not
biased to the characteristics of a single manipulation method or subject. A center loss is
introduced to guide the network to focus on more influential regions of manipulated
faces. Furthermore, a triplet loss is incorporated to minimize the intra-distances. We
consider the task as a binary classification problem for each frame from real or manipu-
lated videos. In Figure 4.2, we provide an overview of the proposed framework. Input
images are pristine and fake face samples from a deep fake dataset.
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4.3.2 MMD based domain generalization

Maximum mean discrepancy (MMD) measures the difference between two distributions.
MMD provides many desirable properties to analyze the performance of GAN [202].
In this paper, we use MMD to measure the performance of forgery detection as follows.
Suppose that there are two sets of sample distributions Ps and P; for a single face
manipulation method. The MMD between the two distributions is measured with a
finite sample approximation of the expectation. It represents the difference between
distribution P, and P; based on the fixed kernel function k. A lower MMD means that
P; is closer to P,. MMD is expressed by

MMD?*(P,,P,) =E k(g x,) — 2k(xg, 1) + k(e x)| . (4.1)

xs,zngs,xt,z;NPt |:
where k (a,b) = (¢ (a), ¢ (b)) denotes the kernel function defining a mapping. ¢
is an explicit function. s, ¢ denote the source and target domains respectively. x4 and x;
are data samples from the source and target distributions.
MMD is used to measure the discrepancies among feature embeddings. The MMD
loss has been used in neural style transfer tasks [114]. Different kernel functions
(Gaussian, linear, or polynomial) can be used for MMD. The MMD loss is defined by:

1 M N
Liima = —7 3 > (k(FL ) + K@k, rh) — 2k(fL b)) . (4.2)

=1 j=1

%\

where W} denotes the normalization term based on the kernel function and the feature
map [. M and N are numbers of fake and real examples in one batch, respectively. f
and r are the features for fake and real examples. The MMD loss can supervise the
network to extract more generalized features to distinguish real from fake samples. It
can be considered as an alignment mechanism for different distributions.

4.3.3 Triplet constraint

For several manipulated videos which are generated from the same video, the back-
ground of most samples is the same. Face reenactment methods can manage to keep the
identity of the original faces constant. Meanwhile, modifications from generative meth-
ods become more and more subtle. This makes the negative examples look more similar
than the positives ones for the same subject. As shown in Figure 4.1, images which
are generated from F2F and NT are nearly the same as the original image. Therefore,
intra-distances between positive samples are larger than their inter-distances.

To learn a more generalized feature embedding, a triplet loss is added to architecture.
Mlustration of the triplet process can be found in Figure 4.3. It is introduced in [141, 159]
and used in various face related applications. We aim to improve the generalization
ability by penalizing the triplet relationships among batches. The triplet loss is defined
by

Livipter = llg(zf) — g(@})113 — lg(af) — g3 + o 4.3)
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Figure 4.3: Visualization of the triplet loss. Images are from FaceForensics++. Normally,
the pristine and manipulated images from the same subject look similar. Through the
triplet loss, we attempt to minimize the distance between positive examples while
maximizing the distance between positive and negative examples.

a

where « denotes the margin and i represents the batch index. z¢, z¥ and z!" are
anchor, positive samples, and negative samples respectively. They are selected online
in each batch. g is the embedding learned from the network. The triplet loss can force
the network to minimize the distance between an anchor and a positive sample and
maximize the distance between the anchor and a negative sample. It can also contribute
to higher robustness when the input is an unseen facial attribute or identity.

4.3.4 Centerloss

Different modification methods may select different face regions for manipulation (see
Figure 4.1). When this region is very small compared to the entire image, the majority
of the features may exclude information about the manipulation. Our aim is that the
network focuses on influential regions around faces instead of the background. To
extract more discriminative embeddings, the center loss is used. It has been applied to
face recognition [197], and proven effective in measuring intra-class variations. The
center loss is defined by:

M
Leenter = Z”9k - Ck”Za 4.4
k=1

where 6 is extracted from feature maps by global average pooling. ¢ denotes the
center of feature. Theoretically, the feature center needs to be calculated based on the
entire dataset. From [82], a more practical way is used to iteratively update the feature
center:

Ck41 = Ck + ’}/(gk — Ck). 4.5)
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where v defines the learning rate of the feature center ¢, € RV <. k denotes the
iteration index, N is the batch size, and S is the dimension of the embedding. This
iterative learning process provides a more smooth prediction for the feature center.
Our final loss function is given by:

L= Lcls + )\lemd + )\QLtTiplet + >\3Lcenter- (46)

where A\, Ao and A3 are balancing factors. L. is a cross-entropy loss for binary
classification.

4.4 Experiments

4.41 Implementation details

Our implementation is based on TensorFlow. Adam is used for optimization. We use
Dlib to detect the face bounding boxes for each frame of the videos. The cropped face
image is 300 x 300. All images contain a single face. For all the experiments, we
follow subject-exclusive protocol meaning that each subject exists in one split of the
dataset. Inception v4 [175] is used as the backbone architecture. The pre-trained model
on Imagenet is used. The batch size is 16. Learning rate is 10~°. The training set has
a balanced distribution of real and fake data. \; , Ao, and A3 are set to 0.1, 0.05, 10.
For the MMD loss, we use a Gaussian kernel function. The kernel bandwidths o are
1 and 10. Feature maps Mixed 3a, Mixed 4a, Mixed 5a from the Inception net are
used to calculate the MMD loss. For the triplet loss, we use the implementation of
[159]. The margin is 2. Triplets are generated online. For every batch, we select hard
positive/negative examples. For center loss, 7y is 0.095. The dimension for embedding is
1024. The center is randomly initialized. For the experiments on FaceForensics++, our
settings are aligned with [152]. As for experiments on Celeb-DF, our settings follow
[115].

4.4.2 Evaluation results

We evaluate our approach on several deep fake datasets. A summary of the datasets
is shown in Table 4.1. Visualization of the data samples for each dataset are given in
Figure 4.1 and 4.4.

Results on UADFV and DF-TIMIT

Both UADFV [111] and DF-TIMIT [99] are generated by identity swap methods.
UADFV has 49 manipulated videos of celebrities obtained from the Internet. DE-TIMIT
is created based on VidTIMIT [157] under constrained settings. DF-TIMIT has two
different settings: low- and high-quality. We choose to evaluate our method on the
high-quality subset because it is more challenging. Some pristine videos of the same
subjects are selected from VidTIMIT to compose a balanced training dataset. We
compare our method with Mesonet [2], XceptionNet [27], Capsule [133], and DSP-
FWA [115]. We provide a brief introduction of each method below. Mesonet is based
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Dataset UADFV [111] DF-TIMIT [99] FaceForensics++ Celeb-DF [115]
Number of videos 98 300 5000 6000
Number of frames 34k 68k 2500k 2341k
Method DF FS FS, DF, F2F, NT DF

Table 4.1: Main contrasts of several deep fake datasets. “DF”: “DeepFakes”; “NT”:
“Neural Textures”; “FS”: “Face Swap”; “F2F”: “Face2Face”. The “deep fakes” is an
overarching name representing a collection of these methods. For each dataset, the
manipulation algorithm and process can be different.

DFTIMIT UADFV Celeb-DF-v2

Figure 4.4: Visualization of data samples from DF-TIMIT (high quality), UADFV and
Celeb-DF. For each pair of images, the left one is the real image and the right one is the
modified image.

on Inception Net, which is also used in our architecture. XceptionNet is a deep network
with separable convolutions and skip connections. Capsule uses a VGG network with
capsule structures. DSP-FWA combines a spatial pyramid pooling with FWA [111]. In
Table 4.2, we report all the performances following the same setting as in [115]. Two
datasets are relatively small and not very challenging for forensic detection.

Results on Celeb-DF

Celeb-DF [115] is one of the largest deep fake video datasets. It is composed of more
than 5,000 manipulated videos taken from celebrities. Data is collected from publicly
available YouTube videos. The videos include a large range of variations such as
face sizes, head poses, backgrounds and illuminants. In addition, subjects show large
variations in gender, age, and ethnicity. The generation process of fake faces focuses
on reducing the visual artifacts and providing a high-quality synthetic dataset. Table
4.2 shows that the area under curve (AUC) score of the proposed method on Celeb-DF
outperforms all other approaches. The experimental settings remain the same as [115].
Compared to other deep fake datasets, Celeb-DF has fewer artifacts and better quality.
The majority of failure cases are false positives. Typical false positives are shown in
Figure 4.5. Most cases have relatively large poses.
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AUC UADFV DF-TIMIT FF-DF Celeb-DF
MesoNet [2] 82.1 62.7 83.1 54.8
Xception [27]  83.6 70.5 93.7 65.5
Capsule [133] 61.3 74.4 96.6 575
DSP-FWA[115] 97.7 99.7 93.0 64.6
Ours 98.1 99.8 97.2 883

Table 4.2: Evaluation on UADFV [111], DF-TIMIT [99], FF-DF, Celeb-DF [115].
Each datset is evaluated separately. The metric is the Area Under Curve (AUC) score.
“FF-DF” is the deep fake subest from FaceForensics++. We follow the same setting of
[115].

Figure 4.5: Visualization of false negative predictions of Celeb-DF from our method.
These cropped images are from frames of deep fake videos.

Results on FaceForensics++

FaceForensics++ [151, 152] is one of the largest face forgery dataset. It includes pristine
and synthetic videos manipulated by Face2Face [180], NeuralTextures [181], Deepfakes
and Faceswap. The modified videos are generated from a pair of pristine videos. In
Figure 4.1, we plot all pristine and manipulated examples from one subject within
the same frame. Even though the pair of source and target are the same, different
methods lead to different results. The performance on raw and high-quality images from
FaceForensics++ are already good (accuracy exceeding 95%); we therefore focus on the
performance on low quality images. For all experiments, we follow the same protocol
as in [152] to split the dataset into a fixed training, validation, and test set, consisting of
720, 140, and 140 videos respectively. All the evaluations are based on the test set.
We compare our method with Mesonet [2], XceptionNet [27], and other methods [8,
147]. In Table 4.3, we report the performance while training all the categories together
with our pipeline. The total f1 score is 0.89. In Table 4.4, we show the performance
while training each category separately. In general, a more balanced prediction is
obtained among the pristine and generated examples. The overall performance is better
than the other methods. As expected, training FaceForensics++ separately (Table 4.4)
results in a better performance than combined training (Table 4.3). This is because each
generation method is seen as a different domain to the rest. The modified face images
contain different types of artifacts and features. When training entirely, manipulated
faces from facial reenactment method is extremely similar to real faces. The forgery
detector tends to confuse real faces with deep fake data. Our method successfully
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Figure 4.6: Visualization of false negative predictions of FaceForensics++ for the
proposed method. These cropped images are frames taken from the deep fake videos.

Accuracy DF F2F FS NT Real Total

Rahmouni et al [147] 80.4 62.0 60.0 60.0 56.8 61.2
Bayar and Stamm [8] 86.9 83.7 743 744 539 66.8

MesoNet [2] 80.4 69.1 59.2 448 77.6 70.5
XceptionNet [27] 934 88.1 874 78.1 753 81.0
Ours 98.8 78.6 80.8 97.4 89.5 89.7

Table 4.3: Evaluation on the test set of FaceForensics++. The training and test set
includes all the categories of manipulated dataset. “DF”’: “DeepFakes”, “NT”: “Neural
Textures”, “FS”: “Face Swap”, “F2F”: “Face2Face”.

improves the performance on pristine faces without impairing the performance on
each deep fake category. When training each category separately, the main challenge
becomes the image variations like blur. A number of false negative predictions are
shown in Figure 4.6. In general, the performance degrades significantly when the face
is blurry or the modification region is relatively tiny.

4.4.3 Analysis

Performance on a single type of deep fake dataset is better than on a dataset containing
multiple domains. This is because the extracted features for different manipulated
results are diverse. In general, face reenactment may have fewer artifacts than identity

Accuracy DF F2F FS NT

Bayar and Stamm [8] 81.0 77.3 76.8 72.4
Rahmouni et al [147] 73.3 62.3 67.1 62.6

MesoNet [2] 89.5 84.4 83.6 75.8
XceptionNet [27] 943 91.6 93.7 82.1
Ours 99.2 89.8 94.5 97.3

Table 4.4: Evaluation on each category of the FaceForensics++ test set. Each category
has a balanced distribution between pristine data and fake data.
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Method Data augmentation MMD Center Triplet F1

Basic 0.826
Ours v 0.846
Ours v v 0.881
Ours v v v 0.889
Ours v v v 0.887
Ours v v v v 0.897

Table 4.5: Performance comparison with different components of our method. We
evaluate our method on test set of FaceForensics++. Metric is F1 score.

Style Loss GRAM BN  MMD
Fl1 0.862  0.887 0.897

Table 4.6: Performance comparison with different style transfer losses. We evaluate our
method on test set of FaceForensics++.

modification methods because the transfer of the expressions may require less facial
alternations. It results in better performance on detecting identity modification results.
We further calculate the prediction accuracy based on each video in the test set of
FaceForensics++. On average, the prediction for pristine and fake videos is higher
than 80%. Although most of the datasets have many frames, the number of videos
is relatively small. In most videos, faces have a limited range of variations like pose,
illumination, or occlusion. This can also cause the network to predict negatives when
pristine face images are relatively blurry or partially occluded. Also, the number of
different subjects for the deep fake dataset is relatively small compared to other face-
related datasets. This leads to biased results when testing an unseen identity with unique
facial attributes.

In our framework, we combine several losses to jointly supervise the learning process
of the network. MMD loss can be considered as aligning the distributions of different
domains. The style of each image can be expressed by feature distributions in different
layers of deep network. Network is constrained to learn a more discriminative feature
embedding through different domains. Center loss forces network to concentrate on
more influential features rather than background noise. Triplet loss can be considered as
an additional constraint to reduce the intra-distance effectively among positive examples.

4.4.4 Ablation study

To investigate the effect of each component of our method, we evaluate the performance
of the proposed method with different components, see Table 4.5. We start with the
baseline architecture and add different components separately.

51



4. MMD based Discriminative Learning for Face Forgery Detection

Kernel Function Polynomial Linear Gaussian

F1 0.841  0.876 0.897

Table 4.7: Performance comparison with different kernel functions in the MMD loss.
We evaluate our method on the test set of FaceForensics++.

Comparison with other style transfer losses

First, we test our method with other neural style transfer losses for distribution alignment.
Here, we choose the GRAM matrix-based style loss and batch normalization (BN)
statistics matching [112]. The GRAM-based loss is defined by

1
LGRAM:WZZ(GZR_GIF)Z, “.7)

where the Gram matrix G/ is the inner product between the vectorized feature maps in
layer [. Gr and G are GRAM matrix for real and fake samples respectively. W is the
normalization term.

The BN style loss is described by

Lon = g 30 [(nr = ) + (05— on 7). (438)

where 1 and o is the mean and standard deviation of the vectorized feature maps. jip,
and op, are corresponding to real face samples. From Table 4.6, performance of the
network with the MMD loss outperforms other types of losses.

Comparison with different kernel functions

A different kernel function k can provide different mapping spaces for the MMD loss. In
Table 4.7, we investigate the effect of different kernel functions. Linear and polynomial
kernel functions are defined as k(a,b) = aTb + ¢, k(a,b) = (a¥b + c)?, respectively.
We choose d = 2 for polynomial kernel function. The Gaussian kernel outperforms
other kernels for the MMD loss.

Comparison with different feature maps

Different levels of feature maps capture different type of style information. We further
examine how different combinations of feature maps influence the face forensic detec-
tion performance. In Table 4.8, we illustrate the performances of using multiple sets of
feature maps. Feature maps Mized 3a, Mixed 4a, Mized 5a are slightly better than
other options.

4.5 Conclusions

This chapter focused on face forgery detection and proposed a deep network based
architecture. Maximum mean discrepancy (MMD) loss has been used to learn a more
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Feature map F1

Mixed3a 0.884
Mixed4a 0.881
Mixedba 0.883
Mized3a, Mized4a 0.890
Mixed4a, Mixedba 0.891

Mixed3a, Mixed4a, Mired5a 0.897

Table 4.8: Performance comparison with different combinations of feature maps from
our method. We evaluate our method on the test set of FaceForensics++.

generalized feature space for multiple domains of manipulation results. Furthermore,
triplet constraint and center loss have been integrated to reduce the intra-distance and to
provide a discriminative embedding for forensics detection.

Our proposed method achieved the best overall performance on UADFV, DF-TIMIT,
Celeb-DF and FaceForensics++. Moreover, we provided a detailed analysis of each
component in our framework and exploited other distribution alignment methods. Exten-
sive experiments showed that our algorithm has high capacity and accuracy in detecting

face forensics.
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Deep Imbalanced Learning for Age
Estimation from Videos

5.1 Introduction

Datasets for face related research often exhibit highly-skewed class distributions. Most
samples belong to only a few majority classes, while the minority classes include
fewer cases [84]. In Figure 5.1, age distributions are shown for the three largest face
video datasets for age estimation. Hence, age estimation datasets are often highly
imbalanced and with long-tailed distributions. When a model is trained on a dataset
containing a strongly imbalanced distribution, the model may extract features which
are biased towards the majority classes. For example, age related features of children
may be different than those computed from elderly people. Thus, a model trained
mainly on teenagers may consider senior people as outliers. Although the minority
classes constitute a small portion of the whole dataset, they play a predominant role in
the prediction error. In Table 5.3, most methods show high accuracy for the majority
groups. The performance for senior minority groups is nearly random. Moreover, subtle
discrepancies between classes are ignored by the deep learning networks. The set of
features extracted from the minority classes is insufficiently represented. Hence, the
generalization capabilities are restricted when facing a large span of age distributions.
Aging is a natural and irreversible process that causes both appearance and geo-
metrical variations on human faces [5]. Both personal (e.g., physical/mental states)
and situational factors (e.g., occupation, living environment) can influence the facial
aging process. Age estimation from human faces has various real-world applications in,
for example, human-computer interaction, social network application, and surveillance
monitoring. Age estimation tasks can be classified into two categories: biological and
apparent age estimation. Traditional age estimation methods for still images widely
employ biologically inspired features [66, 103]. Recently, more and more deep net-
work based methods have been applied in age estimation [24, 89]. The methods have
achieved notable progress in image-based age estimation. However, their performances
on video-based age estimation are still far from ideal. Face age estimation using videos
has the possibility to incorporate both the facial structure and its dynamics. Dynamic
information from video sequences is crucial to handle challenging imaging variations
like facial occlusion and extreme face poses. Age estimation from unconstrained video
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sequences have largely been ignored so far.

Therefore, in this paper, we addresses the problem of age imbalance in videos from
a transfer learning perspective. A deep clustering module is proposed to both learn a
proper data representation and transfer information from the majority groups. In fact, the
deep clustering module is used to leverage knowledge of majority age groups to improve
the performance on minority ones. The scarcity of data leads to insufficient variations
for the system to learn. Given the relevance between age labels, the majority age groups
is the proper complementary source for minority classes. To mitigate the impact of
imbalanced data, the target distribution is constructed by a linear combination of age
predictions. Compared to previous label distribution learning methods for age estimation
[139], the proposed method doesn’t incorporate hard constraints on the margin of the
age distribution. In addition, temporal ensemble and consistency constraints are added
to further improve the smoothness of the annealing process.

Our main contributions are:

* We propose an end-to-end framework to predict ages from face videos. Cluster-
ing based transfer learning is used to provide proper prediction for imbalanced
datasets.

* We investigate the influence of different variations on age estimation. We propose
a new video dataset NEMO-Deception.

* Detailed experiments on age estimation and imbalanced learning are provided to
show the effectiveness of our method. The proposed method achieves the best
performance on three face age estimation datasets (UvA-NEMO Smile Database,
NEMO-Deception, and UvAge dataset).

5.2 Related Work

5.2.1 Age estimation

Detailed reviews about age estimation can be found in [51, 140, 148]. Most existing age
estimation methods focus on still images. They can be classified into two categories:
classification and regression. Regression based methods ar the most straightforward
approaches to predict age [116]. Classification based approaches consider age or
age groups as separate classes [105]. Compared to the standard classification task,
human age information is ordinal. Label distribution learning (LDL) based approaches
are capable of predicting a range with different confidence levels [55, 56, 79, 206].
[139] introduces the mean-variance loss to provide concentrated distributions for age
estimation.

Most of the work focuses on image-based age estimation. Only a few methods
use videos for age estimation. Traditional video-based methods usually pre-design
hand-crafted features. Hadid and Abdenour [67] extract local binary features for age
estimation from videos. Dibeklioglu et al. [40, 42] use face dynamic information
to improve the performance of age prediction. Pei et al. [145] propose an attention
based network to predict age and disgust expression in videos. Previous approaches are
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(c) UvAge dataset

Figure 5.1: Age distributions of UvA-NEMO Smile Database, NEMO-Deception
dataset, and UvAge dataset. The horizontal axis denotes the age. The vertical axis is the
number of subjects. Green bars represent males and red bars represent females.

established based on restrictions of, for example, faces with a moderately pose changes
throughout a video. They are not considered in the context of unconstrained data.

5.2.2 Deep imbalanced learning

Previous papers on imbalanced data distribution can be divided into two categories:
re-sampling [15, 54, 161, 227] (including over- and under-sampling) and cost-sensitive
learning [83, 97, 182, 224]. Over-sampling adds samples repeatedly from minor classes.
Novel data samples are generated by interpolation or synthetic data [22]. Based on
the effective number of samples for each class, Cui et al. [33] propose a re-weighting
mechanism to re-balance the loss function. Class rectification loss [44] searches hard
minority classes among every batch and adds regularization in feature space to rectify the
learning bias. Huang et al. [84] propose a cluster-based local embedding to the improve
performance of face recognition and attribute prediction. Wang et al. [195] employ a
meta network to regress network weights between different classes. [220] proposes a
Bilateral-Branch Network (BBN) using a novel cumulative learning scheme to jointly
compute both representation and classifier learning. [176] uses causal intervention
and counterfactual reasoning to select the proper momentum causal effect. [17] uses
label distributions based on the margin loss (LDAM), and a deferred re-weighting
(DRW) schedule for training imbalanced datasets. [199] re-balances the weights to
alleviate the influence of label co-occurrence and uses a negative regularization to
reduce the over-suppression of negative labels. These class-balanced approaches enable
the minority classes to play a re-weighted role in determining the decision boundaries of
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the models. Oversampling may cause over-fitting by emphasising on minority samples.
Down-sampling discards many majority samples but may fail to exploit useful feature
variations. Some methods use a cost sensitive learning scheme which is applied to image
based age estimation [213, 226]. However, the challenge is to determine the actual cost
for different samples in various distributions. In contrast to previous approaches, our
method relies on clustering based transfer learning to fully exploit the shared features
between majority and minority samples.

Methods are proposed to approach the data imbalance including transferring the
information learned from major to minor classes [32, 137]. Yin et al. [210] transfer
intra-class variances from the head to tail for face recognition tasks. Liu et al. [118] add
a memory module to the neural networks to transfer semantic features. Compared to
these methods, our method doesn’t rely on large scale dataset pre-training or a complex
training scheme.

5.2.3 Joint clustering and representation learning

Clustering-based representation learning [201] shows great potential in unsupervised
and semi-supervised learning (SSL) tasks. It can simultaneously cluster the data samples
and learn a proper data representation. 7m-Model [104] incorporates the consistency
regularization between the prediction for an unlabeled instance and its stochastic per-
turbation sample. Mean teacher [178] models further improves the target distribution
for unlabeled instances by an exponential moving average (EMA) of parameters from
previous training information. [121] applies deep temporal clustering on unsupervised
time-domain tasks. [74] transfers features from the known classes to improve the quality
of newly found categories in the unlabelled dataset. Although deep clustering methods
are able to extract proper representations from large-scale unlabeled datasets, the al-
ternating update scheme of feature clustering may lead to instabilities in the training
process.

5.3 Method

We propose a novel end-to-end deep framework for video based age estimation. We aim
to address two main limitations of previous work: 1) methods are negatively influenced
by imbalanced age distributions. To provide a balanced prediction, soft label assignment
is used to construct the target distribution. Each age is assigned a different degree of
contribution. This avoids hard constraints on target labels, leading to better solutions of
the annealing process of clustering. 2) different impacts of variations (pose, expression
etc.) are considered for age estimation, which are typically neglected in traditional
methods. An overview of our pipeline is shown in Figure. 5.2.

5.3.1 Clustering module

Our transfer learning module is based on a deep embedded clustering (DEC) algorithm
that clusters the data while jointly learning a proper data representation. Data clustering
in our task is that for a video sequence I = {x;},7 = 1, ..., M, the goal is to produce
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Clustering
Feature lLeyer
Extraction
-_— M > MAE loss — Age

Age estimation module

Figure 5.2: Overview of our pipeline. Input is a video sequence from a face dataset.
The RNN for extracting features is LRCN. It allows for recognizing temporal dynamics
in sequential inputs. “MAE loss” represents mean the absolute error. “KL loss” means
the Kullback-Leibler divergence loss.

output class assignments {y; } ,7 € 1, ..., K. Effective latent representation is a crucial
step in the clustering process. We achieve this by using a Long-term Recurrent Convo-
lutional Network (LRCN) [43] architecture. It facilitates the learning of the temporal
information of video sequences resulting in compressing videos into a compact latent
space. The latent representations of videos are assigned to clusters of the clustering
layer.

Clusters are composed of a set of vectors or prototypes, where C' = {ci},k =
1,..., K represent the cluster “centers”. The aim is to determine the clusters and learn
the data representations simultaneously. p;; is the probability of assigning data sample
1€1,...,Ntocluster j € 1,..., K. Integrating clustering into representation learning
is a challenging task. Following [188], the Student’s ¢-distribution is used as the kernel
to measure the similarity between feature embedding z; and center c¢;. The probability
assignment of the latent feature belonging to k th cluster is as follows:

a+1

(1 + stm(zi,c;) ) ER

[e3

Gij = T (5.1

k sim(zq,c T2
Zj:l (1 + %)

sim 1is the similarity function used to compute the distance between feature z; and
each centroid c;. The Euclidean distance is used as the similarity metric. g;; denotes the
probability of input ¢ belonging to cluster j, z; corresponds to the input in the feature
space Z, obtained from the recurrent module after encoding the input signal z; € X.
Instead of maximizing the likelihood of model ¢ directly, the model is matched to
distribution p by minimizing the Kullback—Leibler (KL) divergence between the joint
distribution of ¢;; and p;;.
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N K
Leuster = N Z Z ZJZOQPZJ (5.2)

Soft label assignment

In previous papers [188, 201], the target distribution p;; is often constructed by first
raising ¢;; to the second power, and then normalizing it by the frequency. In this way,
the initial classifier’s high confidence predictions are normally corrected. However, for
age estimation, a weighted average of the predictions is more suitable than a single
value. Given that age labels are ordinal and related to each other, one can be represented
by a linear combination of the other labels. The target distribution is constructed by:

P=Fx%Q+B. (5.3)

P and () are matrices for p;; and g;;, respectively. F' denotes the global structure of
labels. Each part in the correlation vector represents the impact of each cluster on this
instance. B is used for regularization between target and ground truth distributions. The
constructed distribution provides more information and assigns a new relevance of a
label to a particular instance based on global label correlations.

Temporal ensemble and consistency constraint

In order to slowly anneal clusters to learn a proper partition of the data, following
[104, 178], we use temporal ensembling to improve the smoothness of the annealing
process. The clustering model ¢ computed at different epochs are aggregated by
maintaining an exponentially moving average of the predictions within multiple previous
training epochs. Hence, network predictions ¢ are added to an ensemble prediction ()
via

Q'=0-Q " +(1—¢)-q;; " (5.4)
where ¢ is a factor to control the combinations of ensembles and the learning history
information, and ¢ indicates the iteration step. Mean squared error (MSE) is used as the
consistency cost. The loss function in Eq. 5.2 now becomes

clustm :N Z Zpulo.gpw
=1 j=1
1 N K
Ni Z Z |sz QZJ :

(5.5)

q; ; represents the prediction of temporal ensembles. To initialize the process of the
EMA, Q; is re-scaled as qu = lfﬁt Q. O(t) is set to gradually increase the weights of
constraints from 0 to 1. A consistency constraint enforces the predictions to be more
stable among a large range of variations.
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UvA-Nemo Smile Nemo-Deception UvAge

Figure 5.3: Data samples from UvA-NEMO Smile Database, NEMO-Deception, and
UvAge dataset.

5.3.2 Age estimation module

We can further predict ages based on the learned embedding. For general softmax loss,
given one positive class, all the negative classes are treated similarly when updating
the network. Therefore, we choose a regression based model. Followed by the learned
embedding, fully connected layers with ReLLUs are used. Dropout is employed for
regularization. Age estimation is supervised by the MAE loss function. MAE is defined
as the mean absolute error between the predicted age and ground-truth age:

N
1
Lage = N ; (yp'red - ytrue)Q , (5.6)

Ypred and Y4, are the prediction and ground truth label, respectively. The final loss
function is as follows:
L= Achluster + )\2Lage- (57)

A1, Ag are balancing factors.

5.4 Experiments

5.4.1 Implementation details

Dlib face detector is used to obtain the face bounding box for each frame. The side
length of the bounding boxes is extended by 20% before inputting it to the network.
Our pipeline is based on TensorFlow and Keras. All the experiments are based on
subject exclusive protocol. The input image size is 224 * 224. Batch size is 8. Sequence
length is 100. Ground truth of all the datasets are based on the biological age. For
the clustering layer, « is set to 1. Balancing factors A, Ay are set to be 2 and 0.1,
respectively. We follow the official protocol to split each dataset for training and testing.
Metrics for all the experiments are MAE (mean absolute error) and cumulative score
(CS). CS measures the performance of age prediction accuracy based on a tolerance of
absolute error.

5.4.2 Dataset

We evaluate the proposed method on three dataset: UvA-NEMO Smile Database [41],
NEMO-Deception, and UvAge. Basic information about the three datasets are shown in
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Dataset Subjects Videos Age range
UvA-NEMO Smile 400 1240 8-76
NEMO-Deception 309 309 7-72
UvAge 516 6983  16-83

Table 5.1: Comparison between three age dataset

Table 5.1. The age distributions are presented in Figure 5.1. Visualizations of the data
samples for each dataset are given in Figure 5.3.

UvA-NEMO Smile Database

UvA-NEMO Smile Database [41] has been collected to analyze the temporal dynamics
of spontaneous/posed smiles for different ages. Videos were collected under constrained
settings. Participants comprising the UvA-NEMO dataset contain relatively low inter-
subject variations.

NEMO-Deception

NEMO-Deception dataset is created recently to analyze deceptive behavior manifested
on human faces. Information (age, gender, and kin relationship) of participants is
collected during the deception experiments. Participants are divided into different
groups based on their family relationships. Participants in each group took turns to take
the experiment as a test subject. Each session is recorded under constrained settings.
The entire experiment was recorded by a web camera which is connected to a computer
and an iPhone XS. The web camera records video information together with audio. The
video has a resolution of 1920 x 1080 pixels at a speed of 60 frames per second. The
audio codec format is MPEG-4 AAC with stereo channel, 48000 hz of sample rate and
320 kbps of Bit-rate. The recorded videos were manually labeled and split into separate
clips according to the interviewing and answering information.

UvAge dataset

Today, UvAge is the largest video based face dataset with age annotation. It is composed
of unconstrained video samples containing a large range of variations in face size, pose,
illumination, and ethnicity. Subjects are celebrities. We split the dataset into 396, 65,
and 55 subjects for training, validation, and testing respectively.

5.4.3 Age estimation

Age estimation experiments are conducted on UvA-NEMO Smile Database, NEMO-
Deception, and UvAge, respectively. We compare our approach on age estimation task
with the following methods:
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Method UvA-NEMO|UvA-Deception|UvAge
LSTM 5.80 6.81 7.35
GRU 5.47 7.31 6.85
LRCN [43] 5.51 7.26 7.56
DEX [153] 5.48 7.29 7.58
Focal Loss [117] 5.13 6.18 6.57
CBL-CE [33] 4.94 5.79 6.43
SSR-Net [205] 491 5.71 6.39
CBL-FL [33] 4.82 5.67 6.21
MV [139] 4.8 5.65 6.14
SIAM [145] 4.74 5.34 5.83
DB [199] 4.58 5.17 5.7
Ours 4.12 4.66 491

Table 5.2: Evaluations on multiple video datasets for face age estimation. Each dataset
is trained and evaluated separately. “CBL-FL” and “CBL-CE” denote the class balanced
focal loss and cross entropy loss, respectively.

Video-based age estimation methods

Since there are only a few methods on video-based age estimation, our baselines
correspond to common recurrent architectures: LSTM, GRU and LRCN [43]. The input
for LSTM and GRU are extracted from the pre-trained VGG16. Loss function is cross
entropy. Focal loss [117] can be seen as a smoother version of hard example mining. It
penalizes the examples from minority classes more than those of majority classes if the
network is biased towards the majority classes during the training process. We apply
the focal loss on LRCN. Moreover, we also consider the effect of Spatially-Indexed
Attention Model (SIAM) [145]. SIAM is the latest end-to-end method for video-based
age estimation. Both temporal and spatial attention modules are integrated into the
model.

Image-based age estimation methods

Deep Expectation (DEX) [153] interprets age estimation as a classification problem
followed by refinement module. Mean-Variance (MV) [139] incorporates the mean and
variance loss to conduct distribution learning for age estimation. We modify the original
architecture to handle video sequences. Stagewise Regression Network (SSR-Net)
[205] uses a light-weighted model to avoid large amount of neurons. For SSR-Net, we
calculate the average of age predictions using the frames from each video.

State-of-the-art deep imbalanced learning methods

Class Balance Loss (CBL) [33] re-weights the original losses by class-wise weights,
which are based on effective numbers. We use the class-balanced cross-entropy loss
and the focal loss. Distribution-Balanced Loss (DB) [199] re-balances the weights to
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Group LSTM CBL-FL. MV SIAM Ours
20-29 5.65 692 3.89 395 3.16
30-39 847 7.83 5.68 491 4.09
40-49 8.80 1092 9.14 895 8.90
50-59 10.12  9.23 10.08 10.37 8.71
60-69 12.57 14.92 12.39 11.08 9.69
70-79 14.85 13.50 13.58 11.68 9.67
80-89 31.26 25.15 26.93 23.34 16.26

Table 5.3: Mean absolute error of several age estimation methods on different age
groups. Experiments are based on the UvAge dataset.
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Figure 5.4: Visualization of the age estimation results produced by the proposed method
on the UvAge dataset. The first row shows a number of successful age estimation
examples. The second row shows a number of poor ones. The numbers below each
image provide the ground-truth age and our prediction, i.e., ground-truth label (estimated
age).

mitigate the impact from label co-occurrence and use a negative regularization to reduce
the over-suppression of negative labels. For these deep imbalanced methods, we apply
them on LRCN to conduct the experiments.

Table 5.2 shows that our method outperforms other methods on all three datasets.
We also report the performance of several typical methods in different age groups in
Table 5.3. The proposed method achieves better performances on minority age groups.

5.4.4 Influence of variation on age estimation
Influence of expression variation

The Facial Action Coding System (FACS) is used to describe facial expressions by action
units. We use [156] to detect the intensity of action units. The estimated intensity stays
within the range of 0-5 where 5 represents the maximum level of expression. An example
of the detected action units heatmap is shown in Figure 5.5. The correspondence of
actions units are: Cheek raiser (AU6), Upper lip raiser (AU10), Lip corner puller

64



5.4. Experiments

AU6 AU10 AU12 AU14 AU17

Figure 5.5: Visualization of detected action unit heatmap from [156].

Intensity DEX [153] MV [139] SIAM [145] Ours

1 7.83 6.41 6.02 5.93
2 8.34 6.25 6.16 5.79
3 8.81 7.66 7.53 7.25
4 9.11 6.96 6.63 6.44

Table 5.4: Mean absolute error of several age estimation methods applied on videos
of faces with different intensity thresholds for the action units. The performance is
obtained on different subsets of the UvAge dataset. If the intensity of one action unit is
larger than the threshold, the corresponding face is included in the test set.

(AU12), Dimpler (AU14), and Chin raiser (AU17). The performance of our method
versus others are compared for different intensity thresholds of action units in Table
5.4. Different subsets of data are selected for different thresholds. Overall, prediction
become less accurate with expression intensity. Our method outperforms other methods
for all levels of expression.

Influence of gender

To evaluate the effect of gender on the accuracy of the system, we also consider a
gender-specific age estimation system. In the gender-specific system, the proposed
method is trained and tested for both male and female subjects, respectively. The MAEs
for both gender-specific and general training are given in Table 5.5.

Dataset Male Female All
UvA-NEMO Smile 395 4.18 4.12
NEMO Deception 4.48 4.75 4.66
UvAge 486 5.08 4091

Table 5.5: Comparison of the gender-specific method with the general method for age
estimation. Experiments are conducted separately.
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Yaw CBL-FL MV [139] SIAM [145] DB Ours

30 6.81 6.13 5.87 5.72 5.08
45 6.84 6.34 59 5.76 5.14
60 6.85 6.41 5.96 5.83 5.22

Table 5.6: Mean absolute error of several age estimation methods on videos of faces
with different yaw angle degrees. Experiments are based on the UvAge dataset. Each
method is trained and evaluated separately.

Modules M K K+S K+S+C M+K+S+C
UvAge 7.636.17 541 5.26 491

Table 5.7: Performance comparison with different components of our method on UvAge
dataset. “M” means that the method uses the age estimation module only with the MAE
loss. “K” means that the method contains the clustering layer only with the KL loss.
“S” denotes soft label assignment. “C” represents temporal ensemble and consistency
constraint.

Influence of pose variation

We evaluate the effect of head pose on the accuracy of age estimation. Since faces from
UvA-NEMO Smile and NEMO-Deception are mainly frontal, we focus on the videos of
the UvAge dataset. Using PRNet [48], the pose is computed for each video. We notice
that yaw angles change predominantly. Therefore, videos are selected with relatively
large pose variations (pitch and roll > 30 degrees) as the test set, in comparison with
other methods in Table 5.6. In general, the performance degrades with larger pose
variation.

5.4.5 Ablation study

To investigate the effect of each component, we evaluate the performance of the proposed
method with different settings, as shown in Table 5.7. We start with the baseline
architecture and add different components separately.

Model effectiveness in mitigating data imbalance

In order to systematically investigate the effect of our model on imbalanced data, we
remove the age estimation module and compare its relative performance improvement
of other imbalanced data learning models. To do so, we change the imbalanced ratio
for different age groups to quantitatively measure the performance on imbalanced data.
Following [33], we define the imbalance ratio as the class size of the first head class
divided by the size of the last tail class. We use class-imbalanced cumulative score (CS)
as metric [49, 83]. Accuracy is calculated by 0.5(t,/N, + t,,/N,,), where N,, and N,,
are the numbers of positive and negative samples, while ¢,, and ¢,, are the numbers of
true positive and true negative. Performance comparisons can be found in Figure 5.6.
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Figure 5.6: Class-imbalanced accuracy of several deep imbalanced learning on different
imbalanced ratios. Experiments are based on the UvAge dataset. The class-imbalanced
accuracy is calculated given a tolerance of absolute error less than 5 (6=5).

Evaluation of different similarity metrics

The clustering layer plays a crucial role in our pipeline. To test the influence of different
clustering metrics, we replace the default similarity function with other metrics, like
Correlation based Similarity (COR) [60] and Auto Correlation based Similarity (ACF)
[50]. COR is computed by 1/2(1 — p), where p denotes the pearson’s correlation, given
by

Pzy = cov(z,y)/ (0z0y). (5.8)
where cov is the covariance. As for ACF, we use auto-correlation coefficients to compute
the similarity between features and centers. Then, we compute the weighted Euclidean

distance between the auto-correlation coefficients. The results are shown in Table 5.8.
The default Euclidean distance is a better option for the similarity function.

Comparisons of different losses

To validate the effectiveness of our loss functions, we compare our setting with two
widely used losses in age estimation (i.e., softmax loss and MAE loss) by performing
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Metrics COR [60] ACF [50] Ours
UvA-NEMO Smile  4.87 483 4.12
NEMO-Deception 4.95 496 4.66
UvAge 5.3 5.17 491

Table 5.8: Evaluation on different similarity metrics for clustering layer. Each dataset is
trained and evaluated separately.

Losses M S M+S M+K
UvAge 6.57 6.25 5.4 491

Table 5.9: Evaluation on different combinations of losses with our method. “M”
denotes the mean absolute error loss. “S” means the softmax loss. “K” represents the
Kullback-Leibler loss.

age estimation on UvAge dataset. The results are shown in Table 5.9. It can be found
that using a combination of loss functions leads to a better performance than using
either of them individually. These results show that learning a meaningful distribution
is better than single label learning for age estimation task.

5.4.6 Analysis

A number of successful and poor predictions of our method are shown in Figure 5.4.
The network tends to generate younger predictions than their actual ages. In general,
the inaccurate predictions are from two categories: feature variations and personal
factors. Challenging variations like large changes in pose or expression can degrade the
performance of our method. As for personal factors, whereas human faces share some
common features across different ages, the aging process for each person may differ.

5.5 Conclusion

In this paper, we proposed an end-to-end method to predict age from videos. To resolve
the imbalanced issue in existing datasets, we used a clustering layer to jointly cluster
data and extract a better feature representation. This can leverage knowledge from
related categories to improve performance of minority groups.

Through extensive experiments, we showed that our method substantially out-
performed other methods on both constrained (UvA-Nemo, Nemo-Deception) and
unconstrained datasets (UvAge). Moreover, the performance on minority age groups
has also been improved.
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Summary and Conclusion

This chapter concludes this dissertation by revisiting our research questions from
Chapter 1, discussing our main findings, and sketching directions for future research.
We focus on the main findings and general lessons. Additional detailed findings are in
the conclusion sections of the individual chapters.

6.1 Summary

The individual conclusions for each chapter are presented as follow:

6.1.1 Chapter 2: Analysis for object features and face detection
performance

In this chapter, we proposed an experimental comparison of main characteristics that
influence face detection performance. A synthetic data generator is proposed to syn-
thesize 2D faces based on 3D face models. We customized the synthetic dataset to
address specific types of features (scale, pose, occlusion, blur, etc.). Then we select
three representative face detectors to systematically investigate the influence of different
features on face detection performance. Our results show that synthetic data can be a
good complementary source for real datasets. The performance of face detectors can
also be improved through various types of synthesized variations. Through our analyses,
we also identified some potential deficiencies of the current face detection architectures.
To conclude, there are often challenging features in real-world face detection. By
providing an overview of the relationship between object features and face detection
performances, we hope to assist researchers to choose more appropriate synthetic data
when addressing challenging real-life variations.

6.1.2 Chapter 3: Pose invariant age estimation of face images in
the wild

In this chapter, we focus on tackling the negative effect of head pose in age estimation
tasks. First, we introduced the largest in-the-wild video dataset for age estimation.
It contains unconstrained videos from celebrities in different events. To make age
prediction more robust against pose variation, we reconstruct face uv textures from
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the original 2D frames of videos. Parts of the reconstructed uv textures are missing
because of the self-occlusion effect of head pose. In our task, the size and shape of
missing regions are highly irregular. We provide a Wasserstein GAN based approach
(AgeGAN) to simultaneously estimate the real age and complete the partial uv textures.
Our method can force the network to retrieve the missing regions with more meaningful
features for age estimation. To demonstrate the effectiveness, we compare our face
completion method with other advanced inpainting methods. We also systematically
evaluate our age estimation method on other datasets.

6.1.3 Chapter 4: Discriminative learning for multi-domain face
forgery detection

This chapter focused on the challenge of multi-domain face forgery detection. The
major challenges of detecting face forgery are: 1) The difference between pristine
and fake samples is much smaller than the difference among pristine examples. 2)
The artifacts from imaging features and face characteristics do not persist across all
generated results for the same generative method. We proposed an end-to-end deep
network based architecture. Inspired from the applications of neural style transfer, we
want our network to focus on more discriminative features instead of over-fitting to
manipulation-specific artifacts. Maximum mean discrepancy can help us align features
from different distributions. MMD loss is used to learn a more generalized feature
space for multiple domains of manipulation results. Furthermore, triplet constraint is
incorporated to minimize the intra-distances and maximize the inter-distances. Center
loss has been integrated to provide a discriminative embedding for forensics detection.

Our proposed method achieved the best overall performance on UADFV, DF-TIMIT,
Celeb-DF, and FaceForensics++. Moreover, we provided a detailed analysis of each
component in our framework and considered the performance of other distribution
alignment methods. Extensive experiments showed that our algorithm has high capacity
and accuracy in forensically sound detection of deep fakes.

6.1.4 Chapter 5: Deep imbalanced learning for age estimation
from videos

In this chapter, we aim at predicting ages from videos. Datasets for face related research
often exhibit highly-skewed class distributions. Most data belong to only a few majority
categories, while the minority classes include much fewer instances. we proposed an
end-to-end method to predict age from videos. To resolve the imbalanced issue in
existing datasets, we used a clustering module to jointly cluster data and extract a better
feature representation. This can leverage knowledge from related categories to improve
performance of minority groups. To mitigate the impact of imbalanced age samples in
the training process, the target distribution is constructed by a linear combination of
different age predictions. The proposed method does not incorporate hard constraints
on the margin of the age distribution. In addition, temporal ensemble and consistency
constraints are added to further improve the smoothness of the annealing process.
Through extensive experiments, we showed that our method substantially out-
performed other methods on both constrained (UvA-Nemo, Nemo-Deception) and
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unconstrained datasets (UvAge). Moreover, the performance on minority age groups
has also been improved.

6.2 General Discussion

In this section, we will discuss two main limitations existing in our work and possible
future directions.

Sythetic data plays a crucial role in our Chapter 2. The variations from datasets
have provided both opportunities and challenges for the deep learning system. The final
performance of the face related applications are heavily relying on the variations of
datasets. Synthetic data can be an effective way to enrich the variations of real datasets.
The advantage of using synthetic data is that the we can have more understanding about
how the performance of learning system is contingent on different types of synthesized
variations. With all the benefits from synthetic data, admittedly, there is always an
unavoidable domain gap between synthetic data and real data. Future work could focus
on how to fill or reduce the gap.

In Chapter 3, we use GAN to recover the missing regions of face uv texture. Results
from generative methods are becoming more and more realistic. They can provide
additional variations for the learning system. However, it is difficult to fully control
the generating process. Currently, we cannot fully explain the results of generative
methods. Also, there is no common metrics to measure the performance of generative
methods. For future research, we can investigate how to really control the behaviour
of generative methods. It is also better if we can remove the correlations between
some facial attributes like male and beard in the generation process. For most face
modification methods, they have been widely used before being investigated about their
social impact. User study would be helpful to understand how humans understand the
synthesized faces.

The last decade has witnessed an explosive advancement of face studies and ex-
tended real-life applications. In contrast, research on their societal, especially ethical,
implications has been largely overlooked. The accuracy and range of face recognition
have grown drastically, and they sometimes become intrusive forces to people’s daily
life and even privacy domains. We suggest that research on face algorithms and their
social implications should develop hand in hand, such that the face generative methods
evolve in a way that is seen as credible and trustworthy in the eyes of the general public.

6.3 Conclusion

We conclude the thesis by revisiting the questions posed in the Chapter 1.
Question 1: Can we systematically manipulate variations in synthetic data to comple-
ment the real dataset and further achieve better performance on face detection?

The short answer is yes. The majority of data from existing datasets normally
belongs to a limited range of variations. The faces did not sufficiently represent extreme
poses, scale, or heavy occlusion, to train a robust detector against all potential variations.
We use synthetic data as data augmentation to compensate the insufficient variation
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of real datasets. First, we design a novel synthetic face data generator with full con-
trolled variations (on pose, scale, background, illumination, and occlusion). Compared
to existing face manipulation methods, we have more control over the synthesized
variations. Then we are able to study the influence of synthetic data under different
configurations. We compile various synthetic datasets based on the variations from
real datasets. Although deep learning based face detectors have various types, they
share some underlying architectures. We choose three different detectors as represen-
tatives. Synthetic data are customized based on the configuration of the datasets and
face detectors. In our experiment results, we demonstrate that synthetic data can be a
good complementary source to real data, to make face detectors more robust against
extreme variations. Our analysis provides an example to evaluate the performance of
face detectors towards different variations.

Question 2: How can we alleviate the negative influence of pose variations when
predicting age?

To overcome the impact of extreme head pose, our method is based on a pose
invariant representation. Face wv texture representation is reconstructed from the
original video frames. wuwv texture assigns 3D texture into 2D space with universal
per-pixel alignment for all textures. Each vertex in a 3D shape has a corresponding 2D
texture coordinate. The reconstructed uv texture in a pose invariant fashion contains the
estimated frontal view of the face. Normally, parts of the uv texture are missing due to
the influence of pose. The challenge lies in the completion of uv texture because the
missing regions are highly irregular. Wasserstein based GAN is used to recover the full
face region. For age estimation, besides cross entropy loss, we also consider to penalize
the mean and variance of predicted age distribution. This combination of loss functions
can force the network to predict a more concentrated age distribution towards the ground
truth. Age loss is added to the generator part of the total loss function. Our method is
able to complete the face uv texture and predict age simultaneously. In order to train
our method, we collect the largest unconstrained face videos dataset (UvAge) with age
labels. Compared to existing datasets, UvAge dataset has much larger inter-subject
variations. Our dataset can provide researchers with more robust age prediction methods
in the future. Through extensive experiments, it was shown that our method improved
accuracy in age estimation. A completed and frontal uv texture can help the network to
retrieve the most influential features for age estimation.

Question 3: Can we find a robust method to distinguish deep fake data from multiple
domains?

The most challenging part of detecting deep fake data are: 1) Pristine and modified
samples of the same subject look more similar than pristine examples from other subjects.
2) Different generative methods induce various artifacts from imaging features and face
characteristics in the modified samples. We propose a deep network based on a joint
supervision framework to detect manipulated face images. Maximum mean discrepancy
loss has been used to learn a more generalized feature space for multiple domains
of manipulation results. In order to maximize the intra-distances between positive
samples and minimize their inter-distances, triplet constraint is used to penalize triplet
relationship among batches. Furthermore, center loss has been integrated to provide a
more discriminative embedding for forensics detection. Our proposed method achieved
the best overall performance on UADFV, DF-TIMIT, Celeb-DF and FaceForensics++.
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Our method is not only robust against one certain manipulation method but also multi-
domain deep fake datasets. Moreover, we provided a detailed analysis about other
distribution alignment methods. Extensive experiments showed that our algorithm has
high accuracy in detecting face forensics.

Question 4: How can we mitigate the influence of imbalanced distribution and improve
the performance of video based age predictions?

Most age datasets have an imbalanced and long-tailed distribution. The imbalanced
issue has considerably degraded the performance of video based age estimation. We
used a transfer learning module to mitigate the imbalanced issue in existing age datasets.
Our transfer learning module is essentially based on a deep embedded clustering (DEC)
module to jointly cluster data and learn a better feature representation. This can transfer
knowledge from majority categories to improve performance on minority groups. To
alleviate the impact of imbalanced age samples in the training process, the target age
distribution is built on a linear combination of different age predictions. Our method
does not rely on hard constraints of the age distribution. Through extensive experiments,
we showed that our method substantially outperformed other age estimation methods on
both constrained (UvA-Nemo, Nemo-Deception) and unconstrained datasets (UvAge).
The performance on minority age groups has also been improved. At last, we examine
the influence of different variations on age estimation. The results show that our method
is robust against different type of variations.
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Overzicht

Dit hoofdstuk besluit dit proefschrift door onze onderzoeksvragen uit Hoofdstuk 1
opnieuw te bekijken, onze belangrijkste bevindingen te bespreken en richtingen voor
toekomstig onderzoek te schetsen. We concentreren ons op de belangrijkste bevindingen
en algemene lessen; aanvullende gedetailleerde bevindingen staan in de slotparagrafen
van de afzonderlijke hoofdstukken. De individuele conclusies voor elk hoofdstuk wor-
den als volgt gepresenteerd:

Hoofdstuk 2: Analyse van object kenmerken en kwaliteit van gezichtsdetectie

In dit hoofdstuk hebben we een experimentele vergelijking voorgesteld van de belan-
grijkste kenmerken die de kwaliteit van gezichtsdetectie beinvloeden. Er wordt een
synthetische generator van data voorgesteld om 2D-gezichten te synthetiseren op basis
van 3D-gezichtsmodellen. We hebben de synthetische dataset aangepast om specifieke
soorten kenmerken nader te analyseren (schaal, houding, occlusie, vervaging, enz.).
Vervolgens selecteren we drie representatieve gezichtsdetectoren om systematisch de
invloed van verschillende functies op de prestaties van gezichtsdetectie te onderzoeken.
Onze resultaten laten zien dat synthetische data een goede aanvullende bron kunnen
zijn voor echte datasets. De prestaties van gezichtsdetectoren kunnen ook worden
verbeterd door verschillende soorten gesynthetiseerde variaties. Door middel van onze
analyses hebben we ook enkele mogelijke tekortkomingen van de huidige architecturen
voor gezichtsdetectie geidentificeerd. Tot slot zijn er vaak uitdagende complicaties
bij gezichtsherkenning in de echte wereld. Door een overzicht te geven van de relatie
tussen de objectkenmerken en de kwaliteit van gezichtsdetectie, hopen we onderzoekers
te helpen bij het kiezen van meer geschikte synthetische data bij het adresseren van
uitdagende variaties in het echte leven.

Hoofdstuk 3: Houding-invariante leeftijd schatting van gezichtsafbeeldingen in
het wild

In dit hoofdstuk richten we ons op het aanpakken van het negatieve effect van de houd-
ing van het hoofd bij het inschatten van leeftijd. Ten eerste hebben we de grootste video
dataset in het wild geintroduceerd voor het schatten van de leeftijd. Het bevat onbeperkte
video’s van beroemdheden in verschillende evenementen. Om de voorspelling van de
leeftijd meer robuust te maken tegen houding-variatie, reconstrueren we gezicht uv
texturen van de originele 2D-frames van video’s. Delen van de gereconstrueerde uv
-structuren ontbreken vanwege het zelf-occlusie-effect van de houding van het hoofd.
In deze taak zijn de grootte en vorm van ontbrekende gebieden van het gezicht zeer
onregelmatig. We bieden een op-Wasserstein-GAN gebaseerde benadering (AgeGAN)
om tegelijkertijd de werkelijke leeftijd te schatten en de gedeeltelijke uv texturen te
voltooien. Onze methode kan het netwerk dwingen om de ontbrekende regio’s op te
halen met meer betekenisvolle functies voor het schatten van de leeftijd. Om de effec-
tiviteit aan te tonen, vergelijken we onze methode voor het aanvullen van gezichten met
andere geavanceerde invulmethoden. Ook evalueren we systematisch onze methoden
om leeftijd mee te schatten op andere datasets.
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Hoofdstuk 4: Discriminatief leren voor detectie van gezichtsvervalsing in meerdere
domeinen

Dit hoofdstuk concentreerde zich op de uitdaging van detectie van gezichtsvervalsing

in meerdere domeinen. De belangrijkste uitdagingen bij het opsporen van gezichtsver-
valsing zijn: 1) Het verschil tussen ongerepte en neppe voorbeelden is veel kleiner dan

het verschil tussen ongerepte voorbeelden. 2) De artefacten van beeldkenmerken en

gezichtskenmerken blijven niet bestaan in alle gegenereerde resultaten voor dezelfde

generatieve methode. We hebben een end-to-end diepe netwerk gebaseerde architectuur

voorgesteld. Geinspireerd door de toepassingen van neurale stijloverdracht, willen

we dat ons netwerk zich concentreert op meer onderscheidende kenmerken in plaats

van over-aanpassing aan manipulatie-specifieke artefacten. Maximale gemiddelde dis-
crepantie (MMD) kan ons helpen kenmerken van verschillende distributies op elkaar af

te stemmen. De MMD kost functie wordt gebruikt om een meer algemene representatie

te leren voor meerdere domeinen van manipulatie-resultaten. Bovendien is de triplet-
beperking opgenomen om de intra-afstanden te minimaliseren en de inter-afstanden

te maximaliseren. De Centrum kost functie is geintegreerd om een onderscheidende

representatie voor forensische detectie te bieden.

Onze voorgestelde methode behaalde de beste algehele prestaties op UADFV, DF-
TIMIT, Celeb-DF en FaceForensics++. Bovendien gaven we een gedetailleerde analyse
van elk onderdeel in ons raamwerk en hielden we rekening met de prestaties van andere
distributiemethoden. Uitgebreide experimenten hebben aangetoond dat ons algoritme
een hoge capaciteit en nauwkeurigheid heeft bij het detecteren van forensische aspecten
gezichten.

Hoofdstuk 5: Diep onevenwichtig leren voor leeftijdsschatting op basis van video’s
In dit hoofdstuk proberen we leeftijden te voorspellen op basis van video’s. Datasets
voor gezicht-gerelateerd onderzoek vertonen vaak zeer scheve klasse-verdelingen. De
meeste gegevens behoren tot slechts een paar meerderheidscategorieén, terwijl de min-
derheidsklassen veel minder gevallen bevatten. We hebben een end-to-end-methode
voorgesteld om leeftijd te voorspellen op basis van video’s. Om het onevenwichtige
probleem in bestaande datasets op te lossen, hebben we een clustermodule gebruikt om
gezamenlijk gegevens te clusteren en een betere weergave van functies te extraheren.
Dit kan kennis uit verwante categorieén gebruiken om de prestaties van minderheids-
groepen te verbeteren. Om de impact van onevenwichtige leeftijdssteekproeven in het
trainingsproces te verzachten, wordt de echte data verdeling geconstrueerd door een
lineaire combinatie van verschillende leeftijdsvoorspellingen. De voorgestelde methode
houdt geen rekening met stricte beperkingen op de marge van de leeftijdsverdeling.
Bovendien worden tijdelijke ensemble- en consistentiebeperkingen toegevoegd om de
gladheid van het gloeiproces verder te verbeteren.

Door uitgebreide experimenten hebben we aangetoond dat onze methode sub-
stantieel beter presteerde dan andere methoden op zowel beperkte (UvA-Nemo, Nemo-
Deception) als niet-beperkte datasets (UvAge). Bovendien zijn de prestaties op de
leeftijdsgroepen van minderheden ook verbeterd.

Algemene discussie

88



In deze sectie bespreken we twee belangrijke beperkingen in ons werk en mogelijke
toekomstige richtingen.

Synthetische data spelen een cruciale rol in ons Hoofdstuk 2. De variaties van
datasets hebben zowel kansen als uitdagingen geboden voor het deep learning-systeem.
De uiteindelijke prestaties van de gezicht-gerelateerde applicaties zijn sterk athankelijk
van de variaties in datasets. Synthetische data kunnen een effectieve manier zijn
om de variaties van echte datasets te verrijken. Het voordeel van het gebruik van
synthetische gegevens is dat we meer inzicht krijgen in hoe de prestaties van het
leersysteem athankelijk zijn van verschillende soorten gesynthetiseerde variaties. Met
alle voordelen van synthetische data is er weliswaar altijd een onvermijdelijke kloof
tussen synthetische data en echte data. Toekomstig werk zou zich kunnen concentreren
op het opvullen of verkleinen van de kloof.

In Hoofdstuk 3 gebruiken we een GAN om de ontbrekende gebieden van de uv-
textuur van het gezicht te herstellen. Resultaten van generatieve methoden worden
steeds realistischer. Ze kunnen aanvullende variaties voor het leersysteem bieden.
Het is echter moeilijk om de generator volledig te beheersen tijdens het leerproces.
Momenteel kunnen we de resultaten van generatieve methoden niet volledig verklaren.
Er zijn ook geen gemeenschappelijke statisticken om de prestaties van generatieve
methoden te meten. Voor toekomstig onderzoek kunnen we onderzoeken hoe we het
gedrag van generatieve methoden echt kunnen beheersen. Het is ook beter als we
de correlaties tussen sommige gezichtskenmerken zoals mannelijkheid en het hebben
van een baard tijdens het leerproces kunnen verwijderen. De meeste methoden voor
gezichtsmodificatie worden al op grote schaal gebruikt voordat er wordt onderzocht
wat de sociale impact van de methoden is. Gebruikersonderzoek zou nuttig zijn om te
begrijpen hoe mensen de gesynthetiseerde gezichten begrijpen.

Het afgelopen decennium is getuige geweest van een explosieve vooruitgang van
gezichtsonderzoek en uitgebreide toepassingen in de praktijk. Daarentegen is onderzoek
naar hun maatschappelijke, vooral ethische, implicaties grotendeels over het hoofd
gezien. De nauwkeurigheid en het bereik van gezichtsherkenning zijn drastisch gegroeid
en worden soms opdringerige krachten in het dagelijkse leven van mensen en zelfs in
privacydomeinen. We stellen voor dat onderzoek naar gezichtsalgoritmen en hun sociale
implicaties hand in hand moet gaan, zodat de gezichtsgeneratieve methoden evolueren
op een manier die in de ogen van het grote publiek als geloofwaardig en betrouwbaar
wordt beschouwd.

Conclusie

We sluiten het proefschrift af door de vragen in Hoofdstuk 1 opnieuw te bekijken.
Vraag 1: Kunnen we systematisch variaties in synthetische data manipuleren om de
echte dataset aan te vullen en verder betere prestaties te behalen bij gezichtsdetectie?
Het korte antwoord is ja. Het merendeel van de gegevens uit bestaande datasets
behoort normaal gesproken tot een beperkt aantal variaties. De gezichten vertegenwo-
ordigden niet voldoende extreme houding, schaal of zware occlusie om een robuuste
detector te trainen tegen alle mogelijke variaties. We gebruiken synthetische data als
vergroting van de data om de onvoldoende variatie van echte datasets te compenseren.
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Eerst ontwerpen we een nieuwe synthetische gezichtsgegevensgenerator met volledig
gecontroleerde variaties (op houding, schaal, achtergrond, verlichting en occlusie).
In vergelijking met bestaande methoden voor gezichtsmanipulatie hebben we meer
controle over de gesynthetiseerde variaties. Dan zijn we in staat om de invloed van
synthetische data onder verschillende configuraties te bestuderen. We stellen verschil-
lende synthetische datasets samen op basis van de variaties van echte datasets. Hoewel
op deep learning gebaseerde gezichtsdetectoren verschillende typen hebben, delen ze
een aantal onderliggende architecturen. We kiezen drie verschillende detectoren als
vertegenwoordigers. Synthetische gegevens worden aangepast op basis van de config-
uratie van de datasets en gezichtsdetectoren. In onze experimenten laten we zien dat
synthetische gegevens een goede aanvullende bron kunnen zijn voor echte gegevens,
om gezichtsdetectoren robuuster te maken tegen extreme variaties. Onze analyse biedt
een voorbeeld om de prestaties van gezichtsdetectoren voor verschillende variaties te
evalueren.

Vraag 2: Hoe kunnen we de negatieve invloed van houding-variaties bij het voorspellen
van leeftijd verminderen?

Om de impact van een extreme hoofdhouding te overwinnen, is onze methode
gebaseerd op een houding-invariante representatie. De structuurweergave van het
gezicht uv wordt gereconstrueerd op basis van de originele videobeelden. uv texture
wijst 3D-textuur toe aan 2D-ruimte met universele uitlijning per pixel voor alle tex-
turen. Elk hoekpunt in 3D-vorm heeft een corresponderende 2D-textuurcodrdinaat.
De gereconstrueerde uv-textuur op een houding-invariante manier bevat het geschatte
vooraanzicht van het gezicht. Normaal gesproken ontbreken delen van de uv-textuur
vanwege de invloed van houding. De uitdaging ligt in de voltooiing van uv textuur
omdat de ontbrekende gebieden zeer onregelmatig zijn. Een Wasserstein GAN wordt
gebruikt om het volledige gezichtsgebied te herstellen. Voor het inschatten van de
leeftijd overwegen we naast de cross-entropie ook het gemiddelde en de variantie van de
voorspelde leeftijdsverdeling te bestraffen. Deze combinatie van kost functies kan het
netwerk dwingen een meer geconcentreerde leeftijdsverdeling naar de grondwaarheid
te voorspellen. Ouderdomsverlies wordt toegevoegd aan het generatorgedeelte van de
totale kost functie. Onze methode is in staat om de face uv textuur te voltooien en
tegelijkertijd de leeftijd te voorspellen. Om onze methode te trainen, verzamelen we
de grootste dataset met ongedwongen gezichtsvideo’s (UvAge) met leeftijdslabels. In
vergelijking met bestaande datasets heeft de UvAge dataset veel grotere interpersoonli-
jke variaties. Onze dataset kan onderzoekers in de toekomst robuustere methoden voor
leeftijdsvoorspelling bieden. Door uitgebreide experimenten werd aangetoond dat onze
methode de nauwkeurigheid bij het inschatten van leeftijd verbeterde. Een voltooide en
frontale uv-textuur kan het netwerk helpen om de meest invloedrijke functies voor het
schatten van de leeftijd op te halen.

Vraag 3: Kunnen we een robuuste methode vinden om diepe nep gegevens van meerdere
domeinen te onderscheiden?

Het meest uitdagende deel van het detecteren van diepe nep gegevens zijn: 1) On-
gerepte en gemodificeerde voorbeelden van hetzelfde onderwerp lijken meer op elkaar
dan ongerepte voorbeelden van andere onderwerpen. 2) Verschillende generatieve meth-
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oden wekken verschillende artefacten op van beeldkenmerken en gezichtskenmerken
in de gemodificeerde voorbeelden. We stellen een diep netwerk voor op basis van een
gezamenlijk toezichtkader om gemanipuleerde gezichtsbeelden te detecteren. Het maxi-
male gemiddelde discrepantieverlies is gebruikt om een meer algemene feature-ruimte
te leren voor meerdere domeinen van manipulatieresultaten. Om intra-afstanden tussen
positieve voorbeelden te maximaliseren en inter-afstanden te minimaliseren, wordt een
triplet-beperking gebruikt om de triplet-relatie tussen batches te bestraffen. Bovendien
is centrumverlies geintegreerd om een meer onderscheidende representatie voor forensis-
che detectie te bieden. Onze voorgestelde methode behaalde de beste algehele prestaties
op UADFV, DF-TIMIT, Celeb-DF en FaceForensics ++. Onze methode is niet alleen
robuust tegen één bepaalde manipulatiemethode, maar ook tegen multi-domein deep
fake datasets. Bovendien hebben we een gedetailleerde analyse gegeven van andere
methoden voor distributie-uitlijning. Uitgebreide experimenten hebben aangetoond dat
ons algoritme een hoge nauwkeurigheid heeft bij het detecteren van gezichtsforensisch
onderzoek.

Vraag 4: Hoe kunnen we de invloed van onevenwichtige distributie verminderen en de
prestaties van op video gebaseerde leeftijdsvoorspellingen verbeteren?

De meeste ouderdomsdatasets hebben een onevenwichtige en langdurige verdeling.
Het onevenwichtige probleem heeft de prestaties van op video gebaseerde leeftijdss-
chatting aanzienlijk verslechterd. We hebben een leermodule voor overdracht gebruikt
om het onevenwichtige probleem in bestaande leeftijdsdatasets te verminderen. Onze
transfer learning-module is in wezen gebaseerd op een deep embedded clustering (DEC)-
module om gezamenlijk gegevens te clusteren en een betere weergave van functies te
leren. Dit kan kennis van meerderheidscategorieén overdragen om de prestaties van min-
derheidsgroepen te verbeteren. Om de impact van onevenwichtige leeftijdssteekproeven
in het trainingsproces te verminderen, is de beoogde leeftijdsverdeling gebaseerd op
een lineaire combinatie van verschillende leeftijdsvoorspellingen. Onze methode is niet
gebaseerd op harde beperkingen van de leeftijdsverdeling. Door middel van uitgebreide
experimenten hebben we aangetoond dat onze methode substantieel beter presteerde dan
andere leeftijdsschattingsmethoden op zowel beperkte (UvA-Nemo, Nemo-Deception)
als niet-beperkte datasets (UvAge). De prestaties op de leeftijdsgroepen van minder-
heden zijn ook verbeterd. Ten slotte onderzoeken we de invloed van verschillende
variaties op leeftijdsschatting. De resultaten laten zien dat onze methode robuust is
tegen verschillende soorten variaties.
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