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Chapter 1 | General introduction

General introduction

Environmental exposure
It has been established that our health is not only determined by our genome, but 
also by environmental factors (also known as the exposome), such as lifestyle, 
socioeconomic status and environmental exposure. An important part of our 
environmental exposure is the air we breathe, as it is in direct contact with our 
respiratory system. Although environmental air consist of oxygen, an essential 
component for our body cells to function, it can also consists of hazardous 
agents, like air pollutants, cigarette smoke, and bacterial and viral components. 
These environmental substances can have a major impact on human health, that 
include but not limit to our respiratory system.

With the abundance of road traffic and the increasing number of aviation, air 
pollution is one of the major concerns regarding environmental exposure. 
Short-term and long-term exposure to air pollution can induce both acute and 
chronic health effects. These effects range from upper respiratory irritation 
to chronic respiratory and cardiovascular disease, and have been linked to 
premature mortality and reduced life expectancy [1]. This makes air pollution 
an important factor with respect to both personal and public health. Another 
important external exposure are viral components, as clearly demonstrated by 
the corona pandemic. The most common viral infectious agent in humans, is the 
rhinovirus. It is the predominant cause of a common cold [2] and comes with a 
great economic burden in terms of absenteeism and medical visits [3]–[5]. Yet, 
certain aspects about the health effects of air pollution and rhinoviruses remain 
unanswered and require further research and/or new methods of assessment, as 
will be described in more detail below.

Air pollution
Air pollution is a complex mixture of solid and gaseous components, such as 
nitrogen oxides (NOx, NO2), ozone (O3), sulphur dioxide (SO2) and particulate 
matter (PM). It has been established that exposure to air pollution is associated 
with adverse health effects, in which especially PM exposure has shown to 
increase morbidity and mortality due to pulmonary and cardiovascular events 
(e.g. asthma exacerbations, bronchitis, cardiac arrhythmias) [1], [6]–[8]. PM 
consists of carbonaceous particles together with organic chemicals and reactive 
metals, mainly originating from fossil fuel combustion [9]. These particulates can 
be inhaled, in which their size determines where they deposit in the respiratory 
tract; coarse particles (PM10, diameter 2.5–10 µm) do not pass the upper airways, 
whereas fine particles (PM2.5, diameter <2.5 µm) deposit in the smaller airways 
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1and ultrafine particles (UFP or PM0.1, diameter <0.1 µm) reach the alveoli (Figure 
1). Concerns about UFP are rising, as these particles are potentially more toxic, 
due to their high surface-to-mass ratio and their ability to pass the alveolar wall 
and enter the blood stream [10]–[12].

Short-term exposure to UFP have shown to induce oxidative stress, and 
pulmonary, as well as, systemic inflammation [13]–[17], and to increase blood 
pressure and heart rate [18], [19], however, the causality between UFP exposure 
and cardiorespiratory effects remain inconclusive or insufficient [8], [20]. On top 
of that, most studies focus on UFP from road traffic [20], while aviation is also an 
important source of UFP and a major contributor to elevated UFP levels around 
large airports [21], [22]. Moreover, aviation-related UFP have a different chemical 
composition and tend to be smaller (mainly 10-20 nm) [21], [23] when compared 
to road traffic-related UFP (mainly >50 nm) [24], [25], and therefore the toxicity 
between these UFP sources may differ. This not only raises concerns for airport 
workers, but also for residents that live in the proximity of major airports. 
Altogether, this emphasizes the importance of studies investigating the possible 
health effects of exposure to aviation-related UFP, in which this thesis focusses 
on the short-term health effects in healthy adults (Part II).

Figure 1. Through inhalation, particulate matter can enter the respiratory tract, in which 
particulates penetrate deeper into the lungs with decreasing size. Particles 2.5 – 10 µm 
(PM10) deposit in the upper airways, particles < 2.5 µm (PM2.5) in the smaller airways 
and particles <0.1 µm (PM0.1 = UFP) in the alveoli, but can diffuse over the alveolar wall 
and enter the circulation. This makes UFP potentially more toxic, as it can possibly induce 
reactions throughout the body. 
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Viral exposure
Other environmental exposures that are of importance for our health, are 
infectious diseases. Among viral infections in human, the rhinovirus (RV) is the 
most prevalent one, especially during fall and spring [26], [27]. It is transmitted 
through aerosols of respiratory droplets and contaminated surfaces, including 
direct person-to-person contact [28]. RV infections are the predominant cause of 
a common cold, and have socioeconomic consequences due to absenteeism from 
school and work [3]–[5]. Moreover, RV infections are also allied with the disease 
burden of asthma, as they are the primary cause of virus-induced worsening of 
asthma symptoms (i.e. exacerbations), such as wheezing, chest tightness and 
breathlessness, in both children [29], [30] and adults [31]. These exacerbations 
can lead to emergency visits and hospitalizations, making it a major burden for 
asthmatic patients [32], [33]. 

As treatment is modestly effective during such episodes [34], early detection or 
prediction of exacerbations could play an essential role in timely treatment or 
interventions, in order to prevent an exacerbation or reduce its progression. This 
would require a better understanding and assessment of biological processes 
during both stable and unstable states of asthma. It is believed that biological 
processes continuously fluctuate (i.e. homeokinesis), even under resting 
conditions, and that these fluctuations play a key role in the adaptive capacity of 
physiological systems in response to changing environmental conditions [35]. In 
chronic diseases, including asthma, such fluctuations may be either too rigid or 
overly unstable [36] and can be altered by external triggers like a rhinovirus [37], 
possibly leading to exacerbations. 

Monitoring of these fluctuations could potentially enable early detection and 
prediction of disease instability, however, would require the assessment of 
biomarker-based metrics. Biomarkers are biological components, including 
proteins, genes and metabolites, that are indicative of e.g. a disease state or 
treatment response [38] and can be used to identify biological processes involved 
in pathogenesis. To make biomarkers feasible for clinical practice, especially with 
respect to home monitoring purposes, they need to be non-invasive, cheap and 
easy-to-collect. This could facilitate more direct feedback on disease control for 
patients and possibly lead to fewer hospital visits. Therefore, this thesis focusses 
on fluctuations in non-invasive biomarkers for the detection of a rhinovirus 
infection in both healthy and asthmatic adults (Part III). 
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Metabolomics
As mentioned above, one of the methods to discover new biomarkers is through 
the study of metabolites in biological samples, i.e. metabolomics. Metabolites 
are small molecules, that are (end) products of metabolic processes and are 
present in biological specimens such as urine, exhaled breath, plasma, serum 
and feces. When compared to other biological measurements (e.g. genomics, 
transcriptomics and proteomics), the metabolome is uniquely suited for 
distinguishing phenotypes and capturing the impact of environmental factors 
on metabolic processes [39] (Figure 2). The latter makes it hold promise for the 
assessment of air pollution exposure and rhinovirus infections. Of the different 
metabolic specimens that can be assessed, exhaled breath and urine are of high 
interest, as they are non-invasive and easily accessible samples.

Exhaled breath consists of volatile organic compounds (VOCs), that either have 
an exogenous (from the environment) or endogenous (from metabolic processes) 
origin. The VOC metabolites are of interest regarding biomarker discovery, as 
they can reflect local respiratory, as well as, systemic pathological processes 
[40]. They particularly have shown increased clinical potential in chronic airway 
diseases, including but not limited to the detection of phenotypes, disease 
activity and infectious diseases [40], [41], as described thoroughly in Chapter 2. 

Urine is the primary route of excretion for cellular waste and therefore a biofluid 
rich in metabolites. These metabolites mostly originate from the circulation, 
through filtration of the blood by the kidneys, and therefore hold great potential 
for detection of pathway dysfunction from across the body [42]. They can reflect 
changes in pathological, pharmacological and physiological conditions, ranging 
from inflammation [43] and infectious diseases [44], to diabetes [45] and cancer [46]. 

Despite the increasing number of studies investigating metabolites in breath and 
urine, the number of clinically validated and implemented metabolites is modest. 
Further research in biomarker discovery and validation is required to expand the 
use of biomarkers for diagnostic purposes, health and disease monitoring, and 
treatment response detection or prediction. In this thesis, we focussed on how 
metabolites in exhaled breath and urine are affected by environmental exposures. 
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Figure 2. Omics aims to characterize and quantify the function and dynamics of an organism 
through the assessment of biological molecules. Genomic, transcriptomics and proteomics 
mainly reflect the cellular metabolism, and are of interest for the assessment of hereditary 
and acquired factors. Metabolomics reflects the systemic metabolism, and is highly suitable 
for distinguishing phenotypes, as well as, for the assessment of environmental influences. 
Therefore, this thesis has focused on the influences of the exposome (i.e. air pollution and 
rhinoviruses) on the metabolic content in easily accessible biological specimen; exhaled breath 
and urine. 

Objectives and outline of this thesis
The overall aim of this thesis was to investigate how environmental exposures, 
more specifically air pollution and rhinoviruses, have short-term health effects 
in healthy and asthmatic adults, through the assessment of both commonly 
used cardiorespiratory function measurements, and novel biomarkers (i.e. 
metabolites) in breath and urine. 

1. The first objective of this thesis was to investigate the short-term effects of 
5h-exposures to air pollution, focused on ultrafine particles, near a major 
airport and two highways in healthy subjects on cardiorespiratory function, 
the exhaled breath profile and the metabolites in urine.

2. The second objective was to investigate the effect of a rhinovirus-16 challenge 
on the fluctuations in the exhaled breath profile of healthy volunteers and 
mild asthmatic patients.
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1This thesis consists of four parts, in which Part I is the introduction of this 
thesis. It consists of a general introduction describing how environmental 
exposure, more specifically air pollution and rhinoviruses, can effect health and/
or disease stability and how more insight into these effects is needed, that can 
possibly be gained through biomarkers in exhaled breath and urine (Chapter 
1). Furthermore, it consists of an extensive review on exhaled breath analysis, 
including different exhaled breath detection techniques and the potential of 
exhaled breath analysis in respiratory diseases (Chapter 2). Part II focusses on air 
pollution and describes the effects of short-term exposures to air pollution near a 
major airport on cardiorespiratory function (Chapter 3), exhaled breath profiles 
(Chapter 4) and metabolites in urine (Chapter 5). Next, Part III focusses on the 
effects of a rhinovirus-16 challenge on the fluctuations in exhaled breath profiles 
of mild asthmatics and healthy volunteers (Chapter 6). Lastly, Part IV contains a 
summary of the main findings of this thesis and a general discussion describing 
the methodological challenges in and future perspectives of environmental 
exposure research (Chapter 7).
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Abstract

Chronic airway diseases cause a large burden for patients and caregivers and 
have large economic impact. Moreover, the burden is expected to increase with 
an increasing life expectancy of the world population. Therefore, there is a need 
for new biomarkers that can guide diagnosis, monitoring and the treatment of 
chronic airway diseases. 

Exhaled breath contains a complex mixture of volatile organic compounds 
(VOC) that can reflect local, systemic and exogenous (patho)physiological 
processes in the airways and alveoli and may thus be a promising target for 
biomarker discovery. Furthermore, breathomics holds the potential for non-
invasive, easy, safe and point-of-care analysis. Several techniques for exhaled 
breath analysis exist that can be distinguished by three main aspects; the ability 
to detect individual VOCs or VOC patterns, real-time or offline measurements, 
and targeted or untargeted approaches. Available techniques have different 
advantages and limitations regarding sensitivity, specificity, costs and complexity. 
Multiple clinical studies already show the many opportunities of exhaled breath 
analysis regarding disease diagnosis, monitoring and prediction in diseases like 
asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF).

To allow for implementation of exhaled breath in clinical practice, limitations 
of current detection techniques (e.g., the need for highly specialized personnel 
and machinery or sensitivity to detect very low concentrations of molecules in 
exhaled breath) should be overcome and results should be validated. Breathomics 
has large potential to make more personalized treatment possible in chronic 
airway diseases. 
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Introduction

Respiratory diseases are among the leading causes of death worldwide [1]. In 
European Union countries, one in eight deaths and 7% of all hospital admissions 
are due to respiratory conditions [1]. In general, chronic airway diseases affect 
the lungs as well as other parts of the respiratory system. They usually develop 
slowly and sometimes progress over time. Not all chronic lung diseases have 
a clear cause, however, some are known to be hereditary (e.g., cystic fibrosis), 
triggered by smoking tobacco (or second-hand smoke) or associated with 
different forms of air pollution.

In this article we will explain what breathomics is and what its value can be 
in several chronic airway diseases, focussing on asthma, chronic obstructive 
pulmonary disease (COPD) and cystic fibrosis. Therefore, we first discuss disease 
characteristics and current burdens and challenges in diagnostics and treatment, 
for which breathomics might be of use.

Asthma and COPD
The most frequent chronic airway diseases are asthma and COPD. Asthma is 
known for variable bronchoconstriction, airway hyper responsiveness, mucus 
secretion and a chronic inflammation of the airways. The hallmark trait of COPD 
is chronic inflammation, leading to structural changes and a loss of alveolar 
attachments. Asthma and COPD are expected to cause an increasing burden 
with aging of the world population [2], already causing 0.4 and 3.2 million global 
deaths in 2015 [3], respectively. Direct health care expenses in the US alone totalled 
32.1 billion for COPD in 2010 [4] and 56 billion dollars for asthma in 2006 [5].

Over the past decades it has become clear that the “old” definitions of asthma 
and COPD seem to be an oversimplification of reality as both diseases are 
complex and heterogeneous conditions, expressed in a multitude of different 
phenotypes that often share overlapping traits. A precise characterization of 
these different phenotypes is key in the development and identification of new 
(precision) therapies that are suitable for a specific group of patients. Disease 
control is an important factor in the quality of life of patients and caregivers, 
therefore easy applicable and non-invasive monitoring tools are essential to 
detect deterioration early on. This can lead to more timely (and better targeted) 
treatment and consequently, to less lung damage.
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Cystic fibrosis
A more rare, however life-shortening, chronic airway disease is cystic fibrosis 
(CF), with around 70,000 patients worldwide. It is an incurable, genetic disorder 
that mostly affects the lungs, but also the pancreas, intestines, liver and kidneys. 
It is characterized by thick mucus production due to a deficiency in the cystic 
fibrosis transmembrane conductance regulator (CFTR) protein, leading to 
difficult breathing, coughing and recurrent respiratory infections.

One of the major issues in CF is that patients are prone to acquire bacterial 
respiratory infections. Early in life, CF patients are most frequently infected 
with Staphylococcus aureus (S. aureus) (60–70%), whereas later in life Pseudomonas 
aeruginosa (P. aeruginosa) (70–80%) becomes more prevalent [6], [7]. Respiratory 
infections, especially with P. aeruginosa, lead to worsening of symptoms (i.e., 
exacerbations), hospitalizations, and lung function decline [8]. Currently, lung 
infections are mostly detected using sputum cultures, however, this method lacks 
both sensitivity and specificity. Furthermore, coughing up sputum is unpleasant 
for patients and sometimes difficult to perform, especially for kids. This causes 
treatment delay, leading to failure of eradication treatment and eventually 
chronic infections. For this reason, there is a need for a more accurate and easy 
way of detecting respiratory infections in CF.

Biomarkers in breath
To enable improvement in management and control of chronic airway diseases, 
it is needed to capture the complexity of the biological pathways involved in 
the disease. Instead of using a single biomarker, this complexity might be better 
captured by multiple biomarkers using so-called omics techniques. One of these 
omics techniques is metabolomics; the study of metabolic content of a cell, organ 
system, or organism. It can be performed in various samples such as blood, 
sputum, urine and exhaled breath. Analysis of the exhaled breath‘s metabolic 
content, is called breathomics. The advantage of breath over other biomarker 
samples, is its non-invasive nature. In addition, the collection of exhaled breath 
is safe as well as easy to perform for patients and caregivers. It is of special 
interest in pulmonary medicine, because of the intensive contact of breath with 
the respiratory tract.

Volatile organic compounds
Exhaled breath mainly contains nitrogen (~75%), oxygen (~13%), carbon 
dioxide (~6%) and water (~5%), however about 1% consists of volatile organic 
compounds (VOCs). These compounds are gaseous organic molecules that can 
either be of exogenous or endogenous origin. Exogenous VOCs are inhaled 
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from the environment with some VOCs having no interaction with human 
tissue, whereas others do interact and can sometimes be stored inside the body. 
Endogenous VOCs are produced by all metabolic processes of or in the body, 
either locally (i.e., in the lungs) or systemically (i.e., elsewhere in the body). 
This also includes VOCs of microbial origin such as bacteria, fungi and viruses. 
Therefore, exhaled VOCs do not exclusively represent pulmonary metabolism, 
but include all inhaled VOCs and those diffusing from the tissue and circulation 
into the alveoli and airways [9]. Moreover, reactions between these VOCs can 
occur.

The VOC composition of breath changes with various pathophysiological 
processes and could therefore contain useful information and be of added value 
for chronic airway diseases regarding diagnostics, phenotyping, exacerbation 
prediction, treatment stratification and treatment response [9]. Therefore, 
breathomics may help in providing a more personalized approach in respiratory 
medicine.

Outline of this article
In this article, we first describe exhaled breath sampling methods. Hereafter, 
the techniques for detection of VOCs in exhaled breath will be explained as 
well as their advantages and challenges. Finally, the clinical implications and 
opportunities in chronic airway diseases will be discussed, followed by future 
perspectives of breathomics.

Sampling of exhaled breath

In general, exhaled breath analysis starts with breath sample collection, with 
samples being either stored and/or pre-concentrated before detection (offline) 
or measured directly (online). The method of sampling exhaled breath can 
have profound effects on the obtained results due to several factors, as will 
be described below. Harmonization is therefore necessary and the European 
Respiratory Society (ERS) issued a special task force to provide recommendations 
for standardization of sampling, analyzing and reporting of exhaled breath 
(data) [10]. The information in the following paragraphs is largely based on the 
technical standard created by this task force.
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Collection and storage
Most equipment is not able to perform analysis in real-time (there are some 
exceptions, as will be mentioned later), thus exhaled breath needs to be collected, 
stored and transported before analysis is possible. Collection of exhaled breath 
requires a device that is inert, meaning the device is made from a material that 
does not emit VOCs itself (or only a very minimum amount). Furthermore, as 
cleaning agents might also emit VOCs and pose a risk for carry-over effects, the 
collection device is preferably disposable. Another option is the use of Tedlar 
(polyvinyl fluoride) bags where washings with ultra-pure nitrogen after use have 
shown to deliver acceptable repeatability. Due to the low concentrations of VOCs 
that are present in exhaled breath (parts per billion (ppb) to parts per million 
(ppm) range), pre-concentration is often necessary before analysis. Therefore, 
the exhaled air in the collection device is pumped over sorbent traps or coated 
fibers, causing the VOCs the be adsorbed on sorbent material. Different sorbents 
have different affinities for specific VOCs and will thus have an influence on the 
results. Sorbents with low water-binding affinity are preferred, because water 
vapor can affect the results of certain analytical methods.

Maneuvers and ambient VOCs
Besides the need for the proper equipment to collect exhaled breath, the 
exhalation maneuver and correction for ambient air VOCs are equally important. 
Roughly, exhaled breath can be collected by two different ways. By expiratory 
sampling, which uses total breath, and by alveolar sampling, where the dead 
space is discarded first. By making a distinction between alveolar and total 
breath, it is possible to collect air from different compartments and thus to 
focus on different disease areas. For different compounds in exhaled breath, an 
exhalation flow-dependency has been reported. This implies that alteration in 
flow can affect the patterns that eNose sensors can detect. Correcting for ambient 
air VOCs is necessary to isolate the signals that arise from the VOCs that originate 
from processes in the patient itself. In general there are two ways of doing this. 
First, in- and exhalation filters can be applied to let patients breathe VOC-free air 
during a wash-in period, before measurement. Second, VOCs in ambient air can 
be measured simultaneously to the exhaled breath measurement and hereafter 
ambient VOCs concentrations will be deducted from exhaled breath VOCs.
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Exhaled breath detection methods

Methods for detection of VOCs in exhaled breath already exist for several 
decades, originating from the 1950s. However, since the 1990s several new 
methods have been developed. This section starts with a broad explanation of 
exhaled breath detection methods followed by a more detailed description about 
the techniques that are commonly used for exhaled breath analysis.

Different approaches for VOC detection
Techniques for exhaled breath analysis can be distinguished by three main aspects 
(see Table 1). First, the method of detection, which can be based on individual 
VOC detection and/or patterns of VOC mixtures. Secondly, measurements of 
the exhaled breath can be either real-time or offline, requiring exhaled breath 
sampling and storage. Finally, an important aspect is the ability for a targeted or 
untargeted approach. Untargeted approaches are always hypothesis generating 
and should be followed by targeted approaches to confirm and validate the 
results. Eventually, this could mean it is better to go from a highly sensitive, 
complex and/or possibly expensive technique, towards a cheaper, easier, faster 
and/or bed-side suitable approach.

Other important characteristics are the sensitivity and specificity for VOC 
detection. Sensitivity is the ability to measure small quantities of the volatiles of 
interest and is usually expressed in parts per billion or trillion of volume (ppbv 
or pptv, respectively). Specificity is the ability to relate the measurement signal to 
only the volatiles of interest and not to other compounds. Moreover, aspects such 
as costs, complexity, and the size of the devices are also important, especially 
for clinical applicability. The detection principle and characteristics of several 
detection techniques will be described extensively below and are depicted in 
Figure 1.

Spectrometry: offline method
Before all new technologies were developed, gas chromatography combined with 
mass spectrometry (GC-MS) was the gold standard for exhaled breath analysis, 
existing since 1959. It allows for separation and identification of individual 
chemical compounds for both targeted and untargeted analysis, however 
always in an offline manner. The first part of the device is a gas chromatograph, 
consisting of a column that enables separation of different volatiles due to the 
differences in chemical properties between molecules and their relative affinity 
for the stationary phase of the column. The second part is a mass spectrometer 
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Figure 1. Schematic overview of different approaches for detection of VOCs (depicted by the 
coloured triangles, circle and square) in exhaled breath. The top part represents techniques 
that are based on chemical separation, with or without physical detection, of VOCs. This 
approach starts with a form of separation, based on e.g., GC, PTR, SIFT or ion mobility, 
followed by MS, that measures specific mass-to-charge ratios for each compound. The 
middle part represents eNose technology, which is based on cross-reactive chemical sensors 
followed by pattern recognition. The bottom part represents physical detection of VOCs 
using laser light, which allows for quantification of specific compounds. This could be only 
one compound, as depicted in the figure, but may also be several compounds.
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Table 1. Overview of the different aspects of exhaled breath detection techniques
Detection Measurement Approach

Molecule Pattern Real-time Offline Targeted Untargeted

GC-MS Y ~ N Y Y Y
PTR-MS
SIFT-MS Y ~ Y ~ Y ~

IMS ~ Y Y ~ ~ Y

eNose N Y Y ~ N Y

LAS Y ~ Y ~ Y N
Y stands for yes, meaning the technique is suitable for this purpose. N stands for no, 
indicating that the technique cannot be used for this purpose. The symbol ~ means that it 
is possible, but that the technique is not per se meant and/or often used for this purpose. 
GC-MS, gas chromatography-mass spectrometry; PTR-MS, proton-transfer reaction mass 
spectrometry; SIFT-MS, selected ion flow tube mass spectrometry; IMS, ion mobility 
spectrometry; eNose, electronic nose; LAS, laser absorption spectroscopy.
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that captures, ionizes (commonly by electric ionization), accelerates, deflects and 
detects the ionized molecules by breaking each molecule into ionized fragments 
and detecting these ionized fragments using their mass-to-charge (m/z) ratio.

Major advantages of GC-MS are its high sensitivity (pptv-ppbv) and specificity 
for compound identification and the possibility to detect multiple compounds at 
the same time. An extensive library exists for GC-MS detected volatiles, enabling 
linkage of the VOCs to molecular and biological pathways. It is an excellent 
technique for both exploratory untargeted, as well as targeted analysis in airway 
disease. To increase the separation resolving power and the resolution in mass 
data, the GC-Ms can be extended to a 2-dimensional GC (GC x GC) and a time of 
flight (TOF) mass spectrometry, respectively [11].

The main disadvantages of GC-MS are the necessity of breath collection and 
pre-concentration, combined with the long analysis time (about an hour). This 
makes GC-MS time consuming, and prone to significant losses of compounds 
or contamination of the sample [12]. Especially small highly volatile compounds 
are challenging to store, making the detectable mass to charge range of the GC-
MS method only between 30 and 500 Da. Secondly, quantification of the VOCs 
is difficult and the mass spectra are rather complex. Therefore, GC-MS is, in 
its current state, unsuitable for direct findings during consultation or bed-side 
measurements [13]. Finally, GC-MS is a costly technique with high acquisition 
(about $100–200k) and maintenance costs and requires well-trained personnel, 
making it less feasible for clinical implementation.

Spectrometry: online methods
In order to allow real-time, rapid and sensitive analysis in a clinical setting, 
extensive research has been conducted to develop alternative spectrometry 
methods. The most commonly used in exhaled breath analysis include proton-
transfer reaction mass spectrometry (PTR-MS), selected ion flow-tube mass 
spectrometry (SIFT-MS) and ion mobility spectrometry (IMS). There are different 
pros and cons for all three techniques, as will be described below.

PTR-MS and SIFT-MS
Compared to GC-MS, relatively new techniques are proton-transfer reaction mass 
spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS), 
originating from around 1995 [14], [15]. Both techniques allow detection, as well 
as quantification of VOCs in an online and real-time manner and are mainly 
suitable for a targeted approach. These techniques are based on so-called soft 
chemical ionization; meaning there is little fragmentation of the molecules [16]. 
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For PTR-MS, volatiles in the exhaled breath are ionized using gas phase H3O+ 
ions, which are subsequently separated using a mass spectrometer based on their 
m/z ratio. A disadvantage of this technique, is that only molecules with a proton 
affinity higher than water can be detected. To overcome this limitation, SIFT-MS 
was developed [17]. This technique is based on the same principle as PTR-MS, 
however, the use of three reagent ions (i.e., H3O+, NO+ and O2+) makes it suitable 
for detection of volatiles with lower proton affinities than water [18].

The main advantage of both techniques are the ability to quantify exhaled 
volatiles. Absolute concentrations can be obtained without previous calibration 
measurements. Secondly, these techniques are fast (i.e., milliseconds time 
range) and online, enabling real-time measurements in exhaled breath. They 
eliminate the need for sample preparation [18], [19], pre-concentration and 
chromatography or other forms of separation [17], making them more applicable 
for clinical implementation. Furthermore, both techniques are very sensitive, 
with detection limits ranging from ppbv to pptv [20]. Finally, these methods 
are associated with less fragmentation when compared to GC-MS, making the 
interpretation of the mass spectra easier.

Unfortunately, identification of VOCs by these techniques is not always possible 
[12], since characterization is merely based on m/z ratios and, unlike GC-MS, no 
extensive compounds library exists [16]. Just like GC-MS, these techniques are 
associated with high costs, require trained personnel and are mainly suitable for 
a laboratory setting.

Ion mobility spectrometry
A different technique is ion mobility spectrometry (IMS), first developed in the 
1950s and 1960s [21]. It allows for real-time measurements and is suitable for 
untargeted analysis using pattern recognition. It is a separation method based 
on differences in gas-phase ion mobilities [22], [23]. The ionized analytes migrate 
through an electric field at characteristic velocities according to their mass, 
charge, size, shape and interaction with collision gas [22].

The main advantage of IMS is that it is a simple and inexpensive technique 
working at ambient pressures and temperatures [23], [24]. In the last decade, 
the devices have become smaller and in some cases even portable. Furthermore, 
IMS enables fast (i.e., milliseconds time range) and sensitive (ppbv) detection of 
VOCs in exhaled breath [24].
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However, IMS alone will likely not be sufficient for the identification of each 
volatile. Volatiles in exhaled breath frequently have similar or even the same 
mobility and can therefore not be distinguished. To overcome this problem, IMS 
can be linked to a MS to further separate the volatiles based on mass and charge 
[21]. However, this also means that the technique would become more complex and 
expensive, nullifying some of the advantages of IMS regarding clinical applicability.

eNose technology
Even though direct and online (mass) spectrometry methods have been developed, 
there is still a need for smaller devices that are affordable, accurate, user-friendly, 
fast and preferably real-time. A method that might fulfill these criteria is electronic 
nose (eNose) technology. In this section, the general principle of eNose technology 
is explained followed by a summary of the different eNose devices that have been 
used most in exhaled breath research.

The methodology of eNose technology is very different from MS methods, since 
it is an approach based on chemical sensors. The method of eNose technology 
resembles the human olfactory system; a system not based on highly specific 
receptors, but on a combination of broad sensitive receptors with the brain serving 
as a reference database. Electronic noses consist of cross-reactive sensor arrays in 
which the sensor properties change due to VOC exposure [25], [26]. The cross-
reactive nature of the sensors allows for multiple volatiles to interact with the same 
sensor and vice versa, depending on the affinity of the VOC for the sensor and its 
substrate [27]. This results in a pattern of sensor signals, a so-called “breathprint”, 
that can be analyzed using pattern recognition algorithms.

The main advantages of eNose technology is that it is a fast, simple, cheap and 
easy technique. It is useful for real-time point-of-care probabilistic diagnostic and 
monitoring purposes [28]. For this purpose, identification of individual molecular 
compounds is not always necessary.

However, the inability to detect and identify individual compounds remains the 
major limitation of eNose technology [29]. Therefore, it can be useful to combine 
GC-MS and eNose technology in research. With GC-MS the specific compounds 
can be detected and compared with the eNose sensors, to eventually allow for 
implementation of more specific eNose sensors [30]. Next to the lack of specificity, 
generally, eNose sensors tend to have limited sensitivity; mainly ppmv, however 
sometimes also ppbv. In addition, most sensors are unstable and are prone 
to baseline drift, depending on the sensing material. This causes issues with 
repeatability [31] and inter-device reproducibility [16].
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eNose sensors and devices
Different types of sensors have been applied in different eNoses. Table 2 indicates 
different eNoses devices that have been/are being used in clinical studies and 
used different eNose sensor arrays.

Conducting polymer composite sensors change in electrical resistance after 
exposure to gases due to VOC induced expansion of the polymer composite [32]. 
The sensitivity to detect VOCs depends on the vapor pressure of the specific 
compounds. Low vapor pressure compounds have a higher tendency to stay 
in the composite polymer, thus causing easier expansion and are therefore able 
to be detected in the low ppb range. High vapor pressure compounds need 
concentrations in the high ppm range. An example eNose that uses these sensors 
is the Cyranose® 320 (Sensigent, CA, USA), applying an array that consists 
of 32 sensors. This eNose is already being used for quality control in diverse 
(petrochemical/food) industries and in medical research.

Table 2. An overview of different eNose types that have been used in clinical research.

Name eNose Sensor type Disease areas

Cyranose 320 32 conducting polymer composite sensors Asthma, COPD
Tor Vergata enose 
prototype

Quartz crystal microbalance gas sensors Asthma, COPD

Aeonose Arrays of 3 metaloxide sensors Asthma, and CF 
(children), COPD

SpiroNose Arrays of 7 metaloxide sensors Asthma, COPD, CF
Owlstone Lonestar Field asymmetric ion mobility spectrometry Asthma

COPD, Chronic Obstructive Pulmonary Disease; CF, Cystic Fibrosis.

Another type of sensors are quartz crystal microbalance gas sensors that are 
coated by molecular films of metalloporphyrins. This technique is based on 
the proportionality of the frequency of the quartz crystals to adsorbed mass 
and therefore the change of resonant frequency caused by the absorption of 
molecules by the films. These sensors have a fast response time, but poor signal 
to noise ratio [32]. An eNose (proto)type using these sensors was developed by 
Tor Vergata University (Rome, Italy).

Metal oxide sensors have been used in multiple eNoses. These sensors obtain 
semiconducting characteristics under high temperatures and are able to interact 
with reducing/oxidizing VOCs in a gas. This affects the resistance of the 
oxide, and therefore affects the conductance. Metal oxide sensors are used by 
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the Aeonose® (eNose company, Zutphen, the Netherlands) and SpiroNose® 
(Breathomix B.V., Reeuwijk, the Netherlands). The Aeonose uses three different 
sensors in its array and heating cycles to generate signals that are captured and 
pre-processed according to an algorithm named Tucker3. The SpiroNose uses 
arrays of seven different metal oxide sensors and is integrated with advanced 
cloud-based software that automatically corrects for ambient room VOCs. 
Furthermore the SpiroNose is able to provide immediate feedback, signifying an 
important step forward in the applicability of eNose technology in the point-of-
care.

Laser absorption spectroscopy
Although pattern recognition by eNose technology could be sufficient for some 
purposes, it may be necessary to not only specifically but also quantitatively 
measure certain compounds. For this purpose, laser absorption spectroscopy 
(LAS) is very suitable. It is the foremost used technique to assess gas phase atoms 
and molecules quantitatively (i.e., concentration or amount), and is mainly used 
for detection of only one or a few compounds in a real-time and targeted manner. 
The method is based on the absorption of light by VOCs in the breath sample. 
Each molecule has its own unique absorption fingerprint, since they absorb very 
specific wavelengths. The amount of absorbed light is related to the concentration 
of the target VOC in the sample [16].

Important properties of LAS is its high sensitivity (ppbv-ppmv), specificity and 
selectivity in complex gas mixtures [33]–[35]. Furthermore, the ability to provide 
absolute quantification of a VOC in exhaled breath down to below parts-per-
billion by volume levels is a major advantage [36]. The LAS-based methods 
are suitable for real-time measurements and can be made into compact sensors 
requiring low maintenance, as desired for medical implementation.

Unfortunately, LAS is only suitable for detection of small molecules and cannot 
characterize a large number of molecules at the same time [37]. Furthermore, any 
noise in the optical system can affect deteriorate the sensitivity of the technique.

Summary of detection methods
Overall, GC-MS could be seen as the foremost technique for identification of 
multiple VOCs in an exhaled breath sample. For quantification of multiple VOCs 
with a broad size range, the previously mentioned online MS techniques would 
be more optimal, whereas for quantification of one specific and small volatile, 
LAS techniques could be preferred. Currently, eNose technology seems to be the 
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most suitable for online and bed-side monitoring since the devices tend to be 
small, portable and inexpensive. However, this might change in the future, since 
new compact and real-time detection techniques are being developed.

Clinical implications

Various groups have been working on exhaled breath analysis in a clinical setting, 
mainly in differentiating between patients with an established diagnosis and 
healthy controls or differentiating between various diseases. Early studies have 
aimed to prove that these groups are being reflected by distinct VOC patterns. 
Later research has shifted to the applicability of breathomics in phenotyping and 
the identification of sub phenotypes that are susceptible to certain treatment. 
Other applications are thought to be in phenotyping and eventually the ability to 
predict exacerbations. Throughout the following chapters the terms phenotype 
and endotype will be used. With phenotype we mean a (sub)group that shares 
common characteristics (of disease), while endotype indicates the biological 
pathway, and corresponding cells and molecules, that result in a phenotype.

Asthma
Diagnosis of Asthma
One of the first studies that aimed to discriminate patients with an established 
asthma diagnosis from healthy controls based on exhaled VOCs has been 
performed by Dragonieri et al. in 2007 [38]. They used the Cyranose 320 to show 
that different exhaled VOC mixtures (”smellprints” as they were called in this 
study or “breathprints” as we tend to call them now) exist between both mild 
and severe asthmatics and controls. However, a difference between mild and 
severe asthma could not be found. Later studies with various eNoses confirmed 
the differences in breathprints between patients with different severities of 
asthma and healthy controls [39], [40]. A study with 27 asthmatics and 24 
(healthy) controls, that used a prototype eNose from Tor Vergata university, 
was able to correctly classify patients with asthma compared with controls in 
87.5% of the cases when alveolar air was sampled and in 72.5% of cases when 
total air was sampled [39] In this study, the eNose was able to outperform the 
more traditional fraction of exhaled Nitric Oxide (FeNO) measurements and 
spirometry, even when those were used in combination with each other. A more 
recent study found that another eNose, the Aeonose, was able to discriminate 
between children with asthma and controls with an AUROC of 0.87 [40].
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Phenotyping in Asthma
It has become clear that the current taxonomy in respiratory disease is an 
oversimplification of reality. To properly treat patients, it is important to 
classify patients according to their phenotype of disease and exhaled breath is a 
promising, quick and non-invasive biomarker to achieve this. Volatiles identified 
by GC-MS, in combination with clinical features and asthma therapy, have 
already identified different distinct endotype clusters [41]. Later research used 
breathomics to identify different clusters in patients with chronic respiratory 
diseases, without using the labels asthma or COPD. The clusters that were found 
differed in inflammatory pattern and clinical characteristics, but interestingly all 
clusters included both asthma and COPD patients [42] It has also been shown 
that significant differences exist between cluster-stable and cluster-migrating 
patients [43]. The study by De Vries et al. made use of the SpiroNose, Brinkman et 
al. used a platform of different eNoses (using metal oxide-, quartz-microbalance- 
and organic polymer sensors and field asymmetric ion mobility spectrometry) to 
identify 3 eNose driven clusters with differences in circulating blood eosinophil 
and neutrophil percentages and differences in ratios of patients that were using 
systemic corticosteroids. Eosinophils in sputum were found to be associated 
with the difference in cluster-stable and -migrating patients. Taken together, 
these results show a large potential of breathomics in asthma phenotyping and 
in the identification of distinct inflammatory processes. The Cyranose could also 
discriminate between different inflammatory phenotypes in asthma [44] and 
another recent, large study showed that VOCs identified by GC-MS in exhaled 
breath are able to discriminate between two important inflammatory phenotypes 
in asthma; eosinophilic asthma and neutrophilic asthma [45]. In the latter study, 
GC-MS samples were obtained from 276 asthma patients and several compounds 
were identified able to discriminate between the phenotypes. A later validation 
set of 245 asthma patients confirmed 4 of these VOCs. When these VOCs are 
combined with FeNO and blood eosinophils a very high accuracy was achieved 
to predict eosinophilic asthma (AUROC = 0.9). In conclusion, breathomics 
research has provided very promising evidence for (sub)phenotyping of asthma 
patients, what might be of importance for its application in monitoring of asthma 
and in predicting treatment response. Fields with an unmet need for quick, and 
non-invasive biomarkers.

Monitoring and personalizing treatment of Asthma
The use of systemic corticosteroids (i.e., prednisone) causes a huge burden on 
patients and not all patients benefit from its use. Therefore, as a step towards the 
ability to personalize asthma treatment, the ability to predict systemic steroid 
responsiveness has been studied in 25 asthma patients using a Cyranose. The 
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results of this study showed that exhaled breath was able to predict treatment 
response in patients with established asthma and was able to identify patients 
that experience loss of control after they stop the use of systemic corticosteroids 
[46]. More recent research further confirms that exhaled breath could be a very 
valuable tool in the monitoring of loss of control in asthma [47]. Both GC-MS 
and the eNose platform (see “Phenotyping in asthma” section) proved able 
to correctly classify baseline measurements versus loss of control and loss of 
control versus patients that recovered. The eNose platform, in this instance most 
significantly driven by the ion mobility spectrometer (IMS), showed a higher 
accuracy than GC-MS. These two studies provide evidence that breathomics is 
able to retrospectively discriminate between responders/non-responders and 
that longitudinal monitoring of exhaled breath can be applicable to detect clinical 
instability in asthma patients.

Exacerbations are periodical flare-ups of disease, commonly characterized by an 
acute worsening of symptoms, requiring an increase in treatment or start with 
systemic immunosuppressants or antibiotics. Exacerbations can be triggered by a 
variety of stimuli (e.g., virus infections, exposure to noxious gasses, stress, etc.), 
therefore a quick and proper characterization of its origin can be very helpful to 
start adequate treatment on time. A combination of six or seven VOCs measured 
by GC/MS has already proven able to predict an asthma exacerbation in children 
with high specificity and sensitivity [48]. The same study showed that specific 
VOCs are able to monitor the course of an exacerbation.

COPD
Diagnosis and phenotyping of COPD
The ability to discriminate between healthy controls and patients was not only 
found in asthma, but also in COPD patients. GC-MS has been used to detect 1179 
different VOCS between 50 COPD patients and 29 controls [49]. Further analysis 
revealed that 13 VOCs were needed to classify all 79 subjects in the study 
correctly. Six out of these 13 VOCs were still able to correctly classify 92% of the 
patients and later 29 out of 32 subjects in the independent validation population. 
Interestingly, 14 out of 15 steroid naive COPD patients were correctly classified, 
what seemed to exclude treatment influence. A study with 30 patients assessed 
the ability of the Cyranose to discriminate between patients with COPD and 
patients with lung cancer by examining the difference in VOC patterns [50]. This 
study showed a distinct difference and discriminant analysis provided a cross-
validation value of 90% correctly classified.
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Exhaled breath not only proved able to distinguish between respiratory patients 
and healthy controls, but is more importantly also able to discriminate between 
different respiratory diseases. The Cyranose was tested in 90 patients and proved 
able to discriminate between asthma and COPD with a very high accuracy (cross-
validated accuracy = 96% correctly classified) [51]. However, this very high 
accuracy to discriminate between asthma and COPD was not confirmed in the 
BreathCloud cohort that de Vries et al. used for their study. This is not surprising 
however, as the labels “asthma” and “COPD” are difficult to apply to patients 
and overlap between these diagnoses exist inspiring key respiratory researchers 
to believe that there should be less emphasize on the old labels. Instead they 
make a call for the identification of “treatable traits” in patients [52], [53].

Monitoring and treatment of COPD
In both mild and moderate COPD, exhaled breathprints (both eNose and GC-
MS) have shown to be associated with differential cell counts and with soluble 
sputum markers of activated neutrophils and eosinophils [54]. This may be 
an indication that exhaled breathprints can be used in monitoring airway 
inflammation in COPD. A study that included both the Cyranose and the Tor 
Vergata eNose, showed a difference in breathprints after treatment with different 
combinations of bronchodilators and inhaled corticosteroids (ICS), but the 
eNoses were not able to discriminate breathprints after bronchodilator alone and 
combination of bronchodilator and ICS [55]. Exacerbations in COPD have a large 
impact on the (irreversible) deterioration of lung function in patients, therefore 
they have been the subject of multiple studies that applied exhaled breath 
analysis. The SpiroNose has shown the ability to discriminate between patients 
that did/did not experience an exacerbation ≤ 3 months prior to measurement 
[56]. Other studies showed differences in exhaled breathprints between stable 
COPD patients and frequent exacerbating COPD patients [57] and a moderate 
discriminatory ability between viral and bacterial infections in stable COPD 
patients [58]. These studies show the potential for breathomics in monitoring of 
COPD patients and might even suggest a role in guiding treatment.

Cystic fibrosis
Monitoring of CF
Exhaled breath analysis in CF patients is less relevant for diagnostic purposes, 
since current diagnostic tools are sufficient; new-borns are accurately screened 
for CF using neonatal heel pricks followed by genealogical DNA tests and sweat 
chloride testing [59], [60]. However, with the recent developments in treatments 
for CF patients, there is a growing demand for non-invasive methods to monitor 
disease development, activity and progression.
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As a first attempt, several studies have tried to distinguish CF from both healthy 
controls as other chronic airway diseases, such as asthma, using exhaled breath 
analysis. The distinction between CF patients and healthy controls, based on 
both MS and eNose technology, showed moderate to excellent accuracy (AUROC 
0.77–0.96) [40], [61]–[64]. However, in every study a different technique was 
used and, in all the MS based studies, different VOCs for this discrimination 
were found, making validation studies of high importance. When compared to 
asthmatics, CF patients had different exhaled breath profiles based on broadband 
quantum cascade laser-based spectroscopy [65], as well as eNose technology 
(AUROC of 0.90) [40]. In the study of Paff et al. eNose technology (i.e., Cyranose) 
was able to distinguish CF from primary ciliary dyskinesia (PCD) patients 
with a good sensitivity (89%), but with a low specificity (56%) [64]. Taking all 
these studies together, it seems that not only inflammatory processes occurring 
in chronic airway diseases can be detected in the exhaled breath, but also the 
specific respiratory disease.

A highly relevant purpose of exhaled breath analysis in CF could be the 
monitoring of disease instability, preferably before clinical symptoms or 
exacerbations occur. Therefore, several studies have tried to detect exacerbations 
in CF patients using exhaled breath. In 2006, Barker et al. showed that pentane 
levels measured by GC-MS were elevated in CF patients with exacerbation 
compared to stable patients [61]. In the study by Paff et al. differences existed 
between patients with and without exacerbations for both CF patients (sensitivity 
89%, specificity 56%) as PCD patients (sensitivity 100%, specificity 90%) using 
eNose technology (Cyranose 320) [64]. For future research, it is highly relevant 
to investigate the potential of exhaled breath analysis for exacerbation detection 
and prediction in a longitudinal manner.

Detection of respiratory infections
Patients with chronic airway diseases can be burdened with respiratory 
infections. Due to their disease, they may have more complaints which may 
persist for a longer period when compared to healthy people. Currently, airway 
infections are detected by sputum culture. Sputum is a thick fluid produced by 
the lower airways during infections, not to be confused with saliva. Culturing 
of this sputum allows for bacteria and fungi to grow and become visually 
detectable under the microscope. Unfortunately, the culturing commonly takes 
a day or several days and lacks both sensitivity and specificity. Moreover, 
expectorating sputum is unpleasant and not always possible for patients to do. 
Therefore, different methods for detection of respiratory infections are studied, 
among which exhaled breath analysis. It is known that bacteria themselves can 
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produce volatiles, making exhaled breath analysis an interesting non-invasive 
and possibly real-time tool for detection of respiratory infections. Moreover, 
VOCs in exhaled breath may potentially be a more accurate detection method 
than sputum culture, since sputum often come from only one part of the lungs 
while exhaled breath may represent the whole lung.

Infections in CF
Cystic fibrosis is one of the foremost chronic airway diseases suffering from 
respiratory infections. Patients with CF have thickened mucus production, 
which makes it hard for them to clear respiratory infections. Often, CF patients 
eventually get infected chronically, which has a big impact on their lung function 
both short-term and long-term. More than other chronic airway disease patients, 
it is hard for CF patients to expectorate sputum, especially in the early stage 
of the disease. This makes the detection of respiratory infections in sputum 
challenging leading to possible treatment delay, which is known to increase 
the chance of chronic infections in CF patients. Exhaled breath analysis as an 
alternative method for infection detection is therefore of special interest for these 
patients.

Volatiles coming from Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus 
aureus (S. aureus) have been studied the most in CF, since these bacteria have 
the highest prevalence. The review of Bos et al. [66] gives a clear overview of 
volatiles associated with six pathogens, among which P. aeruginosa and S. aureus, 
found in at least two studies that either used clinical samples or reference strains. 
Compounds that were specifically found for P. aeruginosa were: 1-undecene, 
2,4-dimethyl-1-heptane, 2-butanone, 4-methyl-quinazoline, hydrogen cyanide 
(HCN), and methyl thiocyanide. The volatile biomarkers for identification of S. 
aureus were isovaleric acid and 2-methyl-butanal.

For detection of P. aeruginosa multiple techniques have been used already, 
among which GC-TOFMS showed good accuracy (AUROC of 0.86) [67], as well 
as eNose technology (i.e., SpiroNose) with a cross-validation value of 82.4% 
and an AUROC of 0.93 [68]. In another study of Enderby et al. [69], SIFT-MS 
was used to detect P. aeruginosa infections in exhaled breath. They specifically 
measured hydrogen cyanide (HCN) concentrations, which were higher in CF 
patients infected with P. aeruginosa (13.5 ppb) than in asthmatics (2.0 ppb) who 
were free of any infection. Later, Gilchrist et al. [70] investigated whether HCN 
concentrations, also measured with SIFT-MS, could serve as a screening test for P. 
aeruginosa infections in CF. Compared to most exhaled breath studies in CF, they 
included a large CF population (n = 233) and had a long follow-up period (i.e., 
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two years). At the start of the study all CF children were free from P. aeruginosa 
and at the end 71 of them got infected. They showed that with every 1 ppb 
increase in exhaled HCN, the odds of P. aeruginosa infection increased by 212%. 
Although this resulted in a high specificity (99%), sensitivity was lacking (33%) 
and therefore seems to be unsuitable for screening of P. aeruginosa infections in 
CF.

Among other infections investigated in CF, detection of S.aureus showed to have 
an excellent sensitivity (100%) and high specificity (80%) using GC-MS [71], and 
a high accuracy (AUROC 0.88) using GC-TOFMS [67]. Furthermore, Aspergillus 
fumigatus also seems to alter the exhaled breath profile in CF patient with an 
AUROC of 0.89 using eNose technology (i.e., Cyranose 230) [72].

Overall, exhaled breath analysis could potentially be an easy and accurate 
method for detection of respiratory infections. However, so far, most studies 
examining VOCs from pathogens in CF patients have mainly been rather 
small and cross-sectional. Moreover, validation of results is often lacking. It is 
necessary to increase the number of patients in the studies and to externally 
validate the results in independent research groups to make conclusions about 
the accuracy and applicability of exhaled breath analysis for infection detection 
in clinical practice [73].

Future perspectives
Overall, exhaled breath analysis has many advantages: it is non-invasive, allows 
point-of-care testing and can be easy to perform for both patients as care-givers. 
It offers opportunities for detection of highly specific and individual biomarkers 
as well as overall metabolic profiles. However, challenges exist as well. Several 
technical aspects regarding breath sampling and detection should be overcome to 
increase the suitability for bed-side or even home monitoring. Regarding future 
research, it is important to conduct more longitudinal studies and to externally 
validate results, before clinical implementation can be achieved. For now, it is 
believed that exhaled breath analysis may be a promising tool in a personalized 
approach for diagnosing, monitoring and treatment in chronic airway diseases.
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Abstract

Background: Recent studies reported elevated concentrations of ultrafine 
particles (UFP) near airports. Little is known about the health effects of UFP from 
aviation. Since UFP can deposit deep into the lungs and other organs, they may 
cause significant adverse health effects. 

Objective: We investigated health effects of controlled short-term human 
exposure to UFP near a major airport.

Methods: In this study, 21 healthy non-smoking volunteers (age range: 18–35 
years) were repeatedly (2–5 visits) exposed for 5 h to ambient air near Schiphol 
Airport, while performing intermittent moderate exercise (i.e. cycling). Pre- 
to post-exposure changes in cardiopulmonary outcomes (spirometry, forced 
exhaled nitric oxide, electrocardiography and blood pressure) were assessed and 
related to total- and size-specific particle number concentrations (PNC), using 
linear mixed effect models. 

Results: The PNC was on average 53,500 particles/cm3 (range 10,500–173,200). 
A 5–95th percentile increase in exposure to UFP (i.e. 125,400 particles/cm3) 
was associated with a decrease in FVC of -73.8 mL (95% CI -138.8 – -0.4) and a 
prolongation of the corrected QT (QTc) interval by 9.9 ms (95% CI 2.0 – 19.1). 
These effects were associated with particles < 20 nm (mainly UFP from aviation), 
but not with particles > 50 nm (mainly UFP from road traffic). 

Discussion: Short-term exposures to aviation-related UFP near a major airport, 
was associated with decreased lung function (mainly FVC) and a prolonged QTc 
interval in healthy volunteers. The effects were relatively small, however, they 
appeared after single exposures of 5 h in young healthy adults. As this study 
cannot make any inferences about long-term health impacts, appropriate studies 
investigating potential health effects of long-term exposure to airport-related 
UFP, are urgently needed.
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Introduction

It has been established that both short- and long-term exposure to air 
pollution, especially particulate matter (PM), is associated with adverse health 
effects, prompting air quality regulations. Adverse effects could range from 
respiratory (e.g. asthma exacerbations and bronchitis) to cardiovascular (e.g. 
cardiac arrhythmias and heart attacks), which have been associated with more 
hospitalizations [1]–[7]. In addition, long-term exposure to PM, especially fine 
particles (i.e. < 2.5 µm), increases the risk of cardiopulmonary mortality by 6–11% 
per 10 µg/m3 [8]–[10].

To date, most studies have focussed on coarse (2.5–10 µm, PM10) and fine (< 2.5 
µm, PM2.5) particles, however, concerns about ultrafine particles (< 0.1 µm, UFP) 
are rising. Compared to larger particles, UFP are potentially more toxic due to 
their high surface area-to-mass ratio, capability to deposit deep in the lungs, and 
potential to translocate to other organs [11]–[13] by entering the blood stream 
[14], [15]. Several in vitro and animal studies have shown that UFP can induce 
inflammation and oxidative stress [16]–[19], raising concerns for possible adverse 
health effects in humans.

Recently, the U.S. EPA Integrated Science Assessment (ISA) for Particulate Matter 
(PM) stated that evidence on short-term UFP exposure and both cardiovascular 
and respiratory effects is suggestive of, but not sufficient to infer, a causal 
relationship [5]. Moreover, little is known about aviation-related UFP exposure, 
as most studies focus on road-traffic-related UFP [7]. UFP levels have been 
shown to be elevated around large airports [20]–[22], reaching similar levels as 
urbanised areas [23], with different sources influencing UFP composition and 
size. Aviation-related UFP tend to be smaller (mainly 10–20 nm [21], [24], [25]) 
than those from road traffic (mainly > 50 nm [26]–[28]), although an overlap in 
size range exists, especially in the 20–30 nm range [29]. Altogether, this has raised 
public health concerns for people living near large airports and questions about 
possible differences in toxicity between UFP sources.

Therefore, we hypothesized that exposure to UFP from aviation acutely affects 
cardiopulmonary function. Our objective was to assess whether short-term 
exposure to UFP in healthy individuals next to a major airport, i.e. Schiphol 
Airport (Amsterdam, the Netherlands), is associated with acute respiratory 
and cardiovascular effects. Our second objective was to determine the relative 
contributions of total and size-specific UFP (as indicators for source-specific 
UFP) to the associations with the health outcomes. 
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Methods

Study design
This was a prospective, interventional study in which young healthy volunteers 
were exposed to ambient air near Schiphol Airport (Amsterdam, the Netherlands) 
and two highways, between April and October 2018. Participants received 5 h 
exposures (10:00–15:00 h) on at least two and up to five separate visits; while 
four visits per participant were planned, the number of visits varied as a result 
of the availabilities of participants and the unpredictability of meteorological 
conditions (more details in section “number of visits”). The visits were scheduled 
at least 2 weeks apart to avoid potential carry-over effects. During the exposure, 
participants performed intermittent cycling on an ergometer for 20 min per 
hour at low intensity (50–60% of maximal heart rate) based on their age and sex; 
maximal heart rate was calculated by 220 – age (yrs) for males, and 224 – age 
(yrs) for females. In between cycling, participants were seated and performed 
a resting activity of their own choice (e.g. reading a book, watching a movie). 
Noise-cancelling headphones were handed out to the participants to reduce 
noise, however, it was not mandatory to wear them. Extensive air monitoring 
was conducted during the 5 h exposures. Health outcomes were assessed before 
(07:30–09:30 h) and after (15:30–17:30 h) every exposure, at the Amsterdam UMC 
(location AMC, Amsterdam, the Netherlands), located 15 km from the exposure 
site (Figure S1). Participants were transported between locations by a petrol-
fuelled hybrid car equipped with a high-efficiency particulate air (HEPA) filter, 
which took on average 15 minutes. 

Restrictions for participants
Participants were asked to refrain from drinking alcohol and caffeine-containing 
drinks both before (24 and 12 h, respectively) and during all visits. To minimize 
the influence of nitrate rich food on the fractional exhaled nitric oxide (FeNO) 
measurement (one of the health outcomes) during study visits, volunteers were 
not allowed to eat at home in the morning and food and drinks on the exposure 
day were arranged, however, not standardized. This meant that participants 
had differences in their breakfast and lunch options, in order to comply with 
their dietary wishes (e.g. vegetarian), and that participants could choose the 
time of eating and drinking themselves, except for breakfast. During the whole 
study period subjects had to refrain from tobacco and drugs. Tobacco use and 
pregnancy was tested in urine once (at random) during the study and was never 
positive; urine was collected before and the morning after every exposure as part 
of the study, however, those results will be described separately. 
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Ethical approval
The study protocol was reviewed and approved by the Medical Ethical 
Committee (METC) of the Amsterdam Medical Centre (Amsterdam, the 
Netherlands) and was registered at the Dutch Trial Register (identifier NTR 6955, 
www.trialregister.nl). 

Study population
Participants were included in the study if they were aged 18–35 years, non-
smokers for at least 1 year (< 5 pack years) with normal lung function (predicted 
forced exhaled volume in 1 s (FEV1) > 80%). Participants were excluded if they 
had: any (history of chronic) pulmonary or cardiovascular disease, hay fever, or 
lived in the vicinity of Schiphol Airport (< 2 km), a highway (< 300 m) or on a 
busy road (> 10,000 vehicles/day). A list of all in- and exclusion criteria can be 
found in the supplementary material (Table S1).

Schiphol Airport
A B

Schiphol Airport
A B

Figure 1. Exposures were conducted in an exposure laboratory right next to Schiphol Airport 
(A). It consisted of two chambers: one chamber in which subjects were exposed and one for 
the exposure monitoring equipment (B).
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Participants were recruited by online advertisement (i.e. Facebook) and by 
putting up flyers in schools, universities and student houses in Amsterdam. When 
interested, volunteers were invited to a screening visit where their health was 
assessed based on medical history as well as lung (fractional exhaled nitric oxide 
(FeNO), and spirometry) and heart function measurements (electrocardiography 
(ECG), blood pressure (BP), heart rate, and oxygen saturation). The ECG was 
checked by a cardiologist for abnormalities. No strict criteria existed for FeNO, 
blood pressure and the resting heart rate, but all had to be within or close to 
normal ranges (see supplementary material Table S1). Participants received 
a travel allowance and a reimbursement of €75,- per study visit. To reward 
completion of the study, participants received €100,- for the fourth visit instead 
of €75,-. 

Exposure
On each exposure day, two to four participants were exposed simultaneously in a 
mobile exposure laboratory (Figure 1). This laboratory was positioned northwest 
of the airport (~300 m away from two runways), near two highways (~500 m 
away from the A4 and A9) and close to Amsterdam (~10 km) (Figure 2). The 
mobile exposure laboratory consisted of two chambers, an exposure chamber 
and a technical chamber with all exposure monitoring equipment and two 
technicians. In the exposure chamber of 14 m3, an airflow system with multiple 
openings at the top (inlet) and the bottom (outlet) was present to ensure air 
exchange was constant and ambient air flows of approximately ~400 m3/h were 
uniform. The walls and door of the exposure chamber were made airtight to 
prevent air leakage. In this way, a homogenous distribution of incoming air was 
secured throughout the chamber. The exposure varied between visits due to the 
meteorological conditions (mainly wind direction) and runway use. We aimed 
for differences in UFP levels, source contributions (e.g. aviation and road traffic), 
and compositions between exposure days within each subject, by considering the 
weather forecast when scheduling their visits. 

Exposure monitoring
Air inside the exposure chamber of the laboratory was sampled continuously 
(in between the two exercise bikes, in the breathing zone) for several exposure 
outcomes. Next, 5 h averages were calculated for every exposure day. We did 
not study variation within the 5 h window. The measured exposure variables 
were: particle number concentrations (PNC); particle mass concentrations (PM); 
nitrogen oxides (NOx, NO2); carbon monoxide (CO); sulphur dioxide (SO2); 
ozone (O3); and black carbon (BC). The PM during the 5 h exposure period were 
determined by gravimetric analyses using Teflon filters. Albeit there is no size 
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selective inlet applied, the curvature of the inlet tubing withheld the influx of 
relatively larger particles and therefore PM can be considered as approximately 
PM2.5. Furthermore, particle size distributions between 6 and 225 nm were 
measured using a scanning mobility particle sizer (SMPS); semi continuous 
(looping) measurements were taken with a frequency of 30 recordings per hour 
as default. Wind speed and direction were monitored (outside) as well as the 
temperature and relative humidity (in- and outside). All exposure monitoring 
equipment is listed in Table 1.

Figure 2. The exposure laboratory was located (X) near Schiphol’s runways (grey lines) and 
a large highway intersection (pink lines). Amsterdam was to the north-east of the exposure 
site. The building of Schiphol is marked in blue. The map is positioned towards the north. 
Adapted image from Wikipedia (CC BY-SA 3.0).

x

Kilometers

0 1 2
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Table 1. Overview of exposure monitoring equipment.

Pollutant Device City/Country
PNC Condensation particle counter (CPC) water-

based Model 3752, TSI with a d50 of 4 nm as 
lower size limit

Shoreview, MN, USA

NOx, NO2 Chemiluminescence Nitrogen Oxides 
Analyzer, model 200E, Advanced Pollution 
Instrumentation (T-API)

San Diego, CA. USA

CO Gas filter correlation analyzer, model 300E/
EM, T-API

San Diego, CA, USA

SO2 Pulsed fluorescence analyzer, model 43A, 
Thermo Enivornmental Instruments (TEI)

Franklin, MA, USA

O3 UV photometric analyzer, model 49, TEI Franklin, MA, USA
BC Optically absorbing suspended particulates 

in a gas colloid stream using a aethalometer: 
microAeth® Model AE51, ETS

San Francisco, CA, USA

Size distribution Scanning mobility particle sizer (SMPS) 
TSI Model 3936, using a Model 3080 
Electrostatic Classifier with a “Long-DMA” 
model 3081 and a Nano water-based 
TSI Model 3788 CPC. Particle size range 
between 6 (d50) and 225 nm.

Shoreview, MN, USA

PM Tapered Element Oscillating Microbalance 
(TEOM) Series 1400a Ambient Particulate 
Monitor, Rupprecht & Patashnick,
Teflo 2.0 μm 47 mm (R2PJ047), PALL Life 
Sciences, USA

Albany, NY USA

Temperature inside digital temperature/relative humidity 
probe: Vaisala HMP115Y

Vaisala, Finland
Humidity inside
Temperature 
outside

Davis Advantage Pro 2 weather station Hayward, CA

Humidity/ outside
wind speed
wind direction

Missing exposure data
Due to instrument failure, some of the exposure data was estimated. Temperature 
and relative humidity in the exposure chamber from the first five exposure 
days were missing and therefore calculated based on the correlation with 
outdoor temperature and humidity using a Mollier calculation and diagrams. 
The recorded NO2 data were consistently too low when compared to a nearby 
National Air Quality Network monitoring station (Badhoevedorp). This was 
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a consequence of a wrong conversion from the voltage that was recorded. The 
actual concentrations were calculated by adjusting the recorded data with a fixed 
equation that was derived from a side by side comparison between the applied 
monitor and the daily calibrated NOx monitor of the National Air Quality 
Network. On the 12th of June, data of the exposures were not automatically 
stored and therefore CO, SO2 and O3 levels were estimated based on the manual 
reading and logging of the monitors by the technicians instead of the continuous 
data that were logged by a computer. The NOx/NO2 values for that day were 
estimated based on the consistent correlation between BC and NO2 and the 
nearby NOx/NO2 monitor of the National Air Quality Network (Badhoevedorp).

Exposure during transport
To minimize exposure to motorway emissions during transport between the 
exposure and health assessment location (~15 km), participants were transported 
by a petrol-fuelled hybrid car (Toyoya Auris and CHR) with closed windows and 
equipped with a high-efficiency particulate air (HEPA) filter. To test whether the 
air filter was effective, the particle number concentrations (PNC) was measured 
using a Philips Nanotracer (in fast mode) in the car with both the windows 
closed and open while driving on the motorway. A clear difference in PNC levels 
between both situations occurred; 1,500–25,000 and 80,000–130,000 particles/cm3 
for windows closed and open, respectively.

Number of exposure visits
In the first period of study, we had exceptional weather, in which the wind 
direction was hardly ever coming from the airport to the exposure site, resulting 
in low UFP exposures. Therefore, some of the visits were postponed to days with 
wind directions coming from the airport. Furthermore, participants included at 
the beginning of the study who received several low UFP exposures, were asked 
to perform a fifth visit to increase the individual contrast in exposure levels over 
all study visit. 

Health outcomes 
Respiratory outcomes: FeNO in ppb was measured using NIOX VERO® 
(Circassia Pharmaceuticals Inc, USA) according to the manufactures instructions. 
Lung function was assessed by a spirometer (Jaeger MasterscreenTM software, 
Erich Jaeger GmbH, Germany) in accordance with current ERS/ATS guidelines 
[30]. Retrieved outcomes were: forced vital capacity (FVC), forced expiratory 
volume in 1 s (FEV1), and peak expiratory flow rate (PEF). Calibration of the 
spirometer was conducted before each subject, according to the ‘three flow’-
protocol as described in the manufactures instructions. 



60

Chapter 3 | Effects of short-term exposures to UFP near an airport

Cardiovascular outcomes: non-invasive BP, heart rate and oxygen saturation 
measurements were performed in sitting position three times with 2-min intervals 
(Datascope Duo, Mindray, Shenzhen, China). Before starting the BP measurement, 
participants were seated for 1 min, to stabilize their BP. The cuff was placed 
around the upper arm, 2–3 cm above the elbow. For BP, the average of the three 
measurements was used for the analysis. Heart rate and oxygen saturation of the 
first measurement was used for the analysis. The resting ECG was performed in 
supine position using a 12-lead MACTM 5500 HD (GE Healthcare, Chicago, USA). 
Retrieved outcomes were: PR (onset atrial depolarization until onset ventricular 
depolarization), QRS (duration of ventricular depolarization) and corrected QT 
(QTc) intervals (duration of ventricular repolarization corrected for heart rate), as 
well as heart rate. 

The order of the measurements was: FeNO, ECG, BP (including heart rate 
and oxygen saturation) and spirometry. In the morning, participants ate their 
breakfast between the FeNO and ECG measurements. Investigators assessing the 
health outcomes were never informed about the exposure levels on the exposure 
day, to minimize measurement bias.

Sample size
The sample size was based on the study by Strak et al. [3], in which they used 
a similar study design (healthy volunteers, 5 h exposures and 20 min exercise 
each hour). They exposed 31 subjects to ambient air at 5 locations with different 
PM characteristics and were able to detect increased FeNO and decreased 
lung function measures (FVC and FEV1), immediately and 2 h after exposure. 
Associations with PNC remained statistically significant when the analysis 
was restricted to observations (n = 60) from the continuous traffic (mean 66,500 
particles/cm3; range 60,000–74,000) and urban background site (mean 9,100 
particles/cm3; range 7,000–11,800). Therefore, we assumed that 80 observations 
(20 healthy volunteers, exposed four times) was sufficient to answer our research 
question.

Statistical analysis
Differences in health outcomes between post- and pre-exposure (Ypost-pre) for 
each individual (i) and exposure day (j) were modelled using linear mixed effect 
models. The unadjusted model was:

𝑌𝑌"#,%&'()%*+ = 	𝛽𝛽/ +	𝑌𝑌"#,%*+	+	𝛽𝛽1𝐸𝐸# + 𝑈𝑈/" + 𝜀𝜀" 
 
 

𝑌𝑌"#,%&'()%*+ = 	𝛽𝛽/ +	𝑌𝑌"#,%*+	+	𝛽𝛽1𝐸𝐸# + 	𝛽𝛽5𝑉𝑉# + 𝛽𝛽7𝑍𝑍" + 𝑈𝑈/" + 𝜀𝜀" 
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where Ej represents a vector of the exposure variable(s) and Yij,pre the pre-exposure 
health measurement [31]. The U0i represents the patient-specific deviation from 
the average change in the outcome parameters of interest in the study sample 
(i.e. a random intercept) and εi the error term. The β’s represent population-
average fixed effects, with β0 representing the study sample average change in 
the outcome parameters when all other covariates are zero and β1 the average 
change in the outcome relative to a 5-95th percentile (5-95p) increase in exposure.

The adjusted and main model was:
𝑌𝑌"#,%&'()%*+ = 	𝛽𝛽/ +	𝑌𝑌"#,%*+	+	𝛽𝛽1𝐸𝐸# + 𝑈𝑈/" + 𝜀𝜀" 

 
 

𝑌𝑌"#,%&'()%*+ = 	𝛽𝛽/ +	𝑌𝑌"#,%*+	+	𝛽𝛽1𝐸𝐸# + 	𝛽𝛽5𝑉𝑉# + 𝛽𝛽7𝑍𝑍" + 𝑈𝑈/" + 𝜀𝜀" 
 

where Vj represents a vector of covariates that varied at each visit and Zi a vector 
of covariates that were fixed (age, sex and BMI). Covariates that varied at each 
visit include the temperature and relative humidity in the exposure laboratory 
and the respiratory symptoms (i.e. cough, dyspnea, blocked nose or sputum 
production) that participants may have had before exposure (as a binary indicator 
yes/no). We have only described the results of the adjusted models. All results 
of the unadjusted models are presented in Tables S7–10 of the supplementary 
material.

UFP and co-pollutants
Multiple pollutants and combinations of them were examined using this model. 
First, PNC and all co-pollutants (i.e. BC, NO2, PM, CO and O3) were investigated 
separately using single-pollutant models. Next, two-pollutant models containing 
PNC and one of the other co-pollutants were conducted, to explore the 
independency of the effects associated with PNC [7]. 

UFP size ranges as source indicators
To have an indication of aviation and road-traffic-related UFP, different size 
ranges of PNC (measured by SMPS) were examined. First, a single-pollutant 
model was performed for particles ≤ 20 nm, mainly representing aviation-
related UFP [21], [24], [25]. As an sensitivity analysis, single-pollutant models for 
particles ≤ 30 nm, ≤ 50 nm and ≤ 100 nm were conducted. Next, a two-pollutant 
model (≤ 20 nm vs. > 50 nm) was performed, in which particles ≤ 20 again mainly 
represented aviation-related UFP and particles > 50 nm represented other sources 
of UFP, mainly road traffic [26]–[28]. 
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Statistics were performed in R (version 3.5.1) and R studio (Version 1.1.453). For 
the linear mixed effect models the R package “lme4” was used and the fit of the 
models was examined by confirming a normal distribution of the residuals using 
Q-Q plots. Exposure variables included in the same model were not collinear (R 
< 0.4), as verified using Pearson correlation coefficients. 

Results

Participants
In total, 21 of the 23 exposed participants were included in the analysis; two 
volunteers withdrew after the initial visit due to lack of time for participation 
(Figure S2). The median age was 23 years (interquartile range (IQR): 20 – 23) 
and the majority was female (n = 17, 81%). Most participants were students and 
lived in Amsterdam. Participants had a normal BMI (22.6 kg/m2, ± 2.4) and all 
measured health outcomes (i.e. FVC, FEV1, PEF, FeNO, BP, heart rate and oxygen 
saturation) were within normal ranges during the screening visit (Table 2). There 
was no missing data regarding the health outcomes throughout the study.

Exposures
During the study period, 32 exposure days with a total of 86 visits were 
conducted; participants attended two, four or five exposure days (n = 2, n = 13, 
n = 6, respectively) (Figure S2). Per day, 5 h averages were calculated for every 
exposure variable (Table 3). Taking all exposure days together, PNC (measured 
by a condensation particle counter (CPC)) was on average 53,500 particles/
cm3 (range 10,500–173,200). The highest PNC levels occurred when the wind 
direction was coming from the airport. Exposure levels per day are shown in 
the supplementary material (Table S2). At an individual level, the minimal and 
maximal PNC exposure participants received, was on average 21,300 (range 
10,600 – 38,400) and 101,400 (range 28,900 – 173,200) particles/cm3, respectively 
(Table S3). The maximal contrast in PNC exposure that participants received (i.e. 
maximal – minimal exposure), was on average 80,000 particles/cm3 (range 8,800–
152,500) (Table S3). 

The PNC measured by SMPS showed that concentrations mainly represented 
small-sized particles of 6–20 nm and 20–30 nm, covering around 50% and 30% 
of the total PNC, respectively. Apart from four exposure days, SO2 levels were 
below the detection limits, and therefore not included in the analysis. Pearson 
correlation analysis showed low correlations between all pollutants (R < 0.6), 
except for BC and NO2 (R = 0.79) (supplement, Table S4).
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Table 2. Baseline participant characteristics.

Participants (n = 21)

Age (years) 23 (20 – 23)
Sex (female) 17 (81%)
BMI (kg/m2) 22.6 (± 2.4)
FVC (% of predicted) 113 (± 11)
FEV1 (% of predicted) 106 (± 13)
PEF (% of predicted) 99 (± 12)
FeNO (ppb) 15 (11 – 23)
Blood pressure

Systolic (mmHg) 123 (± 12)
Diastolic (mmHg) 77 (± 9)

Heart rate (c/min) 65 (± 8)
Saturation (%) 99.0 (98 – 100)

Data are presented as mean (SD), median (IQR) or n(%). BMI= body mass index; FVC = 
forced vital capacity; FEV1 = forced expiratory volume in 1s; PEF = peak expiratory flow; 
FeNO = fractional exhaled nitric oxide; All health outcomes were measured during the 
screening visit.

Table 3. Exposure variables of all exposure days based on 5 h averages.

Exposure days (n = 32)
Pollutant Mean 5-95th percentile Min-max
PNC (particles/cm3)a 53,500 16,100 – 141,500 10,500 – 173,200

6 – 20 nmb 17,700 2,500 – 55,200 1,400 – 77,300
20 – 30 nmb 10,400 1,600 – 32,100 1,000 – 33,100
30 – 50 nmb 4,200 1,400 – 8,900 1,000 – 12,900
50 – 70 nmb 1,100 400 – 1,700 300 – 2,400
70 – 100 nmb 800 200 – 1,400 180 – 1,700
100 – 200 nmb 800 180 – 1,700 150 – 2,200
>200 nmb 100 30 – 220 10 – 270

PM (µg/m3) 23.1 14.1 – 40.6 10.6 - 47.5
BC (µg/m3) 0.6 0.14 – 1.42 0.12 - 1.94
NO2 (µg/m3) 28.2 12.5 – 46.9 12.4 – 60.2
CO (µg/m3) 638 525 – 780 494 – 830
O3 (µg/m3) 35.7 17.5 – 57.3 8.8 – 78.6
Temperature (°C) 23.3 19.2 – 26.6 15.7 – 28.6
Relative humidity (%) 54 43 – 65 40 – 66

PNC = particle number concentration; PM = particulate matter; BC = black carbon;  
NO2 = nitric oxide; CO = carbon monoxide; O3 = ozone; a= measured by condensation 
particle counter; b = measured by a scanning mobility particle sizer; 
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Health effect models
No multicollinearity occurred between pollutants that were combined in the 
two-pollutant models; PNC and all other pollutants (R = 0.08 – 0.37) and the UFP 
size range of < 20 and > 50 nm (R = 0.12). 

UFP and co-pollutants (adjusted models)
The total PNC (5-95p: 125,400 particles/cm3) was significantly associated with 
a decrease in FVC of -73.8 mL (95% confidence interval (CI): -138.8 – -0.4) 
and a trend towards a reduction in FEV1 of -50.6 mL/s (95% CI: -117.1 – 29.8). 
Furthermore, PNC was correlated with an prolongation of the QTc interval by 9.9 
ms (95% CI: 2.0 – 19.1) (Table 4). Adjustment for co-pollutants (i.e. two-pollutant 
models) led to similar results (supplement, Table S5). 

For the other pollutants (Table 4), BC and NO2 were associated with an increase in 
systolic and diastolic BP. No significant associations were found for PM and CO 
exposure. Effects found for O3 should be interpreted carefully, since O3 exposures 
were low and negatively correlated with NO2 (R = -0.53). In general, PEF, FeNO, 
oxygen saturation and QRS intervals were not significantly associated with any 
of the exposure variables.

UFP size ranges as source indicators (adjusted models)
For the PNC data measured by SMPS, exposure to particles ≤20 nm (5-95p: 52,700 
particles/cm3) showed a trend towards a decrease in FVC of -69.3 mL (95% CI: 
-135.8 – 1.0) and a significant prolongation of the QTc interval by 9.6 ms (95% 
CI: 1.9 – 18.4) relative to pre-exposure levels. The sensitivity analysis (i.e. single-
pollutant models with particles ≤ 30, ≤ 50 and ≤ 100 nm) showed no substantial 
changes in these effects (supplement, Table S6).

For the two-pollutant model (consisting of two size fractions, i.e. PNC ≤ 20 nm 
and PNC > 50 nm), exposure to particles ≤ 20 nm (5-95p: 52,700 particles/cm3) 
was associated with lower FVC (-72.1 mL, 95% CI: -140.2 – -2.8), FEV1 (-49.6 
mL, 95% CI: -117.0 – 27.1) and longer QTc intervals (9.9 ms, 95% CI: 2.1 – 18.7). 
Particles > 50 nm (5-95p: 3,600 particles/cm3) were associated with an increase in 
systolic (2.9 mmHg, 95% CI: -0.7 – 6.8) and diastolic BP (3.7 mmHg, 95% CI: 0.1 – 
7.5). All other health outcomes were unaffected (Table 5). 
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Table 4. Single-pollutant models (adjusted).
Outcome PNC BC NO2

Est. 95% CI Est. 95% CI Est. 95% CI
FVC (mL) -73.8 (-138.8 – -0.4) 39.0 (-23.7 – 101.6) 2.0 (-71.3 – 75.2)
FEV1 (mL) -50.6 (-117.1 – 29.8) 27.7 (-29.0 – 100.5) -38.0 (-105.6 – 57.6)
PEF (mL/s) -61.6 (-349.0 – 210.4) 160.4 (-77.9 – 420.0) -155.6 (-424.5 – 170.6)
FeNO (ppb) 0.3 (-1.1 – 1.7) 0.2 (-1.0 – 1.6) 1.0 (-0.4 – 2.5)
HRsitting (bpm) -1.1 (-4.6 – 2.4) -1.4 (-4.4 – 2.4) -1.4 (-5.0 – 2.8)
Saturation (%) 0.0 (-0.5 – 0.6) 0.1 (-0.5 – 0.6) -0.1 (-0.7 – 0.5)
BPsys (mmHg) -1.8 (-4.7 – 1.1) 3.2 (0.5 – 5.7) 2.8 (-0.4 – 5.9)
BPdia (mmHg) -1.7 (-4.7 – 1.2) 2.9 (0.2 – 5.6) 3.9 (0.8 – 7.0)
ECG - HR (bpm) 3.4 (-0.3 – 7.6) 0.8 (-3.0 – 4.6) 0.2 (-4.0 – 4.6)
ECG - PR (ms) -2.2 (-7.3 – 1.8) 4.8 (1.4 – 10.2) 3.4 (-1.2 – 8.7)
ECG - QRS (ms) 1.3 (-1.3 – 3.8) -1.2 (-3.5 – 1.1) 0.2 (-2.5 – 3.0)
ECG - QTc (ms) 9.9 (2.0 – 19.1) 0.4 (-7.3 – 9.0) -0.2 (-9.1 – 9.7)
Outcome PM CO O3

Est. 95% CI Est. 95% CI Est. 95% CI
FVC (mL) 60.2 (-18.4 – 138.8) 10.5 (-346.0 – 366.9) 11.9 (-70.5 – 94.2)
FEV1 (mL) 69.7 (-6.3 – 154.2) 7.7 (-355.7 – 377.4) 26.7 (-61.1 – 106.4)
PEF (mL/s) 41.0 (-257.7 – 370.6) -371.8 (-1859.4 – 924.4) 129.7 (-209.3 – 430.3)
FeNO (ppb) -0.8 (-2.3 – 0.8) -0.5 (-7.3 – 6.7) -1.4 (-3.0 – 0.2)
HRsitting (bpm) 0.5 (-3.5 – 4.2) 2.8 (-15.1 – 20.2) 4.6 (0.4 – 8.3)
Saturation (%) 0.0 (-0.6 – 0.6) 0.5 (-2.3 – 3.3) -0.4 (-1.1 – 0.3)
BPsys (mmHg) -0.5 (-3.9 – 2.5) 10.6 (-4.7 – 24.4) -0.9 (-4.3 – 2.4)
BPdia (mmHg) 0.1 (-3.2 – 3.3) 11.6 (-3.5 – 25.6) -4.3 (-7.7 – -1.1)
ECG - HR (bpm) 1.0 (-3.9 – 5.0) 8.7 (-11.5 – 28.3) 0.0 (-4.7 – 4.4)
ECG - PR (ms) 0.3 (-5.1 – 4.7) 2.3 (-20.5 – 23.7) -0.5 (-8.1 – 4.2)
ECG - QRS (ms) 0.3 (-2.6 – 3.1) 1.0 (-12.0 – 14.0) -0.9 (-3.9 – 2.0)
ECG - QTc (ms) 1.6 (-8.4 – 10.6) 16.2 (-24.9 – 61.5) 3.3 (-7.0 – 12.9)
Data are presented as estimates (est.) and 95% confidence intervals (CI) intervals. All effect 
estimates are scaled to the 5-95th percentile change in the exposure of interest and are adjusted 
for age, sex, BMI, respiratory symptoms, room temperature and room humidity. Numbers  
in bold are significant effects (p < 0.05). Exposures: PNC = particle number concentration;  
PM = particulate matter; BC = black carbon; NO2 = nitric oxide; CO = carbon monoxide;  
O3 = ozone. Health outcomes: FVC = forced vital capacity; FEV1 = forced expiratory volume in 
1s; PEF = peak expiratory flow rate; FeNO = fractional exhaled nitric oxide; HR = heart rate;  
BPsys = systolic blood pressure; BPdia = diastolic blood pressure; ECG = electrocardiography; 
QTc = corrected QT. PNC was detected by a condensation particle counter (CPC) with  
d50 = 4 nm.
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Unadjusted models
All results of the unadjusted single- and two-pollutant models based on PNC, 
co-pollutants and particle size fractions, are presented in the supplementary 
material (Tables S7–10).

Table 5. Two-pollutant model consisting of two particle size fractions (adjusted).

Outcome PNC ≤20 nm
Adjusted for PNC >50 nm

PNC >50 nm
Adjusted for PNC ≤20 nm

Est. 95% CI Est. 95% CI
FVC (mL) -72.1 (-140.2 – -2.8) 37.2 (-47.7 – 124.5)
FEV1 (mL) -49.6 (-117.0 – 27.1) 16.0 (-69.9 – 110.7)
PEF (mL/s) -19.2 (-310.7 – 248.3) 71.3 (-272.0 – 421.3)
FeNO (ppb) 0.0 (-1.3 – 1.4) -0.7 (-2.4 – 1.1)
HRsitting (bpm) -1.5 (-5.1 – 1.8) 1.8 (-2.9 – 6.1)
Saturation (%) 0.1 (-0.4 – 0.8) -0.4 (-1.1 – 0.4)
BPsys (mmHg) -1.9 (-4.8 – 0.8) 2.9 (-0.7 – 6.8)
BPdia (mmHg) -2.3 (-5.2 – 0.5) 3.7 (0.1 – 7.5)
ECG - HR (bpm) 3.0 (-0.7 – 7.0) -1.1 (-6.1 – 3.8)
ECG - PR (ms) -3.3 (-8.3 – 0.5) 0.5 (-5.8 – 5.8)
ECG - QRS (ms) 1.1 (-1.5 – 3.6) 0.9 (-2.3 – 4.1)
ECG - QTc (ms) 9.9 (2.1 – 18.7) -3.4 (-13.5 – 8.0)

Data are presented as estimates (est.) and 95% confidence intervals (CI) intervals. All effect 
estimates are scaled to the 5-95th percentile change in the exposure of interest and are 
adjusted for age, sex, BMI, respiratory symptoms, room temperature and room humidity. 
Numbers in bold are significant effects (p < 0.05). PNC = particle number concentration; 
FVC = forced vital capacity; FEV1 = forced expiratory volume in 1s; PEF = peak expiratory 
flow rate; FeNO = fractional exhaled nitric oxide; HR = heart rate; BPsys = systolic blood 
pressure; BPdia = diastolic blood pressure; ECG = electrocardiography; QTc = corrected QT. 
PNC size fractions were measured by a scanning mobility particle sizer (SMPS) with a limit 
of detection of 6-225 nm.

Discussion

In this cross-over intervention study including 21 healthy participants, we found 
that exposure to UFP near a large airport was correlated with lung (FVC) and 
cardiac function (QTc and BP). The reduction in FVC and prolongation of QTc 
were associated with total PNC and particles ≤ 20 nm (as a proxy for UFP from 
aviation). The increase in BP was associated with primarily road–traffic-related 
pollutants (i.e. BC, NO2) and particles > 50 nm (as a proxy for UFP from other 
sources, mainly road traffic). 
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To our knowledge, this is the first human controlled laboratory based study, that 
has investigated the effects of (short-term) UFP exposure near a large airport 
on both lung and heart function. Furthermore, participants were exposed on 
multiple days in which variation in pollutant levels and sources was achieved 
due to meteorological conditions (mainly wind direction), instead of exposing 
subjects at different locations. 

The relationship between UFP and respiratory outcomes is in accordance with 
previous literature [32], however, previous studies did not find an association 
with aviation derived UFP or did not take this source of UFP into account [3], 
[33], [34]. Habre et al., exposed 22 patients with mild/moderate asthma for 2 
h to both aviation and road-traffic-related UFP in a park downwind of the Los 
Angeles International Airport (LAX) [33]. In that study, road traffic derived UFP 
exposure was associated with a reduced FEV1, but there was no association with 
aviation derived UFP exposure. Another study (by Strak et al.) found an effect on 
respiratory outcomes after UFP exposure, but did not assess UFP from aviation 
[3]. Strak et al. exposed 31 healthy young adults for 5 h to UFP at five different 
locations: an underground train station, two busy roads, a livestock farm and 
an urban background location. They found a reduction of FVC after road-traffic-
related UFP exposures. In contrast to both our study and the study of Habre et 
al., Strak et al. did also find an increase in FeNO in individuals exposed to higher 
levels of UFP. Discrepancies between the findings of our study and the study of 
Habre et al. and Strak et al. may be due to differences in the location of exposure, 
which is known to affect the UFP levels, sources and chemical composition. 
In most studies, road traffic is the most important source of UFP, a source also 
associated with emissions of other components (e.g. NO2 and BC). In our study, 
aviation was the most important source of UFP, which is known to minimally 
contribute to other components than UFP (hence our low correlations between 
pollutants). 

Potential mechanisms for lung function decline could be that UFP exposure 
induces pulmonary oxidative stress leading to generation of reactive oxygen 
species [35]–[37] and pro-inflammatory cytokines [38]. This can alter the barrier 
function of the respiratory tract and antioxidant defences, which could lead to 
airway inflammation and decreases in lung function [39]. Another possible 
mechanism, is the activation of (M3) muscarinic receptors, controlling the smooth 
muscle tone [40], resulting in airway constriction and therefore lung function 
decline. This mechanism was also shown in rat bronchi segments exposed to 
PM2.5 [41].
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For cardiovascular outcomes, the association between air pollution and 
prolongation in QTc has been shown before, but mainly involved long-term 
effects in human or short-term effects in animals [42]–[44]. Moreover, these 
studies only considered exposure to PM2.5 (expressed in mass) and not UFP 
(expressed in particle number). Furthermore, we found that exposure to BC, NO2 
and relatively larger particles were associated with higher BP, which is consistent 
with previous literature. In multiple studies, short-term effects on BP have been 
found before and were mainly associated with BC, PM10 (mass concentrations) 
and SO2, but less consistently with PM2.5 (mass concentrations), and UFP (PNC), 
as summarized by the review of Li et al. [45]. Since our SO2 levels were almost 
always under the limits of detection, we could not investigate this relation. 

A possible explanation for the cardiovascular effects could be that UFP can 
easily transfer into the blood stream, possibly inducing oxidative stress and 
inflammation directly in the vessels and myocardial substrate [46]. This 
has shown to alter cardiac autonomic control [46] which prolongs ventricle 
polarization due to changes in sodium and calcium channels [47], [48]. According 
to the Food and Drug Administration (FDA), an extension of the QTc interval by > 
5 ms can already increase the risk of cardiac arrhythmias in sensitive individuals, 
such as patients with heart disease [49]. One of the possible arrhythmias related 
to QTc prolongation, is torsade de pointes, which can eventually evolve in ventricle 
fibrillation. The possible mechanism for increases in blood pressure after short-
term UFP exposure, could be the acute imbalance of the autonomic nervous 
system possibly prompted by lung irritant sensory receptors and afferent nerve 
stimulation [50].

An important strength of this study, is the prospective interventional nature of 
the study, in which subjects were exposed multiple times at the same location in 
a highly-controlled environment. The use of the mobile exposure laboratory was 
a form of blinding for the participants, reduced noise from traffic and prevented 
measurement error due to wind or rain. In addition, it allowed for air pollution 
classification on site, which minimized possible exposure misclassification when 
compared to most observational studies that rely on central site monitoring. 
Furthermore, low correlations existed between almost all pollutants, which 
is uncommon for air pollution studies. This makes the independency of the 
association we found between health outcomes and UFP exposure more likely 
when compared to other studies [7]. On top of that, we achieved a high contrast 
in UFP exposure (on average 80,000 particles/cm3) when compared to previous 
studies, in which the average contrast ranged from ~20,000 to ~55,000 particles/
cm3 [3], [33], [34], [51]. Although we did not have a “control” exposure, the 
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lowest exposure that participants received (on average 21,300 particles/cm3) 
is comparable to the “control” exposure sites of other studies (i.e. 6,000–19,600 
particles/cm3) [3], [33], [34], [51]. Finally, both drop-outs and missing data were 
limited. 

This study also had several limitations. First, we only included one time-point 
both before and after the exposure. Therefore, we may not have always captured 
the maximal response to the exposure, as effects may have recovered rapidly or 
developed slowly (such as certain inflammatory pathways). Secondly, we had no 
information about the exposure of the participants before each visit. This may 
have affected the before-exposure cardiopulmonary measurements. However, we 
have tried to reduce the residential exposure, by excluding people living < 2 km 
from Schiphol Airport, < 300 m from high way and on busy roads (5,000–10,000 
vehicles/day). A possible confounder, we did not adjust for, was noise. However, 
the fact that the volunteers were inside a mobile exposure laboratory reduced 
outside (road traffic and aircraft) noise and several pumps inside the laboratory 
created constant background noise partly drowning out noise from outside. 
On top of that, participants were often wearing noise-cancelling headphones. 
Furthermore, the blood pressure results should be interpreted carefully as blood 
pressure easily fluctuates, however, we did try to stabilize the blood pressure 
as much as possible by performing three measurements and having resting 
time before and between measurements. A potential issue in our study is that 
the multiple comparisons potentially may have led to finding associations by 
chance. We chose not to apply adjustments for multiple comparisons, such as 
Bonferroni correction, as this is controversial in epidemiology [52]. Therefore, we 
have focused on the consistency of the associations and not on single significant 
associations, and we recommend performing independent replication studies 
to confirm our findings. Another limitation is our convenience sample (i.e. 
young and healthy subjects) and small sample size, limiting the inference and 
generalizability to people living near Schiphol Airport. In addition, the majority 
of the study population was female, which may have had an influence on the 
effects, but due to the lack of power, we could not do a sensitivity analysis for. 
Finally, exposures were short and sometimes extremely high due to the proximity 
to the airport, which is not representative for normal daily exposures. 

The associations reported in this study are small, however, they represent 
group averages and were found in a young healthy population after very short 
exposures. Therefore, we think it is of important to investigate the effects in 
sensitive groups, such as people with cardiopulmonary problems, and potential 
health effects of long-term exposure to high levels of airport-related UFP. 
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Conclusion 
Short-term exposure to high levels of UFP near Schiphol Airport was, on 
average, associated with decreased lung function (mainly FVC) and prolonged 
repolarization of the heart (QTc), directly after exposure in young healthy adults. 
The effects were relatively small, however, they appeared after single exposures 
of 5 h in a young healthy population. As this study cannot make any inferences 
about long-term health impacts, studies investigating potential health effects of 
long-term exposure to airport-related UFP, are urgently needed. 
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Supplementary materials

Table S1. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria
1) 18–35 years 1) (History of chronic) pulmonary or 

cardiovascular events/diseases2) Non-smoker for at least 1 year
3) Smoking history of < 5 pack 

years
2) Use of medications that affect pulmonary or 

cardiovascular parameters
4) Baseline FEV1 > 80% of 

predicted value 3) (History of) hay fever
5) No clinical findings during 

screening*
4) History of bleeding tendency
5) Regular consumption of greater than three units 

of alcohol per day6) Informed consent
6) Administration of any investigational drug 

within 30 days of study initiation.
7) Donation of blood within 60 days
8) Loss or greater than 400 mL of blood within 12 

weeks of study initiation
9) Respiratory tract infection in the last 6 weeks 

before or during the study
10) History of serious drug-related reactions, 

including hypersensitivity

11) Pregnancy at screening or during the study 
period

12) Residency or daily working with estimated 
annual average contribution of UFP from air 
traffic of > 3000 particles/cm3

< 2 km from Schiphol
< 300 m from high way
On a busy road (5,000–10,000 vehicles/day)

FEV1 = forced expiratory volume in 1s; *Abnormalities in ECG were assessed by a 
cardiologist. No strict criteria existed for fractional exhaled nitric oxide (FeNO), blood 
pressure and the resting heart rate, but all had to be within or close to normal ranges: i.e. 
FeNO < 50 ppb, blood pressure systolic 90–140 mmHg and diastolic 60–90 mmHg, and the 
resting heart rate < 80 bmp.
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Figure S1. Flow chart of one exposure day: health assessment (lung- and heart function) was 
performed at the Amsterdam UMC in the morning and afternoon. In between, participants 
were exposed for 5 h while performing intermittent cycling on an ergometer (20 min per 
hour). Participants were transported by car between locations.

Figure S2. Inclusion chart: in total 75 subjects responded of whom 31 were interested and 
suitable for screening. Eventually, 23 subjects were exposed. Only subjects who had more 
than one visit (n = 21) were included in the analysis and were exposed two (n = 2), four (n = 
13) or five (n = 6) times.

Screened (n = 31)

Excluded (n = 8)
 Exclusion criteria (n = 3)
 Withdrawal (n = 5)

2 visits  (n = 2) 4 visits  (n = 13) 5 visits  (n = 6) 

Included  (n = 23)

Responses (n = 75)

Only1 visit  (n = 2)

No screening (n = 44)
 Exclusioncriteria (n = 8)
 Withdrawal (n = 18)

• No time (n = 16)
• Unknown (n = 2)  

 Loss of contact (n = 18)

07:30 – 09:30
pre-exposure 

measurements

15:30 – 17:30
Post-exposure 
measurements

10:00 – 15:00
5-hour 

exposure
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Table S2. Distribution of exposure variables per exposure day (5 h averages).

Exposure 
day

PM
(µg/m3)

PNC 
(#/cm3) 

BC
(µg/m3)

NO2

(µg/m3)
CO

(µg/m3)
SO2

(µg/m3)
O3

(µg/m3)
Temp
(oC)

RH
(%)

1 29.9 74,466 0.3 12.4 619 DL 44.5 19.4 43
2 17.0 40,156 0.3 13.3 599 DL 40.6 18.8 44
3 18.8 28,898 0.6 48.4 775 2.0 38.8 22.3 54
4 27.3 22,049 0.8 37.8 650 1.5 38.4 23.9 62
5 22.4 23,356 0.7 28.1 621 3.2 52.1 24.2 51
6 39.4 18,861 1.3 41.4 784 1.2 39.4 22.3 62
7 14.5 27,835 0.5 24.5 619 DL 32.8 21.9 46
8 13.6 30,413 0.3 16.4 587 DL 34.7 21.4 43
9 26.6 134,879 0.7 42.8 569 DL 25.7 24.0 40
10 25.7 32,144 0.5 12.8 510 DL 46.5 24.0 53
11 25.7 23,474 0.2 16.1 691 DL 56.8 24.0 50
12 28.0 35,357 0.4 27.3 667 DL 20.9 25.2 54
13 16.0 24,866 0.3 16.3 494 DL 57.9 24.6 50
14 21.9 12,619 0.4 20.0 579 DL 31.2 24.1 58
15 27.9 20,926 0.1 12.4 537 DL 39.0 25.2 57
16 16.0 52,896 0.3 23.3 611 DL 46.9 26.0 52
17 18.2 39,531 0.3 27.0 568 DL 33.3 26.5 47
18 18.4 38,360 0.4 18.8 557 DL 48.8 25.0 47
19 47.5 46,866 0.8 26.8 616 DL 47.4 26.6 53
20 20.3 45,524 1.0 27.7 603 DL 78.6 28.6 52
21 27.8 64,379 0.5 24.8 670 DL 28.3 24.8 65
22 24.4 139,321 1.0 36.2 705 DL 28.2 25.2 66
23 19.1 173,187 0.6 33.9 597 DL 25.3 21.3 58
24 24.8 128,166 1.1 35.8 681 DL 18.6 24.4 66
25 26.7 80,856 0.6 34.1 744 DL 20.6 26.6 63
26 42.0 20,644 1.6 44.0 830 DL 28.1 22.8 62
27 18.6 42,565 0.1 12.6 744 DL 37.6 21.6 60
28 10.6 144,191 0.9 45.6 744 DL 19.7 21.2 51
29 15.1 28,846 1.9 60.2 696 DL 8.8 22.2 57
30 15.0 25,160 0.1 19.3 620 DL 29.6 20.6 58
31 18.0 79,701 0.3 32.9 550 DL 25.6 20.1 51
32 21.5 10,520 0.5 28.6 585 DL 16.2 15.7 47
mean 23.1 53,469 0.6 28.2 638 2.0 35.7 23.3 54
SD 8.3 43,776 0.4 12.2 83 0.9 14.4 2.7 7
max 47.5 173,187 1.9 60.2 830 3.2 78.6 28.6 66
min 10.6 10,520 0.1 12.4 494 1.2 8.8 15.7 40
Mass concentration based on filter measurements; PM = particulate matter; PNC = particle 
number concentration measured by a condensation particle counter (CPC) with d50 = 4 nm; 
BC = black carbon; NO2 = nitric oxide; CO = carbon monoxide; SO2 = sulfur dioxide; O3 = 
ozone; DL= value below detection limit; Temp = temperature; RH = relative humidity; SD = 
standard deviation.
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Table S3. Distribution of particle number concentrations per participant (5 h averages).

Participant PNC exposure (#/cm3) Visits
mean min max contrast

1 97,200 38,400 144,200 105,800 5
2 93,200 20,700 144,200 123,500 4
3 89,500 20,700 173,200 152,500 4
4 75,300 24,900 144,200 119,300 5
5 68,200 24,900 173,200 148,300 4
6 63,200 25,200 139,400 114,200 5
7 52,600 10,600 139,400 128,800 4
8 52,300 12,700 134,900 122,200 4
9 52,000 22,100 128,200 106,100 5
10 51,400 20,700 134,900 114,200 4
11 50,000 23,500 80,900 57,400 4
12 50,000 23,500 80,900 57,400 4
13 48,200 21,000 79,800 58,800 5
14 42,700 27,900 64,400 36,500 4
15 41,200 12,700 74,500 61,800 4
16 40,500 25,200 74,500 49,300 5
17 35,600 18,900 64,400 45,500 4
18 34,900 18,900 45,600 26,700 4
19 30,400 21,000 46,900 25,900 4
20 27,800 23,400 32,200 8,800 2
21 19,700 10,600 28,900 18,300 2
mean 53,100 21,300 101,400 80,000
min 19,700 10,600 28,900 8,800
max 97,200 38,400 173,200 152,500

PNC = particle number concentration measured by a condensation particle counter (CPC) 
with d50 = 4 nm. PNC levels are rounded to hundreds.
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Table S7. Single-pollutant models (unadjusted).

Outcome PNC BC NO2

Est. 95% CI Est. 95% CI Est. 95% CI
FVC (mL) -66.7 -138.4 – 9.9 46.9 -29.4 – 123.3 16.7 -55.9 – 89.4
FEV1 (mL) -57.7 -131.5 – 22.3 40.9 -38.9 – 125.8 -16.3 -94.1 – 71.6
PEF (mL/s) -53.7 -353.0 – 235.7 195.9 -109.3 – 508.6 -97.8 -387.3 – 212.4
FeNO (ppb) 0.1 -1.3 – 1.6 0.0 -1.5 – 1.6 0.8 -0.7 – 2.3
HRsitting (bpm) -0.5 -4.0 – 3.0 -1.7 -5.5 – 2.4 -1.4 -5.2 – 2.4
Saturation (%) -0.1 -0.6 – 0.5 0.3 -0.3 – 0.9 0.0 -0.6 – 0.6
BPsys (mmHg) -1.9 -4.8 – 1.0 3.7 0.5 – 6.8 3.0 -0.1 – 6.1
BPdia (mmHg) -2.3 -5.2 – 0.7 3.5 0.3 – 6.7 3.9 0.8 – 6.9
ECG - HR (bpm) 4.0 0.1 – 8.2 1.0 -3.7 – 5.6 0.1 -4.3 – 4.4
ECG - PR (ms) -2.6 -7.7 – 2.6 7.0 1.5 – 12.2 4.8 -0.2 – 10
ECG - QRS (ms) 0.9 -1.7 – 3.5 -1.5 -4.3 – 1.3 0.1 -2.6 – 2.8
ECG - QTc (ms) 11.6 3.1 – 20.8 -0.5 -10.2 – 9.7 -1.0 -10.2 – 8.6
Outcome PM CO O3

Est. 95% CI Est. 95% CI Est. 95% CI
FVC (mL) 55.4 -20.6 – 131.4 10.4 -65.6 – 86.4 -9.7 -84.8 – 65.4
FEV1 (mL) 71.4 -6.0 – 150.9 3.5 -76.4 – 83.5 13.6 -68.8 – 90.8
PEF (mL/s) 164.7 -132 – 478.3 -50.3 -357.1 – 247.9 178.2 -122.6 – 470.9
FeNO (ppb) -0.7 -2.2 – 0.7 -0.1 -1.6 – 1.4 -1.0 -2.5 – 0.5
HRsitting (bpm) 0.8 -2.8 – 4.3 0.1 -3.7 – 3.8 4.3 0.7 – 7.9
Saturation (%) 0.1 -0.5 – 0.7 0.3 -0.3 – 0.9 -0.4 -1.0 – 0.2
BPsys (mmHg) -0.4 -3.5 – 2.6 2.1 -1.0 – 5.2 -0.6 -3.7 – 2.4
BPdia (mmHg) -0.3 -3.4 – 2.8 2.2 -1.0 – 5.2 -3.8 -6.9 – -0.8
ECG - HR (bpm) 1.7 -2.5 – 5.8 1.0 -3.4 – 5.2 1.2 -3.0 – 5.5
ECG - PR (ms) 0.0 -5.9 – 5.2 2.5 -3.1 – 7.8 -4.7 -9.9 – 0.6
ECG - QRS (ms) 0.4 -2.4 – 3.2 -0.7 -3.4 – 2.0 0.4 -2.3 – 3.1
ECG - QTc (ms) 2.2 -7.2 – 11.2 0.0 -9.3 – 9.7 6.0 -3.3 – 15.0

Data are presented as estimates (est.) and 95% confidence intervals (CI). All effect estimates are 
scaled to the 5-95th percentile change in the exposure of interest. Numbers in bold are significant 
effects (p < 0.05). Exposures: PNC = particle number concentration; PM = particulate matter; BC 
= black carbon; NO2 = nitric oxide; CO = carbon monoxide; O3 = ozone. Health outcomes: FVC = 
forced vital capacity; FEV1 = forced expiratory volume in 1s; PEF = peak expiratory flow rate; 
FeNO = fractional exhaled nitric oxide; HR = heart rate; BPsys = systolic blood pressure; BPdia = 
diastolic blood pressure; ECG = electrocardiography; QTc = corrected QT. PNC was detected by a 
condensation particle counter (CPC) with d50 = 4 nm.
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Table S8. Two-pollutant models with PNC adjusted for co-pollutants (unadjusted for 
covariates).

Outcome PNC
adjusted for BC

PNC
adjusted for NO2

PNC
adjusted for PM

Est. 95% CI Est. 95% CI Est. 95% CI
FVC (mL) -70.9 -141.8 – 2.1 -79.2 -155.8 – -2.0 -60.5 -129.2 – 14.6
FEV1 (mL) -61.8 -135.9 – 18.0 -58.6 -138.1 – 23.8 -50.5 -123.8 – 29.5
PEF (mL/s) -78.7 -376.8 – 208.5 -20.3 -348.9 – 285.8 -36.7 -333.2 – 255.0
FeNO (ppb) 0.1 -1.3 – 1.6 -0.1 -1.7 – 1.4 0.1 -1.4 – 1.5
HRsitting (bpm) -0.3 -3.8 – 3.2 -0.1 -3.8 – 3.7 -0.4 -4.0 – 3.1
Saturation (%) -0.1 -0.7 – 0.5 -0.1 -0.7 – 0.5 -0.1 -0.6 – 0.5
BPsys (mmHg) -2.4 -5.2 – 0.4 -3.3 -6.3 – -0.3 -2.0 -4.9 – 1.0
BPdia (mmHg) -2.7 -5.5 – 0.2 -4.0 -7.0 – -1.1 -2.3 -5.3 – 0.6
ECG - HR (bpm) 4.0 0.0 – 8.2 4.6 0.4 – 9.1 4.2 0.3 – 8.3
ECG - PR (ms) -3.5 -8.5 – 1.5 -4.9 -10.3 – 0.5 -2.6 -7.8 – 2.6
ECG - QRS (ms) 1.1 -1.5 – 3.8 1.0 -1.8 – 3.8 1.0 -1.7 – 3.6
ECG - QTc (ms) 11.9 3.3 – 21.1 13.7 4.6 – 23.4 11.9 3.3 – 21.0
Outcome PNC

adjusted for CO
PNC

adjusted for O3

Est. 95% CI Est. 95% CI
FVC (mL) -68.8 -140.5 – 8.7 -79.8 -156.1 – 1.2
FEV1 (mL) -58.0 -132.1 – 22.0 -59.9 -139.4 – 24.2
PEF (mL/s) -50.8 -350.0 – 239.5 16.8 -307.5 – 326.3
FeNO (ppb) 0.1 -1.3 – 1.6 -0.3 -1.8 – 1.3
HRsitting (bpm) -0.5 -4.0 – 3.0 1.2 -2.4 – 4.7
Saturation (%) -0.1 -0.6 – 0.5 -0.2 -0.8 – 0.4
BPsys (mmHg) -2.0 -4.9 – 0.9 -2.5 -5.6 – 0.7
BPdia (mmHg) -2.3 -5.2 – 0.6 -4.1 -7.0 – -1.1
ECG - HR (bpm) 4.0 0.0 – 8.1 5.1 1.0 – 9.7
ECG - PR (ms) -2.7 -7.9 – 2.4 -4.8 -10.3 – 0.6
ECG - QRS (ms) 1.0 -1.7 – 3.6 1.2 -1.6 – 4.0
ECG - QTc (ms) 11.7 3.1 – 20.8 15.5 6.7 – 25.1

Data are presented as PNC estimates (Est.) and 95% confidence intervals (CI). All effect estimates 
are scaled to the 5-95th percentile change in the exposure of interest. Numbers in bold are significant 
effects (p < 0.05). Exposures: PNC = particle number concentration; PM = particulate matter; BC = 
black carbon; NO2 = nitric oxide; CO = carbon monoxide; O3 = ozone. Health outcomes: FVC = 
forced vital capacity; FEV1 = forced expiratory volume in 1s; PEF = peak expiratory flow rate; 
FeNO = fractional exhaled nitric oxide; HR = heart rate; BPsys = systolic blood pressure; BPdia = 
diastolic blood pressure; ECG = electrocardiography; QTc = corrected QT. PNC was detected by a 
condensation particle counter (CPC) with d50 = 4 nm.
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Table S10. Two-pollutant model consisting of two particle size fractions (unadjusted for 
covariates).

Outcome PNC ≤ 20 nm
Adjusted for PNC > 50 nm

PNC > 50 nm
Adjusted for PNC ≤ 20 nm

Est. 95% CI Est. 95% CI
FVC (mL) -66.3 -136.4 –  7.2 29.1 -52.3 – 111.0
FEV1 (mL) -57.7 -131.0 – 19.9 33.8 -52.0 – 119.2
PEF (mL/s) -26.1 -320.0 – 258.3 266.2 -60.9 – 592.6
FeNO (ppb) -0.1 -1.5 – 1.4 -0.4 -2.0 – 1.3
HRsitting (bpm) -1.1 -4.6 – 2.3 2.2 -2.0 – 6.3
Saturation (%) 0.0 -0.5 – 0.6 -0.3 -0.9 – 0.4
BPsys (mmHg) -2.1 -4.9 – 0.8 2.9 -0.4 – 6.4
BPdia (mmHg) -2.6 -5.5 – 0.3 2.6 -0.8 – 6.0
ECG - HR (bpm) 3.4 -0.5 – 7.5 0.9 -3.8 – 5.6
ECG - PR (ms) -4.0 -9.0 – 1.2 -0.8 -7.2 – 4.9
ECG - QRS (ms) 0.6 -2.0 – 3.2 2.2 -0.8 – 5.1
ECG - QTc (ms) 11.1 2.7 – 20.2 1.5 -8.3 – 11.5

Data are presented as estimates (est.) and 95% confidence intervals (CI). All effect estimates 
were scaled to the 5-95th percentile change in the exposure of interest. Numbers in bold 
are significant effects (p < 0.05). PNC = particle number concentration; FVC = forced vital 
capacity; FEV1 = forced expiratory volume in 1s; PEF = peak expiratory flow rate; FeNO = 
fractional exhaled nitric oxide; HR = heart rate; BPsys = systolic blood pressure; BPdia = 
diastolic blood pressure; ECG = electrocardiography; QTc = corrected QT. PNC size fractions 
were measured by a scanning mobility particle sizer (SMPS) with a limit of detection of 
6-225 nm.
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Abstract

Environmental factors, such as air pollution, can affect the composition of 
exhaled breath, and should be well understood before biomarkers in exhaled 
breath can be used in clinical practice. Our objective was to investigate whether 
short-term exposures to air pollution can be detected in the exhaled breath 
profile of healthy adults. In this study, 20 healthy young adults were exposed 
2–4 times to the ambient air near a major airport and two highways. Before 
and after each 5 h exposure, exhaled breath was analyzed using an electronic 
nose (eNose) consisting of seven different cross-reactive metal-oxide sensors. 
The discrimination between pre and post-exposure was investigated with 
multilevel partial least square discriminant analysis (PLSDA), followed by linear 
discriminant and receiver operating characteristic (ROC) analysis, for all data 
(71 visits), and for a training (51 visits) and validation set (20 visits). Using all 
eNose measurements and the training set, discrimination between pre and post-
exposure resulted in an area under the ROC curve of 0.83 (95% CI = 0.76–0.89) 
and 0.84 (95% CI = 0.75–0.92), whereas it decreased to 0.66 (95% CI = 0.48–0.84) in 
the validation set. Short-term exposure to high levels of air pollution potentially 
influences the exhaled breath profiles of healthy adults, however, the effects may 
be minimal for regular daily exposures.
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Introduction

Exhaled breath analysis is a topic of research which has gained increased attention 
in the past few years, especially in the field of respiratory diseases. Important 
aspects for this interest are the non-invasive nature of breath sampling, and 
the possibility of analyzing both local and systemic processes. Exhaled breath 
contains volatile organic compounds (VOCs) that either have an endogenous (e.g., 
metabolic processes) or exogenous (from ambient air) origin. The endogenous 
VOCs are the ones of interest regarding biomarker discovery for medical testing 
purposes, having already shown their potential for discrimination between 
several respiratory diseases and distinct disease phenotypes [1].

One of the steps towards future clinical implementation of exhaled breath testing 
is to better understand which exogenous factors could potentially influence the 
composition of exhaled breath and, thus, should be taken into account when 
examining exhaled breath.

This holds especially true for electronic nose (eNose) technology, a rapid exhaled 
breath detection technique based on multiple cross-reactive sensors. Such sensors 
resemble the powerful mammalian olfactory system [2], in which each sensor can 
detect multiple VOCs and, vice versa, a VOC can interact with multiple sensors. 
Therefore, eNose technology does not allow for the detection of individual 
compounds, making it challenging to identify their source and impossible to 
delineate their metabolomic pathways. However, by using pattern recognition 
algorithms, this relatively cheap and easy-to-use technique, is a promising tool 
for point of care testing, if properly validated and standardized [3]. Regarding 
validation, knowledge about the possible influences of environmental exposures 
on the exhaled breath profile is an important aspect [4].

Ambient air is always in direct contact with our respiratory system, making it a 
part of our exhaled breath but also a continuous exposure, possibly influencing 
metabolic pathways. Components in the ambient air that can have possible 
adverse health effects are air pollutants, cigarette smoke, and viral and bacterial 
agents. With the abundance of road traffic and aviation, air pollution is of 
increasing concern regarding human health. Previous literature has shown that 
particulate matter has adverse health effects on the respiratory and cardiovascular 
system, in which fine and ultrafine particles (UFP) can induce pulmonary as 
well as systemic inflammation [5–8] and oxidative stress [9,10]. Such processes 
have been shown to be reflected in exhaled breath patterns of ventilated rats and 
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patients with asthma or chronic obstructive pulmonary disease (COPD) [11–13]. 
Therefore, we hypothesize that exposure to air pollution could be detected in the 
exhaled breath profile.

As part of our study on the effects of short-term exposure to air pollution 
[14], we collected exhaled breath profiles by an eNose. Our objective was to 
investigate the effect of short-term exposures of 5 h to air pollution near a major 
airport and two highways, with a focus on UFP on the exhaled breath profile 
of healthy young adults. We did this by discriminating pre and post-exposure 
measurements based on the exhaled breath profile and by testing the associations 
between individual eNose sensor signals and the exposure measurements.

Methods

Study design
In this prospective study, young healthy adults were exposed to ambient air 
near Amsterdam Airport Schiphol and two nearby highways (Amsterdam, 
the Netherlands), between April and October 2018 [14]. Participants were 
exposed for 5 h on minimally two and maximally four days, with at least 
two weeks between exposures. During the exposure, participants performed 
intermittent cycling at low intensity on an ergometer for 20 min/h and were 
seated in between. Extensive air monitoring was conducted, from which 5 h 
averages were calculated. Before and after each exposure, exhaled breath was 
measured using an eNose, at the Amsterdam UMC location AMC (Amsterdam, 
the Netherlands). A petrol-fuelled hybrid car, equipped with a high-efficiency 
particulate air (HEPA) filter, was used for transport between the exposure site 
and the hospital (15 km distance, a 15–20 min drive).

Study population
Participants were young adults, non-smokers for at least 1 year (<5 pack years = 
number of packs of cigarettes smoked per day * number of years the person has 
smoked) and had normal lung function (predicted forced exhaled volume in 1 s 
(FEV1) > 80%). Subjects were excluded when they had any (history of chronic) 
pulmonary or cardiovascular disease, hay fever, or when they lived in the vicinity 
of highly polluted areas: <2 km from Schiphol Airport, <300 m from a highway, 
or on a busy road (>10,000 vehicles/day). Volunteers were screened for their 
medical history, as well as lung (spirometry and fractional exhaled nitric oxide 



91

4

(FeNO)) and heart function (electrocardiography (ECG), blood pressure (BP) and 
heart rate). More details about the inclusion and exclusion criteria, as well as the 
screening assessments, were published previously [14].

Exposures
All participants were exposed for 5 h to the ambient air near Schiphol Airport 
(northwest of two runways, ~300 m away), two highways (~500 m away) and 
Amsterdam (~10 km). Two to four participants were exposed on the same day, 
in a mobile exposure laboratory, through which the outside ambient air was 
circulated. We aimed to expose each participant to different UFP levels, sources 
(e.g., aviation and road traffic), and compositions between exposure days, by 
considering the meteorological conditions (mostly wind direction, as the location 
of the exposure site was fixed) when scheduling their visits.

Exposure parameters
The air inside the exposure chamber was monitored, from which 5 h averages 
were calculated for the following: particle number concentrations (PNC); 
particle mass concentrations (PM ≈ PM2.5 meaning particles mainly <2.5 µm); 
nitrogen oxides (NOx, NO2); black carbon (BC); and carbon monoxide (CO). The 
total PNC was measured by a condensation particle counter (CPC) with d50 = 4 
nm. Furthermore, we monitored the temperature (temp) and relative humidity 
(RH) inside the mobile exposure laboratory. More details about the exposure 
(monitoring equipment) were published previously [14].

PNC sources
Next, we estimated the contribution of different sources to the PNC levels using a 
positive matrix factorization (PMF) source apportionment model, as extensively 
described by Pirhadi et al. [15]. In short, the source contribution model was 
based on the 5 h averages of total PNC (measured by CPC), PNC size fractions 
(measured by a scanning mobility particle sizer), BC, NOx and CO. The aviation 
source was labeled as “total aviation” and was also divided into “take-offs” and 
“landings”. Furthermore, two traffic sources were distinguished, “airport traffic” 
(e.g., passenger busses, baggage trucks) and “road traffic” (e.g., highways around 
the airport), but were also analyzed as one labeled “total traffic”.

Exhaled breath analysis
Exhaled breath analysis was performed using an electronic nose (eNose), 
the SpiroNose, attached at the rear end of a spirometer (MasterScreenTM PFT, 
CareFusion) (Figure 1a). The SpiroNose consists of seven different cross-reactive 
metal oxide sensors: TGS2602 (sensor 1), TGS2610 (sensor 2), TGS2611-COO 
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(sensor 3), TGS2600 (sensor 4), TGS2603 (sensor 5), TGS2620 (sensor 6), TGS2612 
(sensor 7) (Figaro Engineering Inc., Osaka, Japan). Each sensor is present 
fourfold: twice on the inside, detecting the exhaled breath; and twice on the outer 
side of the device, detecting the ambient air (Figure 1b).

eNose measurements
First, subjects rinsed their mouth thoroughly three times with water. 
Subsequently, exhaled breath analysis was performed twice in a row, with a 2 min 
interval. The maneuver involved five tidal breaths, an inhalation up to total lung 
capacity, a breath-hold of 5 s and a slow (<0.4 L/s) maximal exhalation towards 
residual volume. During this maneuver, participants were breathing through a 
bacterial filter (Lemon Medical GmbH, Hammelburg, Germany) with their noses 
clipped. Furthermore, complaints of cough, dyspnea, sputum production and 
a blocked nose were assessed and were labeled as “no” when none and “yes” 
when one or more of these symptoms occurred.

Data processing
The eNose signals were processed in MATLAB® as described by De Vries et 
al. [16] and involved filtering, detrending, ambient air correction and peak 
detection. The highest sensor peak of the duplicate measurements was selected 
and normalized with respect to the most stable sensor, sensor 2, therefore data 
from sensor 2 are not presented. Further processing was performed in R studio 
and consisted of two steps in which we aimed to put the eNose sensor data in 
perspective with subject-specific pre-exposure baselines and fluctuations. First, 
the mean of all pre-exposure measurements (i.e., baseline) was calculated, 
after which the deviation from this baseline for all pre and post-exposure 
measurements, per subject and sensor were determined (Figure 2). The deviation 
is expressed as a percentage from baseline: (deviation/baseline)×100%. 

Statistical analysis
All statistics were performed in R (version 3.6.1) and R studio (version 1.2.1335). 
The differences in exhaled breath profiles between pre and post-exposure were 
compared using discrimination analysis (using eNose sensor data) with R 
packages “mixOmics” and “pROC”. Associations between exposure levels and 
the change in eNose signal (using eNose deviation percentages) were analyzed 
with linear mixed-effects models using R package “lme4”. p-values < 0.05 were 
considered significant.
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Discriminant analysis
For the discriminate analysis, we performed multilevel partial least square 
discriminant analysis (PLSDA), in which the pre and post-exposure exhaled 
breath profiles are compared while taking into account the paired nature of 
the data (per visit, i.e., pre and post-exposure) to highlight the exposure effects 
within subjects. Next, the first two components of the PLSDA model were 
merged into one discriminant score using linear discriminant analysis (LDA). 
In addition, we stratified the results from the multilevel PLSDA into high (75% 
percentile, 18 visits) and low (25% percentile, 18 visits) PNC exposures, again 
followed by LDA, to test whether the discriminant performance was better for 
higher PNC exposure levels. Finally, we tested the robustness of the model by 
splitting the eNose sensor data in a training (≈70%) and validation set (≈30%). 
First, multilevel PLSDA and LDA models were constructed with the training set. 
Next, these obtained models were tested on the validation set. The performance 
of all discriminant analyses was determined by receiver operating characteristics 
(ROC) analysis, for which we reported the area under the ROC curve (AUROCC) 
with 95% confidence intervals (CI). An overview of the discriminant analysis is 
shown in Figure 3.

Figure 1. (a) The eNose measurement setup consisted of a mouthpiece, bacterial filter, 
spirometer and the SpiroNose. Participants rinsed their mouths with water three times and 
clipped their noses before performing 5 tidal breaths, a deep inhalation, a 5 s breath-hold, 
followed by a slow maximal exhalation (0.4 L/s). (b) Schematic overview of the SpiroNose 
(front view), with four sensor arrays on the outer side that detect the ambient air (yellow) 
and four on the inside that detect the exhaled breath (blue). All seven different sensor types 
are present fourfold, in which the arrays 1, 4, 5 and 8 (filled squares) contain sensors 1–4 
(TGS2602, TGS2610, TGS2611-COO and TGS2600, respectively). Sensor arrays 2, 3, 6 and 7 
(dashed squares) contain sensors 5–7 (TGS2603, TGS2620 and TGS2612, respectively).
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Linear mixed effect models
To take into account the paired data (pre and post), and the multiple visits per 
participant, we have constructed linear mixed effects models, per individual 
sensor. These models are suitable for the longitudinal analysis of within-
individual change. For this analysis, we used eNose sensor data processed as 
deviations from a subject-specific mean baseline, expressed as percentages, as 
described before and depicted in Figure 2. 

The associations between the change in eNose deviation percentages and 
exposure were modelled using a linear mixed-effect model for each individual (i) 
and exposure day (j):

𝑌𝑌"#,%&'()%*+ 								= 	𝛽𝛽/ +	𝑌𝑌"#,12'+3"4+ 	+	𝛽𝛽5𝐸𝐸# +	𝛽𝛽7𝑉𝑉# + 𝑈𝑈/" + 𝜀𝜀" 
 
 
 

The deviation percentage from the baseline for all post-exposure measurements 
(Yij, post) was adjusted for the personal baseline (Yij, baseline), as two participants 
with the same deviation but different baselines could have different deviation 
percentages. Ej represents a vector of the exposure variable(s), U0i the intercept for 
each participant (i.e., a random intercept) and εi the error term. The βs represent 
population-average fixed effects, with β0 being the average change in the outcome 
parameters when all other covariates are zero, and β1 the average change in 
the outcome relative to a 5–95th percentile (5–95 p) increase in exposure. The 
vector Vj represents the covariates that varied at each visit, which included 
the temperature and relative humidity in the exposure laboratory and the 
respiratory symptoms (i.e., cough, dyspnea, blocked nose or sputum production) 
that participants may have had before exposure (as a binary indicator “yes/no”).

We examined single-pollutant models for PNC, PM, BC, NO2 and CO. Next, 
we conducted two-pollutant models consisting of the PNC exposure adjusted 
for all other measured pollutants (BC, NO2, PM and CO) to investigate the 
independence of the effects associated with PNC [17]. Regarding the PNC 
sources, we investigated single-source models for take-offs, landings, airport 
traffic and road traffic, as well as total aviation (take-offs + landings) and total 
traffic (airport traffic + road traffic). Furthermore, we conducted a two-source 
model consisting of total aviation and total traffic. The fit of the models was 
examined by confirming a normal distribution of the residuals using Q –Q plots. 
Non-collinearity between covariates incorporated in the same model was verified 
using Pearson correlation (R < 0.6).
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Figure 3. An overview of the discriminant analyses. Multilevel PLSDA and consecutive 
LDA models were constructed using all eNose sensor data and the training set, separately. 
The results from the PLSDA model, based on all eNose sensor data, was also used for 
the stratification analysis, in which high and low PNC exposures were compared. For 
the validation set, the same models as in the training set were used. The discrimination 
accuracy of all analyses was determined through ROC analysis. PLSDA = partial least 
square discriminant analysis ; LDA = linear discriminant analysis; ROC = receiver operating 
characteristics; PNC = particle number concentration.
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Figure 2. For the deviation percentage calculation, we first determined the individual mean 
sensor value based on all pre-exposure visits (blue solid line, left graph). Next, the deviation 
percentages from this mean were calculated for both the pre-exposure visits (left graph) and 
the post-exposure visits (right graph, with the blue dashed line representing the mean sensor 
value based on the pre-exposure visits).
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To facilitate the interpretation of the results from the linear mixed models, we 
determined the pre-exposure variability in the deviation percentages. For this, 
absolute deviation percentages of all pre-exposure measurements were averaged 
at an individual level and per sensor. Next, the median and interquartile range 
(IQR) of all participants was determined, again per sensor.

Results

Participants
Complete data were available for 20 out of the 23 participants of our main study. 
In accordance with our previous paper, we excluded two participants from the 
analysis because they received only one exposure [14]. In addition, one person 
was excluded as eNose data was missing for this person due to a sampling error. 
The participants were young adults (23 years, IQR: 20–23), mainly female (n = 16, 
80%), with an average BMI of 22.7 kg/m2 (±2.4). They had normal lung function 
(FEV1 > 80% of predicted), FeNO levels (15, IQR: 12–23) and blood pressure (122 
± 12/77 ± 9 mmHg).

Exposures
In total, we conducted 32 exposure days, however, due to a sampling error, eNose 
data for 6 exposure days (i.e., 15 visits) were missing. We analysed 26 exposure 
days and a total of 71 visits, with four (n = 14; 70%), three (n = 3; 15%) or two (n 
= 3; 15%) visits per participant. The 5 h averages of all exposure variables are 
summarized in Table 1 and listed per day in Table S1. On average, the total PNC 
was 53,100 #/cm3 (range 12,600–173,200). At an individual level, the maximal 
contrast in PNC exposure that participants received (i.e., maximal–minimal 
exposure) was, on average, 77,600 #/cm3 (range 8800–152,600) (Table S2). The 
source apportionment model revealed that aviation, in particular aircraft take-
offs, contributed more to PNCs (26,100 #/cm3; range 3200–101,800) than traffic-
related sources (9100 #/cm3; range 1700–33,100) (Table 1). No multicollinearity 
existed between covariates included in the same model (R ≤ 0.58) (Table S3).

Discriminant analysis
The discrimination between pre and post-exposure using multilevel PLSDA 
combined with LDA reached an AUROCC of 0.83 (CI: 0.76–0.89). With the 
training set, a similar AUROCC of 0.84 (CI: 0.75–0.92) was reached, whereas the 
validation set reached an AUROCC of 0.66 (CI: 0.48–0.84) (Figure 4). Furthermore, 
stratification of the PLSDA components for the 25th and 75th percentiles in 
total PNC exposure (i.e., <23,800 and >71,900 #/cm3), showed to have a better 
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accuracy for discriminating pre and post-exposure when PNC levels were high 
(AUROCC = 0.98, CI: 0.94–1.00) compared to low PNC levels (AUROCC = 0.77, 
CI: 0.61–0.93) (Figure 5, Table S4).

Table 1. Exposure variables of all exposure days are based on 5 h averages.

Exposure Days (n = 26)
Mean 5–95th Percentile Range

Pollutant
PNC (#/cm3) 53,100 19,300 – 138,200 12,600 – 173,200
PM (µg/m3) 24.6 14.9 – 41.3 13.6 – 47.5
BC (µg/m3) 0.59 0.21 – 1.26 0.13 – 1.55
NO2 (µg/m3) 27 13 – 44 12 – 48
CO (µg/m3) 634 516 – 782 494 – 830
PNC sources
Total aviation (#/cm3) 26,100 3500 – 84,400 3200 – 101,800
Take-off (#/cm3) 16,600 700 – 58,800 500 – 62,000
Landing (#/cm3) 9500 1500 – 26,500 400 – 42,300
Total traffic (#/cm3) 9100 3600 – 16,700 1700 – 33,100
Airport traffic (#/cm3) 2400 500 – 4900 100 – 6800
Road traffic (#/cm3) 6700 2000 – 14,600 600 – 31,100
Weather conditions
Temperature (°C) 24 20 – 27 19 – 29
Relative humidity (%) 54 43 – 66 40 – 66

PNC = particle number concentration; PM = particulate matter; BC = black carbon; NO2 = 
nitric oxide, CO = carbon monoxide; range = min–max. This table has partly been published 
previously for all exposure days (32 instead of 26) and without the PNC source information 
(Lammers et al., Environ Int 2020).
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Figure 4. Receiver operating characteristic results from the multilevel PLSDA and LDA 
models. Dark blue solid = all data, 71 visits, blue dots = training set, 51 visits, and orange 
dashed line = validation set, 20 visits; PLSDA = partial least square discriminant analysis; 
LDA = linear discriminant analysis; AUC = area under the curve.

Figure 5. Results of the PLSDA model, stratified for high and low PNC levels, demonstrating 
that the difference in exhaled breath profiles between pre (  & ▲) and post-exposure (○ & 
Δ) measurements were larger for high PNC exposures (left) compared to low PNC exposures 
(right). High levels were defined as PNC levels > 75% percentile (i.e., >71,900 #/cm3) and low 
< 25% percentile (i.e., <23,800 #/cm3). PLSDA = partial least square discriminant analysis; 
PNC = particle number concentration.
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Linear mixed effect models
Pre-exposure variability eNose deviations
The median pre-exposure variation in absolute deviation percentages differed 
between sensors, ranging between 3.9–13.2% with sensors 1, 5 and 7 having the 
highest variability; 6.8%, 6.4% and 13.2%, respectively (Table 2).

Associations eNose deviations and pollutants
A significant inverse association was found between PNC and sensor 1 deviation 
percentages (-7.2% CI: -13.9 – -0.5) (Table S5), which remained significant in all 
two-pollutant models (i.e., adjusted for PM, BC, NO2 and CO exposure) (Table 
S6). Furthermore, the deviation percentages of sensors 4 and 5 were significantly 
associated with PM exposure; (-5.7% CI: -10.8 – -0.70) and (-12.1% CI: -23.5 
– -0.79), respectively. No significant association existed between deviation 
percentages and BC, NO2 and CO (Table S5).

Associations eNose deviations and PNC sources
An inverse association was found between road traffic PNC source and sensor 
6 deviation percentages (-5.0% CI: -8.2 – -1.9) (Table S7). The total traffic PNC 
source was also inversely associated with the deviation percentages of sensor 
6, both in the single-source (-5.3% CI: -8.9 – -1.8) and two-source model (-5.3%  
CI: -8.8 – -1.7) (Tables S8 and S9).

Table 2. Pre-exposure variability in absolute eNose deviation %.

Sensor Deviation Percentage (%)
Median (IQR)

1 6.8 (3.3 – 8.8)
3 3.9 (2.7 – 4.9)
4 4.3 (2.5 – 6.9)
5 6.4 (3.6 – 10.8)
6 4.7 (2.6 – 6.5)
7 13.2 (8.4 – 17.7)

At an individual level, the absolute deviation percentages of all 
pre-exposure measurements were averaged, per sensor. Next, 
the median, an IQR of all participants was determined, per 
sensor. IQR = interquartile range.
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Discussion

Short-term exposures to air pollution, in particular UFP, near an airport and 
two highways, appeared to influence the exhaled breath profiles, detected by 
eNose technology, in young healthy adults. The discriminant analysis with 
all eNose sensor data and the training set resulted in good discrimination 
between pre and post-exposure, whereas the validation set reached a poor 
discriminant accuracy, possibly an indication of overfitting. The stratification 
analysis for PNC levels did demonstrate an exposure-response relationship, 
in which a larger difference in exhaled breath profiles existed between pre 
and post-exposure for higher PNC levels. Furthermore, we found robust 
associations between the deviation percentages of sensor 1 and total PNC, and 
between sensor 6 deviation percentages and the PNC sources “road traffic” 
and “total traffic”. However, the change in eNose deviations was in the range 
of pre-exposure variability. Altogether, air pollution could potentially be 
of importance as a confounder in exhaled breath analysis, depending on the 
exposure level and to which extent it affects the disease-related breath profile 
of patients with chronic airway diseases [4].

To our knowledge, there are no studies that published the effects of controlled 
exposures to air pollution on exhaled breath profiles detected by eNose 
technology. The study by Filipiak et al. did focus on (uncontrolled) exogenous 
factors influencing the composition of exhaled breath, such as smoking habits 
and exposure to air pollutants, using gas chromatography-mass spectrometry 
(GC-MS) analysis [18]. They collected breath from 46 healthy volunteers and 69 
patients (both groups ≈50/50 smokers and non-smokers), in which the patients 
had lung cancer, either with or without COPD, or ear-nose-throat (ENT) cancer. 
The largest influence on exhaled breath was a smoking habit, however, also 
benzene, a component considered to originate from petrochemical industry 
products including gasoline, was detected in almost all breath samples. The 
small effect of air pollutants on the exhaled breath profile in our study can have 
several explanations. One of them could be that changes occurred in only one 
or a few VOCs that could not be detected by the eNose, but possibly could have 
been detected by GC-MS. Another explanation could be that the exposures did 
not trigger the production of VOCs associated with inflammation and oxidative 
stress, due to the short duration of the exposures and/or the very healthy and 
young population we have investigated.
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The stratification for high and low PNC exposures in the discrimination analysis 
demonstrated a potential exposure-response relationship. However, our 
study involved extremely high PNC levels, up to 170,000 #/cm3, that are not 
representative of regular exposures to UFP. In highly urbanized areas or close 
to airports, PNC levels are commonly in the order of 10,000–20,000 #/cm3, with 
maximal PNC levels going up to 30,000–40,000 #/cm3 [19–21]. Therefore, air 
pollution may mainly be a possible confounder regarding exhaled breath analysis 
on days with extremely high levels of air pollution, due to e.g., massive use of 
fireworks [22–24] or smog. Regarding regular daily exposures to air pollution in 
urbanized areas, the effects on the exhaled breath profile may be minimal.

This study had several strengths. First of all, we performed multiple exposures 
in which we reached a large contrast in UFP levels within-subjects. This allowed 
for the investigation of exposure-response relationships within-subjects and 
the comparison of these to other participants. Secondly, we controlled air 
pollution exposures by making use of a mobile laboratory lab. This minimized 
the measurement error when compared to the commonly used central site 
monitoring. Thirdly, we used a source apportionment analysis to be able to 
distinguish UFP from different sources. Regarding the eNose sensor data, we 
examined normal deviations in exhaled breath profiles to put the effects of air 
pollution in perspective, as eNose sensor data is challenging to quantify. Finally, 
our statistical analysis takes into account the longitudinal character of our study, 
for the whole exhaled breath profile (i.e., discriminant analysis) and per sensor 
(linear mixed effect models).

Our study also had some limitations. We only compared single pre and post-
exposure time points in which we may have captured only a snapshot of the 
response to the exposure. Furthermore, we had no information about the 
occupational and pre-visit exposure of the participants, which may have affected 
the pre-exposure measurement and the response to the exposure. However, 
we attempted to minimize this confounder by carefully selecting where our 
healthy volunteers lived; i.e., not near a highway, the airport or a busy street. In 
addition, the participants were mainly students with generally little occupational 
exposure. We, therefore, assume that the influence of occupational exposure on 
our results was minimal. Thirdly, our sample size was relatively small and based 
on the primary outcomes of the study (i.e., cardiopulmonary function). This 
possibly explains the issue of overfitting of the discriminant analysis models 
as demonstrated by the discrepancies between the discriminant accuracy of the 
training and validation set. Furthermore, our study mainly involved female 
participants, however, due to a lack of power we could not do a sensitivity 
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analysis to investigate the influence of gender on our results. Finally, we may 
have faced the issue of multiple testing in our linear mixed-effect analysis, which 
has possibly led to finding significant associations by chance. Therefore, we 
chose to mainly focus on the consistency between the results from our different 
models [25].

For future research, it could be valuable to either use exhaled breath analysis in 
air pollution research, or to consider air pollution as a possible confounder in 
breath research. Exhaled breath analysis is a non-invasive and easy-to-perform 
method to detect both local and systemic metabolomic processes, making it an 
interesting tool in air pollution research. Regarding exhaled breath research, 
not focussing on the effects of air pollution, it could be important to take the air 
quality of a patient’s place of residence into account, mainly for patients living 
in highly polluted areas (e.g., cities facing recurrent smog). For this, one could 
make use of air quality data that are constantly monitored in many countries and 
are publicly accessible.

Conclusion
The short-term exposure of 5 h to air pollution, more specifically UFP, from air 
and road traffic may influence the exhaled breath profile, detected by eNose 
technology, of young healthy adults. Our study involved extremely high levels 
of UFP, as volunteers were exposed in high proximity to a major airport and 
two highways, which are not representative for regular daily exposures in 
urbanized areas. Therefore, more insight on air pollution as a possibly important 
confounder in breath analysis is required to determine to what extent it may 
influence the exhaled breath profile, especially with respect to the disease-related 
breath profile of patients with chronic airway diseases.
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Supplementary material

Table S1. Distribution of exposure variables per exposure day (5h averages)

Exposure 
day

PNC 
(#/cm3) 

PM
(µg/m3)

BC
(µg/m3)

NO2

(µg/m3)
CO

(µg/m3)
Temp
(oC)

RH
(%)

1 74,466 29.9 0.3 12.4 619 19.4 43
2 40,156 17.0 0.3 13.3 599 18.8 44
3 28,898 18.8 0.6 48.4 775 22.3 54
4 22,049 27.3 0.8 37.8 650 23.9 62
5 23,356 22.4 0.7 28.1 621 24.2 51
6 18,861 39.4 1.3 41.4 784 22.3 62
7 27,835 14.5 0.5 24.5 619 21.9 46
8 30,413 13.6 0.3 16.4 587 21.4 43
9 134,879 26.6 0.7 42.8 569 24.0 40
10 32,144 25.7 0.5 12.8 510 24.0 53
11 23,474 25.7 0.2 16.1 691 24.0 50
12 35,357 28.0 0.4 27.3 667 25.2 54
13 24,866 16.0 0.3 16.3 494 24.6 50
14 12,619 21.9 0.4 20.0 579 24.1 58
15 20,926 27.9 0.1 12.4 537 25.2 57
16 52,896 16.0 0.3 23.3 611 26.0 52
17 39,531 18.2 0.3 27.0 568 26.5 47
18 38,360 18.4 0.4 18.8 557 25.0 47
19 46,866 47.5 0.8 26.8 616 26.6 53
20 45,524 20.3 1.0 27.7 603 28.6 52
21 64,379 27.8 0.5 24.8 670 24.8 65
22 139,321 24.4 1.0 36.2 705 25.2 66
23 173,187 19.1 0.6 33.9 597 21.3 58
24 128,166 24.8 1.1 35.8 681 24.4 66
25 80,856 26.7 0.6 34.1 744 26.6 63
26 20,644 42.0 1.6 44.0 830 22.8 62
mean 53,469 23.1 0.6 28.2 638 23.3 54
SD 43,776 8.3 0.4 12.2 83 2.7 7
max 173,187 47.5 1.9 60.2 830 28.6 66
min 10,520 10.6 0.1 12.4 494 15.7 40
Mass concentration based on filter measurements; PNC = particle number concentration; 
PM = particulate matter; BC = black carbon; NO2 = nitric oxide; CO = carbon monoxide;  
DL = value below detection limit; Temp = temperature; RH = relative humidity;  
SD = standard deviation. This table has been published previously for all exposure days  
(32 instead of 26 days) (Lammers et al., Environ Int 2020).
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Table S2. Distribution of particle number concentrations per participant (5h averages)

Participant PNC exposure (#/cm3) Visits
mean min max contrast

1 89,500 20,700 173,200 152,600 4
2 68,200 24,900 173,200 148,400 4
3 52,300 12,700 134,900 122,300 4
4 66,600 21,000 139,400 118,400 3
5 51,400 20,700 134,900 114,300 4
6 72,700 30,500 139,400 109,000 4
7 74,500 20,700 128,200 107,600 2
8 57,800 22,100 128,200 106,200 4
9 85,400 38,400 134,900 96,600 4
10 41,200 12,700 74,500 61,900 4
11 52,200 23,500 80,900 57,400 2
12 52,500 23,500 80,900 57,400 3
13 50,900 24,900 80,900 56,000 3
14 40,300 21,000 74,500 53,600 4
15 44,300 27,900 74,500 46,700 4
16 35,600 18,900 64,400 45,600 4
17 42,700 27,900 64,400 36,600 4
18 34,900 18,900 45,600 26,700 4
19 30,400 21,000 46,900 26,000 4
20 27,800 23,400 32,200 8,800 2
mean 53,600 22,800 100,300 77,600
min 27,800 12,700 32,200 8,800
max 89,500 38,400 173,200 152,600

PNC = particle number concentration measured by condensation particle counter (CPC) 
with d50 = 4 nm. PNC levels are rounded to hundreds. Table is order based on the individual 
contrast in PNC exposure. This table has been published previously for all exposure days 
(32 instead of 26 days) (Lammers et al., Environ Int 2020).
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Discriminant analysis

Table S4. Discrimination between pre- and post-exposure

PLSDA multilevel + LDA 
AUROCC (95%CI)

All eNose sensor data (n=71) 0.83 (0.76 – 0.89)

PNC level stratification
PNC < 25 percentile (n=18) 0.77 (0.61 – 0.93)
PNC > 75 percentile (n=18) 0.98 (0.94 – 1.00)

Internal validation
Training set (n=51) 0.84 (0.75 – 0.92)
Validation set (n=20) 0.66 (0.48 – 0.84)

In bold AUROCC > 0.80 and p-values < 0.05; PLSDA = partial least square discriminant 
analysis; LDA = linear discriminant analysis; AUROCC = area under the receiver operating 
characteristic curve; CI = confidence interval; eNose = electronic nose; n = number of visits; 
PNC = particle number concentration.
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Table S8. Single-source models: Associations between PNC sources (totals) and eNose 
deviations

Sensor Total aviation
5-95p = 81,000 #/cm3

Total traffic
5-95p = 13,100 #/cm3

Est. (95% CI) R2 Est. (95% CI) R2

D
ev

ia
tio

n 
%

1 -6.4 (-13.7 – 0.8) 0.10 -1.2 (-6.9 – 4.5) 0.07
3  2.5 (-1.4 – 6.4) 0.17 -1.7 (-4.7 – 1.3) 0.16
4  2.2 (-2.5 – 6.9) 0.03 -3.1 (-6.6 – 0.5) 0.10
5  2.9 (-7.6 – 13.4) 0.19 -6.2 (-14.1 – 1.8) 0.22
6 -1.9 (-6.8 – 2.9) 0.03 -5.3 (-8.9 – -1.8) 0.13
7  0.6 (-18.6 – 19.9) 0.12 -3.1 (-17.9 – 11.7) 0.13

Data are presented as estimates (est.) with 95% confidence intervals (CI) intervals and the 
conditional explained variance (R2) by both fixed and random factors (i.e. the entire model). 
All effect estimates are scaled to the 5-95th percentile change in the exposure of interest and 
are adjusted for respiratory symptoms, room temperature and room humidity. The results 
of the deviation percentages were also adjusted for the individual baseline eNose signal 
(i.e. mean of all pre-measurement per subject and sensor). Numbers in bold are significant 
effects (p < 0.05) and/or R2 > 25%. Total aviation = take-off + landing; total traffic = airport 
traffic + road traffic. 

Table S9. Two-source model: Associations between adjusted PNC sources and eNose 
deviations

Sensor Total aviation
5-95p = 81,000 #/cm3

Adjusted for total traffic

Total traffic
5-95p = 13,100 #/cm3

Adjusted for total aviation
Est. (95% CI) Est. (95% CI) R2

D
ev

ia
tio

n 
%

1 -6.4 (-13.7 – 1.0) -0.3 (-6.0 – 5.3) 0.10
3  3.0 (-0.8 – 6.9) -2.2 (-5.2 – 0.8) 0.19
4  2.9 (-1.6 – 7.7) -3.5 (-7.0 – 0.1) 0.10
5  4.7 (-5.8 – 15.2) -6.9 (-15.0 – 1.2) 0.22
6 -0.6 (-5.4 – 4.1) -5.3 (-8.8 – -1.7) 0.13
7  1.3 (-18.2 – 20.9) -3.3 (-18.3 – 11.7) 0.13

Data are presented as estimates (est.) with 95% confidence intervals (CI) intervals and the 
conditional explained variance (R2) by both fixed and random factors (i.e. the entire model). 
effect estimates are scaled to the 5-95th percentile change in the exposure of interest and 
were adjusted for respiratory symptoms, room temperature and room humidity. The results 
of the deviation percentages were also adjusted for the individual baseline eNose signal 
(i.e. mean of all pre-measurement per subject and sensor). Numbers in bold are significant 
effects (p < 0.05) and/or R2 > 25%. Total aviation = take-off + landing; total traffic = airport 
traffic + road traffic.
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Abstract

Background: Inflammation, oxidative stress and reduced cardiopulmonary 
function following exposure to ultrafine particles (UFP) from airports has 
been reported but the biological pathways underlying these toxicological 
endpoints remain to be explored. Urinary metabolomics offers a robust method 
by which changes in cellular pathway activity can be characterised following 
environmental exposures. 

Objective: We assessed the impact of short-term exposures to UFP from different 
sources at a major airport on the human urinary metabolome.

Methods: 21 healthy, non-smoking volunteers (aged 19-27 years) were repeatedly 
(2–5 visits) exposed for 5h to ambient air at Amsterdam Airport Schiphol, while 
performing intermittent, moderate exercise. Pre- to-post exposure changes in 
urinary metabolite concentrations were assessed via 1H NMR spectroscopy and 
related to total and source-specific particle number concentrations (PNC) using 
linear mixed effects models.

Results: Total PNC at the exposure site was on average, 53,500 particles/cm3 
(range 10,500 – 173,200) and associated with significant reductions in urinary 
taurine (-0.262 AU, 95% CI: -0.507 – -0.020) and dimethylamine concentrations 
(-0.021 AU, 95% CI: -0.040 – -0.067). Aviation UFP exposure accounted for these 
changes, with the reductions in taurine and dimethylamine associating with UFP 
produced during both aircraft landing and take-off. Significant reductions in 
pyroglutamate concentration were also associated with aviation UFP specifically, 
(-0.005 AU, 95% CI: -0.010 – <0.000) again, with contributions from both landing 
and take-off UFP exposure. While non-aviation UFPs induced small changes to 
the urinary metabolome, their effects did not significantly impact the overall 
response to airport UFP exposure.

Discussion: Following short-term exposures at a major airport, aviation-
related UFP caused the greatest changes to the urinary metabolome. These 
were consistent with a heightened antioxidant response and altered nitric oxide 
synthesis. Although some of these responses could be adaptive, they appeared 
after short-term exposures in healthy adults. Further study is required to 
determine whether long-term exposures induce injurious effects. 
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Introduction

Global air transport has grown strongly over the past decades [1]. In 2019, 
scheduled passenger numbers reached more than 4.5 billion and 61.3 million 
tonnes of cargo were transported by plane [2]. Encouraged by our developing 
understanding of road emissions toxicity, concern has developed over the 
impacts that aviation and other airport emissions could have on human health. 
In addition to manoeuvring aircraft, auxiliary power units, ground service 
equipment and ground access vehicles are strong sources of nitrogen oxides 
(NOx), carbon monoxide (CO), volatile organic compounds (VOCs), sulphur 
oxides (SOx) and particulate matter (PM) at airports [3]–[6]. 

Much of airport-originating PM falls within the ultrafine size range (PM <0.1 
µm) [5] and is dominated by particles <20 nm in diameter based on the particle 
number concentrations (PNC) counts. This fraction is apportioned to primarily 
aircraft emissions [5], [7]. Concentrations of aviation-related PNCs have been 
detected at significantly elevated levels as far as 18 km downwind of airports 
[7]–[10] affecting both total indoor and outdoor PNCs [8], [10]. Resultantly 
the number of individuals exposed to aircraft -related emissions far exceeds 
airport personnel and passengers, extending to residents and workers in the 
urbanisations that neighbour airports.

Historically, studies of PM toxicity have focused primarily on the adverse impacts 
of exposure to PM10 and PM2.5 [11]–[15].  However, expansion of these studies to 
incorporate traffic-related UFPs has demonstrated the potential for UFPs to elicit 
greater toxicity (based on mass concentrations) and a higher likelihood to induce 
systemic effects compared with larger particles of the same composition. This is 
due to their small diameter, high surface area- to- mass ratio and high number 
concentration. These properties allow UFPs to adsorb greater quantities of redox-
active metals and organic compounds and to deposit efficiently within the alveoli 
where they generate oxidative stress and inflammation, inhibit antimicrobial 
mechanisms and rapidly enter the surrounding tissue, avoiding clearance by 
airway macrophages [16]–[19]. Furthermore, small quantities of UFPs can cross 
the alveolar-capillary barrier, enter the bloodstream and translocate to secondary 
organs within hours of pulmonary exposure [20]–[22]. 

Consistent with these observations from UFPs emitted by road-traffic, 
aviation-related UFPs have been shown to induce both airway and systemic 
inflammation in vivo. In mice, particles collected from a commercial airport 
and non-commercial airfield caused dose-dependent infiltration of the airways 
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by neutrophils, lymphocytes and eosinophils during the first 24h of exposure 
[23]. Heightened concentrations of pro-inflammatory mediator IL-6 were also 
observed in the blood of asthmatic adults following a 2 h walk in the high UFP-
zone surrounding Los Angeles International Airport (LAX) [24]. Supported by 
evidence that exposure to UFP from Amsterdam Airport Schiphol associates with 
mild reductions in lung and cardiac function (decreased forced vital capacity 
and prolonged QTc intervals) in healthy young individuals [25]. While studies 
of adverse health effects and UFP exposure in airport workers remain scarce and 
inconclusive [26], the adverse effects that we see in these interventional and in 
vitro studies are consistent with those induced by diesel exhaust particles (DEP) 
[27]. Together with evidence that ultrafine DEP and aviation UFP have similar 
physicochemical properties [27], these findings confirm the credibility of concern 
regarding aviation-related UFP exposure and health. 

Expanding upon the observations from Amsterdam Airport Schiphol, this study 
employed untargeted metabolomics to identify response biomarkers that inform 
identification of potential causal adverse outcome pathways. Metabolomics 
captures the profile of small molecules that exist within a sample, and has been 
used to identify changes in cellular activity following exposure to fuel exhausts 
produced by road vehicles and ships [28]–[31]. Being global in design, these 
analyses identified components of adverse responses that were not captured 
previously by hypothesis-driven studies, including fuel- specific differences [32]. 
For humans, urine is an especially favourable sample for metabolomic study of 
environmental exposures. As the primary route of excretion for cellular waste, 
urine is rich in metabolites and inclusive of pathway dysfunction markers from 
across the body [33]. As a non-invasive and easily accessible sample, it also lends 
itself well to studies of large cohorts or repeat sampling. 

Employing metabolomic urinalysis, this study explored the hypothesis that 
UFP from different airport-related sources (aviation, ground service vehicles 
and feeder highways) induces distinct changes to the urinary metabolome. 
Aiming to identify mechanistically informative markers of cellular responses 
to airport UFP exposure, we analysed the metabolic content of urine produced 
before and after short-term exposures to ambient air at Amsterdam Airport 
Schiphol, Netherlands. 
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Materials and methods

Study design and population
The design of this prospective, interventional study is detailed in Figure 1. 
Healthy adults (n=21) underwent 5h exposures to ambient air within a mobile 
laboratory at Amsterdam Airport Schiphol (Amsterdam, the Netherlands). 
Two to five repeat visits were made per participant, leaving a minimum of two 
weeks between visits to enable ablation of biological responses to exposure. 
Participants were university students, living in Amsterdam, > 2 km away from 
Schiphol airport and not within 300m away of a highway or road that was 
trafficked by > 10,000 vehicles per day. Participants were aged between 20 and 
23 years, were predominantly female (81%) and had BMIs within healthy range 
(22.6 kg/m2 ± 2.4). All participants had normal cardiopulmonary function as 
determined by measurements of forced expiratory volume (FEV1), forced vital 
capacity (FVC), peak expiratory flow (PEF), fractional exhaled nitric oxide 
(FeNO), blood pressure, heart rate and oxygen saturation (presented previously 
in Table 2 of Lammers et al. [25]). Each participant provided first morning urine 
samples the day of exposure and again the next morning, an average of 18h after 
the end of exposure (minimum 12h, maximum 27h). Proton nuclear magnetic 
resonance spectroscopy (1H NMR) profiles were acquired for each urine sample 
to characterise changes in the urinary metabolome that related to UFP exposure 
at the airport. 

Exposure
Detailed methods for participant exposures are provided by Lammers et al. 
(2020). Briefly, individuals remained for 5h within a mobile laboratory (14 m3), 
situated next to the airside of Amsterdam Airport Schiphol, ~300 m away 
from two runways, ~500 m from two highways, 10 km from the city and close 
to several large car parks. The laboratory was fitted with an airflow system to 
refresh the flow of ambient air in a uniform manner (~400 m3/h) for the duration 
of the exposure. Extensive air quality measurements were produced from the 
flow to characterise exposures for each individual at each visit. This varied due 
to differences in meteorological conditions (especially wind direction) and in 
runway use. By considering forecasted weather, we were able to schedule visits 
to include variation in UFP levels and source contributions (e.g. aviation and 
road traffic) for each individual. During the exposures, participants cycled at 
low intensity for 20 min/h and rested for the remainder of the time. Prior to 
exposures, participants were instructed not to consume alcohol or caffeine (for 
24 and 12h respectively) as well as tobacco and non-pharmaceutical drugs for the 
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duration of the study. Food and drinks were provided on the day of exposure to 
minimise intake of nitrate-rich foods but individual intake was not standardised 
or limited. 

Morning 1
Pre-exposure
urine sample

Morning 2
Post-exposure urine 

sample

1H NMR 
spectroscopy

of urine 

5h residence in 
mobile laboratory 

b20 mins/ h

Time-resolved 
measurement of 

ambient PM, 
NOx, CO, BC

PMF source 
apportionment 

modelling

Linear mixed 
effects modelling 

for detection of 
pollutant-related 

metabolomic 
changes in urine

Time-resolved airport/ 
road activity data 

Meteorological data

Repetition for 2-5 visits, minimum of 2 weeks apart 

Figure 1. Study design: On 2-5 occasions, participants provided urine samples prior to 
spending 5h in a mobile laboratory at Amsterdam Airport Schiphol. A second urine sample 
was given at the 24h time point and the metabolomic content of each sample was characterised 
via 1H NMR. The output was combined with source apportioned pollutant measurements in 
a linear mixed effects model to identify changes in urinary metabolic content that relate to 
different air pollutant exposures at the airport. Exposure and experimental steps are denoted 
with blue arrows while data interrogation is represented by red arrows. 

Exposure characterisation 
Individual exposures to UFP emissions from aviation emissions (total, take-off 
only and landing only), non-aircraft airport vehicles (such as passenger buses, 
fuel tankers, baggage trucks and local airport traffic) and non-airport (urban 
background and road) sources were calculated as a 5h average for each exposure 
date using a Positive Matrix Factorization (PMF) source apportionment model. 
Details of the model and instruments used to collect the input data are provided 
by Pirhadi et al. (2020) [5] and Lammers et al. (2020) [25]. To summarise the sources 
of the UFP, air within the exposure chamber was sampled continuously and 
subjected to measurement for particle number concentrations (PNCs) and PM 
mass (gravimetrically), carbon monoxide (CO), black carbon (BC) and nitrogen 
oxides (NOx). A water-based condensation particle counter (CPC) provided 
PNCs for total PM of ≤ ~2.5 µm in diameter and a scanning mobility particle 
sizer (SMPS) was fitted to measure PNCs for size fractions between 6 and 225 nm 
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in diameter. Particle masses were established using a tapered element oscillating 
microbalance while NOx was measured with a chemiluminescence NOx analyzer, 
CO with a gas filter correlation analyser and BC via optical absorption using an 
aethalometer. Meteorological conditions (temperature, wind speed and relative 
humidity) for the times of sampling were provided by the Royal Netherlands 
Meteorological Institute. 

1H NMR spectral acquisition 
Samples were prepared by combining 540 μl urine with 60 μl phosphate buffer 
containing 0.1M trimethylsilylpropanoic acid (TSP) in 5 mm NMR tubes. Spectra 
were acquired with a 600 MHz AV-NEO spectrometer equipped with a triple 
resonance cryoprobe with 1H/13C/15N channels and a SampleJet for automation 
(all Bruker, UK). For each sample, a 1D 1H spectrum was acquired using the pre-
saturation utilising relaxation gradients and echoes (PURGE) pulse sequence, 
optimised to reduce the effects of non-ideal gradients [34]. 64 scans were used, 
with an acquisition time of 2.62 s, a spectral width of 20.8 parts per million (ppm), 
4 dummy scans and a relaxation delay of 4 s. Additionally, a Total Correlation 
Spectroscopy (TOCSY) spectrum and a heteronuclear single quantum coherence 
(HSQC) spectrum were acquired on one of the samples for identification purposes. 
For TOCSY, the Bruker pulse sequence “dipsi2gpphzs” was used, slightly 
modified to include presaturation, which 16 scans, 512 t1 increments, a spectral 
width of 13.7 ppm in both dimensions and a relaxation delay of 2 s. The HSQC 
spectrum was acquired using the Bruker pulse sequence “hsqcetgpsisp2.2”, with 
32 scans, 512 t1 increments, a spectral width of 210 ppm in the 13C dimension and 
20.8 ppm in the 1H dimension and a relaxation time of 2 s. 

1H NMR spectral processing and peak assignment 
After acquisition, the 1D 1H spectra were processed with an exponential window 
function of 0.3 Hz before Fourier Transform, then phasing, calibration of the 
ppm scale to the TSP peak (0 ppm) and baseline correction with a polynomial 
function of order 2. Processed spectra were imported into Chenomx Profiler 
(Chenomx Inc, Canada) for annotation using a peak fitting technique. Statistical 
total correlation spectroscopy (STOCSY) analyses were performed using Matlab 
(Version R2019b, Mathworks, USA) to assist this process by identifying peaks 
that belonged to common parent molecules (r values > 0.8). Annotations were 
confirmed for feature metabolites by comparing peak signals within the HSQC 
spectrum with reference values published in the Human Metabolome Database 
[35]. Integrals were calculated for individual peaks using Matlab, employing 
code that determined the size of the signal based on the area under the curve 
between peak minima and maxima. Peak integrals were normalised to those 
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of creatinine signals from the same spectrum to account for variations in 
urinary concentration. All Matlab codes were developed within the Section of 
Computational and Systems Medicine, Imperial College, London. 

Statistical analysis
Linear mixed effects models were used to (A) detect confounding variables 
in the dataset and (B) identify changes in urinary metabolite content that are 
related to pollutant exposure. These were performed in R Studio (version 1.1.463, 
USA) using the ‘lmer’ function of Package ‘lme4’.  Throughout the analysis, 
relationships between metabolite signals and variables of interest (presented as 
regression coefficients) were considered statistically significant where the 95% 
confidence interval did not contain zero. 

Confounding variables 
To identify whether use of over-the counter pharmaceuticals (acetaminophen 
and ibuprofen, as detected within the spectra) induced changes to the urinary 
metabolome independent of pollutant exposure, pre-exposure data (pre) for each 
individual (i) and visit (j) was input into the following model: 

Yi,j = β0 + Yi,j ,pre + β1 Ej +U0i + εi 

With Yi,j referring to the relationships between non-target variable and 
metabolomic change across the study, Ej represents a vector of the potentially 
confounding variables and Yi,j ,pre, the metabolite signals produced from the pre-
exposure spectra of each participant at each of their visits. β refers to population-
average fixed effects; specifically, the average metabolite signal where all other 
co-variates are zero (β0) and the average signal relative to a 5-95th percentile (5-
95p) increase in the variable of interest. The U0i is a random intercept produced 
from each individual’s deviation from the study population’s average metabolite 
signal with ε1 as the accompanying error term.   

Pollutant-related metabolomic changes
Alterations were made to the confounding variable identification model to focus 
on changes in metabolite concentration that were caused by pollutant exposure 
and to correct for confounding co-exposures.

 Yi,j = β0 + Yi,j ,pre-post + β1Ej + β2V1,i,j + β3V2,j + β4V3,j + U0i + εi
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Here, the model calculated the difference in metabolite signals for each individual 
at each visit (Yi,j ,pre-post) whilst adjusting for vectors of pharmaceutical  signals 
produced from the 1H NMR spectra (V1,i,j), environmental conditions (room 
temperature and humidity) for different visits (V2,j) and where appropriate, 
concentrations of secondary pollutants during different visits (V3,j), β2, β3 and β4 
represent population- averages for these variables. 

Pearson’s correlation analyses were performed using GraphPad Prism 8 
(GraphPad, California, USA) to explore the strength of relationships between 
metabolites that associated with exposure (referred to as feature metabolites). 
Correlations were considered ‘moderate’ or ‘strong’ where the Pearson’s r value 
was ≥ 0.60 and 0.80, respectively [36], and the p value was ≤ 0.05. 

Results 

Individual particle exposures were predominantly contributed 
to by aviation emissions
In total, samples from 21 of the exposed participants were included for 
metabolomic profiling. Spectra from 1 participant were withdrawn from the 
analysis following peak annotation due to the presence of ethanol peaks in the 
urine. The remaining samples represented participation on 32 exposure days 
with each individual undergoing 2–5 exposures during the period between 
May and October 2018. Only 2 participants undertook two exposures (finishing 
the study early for personal reasons), with 13 participants undertaking four 
exposures and 6 participants undertaking five exposures due to extremely low 
exposures occurring on their first visit. 

As documented by Lammers et al. and Pirhadi et al., 5h averages of total PNC 
ranged between 10,500 and 173,200/cm3 at the exposure site [25], with aviation 
activity contributing most to PNC exposure for the majority of the study period 
and individuals (Figure 2A-B) [5] . Pearson’s correlation analysis found no 
significant relationship between PNC from total aviation, airport traffic and non-
airport traffic sources but as expected, total aviation PNC correlated strongly 
and positively with total PNC measurements, take – off PNC and landing PNC 
(r= 0.97, 0.97 and 0.89 respectively) (Table S1). Moderately strong positive 
correlations also existed between take-off and landing PNCs (r= 0.76) (Table S1).
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Figure 2. PNC for total aviation, airport traffic and non-airport traffic sources during 
exposures. Source apportioned 5h mean values are provided for each exposure event (A) as 
determined by PMF modelling 5 and for each participant (presented as the mean of these 
values across their 2- 5 exposures) (B).  

1H NMR spectra revealed substantial use of analgesics within 
the study population 
Peaks from 68 distinct, assignable metabolites were detected within the 1H NMR 
spectra alongside a further 54 peaks that could not be assigned using Chenomx 
profiling, HMBD searches or literature searches (Table S2). Of the assignable 
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metabolites, 9 were produced during metabolism of commonly used, over-the-
counter analgesics (ibuprofen and acetaminophen).  As use of these analgesics 
were not exclusion criteria for the study, incidence of use by the study population 
was assessed using the visibility of the ibuprofen/ibuprofen-glucuronide peak 
at 0.74 ppm and the acetaminophen- glucuronide peaks at 5.10 ppm as markers 
of recent ibuprofen and acetaminophen consumption (Figure 3). These peaks 
were selected because they did not exhibit overlap from other metabolites in 
the spectra. Visible ibuprofen/ibuprofen-glucuronide peaks, were present 
in 47 and 50% of pre- and post-exposure spectra (respectively), while visible 
acetaminophen glucuronide peaks were detected in 20 and 13% of pre- and post-
exposure spectra. The presence of both analgesic peaks was detected in 12 and 
5% of pre- and post-exposure spectra while only 32 and 41% of pre and post-
exposure peaks contained no visible peaks for either metabolite.

Although pharmaceutical use is commonly observed in metabolomic analyses, 
the impact that therapeutic acetaminophen or ibuprofen use has on the 
endogenous urinary metabolome in humans has not been published. For the 
current study, linear modelling of the pre-exposure spectra demonstrated that 
urinary concentrations of trimethylamine-N-Oxide (TMAO), 3-aminoisobutyrate 
and glutamine were significantly elevated in association with acetaminophen use, 
and that citrate, glutamine, threonine, dimethylamine, alanine, TMAO, pyruvate, 
glutamate, lysine and N-acetylglutamate concentrations were significantly 
increased with ibuprofen uptake (Table 1). As such, urinary concentrations of 
acetaminophen and ibuprofen were input as confounding variables during 
modelling of emissions-related metabolomic change. 
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δ PPM

\\

M1/6 M4/7 IBU/M5M2/9M4

IBU/
M1-9

IBU/
M1-9

AG

ANAC

AG
AG

ASAS

NAC

AG

AS

No analgesic
Ibuprofen
Acetaminophen
Both analgesics

Figure 3. Comparison of selected analgesic peak regions in the urinary 1H NMR spectra 
of study participants prior to airport exposure.  As labelled, these regions display peaks 
relating to the presence of parent compounds or metabolites of acetaminophen or ibuprofen. 
Included spectra are representative of those that contain no analgesic peaks (black spectrum), 
ibuprofen related peaks (red spectrum), acetaminophen related peaks (green spectrum) or 
peaks relating to both analgesics (blue spectrum). Acetaminophen (A), acetaminophen 
sulfate (AS), acetaminophen glucuronide (AG), N-acetylcysteine (NAC), Ibuprofen (IBU), 
1-hydroxy ibuprofen (Ibuprofen metabolite (M) 2), carboxy ibuprofen (M4), 2-hydroxy 
ibuprofen glucuronide (M6), carboxy ibuprofen glucuronide (M7), 1-hydroxy ibuprofen 
glucuronide (M9). 
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Table 1. Associations between Δ endogenous metabolites and xenobiotic metabolite 
concentrations.

Metabolite Ibuprofen Acetaminophen
Coef. (95% CI) Coef. (95% CI)

Citrate 4.55 (2.30 – 6.90) 0.17 (-1.63 – 2.03)
Glutamine 1.69 (1.02 – 2.40) 0.866 (0.33 – 1.41)
Threonine 1.48 (1.09 – 1.88) 0.34 (-0.04 – 0.72)
Dimethylamine 1.48 (0.52 – 2.43) 0.04 (-0.81 – 0.90)
Alanine 1.42 (1.04 – 1.80) 0.19 (-0.19 – 0.16)
TMAO 1.39 (0.04 – 2.82) 1.19 (0.19 – 2.23)
Unassigned at 2.33 ppm 0.81 (0.36 – 1.44) 0.32 (-0.04 – 0.67)
Pyroglutamate 0.74 (0.45 – 1.05) 0.33 (0.11 – 0.56)
Acetate/ Phenylacetylglutamine 0.54 (0.30 – 0.78) 0.11 (-0.09 – 0.11)
3-Aminoisobutyrate 0.72 (-0.34 – 1.84) 1.12 (0.32 – 1.95)

Data are presented as coefficients (coef.) of the relationship between exposure and Δ in 
metabolite concentration (post-pre) with 95% confidence intervals (CI) (expressed as the 
range between lower and upper values). All coefficients are adjusted for room temperature 
and humidity. Numbers in bold represent significant relationships (p ≤ 0.05).

Exposure to airport-derived particulates causes significant 
alterations to the endogenous urinary metabolome 
Preliminary analysis determined that total PNC exposure was associated with 
significant reductions in urinary taurine and dimethylamine concentrations 
(-0.263 arbitrary units (AU, as a ratio with internal creatinine signal), 95% 
CI: -0.507 - -0.020 and -0.232 AU, 95% CI: -0.396 - -0.670, respectively). Size 
apportioned PNCs confirmed that these changes associated with exposure 
to PNC < 20 nm but not PNC > 50 nm. The strength of association between 
dimethylamine concentration and PNC < 20 nm was of equal size to the 
relationship between dimethylamine concentration and total PNC, while a 0.035 
AU increase in coefficient size was seen for the association between taurine 
concentration and PNC < 20 nm exposure when compared with total PM exposure 
(Table 2). These observations indicate that PNC < 20 nm, which associate with 
airplane emissions, were responsible for the changes. No other changes to the 
metabolome associated significantly with PNC < 20 nm or PNC > 50 nm or 
with carbon black exposure specifically (Table 2) but exposure to combustion-
associated pollutant gases displayed small but significant associations with 
changes to the urinary metabolome. NO2 exposure related to small reductions in 
urinary 3-hydroxyisovalerate content (-0.005 AU, 95% CI: -0.009 – -0.001) as well 
as 3-hydroxyisobutyrate (-0.007 AU, 95% CI: -0.013 – -0.001). Exposure to CO also 
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associated with reductions in 3-hydroxyisobutyrate concentration (-0.009 AU, 
95% CI: -0.017 – -0.001) and increases in concentrations of N-acetylglutamine 
and an unassigned metabolite (0.020 AU, 95% CI: 0.002 – 0.038 and 0.006 AU, 
95% CI: 0.001 – 0.010, respectively). Accounting for co-exposures to CO or  
NO2 had minimal impact on the strength of association between total PNC, PNC 
< 20 nm and taurine or dimethylamine. No novel associations between exposure 
and metabolomic change were identified following the correction (Table S3). 

Exposure to UFP from different airport-related sources induces 
distinct alterations to the endogenous urinary metabolome 
The PMF model established that airport activities accounted for 79.3% of total 
PNC (46.1, 26.7 and 6.5% from aircraft departures, aircraft arrivals and ground 
service equipment (GSE)/ local airport traffic respectively) while road traffic 
and urban background sources contributed 18% and 2.7% respectively[5]. 
Using this data, PNCs were assigned to three general emissions sources at 
Amsterdam Airport Schiphol; total aviation, airport traffic (from GSE and road 
traffic within the airport) and non-airport traffic (from the nearby highways and 
urban background). Consistent with the results above, the largest changes to 
the urinary metabolome of exposed participants were induced by total aviation 
PNC (5-95p= 73,485 particles/ cm3). Here, exposure associated significantly 
with a 0.26 AU decrease in urinary taurine (95% confidence interval (CI): -0.503- 
-0.023) as well as smaller but statistically significant decreases in dimethylamine 
(- 0.021 AU, 95% CI: -0.037 - -0.005) and pyroglutamate concentration (0.005 
AU, 95% CI: -0.01- <0.00). Neither PNC produced by airport traffic or non-
airport traffic associated with changes in these metabolite concentrations but 
PNC relating to airport traffic (5-95p= 5077 particles/ cm3) did associate with 
significant yet small increases in urinary concentrations of methylguanidine 
(0.001 AU, 95% CI: >0.000 - 0.002) and decreases in 3-aminoisobutyrate (- 0.010 
AU, 95% CI: -0.019 - - 0.001). In contrast, exposure to PNC produced by non-
airport traffic (5-95p= 15290 particles/ cm3) associated with significant increases 
in urinary 3-aminoisobutyrate concentration (0.010 AU, 95% CI: 0.002 – 0.017) 
as well as small increases in carnosine/arginine (0.005 AU, 95% CI: 0.001-0.008) 
and ethanolamine/isethionate concentrations (0.005 AU, 95% CI: 0.001- 0.010) 
and a reduction in isocitrate concentration (-0.003, 95% CI: -0.005 – -0.001) (Table 
3). Adjustment of the single pollutant models to account for co-exposure to 
UFP from the remaining key sources (total aviation, airport traffic, non-airport 
traffic, as appropriate), did not cause noteworthy changes to the strength of 
associations with metabolite features (Table 4). This indicates that the changes to 
the metabolome that associate with each key feature were unlikely to have been 
contributed to by co-exposure to the others.
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Landing and take-off- related UFP both contribute to changes in 
the urinary metabolome 
Using the PMF source apportionment model, it was possible to explore 
relationships between urinary metabolomic changes and individual aircraft 
behaviours. Single pollutant models demonstrated that total PNCs for UFPs 
produced during take- off (5-95p = 56,130 particles/ cm3) and landing (5-95p = 
31,200 particles/cm3) could be associated with the significant changes in urinary 
dimethylamine concentration (-0.019 AU, 95% CI: -0.037- -0.001 for take-off and 
-0.031 AU, 95% CI: -0.012 - -0.001 for landing). Compared to the relationship 
with total aviation PNC, reductions in urinary taurine concentrations were 
larger when associated with landing PNC specifically (-0.413 AU, 95% CI: -0.689 
– -0.136). While not statistically significant, due to variation in response levels, 
reductions in urinary taurine concentration were also present overall, following 
association with take-off PNC (-0.224 AU, 95% CI -0.495 – 0.047). Similarly, 
reductions in urinary pyroglutamate associated significantly with take-off 
PNC (-0.006 AU, 95% CI: -0.012 – -0.001) but their association with landing 
PNC displayed too much variability to be considered statistically significant 
(-0.004 AU, 95% CI: -0.001 – 0.003) (Table 5). These associations remained robust 
following adjustment of the models for co-exposure to airport or non-airport 
traffic UFP (Table S4). 

Table 5. Single pollutant models for associations between Δ urinary metabolites and PNC 
produced through take-off and landing 

Metabolite Take-off PNC
(5-95p= 56130 #/ cm3) 

Landing PNC
(5-95p = 31200 #/ cm3)

Coef. (95% CI) Coef. (95% CI)
Taurine -0.224 (-0.495 – 0.047) -0.413 (-0.689 – -0.136)
Dimethylamine -0.019 (-0.037 – -0.001) -0.031 (-0.049 – -0.013)
Pyroglutamate -0.006 (-0.012 – -0.001) -0.004 (-0.010 – 0.002)

Data are presented as coefficients (coef.) of the relationship between exposure and Δ in 
metabolite concentration (post-pre) with 95% confidence intervals (CI). All coefficients are 
adjusted for urinary ibuprofen and paracetamol markers, room temperature and humidity. 
Numbers in bold represent significant relationships (p ≤ 0.05).

Features of the metabolomic response to aviation UFP exposure 
may contribute to common biological processes. 
In order to assign mechanistic meaning to metabolomic change, it is necessary 
to explore relationships between feature metabolites. With the three metabolites 
that associate with aviation UFP exposure, there was not sufficient input data 
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to perform an appropriately powered pathway analysis. As such, Pearson’s 
correlation analyses were performed to identify metabolites that could contribute 
to or be products of common biological processes. This method identified 
a strong, positive correlation (r = 0.88, p ≤ 0.001) between Δ dimethylamine 
and Δ taurine concentrations in post- and pre-exposure samples (Figure 4). 
No strong nor significant correlations were found between Δ in taurine and Δ 
pyroglutamate concentration (r = 0.02) or between Δ dimethylamine and Δ 
pyroglutamate concentration ( r = 0.02) (data not shown).

Figure 4. Pearson correlations between Δ feature urinary metabolite concentrations after total 
aviation emissions exposure. R and significant p values are displayed for all key metabolite 
pairings (A) alongside a scatterplot of individual data points for dimethylamine and taurine 
(B). Analysis was performed using post- exposure minus pre- exposure values. *** p = < 
0.001.

Discussion

Combining our cross-over intervention study of 21 healthy young adults with 
source apportionment modelling, we identified acute changes to the urinary 
metabolome that associate with exposure to UFP from distinct emission sources 
at Amsterdam Airport Schiphol. Metabolic signatures associating with aviation 
emissions dominated the response to total PNC and were characterised by 
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significant reductions in urinary taurine, dimethylamine and pyroglutamate 
concentrations, consistent with increased utilisation or decreased synthesis of 
these metabolites. 

Previously, exposure to airport UFPs has been associated with pulmonary 
and systemic inflammation [23], [24], oxidative stress [37] and reductions 
in cardiopulmonary function [25]. To our knowledge, this study is the first to 
assess responses to airport emissions at a global, biochemical level. Consistent 
with observations that airport UFPs have oxidative potential and induce reactive 
oxygen species (ROS) synthesis in vitro [37], several of the metabolites that 
associated with exposure to aviation UFPs in this study have been related to 
antioxidant responses to the imposition of oxidative stress. 

The most pronounced of these changes was the reduction in urinary taurine 
which associated with UFP produced during aircraft landing and possibly take-
off. The β-amino acid taurine, which is abundant in the cytosol of inflammatory 
and metabolically active cells, has been proposed to act as an indirect antioxidant 
via enhancement of classical antioxidant concentrations [38] and modulation 
of mitochondrial ROS generation [39]. It also acts as an anti-inflammatory 
agent through its capacity to react with neutrophil-derived hypochlorous acid 
(HOCl) to form taurine chloramine [40]. When taken up into cells at sites of 
inflammation, taurine chloramine promotes a broad spectrum xenobiotic and 
antioxidant response through activation of the Nuclear factor erythroid 2-related 
factor 2, (Nrf2) transcription factor [40].

Decreased taurine concentrations have been measured in the BALF of rats 
following ZnO inhalation, reflecting enhanced antioxidant activity within the 
pulmonary tissue. Supporting the suggestion that landing UFPs also triggered 
this protective response, taurine has been shown to alleviate oxidative stress, pro-
inflammatory cytokine secretion, inflammatory cell recruitment, mitochondrial 
dysregulation, autophagy and emphysema in mouse lung following exposure to 
DEP or 1-nitropyrene [41], [42]. It is difficult to hypothesise why the observed 
change in taurine concentration associated more robustly with landing UFP. 
To date, no considerable differences have been reported in the composition 
of emissions produced during take-off and landing [43]. Although landing 
particles did account for the majority of UFP < 20 nm at our sampling site [5], 
their concentrations were strongly correlated with those of take-off particles 
(r=0.76), creating the possibility that the observed differences in effect size and 
significance were artefacts of collinearity within the model. While individuals 
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are unlikely to only be exposed to landing UFP at an airport, confirming this 
observation and understanding its cause, could have bearing on future aviation 
engineering.

Exposure to both landing and take-off related UFPs induced reductions in 
urinary pyroglutamate. Pyroglutamate is produced in the γ-glutamyl cycle 
as a precursor to glutathione (GSH) [44]. A decrease in urinary pyroglutamate 
is therefore consistent with increased cellular GSH synthesis as an adaptive 
response to the imposition of oxidative stress. This aligns with a potential role 
for taurine chloramine in promoting GSH synthesis through Nrf2-mediated 
up-regulation of glutathione synthase expression [45] (Illustrated in Figure 5). 
This hypothesis does require experimental confirmation, but in the context of 
the previous literature demonstrating the capacity for UFP to initially deplete 
antioxidants [29] and subsequently induce protective, adaptive responses [46], 
the observed relationships do illustrate the utility of metabolomics in generating 
novel, testable hypotheses to explore causal links between pollutants and 
adverse responses. It is important to note however, that our results reflect only 
responses to short term exposures in healthy individuals and there remains a 
need to understand the impact of recurrent or longer exposures in relation to 
chronic disease development and exacerbation [47]. 

As well as pyroglutamate, UFPs produced during take-off and landing 
were also associated with reductions in urinary dimethylamine. In humans, 
dimethylamine is produced endogenously by the enzyme dimethylarginine 
dimethylaminohydrolase (DDAH) during hydrolysis of asymmetric dimethy-
larginine (ADMA) [48] and through microbial catabolism of dietary choline 
[49]. In health, dimethylamine is excreted via the urine in the upper µM 
range [48], with a small fraction converted to dimethylnitrosamine (DMNA). 
Reduced urinary dimethylamine concentrations may therefore reflect enhanced 
DMNA synthesis or reduced DDAH activity. As DMNA exerts genotoxicity in 
mammalian cell lines and rodents and is hypothesised to act similarly in humans 
[50], [51], this warrants further investigation.  
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Glutamate 
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Figure 5. Hypothesised interplay of altered pathway activity following exposure to aviation 
UFPs. Reductions in urinary pyroglutamate reflect increased demand for glutathione 
synthesis which is contributed to by conversion of taurine to taurine chloramine with 
downstream, Nrf2-mediated induction of glutathione synthase expression. Taurine 
availability also diminishes due to the role of taurine as an inhibitor of ROS generation, 
leading to decreased DDAH agonism and dimethylamine synthesis. Resultant accumulations 
of ADMA, combined with increased availability of taurine chloramine inhibit NOS activity, 
resulting in reduced nitric oxide synthesis. Increased conversion of dimethylamine to 
nitrosdimethylamine may also contribute to reductions in dimethylamine concentration. 
Dotted and solid arrows represent reduction and enhancement of reactions (respectively). 
Dimethylarginine dimethylaminohydrolase (DDAH), nitric oxide synthase (NOS).

As ADMA is an inhibitor of nitric oxide (NO) synthases (NOS), reduced 
conversion to dimethylamine could also result in decreased NO synthesis. 
Supporting this hypothesis, increased ADMA and NO precursors have been 
measured in the plasma of individuals exposed to highway UFPs [29] and 
reduced NO synthesis has been observed in human aortic endothelial cells 
following exposure to urban UFPs [52]. As well as impacting vascular tone, 
airway responsiveness and inflammatory cell function, reduced NO availability 
results in QT interval prolongation and reduced lung function [23], [24]. While 
cardiopulmonary function was not measured at the same time as urine sampling 
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for this study, reductions in FVC and QT interval prolongation did associate 
with aviation UFP exposure in our cohort 4h post-exposure [25]. Strong positive 
associations (r=0.88) were observed between the reductions in dimethylamine 
concentrations and reductions in taurine concentrations, suggesting some degree 
of interaction between the implicated metabolic pathways (Figure 5). As DDAH 
is agonised by taurine [55], [56] one explanation could be that the particle-
induced decrease in taurine availability led to reduced DDAH activity via less 
agonism (Figure 5). Like ADMA, taurine chloramine inhibits NOS activity during 
inflammation [40], [57], supporting the plausibility of interactions between the 
two pathways following UFP exposure (Figure 5). 

Ibuprofen and acetaminophen metabolites were present in approximately 50% 
of spectra, making correction for their use, a necessity for our model. Like 
airport UFPs, these metabolites associated with changed urinary concentrations 
of dimethylamine, pyroglutamate, 3-aminoisobutyrate and mitochondrial 
metabolism markers, indicating their potential to mask our responses of interest. 
While many studies prohibit use of analgesics, this was not feasible for our six-
month study period. As a result of correcting for their use post-exposure, we 
add to our outcomes, a preliminary characterisation of how therapeutic doses of 
ibuprofen and acetaminophen impact the human urinary metabolome. Until now, 
study of the impacts that these pharmaceuticals have on the human metabolome 
has been limited to the contexts of overdose and hepatotoxicity [30]–[34]. 

It must be noted that the participants of this study were predominantly female 
(81%) and were all young individuals with ‘healthy’ BMI and cardiopulmonary 
function who live in areas without high levels of traffic pollution. As such, we 
cannot presume that the hypothesised mechanisms of aviation UFP toxicity 
reflect the responses of individuals who do not fit these criteria. As examples, 
metabolomic responses to traffic-related PM exposure are shown to be influenced 
by asthmatic status (arginine-related pathways) [58] and by sex and obesity 
(non-esterified fatty acid metabolism) [59]. It is therefore important that the 
hypothesised impacts of aviation UFP on the urinary metabolome are validated 
in larger, more diverse cohorts, especially those that are inclusive of established 
vulnerable groups.   
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Conclusions 

In this study, we have for the first time, demonstrated a clear distinction between 
the urinary metabolomic signatures that accompany exposure to aviation UFPs 
and those that associate with other UFP sources at a major airport. From the 
metabolic features identified, the direction of their relationship with the exposure 
estimates and preexisting knowledge base on UFP toxicity, we have elaborated a 
series of potential testable hypotheses based on the (A) increased utilisation of 
taurine and induction of an adaptive antioxidant response, including increased 
synthesis of GSH and (B) modulation of nitric oxide production via enhanced 
dimethylarginine dimethylaminohydrolase activity. 

There remain outstanding questions as to whether the hypothesised responses 
are informative to an understanding of longer-term or repeat exposures, 
especially within established vulnerable groups. Considering however, that 
these responses are consistent with effects induced by road-side levels of traffic 
particulates [28], [29], [60], which have established links with adverse health [15], 
[61]–[64], and that airport particulates have been found to induce similar acute 
phase, inflammatory and genotoxic responses  to DEP in mice [23], we believe 
that the hypotheses merit further exploration.  Additionally,  our findings, just as 
previous studies of UFP exposure, emphasise the importance of UFP monitoring 
networks for a comprehensive examination of long-term UFP exposures and 
adverse health outcomes, especially in near-source environments such as major 
airports, to determine threshold levels and support UFP regulations [65]. 
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Table S2. Locations of metabolite peaks within 1H NMR spectra

Peak minimum 
(ppm)

Peak maximum 
(ppm)

Metabolite

0.735 0.765 1-hydroxy ibuprofen glucuronide
0.83 0.84 2-hydroxyisovalerate

0.875 0.893 Ibuprofen/ ibuprofen glucuronide
1.035 1.06 Valine
1.06 1.09 Carboxy ibuprofen/ carboxy ibuprofen glucuronide
1.09 1.12 3-hydroxyisobutyrate
1.12 1.13 4-deoxyerythreonic acid 

1.134 1.15 Acetaminophen
1.15 1.17 U1
1.27 1.28 3-hydroxyisovalerate
1.32 1.35 Threonine
1.36 1.38 2-hydroxyisobutyrate
1.43 1.44 U2
1.44 1.45 Acetoin
1.46 1.51 Alanine
1.89 1.92 Acetate and phenylacetylglutamine 
1.92 1.93 Acetate
1.95 1.97 Isoeugenol
1.98 2 U3
2.02 2.03 U4
2.03 2.05 Pyroglutamate
2.33 2.36 U5
2.43 2.51 Glutamine
2.52 2.57 Citrate
2.6 2.64 3-aminoisobutyrate

2.71 2.74 Dimethylamine
2.78 2.79 2-hydroxyibuprofen

2.795 2.805 2-hydroxyibuprofen glucuronide
2.805 2.815 U6
2.82 2.85 Methylguanidine
2.85 2.86 U7
2.86 2.87 U8
2.88 2.9 U9
2.9 2.91 Trimethylamine

2.91 2.92 U10
2.925 2.94 N,N-dimethylglycine
2.97 2.99 Isocitric acid

2.995 3.01 U11
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3.01 3.03 U12
3.044 3.08 Creatine
3.115 3.125 U13
3.125 3.14 U14
3.14 3.17 Ethanolamine and isethionic acid 
3.17 3.19 U15
3.19 3.22 N-N-Nitrosodimethylamine
3.22 3.24 Carnitine
3.24 3.25 Carnosine
3.25 3.26 Taurine
3.26 3.29 TMAO 
3.29 3.32 U16
3.36 3.366 U17

3.366 3.37 Theophylline
3.38 3.395 U18

3.395 3.405 U19
3.41 3.42 U20
3.45 3.456 U21

3.456 3.464 U22
3.468 3.476 U23
3.476 3.49 U24
3.52 3.526 Caffeine 

3.535 3.545 U25
3.545 3.565 U26
3.57 3.58 Glycine
3.58 3.59 U27
3.93 3.945 Creatine phosphate 

4.095 4.115 U28
4.16 4.21 N-acetylglutamine

4.215 4.24 U29
4.34 4.355 Tartrate

4.502 4.51 U30
4.51 4.53 Ascorbate
4.53 4.54 U31

4.557 4.57 U32
4.57 4.576 U33
6.28 6.29 U34
6.29 6.3 U35
6.31 6.34 U36
6.34 6.36 U37

6.364 6.38 U38
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6.386 6.39 U39
6.39 6.395 U40
6.41 6.419 U41

6.424 6.432 Trans-aconitate
6.425 6.433 Urocanate
6.44 6.46 Chlorogenate

6.473 6.48 U42
6.48 6.494 U43

6.495 6.51 Fumarate
6.52 6.535 U44

6.538 6.544 U45
6.555 6.575 2-furoate
6.58 6.588 U46

6.626 6.69 2-octenoate
6.718 6.728 Homovanillate
6.755 6.78 U47
6.78 6.795 2-hydroxyphenylacetate

6.8557 6.88 P cresol 
6.905 6.915 4-aminohippurate
6.915 6.93 3-hydroxymandelate
6.975 6.983 Tyrosine
7.01 7.02 U48
7.05 7.065 U49

7.065 7.08 Histamines
7.27 7.295 U50

7.305 7.335 U51
7.495 7.52 Tryptophan
7.53 7.59 Hippurate
7.67 7.687 U52

7.687 7.72 3-inodoxyl sulfate
8.026 8.034 3-methylxanthine
8.46 8.47 Formate
8.64 8.655 U53
8.67 8.69 U54
8.77 8.8 Pyrimidine

8.798 8.81 Nicotinurate/nicotinamide
8.81 8.87 Trigonelline
8.88 8.91 1-methylnicotinamide

Where multiple peaks were identified for a single metabolite, a representative peak with 
no/least spectral overlap was selected for inclusion in the analysis. Chemical shifts are 
displayed in parts per million (ppm) as the range between peak minima and maxima. 
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Table S3. Two pollutant models exploring the impact of co-exposure to combustion gases on 
metabolomic responses to airport particle exposure
Metabolite Total PNC 

(5-95p= 120,280 #/ cm3)

Accounting for NO2

(5-95p = 33.2 µg/cm3)
Accounting for CO

(5-95p = 250  µg/cm3)
Coef. (95% CI) Coef. (95% CI)

Taurine -0.300 (-0.569 – -0.031) -0.296 (-0.546 – -0.046)
Dimethylamine -0.027 (-0.044 – -0.009) -0.023 (-0.040 – -0.007)

Metabolite PNC < 20 nm 
(5-95p = 51,160 #/ cm3)

Accounting for NO2

(5-95p = 33.2 µg/cm3)
Accounting for CO

(5-95p = 250  µg/cm3)
Coef. (95% CI) Coef. (95% CI)

Taurine -0.293 (-0.547 – -0.039) -0.319 (-0.577 – -0.060)
Dimethylamine -0.025 (-0.042 – -0.008) -0.023 (-0.040 – -0.006)

Data are presented as coefficients (coef.) of the relationship between exposure and Δ in 
metabolite concentration (post-pre) with 95% confidence intervals (CI) (expressed as the 
range between lower and upper values). All coefficients are adjusted for urinary ibuprofen 
and paracetamol markers, room temperature and humidity. Total PNC refers to particles 
smaller than 2.5µm in diameter, with a lower limit of 4nm, as measured by a condensation 
particle counter and SMPS. Numbers in bold represent significant relationships (p ≤ 0.05).
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Table S4. Two-pollutant models for associations between Δ urinary metabolites and UFP 
produced through take-off and landing

Metabolite Take-off PNC 
(5-95p= 56130 #/ cm3)

Accounting for airport traffic 
PNC

(5-95p= 5077 #/ cm3)

Accounting for non-airport traffic 
PNC

(5-95p= 15290 #/ cm3)
Coef. (95% CI) Coef. (95% CI)

Taurine -0.223 (-0.494 - 0.047) -0.232 (-0.513 - 0.050)
Dimethylamine -0.019 (-0.037 - -0.001) -0.020 (-0.038 - -0.001)
Pyroglutamate -0.006 (-0.012 - -0.001) -0.008 (-0.014 - -0.002)
Isocitrate 0.001 (-0.001 - 0.003) 0.002 (> 0.000- 0.004)
2-hydroxyisobutyrate -0.002 (-0.005 - < 0.000) -0.003 (-0.006 - < 0.000)

Metabolite Landing PNC
(5-95p = 31200 #/ cm3)

Accounting for airport traffic 
PNC

(5-95p= 5077 #/ cm3)

Accounting for non-airport traffic 
PNC

(5-95p= 15290 #/ cm3)
Coef. (95% CI) Coef. (95% CI)

Taurine -0.414 (-0.692 – -0.136) -0.414 (-0.692 – -0.136)
Dimethylamine -0.031 (-0.049 – -0.012) -0.031 (-0.050 – -0.013)
Pyroglutamate -0.002 (-0.004 – < 0.000) -0.002 (-0.004 – < 0.000)
Isocitrate 0.001 (-0.001 – 0.004) 0.002 (-0.001 – 0.004)
2-hydroxyisobutyrate -0.001 (-0.004 – 0.002) -0.001 (-0.004 – 0.002)

Data are presented as coefficients (coef.) of the relationship between exposure and Δ in 
metabolite concentration (post-pre) with 95% confidence intervals (CI). All coefficients are 
adjusted for urinary ibuprofen and paracetamol markers, room temperature and humidity. 
Numbers in bold represent significant relationships (p ≤ 0.05).
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Abstract 

Background: Early detection/prediction of flare-ups in asthma, commonly 
triggered by viruses, would enable timely treatment. Previous studies on 
exhaled breath analysis by electronic nose (eNose) technology could discriminate 
between stable and unstable episodes of asthma, using single/few time-points. 
To investigate its monitoring properties during these episodes, we examined day-
to-day fluctuations in exhaled breath profiles, before and after a rhinovirus-16 
(RV16) challenge, in healthy and asthmatic adults. 

Methods: In this proof-of-concept study, 12 atopic asthmatic and 12 non-atopic 
healthy adults were prospectively followed thrice weekly, 60 days before, and 
30 days after a RV16 challenge. Exhaled breath profiles were detected using 
an eNose, consisting of 7 different sensors. Per sensor, individual means were 
calculated using pre-challenge visits. Absolute deviations (|%|) from this 
baseline were derived for all visits. Within-group comparisons were tested with 
Mann-Whitney U tests and receiver operating characteristic (ROC) analysis. 
Finally, Spearman‘s correlations between the total change in eNose deviations 
and fractional exhaled nitric oxide (FeNO), cold-like symptoms, and pro-
inflammatory cytokines were examined.

Results: Both groups had significantly increased eNose fluctuations post-
challenge, which in asthma started 1 day post-challenge, before the onset of 
symptoms. Discrimination between pre- and post-challenge reached an area 
under the ROC curve of 0.82 (95% CI = 0.65–0.99) in healthy and 0.97 (95% CI = 
0.91–1.00) in asthmatic adults. The total change in eNose deviations moderately 
correlated with IL-8 and TNFα (ρ ≈ 0.50–0.60) in asthmatics.

Conclusion: Electronic nose fluctuations rapidly increase after a RV16 
challenge, with distinct differences between healthy and asthmatic adults, 
suggesting that this technology could be useful in monitoring virus-driven 
unstable episodes in asthma.
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Introduction

One of the major burdens in asthma, are episodes of loss of control and 
exacerbations,[1], [2] characterized by acute flare-ups of respiratory symptoms, 
such as shortness of breath, cough, wheezing and chest tightness. Commonly, 
these episodes are triggered by respiratory viral infections [3], especially 
rhinoviruses [4]–[6], and can potentially lead to emergency visits and 
hospitalisations, possibly requiring urgent medical interventions [1], [2] and 
incurring high healthcare expenses.

Unfortunately, episodes of loss of control are hard to detect due to the poor 
correlation between clinical symptoms and the underlying disease activity [7]. 
Furthermore, predictors of upcoming exacerbations in an individual patient are 
currently lacking, except that recent (severe) asthma exacerbations are predictive 
of future (severe) exacerbations [8], [9]. Moreover, treatment is modestly effective 
during exacerbations [10], which emphasizes the importance of strategies that 
limit the development of exacerbations, preferably in the pre-symptomatic phase. 
Robust biomarkers indicating disease severity and control over time could help 
predict (the severity of) episodic flare-ups in asthma. A metabolomic approach 
might be able to sufficiently capture subtle changes in asthma control, possibly 
before symptoms occur.

Analysis of the exhaled breath‘s metabolic content (i.e., breathomics) is relatively 
new and of interest in asthma, because of its non-invasive character and its 
potential to detect changes of inflammatory profiles in asthmatic patients [11]. 
Exhaled breath consists of volatile organic compounds (VOCs), which are gaseous 
organic molecules that originate either from the body itself (endogenous) or 
from the environment (exogenous). Endogenous VOCs can reflect the metabolic 
processes occurring in the lungs and beyond [12]. The studies by Brinkman et al. 
[13] and Fens et al. [14] showed that exhaled breath could distinguish clinically 
stable from unstable episodes in asthmatic patients; however, only three time-
points (i.e., baseline, loss of control, and recovery) were compared with weeks 
to months between visits. Moreover, the studies by Robroeks et al. [15] and van 
Vliet et al. [16] showed that exacerbations could be predicted based on two-
monthly exhaled VOC measurements, using an offline breath analysis technique. 
Furthermore, our group has previously shown that breath profiles change after 
an experimental rhinovirus-16 (RV16) infection in healthy and asthmatic adults 
[17]. However, only single time-point comparisons and group averages were 
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examined. Now, studies investigating the potential of real-time exhaled breath 
analysis to monitor and predict such episodes on a day-to-day basis should 
follow.

It is believed that biological and thereby metabolic processes fluctuate over 
time to maintain homeokinesis and that external triggers can influence such 
fluctuations [18]. These metabolic fluctuations may be reflected in exhaled 
breath metabolites and possibly be of value in detection and prediction of loss 
of control/exacerbations in asthma. Since most exhaled breath studies are cross-
sectional or longitudinal with low temporal resolution, knowledge about the 
day-to-day fluctuations in exhaled breath profiles, with and without external 
triggers, in patients and healthy controls, is lacking.

We hypothesized that the day-to-day fluctuations of exhaled breath would 
change after an external trigger and that this response would differ between 
healthy controls and asthmatic patients, due to differences in biological 
processes. Our first objective was to compare the day-to-day fluctuations from 
personal baselines in exhaled breath profiles between asthmatic and healthy 
controls, before and after a rhinovirus (RV) challenge. Our second objective 
was to investigate whether the magnitude of the altered eNose fluctuations 
was linked to pre-challenge inflammatory markers and was reflected in post-
challenge symptoms and inflammation, to identify possible differences in 
biological processes between and within groups.

Methods

Study design
In this prospective, intervention study, asthmatic patients and healthy controls 
were followed for 60 days before and 30 days after a RV16 challenge (Figure 1). 
The study was conducted at the Amsterdam UMC, location AMC (Amsterdam, 
The Netherlands), from February 2016 till June 2017. Before inclusion, participants 
were screened and provided informed consent. Prior to the start of the study 
period, participants went through a run-in phase to familiarize themselves with 
all the different measurements performed in the study. Exhaled breath analysis 
was performed 3 times per week using an electronic nose (eNose). 

This study, along with the safety of the virus, was approved by the medical 
ethical committee of the Amsterdam UMC, location AMC (Amsterdam, the 
Netherlands), and registered at the Netherlands Trial Register (NTR5426).
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Study population
In this study, 12 intermittent or mild-to-moderate atopic asthmatics (based on 
the Global Initiative for Asthma criteria 2014, www.ginasthma.org) and 12 non-
atopic healthy controls were included, aged 18–35 years, all non-smokers. Atopy 
was based on a skin prick test with common aeroallergens (see Supplementary 
material). Asthmatics had to be clinically stable at inclusion, defined by no use of 
corticosteroids and no exacerbations, 6 weeks prior to inclusion.

Subjects were excluded when they had a cold (4 weeks prior to screening), a RV16 
titer ≥1:8 in serum (at the time of screening and before the RV16 challenge visit), 
and a positive PCR for any respiratory virus in nasal lavage (at the day before 
the RV16 challenge) or when they were pregnant. Details about the inclusion 
and exclusion criteria can be found in the published work by Sinha et al. [18]. 
All participants were recruited via advertisements at the outpatient clinics of 
various hospitals in Amsterdam and via social media. Furthermore, subjects 
from previous study cohorts of our hospital were contacted, only when they had 
provided informed consent to be invited for future research.

Rhinovirus challenge
After the 60-day pre-challenge phase, participants were exposed to RV16 using 
a standardized and validated challenge approach, as previously described [18], 
[19]. An experimental RV16 infection was used with a nasal dose of inoculum of 
100 TCID50, tissue culture infective dose of the virus required to cause cytopathy 
in 50% of the cells. This has been considered safe for in vivo testing in human 
volunteers, during a scientific advice meeting at BfArM (Bonn, Germany, April 
30, 2013). The RV16 was prepared under good manufacturing practice (GMP), as 

Figure 1. Overview of study design: all participants were screened (1 visit) to test eligibility 
and had a run-in phase (2 visits) to make participants familiarized with all measurements. 
During the study period of 90 days, participants had around 2-3 visits per week, with ~20 
visits in the pre-challenge phase (60 days) and ~10 visits in the post-challenge phase (30 
days).

Screening
(1 day)

Run-in
(14 days)

pre-challenge
(60 days)

post -challenge
(30 days)

Pre-study period Study period

RV16 challenge
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part of the U-BIOPRED study, and tested in a dose-dependent manner in healthy 
individuals and mild asthma patients (manuscript in preparation), which 
revealed that 100 TCID50 was the lowest dose that effectively infected those 
exposed and caused expected symptomology.

Exhaled breath analysis
Measurement setup
Real-time exhaled breath analysis was performed using an eNose, the SpiroNose, 
connected in series with a spirometer (SpiroPerfectTM, Welch Allyn) (Figure S1). 
The SpiroNose consists of seven different cross-reactive metal oxide sensors 
(Table S1), present in fourfold, twice on the inside and twice on the outside of the 
device. The mixture of VOCs in exhaled breath is detected by the inner sensors 
during the exhalation, while ambient VOCs are detected by the outer sensors. 

eNose measurement
The eNose measurement was performed as described previously [20]. In short, 
subjects were asked to rinse their mouth three times thoroughly with water. 
Subsequently, exhaled breath analysis was performed in duplicate with a 2-min 
interval. All participants were instructed to perform five tidal breaths, followed 
by a single inspiratory capacity maneuver up to total lung capacity, a 5-s breath-
hold, and slow (<0.4 L/s) maximal expiration toward residual volume, with their 
nose clipped. A new mouthpiece, bacterial filter, and nose clamp were used for 
each subject.

Data processing
Processing of the eNose sensor data was performed using MATLAB® as 
described in De Vries et al. [20] and included filtering, detrending, ambient 
correction, and automated peak detection. The highest sensor peak of each 
sensor signal was selected as the variable for further analysis. All sensor peaks 
were normalized to the most stable sensor, sensor 2, to minimize the inter-array 
differences. Therefore, data from sensor 2 are not included in the fluctuation 
analysis. 

Other outcomes
Home monitoring
During the study, several clinical parameters were monitored at home: 
spirometry, the Wisconsin Upper Respiratory Symptom Survey (WURSS-21), and 
Asthma Control Questionnaire (ACQ). Spirometry and the ACQ-6 (six questions, 
with a score range of 0-6) [21] were monitored daily, in the morning at home, 
by the volunteers themselves, using a hand-held spirometry device (MicroDiary, 
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CareFusion). Lung function parameters of interest were the forced vital capacity 
(FVC), forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF), 
expressed as percentages of predicted. The WURSS-21 questionnaire (see 
Supplementary material) monitoring started at the day of challenge. 

FeNO
Double fractional exhaled nitric oxide (FeNO) measurements were performed 
using the NIOX MINO (Aerocrine AB, Sweden) during the study visits (thrice 
weekly) at the Amsterdam UMC, location AMC (Amsterdam, the Netherlands), 
according to American Thoracic Society recommendations [22]. We used the 
average of the two measurements in our analysis.

Nasal lavages
Nasal lavages were collected once weekly pre-challenge and thrice weekly post-
challenge during the study visits, as described previously [18]. Standardized 
washings collected from the nose were used for cytokine analyses by luminex: 
IFN-γ, IL-1β, IL-6, IL-8, IL-10, IL-13, IL-17A, IL-33, IP-10 and TNF-α (after the 
cells were removed by centrifugation). 

Sample size
This proof-of-concept study had an explorative nature and was based on 
initial estimates of fluctuating inflammatory biomarkers. Our sample size of 12 
individuals per group was based on previous studies by Turner et al. [23], [24], in 
which detection of temporal variability in exhaled VOCs was possible with fewer 
data points (once weekly, for 6 months). Moreover, our sample size provides 
adequate power for multi-omics analysis according to the study by Li et al. [25]. 

Statistical analysis
Baseline characteristics and clinical presentation
Baseline characteristics are presented as mean and standard deviation (SD) for 
normally distributed variables, median and interquartile range (IQR) for skewed 
data, and n (%) for categorical variables. The distribution of the data was visually 
examined using histograms and Q–Q (quantile-quantile) plots. Differences 
between groups were compared using the Mann-Whitney U or Kruskal-Wallis 
tests for continuous variables and chi-square test for categorical variables. Lung 
function, FeNO, WURSS-21 and ACQ scores were summarized by calculating 
means of the pre- and post-challenge and minima/maxima of the post-challenge 
at an individual level, followed by medians at group level, to compare baseline 
(pre-challenge) with the (maximal) response to the RV challenge. For the 



160

Chapter 6 | Increased fluctuations in exhaled breath profile after a rhinovirus challenge

WURSS-21 score, data from the day of the RV16 challenge and the first day post-
challenge were used for the “pre-challenge” phase, as daily home monitoring 
started on the day of challenge. 

eNose deviations
Fluctuations in the eNose signals were examined for the pre- and post-challenge 
phase, separately, in both asthmatic and healthy volunteers. For each sensor and 
subject, means were calculated based on all pre-challenge visits, serving as an 
individual baseline (�̅�𝑥#$%&'()&) 
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sample mean (Figure 2B, right graph). Next, the mean of these absolute deviation 
percentages was calculated for the pre- 
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phase, at individual and group level, consecutively. Within- and between-
group comparisons were made using Wilcoxon signed-rank and Mann-Whitney 
U tests, respectively. Because of multiple testing, False Discovery Rate (FDR) 
adjusted p-values (q-values) were also calculated [26]. Finally, receiver operating 
characteristic (ROC) analysis was performed to calculate the discriminative 
power of the individual sensor fluctuations to distinguish between pre- and 
post-challenge within and between groups.

Linking change in eNose deviations to inflammatory markers and 
symptoms
First, we calculated the overall change in eNose fluctuations by summing up 
all the differences between pre- and post-challenge mean deviation percentages 
of all sensors (i), at an individual level 
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graph). Next, we explored the link between the magnitude of the change in 
eNose fluctuations and post-challenge cold-like symptoms (WURSS-21), as well 
as, pre- and post-challenge inflammatory marker levels (FeNO and cytokines). 
For this, the FeNO, WURSS-21 and cytokine data were log10-transformed 
and averaged over the last 10 days pre- 
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, separately, for each subject (Figure 2B, right graph). 
Finally, Spearman’s rank correlations between the total deviation difference and 
the mean FeNO, cytokine levels, or WURSS-21 scores, pre- and post-challenge 
separately, were determined. 

Statistics were performed in R (version 3.6.1) combined with R packages “pROC” 
and “RVAideMemoire”. p-values and q-values <0.05 were considered significant.
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Figure 2. Calculation of eNose deviations. Data from one subject with the vertical gray lines 
representing the RV challenge. A) The left graph shows the sensor values (dB) of one sensor, 
for all visits pre- and post-challenge. The mean of the sensor values pre-challenge (blue 
solid line, �̅�𝑥#$%&'()&  
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On the right, data from one of the markers of interest (FeNO, cytokines, and WURSS-21) 
are shown, from which 10-day averages were calculated for the pre- 
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Results

Study cohort
In total, 24 participants were included in this study; 12 healthy and 12 asthmatic 
participants (inclusion chart, Figure S2). At baseline, there were no major 
differences between groups regarding sex, age, ethnicity, body-mass index 
(BMI), pack years, and lung function (Table 1). Only FeNO was significantly 
different between groups (p<0.01), with a median of 14 ppb (IQR: 12 – 21) in 
healthy controls and 45 ppb (IQR: 30 – 63) in asthmatics. The number of visits 
were similar between and within groups, with on average ~23 visits (range 20-
29) before and ~11 visits (range 10-16) after the RV16 challenge. 

Table 1. Baseline characteristics and the number of visits per group

Healthy (n=12) Asthma (n=12)

Sex (female) 7 (58%) 8 (67%)
Age (years) 21 (± 1.5) 22.2 (± 2.2)
Ethnicity (Caucasian) 11 (92%) 9 (75%)
BMI (kg/m2) 22.2 (± 1.6) 22.8 (± 3.1)
Smoking (pack years) 1 (± 0.17) –
Baseline spirometry

FEV1 % of predicted 106 (± 12) 101 (± 10)
FVC % of predicted 104 (± 11) 104 (± 10)
PEF % of predicted 108 (± 14) 105 (± 12)

FeNO (ppb) 14 (12 – 21)* 45 (30 – 63)*
Number of visits (mean; range)

Total 34 (30 – 40) 35 (33 – 38)
Before challenge 23 (20 – 29) 23 (21 – 26)
After challenge 11 (10 – 12) 12 (10 – 16)

Data are presented as mean (±SD), median (IQR), n (%) or else when stated, which have 
partly been published previously 18. BMI = body mass index; FEV1 = forced expiratory 
volume in 1s; FVC = forced vital capacity; PEF = peak expiratory flow; FeNO = fractional 
exhaled nitric oxide. Differences in the number of visits were due to personal reasons (i.e., 
missing visits) or when there was a delay in the RV16 challenge due to logistical reasons 
(i.e., extra visits). * = significant difference (p<0.01)

Clinical presentation (pre- and post-challenge)
Either or a combination of serum antibody tests, along with clinical symptoms 
and RV Polymerase Chain Reaction (PCR) conducted on nasal lavage samples, 
confirmed that all the study participants were successfully inoculated with 
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the RV16, as published previously [18]. During the whole study period, no 
exacerbations/loss of control, as defined by Reddel et al. [1], occurred in the 
participants. The strongest clinical effect was seen in the WURSS-21 score, which 
increased after the RV16 challenge in both groups. The maximal WURSS-21 score 
occurred 3 days post-challenge, with an average score of 35 ±33 in asthmatics and 
19 ±9 in healthy participants (Figure S3). Using descriptive statistics, we did not 
find major changes in lung function, ACQ score, or FeNO (Table S2). However, in-
depth analysis on the development of the response to the challenge was carefully 
studied before using time series analysis, as previously published [18].

eNose deviations
The following comparisons were made regarding the eNose deviations: 1) pre-
viral challenge with post-viral challenge states and 2) diseased (asthma) cohort 
with healthy (control) cohort.

Pre- vs post-challenge
For both groups, the mean deviation of the eNose signals increased after the 
rhinovirus challenge in the majority of the sensors (Figure 3, Table S3). For 
healthy subjects, mean deviations increased significantly in sensor 5 (Δ = 2% ±2; 
p < 0.05) and 7 (Δ = 8% ±8; p < 0.01) and for asthmatics in sensor 1 (Δ = 6% ±7; 
p < 0.05), 4 (Δ = 3% ±4; p < 0.05), 5 (Δ = 9% ±7; p < 0.001) and 6 (Δ = 3% ±3; p < 
0.001) (Figure 3). The change in mean deviations per subject are shown in Figure 
4 and S4. The highest area under the ROC curve (AUROCC) for discrimination 
between pre- and post-challenge was found in sensor 5, for both healthy 0.82 
(95% CI: 0.65–0.99) and asthmatic subjects 0.97 (95% CI: 0.91–1.00) (Table 2). The 
eNose fluctuations of sensor 5 increased (on average) directly one day after the 
RV challenge in asthmatics (Figure S5). This was less evident in healthy subjects.

Healthy vs Asthma
When comparing the two groups, healthy controls had significantly larger 
deviations (8% ±6) than asthmatics (6% ±5) before the RV16 challenge in sensor 
1 (p < 0.01) (Table S3), with an AUROCC of 0.82 (95% CI: 0.65–0.99) (Table 2). 
Post-challenge, mean deviations were larger in asthmatics compared to healthy 
controls in sensor 5 (15% ±13 and 6% ±5, respectively; p < 0.001) and 6 (6% ±5 
and 3% ±3, respectively; p < 0.01), and vice versa for sensor 7 (17% ±15 and 32% 
±26, respectively; p < 0.01) (Table S3). The highest AUROCC for discrimination in 
post-challenge eNose fluctuations between asthma and healthy was 0.94 (95% CI: 
0.83–1.00) based on sensor 5 (Table 2).
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Table 2. Area under the ROC curves for discrimination between study phase and groups

Sensor Healthy
pre vs. post

Asthma
pre vs. post

Pre
healthy vs. asthma

Post
healthy vs. asthma

1 0.67 (CI: 0.44-0.90) 0.76 (CI: 0.55-0.96) 0.82 (CI: 0.65-0.99) 0.54 (CI: 0.27-0.81)
3 0.69 (CI: 0.46-0.92) 0.51 (CI: 0.26-0.76) 0.63 (CI: 0.39-0.87) 0.74 (CI: 0.52-0.95)
4 0.64 (CI: 0.40-0.88) 0.67 (CI: 0.43-0.91) 0.61 (CI: 0.37-0.85) 0.52 (CI: 0.27-0.77)
5 0.82 (CI: 0.65-0.99) 0.97 (CI: 0.91-1.00) 0.62 (CI: 0.39-0.86) 0.94 (CI: 0.83-1.00)
6 0.53 (CI: 0.28-0.78) 0.77 (CI: 0.57-0.97) 0.59 (CI: 0.34-0.84) 0.81 (CI: 0.64-0.99)
7 0.71 (CI: 0.49-0.92) 0.56 (CI: 0.32-0.81) 0.71 (CI: 0.49-0.93) 0.88 (CI: 0.74-1.00)
The area under receiver operating characteristic curve (AUROCC) for discrimination between 
pre- and post-challenge, as well as healthy and asthma, using mean sensor deviations. 
Numbers in bold are AUROCC>0.80; CI = 95% confidence interval.

All differences remained (almost) statistically significant (q ≤ 0.051) after FDR 
adjustment; all p-values and q-values are shown in Table S4. Individual absolute 
deviations for all visits and each sensor are depicted in Figures S6–S8. Pearson 
correlations between eNose sensor peak values are listed in Table S5 and show 
a strong correlation between sensor 5 and 6 (R = 0.91) due to the cross-reactive 
nature of the sensors.

Linking change in eNose deviations to inflammatory markers 
and symptoms
The total change in absolute eNose sensor deviations (i.e., the change in mean 
deviations summed up for all sensors, per subject) was slightly larger in asthma 
(20.4%, IQR 7.3–23.5) than in healthy (11.7%, IQR 7.3–21.7), although not 
statistically significant (p = 0.48) (Figure S9). Only for asthma, this total change 
in deviations moderately correlated (R >≈ 0.50) with four cytokines (Table 3); 
an increase in eNose fluctuations was inversely correlated with pre- and post-
challenge IL-8 levels (pre: ρ = -0.50, p = 0.10; post: ρ = -0.60, p < 0.05) and post-
challenge IL-1β (ρ = -0.49, p = 0.11), IL-17A (ρ = -0.49, p = 0.11) and TNF-α (ρ 
= -0.55; p = 0.07) levels. For all outcomes (i.e., FeNO, WURSS-21, cytokines) in 
healthy and asthma (except for the four previously mentioned cytokines), the 
absolute correlation coefficients were < 0.49 and p-values ≥ 0.14 (Table 3).
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Discussion

In this prospective 90-day follow-up study, day-to-day fluctuations in exhaled 
breath signals rapidly increased after a RV16 challenge, in both non-atopic 
healthy and atopic asthmatic volunteers. We could distinguish between a stable 
and relatively unstable period with high accuracy, reaching a maximal AUROCC 
of 0.97 in asthmatics and 0.82 in healthy controls. Asthmatics with a relatively 
larger increase in eNose fluctuations had (toward) significantly lower IL-1β 
and IL-17A levels (pre- and post-challenge), and a trend toward lower IL-8 and 
TNF-α levels (pre-challenge), possibly due to differences in biological processes 
between groups. In both groups, the change in eNose fluctuations due to RV16 
challenge did not correlate with FeNO and cold-like symptoms (WURSS-21).

To our knowledge, we are the first to examine fluctuations in exhaled breath 
profiles in such an extensive follow-up study, additionally with a highly 
controlled exposure, in a well-defined study cohort with cases and controls. Our 
study complements the study of Brinkman et al. [13], in which unstable (loss of 
control induced by steroid withdrawal) and stable (baseline and recovery) asthma 
periods were correctly classified with 86–95% accuracy, using breath analysis 
detected by an eNose platform. However, in our study, we did not provoke loss 
of control, so a direct comparison cannot be made. Our study extends the study 
of Brinkman et al., as we had a controlled exposure and included more (frequent) 
time-points (days vs. weeks/months) designed exactly around the viral 
inoculation event. Moreover, we have improved the accuracy for discriminating 
pre- and post-challenge phases evidently, when compared to our previous 
study by Abdel-Aziz et al. [17]. In that study, although not the main focus, the 
discrimination between pre- and post-challenge only reached an AUROCC of 
0.79 in asthma and 0.76 in healthy, using single time-point comparisons and 
“raw” sensor peak values. The improved discriminative accuracy of our current 
analysis shows the added value of considering all time-points and personal 
baseline sensor values.

As we had hypothesized, fluctuations in the eNose signals existed regardless of 
the exposure [27]–[29] and increased after the RV exposure. Fluctuations play an 
important role in the adaptive capacity of physiological systems to respond to 
a changing environment and can be too rigid or overly unstable in asthma [30], 
[31]. Analysis of lung function, nasal eosinophils and neutrophils, and FeNO 
from the same study as ours, showed that the adaptive capacity was lower in 
asthma [18], possibly explaining the larger increase in eNose fluctuations after 
the RV16 challenge in asthmatics compared to healthy controls. 



168

Chapter 6 | Increased fluctuations in exhaled breath profile after a rhinovirus challenge

Secondly, the increase in eNose fluctuations after the RV16 challenge was 
detected by different sensors between the two groups. One explanation could 
be the cross-reactivity of the sensors, meaning a compound can be detected by 
several sensors and vice versa, which makes it possible that the same or similar 
compounds were involved between groups. Another explanation could be 
differences in (patho)physiological mechanisms between healthy and asthmatic 
participants that become more prominent when local cells are activated (e.g., 
by viral infection). There are several indications that metabolic activity in local 
cell asthma differs from that in healthy individuals [32]. These metabolites are 
often of low molecular weight that can be detected by eNose technology. It is 
intriguing that we did find moderate inverse correlations between the increase 
in eNose fluctuations and the cytokine levels of IL-1β, IL-17A, IL-8, and TNF-α, 
and not for any other mediators. As macrophages are abundantly present in the 
nasal compartment [33], and M1-like macrophages are activated by RVs [34] at 
an early stage, it is likely that M1-like macrophages gave rise to these cytokine 
levels, which can lead to neutrophilic inflammation [35]. Allergic asthmatics have 
reduced numbers of M1-like macrophages during RV-induced exacerbations [36], 
which may explain the differences in eNose fluctuations. In addition, airway 
epithelial cells are activated at an early stage by RV and give rise to mediators 
like IL-1β and IL-8 [37], [38]. Together, this suggests that the eNose may detect 
RV-induced metabolic changes. 

Finally, we showed that the change in eNose fluctuations was not correlated with 
FeNO or WURSS-21 scores. It has been shown before that exhaled breath profiles 
or VOCs minimally correlate with FeNO [13], [39], [40]. This could possibly 
be explained by eNose signals representing a composite interplay of multiple 
molecular constituents, making it multidimensional as compared to FeNO. 
Regarding symptoms, a study by van der Schee et al. [41] showed differences in 
VOC profiles between wheezing and asymptomatic children, regardless of the 
presence (AUROCC 0.77) or absence (AUROCC 0.81) of a RV. This distinction 
remained accurate even after symptoms recovered in the RV-positive group 
(AUROCC 0.84), but not as accurate in the RV-negative group (AUROCC 0.67), 
illustrating how breath profiles may reflect complex inflammatory processes and/
or (pre-existing) biological host-response differences regardless of symptoms.

The first strength of this carefully designed study was the controlled RV exposure 
and the long follow-up period of 3 months, with multiple measurements per 
week, throughout the study. On top of that, we included both healthy and 
asthmatic volunteers, allowing for investigation of differences in response to the 
RV16 challenge between a diseased and control group. Secondly, we examined 
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fluctuations at individual level first, using personal baselines, before looking at 
group averages. This reduced the issue of averaging out individual effects and 
enabled us to compare normal day-to-day fluctuations with that when triggered 
with a perturbation. Finally, we made steps toward clinical applicability by using 
a non-invasive and real-time method, namely eNose technology, for detection of 
the exhaled breath profiles. 

This study also has a few limitations. First of all, the RV16 exposure induced 
cold-like symptoms, but no loss of control or exacerbation in asthma. This was 
likely due to our choice to investigate mild asthmatics and a relatively mild RV 
strain, a choice driven by ethical concerns. Nevertheless, the eNose was capable 
to detect differences in breath profile fluctuations between the pre- and post-
challenge phases, as well as, between groups. Secondly, exhaled breath profiles 
detected by eNose technology cannot be directly linked to (patho)physiological 
pathways, as eNose sensors cannot detect and identify single VOCs, due to their 
cross-reactivity. However, the eNose possibly did reflect macrophage activity 
or downstream interacting processes. On top of that, it is not easy to delineate 
differences between groups that arise from disease or atopy, as we included 
non-atopic healthy and atopic asthmatic volunteers. Nevertheless, the majority 
of asthmatic subjects in reality also suffer from atopy and hence our study 
resembled a real-life scenario[42], in which unknown allergic exposures may 
have influenced the eNose fluctuations. Even so, it would still be of interest to 
study eNose fluctuations in atopic healthy and non-atopic asthmatics as well, 
also with respect to the generalizability of our results. Our method of fluctuation 
analysis (i.e., summarizing all deviations per study phase, at individual and 
group level) may have caused a loss of temporal and quantitative information 
on day-to-day fluctuations. Furthermore, we did not perform internal or external 
validation due to the limited sample size, and the unavailability of comparable 
data matching the sampling frequency to this intensive study. However, 
adding multi-omics’ analyses offsets the requirement for a large sample size 
[25], although we admit that it does not exclude the possible risk of overfitting 
(i.e., unrepresentative AUROCCs) [43], [44]. Consequently, we believe that our 
data merit a prospective longitudinal study with a larger cohort, preferably in 
a real-life setting, including daily home monitoring of exhaled breath during 
stable and unstable periods of asthma. Finally, a sample size estimation was not 
possible due to the unknown effect sizes of the novel VOC markers, which was 
compensated by unprecedented high sampling frequency in individuals. 
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Although these results cannot be directly applied in clinical practice in the 
current form, they show that exhaled breath analysis could potentially be a 
useful and additional tool in monitoring disease instability, as it captures a 
more comprehensive biomarker signal than that merely captured by FeNO and 
clinical symptoms (WURSS-21). In addition, the increase in eNose fluctuations 
appeared to start before the onset of cold-like symptoms in asthma, supporting 
its potential for patient management at the point-of-care. A better understanding 
of normal and protective homeokinesis vs. diseased and damaging fluctuations 
is required, to discover how treatment could be guided and the development of 
exacerbations could be limited, in asthmatic patients. Non-invasive monitoring 
of exhaled markers using eNose technology can play an important role in this. 

Conclusion 
Day-to-day fluctuations in exhaled breath profiles rapidly increased after a 
RV16 challenge with distinct differences between non-atopic healthy and atopic 
asthmatic volunteers. The increase in fluctuations did not seem to correlate with 
cold-like symptoms and FeNO, but slightly with some of the investigated pro-
inflammatory biomarkers, making it a complementary tool for investigation 
of disease stability monitoring and possibly treatment adjustment purposes, 
in a non-invasive manner. Our data justify the design of a longitudinal home 
monitoring study in a real-life setting and larger population.
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Supplementary material

Methods
Skin prick test
Participants were considered atopic when allergic to one or more of 12 common 
aero allergens. The 12 common aero allergens tested were grass mix, tree mix, 
house dust mite, cat, dog, rabbit, guinea pig, cockroach, alternaria alternata, 
aspergillus fumigatus, cladosporium herbarum and latex. As a control, histamine 
and buffer control were tested.

Figure S1. eNose: The eNose (3) was attached to the rare end of a spirometer (1) and a 
bacterial filter (2) (left, side view). The eNose consists of four sensor arrays (two in duplicate) 
on the inner side of the eNose (blue circle), detecting the exhaled breath, and four on the 
outer side for detection of the environment (yellow circles) (right, front view).

Table S1. SpiroNose sensor type, sensitivity and detection range.

Sensor Type Highest sensitivity to Range (ppm)
1 TGS 2602 VOCs (e.g., toluene) and odorous gases 

(e.g., ammonia and hydrogen sulphide)
1 – 30 

2 TGS 2610 Butane and propane 500 – 10,000 
3 TGS 2611-COO Methane and natural gases 500 – 10,000
4 TGS 2600 Hydrogen, carbon monoxide and ethanol 1 – 30 
5 TGS 2603 Trimethylamine and methyl mercaptan 1 – 30 
6 TGS 2620 Alcohol and solvent vapors 50 – 5,000
7 TGS 2612 Methan, propane and iso-butane 500 – 10,000
ppm = parts per million, VOCs = volatile organic compounds. A similar table has been 
published previously (Ibrahim et al., Allergy 2020, de Vries et al., Ann Oncol 2019).

1 2

3
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Wisconsin Upper Respiratory Symptom Survey – 21 --- Daily Symptom Report

Day: Date: Time: ID:

Please fill in one circle for each of the following items: 

Not

sick

Very

mildly
Mildly          Moderately           Severely

0 1 2 3 4 5 6 7

How sick do you feel today? O O O O O O O O

Please rate the average severity of your cold symptoms over the last 24 hours for each symptom:

                                            Do not have

this symptom

Very

mild
Mild            Moderate             Severe

0 1 2 3 4 5 6 7

Runny nose O O O O O O O O

Plugged nose O O O O O O O O

Sneezing O O O O O O O O

Sore throat O O O O O O O O

Scratchy throat O O O O O O O O

Cough O O O O O O O O

Hoarseness O O O O O O O O

Head congestion O O O O O O O O

Chest congestion O O O O O O O O

Feeling tired O O O O O O O O

Over the last 24 hours, how much has your cold interfered with your ability to:

Not
at all

Very
mildly

Mildly            Moderately         Severely

0 1 2 3 4 5 6 7

Think clearly O O O O O O O O

Sleep well O O O O O O O O

Breathe easily O O O O O O O O

Walk, climb stairs, exercise O O O O O O O O

Accomplish daily activities O O O O O O O O

Work outside the home O O O O O O O O

Work inside the home O O O O O O O O

Interact with others O O O O O O O O

Live your personal life O O O O O O O O

Compared to yesterday, I feel that my cold is…

Very much
better

Somewhat
better

A little
better

The same
A little
worse

Somewhat
worse

Very much
worse

O O O O O O O

WURSS -21©  (Wisconsin Upper Respiratory Symptom Survey)  2004

Created by Bruce Barrett MD PhD et al., UW Department of Family Medicine, 777 S. Mills St. Madison, WI 53715, USA
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Results

Figure S2. Inclusion flow chart. In total, 146 people were contacted of whom 64 met the 
exclusion criteria. From the 82 people who were screened, 57 had RV16 antibody levels >1:8 
in serum. For the healthy group, we included 13 participants, as one subject had to drop-out 
because of personal reasons. Eventually 12 asthmatics and 12 healthy individuals completed 
the study.

82 screened 
• 44 asthma
• 38 healthy

57 excluded (RV16 titre>1:8)
• 32 asthma
• 25 heatlhy

25 eligble & included
• 12 asthma
• 13 healthy

146 responses

1 drop-out (healthy)
• due to personal reasons

64 not invited for screening
• based on exclusion criteria

24 completed study
• 12 asthma
• 12 healthy
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6Figure S3. WURSS-21 scores post-challenge (per day). Wisconsin Upper Respiratory 
Symptom Survey (WURSS-21) scores per day for healthy (left) and asthmatic (right) 
volunteers expressed as means (±SD). After visit 0, volunteers received the RV16 challenge. 
The study by Barrett et al. reported that the minimal clinical important difference (MCID) of 
the WURSS-21 score was 10.3 (Barrett, Health Qual Life Outcomes, 2009).
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Table S3. Overview of eNose absolute deviation percentages per group and phase

Sensor Healthy Asthma
pre post pre post

1 8.0 (±5.7) 9.3 (±6.9) 5.6 (±4.8) 11.1 (±12.9)
3 4.5 (±4.0) 5.8 (±4.0) 3.6 (±3.2) 4.0 (±3.5)
4 4.7 (±4.0) 5.7 (±4.9) 4.2 (±3.8) 6.7 (±7.0)
5 4.5 (±3.4) 6.1 (±4.5) 5.3 (±4.5) 14.5 (±13.3)
6 2.8 (±2.6) 2.8 (±2.6) 3.3 (±3.0) 5.9 (±5.4)
7 24.0 (±19.5) 32.1 (±26.2) 16.3 (±19.5) 16.8 (±14.7)

Group averages of absolute deviation percentages (|%|), expressed as mean (±SD), per 
study phase.

Table S4. P- and q-values for differences in eNose deviation percentages between study 
phases and groups

Sensor Healthy
pre vs. post

Asthma
pre vs. post

Pre
healthy vs. asthma

Post
healthy vs. asthma

p-value q-value p-value q-value p-value q-value p-value q-value
1 0.077 0.092 0.034 0.051 0.007 0.042 0.755 0.887
3 0.064 0.092 0.677 0.677 0.291 0.454 0.052 0.078
4 0.064 0.092 0.021 0.042 0.378 0.454 0.887 0.887
5 0.012 0.036 0.000 0.000 0.319 0.454 0.000 0.000
6 0.970 0.970 0.000 0.000 0.478 0.478 0.008 0.016
7 0.001 0.006 0.233 0.280 0.089 0.267 0.001 0.003
P-values and false discovery rate (FDR) adjusted p-values (q-values) of the differences 
between study phases (pre vs. post) per group and between groups (asthma vs. healthy) per 
study phase; using Wilcoxon signed rank test and Mann-Whitney U test, respectively. Numbers 
in bold are significantly different (p<0.05).

Table S5. Correlations between eNose sensor peak values

S1 S3 S4 S5 S6 S7
S1 0.23 0.16 0.00 0.08 -0.41
S3 0.23 -0.42 -0.15 -0.17 0.04
S4 0.16 -0.42 0.35 0.53 -0.34
S5 0.00 -0.15 0.35 0.91 -0.56
S6 0.08 -0.17 0.53 0.91 -0.63
S7 -0.41 0.04 -0.34 -0.56 -0.63
Pearson correlations for all eNose measurements, with R>0.70 marked in bold.



180

Chapter 6 | Increased fluctuations in exhaled breath profile after a rhinovirus challenge

Figure S4. eNose deviations pre- and post-challenge. Absolute mean deviation percentages 
(|%|) for healthy (top) and asthmatic (bottom) participants. Only sensors that were not 
significantly different (after FDR adjustment) between the pre- (blue) and post-challenge 
(orange) phase for both groups, are shown. Each dot represents the personal mean deviation 
pre- or post-challenge, connected by a line, to visualize individual differences between the 
two phases.
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Figure S5. Absolute deviation percentages per day (sensor 5). Deviations in sensor 5 over 
time (days to or from the RV challenge) expressed as aboslute deviation percentages (mean 
±SD). The pre-challenge visit days are markered in blue and the post-challenge days in 
orange. For (some) asthma patients, a direct increase in eNose fluctuations is visible one day 
after the RV challenge. On certain days, eNose measurements were perfomed in one (no SD) 
or none of the participants (no bar).
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Figure S6. Time series eNose deviations per subject (sensor 1 & 3). Absolute deviation 
percentages from the individual baselines (horizontal grey lines = 0%) over time (visits) for 
sensor 1 and 3. Each row is an individual healthy (left) or asthmatic (right) participant. The 
light gray vertical line, marks the moment of the RV16 challenge. Note that visits are not 
always at the same day from the RV16 challenge.
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Figure S7. Time series eNose deviations per subject (sensor 4 & 5). Deviation percentages 
from the individual baselines (horizontal grey lines = 0%) over time (visits) for sensor 4 and 
5. Each row is an individual healthy (left) or asthmatic (right) participant. The light gray 
vertical line, marks the moment of the RV16 challenge. Note that visits are not always at the 
same day from the RV16 challenge.
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Figure S8. Time series eNose deviations per subject (sensor 6 & 7). Deviation percentages 
from the individual baselines (horizontal grey lines = 0%) over time (visits) for sensor 6 and 
7. Each row is an individual healthy (left) or asthmatic (right) participant. The light gray 
vertical line, marks the moment of the RV16 challenge. Note that visits are not always at the 
same day from the RV16 challenge.



185

6

Figure S9. Total change in absolute eNose deviations (per participant). The total change 
(post – pre) in absolute eNose sensor deviations 
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General discussion

Environmental factors play an important role with respect to our health and 
disease prevention [1]–[3]. All environmental factors (e.g. nutrition, physical 
activity, sleep behaviour, socioeconomic status and environmental exposures) 
together are called the exposome [2], [4]. Compounds present in environmental 
air are important contributors to the exposome. The ambient air is in direct 
contact with our respiratory system, and can contain hazardous agents like air 
pollutants, tobacco smoke, chemicals and pathogens (including viruses). Such 
agents possibly induce both short- and long-term health effects. In this thesis we 
aimed to investigate the short-term effects of exposure to air pollution and 
rhinoviruses on cardiopulmonary function and the metabolome of the exhaled 
breath and urine. In this chapter, the main findings of this thesis will be 
summarized, the main methodological challenges and implications will be 
addressed and recommendations for future research will be discussed. 

Figure 1. This figure summarizes the main findings of this thesis. Exposure to air pollution 
near a major airport decreased the forced vital capacity (FVC), prolonged the corrected QT 
(QTc) interval, induced oxidative stress as detected in the urine metabolome and altered the 
exhaled volatile organic compound (VOC) profile, in healthy adults. The rhinovirus exposure 
altered the fluctuations in exhaled breath profile of both healthy adults and mild asthmatics. 

Air 
pollution

altered
VOC profile

oxidative stress
urine metabolome

QTcFVC

RV16

VOC profile
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Main findings 

Short-term exposure to air pollution: cardiopulmonary effects 
and metabolic changes
In the studies described in Chapters 3 - 5, we found that short-term exposure to 
air pollution, mainly focused on ultrafine particles (UFP), at a major airport had 
cardiopulmonary effects and altered the breath and urine metabolome in healthy 
young adults (Figure 1). This was the first study to evaluate this relationship in 
such a controlled setting. A decreased lung function has been associated with 
road-traffic related UFP before [5], [6], but we were the first to investigate or find 
a signification association with aviation-related UFP. Prolonged corrected QT 
(QTc) intervals have been associated with both short- and long-term exposure to 
fine particles (PM2.5) in previous literature, but not with (aviation related) UFP 
[7]–[9]. Even though the observed effects were small, they are important findings 
for people working at or living close to major airports. As these effects already 
occurred after exposures of 5 hours and in healthy adults, long-term exposure 
may have more severe effects, particularly in vulnerable populations with more 
comorbidities. 

Rhinovirus exposure increases exhaled breath profile fluctuations
Furthermore, we showed in Chapter 6 how a rhinovirus exposure rapidly 
increases the fluctuations in exhaled volatile organic compound (VOC) 
profile (Figure 1), in which the magnitude of the change possibly reflected the 
inflammatory state of the person. As the increase in fluctuations seemed to 
start before symptoms occurred, exhaled breath might even hold promise for 
the prediction of virus-induced exacerbations in asthma, which could have 
serious implications for disease control in severe asthmatics. We were the first 
to investigate the potential of exhaled breath analysis for monitoring of disease 
instability in asthma in such an extensive follow-up study, with on top of that, 
a highly controlled exposure. Previous studies have shown the potential of 
electronic nose (eNose) technology for the detection of loss of control [10], 
exacerbations [11], or a recent exacerbation [12] in asthma and chronic obstructive 
pulmonary disease (COPD), but these studies involved either a retrospective 
design or a prospective design with weeks to months between measurements. 
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Methodological challenges and limitations

Air pollution 
Exposure assessment
For air pollution research, it is challenging to accurately assess the exposure, 
both quantitatively (due to measurement errors) and qualitatively (the actual 
exposure subjects received). Usually, observational studies rely on central site 
monitoring, which can possibly lead to exposure misclassification. In our study 
presented in Part II, we made use of a mobile exposure laboratory at the exposure 
location. This allowed us to accurately measure the exposure on site, without 
measurement errors due to wind (e.g. wind speed) and rain. Although we did 
exclude people living in highly polluted areas, differences in exposure levels 
directly before the study visits, both between and within subjects, may have 
occurred. This has potentially led to differences in the response to the exposure. 
For future research, the at-home exposure could be estimated or measured, and 
incorporated as a covariate in the (linear mixed effect) model. 

Independence of exposure effects
As air pollution concerns a variety of pollutants, a major challenge is to delineate 
the independence of the effects from all different exposure components and 
sources. A suited statistical method to elucidate these independences that we used 
in our study (Part II) is multi-pollutant regression analysis [13]. It is important to 
recognize that pollutants are often highly correlated, and, when included in the 
same model, multicollinearity can occur, making the estimates unstable [14]. In 
that case, one should consider to use more advanced statistical analyses, such as 
deletion-substitution-addition (DSA) and least absolute shrinkage and selection 
operator (LASSO) analysis, which are able to capture complex interactions and 
nonlinear terms of predictors [14]–[16]. Therefore, it is important to check the 
data for multicollinearity. In our study (Chapters 3-5), multicollinearity did not 
play a role, as aviation was the main source of UFP and minimally contributes to 
other pollutants [17]. 

For distinguishing the effects of different UFP sources, we first split the UFP 
range in ≤20 nm and >50 nm, as indicators for aviation [17]–[19] and road-traffic 
[20]–[22] related UFP, respectively. We discarded the particle sizes between 20 
and 50 nm, as these particles can originate from both sources [23]. Furthermore, 
with this method we did not make use of other valuable exposure information, 
like PM2.5 and black carbon (BC) levels, and the meteorological conditions, in 
particular wind direction. We overcame these limitations by using positive matrix 
factorization (PMF) source apportionment models (Chapter 4 and 5). This is an 



193

7

widely-used and advanced method to identify and quantify the contribution of 
a source to a specific variable (in our case, total particle number concentrations) 
[24]–[26], and is recommended for future research on distinguishing the effects of 
different sources of the same pollutant. 

eNose technology 
A large diversity of analytical techniques for the detection of VOCs in breath 
exists (Chapter 2), with the two main approaches being mass spectrometry and 
sensor-based technology [27], [28]. Mass spectrometry techniques enable the 
detection of single compounds, making them suitable for biomarkers discovery 
of distinct metabolic pathways. However, they are costly and cumbersome, 
and require trained personnel. In contrast, eNose technology has the potential 
for point-of-care testing, as it an easy-to-perform and relatively cheap method, 
making it more suitable for clinical practice. A downside of eNose sensors is that 
they lack specificity, as they cannot detect single compounds, and can therefore 
not be used to delineate metabolic pathways. 

In the studies described in this thesis sensor-based technology was used  
(Chapter 4 and 6). Therefore, in our rhinovirus exposure study (Chapter 6), we 
have to be aware that it remains unclear whether the eNose detected the specific 
effect of the rhinovirus, or a more general response related to a viral infection 
or external trigger. Nonetheless, eNose technology has shown its potential 
to distinguish different inflammatory phenotypes [29]–[32] and to detect or 
predict (recent) exacerbations [10]–[12], in asthma and COPD. This suggests 
that eNose sensors are able to detect VOCs in exhaled breath that are involved 
in inflammatory processes. For future studies, it is important to combine 
the advantages of both techniques, in which we should start with using mass 
spectrometry techniques for a better understanding of metabolic pathways, to 
be able to select or develop more specific eNose sensors at a later stage. This 
would allow us to understand and detect the specific response to environmental 
exposures and to facilitate the implementation for clinical testing. 

Implications 

Implications air pollution regarding public health
Currently, the evidence on the health effects of (aviation-related) UFP exposure 
is inconclusive and inconsistent due to differences in exposure assessment, 
study design and populations, and confounder adjustments [13], [33]. However, 
relatively consistent findings have been found regarding pulmonary and systemic 
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inflammatory and cardiovascular effects (i.e. autonomic tone and blood pressure) 
[13], and these findings were supported by our study (Part II). Therefore, we 
believe that our study, and previous studies on air pollution, already merit to 
monitor and reduce UFP levels, especially in highly polluted areas, e.g. large 
cities, airports and industrial areas. 

The need of a UFP monitoring network 
Internationally, a large network of monitoring stations exists, promoted by the the 
European Environment Agency (EEA, www.eea.europa.eu) and Environmental 
Protection Agencies (EPA, www.epa.gov), that routinely measure the levels 
of several air pollutants, like ozon (O3), coarse particles (PM10) and PM2.5. 
Currently, such standardized international monitoring does not exist for UFP, 
partly and ironically, due to the lack of consistent evidence of the adverse health 
effects of UFP. Thus, long-term epidemiological studies mostly rely on modelled 
UFP exposures [34]–[36], using land-use regression models [37], [38], instead 
of measured exposures. However, the spatial and temporal variations in UFP 
levels are high when compared to more homogenous distributed air pollutants 
like PM2.5 and PM10 [39]. Therefore, assuming that the temporal changes are 
evenly distributed across a certain study area, may result in larger estimation 
errors of UFP exposure when compared to other pollutants. A network for UFP 
monitoring would facilitate qualitative long-term effects studies; an essential 
step to substantiate new (inter)national air quality regulations. Moreover, such 
a network would be required once UFP level regulations have been established, 
making it of use for the future as well. 

Air pollution reduction
The most straightforward solution for minimization of the effects of air pollution, 
would be to reduce air pollution levels, both indoors and outdoors. This could 
be realized in several ways; traffic reduction, reduced fuel-combustion and air 
filtration systems. Traffic reduction in urbanized areas could be achieved by 
improving public transport (i.e. more frequent and 24-hour services), limiting 
private automobile traffic, and prohibiting diesel-fuelled vehicles or vehicles 
that fail emission standards. An interesting example of how these strategies 
can significantly reduce air pollution levels are the Summer Olympic Games 
in Beijing of 2008; temporary vehicle restrictions along with restrictions for 
polluting industries decreased the PM2.5 levels from 78.8 to 45.7 µg/m3 [40]. This 
improved the lung function of healthy and asthmatic adults [41], and reduced the 
asthma-related outpatient visits [40], cardiovascular mortality [42] and systemic 
inflammation [43]. The reduction of fuel-combustion could be realized by a 
transition to electric vehicles, both for private and public transport, and should 
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be facilitated by governmental regulations and subsidies. Another method is 
to reduce idling at “kiss-and-ride” zones of train stations, airports and schools. 
For instance, four urban schools succeeded to reduce PM2.5 levels from 4.11 to 
0.99 µg/m3 and particle number concentration (PNC) levels from 11,560 to 1,690 
particles/m3 through an anti-idling campaign [44]. Lastly, the installation of soot 
and High Efficiency Particulate Air (HEPA) filters can significantly reduce the 
outdoor and indoor levels of air pollution. As an example, the introduction of a 
high efficiency cabin air (HECA) filtration system reduced levels of BC by 84% 
and UFP by 88% inside school busses [45]. 

Overall, air pollution reduction strategies can have beneficial effects on public 
health and well-being. In the Annals of American Thoracic Society of 2019, 
Schraufnagel et al. state that “reducing pollution at its source can have a rapid 
and substantial positive impact on our health” [46]. They describe how, within 
weeks, respiratory symptoms, such as, shortness of breath, cough, and a sore 
throat, can disappear shortly after air pollution is reduced. On top of that, they 
state that “school absenteeism, clinic visits, hospitalizations, premature births, 
cardiovascular illness and death, and all-cause mortality decrease significantly” 
[46]. The reduction in clinical visits and hospitalizations is also reflected in 
asthmatics, as exposure to high levels of air pollution is linked to an increased 
risk of viral infections [47] and (the severity of) virus-induced exacerbations in 
asthma [48]. The health improvements are most substantial for regions with high 
air pollution, however interestingly, also occur when air pollution levels decrease 
below international standards [46]. This highlights the avoidable health risks that 
could result from air pollution reduction.

Clinical implications
Monitoring individual air pollution levels and effects
Our results on air pollution might have individual implications for vulnerable 
people, like children and older adults or people with pre-existing respiratory or 
cardiovascular diseases, a genetic predisposition and/or a low socioeconomic 
status [49]–[51]. Such people are more prone to the adverse effects of air pollution 
and could possibly benefit from monitoring their individual exposure levels and 
its’ effects. This could be achieved by introducing an app that includes a map 
showing the air quality at somebody’s home, work and/or school and certain 
main roads; e.g. the AirVisual app of IQAir (Staad, Switzerland) or the Clean 
Air Route Finder maps by Cross River Partnership (London, United Kingdom). 
This may assist people in reducing their air pollution exposure, as people could 
choose to not exercise during times with high levels of air pollution (e.g. rush 
hours) and to avoid routes to work/school with poor air quality. Some people 
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might also benefit from monitoring the effects of air pollution exposure, as this 
could raise awareness of both the adverse and beneficial effects of air pollution 
exposure and avoidance, respectively. This could be based solely on clinical 
symptoms on disease control, like the MASK-air app (Argentina) for self-
monitoring of allergic rhinitis and asthma control [52], [53]. For a more biological 
approach, urine and exhaled breath testing might hold promise, however, this 
would require new detection methods that enable at-home testing, as described 
in the section ‘future research’ of this chapter. 

Monitoring of asthma exacerbations
Monitoring of environmental triggers, including air pollution and exposure to 
rhinoviruses, is of high interest regarding asthma exacerbations. Especially 
with respect to rhinoviruses, as strategies to reduce rhinovirus exposure and 
its spread, remain limited to e.g. washing hands regularly, not shaking hands, 
and staying home when sick. Therefore, minimizing the impact of rhinovirus 
infections, mainly concerns improved exposure assessment, in which exhaled 
breath analysis might be a promising new approach for this. Our proof-of-
concept study (Chapter 6) demonstrates the potential of non-invasive monitoring 
of the effect of an external (viral) trigger on the stability of the exhaled breath 
profile, possibly before symptoms occur [54]. The prediction of exacerbations has 
been studied before by Vliet et al. and Robroeks et al., in which exacerbations in 
children with asthma were predicted within days of onset, using exhaled breath 
analysis detected by gas chromatography-time-of-flight mass spectrometry 
(GC-TOF-MS) [55], [56]. Furthermore, multiple studies have shown there are 
significant associations between exhaled breath profiles and inflammatory cells 
in sputum or blood in patients with chronic airway diseases [29], [31], [57]–[59]. 
This shows how exhaled breath analysis reflects the biological processes involved 
in disease (in)stability, and could therefore have more potential to monitor 
exacerbations when compared to clinical symptoms or lung function testing. 
Eventually, exhaled breath monitoring could possibly assist in timely treatment 
adjustments and therefore limit (the severity of) exacerbations. This can have 
clinical benefits for asthma patients, especially for the frequent exacerbators, 
as (severe) exacerbations are a major cause of disease morbidity, in some cases 
leading to loss of lung function [60].
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Future research

Validation cohorts
For both our studies (Part II and III), the study cohorts were relatively small 
(n ≤ 24) and homogeneous; we only included healthy young adults and mild 
asthmatics. For future research, we recommend to include more representative 
and larger cohorts, with a greater age range and (more) co-morbidities, to make 
the results more generalizable. 

Long-term effects of air pollution exposure and reduction
As we found adverse health effects after only 5 hour exposures to air pollution 
in a very healthy population, we believe that studies investigating the long-term 
health effects of (aviation-related) UFP should follow. Although some literature 
exists on the long-term effects, consistent evidence is still lacking, mainly due to 
differences in exposure assessment and the methods for controlling confounders, 
especially with respect to adjustments for co-pollutants [13]. Future research on 
the long-term effects should be facilitated by a large UFP monitoring network 
and enhanced spatiotemporal models, to improve the accuracy of the exposure 
estimations. Moreover, researchers might want to also focus on the beneficial 
effects of air pollution reduction, both short- and long-term; e.g. in schools, 
work places, cities or areas where air pollution reduction strategies have been 
implemented. This would provide more evidence regarding why and how we 
should solve the health issues related to air pollution.

Steps towards monitoring of exposure-related metabolites
This thesis describes how the exposome has an impact on the metabolic content 
of the exhaled breath and urine. As these biological specimen can be easily 
sampled, they might be useful methods to monitor the effects of the exposome, 
not limited to a clinical setting, but also in an at-home setting. However, we 
believe this requires three main steps regarding validation and implementation: 
(1) validation of specific biomarkers, (2) selection or development of new, easy-
to-perform and non-invasive detection methods, and finally, (3) testing these 
biomarkers and detection methods in an at-home setting (Figure 2). 

Validation biomarkers
First, the robustness and preferably causality of new discovered biomarkers 
should be determined through adequate validation; an essential step for clinical 
implementation. Currently, most metabolic biomarkers in breath or urine 
are not properly validated nor are they proven to be truly specific to a certain 
disease [61], [62]. Therefore, the issue of false biomarker discovery should 
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be minimized through the use of stringent statistical approaches, for both 
individual metabolites and metabolic profiles. This involves an adequate sample 
size, avoidance of multiple hypotheses testing, and minimization of overfitting 
through proper internal and external validation, as well as, cross-validation [63]. 

For the external validation, it is important to standardize the statistical 
methodology and to accurately report findings, as this facilitates the comparison 
between studies. For this, authors could follow the already existing international 
standards to accurately report findings of metabolomic experiments [64], for 
reporting diagnostic accuracy [65], and for developing, validating and updating 
prediction models [66]. As part of external validation, one could consider to use 
a more targeted approach. This can be realized by evaluating the performance 
of individual biomarkers, that were discovered in previous literature, in a 
large replication study; making eNose data unsuitable for this approach. As 
an example, the study by Kos et al. has used this approach for the detection 
of Pseudomonas aeruginosa in the exhaled breath of cystic fibrosis patients [67]. 
First, they performed a literature search on VOCs that were associated with 
Pseudomonas aeruginosa infections and listed the VOCs for which multiple 
consistent notations were found. Next, they analysed the performance of only 
these biomarkers in their own patient cohort, instead of including all detected 
exhaled VOCs. This could be a useful approach for future metabolic research, to 
reduce the issue of false biomarker discovery. 

From valid biomarkers towards targeted detection methods
Once specific biomarkers involved in the response to environmental triggers 
have been validated, steps towards new specific, easy-to-perform and non-
invasive detection methods should follow. Regarding biomarkers in exhaled 
breath, the knowledge about individual VOCs involved in the metabolic 
processes of interest, as discovered by mass spectrometry techniques, could be 
used to introduce new and more specific sensors for eNose technology. This may 
require the development of novel specific nanomaterials for selective detection of 
breath gasses [68]. Regarding steps towards home-monitoring, the development 
of a cheap hand-held device would be required, that enables real-time exhaled 
breath analysis, and is easy-to-perform for patients [68]. Such a device should 
preferably be combined with an app, to allow direct instructions on how to 
perform the breath test and to visualize the results in real-time and over time. 
We do realize, that the potential of exhaled breath monitoring with such a device 
would mainly be suitable and cost-effective for patients with severe chronic 
respiratory disease who regularly have exacerbations.
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Regarding urine testing, one could think of the development of a urine test strip 
(i.e. dipstick), most commonly known for their use in pregnancy testing and the 
diagnosis of urinary tract infections. This would require the development of specific 
reagents to the biomarkers of interest. For air pollution, this may involve specific 
oxidative stress markers. The main advantage of this detection method would be 
the extremely low costs, rapid assessment (seconds or minutes), easy practicability 
(insert strip into urine) and suitability for monitoring purposes, when compared to 
Nuclear Magnetic Resonance (NMR) and mass spectrometry techniques. 

At-home monitoring studies
Lastly, prospective follow-up studies in an at-home setting should be conducted. 
With respect to air pollution, an interesting study could be to let people test their 
urine or breath at home, work or school on days with high and low levels of UFP. 
This would allow the investigation of long-term health effects in a prospective 
manner and at a more individual level; particularly of interest with respect to 
vulnerable people, that live in highly polluted areas.

Regarding monitoring of exacerbations, exhaled breath analysis has already 
shown its potential to predict exacerbations within days before onset [55], [56]. 
Together with our results on day-to-day changes in the exhaled breath profiles 
during stable and unstable periods of asthma (Chapter 6), a study investigating 
exhaled breath monitoring in a real-life and at-home setting should follow. 
This could provide information on the optimal time interval between breath 
sampling. Based on our results and those of Robroeks et al. and Vliet et al. [55], 
[56], this may need to start with sampling every other day until the occurrence 
of an exacerbation, and two weeks after, to fully capture the fluctuations in 
exhaled breath profiles during the development, occurrence and recovery of 
an exacerbation. Eventually, the sampling frequency could possibly be reduced 
during stable periods, as exacerbations partly originate from existing loss of 
asthma control [69], [70], which would increase the convenience for patients. 
If exhaled breath analysis proves its ability to predict exacerbations, then 
randomized controlled trials would be essential to investigate whether exhaled 
breath analysis can assist in the titration of anti-inflammatory treatments, to 
hopefully supress or prevent exacerbations in asthma. 
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Figure 2. Overview of the next steps towards at-home monitoring of the breath and urine 
metabolome. First, biomarkers should be adequately validated. Next, new detection methods 
should be selected or developed. For exhaled breath testing, this requires the selection/
development of specific eNose sensors and the development of a hand-held device that is 
easy to use for patients. For urine testing, dip stick tests could be created. Finally, the added 
value of these biomarkers and feasibility of these tests, should be investigated in an at-home 
setting, in which test results could be visualized in real-time, as well as, over time.

Conclusions

This thesis showed how specific parts of the exposome (i.e. air pollution and 
exposure to rhinoviruses) can have an impact on our health, as reflected in the 
reduced cardiorespiratory function and alterations in the metabolic content of 
the breath and urine. The effects occurred after short exposures to air pollution or 
shortly after exposure to a rhinovirus, even in young healthy adults. Although, 
future research is needed to determine how detrimental the (long-term) effects 
are, we do believe that our results emphasize the importance of strategies to 
prevent or limit these adverse effects through air pollution reduction strategies 
and monitoring of exposure levels and/or health effects.

Validation of 
biomarker

Detection material
development or 

selection

At-home testing

eNose sensorsDip stick tests
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Summary

In this thesis, we investigated the short-term health effects of exposures to air 
pollution near a major airport and a rhinovirus challenge, in healthy subjects 
and/or mild asthmatics. In this summary, the main messages of this thesis are 
described, per chapter. 

Chapter 1 is the general introduction of this thesis and describes how our 
health is not only determined by our genome, but also by environmental factors 
(i.e. exposome). Environmental exposures can have a major impact on our 
respiratory and cardiovascular health. This thesis focusses on the effects of air 
pollution and rhinoviruses. Air pollution, more specifically particulate matter, is 
associated with cardiopulmonary morbidity and mortality, however, the health 
effects of the smallest particles (i.e. ultrafine particles (UFP)), are less established, 
especially the ones related to aviation. Furthermore, this chapter describes how 
rhinovirus infections do not only have economic consequences due to school and 
work absenteeism, but also have a great impact on asthma control. There is a 
need for new biomarkers that can detect or even predict (virus-induced) disease 
instability in asthma. The non-invasive and easily accessible metabolites in breath 
and urine might be a promising tool for biomarker discovery and monitoring, as 
the metabolome is uniquely suited for capturing the impact of environmental 
factors. 

Chapter 2 contains an extensive description of exhaled breath analysis regarding 
breath sampling, storage and detection techniques, as well as, its potential in 
chronic airway diseases. It describes how inert and/or disposable devices should 
be used for sampling, and how exhaled breath manoeuvres and ambient volatile 
organic compounds (VOCs) can have an impact on the exhaled breath profile. 
Furthermore, different exhaled breath detection techniques were summarized 
into three main approaches: (1) separation techniques combined with mass 
spectrometry for identification and in some cases quantification of multiple 
VOCs, (2) electronic nose (eNose) technology which is a pattern based technology 
holding the most potential for online and bed-side monitoring and (3) laser 
based techniques that are more suitable for quantification of one VOC. Finally, it 
describes how exhaled breath analysis may potentially improve the healthcare of 
chronic airway diseases regarding diagnostics, phenotyping, treatment response 
and detection of exacerbations and infections in asthma, chronic obstructive 
pulmonary disease (COPD) and cystic fibrosis. 
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For the investigation of the short-term health effects of exposure to air pollution, 
we conducted a prospective study (Part II), in which 21 healthy adults were 
repeatedly (2-5 visits) exposed for 5 hours to the ambient air near a major airport 
and two highways. Before and directly after each exposure, cardiopulmonary 
(Chapter 3) and exhaled breath measurements (Chapter 4) were performed. 
Furthermore, first morning urine samples were collected the day of exposure and 
the next morning after (Chapter 5). 

Chapter 3 reports the pre- to post-exposure changes in cardiopulmonary 
outcomes: spirometry, fractional exhaled nitric oxide (FeNO), electrocardiography 
(ECG), and blood pressure. Using linear mixed effect models, these changes were 
related to total- and size-specific particle number concentrations (PNC). The total 
PNC and aviation-related UFP (particles ≤20 nm) were associated with reduced 
lung function (mainly Forced Vital Capacity) and a prolonged repolarization 
of the heart (corrected QT interval). Furthermore, we showed that road-traffic-
related pollutants (i.e. black carbon, nitrogen dioxide, and particles >50 nm) 
were associated with increased blood pressure. The health effects were relatively 
small, however, they appeared after short exposures of 5 hours in a healthy and 
young population. Therefore, we believe that it is important to investigate the 
potential health effects of long-term exposure to high levels of (airport-related) 
UFP, especially in more vulnerable groups. 

Chapter 4 reports the effects of these short-term exposures to air pollution on  
the exhaled breath profile detected by an eNose. Using multilevel partial  
least square discriminant analysis (PLSDA), linear discriminant and receiver 
operating characteristic (ROC) analysis, we showed that pre- and post-exposure 
exhaled breath measurements could be discriminated with good accuracy, 
especially when UFP levels were (extremely) high. Therefore, exhaled breath 
analysis might be an interesting and useful tool in air pollution research, as the 
exhaled breath is easy to collect and reflects both local and systemic metabolomic 
processes. On the other hand, air pollution could be an important confounder 
in exhaled breath analysis when exposure levels are high (e.g. smog or massive 
fireworks), however, to which extent this affects the disease-related breath profile 
of patients with (chronic airway) diseases should be further investigated. 

Chapter 5 involves the results on the pre- and post-exposure changes in the 
urinary metabolome. Associations between the exposure and changes in the 
proton nuclear magnetic resonance spectroscopy (1H NMR) profiles of the 
urine samples were investigated with linear mixed effect models. Exposure to 
aviation-related UFP was associated with significant reductions in taurine, 
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pyroglutamate and dimethylamine concentrations. The increased utilization 
of taurine and synthesis of glutathione (demonstrated by the reduction in 
pyroglutamate) are both indicative of a heightened antioxidant response. The 
decrease in pyroglutamate possibly reflects an altered nitric oxide synthesis. 
Although these oxidative stress responses should be validated in a larger and 
more heterogeneous cohort, they are consistent with the effects induced by road-
traffic particulates in previous literature. 

With respect to the influence of viral exposures on our health, an extensive 
prospective study was conducted to investigate the instability of the respiratory 
system, and the loss of adaptive capacity in asthma, to changing environmental 
conditions (Part III). Inflammatory, clinical, and metabolic biomarkers were 
monitored 60 days before and 30 days after a rhinovirus-16 (RV16) challenge 
in 12 non-atopic healthy and 12 atopic asthmatic participants. As part of these 
assessments, exhaled breath profiles were examined 2-3 times a week, using eNose 
technology. As described in Chapter 6, we found that day-to-day fluctuations 
in the exhaled breath profiles rapidly increased after the RV16 challenge, with 
distinct differences between atopic mild asthmatics and non-atopic healthy 
volunteers. Furthermore, the magnitude of the altered eNose fluctuations was 
modestly correlated with pre- and/or post-inflammatory IL-1β, IL-17A, IL-8 and 
TNF-α levels in nasal lavages of asthmatics, but not with cold-like symptoms 
and FeNO. Together, this proof-of-concept study shows the potential of exhaled 
breath analysis for monitoring of virus-induced exacerbations in asthma at a 
biological level.

Chapter 7 is the general discussion of this thesis and describes the implications 
of our main findings and recommendations for future research. The results on 
the cardiopulmonary effects of air pollution suggest the necessity of monitoring 
UFP levels (inter)nationally and air pollution reduction strategies. This would 
facilitate the investigation of long-term adverse effects of UFP exposure and the 
beneficial effects of air pollution reduction. Furthermore, our findings suggest 
that metabolites in breath and urine can be used for the detection and monitoring 
of the exposome’s health effects, in which we highlight how exhaled breath 
monitoring using eNose technology could be of added clinical value regarding 
exacerbations in asthma. Now, steps towards validation of these biomarkers, the 
selection or development of specific detection methods and studies in an at-home 
setting, should follow.
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Conclusions

This thesis shows how the exposome can have an impact on our health, as reflected 
in the reduced cardiorespiratory function and alterations in the metabolic content 
of the breath and urine. The effects occurred after short exposures to air pollution 
or shortly after exposure to a rhinovirus, even in young healthy adults. Although, 
future research is needed to determine how detrimental the (long-term) effects 
are, we believe our results emphasize the importance of air pollution reduction 
and the assessment of environmental exposure levels and/or health effects, to 
hopefully limit the adverse effects. 
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Nederlandse samenvatting

In dit proefschrift hebben we onderzoek gedaan naar de korte termijn 
gezondheidseffecten van blootstelling aan luchtvervuiling (nabij een groot 
vliegveld) en een verkoudheidsvirus. Dit hebben we onderzocht bij gezonde 
proefpersonen en/of astmapatiënten. In deze samenvatting worden de 
belangrijkste bevindingen en implicaties per hoofdstuk beschreven. 

Hoofdstuk 1 is de algemene introductie van dit proefschrift en beschrijft hoe 
onze gezondheid niet alleen wordt bepaald door onze genen, maar ook door 
omgevingsfactoren (het exposoom). Blootstelling aan omgevingsfactoren kan een 
grote impact hebben op het hart en de longen, waarbij dit proefschrift zich richt op 
de effecten van luchtvervuiling en een verkoudheidsvirus. Luchtvervuiling, met 
name fijnstof, is geassocieerd met een verhoogde morbiditeit en mortaliteit van 
hart en longen. Echter, de gezondheidseffecten van de kleinste deeltjes (ultrafijn 
stof) zijn minder bekend, met name die afkomstig van vliegverkeer. Daarnaast 
beschrijft dit hoofdstuk hoe het verkoudheidsvirus niet alleen economische 
gevolgen heeft door school- en werkverzuim, maar ook een grote impact heeft 
op astma controle. Er is een nieuwe biologische marker (biomarker) nodig om 
(virus geïnduceerde) instabiliteit in astma te detecteren of zelfs te voorspellen. 
De non-invasieve en gemakkelijk te verkrijgen metabolieten (metaboloom) in de 
adem en urine bieden mogelijk potentie voor het ontdekken en monitoren van 
biomarkers, aangezien het metaboloom erg geschikt is voor het vaststellen van 
de effecten van omgevingsfactoren. 

Hoofdstuk 2 is een uitgebreide omschrijving over uitgeademde lucht analyse, 
met betrekking tot de afname, opslag en detectie van ademmonsters, en de 
potentie van het meten van de uitgeademde lucht in chronische luchtwegziekten. 
Het beschrijft hoe inerte en/of wegwerp apparatuur gebruikt zou moeten worden 
voor het bemonsteren van adem en hoe adem manouvers en vluchtige organische 
componenten (VOCs) van de omgeving een impact hebben op het uitgeademde 
lucht profiel. Daarnaast worden voor de detectietechnieken van de adem drie 
verschillende benaderingen beschreven: (1) scheidingstechnieken gecombineerd 
met massa spectrometrie voor de identificatie en in sommige gevallen ook 
kwantificatie van meerdere VOCs, (2) elektronische neus (eNose) technologie, 
een patroon gebaseerde technologie vanwege de cross-reactieve sensoren (elke 
sensor detecteert meerdere VOCs) met de meeste potentie voor online metingen 
aan het bed, en (3) laser gebaseerde technieken die meer geschikt zijn voor het 
kwantificeren van één VOC. Ten slotte beschrijft dit hoofdstuk hoe de analyse 
van uitgeademde lucht mogelijkheden biedt om de gezondheidszorg voor 
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chronische luchtwegaandoeningen te verbeteren op het gebied van diagnostiek, 
phenotypering, de respons op behandelingen en de detectie van exacerbaties en 
infecties, in astma, COPD en taaislijmziekte. 

Voor het bestuderen van de korte termijn gezondheidseffecten van blootstelling 
aan luchtvervuiling, hebben we een studie uitgevoerd (Deel II), waarbij 21 
gezonde volwassenen herhaaldelijk (2 tot 5 keer) 5 uur lang zijn blootgesteld aan 
de omgevingslucht nabij een groot vliegveld en twee snelwegen. Voor en direct 
na de blootstelling zijn de hart- en longfunctie testen uitgevoerd (Hoofdstuk 
3) en de stoffen in de uitgeademde lucht gemeten (Hoofdstuk 4). Verder zijn er 
in de ochtend voor en de na de blootstelling monsters verzameld van de urine 
(Hoofdstuk 5).

Hoofdstuk 3 beschrijft de verschillen in hart- en long functie: longfunctie 
(spirometrie), uitgeademde stikstofmonoxide (FeNO), hartfilmpje (ECG) 
en bloeddruk. Alle ultrafijn stof tezamen (6-100 nm) en dat gerelateerd aan 
vliegverkeer (deeltjes ≤20 nm) waren geassocieerd met een verminderde 
longfunctie en een verlengde hersteltijd van een hartslag (QTc interval van het 
ECG). Daarnaast lieten we zien dat wegverkeer gerelateerde vervuiling (roet, 
stikstofdioxide en deeltjes >50 nm) geassocieerd waren met een verhoogde 
bloeddruk. De gemeten effecten waren klein, desalniettemin traden deze op 
na korte blootstellingen van 5 uur in een gezonde en jonge populatie. Daarom 
geloven wij dat het belangrijk is om de lange termijn effecten van blootstellingen 
aan hoge niveaus van (vliegverkeer gerelateerd) ultrafijn stof te onderzoeken, 
met name in kwetsbare groepen.

Hoofdstuk 4 beschrijft de effecten van deze korte blootstellingen aan 
luchtvervuiling op het uitgeademde lucht profiel, gedetecteerd door een eNose. 
We konden een onderscheid maken tussen de ademprofielen van voor en na de 
blootstelling, vooral wanneer de ultrafijn stof gehaltes (extreem) hoog waren. 
Hierom denken wij dat uitgeademde lucht analyse een interessante en nuttige 
methode kan zijn voor luchtvervuilingsonderzoek, aangezien adem makkelijk 
te verzamelen is en zowel lokale als systemische metabolische processen 
weerspiegelt. Daartegenover staat dat luchtvervuiling een belangrijke factor kan 
zijn waarmee rekening gehouden moet worden voor uitgeademde lucht analyses. 
Bijvoorbeeld wanneer de luchtvervuilingsniveaus hoog zijn, zoals bij smog en 
veel vuurwerk. Echter, in hoeverre dit het ziekte-gerelateerde ademprofiel van 
patiënten met (chronische luchtweg) ziekten beïnvloedt, is nog onbekend. 
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Hoofdstuk 5 beschrijft de resultaten over de veranderingen in de metabolieten 
in de urine. We vonden dat blootstelling aan vliegverkeer gerelateerde ultrafijn 
stof was geassocieerd met afnames in taurine, pyroglutamaat en dimethylamine 
concentraties. Het toegenomen verbruik van taurine en de aanmaak van 
glutathion (gedemonstreerd door de afname in pyroglutamaat) zijn beide een 
indicatie voor een verhoogde aanmaak van antioxidanten. Antioxidanten zijn 
belangrijk voor het onschadelijk maken van vrije radicalen; stoffen die worden 
aangemaakt tijdens oxidatieve stress en schadelijk zijn voor cellen en weefsels. De 
afname in dimethylamine concentraties is een indicatie voor een vermindering in 
stikstofmonoxide vorming. Stikstofmonoxide is een universeel signaalmolecuul 
betrokken bij veel biologische (ziekte)processen, waarbij een afname in de 
aanmaak nadelige effecten heeft op de hartfunctie. Hoewel deze effecten nog 
gevalideerd moet worden in een grotere en meer heterogene groep, zijn ze wel 
consistent met de effecten die zijn gevonden voor wegverkeer gerelateerde 
deeltjes in voorgaande literatuur. 

Met betrekking tot de invloed van blootstelling aan een verkoudheidsvirus op 
onze gezond, hebben we een uitgebreide prospectieve studie uitgevoerd. Hierin 
hebben we de instabiliteit van de luchtwegen onderzocht bij een verandering 
in omgevingsomstandigheden, namelijk een verkoudheidsvirus (Deel III). 
Ontstekingsmarkers, metabolieten en klinische gegevens werden gemeten/
verzameld 60 dagen voor en 30 dagen na een gecontroleerde blootstelling 
aan een verkoudheidsvirus in 12 niet-atopische (geen aanleg voor allergieën) 
gezonde mensen en 12 atopische (aanleg voor allergieën) astmapatiënten. 
Hierbij hebben we onder andere uitgeademde lucht profielen gemeten, 2-3 
maal per week, door middel van eNose technologie. Hoofdstuk 6 beschrijft de 
resultaten van deze studie. We hebben laten zien dat dag-tot-dag fluctuaties in 
het ademprofiel snel toenam na de blootstelling aan het verkoudheidsvirus, met 
duidelijke verschillen tussen de astmapatiënten en de gezonde vrijwilligers. 
Daarnaast was bij de astmapatiënten de grootte van de verandering in deze 
fluctuaties enigszins gecorreleerd met ontstekingsmarkers, verkregen uit de 
neus. Deze correlatie vonden we niet met de verkoudheidssymptomen en FeNO 
(een maat voor ontsteking in de luchtwegen). In deze ‘proof-of-concept’ studie 
laten we de potentie zien van uitgeademde lucht analyse voor het monitoring 
van exacerbaties door virale infecties in astma, op een biologisch niveau. 

Hoofdstuk 7 is de algemene discussie van dit proefschrift en beschrijft de 
implicaties van onze belangrijkste bevindingen en aanbevelingen voor toekomstig 
onderzoek. De effecten van luchtvervuiling op het hart en de longen die werden 
gevonden in dit proefschrift impliceren de noodzaak van het (inter)nationaal 
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monitoren van ultrafijn stof niveaus en strategieën om luchtvervuiling te 
verminderen. Dit faciliteert het onderzoek naar de nadelige effecten van ultrafijn 
stof blootstelling op de lange termijn en de gunstige effecten van luchtvervuiling 
vermindering. Daarnaast suggereren onze bevindingen dat metabolieten in de 
adem en urine gebruikt kunnen worden voor de detectie en het monitoren van 
de effecten van omgevingsfactoren. Daarin lichten we toe hoe het monitoren van 
uitgeademde lucht door eNose technologie klinische toegevoegde waarde kan 
hebben op het gebied van exacerbaties in astma. Hiervoor moeten nog een aantal 
stappen genomen worden op het gebied van validatie van deze biomarkers, de 
selectie of ontwikkeling van specifieke detectie methoden en onderzoek in een 
thuisomgeving. 

Conclusies

Dit proefschrift laat zien hoe het exposoom een impact kan hebben op onze 
gezondheid, zoals werd gezien in de verminderde hart- en longfunctie, als 
ook in de veranderingen van de metabolieten in de adem en urine. Deze 
effecten kwamen tot uiting na korte blootstelling aan luchtvervuiling of kort 
na blootstelling aan een verkoudheidsvirus, zelfs bij jonge gezonde mensen. 
Hoewel vervolgonderzoek nodig is om de schadelijkheid van de (lange termijn) 
effecten te bepalen, geloven we wel dat het belangrijk is om luchtvervuiling 
te verminderen en de noodzaak van het meten van (de effecten van) 
omgevingsblootstelling. Hiermee kunnen we mogelijk de nadelige gevolgen op 
de gezondheid minimaliseren. 
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Project Management 2019 0.6

Seminars, workshops and master classes
Mini-course Castor EDC 2018 0.1
NRS national lung course 2018 5.0
ERS The impact of air pollution on respiratory health 2018 5.0
3-monthly Amsterdam Mucociliary Disease (AMCD) seminars 2018-2021 0.5
APROVE Career Event 2019 0.1
Precision Medicine seminars 2020 0.2

National conferences & symposia
Attended
NRS Young Investigator Symposium 2018-2019 0.4
Breath Summit 2018 0.6
Week van de longen 2018-2019 1.0
Amsterdam Kindersymposium (AKS) 2019 0.6

Presentations
AKS Oral presentation 2019 0.5

International conferences
Attended
European Respiratory Society (ERS) 2018-2020 3.0
American Thoracic Society (ATS) 2019 1.0
UK Cystic Fibrosis Conference (UKCFC) 2019 0.5
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Presentations
ERS Poster presentation 2018 & 2020 1.0

Oral presentation 2019 1.0
ATS Poster presentation 2019 0.5
UKCFC Poster presentation 2019 0.5

Other
Weekly Journal Clubs 2017-2021 3.0
Weekly Research Meetings 2017-2021 3.0
Monthly AMCD research meetings 2018-2021 0.5
Coordinator AMCD meetings and seminars 2018-2021 1.0

Teaching
Supervising
3rd year Bachelor student Gezondheid en Leven (3 months) 2018 1.0
2nd year Master students Technical Medicine (4 x 3 months) 2018-2019 4.0
3rd year Master student Technical Medicine (10 months) 2020 4.0

Lecturing
Lecture for Groningen Research Institute for Asthma and COPD 2019 0.1
Lecture for 3rd year medical bachelor students 2019 0.1

Parameters of esteem
ERS young investigator masterclass presentation prize 2018

Total 45.8
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Dankwoord

De laatste pagina’s van mijn proefschrift, waarin ik graag iedereen wil bedanken 
voor zijn/haar hulp, begeleiding en/of samenwerking en voor het meevieren 
van de mijlpalen van mijn promotietraject. Het is onmogelijk om iedereen bij 
naam te noemen die een aandeel heeft gehad aan dit proefschrift, dus iedereen 
die op een manier heeft bijgedragen, ontzettend bedankt! 

In het bijzonder wil ik de volgende mensen bedanken:

Alle vrijwilligers van de RIVM, BioFluc en PAPA studie voor al jullie tijd en 
toewijding. 

Mijn promotieteam. Mijn promotor Anke-Hilse Maitland – van der Zee voor 
het geven van deze unieke kans om zulk divers onderzoek te mogen doen en 
om zoveel congressen te mogen meemaken. Je pragmatische instelling en 
enthousiasme heb ik altijd erg gewaardeerd. Stiekem voelt het toch als een eer 
om begeleid te zijn door een vrouwelijke professor. Mijn co-promoteren Anne 
Neerincx en Susanne Vijverberg voor al jullie begeleiding. Anne, jij ontzettend 
bedankt voor de fijne en nauwe samenwerking bij de PAPA studie en de AMCD 
research group. Ik vond ons altijd een heel goed team samen. Susanne, bedankt 
voor hoe je me hebt opgevangen aan het begin van mijn PhD en tijdens het 
opzetten van de RIVM studie. 

De leden van mijn promotiecommissie. Erg bijzonder om zo’n belangrijk moment 
in mijn PhD te mogen delen en mijn werk te mogen bediscussiëren met ervaren 
wetenschappers.

Mijn paranimfen Annika, Dominic en Demian. First, Annika and Dominic, thank 
you both so much for being such lovely colleagues but also friends. I enjoyed 
laughing, talking and of course dancing with you both, very much! Demian, voor 
alle mooie gesprekken en avonturen die ik steeds meer met je heb mogen delen 
de afgelopen jaren.

Alle studenten die ik heb mogen begeleiden: Elise, Raymond, Marjolein, Laurien, 
Jelle en Erik. Jullie hebben echt bijgedragen aan mijn PhD, inhoudelijk maar ook 
qua gezelligheid. 
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Alle collega’s van het RIVM waarmee ik nauw heb samengewerkt, met in het 
bijzonder Flemming Cassee en Nicole Jansen. Flemming, het was ontzettend 
leuk en leerzaam om een kijkje te mogen nemen bij het RIVM. Nicole, bedankt 
voor alles wat je me hebt geleerd over statistiek en wetenschappelijk denken en 
schrijven. En verder John, Daan en Jochem.

Het Amsterdam UMC breath research team, met in het bijzonder Yennece voor 
de (eNose) metingen die ze heeft uitgevoerd voor alle studies. De Amsterdam 
Mucociliary Disease (AMCD) research group. Ontzettend mooi om gezamenlijk 
ons in te zetten voor onderzoek naar zeldzame en ernstige luchtwegziekten.

Het PAPA team, met in het bijzonder Renate en Jesper, die hebben gezorgd dat de 
studie vloeiend door kon gaan. I also would like to thank Jane Davies. Although 
I was not able to incorporate the work from the PAPA study in my thesis, I really 
enjoyed working together with you on this relevant and interesting project. 

Koos Zwinderman voor alle hulp wanneer ik vastliep met de statistiek. 

Alle co-auteurs die hebben meegewerkt aan mijn proefschrift. In particular, 
Liza Selley, with whom I have worked together very closely on the results of the 
RIVM study. 

De longfunctie afdeling, voor hoe jullie zo ontzettend goed meedenken en 
-helpen met de onderzoeken van de longziekten afdeling. 

Het experimentele lab, met in het bijzonder Tamara Dekker, Barbara Smit en 
Rene Lutter. 

Mijn collega’s van F5-260: Job, Levi en Elise, voor alle trein- en autoritjes, 
borreltjes en het heerlijke geklaag over alles en niets. Pieta, Tess en Katrien, voor 
jullie gezelligheid en interesse. Paul, voor al je hulp tijdens mijn PhD en voor 
je mede-enthousiasme omtrent het organiseren van activiteiten. Niloufar, for the 
lovely sleep-overs and dances. Cristina, for all your help, support and the great 
parties. En verder Stefania, Anirban, Simone, Rianne, Zulfan, Mahmoud, Luca, 
Olga, Reim, Kornel, Yolanda, Feiko, David, Yoni, Nadia, Lieke, Hanneke, Julia, 
Pieter-Paul en Lizzy. Jullie hebben ervoor gezorgd dat ik een ontzettend leuke 
tijd heb gehad in het AMC.

Jacquelien van der Vlies, Pearl Mau Asam en Marianne van der Pol voor jullie 
hulp bij de logistiek en ingewikkelde wet- en regelgeving.
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Mijn collega’s bij Quin met in het bijzonder Marcel, Emiel en het Care Pathway 
team. Jullie steun tijdens de laatste loodjes van m’n PhD werd erg gewaardeerd.

Iedereen van Divide, met in het bijzonder Annemiek, Carrie, Stefan, Lieke, Rob, 
Marloes, Kim en Mariëlle. Niet te vergeten, mijn vriendinnetjes van de basis- en 
middelbare school Judieke, Moniek, Judith, Roemalie, Nori, Iris en Jorien.

Mijn oud-huisgenootjes, Dorith, Wieteke, Lieke, Laura en Sanne en natuurlijk 
de rest van de Truman groep. Mijn huisgenootje Elke, voor de steun tijdens de 
laatste maanden van mijn PhD. Bedankt voor al je lieve kaartjes en cadeautjes.

En tenslotte, mijn familie. Mijn lieve broer Erik en zijn vrouw Kim, mijn lieve zus 
Karin en haar vriend Maaik. Natuurlijk ook mijn neefjes en nichtje Tim, Stan, Juul 
en Ties, die me altijd zo vrolijk maken. Mijn moeder, voor haar vrije en zorgzame 
opvoeding en haar steun in al mijn keuzes en mijn vader voor de stimulans, de 
steun en de eindeloze interesse en trots. 
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