UvA-DARE (Digital Academic Repository)

Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials

Sahi, S.; Stokman, J.
DOI
10.1093/imrn/rnz229
Publication date
2021
\section*{Document Version}
Final published version
Published in
International Mathematics Research Notices: IMRN
License
CC BY
Link to publication

Citation for published version (APA):
Sahi, S., \& Stokman, J. (2021). Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials. International Mathematics Research Notices: IMRN, 2021(19), 14814-14839. https://doi.org/10.1093/imrn/rnz229

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Some Remarks on Non-Symmetric Interpolation Macdonald Polynomials

Siddhartha Sahi ${ }^{1}$ and Jasper Stokman ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, Rutgers University, 110 Frelinghhuysen Rd, Piscataway, NJ 08854-8019, USA and ${ }^{2} \mathrm{KdV}$ Institute for Mathematics, University of Amsterdam, Science Park 105-107, 1098 XG Amsterdam, The Netherlands
*Correspondence to be sent to: e-mail: j.v.stokman@uva.nl

We provide elementary identities relating the three known types of non-symmetric interpolation Macdonald polynomials. In addition we derive a duality for non-symmetric interpolation Macdonald polynomials. We consider some applications of these results, in particular to binomial formulas involving non-symmetric interpolation Macdonald polynomials.

1 Introduction

The symmetric interpolation Macdonald polynomials $R_{\lambda}(x ; q, t)=R_{\lambda}\left(x_{1}, \ldots, x_{n} ; q, t\right)$ form a distinguished inhomogeneous basis for the algebra of symmetric polynomials in n variables over the field $\mathbb{F}:=\mathbb{Q}(q, t)$. They were first introduced in [4, 13], building on joint work by one of the authors with Knop [5] and earlier work with Kostant [6, 7, 12]. These polynomials are indexed by the set of partitions with at most n parts

$$
\mathcal{P}_{n}:=\left\{\lambda \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right\} .
$$

For a partition $\mu \in \mathcal{P}_{n}$ we define $|\mu|=\mu_{1}+\cdots+\mu_{n}$ and write

$$
\bar{\mu}=\left(q^{\mu_{1}} \tau_{1}, \ldots, q^{\mu_{n}} \tau_{n}\right) \text { where } \tau:=\left(\tau_{1}, \ldots, \tau_{n}\right) \text { with } \tau_{i}:=t^{1-i}
$$

Received January 28, 2019; Revised August 8, 2019; Accepted August 9, 2019

[^0]Then $R_{\lambda}(x)=R_{\lambda}(x ; q, t)$ is, up to normalization, characterized as the unique nonzero symmetric polynomial of degree at most $|\lambda|$ satisfying the vanishing conditions

$$
R_{\lambda}(\bar{\mu})=0 \text { for } \mu \in \mathcal{P}_{n} \text { such that }|\mu| \leq|\lambda|, \mu \neq \lambda .
$$

The normalization is fixed by requiring that the coefficient of $x^{\lambda}:=x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}$ in the monomial expansion of $R_{\lambda}(x)$ is 1 . In spite of their deceptively simple definition, these polynomials possess some truly remarkable properties. For instance, as shown in [4, 13], the top homogeneous part of $R_{\lambda}(x)$ is the Macdonald polynomial $P_{\lambda}(x)$ [9] and $R_{\lambda}(x)$ satisfies the extra vanishing property $R_{\lambda}(\bar{\mu})=0$ unless $\lambda \subseteq \mu$ as Ferrer diagrams. Other key properties of $R_{\lambda}(x)$, which were proven by Okounkov [10], include the binomial theorem, which gives an explicit expansion of $R_{\lambda}(a x)=R_{\lambda}\left(a x_{1}, \ldots, a x_{n} ; q, t\right)$ in terms of the $R_{\mu}\left(x ; q^{-1}, t^{-1}\right)$'s over the field $\mathbb{K}:=\mathbb{Q}(q, t, a)$, and the duality or evaluation symmetry, which involves the evaluation points

$$
\widetilde{\mu}=\left(q^{-\mu_{n}} \tau_{1}, \ldots, q^{-\mu_{1}} \tau_{n}\right), \quad \mu \in \mathcal{P}_{n}
$$

and takes the form

$$
\frac{R_{\lambda}(a \widetilde{\mu})}{R_{\lambda}(a \tau)}=\frac{R_{\mu}(a \widetilde{\lambda})}{R_{\mu}(a \tau)}
$$

The interpolation polynomials have natural non-symmetric analogs $G_{\alpha}(x)=$ $G_{\alpha}(x ; q, t)$, which were also defined in $[4,13]$. These are indexed by the set of compositions with at most n parts, $\mathcal{C}_{n}:=\left(\mathbb{Z}_{\geq 0}\right)^{n}$. For a composition $\beta \in \mathcal{C}_{n}$ we define

$$
\bar{\beta}:=w_{\beta}\left(\overline{\beta_{+}}\right),
$$

where w_{β} is the shortest permutation such that $\beta_{+}=w_{\beta}^{-1}(\beta)$ is a partition. Then $G_{\alpha}(x)$ is, up to normalization, characterized as the unique polynomial of degree at most $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$ satisfying the vanishing conditions

$$
G_{\alpha}(\bar{\beta})=0 \text { for } \beta \in \mathcal{C}_{n} \text { such that }|\beta| \leq|\alpha|, \beta \neq \alpha
$$

The normalization is fixed by requiring that the coefficient of $x^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ in the monomial expansion of $G_{\alpha}(x)$ is 1 .

Many properties of the symmetric interpolation polynomials $R_{\lambda}(x)$ admit nonsymmetric counterparts for the $G_{\alpha}(x)$. For instance, the top homogeneous part of $G_{\alpha}(x)$
is the non-symmetric Macdonald polynomial $E_{\alpha}(x)$ and $G_{\alpha}(x)$ satisfies an extra vanishing property [4]. An analog of the binomial theorem, proved by one of us in [14, Thm. 1.1], gives an explicit expansion of $G_{\alpha}(a x ; q, t)$ in terms of a 2nd family of interpolation polynomials $G_{\alpha}^{\prime}(x)=G_{\alpha}^{\prime}(x ; q, t)$. These latter polynomials are characterized by having the same top homogeneous part as $G_{\alpha}(x)$, namely the non-symmetric polynomial $E_{\alpha}(x)$, and the following vanishing conditions at the evaluation points $\widetilde{\beta}:=\overline{\left(-W_{0} \beta\right)}$, with w_{0} the longest element of the symmetric group S_{n} :

$$
G_{\alpha}^{\prime}(\widetilde{\beta})=0 \text { for }|\beta|<|\alpha| .
$$

The 1st result of the present paper is a Demazure-type formula for the primed interpolation polynomials $G_{\alpha}^{\prime}(x)$ in terms of $G_{\alpha}(x)$, which involves the symmetric group action on the algebra of polynomials in n variables over \mathbb{F} by permuting the variables, as well as the associated Hecke algebra action in terms of Demazure-Lusztig operators $H_{w}\left(w \in S_{n}\right)$ as described in the next section.

Theorem A. Write $\mathrm{I}(\alpha):=\#\left\{i<j \mid \alpha_{i} \geq \alpha_{j}\right\}$. Then we have

$$
G_{\alpha}^{\prime}\left(t^{n-1} x ; q^{-1}, t^{-1}\right)=t^{(n-1)|\alpha|-\mathrm{I}(\alpha)} w_{0} H_{w_{0}} G_{\alpha}(x ; q, t)
$$

This is restated and proved in Theorem 1 below.
The 2nd result is the following duality theorem for $G_{\alpha}(x)$, which is the nonsymmetric analog of Okounkov's duality result.

Theorem B. For all compositions $\alpha, \beta \in \mathcal{C}_{n}$ we have

$$
\frac{G_{\alpha}(a \widetilde{\beta})}{G_{\alpha}(a \tau)}=\frac{G_{\beta}(a \widetilde{\alpha})}{G_{\beta}(a \tau)}
$$

This is a special case of Theorem 17 below.
We now recall the interpolation O-polynomials introduced in [14, Thm. 1.1]. Write x^{-1} for $\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)$. Then it was shown in [14, Thm. 1.1] that there exists a unique polynomial $O_{\alpha}(x)=O_{\alpha}(x ; q, t ; a)$ of degree at most $|\alpha|$ with coefficients in the field \mathbb{K} such that

$$
O_{\alpha}\left(\bar{\beta}^{-1}\right)=\frac{G_{\beta}(a \widetilde{\alpha})}{G_{\beta}(a \tau)} \text { for all } \beta
$$

Our 3rd result is a simple expression for the O-polynomials in terms of the interpolation polynomials $G_{\alpha}(x)$.

Theorem C. For all compositions $\alpha \in \mathcal{C}_{n}$ we have

$$
O_{\alpha}(x)=\frac{G_{\alpha}\left(t^{1-n} a w_{0} x\right)}{G_{\alpha}(a \tau)}
$$

This is deduced in Proposition 22 below as a direct consequence of nonsymmetric duality. We also obtain new proofs of Okounkov's [10] duality theorem, as well as the dual binomial theorem of Lascoux et al. [8], which gives an expansion of the primed-interpolation polynomials $G_{\alpha}^{\prime}(x)$ in terms of the $G_{\beta}(a x)$'s.

2 Demazure-Lusztig Operators and the Primed Interpolation Polynomials

We use the notations from [14]. The correspondence with the notations from the other important references [4], [13] and [10] is listed in [14, Section 2] (directly after Lemma 2.8).

Let S_{n} be the symmetric group in n letters and $s_{i} \in S_{n}$ the permutation that swaps i and $i+1$. The $s_{i}(1 \leq i<n)$ are Coxeter generators for S_{n}. Let $\ell: S_{n} \rightarrow \mathbb{Z}_{\geq 0}$ be the associated length function. Let S_{n} act on \mathbb{Z}^{n} and \mathbb{K}^{n} by $s_{i} V:=\left(\ldots, v_{i-1}, v_{i+1}, v_{i}, v_{i+2}, \ldots\right)$ for $v=\left(v_{1}, \ldots, v_{n}\right)$. Write $w_{0} \in S_{n}$ for the longest element, given explicitly by $i \rightarrow n+1-i$ for $i=1, \ldots, n$.

For $v=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}$ define $\bar{v}=\left(\bar{v}_{1}, \ldots, \bar{v}_{n}\right) \in \mathbb{F}^{n}$ by $\bar{v}_{i}:=q^{v_{i}} t^{-k_{i}(v)}$ with

$$
k_{i}(v):=\#\left\{k<i \mid v_{k} \geq v_{i}\right\}+\#\left\{k>i \mid v_{k}>v_{i}\right\} .
$$

If $v \in \mathbb{Z}^{n}$ has non-increasing entries $v_{1} \geq v_{2} \geq \cdots \geq v_{n}$, then $\bar{v}=\left(q^{V_{1}} \tau_{1}, \ldots, q^{V_{n}} \tau_{n}\right)$. For arbitrary $v \in \mathbb{Z}^{n}$ we have $\bar{v}=w_{V}\left(\overline{V_{+}}\right)$with $w_{V} \in S_{n}$ the shortest permutation such that $v_{+}:=w_{V}^{-1}(v)$ has non-increasing entries, see [4, Section 2]. We write $\widetilde{v}:=\overline{-W_{0} v}$ for $v \in \mathbb{Z}^{n}$.

Note that $\bar{\alpha}_{n}=t^{1-n}$ if $\alpha \in \mathcal{C}_{n}$ with $\alpha_{n}=0$.
For a field F we write $F[x]:=F\left[x_{1}, \ldots, x_{n}\right], F\left[x^{ \pm 1}\right]:=F\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ and $F(x)$ for the quotient field of $F[x]$. The symmetric group acts by algebra automorphisms on $\mathbb{F}[x]$ and $\mathbb{F}(x)$, with the action of s_{i} by interchanging x_{i} and x_{i+1} for $1 \leq i<n$. Consider the \mathbb{F}-linear operators

$$
H_{i}=t s_{i}-\frac{(1-t) x_{i}}{x_{i}-x_{i+1}}\left(1-s_{i}\right)=t+\frac{x_{i}-t x_{i+1}}{x_{i}-x_{i+1}}\left(s_{i}-1\right)
$$

on $\mathbb{F}(x)(1 \leq i<n)$ called Demazure-Lusztig operators, and the automorphism Δ of $\mathbb{F}(x)$ defined by

$$
\Delta f\left(x_{1}, \ldots, x_{n}\right)=f\left(q^{-1} x_{n}, x_{1}, \ldots, x_{n-1}\right)
$$

Note that $H_{i}(1 \leq i<n)$ and Δ preserve $\mathbb{F}\left[x^{ \pm 1}\right]$ and $\mathbb{F}[x]$. Cherednik [1, 2] showed that the operators $H_{i}(1 \leq i<n)$ and Δ satisfy the defining relations of the type A extended affine Hecke algebra,

$$
\begin{aligned}
\left(H_{i}-t\right)\left(H_{i}+1\right) & =0, \\
H_{i} H_{j} & =H_{j} H_{i}, \quad|i-j|>1, \\
H_{i} H_{i+1} H_{i} & =H_{i+1} H_{i} H_{i+1}, \\
\Delta H_{i+1} & =H_{i} \Delta, \\
\Delta^{2} H_{1} & =H_{n-1} \Delta^{2}
\end{aligned}
$$

for all the indices such that both sides of the equation make sense (see also [4, Section 3]). For $w \in S_{n}$ we write $H_{w}:=H_{i_{1}} H_{i_{2}} \cdots H_{i_{\ell}}$ with $w=s_{i_{1}} s_{i_{2}} \cdots s_{i_{\ell}}$ a reduced expression for $w \in S_{n}$. It is well defined because of the braid relations for the H_{i} 's. Write $\bar{H}_{i}:=H_{i}+1-t=t H_{i}^{-1}$ and set

$$
\begin{equation*}
\xi_{i}:=t^{1-n} \bar{H}_{i-1} \cdots \bar{H}_{1} \Delta^{-1} H_{n-1} \cdots H_{i}, \quad 1 \leq i \leq n . \tag{1}
\end{equation*}
$$

The operators ξ_{i} 's are pairwise commuting invertible operators, with inverses

$$
\xi_{i}^{-1}=\bar{H}_{i} \cdots \bar{H}_{n-1} \Delta H_{1} \cdots H_{i-1} .
$$

The $\xi_{i}^{-1}(1 \leq i \leq n)$ are the Cherednik operators [2, 4].
The monic non-symmetric Macdonald polynomial $E_{\alpha} \in \mathbb{F}[x]$ of degree $\alpha \in \mathcal{C}_{n}$ is the unique polynomial satisfying

$$
\xi_{i}^{-1} E_{\alpha}=\bar{\alpha}_{i} E_{\alpha}, \quad i=1, \ldots, n
$$

and normalized such that the coefficient of X^{α} in E_{α} is 1.
Let ι be the field automorphism of \mathbb{K} inverting q, t and a. It restricts to a field automorphism of \mathbb{F}, inverting q and t. We extend ι to a \mathbb{Q}-algebra automorphism of $\mathbb{K}[x]$
and $\mathbb{F}[x]$ by letting ι act on the coefficients of the polynomial. Write

$$
G_{\alpha}^{\circ}:=\iota\left(G_{\alpha}\right), \quad E_{\alpha}^{\circ}:=\iota\left(E_{\alpha}\right)
$$

for $\alpha \in \mathcal{C}_{n}$. Note that $\bar{V}^{-1}=\left(\iota\left(\bar{V}_{1}\right), \ldots, \iota\left(\bar{v}_{n}\right)\right)$.
Put $H_{i}^{\circ}, H_{W}^{\circ}, \bar{H}_{i}^{\circ}, \Delta^{\circ}$ and ξ_{i}° for the operators $H_{i}, H_{W}, \bar{H}_{i}, \Delta$ and ξ_{i} with q, t replaced by their inverses. For instance,

$$
\begin{aligned}
& H_{i}^{\circ}=t^{-1} s_{i}-\frac{\left(1-t^{-1}\right) x_{i}}{x_{i}-x_{i+1}}\left(1-s_{i}\right) \\
& \Delta^{\circ} f\left(x_{1}, \ldots, x_{n}\right)=f\left(q x_{n}, x_{1}, \ldots, x_{n-1}\right)
\end{aligned}
$$

We then have $\xi_{i}^{\circ} E_{\alpha}^{\circ}=\bar{\alpha}_{i} E_{\alpha}^{\circ}$ for $i=1, \ldots, n$, which characterizes E_{α}° up to a scalar factor.

Theorem 1. For $\alpha \in \mathcal{C}_{n}$ we have

$$
\begin{equation*}
G_{\alpha}^{\prime}(x)=t^{(1-n)|\alpha|+\mathrm{I}(\alpha)} W_{0} H_{W_{0}}^{\circ} G_{\alpha}^{\circ}\left(t^{n-1} x\right) \tag{2}
\end{equation*}
$$

with $\mathrm{I}(\alpha):=\#\left\{i<j \mid \alpha_{i} \geq \alpha_{j}\right\}$.
Remark. Formally set $t=q^{r}$, replace x by $1+(q-1) x$, divide both sides of (2) by $(q-1)^{|\alpha|}$ and take the limit $q \rightarrow 1$. Then

$$
\begin{equation*}
G_{\alpha}^{\prime}(x ; r)=(-1)^{|\alpha|} \sigma\left(w_{0}\right) w_{0} G_{\alpha}(-x-(n-1) r ; r) \tag{3}
\end{equation*}
$$

for the non-symmetric interpolation Jack polynomial $G_{\alpha}(\cdot ; r)$ and its primed version (see [14]). Here σ denotes the action of the symmetric group with $\sigma\left(s_{i}\right)$ the rational degeneration of the Demazure-Lusztig operators H_{i}, given explicitly by

$$
\sigma\left(s_{i}\right)=s_{i}+\frac{r}{x_{i}-x_{i+1}}\left(1-s_{i}\right)
$$

see [14, Section 1]. To establish the formal limit (3) one uses that $\sigma\left(w_{0}\right) w_{0}=w_{0} \sigma^{\circ}\left(w_{0}\right)$ with σ° the action of the symmetric group defined in terms of the rational degeneration

$$
\sigma^{\circ}\left(s_{i}\right)=s_{i}-\frac{r}{x_{i}-x_{i+1}}\left(1-s_{i}\right)
$$

of H_{i}°. Formula (3) was obtained before in [14, Thm. 1.10].

Proof. We show that the right-hand side of (2) satisfies the defining properties of G_{α}^{\prime}. For the vanishing property, note that

$$
\begin{equation*}
t^{n-1} w_{0} \widetilde{\beta}=\bar{\beta}^{-1} \tag{4}
\end{equation*}
$$

(this is the q-analog of [14, Lem. 6.1(2)]); hence,

$$
\left.\left(w_{0} H_{W_{0}}^{\circ} G_{\alpha}^{\circ}\left(t^{n-1} x\right)\right)\right|_{x=\widetilde{\beta}}=\left.\left(H_{W_{0}}^{\circ} G_{\alpha}^{\circ}(x)\right)\right|_{x=\bar{\beta}^{-1}}
$$

This expression is zero for $|\beta|<|\alpha|$ since it is a linear combination of the evaluated interpolation polynomials $G_{\alpha}^{\circ}\left(\overline{w \beta}^{-1}\right)\left(w \in S_{n}\right)$ by [14, Lem. 2.1(2)].

It remains to show that the top homogeneous terms of both sides of (2) are the same, that is, that

$$
\begin{equation*}
E_{\alpha}=t^{\mathrm{I}(\alpha)} W_{0} H_{W_{0}}^{\circ} E_{\alpha}^{\circ} \tag{5}
\end{equation*}
$$

Note that $\Psi:=w_{0} H_{W_{0}}^{\circ}$ satisfies the intertwining properties

$$
\begin{align*}
H_{i} \Psi & =t \Psi \bar{H}_{i}^{\circ} \\
\Delta \Psi & =t^{n-1} \Psi \bar{H}_{n-1}^{\circ} \cdots \bar{H}_{1}^{\circ}\left(\Delta^{\circ}\right)^{-1} H_{n-1}^{\circ} \cdots H_{1}^{\circ} \tag{6}
\end{align*}
$$

for $1 \leq i<n$ (use e.g., [2, Prop. 3.2.2]). It follows that $\xi_{i}^{-1} \Psi=\Psi \xi_{i}^{\circ}$ for $i=1, \ldots, n$. Therefore,

$$
E_{\alpha}(x)=c_{\alpha} \Psi E_{\alpha}^{\circ}(x)
$$

for some constant $c_{\alpha} \in \mathbb{F}$. But the coefficient of x^{α} in ΨX^{α} is $t^{-\mathrm{I}(\alpha)}$; hence, $c_{\alpha}=t^{\mathrm{I}(\alpha)}$.

Consider the Demazure operators H_{i} and the Cherednik operators ξ_{j}^{-1} as operators on the space $\mathbb{F}\left[x^{ \pm 1}\right]$ of Laurent polynomials. For an integral vector $u \in \mathbb{Z}^{n}$, let $E_{u} \in \mathbb{F}\left[x^{ \pm 1}\right]$ be the common eigenfunction of the Cherednik operators ξ_{j}^{-1} with eigenvalues $\bar{u}_{j}(1 \leq j \leq n)$, normalized such that the coefficient of $x^{u}:=x_{1}^{u_{1}} \cdots x_{n}^{u_{n}}$ in E_{u} is 1. For $u=\alpha \in \mathcal{C}_{n}$ this definition reproduces the non-symmetric Macdonald polynomial $E_{\alpha} \in \mathbb{F}[x]$ as defined before. Note that

$$
E_{u+\left(1^{n}\right)}=x_{1} \cdots x_{n} E_{u}(x)
$$

It is now easy to check that formula (5) is valid with α replaced by an arbitrary integral vector u,

$$
\begin{equation*}
E_{u}=t^{\mathrm{I}(u)} W_{0} H_{W_{0}}^{\circ} E_{u}^{\circ} \tag{7}
\end{equation*}
$$

with $E_{u}^{\circ}:=\iota\left(E_{u}\right)$. Furthermore, one can show in the same vein as the proof of (5) that

$$
w_{0} E_{-w_{0} u}\left(x^{-1}\right)=E_{u}(x)
$$

for an integral vector u, where $p\left(x^{-1}\right)$ stands for inverting all the parameters x_{1}, \ldots, x_{n} in the Laurent polynomial $p(x) \in \mathbb{F}\left[x^{ \pm 1}\right]$. Combining this equality with (7) yields

$$
E_{-W_{0} u}\left(x^{-1}\right)=t^{\mathrm{I}(u)} H_{W_{0}}^{\circ} E_{u}^{\circ}(x),
$$

which is a special case of a known identity for non-symmetric Macdonald polynomials (see [2, Prop. 3.3.3]).

3 Evaluation Formulas

In [14, Thm. 1.1] the following combinatorial evaluation formula

$$
\begin{equation*}
G_{\alpha}(a \tau)=\prod_{s \in \alpha}\left(\frac{t^{1-n}-q^{a^{\prime}(s)+1} t^{1-l^{\prime}(s)}}{1-q^{a(s)+1} t^{l(s)+1}}\right) \prod_{s \in \alpha}\left(a t^{l^{\prime}(s)}-q^{a^{\prime}(s)}\right) \tag{8}
\end{equation*}
$$

was obtained, with $a(s), l(s), a^{\prime}(s)$ and $l^{\prime}(s)$ the arm, leg, coarm and coleg of $s=(i, j) \in \alpha$, defined by

$$
\begin{aligned}
a(s):=\alpha_{i}-j, & l(s):=\#\left\{k>i \mid j \leq \alpha_{k} \leq \alpha_{i}\right\}+\#\left\{k<i \mid j \leq \alpha_{k}+1 \leq \alpha_{i}\right\}, \\
a^{\prime}(s):=j-1, & l^{\prime}(s):=\#\left\{k>i \mid \alpha_{k}>\alpha_{i}\right\}+\#\left\{k<i \mid \alpha_{k} \geq \alpha_{i}\right\} .
\end{aligned}
$$

By (8) we have

$$
E_{\alpha}(\tau)=\lim _{a \rightarrow \infty} a^{-|\alpha|} G_{\alpha}(a \tau)=\prod_{s \in \alpha}\left(\frac{t^{1-n+l^{\prime}(s)}-q^{a^{\prime}(s)+1} t}{1-q^{a(s)+1} t^{l(s)+1}}\right),
$$

which is the well-known evaluation formula [1, 2] for the non-symmetric Macdonald polynomials. Note that for $\alpha \in \mathcal{C}_{n}$,

$$
\ell\left(w_{0}\right)-I(\alpha)=\#\left\{i<j \mid \alpha_{i}<\alpha_{j}\right\} .
$$

Lemma 2. For $\alpha \in \mathcal{C}_{n}$ we have

$$
G_{\alpha}^{\prime}(a \tau)=t^{(1-n)|\alpha|+\mathrm{I}(\alpha)-\ell\left(w_{0}\right)} G_{\alpha}^{\circ}\left(a \tau^{-1}\right) .
$$

Proof. Since $t^{n-1} w_{0} \tau=\tau^{-1}=\overline{0}^{-1}$ we have by Theorem 1,

$$
\begin{aligned}
G_{\alpha}^{\prime}(a \tau) & =t^{(1-n)|\alpha|+\mathrm{I}(\alpha)}\left(H_{W_{0}}^{\circ} G_{\alpha}^{\circ}\right)\left(a \overline{0}^{-1}\right) \\
& =t^{(1-n)|\alpha|+\mathrm{I}(\alpha)-\ell\left(W_{0}\right)} G_{\alpha}^{\circ}\left(a \overline{0}^{-1}\right),
\end{aligned}
$$

where we have used [14, Lem. 2.1(2)] for the 2nd equality.

We now derive a relation between the evaluation formulas for $G_{\alpha}(x)$ and $G_{\alpha}^{\circ}(x)$. To formulate this we write, following [8],

$$
n(\alpha):=\sum_{s \in \alpha} l(s), \quad n^{\prime}(\alpha):=\sum_{s \in \alpha} a(s) .
$$

Note that $n^{\prime}(\alpha)=\sum_{i=1}^{n}\binom{\alpha_{i}}{2}$; hence, it only depends on the S_{n}-orbit of α, while

$$
\begin{equation*}
n(\alpha)=n\left(\alpha^{+}\right)+\ell\left(w_{0}\right)-I(\alpha) . \tag{9}
\end{equation*}
$$

The following lemma is a non-symmetric version of the 1st displayed formula on [10, page 537].

Lemma 3. For $\alpha \in \mathcal{C}_{n}$ we have

$$
G_{\alpha}(a \tau)=(-a)^{|\alpha|} t^{(1-n)|\alpha|-n(\alpha)} q^{n^{\prime}(\alpha)} G_{\alpha}^{\circ}\left(a^{-1} \tau^{-1}\right)
$$

Proof. This follows from the explicit evaluation formula (8) for the non-symmetric interpolation Macdonald polynomial G_{α}.

Following [8, (3.9)] we define $\tau_{\alpha} \in \mathbb{F}\left(\alpha \in \mathcal{C}_{n}\right)$ by

$$
\begin{equation*}
\tau_{\alpha}:=(-1)^{|\alpha|} q^{n^{\prime}(\alpha)} t^{-n\left(\alpha^{+}\right)} . \tag{10}
\end{equation*}
$$

It only depends on the S_{n}-orbit of α.

Corollary 4. For $\alpha \in \mathcal{C}_{n}$ we have

$$
G_{\alpha}^{\prime}\left(a^{-1} \tau\right)=\tau_{\alpha}^{-1} a^{-|\alpha|} G_{\alpha}(a \tau) .
$$

Proof. Use Lemmas 2 and 3 and (9).

4 Normalized Interpolation Macdonald Polynomials

We need the basic representation of the (double) affine Hecke algebra on the space of \mathbb{K}-valued functions on \mathbb{Z}^{n}, which is constructed as follows.

For $v \in \mathbb{Z}^{n}$ and $y \in \mathbb{K}^{n}$ write $v^{\natural}:=\left(v_{2}, \ldots, v_{n}, v_{1}+1\right)$ and $y^{\natural}:=\left(y_{2}, \ldots, y_{n}, q Y_{1}\right)$. Denote the inverse of ${ }^{\natural}$ by ${ }^{\sharp}$, so $v^{\sharp}=\left(v_{n}-1, v_{1}, \ldots, v_{n-1}\right)$ and $y^{\sharp}=\left(y_{n} / q, y_{1}, \ldots, y_{n-1}\right)$. We have the following lemma (cf. [4, 13, 14]).

Lemma 5. Let $v \in \mathbb{Z}^{n}$ and $1 \leq i<n$. Then we have

1. $s_{i}(\bar{v})=\overline{s_{i} V}$ if $v_{i} \neq v_{i+1}$.
2. $\bar{v}_{i}=t \bar{v}_{i+1}$ if $v_{i}=v_{i+1}$.
3. $\bar{v}^{\natural}=\overline{V^{\natural}}$.

Let \mathbb{H} be the double affine Hecke algebra over \mathbb{K}. It is isomorphic to the subalgebra of $\operatorname{End}\left(\mathbb{K}\left[x^{ \pm 1}\right]\right)$ generated by the operators $H_{i}(1 \leq i<n), \Delta^{ \pm 1}$, and the multiplication operators $x_{j}^{ \pm 1}(1 \leq j \leq n)$.

For a unital \mathbb{K}-algebra A we write \mathcal{F}_{A} for the space of A-valued functions $f: \mathbb{Z}^{n} \rightarrow A$ on \mathbb{Z}^{n}.

Corollary 6. Let A be a unital \mathbb{K}-algebra. Consider the A-linear operators $\widehat{H}_{i}(1 \leq i<n)$, $\widehat{\Delta}$ and $\widehat{x}_{j}(1 \leq j \leq n)$ on \mathcal{F}_{A} defined by

$$
\begin{align*}
& \left(\widehat{H}_{i} f\right)(v):=t f(v)+\frac{\bar{v}_{i}-t \bar{v}_{i+1}}{\bar{v}_{i}-\bar{v}_{i+1}}\left(f\left(s_{i} v\right)-f(v)\right), \\
& (\widehat{\Delta} f)(v):=f\left(v^{\sharp}\right), \quad\left(\widehat{\Delta}^{-1} f\right)(v):=f\left(v^{\natural}\right), \\
& \left(\widehat{x}_{j} f\right)(v):=a \bar{v}_{j} f(v) \tag{11}
\end{align*}
$$

for $f \in \mathcal{F}_{A}$ and $v \in \mathbb{Z}^{n}$. Then $H_{i} \mapsto \widehat{H}_{i}(1 \leq i<n), \Delta \mapsto \widehat{\Delta}$ and $x_{j} \mapsto \widehat{x}_{j}(1 \leq j \leq n)$ defines a representation $\mathbb{H} \rightarrow \operatorname{End}_{A}\left(\mathcal{F}_{A}\right), X \mapsto \widehat{X}(X \in \mathbb{H})$ of the double affine Hecke algebra \mathbb{H} on \mathcal{F}_{A}.

Proof. Let $\mathcal{O} \subset \mathbb{K}^{n}$ be the smallest S_{n}-invariant and \lfloor-invariant subset that contains $\left\{a \bar{v} \mid v \in \mathbb{Z}^{n}\right\}$. Note that \mathcal{O} is contained in $\left\{y \in \mathbb{K}^{n} \mid y_{i} \neq y_{j}\right.$ if $\left.i \neq j\right\}$. The DemazureLusztig operators $H_{i}(1 \leq i<n), \Delta^{ \pm 1}$ and the coordinate multiplication operators x_{j} ($1 \leq j \leq n$) act A-linearly on the space $F_{A}^{\mathcal{O}}$ of A-valued functions on \mathcal{O}, and hence turns $F_{A}^{\mathcal{O}}$ into an \mathbb{H}-module. Define the surjective A-linear map

$$
\operatorname{pr}: F_{A}^{\mathcal{O}} \rightarrow \mathcal{F}_{A}
$$

by $\operatorname{pr}(g)(v):=g(a \bar{V})\left(v \in \mathbb{Z}^{n}\right)$.
We claim that $\operatorname{Ker}(\mathrm{pr})$ is an \mathbb{H}-submodule of $F_{A}^{\mathcal{O}}$. Clearly $\operatorname{Ker(pr)~is~} x_{j}$-invariant for $j=1, \ldots, n$. Let $g \in \operatorname{Ker}(\mathrm{pr})$. Part 3 of Lemma 5 implies that $\Delta g \in \operatorname{Ker}(\mathrm{pr})$. To show that $H_{i} g \in \operatorname{Ker}(\mathrm{pr})$ we consider two cases. If $v_{i} \neq v_{i+1}$ then $s_{i} \bar{v}=\overline{s_{i} v}$ by part 1 of Lemma 5. Hence,

$$
\left(H_{i} g\right)(a \bar{v})=\operatorname{tg}(a \bar{v})+\frac{\bar{v}_{i}-t \bar{v}_{i+1}}{\bar{v}_{i}-\bar{v}_{i+1}}\left(g\left(a \overline{s_{i} v}\right)-g(a \bar{v})\right)=0 .
$$

If $v_{i}=v_{i+1}$ then $\bar{v}_{i}=t \bar{v}_{i+1}$ by part 2 of Lemma 5 . Hence,

$$
\left(H_{i} g\right)(\bar{V})=\operatorname{tg}(a \bar{v})+\frac{\bar{v}_{i}-t \bar{v}_{i+1}}{\bar{v}_{i}-\bar{v}_{i+1}}\left(g\left(a s_{i} \bar{v}\right)-g(a \bar{V})\right)=\operatorname{tg}(a \bar{v})=0 .
$$

Hence, \mathcal{F}_{A} inherits the \mathbb{H}-module structure of $F_{A}^{\mathcal{O}} / \operatorname{Ker}(\mathrm{pr})$. It is a straightforward computation, using Lemma 5 again, to show that the resulting action of $H_{i}(1 \leq i<n)$, Δ and $x_{j}(1 \leq j \leq n)$ on \mathcal{F}_{A} is by the operators $\widehat{H}_{i}(1 \leq i<n), \widehat{\Delta}$ and $\widehat{x}_{j}(1 \leq j \leq n)$.

Remark 7. With the notations from (the proof of) Corollary 6, let $\widetilde{g} \in F_{A}^{\mathcal{O}}$ and set $g:=\operatorname{pr}(\widetilde{g}) \in \mathcal{F}_{A}$. In other words, $g(v):=\widetilde{g}(a \bar{v})$ for all $v \in \mathbb{Z}^{n}$. Then

$$
(\widehat{X} g)(v)=(X \widetilde{g})(a \bar{v}), \quad v \in \mathbb{Z}^{n}
$$

for $X=H_{i}, \Delta^{ \pm 1}, x_{j}$.
Remark 8. Let \mathcal{F}_{A}^{+}be the space of A-valued functions on \mathcal{C}_{n}. We sometimes will consider $\widehat{H}_{i}(1 \leq i<n), \widehat{\Delta}^{-1}$ and $\widehat{x}_{j}(1 \leq j \leq n)$, defined by the formulas (11), as linear operators on \mathcal{F}_{A}^{+}.

Definition 9. We call

$$
\begin{equation*}
K_{\alpha}(x ; q, t ; a):=\frac{G_{\alpha}(x ; q, t)}{G_{\alpha}(a \tau ; q, t)} \in \mathbb{K}[x] \tag{12}
\end{equation*}
$$

the normalized non-symmetric interpolation Macdonald polynomial of degree α.

We frequently use the shorthand notation $K_{\alpha}(x):=K_{\alpha}(x ; q, t ; a)$. We will see in a moment that formulas for non-symmetric interpolation Macdonald polynomials take the nicest form in this particular normalization.

Note that a cannot be specialized to 1 in (12) since $G_{\alpha}(\tau)=G_{\alpha}(\overline{0})=0$ if $\alpha \in \mathcal{C}_{n}$ is nonzero. Note furthermore that

$$
\begin{equation*}
\lim _{a \rightarrow \infty} K_{\alpha}(a x)=\frac{E_{\alpha}(x)}{E_{\alpha}(\tau)} \tag{13}
\end{equation*}
$$

since $\lim _{a \rightarrow \infty} a^{-|\alpha|} G_{\alpha}(a x)=E_{\alpha}(x)$.
Recall from [4] the operator $\Phi=\left(x_{n}-t^{1-n}\right) \Delta \in \mathbb{H}$ and the inhomogeneous Cherednik operators

$$
\Xi_{j}=\frac{1}{x_{j}}+\frac{1}{x_{j}} H_{j} \cdots H_{n-1} \Phi H_{1} \cdots H_{j-1} \in \mathbb{H}, \quad 1 \leq j \leq n
$$

The operators H_{i}, Ξ_{j} and Φ preserve $\mathbb{K}[x]$ (see [4]); hence, they give rise to \mathbb{K}-linear operators on $\mathcal{F}_{\mathbb{K}[x]}^{+}$(e.g., $\left(H_{i} f\right)(\alpha):=H_{i}(f(\alpha))$ for $\left.\alpha \in \mathcal{C}_{n}\right)$. Note that the operators H_{i}, Ξ_{j} and Φ on $\mathcal{F}_{\mathbb{K}[x]}^{+}$commute with the hat-operators $\widehat{H}_{i}, \widehat{x}_{j}$ and $\widehat{\Delta}^{-1}$ on $\mathcal{F}_{\mathbb{K}[x]}^{+}$(cf. Remark 8). The same remarks hold true for the space $\mathcal{F}_{\mathbb{K}(x)}$ of $\mathbb{K}(x)$-valued functions on \mathbb{Z}^{n} (in fact, in this case the hat-operators define a \mathbb{H}-action on $\left.\mathcal{F}_{\mathbb{K}(X)}\right)$.

Let $K \in \mathcal{F}_{\mathbb{K}[x]}^{+}$be the map $\alpha \mapsto K_{\alpha}(\cdot)\left(\alpha \in \mathcal{C}_{n}\right)$.

Lemma 10. For $1 \leq i<n$ and $1 \leq j \leq n$ we have in $\mathcal{F}_{\mathbb{K}[X]}^{+}$,

1. $H_{i} K=\widehat{H}_{i} K$.
2. $\Xi_{j} K=a \widehat{x}_{j}^{-1} K$.
3. $\Phi K=t^{1-n}\left(a^{2} \widehat{X}_{1}^{-1}-1\right) \widehat{\Delta}^{-1} K$.

Proof. 1. To derive the formula we need to expand $H_{i} K_{\alpha}$ as a linear combination of the K_{β} 's. As a 1 st step we expand $H_{i} G_{\alpha}$ as linear combination of the G_{β} 's.

If $\alpha \in \mathcal{C}_{n}$ satisfies $\alpha_{i}<\alpha_{i+1}$ then

$$
H_{i} G_{\alpha}(x)=\frac{(t-1) \bar{\alpha}_{i}}{\bar{\alpha}_{i}-\bar{\alpha}_{i+1}} G_{\alpha}(x)+G_{s_{i} \alpha}(x)
$$

by [14, Lem. 2.2]. Using part 1 of Lemma 5 and the fact that H_{i} satisfies the quadratic relation $\left(H_{i}-t\right)\left(H_{i}+1\right)=0$, it follows that

$$
H_{i} G_{\alpha}(x)=\frac{(t-1) \bar{\alpha}_{i}}{\bar{\alpha}_{i}-\bar{\alpha}_{i+1}} G_{\alpha}(x)+\frac{t\left(\bar{\alpha}_{i+1}-t \bar{\alpha}_{i}\right)\left(\bar{\alpha}_{i+1}-t^{-1} \bar{\alpha}_{i}\right)}{\left(\bar{\alpha}_{i+1}-\bar{\alpha}_{i}\right)^{2}} G_{s_{i} \alpha}(x)
$$

if $\alpha \in \mathcal{C}_{n}$ satisfies $\alpha_{i}>\alpha_{i+1}$. Finally, $H_{i} G_{\alpha}(x)=t G_{\alpha}(x)$ if $\alpha \in \mathcal{C}_{n}$ satisfies $\alpha_{i}=\alpha_{i+1}$ by [4, Cor. 3.4].

An explicit expansion of $H_{i} K_{\alpha}$ as linear combination of the K_{β} 's can now be obtained using the formula

$$
G_{\alpha}(a \tau)=\frac{\bar{\alpha}_{i+1}-t \bar{\alpha}_{i}}{\bar{\alpha}_{i+1}-\bar{\alpha}_{i}} G_{s_{i} \alpha}(a \tau)
$$

for $\alpha \in \mathcal{C}_{n}$ satisfying $\alpha_{i}>\alpha_{i+1}$, cf. the proof of [14, Lem 3.1]. By a direct computation the resulting expansion formula can be written as $H_{i} K=\widehat{H}_{i} K$.
2. See [4, Thm. 2.6].
3. Let $\alpha \in \mathcal{C}_{n}$. By [14, Lem. 2.2 (1)],

$$
\Phi G_{\alpha}(x)=q^{-\alpha_{1}} G_{\alpha^{\natural}}(x) .
$$

By the evaluation formula (8) we have

$$
\frac{G_{\alpha^{\sharp}}(a \tau)}{G_{\alpha}(a \tau)}=a t^{1-n+k_{1}(\alpha)}-q^{\alpha_{1}} t^{1-n} .
$$

Hence,

$$
\Phi K_{\alpha}(x)=t^{1-n}\left(a \bar{\alpha}_{1}^{-1}-1\right) K_{\alpha^{\natural}}(x) .
$$

Remark 11. Note that

$$
\Phi K_{\alpha}(x)=\left(a \widetilde{\alpha}_{n}-t^{1-n}\right) K_{\alpha^{\natural}}(x)
$$

for $\alpha \in \mathcal{C}_{n}$ since $\bar{\alpha}^{-1}=t^{n-1} w_{0} \widetilde{\alpha}$.

5 Interpolation Macdonald Polynomials with Negative Degrees

In this section we give the natural extension of the interpolation Macdonald polynomials $G_{\alpha}(x)$ and $K_{\alpha}(x)$ to $\alpha \in \mathbb{Z}^{n}$. It will be the unique extension of $K \in \mathcal{F}_{\mathbb{K}[x]}^{+}$to a map $K \in \mathcal{F}_{\mathbb{K}(X)}$ such that Lemma 10 remains valid.

Lemma 12. For $\alpha \in \mathcal{C}_{n}$ we have

$$
\begin{aligned}
& G_{\alpha}(x)=q^{-|\alpha|} \frac{G_{\alpha+\left(1^{n}\right)}(q x)}{\prod_{i=1}^{n}\left(q x_{i}-t^{1-n}\right)}, \\
& K_{\alpha}(x)=\left(\prod_{i=1}^{n} \frac{\left(1-a \bar{\alpha}_{i}^{-1}\right)}{\left(1-q t^{n-1} x_{i}\right)}\right) K_{\alpha+\left(1^{n}\right)}(q x) .
\end{aligned}
$$

Proof. Note that for $f \in \mathbb{K}[x]$,

$$
\Phi^{n} f(x)=\left(\prod_{i=1}^{n}\left(x_{i}-t^{1-n}\right)\right) f\left(q^{-1} x\right)
$$

The 1st formula then follows by iteration of [14, Lem. 2.2(1)] and the 2nd formula from part 3 of Lemma 10.

For $m \in \mathbb{Z}_{\geq 0}$ we define $A_{m}(x ; v) \in \mathbb{K}(x)$ by

$$
\begin{equation*}
A_{m}(x ; v):=\prod_{i=1}^{n} \frac{\left(q^{1-m} a \bar{v}_{i}^{-1} ; q\right)_{m}}{\left(q t^{n-1} x_{i} ; q\right)_{m}} \quad \forall v \in \mathbb{Z}^{n} \tag{14}
\end{equation*}
$$

with $(y ; q)_{m}:=\prod_{j=0}^{m-1}\left(1-q^{j} y\right)$ the q-shifted factorial.

Definition 13. Let $v \in \mathbb{Z}^{n}$ and write $|v|:=v_{1}+\cdots+v_{n}$. Define $G_{V}(x)=G_{V}(x ; q, t) \in \mathbb{F}(x)$ and $K_{V}(x)=K_{V}(x ; q, t ; a) \in \mathbb{K}(x)$ by

$$
\begin{aligned}
& G_{V}(x):=q^{-m|V|-m^{2} n} \frac{G_{V+\left(m^{n}\right)}\left(q^{m} x\right)}{\prod_{i=1}^{n} x_{i}^{m}\left(q^{-m} t^{\left.1-n_{X_{i}}^{-1} ; q\right)_{m}}\right.} \\
& K_{V}(x):=A_{m}(x ; v) K_{V+\left(m^{n}\right)}\left(q^{m} x\right)
\end{aligned}
$$

where m is a nonnegative integer such that $v+\left(m^{n}\right) \in \mathcal{C}_{n}$ (note that G_{V} and K_{V} are well defined by Lemma 12).

Example 14. If $n=1$ then for $m \in \mathbb{Z}_{\geq 0}$,

$$
K_{-m}(x)=\frac{(q a ; q)_{m}}{(q x ; q)_{m}}, \quad K_{m}(x)=\left(\frac{x}{a}\right)^{m} \frac{\left(x^{-1} ; q\right)_{m}}{\left(a^{-1} ; q\right)_{m}}
$$

Lemma 15. For all $v \in \mathbb{Z}^{n}$,

$$
K_{V}(x)=\frac{G_{V}(x)}{G_{V}(a \tau)}
$$

Proof. Let $v \in \mathbb{Z}^{n}$. Clearly $G_{V}(x)$ and $K_{V}(x)$ only differ by a multiplicative constant, so it suffices to show that $K_{V}(a \tau)=1$. Fix $m \in \mathbb{Z}_{\geq 0}$ such that $v+\left(m^{n}\right) \in \mathcal{C}_{n}$. Then

$$
K_{V}(a \tau)=A_{m}(a \tau ; v) K_{V+\left(m^{n}\right)}\left(q^{m} a \tau\right)=A_{m}(a \tau ; v) \frac{G_{V+\left(m^{n}\right)}\left(q^{m} a \tau\right)}{G_{V+\left(m^{n}\right)}(a \tau)}=1,
$$

where the last formula follows from a direct computation using the evaluation formula (8).

We extend the map $K: \mathcal{C}_{n} \rightarrow \mathbb{K}[x]$ to a map

$$
K: \mathbb{Z}^{n} \rightarrow \mathbb{K}(x)
$$

by setting $V \mapsto K_{V}(x)$ for all $v \in \mathbb{Z}^{n}$. Lemma 10 now extends as follows.

Proposition 16. We have, as identities in $\mathcal{F}_{\mathbb{K}(X)}$,

1. $H_{i} K=\widehat{H}_{i} K$.
2. $\Xi_{j} K=a \widehat{x}_{j}^{-1} K$.
3. $\Phi K=t^{1-n}\left(a^{2} \widehat{x}_{1}^{-1}-1\right) \widehat{\Delta}^{-1} K$.

Proof. Write $A_{m} \in \mathcal{F}_{\mathbb{K}(x)}$ for the map $v \mapsto A_{m}(x ; v)$ for $v \in \mathbb{Z}^{n}$. Consider the linear operator on $\mathcal{F}_{\mathbb{K}(x)}$ defined by $\left(A_{m} f\right)(v):=A_{m}(x ; v) f(v)$ for $v \in \mathbb{Z}^{n}$ and $f \in \mathcal{F}_{\mathbb{K}(x)}$. For $1 \leq i<n$ we have $\left[H_{i}, A_{m}\right]=0$ as linear operators on $\mathcal{F}_{\mathbb{K}(x)}$, since $A_{m}(x ; v)$ is a symmetric rational function in x_{1}, \ldots, x_{n}. Furthermore, for $v \in \mathbb{Z}^{n}$ and $f \in \mathcal{F}_{\mathbb{K}(X)}$,

$$
\begin{equation*}
\left(\left(\widehat{H}_{i} \circ A_{m}\right) f\right)(v)=\left(\left(A_{m} \circ \widehat{H}_{i}\right) f\right)(v) \quad \text { if } \quad v_{i} \neq v_{i+1} \tag{15}
\end{equation*}
$$

by part 2 of Lemma 5 and the fact that $A_{m}(x ; v)$ is symmetric in $\bar{v}_{1}, \ldots, \bar{v}_{n}$. Fix $v \in \mathbb{Z}^{n}$ and choose $m \in \mathbb{Z}_{\geq 0}$ such that $v+\left(m^{n}\right) \in \mathcal{C}_{n}$. Since

$$
K_{V}(x)=A_{m}(x ; v) K_{V+\left(m^{n}\right)}\left(q^{m} x\right)
$$

we obtain from $\left[H_{i}, A_{m}\right]=0$ and (15) that $\left(H_{i} K\right)(v)=\left(\widehat{H}_{i} K\right)(v)$ if $v_{i} \neq v_{i+1}$. This also holds true if $v_{i}=v_{i+1}$ since then $\left(\widehat{H}_{i} K\right)(v)=t K_{V}$ and $H_{i} K_{V+\left(m^{n}\right)}\left(q^{m} X\right)=t K_{V+\left(m^{n}\right)}\left(q^{m}\right)^{\prime}$. This proves part 1 of the proposition.

Note that $\Phi K_{V}(x)=t^{1-n}\left(a \bar{v}_{1}^{-1}-1\right) K_{V^{\natural}}(x)$ for arbitrary $v \in \mathbb{Z}^{n}$ by Lemma 10 and the commutation relation

$$
\begin{equation*}
\Phi \circ A_{m}=A_{m} \circ \Phi^{\left(q^{m}\right)} \tag{16}
\end{equation*}
$$

where $\Phi^{\left(q^{m}\right)}:=\left(q^{m} x_{n}-t^{1-n}\right) \Delta$. This proves part 3 of the proposition.
Finally we have $\Xi_{j} K_{V}(x)=\bar{v}_{j}^{-1} K_{V}(x)$ for all $v \in \mathbb{Z}^{n}$ by $\left[H_{i}, A_{m}\right]=0$, (16) and Lemma 10. This proves part 2 of the proposition.

6 Duality of the Non-Symmetric Interpolation Macdonald Polynomials

Recall the notation $\widetilde{v}=\overline{-W_{0} v}$ for $v \in \mathbb{Z}^{n}$.

Theorem 17. (Duality). For all $u, v \in \mathbb{Z}^{n}$ we have

$$
\begin{equation*}
K_{u}(a \widetilde{v})=K_{V}(a \widetilde{u}) . \tag{17}
\end{equation*}
$$

Example 18. If $n=1$ and $m, r \in \mathbb{Z}_{\geq 0}$ then

$$
\begin{equation*}
K_{m}\left(a q^{-r}\right)=q^{-m r} \frac{\left(a^{-1} ; q\right)_{m+r}}{\left(a^{-1} ; q\right)_{m}\left(a^{-1} ; q\right)_{r}} \tag{18}
\end{equation*}
$$

by the explicit expression for $K_{m}(x)$ from Example 14. The right-hand side of (18) is manifestly invariant under the interchange of m and r.

Proof. We divide the proof of the theorem in several steps.

Step 1. If $K_{u}(a \widetilde{v})=K_{V}(a \widetilde{u})$ for all $v \in \mathbb{Z}^{n}$ then $K_{s_{i} u}(a \widetilde{v})=K_{V}\left(a \widetilde{s_{i} u}\right)$ for $v \in \mathbb{Z}^{n}$ and $1 \leq i<n$.

Proof of Step 1. Writing out the formula from part 1 of Proposition 16 gives

$$
\begin{align*}
\frac{(t-1) \widetilde{v}_{i}}{\left(\widetilde{v}_{i}-\widetilde{v}_{i+1}\right)} K_{u}(a \widetilde{v})+ & \left(\frac{\widetilde{v}_{i}-t \widetilde{v}_{i+1}}{\widetilde{v}_{i}-\widetilde{v}_{i+1}}\right) K_{u}\left(a \widetilde{s_{n-i} v}\right) \\
& =\frac{(t-1) \bar{u}_{i}}{\left(\bar{u}_{i}-\bar{u}_{i+1}\right)} K_{u}(a \widetilde{v})+\left(\frac{\bar{u}_{i}-t \bar{u}_{i+1}}{\bar{u}_{i}-\bar{u}_{i+1}}\right) K_{s_{i} u}(a \widetilde{v}) . \tag{19}
\end{align*}
$$

Replacing in (19) the role of u and v and replacing i by $n-i$ we get

$$
\begin{align*}
\frac{(t-1) \widetilde{u}_{n-i}}{\left(\widetilde{u}_{n-i}-\widetilde{u}_{n+1-i}\right)} K_{V}(a \widetilde{u})+ & \left.+\frac{\widetilde{u}_{n-i}-t \widetilde{u}_{n+1-i}}{\widetilde{u}_{n-i}-\widetilde{u}_{n+1-i}}\right) K_{V}\left(a \widetilde{s_{i} u}\right) \\
& =\frac{(t-1) \bar{v}_{n-i}}{\left(\bar{v}_{n-i}-\bar{v}_{n+1-i}\right)} K_{V}(a \widetilde{u})+\left(\frac{\bar{v}_{n-i}-t \bar{v}_{n+1-i}}{\bar{V}_{n-i}-\bar{v}_{n+1-i}}\right) K_{s_{n-i} V}(a \widetilde{u}) . \tag{20}
\end{align*}
$$

Suppose that $s_{n-i} V=v$. Then $\bar{v}_{n-i}=t \bar{v}_{n+1-i}$ by the 2nd part of Lemma 5. Since $\widetilde{v}=t^{1-n} w_{0} \bar{V}^{-1}$, that is, $\widetilde{v}_{i}=t^{1-n} \bar{v}_{n+1-i}^{-1}$, we then also have $\widetilde{v}_{i}=t \widetilde{v}_{i+1}$. It then follows by a direct computation that (19) reduces to $K_{s_{i} u}(a \widetilde{v})=K_{u}(a \widetilde{v})$ and (20) to $K_{V}\left(a \widetilde{s_{i} u}\right)=K_{V}(a \widetilde{u})$ if $s_{n-i} V=v$.

We now use these observations to prove Step 1. Assume that $K_{u}(a \widetilde{v})=K_{V}(a \widetilde{u})$ for all v. We have to show that $K_{s_{i} u}(a \widetilde{v})=K_{v}\left(\widetilde{s_{i} u}\right)$ for all v. It is trivially true if $s_{i} u=u$, so we may assume that $s_{i} u \neq u$. Suppose that v satisfies $s_{n-i} V=v$. Then it follows from the previous paragraph that

$$
K_{s_{i} u}(a \widetilde{v})=K_{u}(a \widetilde{v})=K_{V}(a \widetilde{u})=K_{V}\left(a \widetilde{s_{i} u}\right)
$$

If $s_{n-i} V \neq v$ then (19) and the induction hypothesis can be used to write $K_{s_{i} u}(a \widetilde{v})$ as an explicit linear combination of $K_{V}(a \widetilde{u})$ and $K_{s_{n-i} V}(a \widetilde{u})$. Then (20) can be used to rewrite the term involving $K_{s_{n-i V}}(a \widetilde{u})$ as an explicit linear combination of $K_{V}(a \widetilde{u})$ and $K_{V}\left(\widetilde{s_{i} u}\right)$. Hence, we obtain an explicit expression of $K_{s_{i} u}(a \widetilde{v})$ as linear combination of $K_{V}(a \widetilde{u})$ and $K_{V}\left(\widetilde{a s_{i} u}\right)$, which turns out to reduce to $K_{s_{i} u}(a \widetilde{v})=K_{V}\left(\widetilde{s_{i} u}\right)$ after a direct computation.

Step 2. $\quad K_{0}(a \widetilde{v})=1=K_{V}(a \widetilde{0})$ for all $v \in \mathbb{Z}^{n}$.

Proof of Step 2. Clearly $K_{0}(x)=1$ and $K_{V}(a \tilde{0})=K_{V}(a \tau)=1$ for $v \in \mathbb{Z}^{n}$ by Lemma 15.

Step 3. $\quad K_{\alpha}(a \widetilde{v})=K_{V}(a \widetilde{\alpha})$ for $v \in \mathbb{Z}^{n}$ and $\alpha \in \mathcal{C}_{n}$.

Proof of Step 3. We prove it by induction. It is true for $\alpha=0$ by Step 2. Let $m \in \mathbb{Z}_{>0}$ and suppose that $K_{\gamma}(a \widetilde{v})=K_{V}(a \widetilde{\gamma})$ for $v \in \mathbb{Z}^{n}$ and $\gamma \in \mathcal{C}_{n}$ with $|\gamma|<m$. Let $\alpha \in \mathcal{C}_{n}$ with $|\alpha|=m$.

We need to show that $K_{\alpha}(a \widetilde{v})=K_{V}(a \widetilde{\alpha})$ for all $v \in \mathbb{Z}^{n}$. By Step 1 we may assume without loss of generality that $\alpha_{n}>0$. Then $\gamma:=\alpha^{\sharp} \in \mathcal{C}_{n}$ satisfies $|\gamma|=m-1$, and $\alpha=\gamma^{\natural}$. Furthermore, note that we have the formula

$$
\begin{equation*}
\left(a \bar{v}_{1}^{-1}-1\right) K_{u}\left(a \widetilde{v}^{\natural}\right)=\left(a \bar{u}_{1}^{-1}-1\right) K_{u^{\natural}}(a \widetilde{v}) \tag{21}
\end{equation*}
$$

for all $u, v \in \mathbb{Z}^{n}$, which follows by writing out the formula from part 3 of Lemma 16 . Hence, we obtain

$$
\begin{aligned}
K_{\alpha}(a \widetilde{v})=K_{\gamma^{\natural}}(a \widetilde{v}) & =\frac{\left(a \bar{v}_{1}^{-1}-1\right)}{\left(a \bar{\gamma}_{1}^{-1}-1\right)} K_{\gamma}\left(a \widetilde{v^{\natural}}\right) \\
& =\frac{\left(a \bar{v}_{1}^{-1}-1\right)}{\left(a \bar{\gamma}_{1}^{-1}-1\right)} K_{V^{\sharp}}(a \widetilde{\gamma})=K_{V}\left(a \widetilde{\gamma^{\natural}}\right)=K_{V}(a \widetilde{\alpha}),
\end{aligned}
$$

where we used the induction hypothesis for the 3rd equality and (21) for the 2nd and 4th equality. This proves the induction step.

Step 4. $\quad K_{u}(a \widetilde{v})=K_{V}(a \widetilde{u})$ for all $u, v \in \mathbb{Z}^{n}$.

Proof of Step 4. Fix $u, v \in \mathbb{Z}^{n}$. Let $m \in \mathbb{Z}_{\geq 0}$ such that $u+\left(m^{n}\right) \in \mathcal{C}_{n}$. Note that $q^{m} \widetilde{v}=$ $v \widetilde{-\left(m^{n}\right)}$ and $q^{-m} \widetilde{u}=\widetilde{u+\left(m^{n}\right)}$. Then

$$
\begin{aligned}
K_{u}(a \widetilde{v}) & =A_{m}(a \widetilde{v} ; u) K_{u+\left(m^{n}\right)}\left(q^{m} a \widetilde{v}\right) \\
& =A_{m}(a \widetilde{v} ; u) K_{u+\left(m^{n}\right)}\left(a\left(v \widetilde{-\left(m^{n}\right)}\right)\right) \\
& \left.=A_{m}(a \widetilde{v} ; u) K_{v-\left(m^{n}\right)}\left(a\left(u \widetilde{+\left(m^{n}\right.}\right)\right)\right) \\
& =A_{m}(a \widetilde{v} ; u) K_{v-\left(m^{n}\right)}\left(q^{-m} a \widetilde{u}\right)=A_{m}(a \widetilde{v} ; u) A_{m}\left(q^{-m} a \widetilde{u} ; v-\left(m^{n}\right)\right) K_{V}(a \widetilde{u}),
\end{aligned}
$$

where we used Step 3 in the 3rd equality. The result now follows from the fact that

$$
A_{m}(a \widetilde{v} ; u) A_{m}\left(q^{-m} a \widetilde{u} ; v-\left(m^{n}\right)\right)=1
$$

which follows by a straightforward computation using (4).

7 Some Applications of Duality

7.1 Non-symmetric Macdonald polynomials

Recall that the (monic) non-symmetric Macdonald polynomial $E_{\alpha}(x)$ of degree α is the top homogeneous component of $G_{\alpha}(x)$, i.e.,

$$
E_{\alpha}(x)=\lim _{a \rightarrow \infty} a^{-|\alpha|} G_{\alpha}(a x), \quad \alpha \in \mathcal{C}_{n}
$$

The normalized non-symmetric Macdonald polynomials are

$$
\bar{K}_{\alpha}(x):=\lim _{a \rightarrow \infty} K_{\alpha}(a x)=\frac{E_{\alpha}(x)}{E_{\alpha}(\tau)}, \quad \alpha \in \mathcal{C}_{n}
$$

We write $\bar{K} \in \mathcal{F}_{\mathbb{F}[x]}^{+}$for the resulting map $\alpha \mapsto \bar{K}_{\alpha}$. Taking limits in Lemma 10 we get the following.

Lemma 19. We have for $1 \leq i<n$ and $1 \leq j \leq n$,

1. $H_{i} \bar{K}=\widehat{H}_{i} \bar{K}$.
2. $\xi_{j} \bar{K}=\widehat{x}_{j}^{-1} \bar{K}$.
3. $x_{n} \Delta \bar{K}=t^{1-n} \widehat{X}_{1}^{-1} \widehat{\Delta}^{-1} \bar{K}$.

Note that

$$
\left(x_{n} \Delta\right)^{n} f(x)=\left(\prod_{i=1}^{n} x_{i}\right) f\left(q^{-1} x\right)
$$

Then repeated application of part 3 of Lemma 19 shows that for $\alpha \in \mathcal{C}_{n}$,

$$
\begin{align*}
& E_{\alpha}(x)=\frac{E_{\alpha+\left(1^{n}\right)}(x)}{x_{1} \cdots x_{n}} \\
& \bar{K}_{\alpha}(x)=q^{|\alpha|} t^{(1-n) n}\left(\prod_{i=1}^{n}\left(\bar{\alpha}_{i} x_{i}\right)^{-1}\right) \bar{K}_{\alpha+\left(1^{n}\right)}(x) . \tag{22}
\end{align*}
$$

As is well known and already noted in Section 2, the 1st equality allows to relate the non-symmetric Macdonald polynomials $E_{V}(x):=E_{V}(x ; q, t) \in \mathbb{F}\left[x^{ \pm 1}\right]$ for arbitrary $V \in \mathbb{Z}^{n}$ to those labeled by compositions through the formula

$$
E_{V}(x)=\frac{E_{V+\left(m^{n}\right)}(x)}{\left(x_{1} \cdots x_{n}\right)^{m}} .
$$

The 2nd formula of (22) can now be used to explicitly define the normalized nonsymmetric Macdonald polynomials for degrees $v \in \mathbb{Z}^{n}$.

Definition 20. Let $v \in \mathbb{Z}^{n}$ and $m \in \mathbb{Z}_{\geq 0}$ such that $v+\left(m^{n}\right) \in \mathcal{C}_{n}$. Then $\bar{K}_{V}(x):=$ $\bar{K}_{V}(x ; q, t) \in \mathbb{F}\left[x^{ \pm 1}\right]$ is defined by

$$
\bar{K}_{V}(x):=q^{m|V|} t^{(1-n) n m}\left(\prod_{i=1}^{n}\left(\bar{v}_{i} x_{i}\right)^{-m}\right) \bar{K}_{v+\left(m^{n}\right)}(x) .
$$

Using

$$
\lim _{a \rightarrow \infty} A_{m}(a x ; v)=q^{-m^{2} n} t^{(1-n) n m} \prod_{i=1}^{n}\left(\bar{v}_{i} x_{i}\right)^{-m}
$$

and the definitions of $G_{V}(x)$ and $K_{V}(x)$ it follows that

$$
\begin{aligned}
\lim _{a \rightarrow \infty} a^{-|V|} G_{V}(a x) & =E_{V}(x), \\
\lim _{a \rightarrow \infty} K_{V}(a x) & =\bar{K}_{V}(x)
\end{aligned}
$$

for all $v \in \mathbb{Z}^{n}$, so in particular

$$
\bar{K}_{V}(x)=\frac{E_{V}(x)}{E_{V}(\tau)} \quad \forall V \in \mathbb{Z}^{n} .
$$

Lemma 19 holds true for the extension of \bar{K} to the map $\bar{K} \in \mathcal{F}_{\mathbb{F}\left[X^{ \pm 1}\right]}$ defined by $v \mapsto \bar{K}_{V}$ $\left(v \in \mathbb{Z}^{n}\right)$. Taking the limit in Theorem 17 we obtain the well-known duality [1] of the Laurent polynomial versions of the normalized non-symmetric Macdonald polynomials.

Corollary 21. For all $u, v \in \mathbb{Z}^{n}$,

$$
\bar{K}_{u}(\widetilde{v})=\bar{K}_{V}(\widetilde{u}) .
$$

7.2 O-polynomials

We now show that the duality of the non-symmetric interpolation Macdonald polynomials (Theorem 17) directly implies the existence of the O-polynomials O_{α} (which is the nontrivial part of the proof of [14, Thm. 1.2]), and that it provides an explicit expression for O_{α} in terms of the non-symmetric interpolation Macdonald polynomial K_{α}.

Proposition 22. For all $\alpha \in \mathcal{C}_{n}$ we have

$$
O_{\alpha}(x)=K_{\alpha}\left(t^{1-n} a w_{0} x\right)
$$

Proof. The polynomial $\widetilde{O}_{\alpha}(x):=K_{\alpha}\left(t^{1-n} a w_{0} x\right)$ is of degree at most $|\alpha|$ and

$$
\widetilde{O}_{\alpha}\left(\bar{\beta}^{-1}\right)=K_{\alpha}\left(t^{1-n} a w_{0} \bar{\beta}^{-1}\right)=K_{\alpha}(a \widetilde{\beta})=K_{\beta}(a \widetilde{\alpha})
$$

for all $\beta \in \mathcal{C}_{n}$ by (4) and Theorem 17. Hence, $\widetilde{O}_{\alpha}=O_{\alpha}$.

7.3 Okounkov's duality

Write $F[x]^{S_{n}}$ for the symmetric polynomials in x_{1}, \ldots, x_{n} with coefficients in a field F. Write $C_{+}:=\sum_{w \in S_{n}} H_{w}$. The symmetric interpolation Macdonald polynomial $R_{\lambda}(x) \in \mathbb{F}[x]^{S_{n}}$ is the multiple of $C_{+} G_{\lambda}$ such that the coefficient of x^{λ} is one (see, e.g., [13]). We write

$$
K_{\lambda}^{+}(x):=\frac{R_{\lambda}(x)}{R_{\lambda}(a \tau)} \in \mathbb{K}[x]^{S_{n}}
$$

for the normalized symmetric interpolation Macdonald polynomial. Then

$$
\begin{equation*}
C_{+} K_{\alpha}(x)=\left(\sum_{w \in S_{n}} t^{\ell(w)}\right) K_{\alpha_{+}}^{+}(x) \tag{23}
\end{equation*}
$$

for $\alpha \in \mathcal{C}_{n}$. Okounkov's [10, Section 2] duality result now reads as follows.

Theorem 23. For partitions $\lambda, \mu \in \mathcal{P}_{n}$ we have

$$
K_{\lambda}^{+}\left(a \bar{\mu}^{-1}\right)=K_{\mu}^{+}\left(a \bar{\lambda}^{-1}\right)
$$

Let us derive Theorem 23 as consequence of Theorem 17. Write $\widehat{C}_{+}=\sum_{W \in S_{n}} \widehat{H}_{W^{\prime}}$, with $\widehat{H}_{W}:=\widehat{H}_{i_{1}} \cdots \widehat{H}_{i_{r}}$ for a reduced expression $w=s_{i_{1}} \cdots s_{i_{r}}$. Write $f_{\mu} \in \mathcal{F}_{\mathbb{K}}$ for the function $f_{\mu}(u):=K_{u}(a \widetilde{\mu})\left(u \in \mathbb{Z}^{n}\right)$. Then

$$
\begin{equation*}
\left(\sum_{w \in S_{n}} t^{\ell(w)}\right) K_{\lambda}^{+}(a \widetilde{\mu})=\left(C_{+} K_{\lambda}\right)(a \widetilde{\mu})=\left(\widehat{C}_{+} f_{\mu}\right)(\lambda) \tag{24}
\end{equation*}
$$

by part 1 of Proposition 16. The duality (17) of K_{u} and (4) imply that

$$
\begin{equation*}
f_{\mu}(u)=K_{\mu}(a \widetilde{u})=\left.\left(J w_{0} K_{\mu}\left(t^{1-n_{X}}\right)\right)\right|_{x=a^{-1} \bar{u}} \tag{25}
\end{equation*}
$$

with $(J f)(x):=f\left(x_{1}^{-1}, \ldots, x_{n}^{-1}\right)$ for $f \in \mathbb{K}(x)$. A direct computation shows that

$$
\begin{equation*}
J H_{i} J=\left(H_{i}^{\circ}\right)^{-1}, \quad w_{0} H_{i} w_{0}=\left(H_{n-i}^{\circ}\right)^{-1} \tag{26}
\end{equation*}
$$

for $1 \leq i<n$. In particular, $J w_{0} C_{+}=C_{+} J w_{0}$. Combined with Remark 7 we conclude that

$$
\left(\widehat{C}_{+} f_{\mu}\right)(\lambda)=\left.\left(J w_{0} C_{+} K_{\mu}\left(t^{1-n_{X}}\right)\right)\right|_{X=a^{-1} \bar{\lambda}}
$$

By (23) and (4) this simplifies to

$$
\left(\widehat{C}_{+} f_{\mu}\right)(\lambda)=\left(\sum_{w \in S_{n}} t^{\ell(w)}\right) K_{\mu}^{+}(a \widetilde{\lambda})
$$

Returning to (24) we conclude that $K_{\lambda}^{+}(a \widetilde{\mu})=K_{\mu}^{+}(a \widetilde{\lambda})$. Since K_{λ}^{+}is symmetric we obtain from (4) that

$$
K_{\lambda}^{+}\left(a \bar{\mu}^{-1}\right)=K_{\mu}^{+}\left(a \bar{\lambda}^{-1}\right)
$$

which is Okounkov's duality result.

7.4 A primed version of duality

We first derive the following twisted version of the duality of the non-symmetric interpolation Macdonald polynomials (Theorem 17).

Lemma 24. For $u, v \in \mathbb{Z}^{n}$ we have

$$
\begin{equation*}
\left(H_{w_{0}} K_{u}\right)(a \widetilde{v})=\left(H_{w_{0}} K_{V}\right)(a \widetilde{u}) \tag{27}
\end{equation*}
$$

Proof. We proceed as in the previous subsection. Set $f_{v}(u):=K_{u}(a \widetilde{v})$ for $u, v \in \mathbb{Z}^{n}$. By part 1 of Proposition 16,

$$
\left(H_{w_{0}} K_{u}\right)(a \widetilde{v})=\left(\widehat{H}_{w_{0}} f_{v}\right)(u)
$$

Since $f_{V}(u)=\left(I w_{0} K_{V}\right)\left(a^{-1} t^{n-1} \bar{u}\right)$ by (4), Remark 7 implies that

$$
\left(\widehat{H}_{w_{0}} f_{V}\right)(u)=\left(H_{W_{0}} J w_{0} K_{V}\right)\left(a^{-1} t^{n-1} \bar{u}\right)
$$

Now $H_{w_{0}} J w_{0}=J w_{0} H_{W_{0}}$ by (26); hence,

$$
\left(\widehat{H}_{w_{0}} f_{V}\right)(u)=\left(J w_{0} H_{w_{0}} K_{V}\right)\left(a^{-1} t^{n-1} \bar{u}\right)=\left(H_{w_{0}} K_{V}\right)(a \widetilde{u}),
$$

which completes the proof.

Recall from Theorem 1 that

$$
G_{\beta}^{\prime}(x)=t^{(1-n)|\beta|+I(\beta)} \Psi G_{\beta}^{\circ}\left(t^{n-1} X\right)
$$

with $\Psi:=w_{0} H_{W_{0}}^{\circ}$. We define normalized versions by

$$
K_{\beta}^{\prime}(x):=\frac{G_{\beta}^{\prime}(x)}{G_{\beta}^{\prime}\left(a^{-1} \tau\right)}=t^{\ell\left(W_{0}\right)} \Psi K_{\beta}^{\circ}\left(t^{n-1} x\right), \quad \beta \in \mathcal{C}_{n}
$$

with $K_{V}^{\circ}:=\iota\left(K_{V}\right)$ for $v \in \mathbb{Z}^{n}$ (the 2nd formula follows from Lemma 2). More generally, we define for $v \in \mathbb{Z}^{n}$,

$$
\begin{equation*}
K_{V}^{\prime}(x):=t^{\ell\left(w_{0}\right)} \Psi K_{V}^{\circ}\left(t^{n-1} x\right) \tag{28}
\end{equation*}
$$

We write $K^{\prime}: \mathbb{Z}^{n} \rightarrow \mathbb{K}(x)$ for the map $v \mapsto K_{V}^{\prime}\left(v \in \mathbb{Z}^{n}\right)$. Since $H_{i} \Psi=\Psi H_{i}^{\circ}$, part 1 of Proposition 16 gives $H_{i} K^{\prime}=\widehat{H}_{i}^{\circ} K^{\prime}$. Considering the action of $\left(\left(x_{n}-1\right) \Delta^{\circ}\right)^{n}$ on $K_{\beta}^{\prime}(x)$ we get, using the fact that $\left(\left(x_{n}-1\right) \Delta^{\circ}\right)^{n}$ commutes with Ψ and part 3 of Proposition 16,

$$
K_{V}^{\prime}(x)=\left(\prod_{i=1}^{n} \frac{\left(1-a^{-1} \bar{V}_{i}\right)}{\left(1-q^{-1} X_{i}\right)}\right) K_{V+\left(1^{n}\right)}^{\prime}\left(q^{-1} X\right)
$$

in particular

$$
K_{V}^{\prime}(x)=\left(\prod_{i=1}^{n} \frac{\left(a^{-1} \bar{V}_{i} ; q\right)_{m}}{\left(q^{\left.-m_{X_{i}} ; q\right)_{m}}\right) K_{V+\left(m^{n}\right)}^{\prime}\left(q^{-m_{X}}\right)}\right.
$$

Example 25. For $n=1$ we have $K_{V}^{\prime}(x)=K_{V}^{\circ}(x)$ for $v \in \mathbb{Z}$; hence,

$$
\begin{aligned}
K_{-m}^{\prime}(x) & =\frac{\left(q^{-1} a^{-1} ; q^{-1}\right)_{m}}{\left(q^{-1} x ; q^{-1}\right)_{m}}=(a x)^{-m} \frac{(q a ; q)_{m}}{\left(q x^{-1} ; q\right)_{m}} \\
K_{m}^{\prime}(x) & =(a x)^{m} \frac{\left(x^{-1} ; q^{-1}\right)_{m}}{\left(a ; q^{-1}\right)_{m}}=\frac{(x ; q)_{m}}{\left(a^{-1} ; q\right)_{m}}
\end{aligned}
$$

for $m \in \mathbb{Z}_{\geq 0}$ by Example 14 .

Proposition 26. For all $u, v \in \mathbb{Z}^{n}$ we have

$$
K_{V}^{\prime}\left(a^{-1} \bar{u}\right)=K_{u}^{\prime}\left(a^{-1} \bar{v}\right)
$$

Proof. Note that

$$
K_{V}^{\prime}\left(a^{-1} \bar{u}\right)=\left.t^{\ell\left(w_{0}\right)} \Psi K_{V}^{\circ}\left(t^{n-1} x\right)\right|_{x=a^{-1} \bar{u}}=t^{\ell\left(w_{0}\right)}\left(H_{W_{0}}^{\circ} K_{V}^{\circ}\right)\left(a^{-1} \widetilde{u}^{-1}\right)
$$

by (4). By (27) the right-hand side is invariant under the interchange of u and v.

7.5 Binomial formula and dual binomial formula

In [14] the existence and uniqueness of O_{α} was used to prove the following binomial theorem [14, Thm. 1.3]. Define for $\alpha, \beta \in \mathcal{C}_{n}$ the generalized binomial coefficient by

$$
\left[\begin{array}{c}
\alpha \tag{29}\\
\beta
\end{array}\right]_{q, t}:=\frac{G_{\beta}(\bar{\alpha})}{G_{\beta}(\bar{\beta})} .
$$

Applying the automorphism ι of \mathbb{F} to (29) we get

$$
\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right]_{q^{-1}, t^{-1}}=\frac{G_{\beta}^{\circ}\left(\bar{\alpha}^{-1}\right)}{G_{\beta}^{\circ}\left(\bar{\beta}^{-1}\right)} .
$$

Theorem 27. For $\alpha, \beta \in \mathcal{C}_{n}$ we have the binomial formula

$$
K_{\alpha}(a x)=\sum_{\beta \in \mathcal{C}_{n}} a^{|\beta|}\left[\begin{array}{l}
\alpha \tag{30}\\
\beta
\end{array}\right]_{q^{-1}, t^{-1}} \frac{G_{\beta}^{\prime}(x)}{G_{\beta}(a \tau)} .
$$

Remark 28. 1. Note that the sum in (30) is finite, since the generalized binomial coefficient (29) is zero unless $\beta \subseteq \alpha$, with $\beta \subseteq \alpha$ meaning $\beta_{i} \leq \alpha_{i}$ for $i=1, \ldots, n$.
2. By Corollary 4 and (28) the binomial formula (30) can be alternatively written as

$$
\begin{align*}
K_{\alpha}(a x) & =\sum_{\beta \in \mathcal{C}_{n}} \tau_{\beta}^{-1}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]_{q^{-1}, t^{-1}} K_{\beta}^{\prime}(x) \\
& =\sum_{\beta \in \mathcal{C}_{n}} \frac{K_{\beta}^{\circ}\left(\bar{\alpha}^{-1}\right) K_{\beta}^{\prime}(x)}{\tau_{\beta} K_{\beta}^{\circ}\left(\bar{\beta}^{-1}\right)} \tag{31}\\
& =t^{\ell\left(w_{0}\right)} \sum_{\beta \in \mathcal{C}_{n}} \frac{K_{\beta}^{\circ}\left(\bar{\alpha}^{-1}\right) \Psi K_{\beta}^{\circ}\left(t^{n-1} x\right)}{\tau_{\beta} K_{\beta}^{0}\left(\bar{\beta}^{-1}\right)}
\end{align*}
$$

with $\Psi=w_{0} H_{W_{0}}^{\circ}$ (note that the dependence on a in the right-hand side of (31) is through the normalization factors of the interpolation polynomials $K_{\beta}^{\circ}(x)$ and $K_{\beta}^{\prime}(x)$).
3. The binomial formula (30) and Theorem 1 imply the twisted duality (27) of K_{α} as follows. By the identity $H_{w_{0}} \Psi=w_{0}$ the binomial formula (31) implies the finite expansion

$$
\left(H_{w_{0}} K_{\alpha}\right)(a x)=t^{\ell\left(w_{0}\right)} \sum_{\beta} \frac{K_{\beta}^{\circ}\left(\bar{\alpha}^{-1}\right) K_{\beta}^{\circ}\left(t^{n-1} w_{0} x\right)}{\tau_{\beta} K_{\beta}^{\circ}\left(\bar{\beta}^{-1}\right)} .
$$

Substituting $x=\widetilde{\gamma}$ and using (4) we obtain

$$
\left(H_{w_{0}} K_{\alpha}\right)(a \widetilde{\gamma})=\sum_{\beta \in \mathcal{C}_{n}} \frac{K_{\beta}^{\circ}\left(\bar{\alpha}^{-1}\right) K_{\beta}^{\circ}\left(\bar{\gamma}^{-1}\right)}{\tau_{\beta} K_{\beta}^{\circ}\left(\bar{\beta}^{-1}\right)} .
$$

The right-hand side is manifestly invariant under interchanging α and γ, which is equivalent to twisted duality (27).

In [8, Section 4] it is remarked that an explicit identity relating G_{α}^{\prime} and G_{α} is needed to provide a proof of the dual binomial formula [8, Thm. 4.4] as a direct consequence of the binomial formula (30). We show here that Theorem 1 is providing the required identity. Instead of Theorem 1 we use its normalized version, encoded by (28).

The dual binomial formula [8, Thm. 4.4] in our notations reads as follows.

Theorem 29. For all $\alpha \in \mathcal{C}_{n}$ we have

$$
K_{\alpha}^{\prime}(x)=\sum_{\beta \in \mathcal{C}_{n}} \tau_{\beta}\left[\begin{array}{l}
\alpha \tag{32}\\
\beta
\end{array}\right]_{q, t} K_{\beta}(a x)
$$

The starting point of the alternative proof of (32) is the binomial formula in the form

$$
K_{\alpha}(a x)=t^{\ell\left(w_{0}\right)} \sum_{\beta \in \mathcal{C}_{n}} \frac{G_{\beta}^{\circ}\left(\bar{\alpha}^{-1}\right) \Psi K_{\beta}^{\circ}\left(t^{n-1} x\right)}{\tau_{\beta} G_{\beta}^{\circ}\left(\bar{\beta}^{-1}\right)}
$$

see (31). Replace (a, x, q, t) by ($a^{-1}, a t^{n-1} X, q^{-1}, t^{-1}$) and act by $w_{0} H_{W_{0}}$ on both sides. Since $w_{0} H_{w_{0}} \Psi=$ Id we obtain

$$
\Psi K_{\alpha}^{\circ}\left(t^{n-1} x\right)=t^{-\ell\left(w_{0}\right)} \sum_{\beta} \tau_{\beta}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]_{q, t} K_{\beta}(a x) .
$$

Now use (28) to complete the proof of (32).

Remark 30. It follows from this proof of (32) that the dual binomial formula (32) can be rewritten as

$$
\begin{equation*}
\Psi K_{\alpha}^{\circ}\left(t^{n-1} x\right)=t^{-\ell\left(w_{0}\right)} \sum_{\beta} \frac{\tau_{\beta} K_{\beta}(\bar{\alpha}) K_{\beta}(a x)}{K_{\beta}(\bar{\beta})} . \tag{33}
\end{equation*}
$$

As observed in [8, (4.11)], the binomial and dual binomial formula directly imply the orthogonality relations

$$
\sum_{\beta \in \mathcal{C}_{n}} \frac{\tau_{\beta}}{\tau_{\alpha}}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]_{q, t}\left[\begin{array}{l}
\beta \\
\gamma
\end{array}\right]_{q^{-1}, t^{-1}}=\delta_{\alpha, \gamma}
$$

Since $\left[\begin{array}{l}\delta \\ \epsilon\end{array}\right]_{q, t}=0$ unless $\delta \supseteq \epsilon$, the terms in the sum are zero unless $\gamma \subseteq \beta \subseteq \alpha$.

Acknowledgments

We thank Eric Rains for sharing with us his unpublished results with Alain Lascoux and Ole Warnaar on a one-parameter rational extension of the non-symmetric interpolation Macdonald
polynomials. It leads to a different proof of the duality of the non-symmetric interpolation Macdonald polynomials (Theorem B). We thank an anonymous referee for detailed comments.

Funding

This work was partially supported by Simons Foundation [509766 to S.S.].

References

[1] Cherednik, I. "Nonsymmetric Macdonald polynomials." Int. Math. Res. Not. 1995, no. 10 (1995): 483-515.
[2] Cherednik, I. Double Affine Hecke Algebras. London Mathematical Society Lecture Note Series 319, 2005. Cambridge: Cambridge University Press.
[3] Knop, F. "Symmetric and nonsymmetric quantum Capelli polynomials." Comment. Math. Helv. 72 (1997): 84-100.
[4] Knop, F. and S. Sahi. "Difference equations and symmetric polynomials defined by their zeros." Int. Math. Res. Not. 1996, no. 10 (1996): 473-86.
[5] Kostant, B. and S. Sahi. "The Capelli identity, tube domains, and the generalized Laplace transform." Adv. Math. 87, no. 1 (1991): 71-92.
[6] Kostant, B. and S. Sahi. "Jordan algebras and Capelli identities." Invent. Math. 112, no. 3 (1993): 657-64.
[7] Lascoux, A., E. M. Rains, and S. O. Warnaar. "Nonsymmetric interpolation Macdonald polynomials and $\mathfrak{g l}_{n}$ basic hypergeometric series." Transform. Groups 14, no. 3 (2009): 613-47.
[8] Macdonald, I. G. Symmetric Functions and Hall Polynomials, 2nd ed. Oxford: Clarendon Press, 1995.
[9] Okounkov, A. "Binomial formula for Macdonald polynomials and applications." Math Res. Lett. 4 (1997): 533-53.
[10] Sahi, S. "The Spectrum of Certain Invariant Differential Operators Associated to a Hermitian Symmetric Space." Lie Theory and Geometry, 569-76. Progress in Mathematics, 123. Boston, MA: Birkhauser Boston, 1994.
[11] Sahi, S. "Interpolation, integrality, and a generalization of Macdonald's polynomials." Int. Math. Res. Not. 1996, no. 10 (1996): 457-71.
[12] Sahi, S. "The binomial formula for nonsymmetric Macdonald polynomials." Duke Math. J. 94, no. 3 (1998): 465-77.

[^0]: © The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

