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We provide elementary identities relating the three known types of non-symmetric inter-

polation Macdonald polynomials. In addition we derive a duality for non-symmetric

interpolation Macdonald polynomials. We consider some applications of these results,

in particular to binomial formulas involving non-symmetric interpolation Macdonald

polynomials.

1 Introduction

The symmetric interpolation Macdonald polynomials Rλ(x; q, t) = Rλ(x1, . . . , xn; q, t)

form a distinguished inhomogeneous basis for the algebra of symmetric polynomials

in n variables over the field F := Q(q, t). They were first introduced in [4, 13], building

on joint work by one of the authors with Knop [5] and earlier work with Kostant [6, 7,

12]. These polynomials are indexed by the set of partitions with at most n parts

Pn := {
λ ∈ Zn | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0

}
.

For a partition μ ∈ Pn we define |μ| = μ1 + · · · + μn and write

μ = (
qμ1τ1, . . . , qμnτn

)
where τ := (τ1, . . . , τn) with τi := t1−i.
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Remarks on Interpolation Macdonald Polynomials 14815

Then Rλ(x) = Rλ(x; q, t) is, up to normalization, characterized as the unique nonzero

symmetric polynomial of degree at most |λ| satisfying the vanishing conditions

Rλ(μ) = 0 for μ ∈ Pn such that |μ| ≤ |λ| , μ �= λ.

The normalization is fixed by requiring that the coefficient of xλ := xλ1
1 · · · xλn

n in the

monomial expansion of Rλ(x) is 1. In spite of their deceptively simple definition, these

polynomials possess some truly remarkable properties. For instance, as shown in [4,

13], the top homogeneous part of Rλ(x) is the Macdonald polynomial Pλ(x) [9] and Rλ(x)

satisfies the extra vanishing property Rλ(μ) = 0 unless λ ⊆ μ as Ferrer diagrams. Other

key properties of Rλ(x), which were proven by Okounkov [10], include the binomial

theorem, which gives an explicit expansion of Rλ(ax) = Rλ(ax1, . . . , axn; q, t) in terms

of the Rμ(x; q−1, t−1)’s over the field K := Q(q, t, a), and the duality or evaluation

symmetry, which involves the evaluation points

μ̃ = (
q−μnτ1, . . . , q−μ1τn

)
, μ ∈ Pn

and takes the form

Rλ(aμ̃)

Rλ(aτ)
= Rμ(ãλ)

Rμ(aτ)
.

The interpolation polynomials have natural non-symmetric analogs Gα(x) =
Gα(x; q, t), which were also defined in [4, 13]. These are indexed by the set of compo-

sitions with at most n parts, Cn := (
Z≥0

)n. For a composition β ∈ Cn we define

β := wβ(β+),

where wβ is the shortest permutation such that β+ = w−1
β (β) is a partition. Then

Gα(x) is, up to normalization, characterized as the unique polynomial of degree at most

|α| := α1 + · · · + αn satisfying the vanishing conditions

Gα(β) = 0 for β ∈ Cn such that |β| ≤ |α| , β �= α.

The normalization is fixed by requiring that the coefficient of xα := xα1
1 · · · xαn

n in the

monomial expansion of Gα(x) is 1.

Many properties of the symmetric interpolation polynomials Rλ(x) admit non-

symmetric counterparts for the Gα(x). For instance, the top homogeneous part of Gα(x)
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14816 S. Sahi and J. Stokman

is the non-symmetric Macdonald polynomial Eα(x) and Gα(x) satisfies an extra vanish-

ing property [4]. An analog of the binomial theorem, proved by one of us in [14, Thm.

1.1], gives an explicit expansion of Gα(ax; q, t) in terms of a 2nd family of interpolation

polynomials G′
α(x) = G′

α(x; q, t). These latter polynomials are characterized by having

the same top homogeneous part as Gα(x), namely the non-symmetric polynomial Eα(x),

and the following vanishing conditions at the evaluation points β̃ := (−w0β), with w0

the longest element of the symmetric group Sn:

G′
α(β̃) = 0 for |β| < |α| .

The 1st result of the present paper is a Demazure-type formula for the primed

interpolation polynomials G′
α(x) in terms of Gα(x), which involves the symmetric group

action on the algebra of polynomials in n variables over F by permuting the variables,

as well as the associated Hecke algebra action in terms of Demazure-Lusztig operators

Hw (w ∈ Sn) as described in the next section.

Theorem A. Write I(α) := #{i < j | αi ≥ αj}. Then we have

G′
α(tn−1x; q−1, t−1) = t(n−1)|α|−I(α)w0Hw0

Gα(x; q, t).

This is restated and proved in Theorem 1 below.

The 2nd result is the following duality theorem for Gα(x), which is the non-

symmetric analog of Okounkov’s duality result.

Theorem B. For all compositions α, β ∈ Cn we have

Gα(aβ̃)

Gα(aτ)
= Gβ(aα̃)

Gβ(aτ)
.

This is a special case of Theorem 17 below.

We now recall the interpolation O-polynomials introduced in [14, Thm. 1.1].

Write x−1 for (x−1
1 , . . . , x−1

n ). Then it was shown in [14, Thm. 1.1] that there exists a

unique polynomial Oα(x) = Oα(x; q, t; a) of degree at most |α| with coefficients in the

field K such that

Oα(β
−1

) = Gβ(aα̃)

Gβ(aτ)
for all β.

Our 3rd result is a simple expression for the O-polynomials in terms of the interpolation

polynomials Gα(x).
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Remarks on Interpolation Macdonald Polynomials 14817

Theorem C. For all compositions α ∈ Cn we have

Oα (x) = Gα(t1−naw0x)

Gα(aτ)
.

This is deduced in Proposition 22 below as a direct consequence of non-

symmetric duality. We also obtain new proofs of Okounkov’s [10] duality theorem, as

well as the dual binomial theorem of Lascoux et al. [8], which gives an expansion of the

primed-interpolation polynomials G′
α(x) in terms of the Gβ(ax)’s.

2 Demazure-Lusztig Operators and the Primed Interpolation Polynomials

We use the notations from [14]. The correspondence with the notations from the

other important references [4], [13] and [10] is listed in [14, Section 2] (directly after

Lemma 2.8).

Let Sn be the symmetric group in n letters and si ∈ Sn the permutation that

swaps i and i +1. The si (1 ≤ i < n) are Coxeter generators for Sn. Let � : Sn → Z≥0 be the

associated length function. Let Sn act on Zn and Kn by siv := (· · · , vi−1, vi+1, vi, vi+2, . . .)

for v = (v1, . . . , vn). Write w0 ∈ Sn for the longest element, given explicitly by i → n+1−i

for i = 1, . . . , n.

For v = (v1, . . . , vn) ∈ Zn define v = (v1, . . . , vn) ∈ Fn by vi := qvit−ki(v) with

ki(v) := #{k < i | vk ≥ vi} + #{k > i | vk > vi}.

If v ∈ Zn has non-increasing entries v1 ≥ v2 ≥ · · · ≥ vn, then v = (qv1τ1, . . . , qvnτn).

For arbitrary v ∈ Zn we have v = wv(v+) with wv ∈ Sn the shortest permutation such

that v+ := w−1
v (v) has non-increasing entries, see [4, Section 2]. We write ṽ := −w0v for

v ∈ Zn.

Note that αn = t1−n if α ∈ Cn with αn = 0.

For a field F we write F[x] := F[x1, . . . , xn], F[x±1] := F[x±1
1 , . . . , x±1

n ] and F(x) for

the quotient field of F[x]. The symmetric group acts by algebra automorphisms on F[x]

and F(x), with the action of si by interchanging xi and xi+1 for 1 ≤ i < n. Consider the

F-linear operators

Hi = tsi − (1 − t)xi

xi − xi+1
(1 − si) = t + xi − txi+1

xi − xi+1
(si − 1)
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14818 S. Sahi and J. Stokman

on F(x) (1 ≤ i < n) called Demazure-Lusztig operators, and the automorphism � of F(x)

defined by

�f (x1, . . . , xn) = f (q−1xn, x1, . . . , xn−1).

Note that Hi (1 ≤ i < n) and � preserve F[x±1] and F[x]. Cherednik [1, 2] showed that

the operators Hi (1 ≤ i < n) and � satisfy the defining relations of the type A extended

affine Hecke algebra,

(Hi − t)(Hi + 1) = 0,

HiHj = HjHi, |i − j| > 1,

HiHi+1Hi = Hi+1HiHi+1,

�Hi+1 = Hi�,

�2H1 = Hn−1�2

for all the indices such that both sides of the equation make sense (see also [4, Section 3]).

For w ∈ Sn we write Hw := Hi1Hi2 · · · Hi� with w = si1si2 · · · si� a reduced expression

for w ∈ Sn. It is well defined because of the braid relations for the Hi’s. Write

Hi := Hi + 1 − t = tH−1
i and set

ξi := t1−nHi−1 · · · H1�−1Hn−1 · · · Hi, 1 ≤ i ≤ n. (1)

The operators ξi’s are pairwise commuting invertible operators, with inverses

ξ−1
i = Hi · · · Hn−1�H1 · · · Hi−1.

The ξ−1
i (1 ≤ i ≤ n) are the Cherednik operators [2, 4].

The monic non-symmetric Macdonald polynomial Eα ∈ F[x] of degree α ∈ Cn is

the unique polynomial satisfying

ξ−1
i Eα = αiEα, i = 1, . . . , n

and normalized such that the coefficient of xα in Eα is 1.

Let ι be the field automorphism of K inverting q, t and a. It restricts to a field

automorphism of F, inverting q and t. We extend ι to a Q-algebra automorphism of K[x]
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Remarks on Interpolation Macdonald Polynomials 14819

and F[x] by letting ι act on the coefficients of the polynomial. Write

G◦
α := ι

(
Gα

)
, E◦

α := ι
(
Eα

)
for α ∈ Cn. Note that v−1 = (ι(v1), . . . , ι(vn)).

Put H◦
i , H◦

w, H
◦
i , �◦ and ξ◦

i for the operators Hi, Hw, Hi, � and ξi with q, t replaced

by their inverses. For instance,

H◦
i = t−1si − (1 − t−1)xi

xi − xi+1
(1 − si),

�◦f (x1, . . . , xn) = f (qxn, x1, . . . , xn−1).

We then have ξ◦
i E◦

α = αiE
◦
α for i = 1, . . . , n, which characterizes E◦

α up to a scalar factor.

Theorem 1. For α ∈ Cn we have

G′
α(x) = t(1−n)|α|+I(α)w0H◦

w0
G◦

α(tn−1x) (2)

with I(α) := #{i < j | αi ≥ αj}.

Remark. Formally set t = qr, replace x by 1 + (q − 1)x, divide both sides of (2) by

(q − 1)|α| and take the limit q → 1. Then

G′
α(x; r) = (−1)|α|σ(w0)w0Gα(−x − (n − 1)r; r) (3)

for the non-symmetric interpolation Jack polynomial Gα(· ; r) and its primed version

(see [14]). Here σ denotes the action of the symmetric group with σ(si) the rational

degeneration of the Demazure-Lusztig operators Hi, given explicitly by

σ(si) = si + r

xi − xi+1
(1 − si),

see [14, Section 1]. To establish the formal limit (3) one uses that σ(w0)w0 = w0σ ◦(w0)

with σ ◦ the action of the symmetric group defined in terms of the rational degeneration

σ ◦(si) = si − r

xi − xi+1
(1 − si)

of H◦
i . Formula (3) was obtained before in [14, Thm. 1.10].
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14820 S. Sahi and J. Stokman

Proof. We show that the right-hand side of (2) satisfies the defining properties of G′
α.

For the vanishing property, note that

tn−1w0β̃ = β
−1

(4)

(this is the q-analog of [14, Lem. 6.1(2)]); hence,

(
w0H◦

w0
G◦

α(tn−1x)
)|x=β̃ = (

H◦
w0

G◦
α(x)

)|
x=β

−1 .

This expression is zero for |β| < |α| since it is a linear combination of the evaluated

interpolation polynomials G◦
α(wβ

−1
) (w ∈ Sn) by [14, Lem. 2.1(2)].

It remains to show that the top homogeneous terms of both sides of (2) are the

same, that is, that

Eα = tI(α)w0H◦
w0

E◦
α. (5)

Note that � := w0H◦
w0

satisfies the intertwining properties

Hi� = t�H
◦
i ,

�� = tn−1�H
◦
n−1 · · · H

◦
1(�◦)−1H◦

n−1 · · · H◦
1 (6)

for 1 ≤ i < n (use e.g., [2, Prop. 3.2.2]). It follows that ξ−1
i � = �ξ◦

i for i = 1, . . . , n.

Therefore,

Eα(x) = cα�E◦
α(x)

for some constant cα ∈ F. But the coefficient of xα in �xα is t−I(α); hence, cα = tI(α). �

Consider the Demazure operators Hi and the Cherednik operators ξ−1
j as

operators on the space F[x±1] of Laurent polynomials. For an integral vector u ∈ Zn,

let Eu ∈ F[x±1] be the common eigenfunction of the Cherednik operators ξ−1
j with

eigenvalues uj (1 ≤ j ≤ n), normalized such that the coefficient of xu := xu1
1 · · · xun

n

in Eu is 1. For u = α ∈ Cn this definition reproduces the non-symmetric Macdonald

polynomial Eα ∈ F[x] as defined before. Note that

Eu+(1n) = x1 · · · xnEu(x).
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Remarks on Interpolation Macdonald Polynomials 14821

It is now easy to check that formula (5) is valid with α replaced by an arbitrary integral

vector u,

Eu = tI(u)w0H◦
w0

E◦
u (7)

with E◦
u := ι(Eu). Furthermore, one can show in the same vein as the proof of (5) that

w0E−w0u(x−1) = Eu(x)

for an integral vector u, where p(x−1) stands for inverting all the parameters x1, . . . , xn

in the Laurent polynomial p(x) ∈ F[x±1]. Combining this equality with (7) yields

E−w0u(x−1) = tI(u)H◦
w0

E◦
u(x),

which is a special case of a known identity for non-symmetric Macdonald polynomials

(see [2, Prop. 3.3.3]).

3 Evaluation Formulas

In [14, Thm. 1.1] the following combinatorial evaluation formula

Gα(aτ) =
∏
s∈α

( t1−n − qa′(s)+1t1−l′(s)

1 − qa(s)+1tl(s)+1

) ∏
s∈α

(atl′(s) − qa′(s)) (8)

was obtained, with a(s), l(s), a′(s) and l′(s) the arm, leg, coarm and coleg of s = (i, j) ∈ α,

defined by

a(s) := αi − j, l(s) := #{k > i | j ≤ αk ≤ αi} + #{k < i | j ≤ αk + 1 ≤ αi},
a′(s) := j − 1, l′(s) := #{k > i | αk > αi} + #{k < i | αk ≥ αi}.

By (8) we have

Eα(τ ) = lim
a→∞ a−|α|Gα(aτ) =

∏
s∈α

( t1−n+l′(s) − qa′(s)+1t

1 − qa(s)+1tl(s)+1

)
,

which is the well-known evaluation formula [1, 2] for the non-symmetric Macdonald

polynomials. Note that for α ∈ Cn,

�(w0) − I(α) = #{i < j | αi < αj}.
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14822 S. Sahi and J. Stokman

Lemma 2. For α ∈ Cn we have

G′
α(aτ) = t(1−n)|α|+I(α)−�(w0)G◦

α(aτ−1).

Proof. Since tn−1w0τ = τ−1 = 0
−1

we have by Theorem 1,

G′
α(aτ) = t(1−n)|α|+I(α)

(
H◦

w0
G◦

α

)
(a0

−1
)

= t(1−n)|α|+I(α)−�(w0)G◦
α(a0

−1
),

where we have used [14, Lem. 2.1(2)] for the 2nd equality. �

We now derive a relation between the evaluation formulas for Gα(x) and G◦
α(x).

To formulate this we write, following [8],

n(α) :=
∑
s∈α

l(s), n′(α) :=
∑
s∈α

a(s).

Note that n′(α) = ∑n
i=1

(
αi
2

)
; hence, it only depends on the Sn-orbit of α, while

n(α) = n(α+) + �(w0) − I(α). (9)

The following lemma is a non-symmetric version of the 1st displayed formula on [10,

page 537].

Lemma 3. For α ∈ Cn we have

Gα(aτ) = (−a)|α|t(1−n)|α|−n(α)qn′(α)G◦
α(a−1τ−1).

Proof. This follows from the explicit evaluation formula (8) for the non-symmetric

interpolation Macdonald polynomial Gα. �

Following [8, (3.9)] we define τα ∈ F (α ∈ Cn) by

τα := (−1)|α|qn′(α)t−n(α+). (10)

It only depends on the Sn-orbit of α.
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Remarks on Interpolation Macdonald Polynomials 14823

Corollary 4. For α ∈ Cn we have

G′
α(a−1τ) = τ−1

α a−|α|Gα(aτ).

Proof. Use Lemmas 2 and 3 and (9). �

4 Normalized Interpolation Macdonald Polynomials

We need the basic representation of the (double) affine Hecke algebra on the space of

K-valued functions on Zn, which is constructed as follows.

For v ∈ Zn and y ∈ Kn write v� := (v2, . . . , vn, v1 + 1) and y� := (y2, . . . , yn, qy1).

Denote the inverse of � by , so v = (vn −1, v1, . . . , vn−1) and y = (yn/q, y1, . . . , yn−1). We

have the following lemma (cf. [4, 13, 14]).

Lemma 5. Let v ∈ Zn and 1 ≤ i < n. Then we have

1. si(v) = siv if vi �= vi+1.

2. vi = tvi+1 if vi = vi+1.

3. v� = v�.

Let H be the double affine Hecke algebra over K. It is isomorphic to the

subalgebra of End(K[x±1]) generated by the operators Hi (1 ≤ i < n), �±1, and the

multiplication operators x±1
j (1 ≤ j ≤ n).

For a unital K-algebra A we write FA for the space of A-valued functions

f : Zn → A on Zn.

Corollary 6. Let A be a unital K-algebra. Consider the A-linear operators Ĥi (1 ≤ i < n),

�̂ and x̂j (1 ≤ j ≤ n) on FA defined by

(Ĥif )(v) := tf (v) + vi − tvi+1

vi − vi+1
(f (siv) − f (v)),

(�̂f )(v) := f (v), (�̂−1f )(v) := f (v�),

(̂xjf )(v) := avjf (v) (11)

for f ∈ FA and v ∈ Zn. Then Hi �→ Ĥi (1 ≤ i < n), � �→ �̂ and xj �→ x̂j (1 ≤ j ≤ n) defines

a representation H → EndA(FA), X �→ X̂ (X ∈ H) of the double affine Hecke algebra H on

FA.
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14824 S. Sahi and J. Stokman

Proof. Let O ⊂ Kn be the smallest Sn-invariant and �-invariant subset that contains

{av | v ∈ Zn}. Note that O is contained in {y ∈ Kn | yi �= yj if i �= j}. The Demazure–

Lusztig operators Hi (1 ≤ i < n), �±1 and the coordinate multiplication operators xj

(1 ≤ j ≤ n) act A-linearly on the space FO
A of A-valued functions on O, and hence turns

FO
A into an H-module. Define the surjective A-linear map

pr : FO
A → FA

by pr(g)(v) := g(av) (v ∈ Zn).

We claim that Ker(pr) is an H-submodule of FO
A . Clearly Ker(pr) is xj-invariant

for j = 1, . . . , n. Let g ∈ Ker(pr). Part 3 of Lemma 5 implies that �g ∈ Ker(pr). To show

that Hig ∈ Ker(pr) we consider two cases. If vi �= vi+1 then siv = siv by part 1 of Lemma 5.

Hence,

(Hig)(av) = tg(av) + vi − tvi+1

vi − vi+1
(g(asiv) − g(av)) = 0.

If vi = vi+1 then vi = tvi+1 by part 2 of Lemma 5. Hence,

(Hig)(v) = tg(av) + vi − tvi+1

vi − vi+1
(g(asiv) − g(av)) = tg(av) = 0.

Hence, FA inherits the H-module structure of FO
A /Ker(pr). It is a straightforward

computation, using Lemma 5 again, to show that the resulting action of Hi (1 ≤ i < n),

� and xj (1 ≤ j ≤ n) on FA is by the operators Ĥi (1 ≤ i < n), �̂ and x̂j (1 ≤ j ≤ n). �

Remark 7. With the notations from (the proof of) Corollary 6, let g̃ ∈ FO
A and set

g := pr(̃g) ∈ FA. In other words, g(v) := g̃(av) for all v ∈ Zn. Then(
X̂g

)
(v) = (Xg̃)(av), v ∈ Zn

for X = Hi, �
±1, xj.

Remark 8. Let F+
A be the space of A-valued functions on Cn. We sometimes will

consider Ĥi (1 ≤ i < n), �̂−1 and x̂j (1 ≤ j ≤ n), defined by the formulas (11), as linear

operators on F+
A .

Definition 9. We call

Kα(x; q, t; a) := Gα(x; q, t)

Gα(aτ ; q, t)
∈ K[x] (12)

the normalized non-symmetric interpolation Macdonald polynomial of degree α.
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Remarks on Interpolation Macdonald Polynomials 14825

We frequently use the shorthand notation Kα(x) := Kα(x; q, t; a). We will see in

a moment that formulas for non-symmetric interpolation Macdonald polynomials take

the nicest form in this particular normalization.

Note that a cannot be specialized to 1 in (12) since Gα(τ ) = Gα(0) = 0 if α ∈ Cn is

nonzero. Note furthermore that

lim
a→∞ Kα(ax) = Eα(x)

Eα(τ )
(13)

since lima→∞ a−|α|Gα(ax) = Eα(x).

Recall from [4] the operator � = (xn − t1−n)� ∈ H and the inhomogeneous

Cherednik operators

�j = 1

xj
+ 1

xj
Hj · · · Hn−1�H1 · · · Hj−1 ∈ H, 1 ≤ j ≤ n.

The operators Hi, �j and � preserve K[x] (see [4]); hence, they give rise to K-linear

operators on F+
K[x] (e.g., (Hif )(α) := Hi(f (α)) for α ∈ Cn). Note that the operators Hi, �j

and � on F+
K[x] commute with the hat-operators Ĥi, x̂j and �̂−1 on F+

K[x] (cf. Remark 8).

The same remarks hold true for the space F
K(x) of K(x)-valued functions on Zn (in fact,

in this case the hat-operators define a H-action on F
K(x)).

Let K ∈ F+
K[x] be the map α �→ Kα(·) (α ∈ Cn).

Lemma 10. For 1 ≤ i < n and 1 ≤ j ≤ n we have in F+
K[x],

1. HiK = ĤiK.

2. �jK = ax̂−1
j K.

3. �K = t1−n(a2x̂−1
1 − 1)�̂−1K.

Proof. 1. To derive the formula we need to expand HiKα as a linear combination of the

Kβ ’s. As a 1st step we expand HiGα as linear combination of the Gβ ’s.

If α ∈ Cn satisfies αi < αi+1 then

HiGα(x) = (t − 1)αi

αi − αi+1
Gα(x) + Gsiα

(x)

by [14, Lem. 2.2]. Using part 1 of Lemma 5 and the fact that Hi satisfies the quadratic

relation (Hi − t)(Hi + 1) = 0, it follows that

HiGα(x) = (t − 1)αi

αi − αi+1
Gα(x) + t(αi+1 − tαi)(αi+1 − t−1αi)

(αi+1 − αi)
2 Gsiα

(x)
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14826 S. Sahi and J. Stokman

if α ∈ Cn satisfies αi > αi+1. Finally, HiGα(x) = tGα(x) if α ∈ Cn satisfies αi = αi+1 by [4,

Cor. 3.4].

An explicit expansion of HiKα as linear combination of the Kβ ’s can now be

obtained using the formula

Gα(aτ) = αi+1 − tαi

αi+1 − αi
Gsiα

(aτ)

for α ∈ Cn satisfying αi > αi+1, cf. the proof of [14, Lem 3.1]. By a direct computation the

resulting expansion formula can be written as HiK = ĤiK.

2. See [4, Thm. 2.6].

3. Let α ∈ Cn. By [14, Lem. 2.2 (1)],

�Gα(x) = q−α1Gα�(x).

By the evaluation formula (8) we have

Gα�(aτ)

Gα(aτ)
= at1−n+k1(α) − qα1t1−n.

Hence,

�Kα(x) = t1−n(aα−1
1 − 1)Kα�(x). �

Remark 11. Note that

�Kα(x) = (aα̃n − t1−n)Kα�(x)

for α ∈ Cn since α−1 = tn−1w0α̃.

5 Interpolation Macdonald Polynomials with Negative Degrees

In this section we give the natural extension of the interpolation Macdonald polynomi-

als Gα(x) and Kα(x) to α ∈ Zn. It will be the unique extension of K ∈ F+
K[x] to a map

K ∈ F
K(x) such that Lemma 10 remains valid.

Lemma 12. For α ∈ Cn we have

Gα(x) = q−|α| Gα+(1n)(qx)∏n
i=1(qxi − t1−n)

,

Kα(x) =
( n∏

i=1

(1 − aα−1
i )

(1 − qtn−1xi)

)
Kα+(1n)(qx).
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Remarks on Interpolation Macdonald Polynomials 14827

Proof. Note that for f ∈ K[x],

�nf (x) =
( n∏

i=1

(xi − t1−n)
)
f (q−1x).

The 1st formula then follows by iteration of [14, Lem. 2.2(1)] and the 2nd formula from

part 3 of Lemma 10. �

For m ∈ Z≥0 we define Am(x; v) ∈ K(x) by

Am(x; v) :=
n∏

i=1

(
q1−mav−1

i ; q
)
m(

qtn−1xi; q
)
m

∀ v ∈ Zn, (14)

with
(
y; q

)
m := ∏m−1

j=0 (1 − qjy) the q-shifted factorial.

Definition 13. Let v ∈ Zn and write |v| := v1 +· · ·+vn. Define Gv(x) = Gv(x; q, t) ∈ F(x)

and Kv(x) = Kv(x; q, t; a) ∈ K(x) by

Gv(x) := q−m|v|−m2n Gv+(mn)(q
mx)∏n

i=1 xm
i

(
q−mt1−nx−1

i ; q
)
m

,

Kv(x) := Am(x; v)Kv+(mn)(q
mx),

where m is a nonnegative integer such that v + (mn) ∈ Cn (note that Gv and Kv are well

defined by Lemma 12).

Example 14. If n = 1 then for m ∈ Z≥0,

K−m(x) =
(
qa; q

)
m(

qx; q
)
m

, Km(x) =
(x

a

)m
(
x−1; q

)
m(

a−1; q
)
m

.

Lemma 15. For all v ∈ Zn,

Kv(x) = Gv(x)

Gv(aτ)
.

Proof. Let v ∈ Zn. Clearly Gv(x) and Kv(x) only differ by a multiplicative constant, so

it suffices to show that Kv(aτ) = 1. Fix m ∈ Z≥0 such that v + (mn) ∈ Cn. Then

Kv(aτ) = Am(aτ ; v)Kv+(mn)(q
maτ) = Am(aτ ; v)

Gv+(mn)(q
maτ)

Gv+(mn)(aτ)
= 1,
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14828 S. Sahi and J. Stokman

where the last formula follows from a direct computation using the evaluation formula

(8). �

We extend the map K : Cn → K[x] to a map

K : Zn → K(x)

by setting v �→ Kv(x) for all v ∈ Zn. Lemma 10 now extends as follows.

Proposition 16. We have, as identities in F
K(x),

1. HiK = ĤiK.

2. �jK = ax̂−1
j K.

3. �K = t1−n(a2x̂−1
1 − 1)�̂−1K.

Proof. Write Am ∈ F
K(x) for the map v �→ Am(x; v) for v ∈ Zn. Consider the linear

operator on F
K(x) defined by (Amf )(v) := Am(x; v)f (v) for v ∈ Zn and f ∈ F

K(x). For

1 ≤ i < n we have [Hi, Am] = 0 as linear operators on F
K(x), since Am(x; v) is a symmetric

rational function in x1, . . . , xn. Furthermore, for v ∈ Zn and f ∈ F
K(x),

(
(Ĥi ◦ Am)f

)
(v) = (

(Am ◦ Ĥi)f
)
(v) if vi �= vi+1 (15)

by part 2 of Lemma 5 and the fact that Am(x; v) is symmetric in v1, . . . , vn. Fix v ∈ Zn

and choose m ∈ Z≥0 such that v + (mn) ∈ Cn. Since

Kv(x) = Am(x; v)Kv+(mn)(q
mx)

we obtain from [Hi, Am] = 0 and (15) that (HiK)(v) = (ĤiK)(v) if vi �= vi+1. This also holds

true if vi = vi+1 since then (ĤiK)(v) = tKv and HiKv+(mn)(q
mx) = tKv+(mn)(q

mx). This

proves part 1 of the proposition.

Note that �Kv(x) = t1−n(av−1
1 − 1)Kv� (x) for arbitrary v ∈ Zn by Lemma 10 and

the commutation relation

� ◦ Am = Am ◦ �(qm), (16)

where �(qm) := (qmxn − t1−n)�. This proves part 3 of the proposition.

Finally we have �jKv(x) = v−1
j Kv(x) for all v ∈ Zn by [Hi, Am] = 0, (16) and

Lemma 10. This proves part 2 of the proposition. �
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Remarks on Interpolation Macdonald Polynomials 14829

6 Duality of the Non-Symmetric Interpolation Macdonald Polynomials

Recall the notation ṽ = −w0v for v ∈ Zn.

Theorem 17. (Duality). For all u, v ∈ Zn we have

Ku(aṽ) = Kv(aũ). (17)

Example 18. If n = 1 and m, r ∈ Z≥0 then

Km(aq−r) = q−mr (a−1; q)m+r

(a−1; q)m(a−1; q)r
(18)

by the explicit expression for Km(x) from Example 14. The right-hand side of (18) is

manifestly invariant under the interchange of m and r.

Proof. We divide the proof of the theorem in several steps. �

Step 1. If Ku(aṽ) = Kv(aũ) for all v ∈ Zn then Ksiu(aṽ) = Kv(as̃iu) for v ∈ Zn and

1 ≤ i < n.

Proof of Step 1. Writing out the formula from part 1 of Proposition 16 gives

(t − 1)̃vi

(̃vi − ṽi+1)
Ku(aṽ)+

( ṽi − t̃vi+1

ṽi − ṽi+1

)
Ku(as̃n−iv)

= (t − 1)ui

(ui − ui+1)
Ku(aṽ) +

(ui − tui+1

ui − ui+1

)
Ksiu(aṽ).

(19)

Replacing in (19) the role of u and v and replacing i by n − i we get

(t − 1)ũn−i

(ũn−i − ũn+1−i)
Kv(aũ)+

( ũn−i − tũn+1−i

ũn−i − ũn+1−i

)
Kv(as̃iu)

= (t − 1)vn−i

(vn−i − vn+1−i)
Kv(aũ) +

(vn−i − tvn+1−i

vn−i − vn+1−i

)
Ksn−iv(aũ).

(20)

Suppose that sn−iv = v. Then vn−i = tvn+1−i by the 2nd part of Lemma 5. Since

ṽ = t1−nw0v−1, that is, ṽi = t1−nv−1
n+1−i, we then also have ṽi = t̃vi+1. It then follows by a

direct computation that (19) reduces to Ksiu(aṽ) = Ku(aṽ) and (20) to Kv(as̃iu) = Kv(aũ)

if sn−iv = v.
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14830 S. Sahi and J. Stokman

We now use these observations to prove Step 1. Assume that Ku(aṽ) = Kv(aũ)

for all v. We have to show that Ksiu(aṽ) = Kv(as̃iu) for all v. It is trivially true if siu = u,

so we may assume that siu �= u. Suppose that v satisfies sn−iv = v. Then it follows from

the previous paragraph that

Ksiu(aṽ) = Ku(aṽ) = Kv(aũ) = Kv(as̃iu).

If sn−iv �= v then (19) and the induction hypothesis can be used to write Ksiu(aṽ)

as an explicit linear combination of Kv(aũ) and Ksn−iv(aũ). Then (20) can be used to

rewrite the term involving Ksn−iv(aũ) as an explicit linear combination of Kv(aũ) and

Kv(as̃iu). Hence, we obtain an explicit expression of Ksiu(aṽ) as linear combination of

Kv(aũ) and Kv(as̃iu), which turns out to reduce to Ksiu(aṽ) = Kv(as̃iu) after a direct

computation. �

Step 2. K0(aṽ) = 1 = Kv(ã0) for all v ∈ Zn.

Proof of Step 2. Clearly K0(x) = 1 and Kv(ã0) = Kv(aτ) = 1 for v ∈ Zn by

Lemma 15. �

Step 3. Kα(aṽ) = Kv(aα̃) for v ∈ Zn and α ∈ Cn.

Proof of Step 3. We prove it by induction. It is true for α = 0 by Step 2. Let m ∈ Z>0

and suppose that Kγ (aṽ) = Kv(aγ̃ ) for v ∈ Zn and γ ∈ Cn with |γ | < m. Let α ∈ Cn with

|α| = m.

We need to show that Kα(aṽ) = Kv(aα̃) for all v ∈ Zn. By Step 1 we may assume

without loss of generality that αn > 0. Then γ := α ∈ Cn satisfies |γ | = m − 1, and

α = γ �. Furthermore, note that we have the formula

(av−1
1 − 1)Ku(aṽ�) = (au−1

1 − 1)Ku� (aṽ) (21)

for all u, v ∈ Zn, which follows by writing out the formula from part 3 of Lemma 16.

Hence, we obtain

Kα(aṽ) = Kγ �(aṽ) = (av−1
1 − 1)

(aγ −1
1 − 1)

Kγ (aṽ�)

= (av−1
1 − 1)

(aγ −1
1 − 1)

Kv� (aγ̃ ) = Kv(aγ̃ �) = Kv(aα̃),

where we used the induction hypothesis for the 3rd equality and (21) for the 2nd and

4th equality. This proves the induction step. �
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Remarks on Interpolation Macdonald Polynomials 14831

Step 4. Ku(aṽ) = Kv(aũ) for all u, v ∈ Zn.

Proof of Step 4. Fix u, v ∈ Zn. Let m ∈ Z≥0 such that u + (mn) ∈ Cn. Note that qmṽ =
˜v − (mn) and q−mũ = ˜u + (mn). Then

Ku(aṽ) = Am(aṽ; u)Ku+(mn)(q
maṽ)

= Am(aṽ; u)Ku+(mn)

(
a( ˜v − (mn))

)
= Am(aṽ; u)Kv−(mn)

(
a( ˜u + (mn))

)
= Am(aṽ; u)Kv−(mn)(q

−maũ) = Am(aṽ; u)Am(q−maũ; v − (mn))Kv(aũ),

where we used Step 3 in the 3rd equality. The result now follows from the fact that

Am(aṽ; u)Am(q−maũ; v − (mn)) = 1,

which follows by a straightforward computation using (4). �

7 Some Applications of Duality

7.1 Non-symmetric Macdonald polynomials

Recall that the (monic) non-symmetric Macdonald polynomial Eα(x) of degree α is the

top homogeneous component of Gα(x), i.e.,

Eα(x) = lim
a→∞ a−|α|Gα(ax), α ∈ Cn.

The normalized non-symmetric Macdonald polynomials are

Kα(x) := lim
a→∞ Kα(ax) = Eα(x)

Eα(τ )
, α ∈ Cn.

We write K ∈ F+
F[x] for the resulting map α �→ Kα. Taking limits in Lemma 10 we get the

following.

Lemma 19. We have for 1 ≤ i < n and 1 ≤ j ≤ n,

1. HiK = ĤiK.

2. ξjK = x̂−1
j K.

3. xn�K = t1−nx̂−1
1 �̂−1K.
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14832 S. Sahi and J. Stokman

Note that

(xn�)nf (x) =
( n∏

i=1

xi

)
f (q−1x).

Then repeated application of part 3 of Lemma 19 shows that for α ∈ Cn,

Eα(x) = Eα+(1n)(x)

x1 · · · xn
,

Kα(x) = q|α|t(1−n)n
( n∏

i=1

(αixi)
−1

)
Kα+(1n)(x). (22)

As is well known and already noted in Section 2, the 1st equality allows to relate the

non-symmetric Macdonald polynomials Ev(x) := Ev(x; q, t) ∈ F[x±1] for arbitrary v ∈ Zn

to those labeled by compositions through the formula

Ev(x) = Ev+(mn)(x)

(x1 · · · xn)m .

The 2nd formula of (22) can now be used to explicitly define the normalized non-

symmetric Macdonald polynomials for degrees v ∈ Zn.

Definition 20. Let v ∈ Zn and m ∈ Z≥0 such that v + (mn) ∈ Cn. Then Kv(x) :=
Kv(x; q, t) ∈ F[x±1] is defined by

Kv(x) := qm|v|t(1−n)nm
( n∏

i=1

(vixi)
−m

)
Kv+(mn)(x).

Using

lim
a→∞ Am(ax; v) = q−m2nt(1−n)nm

n∏
i=1

(vixi)
−m

and the definitions of Gv(x) and Kv(x) it follows that

lim
a→∞ a−|v|Gv(ax) = Ev(x),

lim
a→∞ Kv(ax) = Kv(x)

for all v ∈ Zn, so in particular

Kv(x) = Ev(x)

Ev(τ )
∀ v ∈ Zn.
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Remarks on Interpolation Macdonald Polynomials 14833

Lemma 19 holds true for the extension of K to the map K ∈ F
F[x±1] defined by v �→ Kv

(v ∈ Zn). Taking the limit in Theorem 17 we obtain the well-known duality [1] of the

Laurent polynomial versions of the normalized non-symmetric Macdonald polynomials.

Corollary 21. For all u, v ∈ Zn,

Ku(̃v) = Kv(ũ).

7.2 O-polynomials

We now show that the duality of the non-symmetric interpolation Macdonald polyno-

mials (Theorem 17) directly implies the existence of the O-polynomials Oα (which is the

nontrivial part of the proof of [14, Thm. 1.2]), and that it provides an explicit expression

for Oα in terms of the non-symmetric interpolation Macdonald polynomial Kα.

Proposition 22. For all α ∈ Cn we have

Oα(x) = Kα(t1−naw0x).

Proof. The polynomial Õα(x) := Kα(t1−naw0x) is of degree at most |α| and

Õα(β
−1

) = Kα(t1−naw0β
−1

) = Kα(aβ̃) = Kβ(aα̃)

for all β ∈ Cn by (4) and Theorem 17. Hence, Õα = Oα. �

7.3 Okounkov’s duality

Write F[x]Sn for the symmetric polynomials in x1, . . . , xn with coefficients in a field

F. Write C+ := ∑
w∈Sn

Hw. The symmetric interpolation Macdonald polynomial

Rλ(x) ∈ F[x]Sn is the multiple of C+Gλ such that the coefficient of xλ is one (see, e.g.,

[13]). We write

K+
λ (x) := Rλ(x)

Rλ(aτ)
∈ K[x]Sn

for the normalized symmetric interpolation Macdonald polynomial. Then

C+Kα(x) =
( ∑

w∈Sn

t�(w)
)
K+

α+(x) (23)

for α ∈ Cn. Okounkov’s [10, Section 2] duality result now reads as follows.
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14834 S. Sahi and J. Stokman

Theorem 23. For partitions λ, μ ∈ Pn we have

K+
λ (aμ−1) = K+

μ (aλ
−1

).

Let us derive Theorem 23 as consequence of Theorem 17. Write Ĉ+ = ∑
w∈Sn

Ĥw,

with Ĥw := Ĥi1 · · · Ĥir for a reduced expression w = si1 · · · sir . Write fμ ∈ F
K

for the

function fμ(u) := Ku(aμ̃) (u ∈ Zn). Then

( ∑
w∈Sn

t�(w)
)
K+

λ (aμ̃) = (C+Kλ)(aμ̃) = (Ĉ+fμ)(λ) (24)

by part 1 of Proposition 16. The duality (17) of Ku and (4) imply that

fμ(u) = Kμ(aũ) = (
Jw0Kμ(t1−nx)

)|x=a−1u (25)

with (Jf )(x) := f (x−1
1 , . . . , x−1

n ) for f ∈ K(x). A direct computation shows that

JHiJ = (H◦
i )−1, w0Hiw0 = (H◦

n−i)
−1 (26)

for 1 ≤ i < n. In particular, Jw0C+ = C+Jw0. Combined with Remark 7 we conclude that

(Ĉ+fμ)(λ) = (
Jw0C+Kμ(t1−nx)

)|x=a−1λ.

By (23) and (4) this simplifies to

(Ĉ+fμ)(λ) =
( ∑

w∈Sn

t�(w)
)
K+

μ (ãλ).

Returning to (24) we conclude that K+
λ (aμ̃) = K+

μ (ãλ). Since K+
λ is symmetric we obtain

from (4) that

K+
λ (aμ−1) = K+

μ (aλ
−1

),

which is Okounkov’s duality result.

7.4 A primed version of duality

We first derive the following twisted version of the duality of the non-symmetric

interpolation Macdonald polynomials (Theorem 17).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/19/14814/5614861 by U
niversity Library U

niversity of Am
sterdam

 user on 22 O
ctober 2021



Remarks on Interpolation Macdonald Polynomials 14835

Lemma 24. For u, v ∈ Zn we have(
Hw0

Ku

)
(aṽ) = (

Hw0
Kv

)
(aũ). (27)

Proof. We proceed as in the previous subsection. Set fv(u) := Ku(aṽ) for u, v ∈ Zn. By

part 1 of Proposition 16, (
Hw0

Ku

)
(aṽ) = (

Ĥw0
fv

)
(u).

Since fv(u) = (
Iw0Kv

)
(a−1tn−1u) by (4), Remark 7 implies that

(
Ĥw0

fv

)
(u) = (

Hw0
Jw0Kv

)
(a−1tn−1u).

Now Hw0
Jw0 = Jw0Hw0

by (26); hence,

(
Ĥw0

fv

)
(u) = (

Jw0Hw0
Kv

)
(a−1tn−1u) = (Hw0

Kv)(aũ),

which completes the proof. �

Recall from Theorem 1 that

G′
β(x) = t(1−n)|β|+I(β)�G◦

β(tn−1x)

with � := w0H◦
w0

. We define normalized versions by

K′
β(x) := G′

β(x)

G′
β(a−1τ)

= t�(w0)�K◦
β(tn−1x), β ∈ Cn,

with K◦
v := ι(Kv) for v ∈ Zn (the 2nd formula follows from Lemma 2). More generally, we

define for v ∈ Zn,

K′
v(x) := t�(w0)�K◦

v(tn−1x). (28)

We write K′ : Zn → K(x) for the map v �→ K′
v (v ∈ Zn). Since Hi� = �H◦

i , part 1 of

Proposition 16 gives HiK
′ = Ĥ◦

i K′. Considering the action of ((xn − 1)�◦)n on K′
β(x) we

get, using the fact that ((xn − 1)�◦)n commutes with � and part 3 of Proposition 16,

K′
v(x) =

( n∏
i=1

(1 − a−1vi)

(1 − q−1xi)

)
K′

v+(1n)(q
−1x),
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in particular

K′
v(x) =

( n∏
i=1

(
a−1vi; q

)
m(

q−mxi; q
)
m

)
K′

v+(mn)(q
−mx).

Example 25. For n = 1 we have K′
v(x) = K◦

v(x) for v ∈ Z; hence,

K′−m(x) =
(
q−1a−1; q−1

)
m(

q−1x; q−1
)
m

= (ax)−m

(
qa; q

)
m(

qx−1; q
)
m

,

K′
m(x) = (ax)m

(
x−1; q−1

)
m(

a; q−1
)
m

=
(
x; q

)
m(

a−1; q
)
m

for m ∈ Z≥0 by Example 14.

Proposition 26. For all u, v ∈ Zn we have

K′
v(a−1u) = K′

u(a−1v).

Proof. Note that

K′
v(a−1u) = t�(w0)�K◦

v(tn−1x)|x=a−1u = t�(w0)
(
H◦

w0
K◦

v

)
(a−1ũ−1)

by (4). By (27) the right-hand side is invariant under the interchange of u and v. �

7.5 Binomial formula and dual binomial formula

In [14] the existence and uniqueness of Oα was used to prove the following binomial

theorem [14, Thm. 1.3]. Define for α, β ∈ Cn the generalized binomial coefficient by

[
α

β

]
q,t

:= Gβ(α)

Gβ(β)
. (29)

Applying the automorphism ι of F to (29) we get

[
α

β

]
q−1,t−1

= G◦
β(α−1)

G◦
β(β

−1
)
.
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Theorem 27. For α, β ∈ Cn we have the binomial formula

Kα(ax) =
∑
β∈Cn

a|β|
[
α

β

]
q−1,t−1

G′
β(x)

Gβ(aτ)
. (30)

Remark 28. 1. Note that the sum in (30) is finite, since the generalized binomial

coefficient (29) is zero unless β ⊆ α, with β ⊆ α meaning βi ≤ αi for i = 1, . . . , n.

2. By Corollary 4 and (28) the binomial formula (30) can be alternatively written as

Kα(ax) =
∑
β∈Cn

τ−1
β

[
α

β

]
q−1,t−1

K′
β(x)

=
∑
β∈Cn

K◦
β(α−1)K′

β(x)

τβK◦
β(β

−1
)

= t�(w0)
∑
β∈Cn

K◦
β(α−1)�K◦

β(tn−1x)

τβK0
β(β

−1
)

(31)

with � = w0H◦
w0

(note that the dependence on a in the right-hand side of (31) is through

the normalization factors of the interpolation polynomials K◦
β(x) and K′

β(x)).

3. The binomial formula (30) and Theorem 1 imply the twisted duality (27) of Kα

as follows. By the identity Hw0
� = w0 the binomial formula (31) implies the finite

expansion

(
Hw0

Kα

)
(ax) = t�(w0)

∑
β

K◦
β(α−1)K◦

β(tn−1w0x)

τβK◦
β(β

−1
)

.

Substituting x = γ̃ and using (4) we obtain

(
Hw0

Kα

)
(aγ̃ ) =

∑
β∈Cn

K◦
β(α−1)K◦

β(γ −1)

τβK◦
β(β

−1
)

.

The right-hand side is manifestly invariant under interchanging α and γ , which is

equivalent to twisted duality (27).

In [8, Section 4] it is remarked that an explicit identity relating G′
α and Gα

is needed to provide a proof of the dual binomial formula [8, Thm. 4.4] as a direct

consequence of the binomial formula (30). We show here that Theorem 1 is providing

the required identity. Instead of Theorem 1 we use its normalized version, encoded

by (28).
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The dual binomial formula [8, Thm. 4.4] in our notations reads as follows.

Theorem 29. For all α ∈ Cn we have

K′
α(x) =

∑
β∈Cn

τβ

[
α

β

]
q,t

Kβ(ax). (32)

The starting point of the alternative proof of (32) is the binomial formula in the

form

Kα(ax) = t�(w0)
∑
β∈Cn

G◦
β(α−1)�K◦

β(tn−1x)

τβG◦
β(β

−1
)

,

see (31). Replace (a, x, q, t) by (a−1, atn−1x, q−1, t−1) and act by w0Hw0
on both sides.

Since w0Hw0
� = Id we obtain

�K◦
α(tn−1x) = t−�(w0)

∑
β

τβ

[
α

β

]
q,t

Kβ(ax).

Now use (28) to complete the proof of (32).

Remark 30. It follows from this proof of (32) that the dual binomial formula (32) can

be rewritten as

�K◦
α(tn−1x) = t−�(w0)

∑
β

τβKβ(α)Kβ(ax)

Kβ(β)
. (33)

As observed in [8, (4.11)], the binomial and dual binomial formula directly imply

the orthogonality relations

∑
β∈Cn

τβ

τα

[
α

β

]
q,t

[
β

γ

]
q−1,t−1

= δα,γ .

Since

[
δ

ε

]
q,t

= 0 unless δ ⊇ ε, the terms in the sum are zero unless γ ⊆ β ⊆ α.
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