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Introduction

The human face conveys multiple information cues such as ethnicity, identity, gender,
and age. For example, facial wrinkles and sagging skin cues may correspond to the

human aging process, while having a beard may indicate the gender of a person. Also
certain facial cues may display information about the emotional or intentional state of
a person. By analyzing faces, humans are capable to recognize their family, friends,
members of their tribes and people they know.

Figure 1.1: El Corazón del Caribe research project. The British Museum. Source:
Newsweek.

Humans have been interested in depicting faces since ancient times, as far as they could
create drawings and sculptures. Face drawings in caves are the earliest known portraits
(Fig. 1.1). With the innovation in tools and techniques, artists have discovered more
advanced ways to represent the human face. Realistic portraits of important and wealthy
people were common in many societies. In particular, Dutch painters from the Dutch
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Golden Age are best known for their portrait paintings with highly detailed realism
(Fig. 1.2). For many painters, it was the work of their entire life to mature their skills in
modeling physics, anatomy, and color interaction on a canvas frame [Hodge, 2019].

Figure 1.2: Frans Hals. The Laughing Cavalier, 1624. Oil on canvas.

Nowadays, consumer cameras have become widely accessible. There is less demand for
face paintings since everybody can capture face images and videos by their smartphones.
However, the face doesn’t become a less important subject. With the availability of
computational resources and the advancement of Computer Vision algorithms, it becomes
possible to perform different tasks given visual information about faces, captured by
cameras, automatically. Insights about physics of color formation, used by the Golden
Age painters as a basis in drawing their paintings, are successfully applied to different
domains of computer vision, such as multiple view stereo and color correction [Andrew,
2001, Gevers et al., 2012]. In addition, many computer vision applications are inspired
by drawing and painting, e.g. generating van Gogh-like paintings from images [Jing
et al., 2017].

Computer vision algorithms, which learn from data, has shown a tremendous efficiency
with the availability of large face datasets [Yang et al., 2016] together with an increasing
amount of computational resources. Many face related tasks can be addressed by
discriminative and generative learning models. Discriminative learning (analysis) tries to
determine its attributes, e.g. location [Han et al., 2021, Ren et al., 2015], age [Dibeklioglu

2



1.1. Explicit Prior Knowledge Modeling

et al., 2015, Savov et al., 2019], gender, and emotion [Arriaga et al., 2017] given an
input human face. While in case of generative learning (synthesis), the face appearance
is generated from a model given its attributes. Applications include face reenactment
[Thies et al., 2016a, Wu et al., 2018a], face swapping [Ngo et al., 2020, Nirkin et al.,
2019], aging [Huang et al., 2021a], makeup [Chen et al., 2019], and colorization [Isola
et al., 2017].

Deep neural network-based methods have recently shown state-of-the-art results in face
analysis and synthesis tasks. However, those tasks remain open research questions due
to their complexity and biases in training data and predictive models. A recent line of
research is focusing on the design of improved model architectures and the incorporation
of prior domain knowledge [Hu et al., 2020, Sengupta et al., 2018] to create more robust
predictive models which generalize better on unseen data, or require less training data
to train on. For example, in the case of a general scene, by learning to decompose an
image color into a component that only includes the object color (reflectance) and a
component that is entirely dependent on the light source (shading) [Baslamisli et al.,
2021] one can focus the scope of analysis solely on the shading component to predict
the light source direction. In addition, for faces, prior knowledge about the human face,
such as its geometry and surface properties, can be exploited.

The way that prior knowledge has been used in deep neural network-based models can
be divided into two categories: (1) the domain knowledge is explicitly modeled in the
network architecture, and (2) the domain knowledge is implicitly incorporated via loss
functions.

1.1 Explicit Prior Knowledge Modeling

Assuming the face to be a Lambertian surface, a face image color I(x) at location x can
be decomposed into two components: one dependent on object intrinsic color (reflectance
R), and one dependent on its interaction with the light source (shading S).

I(x) = R(x)× S(x ,n,v), (1.1)

where S(x ,n,v) is dependent on the surface normal n at position x and the light source
direction v. If there are different light sources, shading becomes a function of multiple
light source directions. Surface normal n can be derived further as a variable dependent
on object geometry G: n= f (G). Reflectance R(x) and object geometry G can be further
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constrained if additional prior knowledge about an object (face) is known. For example,
the relative positions of eyes, nose, and mouth of a human face.

Research in the face domain have been focused on incorporating such kind of prior
knowledge to improve model performance. Thus, the image formation model together
with a parametric face model have been used to learn face alignment in an unsupervised
manner [Koizumi and Smith, 2020] and for 3D face reconstruction [Genova et al., 2018,
Tewari et al., 2017].

1.2 Implicit Prior Knowledge Modeling

Many computer vision tasks share common grounds. For example, object detection and
semantic segmentation both require knowledge about object texture properties to be
learned. Researchers are focusing on a joint exploration of multiple tasks to learn better
generalized models with shared representations [Baslamisli et al., 2018, Le et al., 2018].
In the human face domain, different tasks are examined in the context of multi-task
learning showing mutual benefits, e.g. age and gender estimation [Levi and Hassner,
2015], face alignment and landmark detection [Dong et al., 2018], face verification and
expression recognition [Ming et al., 2019], age and identity estimation [Huang et al.,
2021b].

For face synthesis, joint learning of additional attributes like emotion, hair style and skin
color [Choi et al., 2018], the use of action units [Pumarola et al., 2018a] is beneficial
in the realism of face images. Furthermore, different face synthesis tasks can be used
to constrain the learning problem: Choi et al. [2018] learns a single generative model
to generate faces by providing desired properties of different semantics (e.g. emotion,
hair color); Sengupta et al. [2018] incorporates the image formation model to learn
simultaneously the face shape, the reflectance and illuminance; Ngo et al. [2020] unifies
facial reenactment and face swap tasks in a single model.

1.3 Research Outline and Questions

This thesis focuses on the improvement of models for face analysis and synthesis tasks by
learning face attribute decomposition. When tackling a new computer vision challenge
in face analysis and synthesis, in general, deep learning research typically addresses it
by using a large datasets with labels.
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1.3. Research Outline and Questions

Therefore, the overall research question of this thesis is as follows. Can deep learning
models benefit from learning to decompose the face representation by explicitly
or/and implicitly incorporating domain-specific prior knowledge?

1.3.1 Pose- and Expression- Robust Age Estimation

Recent methods for age estimation from a single image rely on 2D features and show
shortcomings when the face appearance (e.g. head pose, facial expression) changes [Feng
et al., 2018, Guo and Wang, 2012, Lu and Tan, 2013]. Due to the large variation of
aging patterns [Angulu et al., 2018], it remains a challenging problem in computer vision
research.

By incorporating a physics-based image formation prior into the model and by transfer-
ring the learned representation into the 3D space, the model may become more robust
against 3D transformations such as head-pose and expression changes. Therefore, we
address the following research question:

RQ1: How can age estimation models benefit from learning face attribute
decomposition using image formation prior?

Chapter 2 focuses on this question by learning an effective representation. We propose
an expression-, pose-, illumination-, reflectance-, and geometry-aware deep neural model
which reconstructs a 3D face from a single 2D image together with learning visual age
features. The idea is to minimize the negative influence of pose and expression variations
and to obtain a face representation suited for robust age estimation. Our model is trained
to jointly optimize 3D reconstruction and age estimation.

1.3.2 Identity-Unbiased Deception Detection

Recent studies in computer vision are focusing on high-stakes lie detection. Due to
the lack of available datasets, there is no research done on both low-stakes and high-
stakes deceit detection. Existing deception detection models are prone to identity and
environment biases (e.g. skin color, gender, facial geometry, background, and lighting
condition) when training on a small dataset. For instance, a model may obtain a high
prediction accuracy by observing the skewed gender / identity distribution in positive
samples, which is an undesired behavior for deception detection systems.

By incorporating prior knowledge about the face and image formation, and by removing
environmental and identity information from the input data, an unbiased representation
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for learning deception detection can be obtained. Consequently, the second research
question is as follows:

RQ2: How can we use face image formation prior knowledge to remove bi-
ases from deception detection models?

To address this question, in Chapter 3, we propose an identity (i.e. facial geometry and
skin reflectance) and environment (i.e. illumination) unbiased deceit detection system.
Unbiasedness is obtained by conditioning on facial expression and head-pose-related
features alone. A facial expression and head-pose feature space are disentangled from
other properties by simultaneously learning two separate networks (1) one to predict the
identity and environment parameters, and (2) another for temporally related features (i.e.
expression and head pose), via image formation prior. A novel Low-Stakes Deceit dataset
has been collected. We use the dataset to evaluate the existing automatic high-stakes
deceit detection methods on the full spectrum of deceit. To our knowledge, our dataset is
the first and only dataset used in low-stake deceit detection.

1.3.3 Self-supervised Face Image Manipulation

In Chapters 2-3, we study the benefit of attribute decomposition on discriminative
learning tasks i.e. can generative learning tasks take advantage of it as well?

Manipulation of facial attributes (e.g. expression, pose, and lighting) from a single mon-
ocular image is important for different applications, such as video dubbing, augmented
reality, and emotion recognition. Many methods require target-specific model training,
meaning that the face images of unseen identities cannot be manipulated. Therefore, in
this thesis, the third research question is:

RQ3: How can face image decomposition benefit face synthesis tasks?

To address this question, in Chapter 4, we propose a Conditional GAN pipeline condi-
tioned on facial appearances. Appearance modeling is based on 2D-to-3D reconstruction.
Facial appearance allows for simultaneously modeling different face attributes in the
same feature space flexibly and compactly. By transferring the conditions to the appear-
ance space, the many-to-one mapping problem of FACS (Facial Action Coding System)
is circumvented and the method provides the flexibility of a continuous feature space
from FACS and facial landmarks. For training, our method requires datasets of video
sequences without any labels. During test time, our method manipulates different facial
attributes given only one single unseen sample with possibly varying backgrounds and
illumination conditions.

6
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1.3.4 Face Reenactment and Swapping

In Chapters 2-4, we study the benefit of domain knowledge prior on various face analysis
and synthesis tasks i.e. can we still achieve a better representation of learning without
such prior knowledge?

Generating images or videos by manipulating facial attributes (i.e. face reenactment
and swapping) has gained a lot of attention in recent years due to their broad range of
computer vision and multimedia applications such as video dubbing [Suwajanakorn
et al., 2017], gaze correction [Kuster et al., 2012], actor capturing [Kim et al., 2018a,
Thies et al., 2016a], and virtual avatar creation [Nagano et al., 2018]. Recent methods
show that face swap targeted methods can be used for face reenactment and vice versa.
Unfortunately, the visual results on the second task are typically inferior to the first one
[Nirkin et al., 2019, Siarohin et al., 2019]. Since those methods are designed for one of
the tasks separately, they are not optimal for both.

By observing that face swap and reenactment tasks have many things in common, one
can benefit from it by learning those tasks simultaneously. Consequently, the fourth
research question is:

RQ4: Can we design a unified face reenactment and swapping without incor-
porating explicit prior knowledge?

In Chapter 5, we propose a novel pipeline that unifies face swapping and reenactment.
A combined approach benefits from the similarities of the two tasks. Learning them
together allows for robust face representation and enhances the realism of facial appear-
ance. The proposed algorithm learns an isolated disentangled representation for face
attributes without any supervision. Hence, our model can manipulate expression/pose,
face identity, and style independently in latent space. We achieve this by directly map-
ping the disentangled latent representation to the latent space of a pre-trained generator.
During inference time, the encoders condition the latent space by source and target face
images together with their landmarks and generate the reenacted or swapped face using
the pre-trained decoder.

1.4 Materials for Remaining Chapters

This thesis is composed of the following publications:
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• Chapter 2 is based on “Pose and Expression Robust Age Estimation via 3D
Face Reconstruction from a Single Image", published in IEEE/CVF International

Conference on Computer Vision 2019, International Workshop on Human Behavior

Understanding (ICCVW) [Savov et al., 2019], by Nedko SavovI, Lê Minh NgôI,
Sezer Karaoğlu, Hamdi Dibeklioğlu and Theo Gevers.

Contribution of authors

Nedko Savov: all aspects;
Lê Minh Ngô: all aspects;
Sezer Karaoğlu: guidance, technical advice, supervision;
Hamdi Dibeklioğlu: supervision, insights;
Theo Gevers: supervision and insight.

• Chapter 3 is based on “Identity Unbiased Deception Detection by 2D-to-3D Face
Reconstruction", published in IEEE/CVF Winter Conference on Applications of

Computer Vision 2021 (WACV) [Ngo et al., 2021], by Lê Minh Ngô, Wei Wang,
Burak Mandira, Sezer Karaoğlu, Henri Bouma, Hamdi Dibeklioğlu and Theo
Gevers.

Contribution of authors

Lê Minh Ngô: all aspects;
Wei Wang: dataset;
Burak Mandira: analysis, experiments;
Sezer Karaoğlu: guidance, technical advice, supervision;
Henri Bouma: insights;
Hamdi Dibeklioğlu: technical advice, insights;
Theo Gevers: supervision and insight.

• Chapter 4 is based on “Self-supervised Face Image Manipulation by Conditioning
GAN on Face Decomposition", published in IEEE Transaction on Multimedia

2021 (TMM) [Ngo et al., 2021], by Lê Minh Ngô, Sezer Karaoğlu and Theo
Gevers.

Contribution of authors

Lê Minh Ngô: all aspects;
Sezer Karaoğlu: guidance, technical advice, supervision;
Theo Gevers: supervision and insight.

• Chapter 5 is based on “Unified Application of Style Transfer for Face Swapping
and Reenactment", published in Asian Conference on Computer Vision 2020

IIndicates equal contributions.
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(ACCV) [Ngo et al., 2020] and in Lecture Notes in Computer Science (LNCS),
Volume 12626, December 2020, by Lê Minh NgôI, Christian aan de WielI, Sezer
Karaoğlu and Theo Gevers.

Contribution of authors

Lê Minh Ngô: all aspects;
Christian aan de Wiel: all aspects;
Sezer Karaoğlu: guidance, technical advice, supervision;
Theo Gevers: supervision and insight.

The author has further contributed to the following publications:

• Ipek Ganiyusufoglu, Minh Ngo, Nedko Savov, Sezer Karaoğlu, Theo Gevers,
“Spatio-temporal Features for Generalized Detection of Deepfake Videos", under
submission to Computer Vision and Image Understanding (CVIU).

• Tim de Haan, Minh Ngo, Sezer Karaoğlu, Theo Gevers, “ Unsupervised Target-
Aware Face Blending", under submission to International Conference on Computer
Vision (ICCV), 2021.
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Pose- and Expression- Robust Age

Estimation

In this chapter, we present a deep learning architecture that exploits 3D face recon-
struction to obtain a robust age estimation. To this end, effective representation is

learned through an expression-, pose-, illumination-, reflectance-, and geometry-aware
deep model reconstructing a 3D face from a single 2D image. The 3D face reconstruc-
tion network is combined with an appearance-based age estimation network, where the
face reconstruction features are jointly learned with the visual ones. Experiments on
large-scale datasets show that our method obtains promising results and outperforms
state-of-the-art methods, especially in the presence of strong expressions and large pose
variations. Furthermore, cross-dataset experiments show that the proposed method is
able to generalize more effectively as opposed to state-of-the-art methods.

2.1 Introduction

The human face is an important source of information. Face properties may reveal
different important cues such as emotion, intent, ethnicity, identity, gender, and age. The
focus of this chapter is age estimation. Age estimation has many potential applications in

Published in IEEE/CVF International Conference on Computer Vision, International Workshop on
Human Behavior Understanding (ICCVW), 2019 [Savov et al., 2019]
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daily life. For instance, in marketing, it can be employed for analyzing which age groups
are interested in what kind of products, services, or entertainment. Vending machines of
tobacco and alcohol can use age estimation to determine if the user is of legal age.

However, due to the large variation of aging patterns, addressed by Angulu et al. [2018],
Geng et al. [2007], age estimation is a challenging task. Existing methods mostly rely
on 2D information by exploiting appearance-related features. These features are either
handcrafted [Gao and Ai, 2009, Guo et al., 2009, Phillips et al., 2000, Yang and Ai,
2007]) or obtained in a learning manner (e.g. through Convolutional Neural Networks
(CNNs) [Hu et al., 2017, Levi and Hassner, 2015, Rothe et al., 2018, Sun et al., 2017,
Yang et al., 2015, Zhang et al., 2017a]). Other methods use pose dependent distances
between 2D facial landmarks [Farkas, 1994, Kwon et al., 1994] or learn manifolds to
directly map 2D images to age.

Methods relying on 2D features have difficulties when the face appearance changes.
For instance, a change in expression may introduce disturbing age-related patterns, like
wrinkles, and may negatively influence the accuracy of age estimation methods [Guo
and Wang, 2012]. Head pose variations that drastically change the facial appearance
may also degrade the accuracy of age estimation algorithms [Feng et al., 2018, Lu and
Tan, 2013]. These variations cause issues for other visual facial analysis tasks as well,
like expression recognition [Rudovic et al., 2013] and landmark detection [Feng et al.,
2018]. Robustifying methods for dealing with these variations are extensively explored
for face identification [Ding and Tao, 2016]. One subset of solutions attempt to remove
the variations from the input image by face frontalization or expression normalization,
as a pre-processing step for face identification [Amberg et al., 2008, Zhu et al., 2015].
In that case, any failure from the normalization, being the inability to normalize or
the presence of artifacts on the generated image, negatively affects the performance.
Such approaches may help to preserve the identity related dominant face features which
makes them suitable for identification. However, the reconstructed images lose important
high-frequency information such as skin texture detail (i.e. wrinkles) which would reduce
age estimation accuracy.

In this work, effective representation is learned through an expression-, pose-, illumination-
, reflectance-, and geometry-aware deep model, reconstructing a 3D face from a single
2D image. The goal is to minimize the negative influence of pose and expression vari-
ations and to obtain a face representation which is suited for robust age estimation. The
proposed model also learns the changes in facial appearance (2D image) through an
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appearance subnet. These subnets (2D and 3D) are trained to jointly optimize the 3D
reconstruction and age estimation.

The main contributions of this chapter are as follows:

1. To the best of our knowledge, we are the first to exploit 3D face reconstruction and
2D appearance features to jointly model pose and expression robust age estimation
through multi-task learning.

2. The proposed multi-task learning model for age estimation achieves state-of-the-art
accuracy on the Wiki database, as well as on cross-dataset experiments using UTK
and AgeDB.

Figure 2.1: Our multi-task learning architecture for combining visual and 3D face
reconstruction to perform robust age estimation. Two approaches are explored: (1) with
hard parameter sharing - sharing the weights of a single AlexNet CNN, and (2) soft
parameter sharing - two AlexNet CNNs have mutually connected layers.

2.2 Related Works

2.2.1 Age Estimation

Until recently, the predominant methods for performing age estimation are based on
handcrafted features, focusing on wrinkles, skin texture and 2D shapes such as Local
Binary Patterns [Phillips et al., 2000, Yang and Ai, 2007], Bio-Inspired Features [Guo
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et al., 2009], and Gabor features [Gao and Ai, 2009]. However, while different hand-
crafted features handle some adversarial conditions, none of them are fully robust against
expressions, head pose, and illumination variations. More specifically, such approaches
are quite sensitive to facial pose since it causes drastic changes in facial appearance.

Convolutional Neural Networks (CNNs) performs better than previous methods for age
estimation [Hu et al., 2017, Levi and Hassner, 2015, Rothe et al., 2018, Sun et al., 2017,
Yang et al., 2015, Zhang et al., 2017a]. Instead of mapping a full image to a certain age,
as in manifold learning, CNNs aim to automatically learn efficient age-related features.
Exploiting the benefits of CNNs, Rothe et al. [2018] proposes the Deep Expectation
(DEX) algorithm, an age estimator that classifies age and, for more robust predictions,
refines the inference prediction with a softmax expectation.

2.2.2 Pose and Expression Robustness

The effect of pose and expression on face analysis tasks is well studied. For instance, to
provide pose robustness in face identification, Masi et al. [2019], Napoléon and Alfalou
[2017], Paysan et al. [2009], Peng et al. [2017] augment their data by synthesizing
face images for varying head poses using statistical 3D face models. In a similar
way, Amberg et al. [2008] applies expression neutralization, and Zhu et al. [2015]
employs pose normalization before face identification. These approaches may help to
preserve the identity related dominant face features which makes them suitable for face
identification. On the other hand, reconstructed/synthesized facial images lose important
high-frequency details of skin appearance such as wrinkles, which would negatively
influence age estimation. Nevertheless, our model is able to simultaneously learn multiple
robust features, does not require labels other than age, and it is not influenced by face
smoothing on neutralized images. In Lou et al. [2018], age and facial expressions are
modeled jointly to achieve expression robustness in age estimation.

2.2.3 Monocular 3D Face Reconstruction

Monocular face reconstruction is the task of decomposing a face into its components
(i.e. 3D facial geometry, expression, head pose, skin reflectance, and scene illumination).
Computing these components for a single RGB image is an ill-posed problem. To this
end, methods use statistical 3D models that represent 3D faces with a low dimensional
parameter code vector [Blanz and Vetter, 1999, Booth et al., 2018, Gerig et al., 2018,
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Paysan et al., 2009]. This code vector contains the encoded face components such as
geometry, expression, skin reflectance, and additional parameters depending on the
statistical 3D model.

Conventional 3D face reconstruction methods employ iterative optimization of an energy
function. For instance, Blanz and Vetter [1999] optimizes the parameters by minimizing
the error between the reconstructed and original face. Thies et al. [2016a] also uses an
iterative approach, yet, it is designed to transfer facial expressions –in videos– between
faces. In addition to being computationally expensive, energy minimization approaches
have the problem of being reliant on favorable initialization because of typically non-
convex functions to optimize. Deep learning methods exist using data augmentation
techniques to produce results closer to ground truth fitting [Genova et al., 2018, Kim
et al., 2018b]. Some other studies apply an analysis-by-synthesis approach to train
the neural network using a physically plausible image formation model [Tewari et al.,
2017]. We base our model for extracting pose and expression features on Tewari et al.
[2017] with a number of modifications further discussed in this work. To the best of our
knowledge, we are the first to use 3D face reconstruction for the age estimation problem.

2.3 Proposed Method

An overview of our method is shown in Fig. 2.1. Given a cropped face image I, our
AlexNet-based CNN model learns to jointly produce the age prediction ŷ (Section 2.3.2)
and the 2D-to-3D reconstruction parameterized in a low dimensional latent space z

(Section 2.3.1).

The appearance and 3D reconstruction features are combined using multi-task learning.
Two methods are explored (Section 2.3.3). In the hard parameter sharing approach, a
single shared CNN is adopted. The optimized loss is the weighted sum of a 3D fitting
loss L f i t and an age estimation class distance loss Ldist . In the soft parameter sharing
approach, we use two separate CNN backbones and mutually connect multiple of their
layers to allow sharing. The loss is the sum of L f i t and Ldist . As a backbone, we use
AlexNet [Krizhevsky et al., 2012] with a removed last fully connected layer.

2.3.1 Monocular 2D-to-3D Face Reconstruction Subnet

The employed monocular 2D-to-3D face reconstruction (fitting) model jointly decom-
poses a given 2D face image into its underlying components represented in a low
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dimensional code vector z: face rotation ω ∈ SO3 and translation τ ∈ R3, face identity
α ∈ R80, face expression δ ∈ R64, skin reflecntance β ∈ R80 and illumination γ ∈ R27.
A fully connected layer with linear activation is added on top of the AlexNet backbone
to infer z.

z= {α,β,δ,γ,ω,τ}. (2.1)

Reflectance and Geometry

The facial geometry G(α,δ) ∈ RN×3 and reflectance L(β) ∈ RN×3 are represented as a
multilinear PCA model using the Basel Face Model 2017 [Gerig et al., 2018].

G(α,δ) = µgeom + Eid[α ·σid] + Eex p[δ ·σex p], (2.2)

L(β) = µre f + Ere f [β ·σre f ], (2.3)

where µgeom, µre f ∈ RN×3 represent the mean neutral geometry and skin reflectance;
Eid , Ere f ∈ RN×3×80, Eex p ∈ RN×3×64 correspond to the linear bases of the PCA model
together with their standard deviations σid , σre f ∈ R80, σex p ∈ R64.

Camera Model

We model the face transformation to the camera space by a rigid transformation con-
sisting of rotation R(ω) : R3→ R3×3 and translation τ together with a full perspective
transformation Π to obtain vertex coordinates u,v ∈ RN on the camera plane.

u,v= {ui, vi}=Π ◦ (R(ω)G(α,δ) +τ), i ∈ {1..N}. (2.4)

Illumination Model

We model illumination using the first B = 3 bands of Spherical Harmonics [Müller, 1966]
bases Hb(n) : RN×3 → RN assuming the face surface to be Lambertian with a distant
illumination ignoring self-occlusion and cast-shadows. Illumination coefficients are
predicted separately for the RGB channels. Vertex normals n are estimated using 1-ring
neighborhood. Shaded colour is computed as a Hadamard product between reflectance
and shading:

C(β,n,γ) = {ci}= L(β) ·
B2
∑

b=1

γbHb(n), i ∈ {1..N}. (2.5)
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Fitting

The energy formulation of Tewari et al. [2017] is used to train the proposed pipeline to
predict the code vector z. Our loss consists of a landmark loss Llan, a photometric loss
Lphoto and a regularization term Lreg balanced using weights λlan and λphoto.

L f i t = λlanLlan +λphotoLphoto +Lreg . (2.6)

Photometric Loss

We use the L2,1 loss [Ding et al., 2006] to penalize the difference between the predicted
per vertex shaded colour (Eq. 2.5) and the ground truth colour at positions {u,v}. The
loss is defined for a subset of vertices V with normals directed toward the camera screen.

Lphoto =
1
|V |

∑

i∈V

‖I(ui, vi)− ci‖2. (2.7)

Landmark Loss

We annotated 48 landmarks with vertex indexes k j, j ∈ {1..48} on the BFM model and
penalize the L2 difference between ground truth landmarks l j and their corresponding
prediction pk j

= {uk j
, vk j
} from the 3D model.

Llan =
48
∑

j=1

‖pk j
− l j‖2

2. (2.8)

Regularization

We regularize the model using Tikhonov regularization to enforce the model to predict
faces closer to the mean.

Lreg = λalpha

80
∑

i=1

α2
i +λbeta

80
∑

i=1

β2
i +λdel ta

64
∑

i=1

δ2
i . (2.9)
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2.3.2 Appearance Subnet

We refer to our age estimation method, that learns visual age features, as the appearance
subnet. Our appearance model is derived from Rothe et al. [2018] where the cross-
entropy loss is used for resistance to outliers. Following Rothe et al. [2018], for further
outlier resistance, we calculate the expectation over the softmax distribution to obtain a
prediction ŷ during the testing time:

ŷ =
M−m
∑

i=0

(i +m) · ai. (2.10)

A fully connected layer is added with an output activation vector a on the backbone.
The ground truth age is denoted by y and its one-hot encoding by ey . The minimum and
maximum age that a model can predict are m = 0 and M = 80. In contrast to Rothe
et al. [2018], a distance term is added to the cross-entropy loss to penalize the probability
mass which is different from the correct classes. The modified loss is defined as:

Ldist = λdist

M−m
∑

i=0

ai ·d(i, y)−
M−m
∑

i=0

eyi · log(ai), where d(i, y) = |(i+m)− y|. (2.11)

It is assumed that each class corresponds to one year of age and that the classes are
indexed in order of monotonic increase. d(.) is a distance function. Absolute distance is
chosen to be used in this work, as it is a natural choice to represent distance and is outlier
resistant. λdist is a constant used to tune the balance between the two terms.

2.3.3 Multi-Task Learning

Both subnets (3D and appearance) have AlexNet as a backbone. This establishes a
correspondence between the layers of the two pipelines. The features of the tasks are
different. However, as they are processed by the same filter size, the features are at the
same scale of detail. The combination of these features is then suitable for processing by
both pipelines following the shared layer. In this work, we attempt both hard and soft
parameters sharing for multi-task learning.

Hard Parameter Sharing

A single AlexNet is shared for both tasks. The idea is that by joint training, the features
are enforced to be suitable to age, and to pose and expression information. The last layer
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contains the refined informative features for each task. The loss is a weighted sum of
both tasks with weight w:

LHPS = (1−w) · L f i t +w · Ldist . (2.12)

Soft Parameter Sharing

The hard parameter model forces the tasks to share all of their CNN features. This may
not be optimal. Therefore, we employ a soft parameter sharing technique that can learn
which layers to share. In this way, the tasks can produce independent high-level layers.
For this, we use Cross-stitch Networks [Misra et al., 2016]. The approach is to have
two instances of a backbone, i.e. A and B, one for each task. We choose to mark the 3D
reconstruction subnet by A and the appearance subnet by B. So-called cross-stitch layers
are then inserted in key positions in the deep network. Stitch layers take activations x i

from two layers, one from A and one from B, and blends them together as follows:

�

x̄ i
A

x̄ i
B

�

=

�

κAA,κAB

κBA,κBB

��

x i
A

x i
B

�

. (2.13)

Figure 2.2: 3D reconstructions from our 3D face reconstruction model on samples from
the Wiki test set. Shown are the original and the projected on them predicted 3D models.

The κ parameters are trained together with the architecture. They are common for all
activations in a pair of layers. Misra et al. [2016] provides information about the positions
for the cross-stitch layers inside AlexNet which we use after all max-pooling layers and
fully connected layers. The final architecture is shown in Fig. 2.1.
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In our implementation, Adam is chosen as an optimizer, but the κ parameters are trained
separately with the Adagrad optimizer, to enforce a higher learning rate. This choice is
meant to address the κ parameters receiving very small updates because of the magnitude
of AlexNet activations, as noted by Misra et al. [2016]. To avoid overfitting, we apply L2

regularization but only on the age estimation branch, since the 3D reconstruction subnet
already has its own regularization term.

2.4 Datasets

The training data is based on the large scale IMDB-Wiki [Rothe et al., 2018] dataset.
Different from other datasets, it contains in-the-wild faces with a variety of poses and
expressions. Only the Wiki-Cropped subset is used, as it holds more accurate age
annotations.

Wiki-Cropped is cleaned by filtering out data crawled from unregulated Wikipedia
sandbox and user pages, black-and-white images and photos with undetected face by
the dlib face detector [King, 2009]. We keep images labeled below 80 years of age and
a maximum of 600 images per age label, to balance the data distribution. Our test set
(referred to as Wiki test set) consists of 10% of the cleaned data. To ensure sufficient
training data, the test set is distributed as closely as possible to the training set. We
alternate between 5 age groups when building a training batch to enforce label diversity.
The boundaries of the groups were chosen to be the 20th, 40th, 60th and 80th percentiles
of the dataset distribution.

The landmarks are extracted by the dlib face detector [King, 2009] and used for landmark
loss Llan in training.

For cross dataset evaluation, we choose the manually annotated in-the-wild AgeDB
dataset [Moschoglou et al., 2017] and the UTKFace dataset [Zhang et al., 2017b].

2.5 Experiments and Results

The success of our approach heavily relies on the success of each subnet, therefore we
first demonstrate the qualitative results of our monocular 3D face reconstruction subnet.
In Fig. 2.2, original images and their reconstructions can be seen. The reconstructions
are visually accurate even under high pose and expression variations.
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2.5.1 Evaluating the Appearance Subnet for Age Estimation

In this experiment, we compare the performance of our appearance subnet to two other
recent age estimation approaches: Deep Regression Forests [Shen et al., 2018] and
SSR-Net [Yang et al., 2018]. Like the proposed appearance baseline, both models are
trained on the cleaned Wiki dataset. Training of the appearance subnet is performed
with a learning rate of 10−5, Adam optimizer, batch size 5, step learning rate decay and
L2 regularization with weight 0.01. The λdist parameter of the loss is set to 0.2 which
results in close values of the distance loss component and the Cross-Entropy component.

We report on mean absolute error (MAE) between estimated and ground-truth age in
Table 2.1. Our appearance subnet outperforms the other methods. We use it as a baseline
for further experiments.

Method MAE

SSR-Net [Yang et al., 2018] 7.33
Deep Regression Forests [Shen et al., 2018] 13.21

Appearance Subnet (Standalone) 5.86

Table 2.1: Best MAE test score of different age estimation methods trained on the Wiki
dataset. The appearance subnet used as the visual baseline in this work outperforms the
other two methods.

2.5.2 Joint Learning of Age Estimation and 3D Face Reconstruction

In this section, we study the performance of the appearance subnet with a joint classi-
fication of age estimation and 3D face reconstruction. We show that the performance
of age estimation increases by exploiting features learned from the monocular face
reconstruction.

In this and subsequent experiments, for soft sharing, we load pre-trained Alexnet weights
for the 3D face reconstruction subnet in the joint model. For other cases, we load
ImageNet classification pre-trained AlexNet weights. We apply L2 regularization with
weight 10−5, dropout with rate 0.7 on the final layer of age estimation. For comparison,
we used the same regularization scheme for the standalone appearance subnet and hard
parameter sharing.
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After tuning, the MAE score from the hard parameter sharing model (5.74 MAE) marks
an age prediction improvement over the independent appearance subnet, as evident in
Table 2.4, and shows the benefit from sharing the 3D reconstruction features.

Age estimation weight MAE

Appearance Subnet 5.86
w= 0.1 5.95
w= 0.3 5.74
w= 0.5 5.78
w= 0.7 5.83
w= 0.9 5.89

Table 2.2: Best MAE test scores of the hard-parameter sharing model after training on
Wiki dataset with different weights w for the age estimation loss. The weight of the
3D face reconstruction is 1−w. Hard parameter sharing outperformed the appearance
subnet.

Soft sharing parameters MAE

κAA = 0.9, κAB = 0.1 5.58
κAA = 0.8, κAB = 0.2 5.68
κAA = 0.7, κAB = 0.3 5.52
κAA = 0.5, κAB = 0.5 5.47

Table 2.3: Best MAE test scores from tuning soft parameter sharing model’s κ paramet-
ers on the Wiki dataset.

We obtain better MAE scores with κ parameters that encourage large sharing in the
soft parameter sharing model. Table 2.2 gives an overview of the test performance of
hard parameter sharing for different choices of the loss weight w. The MAE scores are
decreasing with decreasing of the weight for age estimation, which means higher sharing
with 3D face reconstruction.

For soft parameter sharing, we assess different choices for the amount of sharing by κ.
Our initialization follows the rules κBB = κAA and κAB = κBA = 1−κAA. We chose non-
sharing (κAB and κBA) values from the range [0.5,1] in order to follow the predetermined
rules. If smaller values are chosen, the branches would just switch the CNNs they rely
mostly on. The test MAE scores after training on Wiki are shown in Table 2.3. The
results show that age estimation benefits from large sharing. Significance of the best
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results (κ= 0.5) is confirmed p-value 2.70 · 10−5 from t-test after confirming normality
with a normality test.

Having outperformed the hard parameter sharing, as shown in Table 2.4, the soft sharing
age estimation seems to benefit from the independence of higher layers offered by the
soft sharing architecture. As shown in Table 2.4, after 5 repeated training sessions per
model, MAE score distributions are narrow and not overlapping. We can conclude that
our age prediction is stable. For further experiments, we consider only the much better
performing soft parameter sharing model.

Method Mean ± Std

Appearance Subnet (Standalone) 5.86 ± 0.04
Proposed: HPS (Appearance + 3D Reconstruction Subnets) 5.74 ± 0.04
Proposed: SPS (Appearance + 3D Reconstruction Subnets) 5.47 ± 0.03

Table 2.4: Mean best MAE test scores and deviations calculated from 5 training sessions
on Wiki dataset of the appearance subnet, the proposed soft parameter sharing (SPS)
and hard parameter sharing (HPS), combining the Appearance subnet with the 3D Face
reconstruction subnet.

2.5.3 Analyzing the Age Estimation Improvements by Pose and
Expression

In this experiment, we evaluate the performance of the proposed soft parameter sharing
model on varying pose and expression and compare it to the standalone appearance
subnet. Each image in the test set is associated with expression (i.e. using predicted
expression parameters) and head pose (i.e. using predicted head pose angle). We obtain
an expression extremeness metric from the Euclidean norm of the expression vector δ.
Our pose extremeness metric is based on the maximum of the exponential coordinates
that parameterize a rotation ω ∈ SO3. Separately for each of these metrics, we cluster
the images into equally balanced groups. For each of the groups, the mean of the MAE
differences over all the images falling in the group is computed and plotted to analyze
the impact of our model on each challenge.

Fig. 2.3 (a) visualizes the expression strength of each group by showing a number
of samples. Fig. 2.3 (b) shows how the MAE changes throughout the groups. The
appearance subnet’s MAE increases with increasing expressiveness whereas the soft
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sharing method always scores better and performs similarly for the different ranges of
expressiveness. Therefore, our proposed algorithm is more robust to expression variations.
It improves over the appearance subnet the most on the most extreme expressions group
(improvement is up to 1.8 MAE).

Fig. 2.4 (a) visualizes the head poses contained in each group. Looking at fig. 2.4 (b),
the appearance subnet is much more likely to fail on more extreme poses than the soft
sharing model. Moreover, the trend is that increasing the head pose extremeness leads to
higher improvement over the appearance subnet. Therefore, the proposed algorithm is
more robust to head pose variations. Notably, the improvement is highest for the most
extreme head pose variations (1.4 MAE).

Fig. 2.5 further demonstrates the pose and expression robustness of the soft parameter
sharing model by visually showing its superior predictions to the appearance subnet on
the extreme pose and expression examples.

Appearance Subnet

Soft Sharing

(a) (b)

Figure 2.3: (a) Samples from the expression intensity groups. Each row contains
samples from one group. Groups are sorted by increasing metric from top to bottom;
(b) The MAE for the soft sharing model and the standalone appearance subnet over the
expression extremeness groups. The expression extremeness metric is increasing in the
groups from left to right. The results show that the proposed model shows robustness to
expression in contrast with the appearance subnet.

2.5.4 Cross-dataset Evaluation

To show if the results extend beyond the dataset used for training, evaluation is done on
UTKFace and AgeDB. The expectation is to obtain MAE scores with soft parameter
sharing, which are significantly lower than the MAE scores of the standalone appearance
subnet. It is not common practice to provide results on cross-dataset evaluation for age
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Appearance Subnet
Soft Sharing

(a) (b)

Figure 2.4: (a) Samples from the rotation groups. Each row contains samples from
one group. Groups are sorted by increasing metric from top to bottom. (b) The MAE
measures for soft parameter sharing model and appearance subnet over the rotation
extremeness groups. The rotation extremeness metric is increasing in the groups from
left to right. The results show the robustness of the proposed algorithm to head pose in
contrast to the appearance subnet.

Method UTKFace AgeDB

Appearance Subnet (Standalone) 9.73 10.27
Proposed: SPS (Appearance + 3D Reconstruction Subnets) 9.54 10.01

t-test p-value 3.22 · 10−9 1.78 · 10−8

Table 2.5: MAE scores from cross dataset evaluation of the appearance subnet and the
soft parameter sharing model (SPS).

estimation since the performance may largely deteriorate. Results are shown in Table
2.5. It can be derived the improvements are significant. It shows the generalizable power
of the soft sharing multi-task learning model.

2.6 Conclusion

In this chapter, we have shown that 3D reconstruction features can significantly improve
the age estimation performance when jointly learned with appearance features. Our
method takes a single 2D image and derives 3D reconstruction features as a new source of
pose and facial expression robustness by employing a monocular 3D face reconstruction
model. After evaluation, our method has shown to be consistently more robust across
variation and improved over the baseline the most with extreme head poses (1.4 MAE)
and intensive expressions (1.82 MAE).
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Figure 2.5: Age predictions of the Appearance subnet (denoted as Baseline) and the soft
parameter sharing model (denoted as SS) on non-frontal and non-neutral faces from the
Wiki test set. The improvement of age prediction under extreme pose and expression
conditions is visible.
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Identity-Unbiased Deception Detection

Deception is a common phenomenon in society, both in our private and professional
lives. However, humans are notoriously bad at accurate deception detection. Based

on the literature, human accuracy of distinguishing between lies and truthful statements
is 54% on average, in other words, it is slightly better than a random guess. While
people do not much care about this issue, in high-stakes situations such as interrogations
for series crimes and for evaluating the testimonies in court cases, accurate deception
detection methods are highly desirable. To achieve a reliable, covert, and non-invasive
deception detection, we propose a novel method that disentangles facial expression and
head pose related features using 2D-to-3D face reconstruction technique from a video
sequence and uses them to learn characteristics of deceptive behavior. We evaluate the
proposed method on the Real-Life Trial (RLT) dataset that contains high-stakes deceits
recorded in courtrooms. Our results show that the proposed method (with an accuracy of
68%) improves the state of the art. Besides, a new dataset has been collected, for the first
time, for low-stake deceit detection. In addition, we compare high-stake deceit detection
methods on the newly collected low-stake deceits.

3.1 Introduction

Deceptive behavior is frequently displayed in daily life, yet, recognition of such behavior
or lies is not an easy task for humans. On average, people can correctly classify only

Published in IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021 [Ngo
et al., 2021]
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Figure 3.1: Architecture overview. Our proposed method decomposes temporally
related features (expression and pose) from identity and environment properties by
simultaneously training two CNNs (Identity and Temporal CNNs) to produce two sets of
features using 2D-to-3D reconstruction. Features from the Temporal CNN are used for
Deceptive Prediction.

47% of lies and 61% of truthful statements [Bond Jr and DePaulo, 2006].

Therefore, reliable methods for deception detection is an important need specifically for
high-stakes situations such as court cases, and suspect/witness interrogations for further
investigations and low-stakes situations to improve our daily communications. However,
the ubiquitous polygraph, the most commonly known deception detection mechanism is
unreliable [Fiedler et al., 2002].

Invasive approaches such as PET (positron emission tomography) and fMRI (functional
magnetic resonance imaging) based methods perform better but they are neither fully
reliable nor practical in deception detection where compactness or portability is required.
Besides, the invasive nature of such mechanisms leaves them to be easily tricked by
skilled deceivers [Fiedler et al., 2002]. Hence, deception detection requires non-invasive
and covert methods for accurate detection. The difficulty in non-invasive deception
detection lies in the weakness of external cues, since a large volume of work indicates
that deceits are barely evident in behaviour [Hartwig and Bond Jr, 2014].

Recent developments in computer vision, along with the availability of deceptive behavior
videos, have increased the research interest on deceit detection from visual patterns. The
driving mechanism behind this ambition is the (subconscious) leakage of behavioral
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cues to deception [Hartwig and Bond Jr, 2014]. These cues are often weak, very fast,
or subjective, making them hard to interpret by humans. Recent studies on automated
deception detection [Morales et al., 2017] exploits different behavioral modalities such
as facial actions/expressions, head pose/movement, gaze, hand gestures, and even vocal
features in the analysis [Abouelenien et al., 2014, Morales et al., 2017]. In contrast, our
work focuses solely on temporally coherent disentangled facial cues.

High-level visual features used in the literature [Morales et al., 2017] such as facial action
units are prone to errors due to challenging environmental conditions (i.e. illumination,
viewpoint, occlusion, etc.). Thus, features extracted under challenging conditions can be
unreliable. In this work, to cope with such issues, we propose to exploit 2D-to-3D face
reconstruction to obtain an effective low-level representation for more reliable deception
detection. 2D-to-3D face reconstruction aims at decomposing a face image into its
components such as 3D facial geometry, expression, skin reflectance, head pose, and
illumination parameters. Expression and head pose components are expected to carry
important information for deceit detection [Lakhani and Taylor, 2003].

Although a successful decomposition has been a backbone for many face-related com-
puter vision tasks (e.g. face recognition, emotional expression recognition, head pose
estimation, etc.), this work is the first one that exploits face reconstruction for deceit
detection. To this end, we propose an identity (i.e. facial geometry and skin reflectance)
and environment (i.e. illumination) unbiased deceit detection system. Unbiasedness
is achieved by conditioning on facial expression and head-pose related features alone.
Facial expression and head-pose feature space are disentangled from other properties by
simultaneously learning two separate networks, one to predict the identity and environ-
ment parameters and another for temporally related features (i.e. expression and head
pose). Our results show that the proposed novel method for deception detection improves
the state of the art high-stakes deceit detection, as well as it provides comparable results
with the methods which make use of manually annotated facial attributes (e.g. facial
actions/expressions, gaze, and head movement).

All prior automatic methods have been focusing on high-stakes deceit detection. There
is no study available for automatic low-stakes deceit detection also because there is no
low-stakes deceit detection dataset available. In our work, a novel Low-Stakes Deceit
dataset has been collected with 624 high-res recordings of 312 subjects. To the best of
our knowledge, the Low-Stakes Deceit dataset is the first and the only dataset available
for low-stakes deceit detection. Besides, we use the dataset also to evaluate the existing
automatic high-stakes deceit detection methods on the full spectrum of deceit.

29



Identity-Unbiased Deception Detection

To summarize, our contribution is four-fold:

• A novel method is proposed for deception detection on videos. The proposed
method disentangles head pose and facial expression from facial identity (i.e.
skin reflectance and 3D facial geometry) and illumination, using 2D-to-3D face
reconstruction.

• The Real-Life Trial dataset has been cleaned and state-of-the-art high-stakes deceit
detection methods have been re-evaluated using Leave-One-Person-Out (LOPO)
validation.

• The proposed method outperforms the existing state-of-the-art and outperforms
professional experts on the high-stakes deceit detection task.

• A new Low-Stakes Deceit (LSD) dataset is introduced. To our knowledge, it’s the
first visual dataset for low-stakes deceit detection. For the first time, we create a
benchmark for state-of-the-art automatic high-stake deceit detection methods on
low-stake deceit detection. The dataset will allow further research to be done on
low-stake deceit detection.

3.2 Related Works

3.2.1 Deception Detection

At the basis of deception detection through nonverbal cues stands the leakage hypothesis,
which states that –if the stakes of a lie are high enough– involuntary, subconscious cues
of deceit will emerge from a liar [Hartwig and Bond Jr, 2014]. One can divide observable
cues into physiological cues, body language cues, and facial cues. One of the problems
with intangible constructs such as deceit is that these cues range from highly objective
ones (vocal pitch) to highly subjective measurements (facial pleasantness). Hence, this
section aims to provide an overview of objective, non-verbal cues that are relevant to the
scope of using visual features for deception detection.

Concerning facial cues, a multitude of signals have been identified to correlate with
deceit, such as lip pressing [Burgoon et al., 2017], smiling and pupil dilation, and
facial rigidity [Pentland et al., 2017]. However, the studies often find contradictory
results [Bouma et al., 2016, Vrij et al., 2019]. Besides, performance is highly dependent
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on the data used for training and validation, with some datasets being noticeably easier
than others [Wu et al., 2017a]. Secondly, the circumstances under which the lies were
elicited are influential: multiple studies indicate that deceptive cues increase in magnitude
with increased cognitive load [Vrij et al., 2017]. Hence, the final application and training
data should have comparable cognitive load during data recording.

Micro-expressions pose another viable source of information [Yan and Chen, 2018],
even though other studies have shown that only a small amount of people exhibit micro-
expressions when lying [DesJardins and Hodges, 2015]. Facial action units (AUs) are
also found to be informative for deceit detection [Morales et al., 2017].

One of the most recent methods of automated deceit detection is proposed by Morales
et al. [2017]. This method fuses information from audio-visual modalities, where visual
features in the form of 408 cues, including gaze, orientation, and FACS information,
are extracted using OpenFace [Baltrušaitis et al., 2016] and later fused with verbal and
acoustic features. Fusion occurs through a concatenation of statistical functional vectors,
after which random forests and decision trees are used for deception classification.
Differently, Pérez-Rosas et al. [2015] presents a baseline method for their introduced
Real-Life Trial dataset, which models manually coded visual features such as expression,
head movement, and hand gestures together with speech transcriptions using random
forests and decision trees.

In literature, deceit is typically categorized into high-stakes (hold severe consequences
for the liar) and low-stakes (simple lies that individuals get away with most often). All
prior automated deceit detection methods, to our knowledge, have been focusing on the
high-stakes deceit detection problem. Thus, there was no research has been done on
low-stakes deceit detection. Low-stakes deceit detection is considered more challenging
than high-stakes deceit detection since people in high-stakes situations are expected to
behave more nervously [Lakhani and Taylor, 2003]. In more than 30 human behavior
studies on low-stakes and high-stakes deceit conducted by other researchers an average
accuracy of 55% has been achieved by professional experts on low-stakes in comparison
with 67% for high-stakes [O’Sullivan et al., 2009].

3.2.2 Monocular Face Reconstruction

The decomposition of image components requires inverting the complex real-world
image formation process. The reconstruction by inverting image formation is an ill-
posed problem because an infinite number of combinations can produce the same 2D
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image [Blanz and Vetter, 1999]. In general, we can categorize face reconstruction meth-
ods into two groups, namely, iterative [Blanz and Vetter, 1999, Garrido et al., 2013, Thies
et al., 2015, 2016a] and deep learning based [Tewari et al., 2017]. Iterative approaches
try to optimize parameters by minimizing the error between projected (reconstructed
face) and the original image in an iterative (analysis-by-synthesis) manner [Blanz and
Vetter, 1999]. The energy functions are mostly non-convex. The good fitting can only
be obtained by close initialization to the global optimum, which is only possible with
some level of control during image capture. Since these approaches are computationally
expensive they are not preferred in this work.

Deep learning based methods, to reconstruct a face from a single monocular image,
typically uses either data augmentation techniques to regress prediction to be close
to the ground truth [Genova et al., 2018, Kim et al., 2018b, Sengupta et al., 2018] or
applies the similar analysis-by-synthesis approach to train the neural network using a
physically plausible image formation model [Deng et al., 2019, Genova et al., 2018,
Koizumi and Smith, 2020, Tewari et al., 2017]. These methods produce sufficient
reconstruction quality for certain tasks, however, they sacrifice details in order to be
tractable for challenging, unconstrained images. Since such methods cannot avoid
expression information to be leaked in 3D facial geometry, it is likely that there is an
information loss while capturing expression. To reliably capture facial movements, the
separation of 3D facial geometry and expression components are quite important.

Some works have been proposed to overcome such issues by using RGB videos instead of
single monocular images [Garrido et al., 2013, Thies et al., 2015, 2016a]. However, these
works are based on the iterative optimization approach ( requires energy minimization
for new input data). Convolutional Neural Network (CNN) architectures are recently
explored for video-based dense real-time face reconstruction. In this work, we present
a novel identity-aware, dense, and real-time face reconstruction CNN pipeline which
receives RGB videos as input. Unlike previous monocular reconstruction methods, our
method disentangles identity-related features (i.e. 3D facial geometry and reflectance)
and illumination from temporally dependent parameters (i.e. expression and head pose)
by simultaneously learning two CNNs for those sets of parameters using 2D-to-3D
reconstruction. Disentanglement of temporally dependent features is important for
deception detection since it allows our method to be unbiased towards subject identity
and recorded environment.
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3.3 Proposed Method

Our goal is to predict if a talking person is lying based on visual input i.e. face image.
A sequence of RGB face images {Ii} ∈ RW×W×3 is passed to the Convolutional Neural
Network (CNN) backbone to predict head-pose and facial-expression related features.
Expression and head-pose are disentangled from other properties using 2D-to-3D recon-
struction, which simultaneously learns latent face attributes together with environmental
conditions. Constraining prediction on expression and head-pose alone allows us to be
unbiased from facial identity and environment conditions which are irrelevant for deceit
detection. Prior psychology studies have shown expression and pose-related behaviors
such as eye contact, facial twitching, pauses, stuttering, and hesitance to be indicative
of lie detection [Lakhani and Taylor, 2003]. Temporal features (i.e. expression and
head pose) are used further in the second CNN to produce the final deceit detection. An
overview of our method is shown in Fig. 3.1.

3.3.1 Modeling Deceptive Behaviour

We model lie detection as a Multiple Instance Learning problem [Ilse et al., 2018]. Given
features extracted from video frames, our model assigns a single label (lie/truth) for
the entire video. For a video annotated as a lie, we assume that there is at least one
sub-sequence, where the person shows a deceptive behavior. For a video annotated as a
truth, we assume that everything in the video is a truth. Thus, any sequence of frames
which contains a lie sub-sequence is labeled as a lie. Given expression and pose related
frame-wise features our deception prediction model extracts local temporal features
ht ∈ RT×C using two layers of 1D-convolutions over the temporal dimension, where T is
a sequence length, and C is the number of filters. Attention block Att weighs features
based on their usefulness for the final task. Final linear layer fc with sigmoid is used to
produce final prediction y.

y= σ

�

fc

�

∑

t

so f tmax(At t(ht)) · ht

��

. (3.1)

3.3.2 Expression and Pose Features Disentanglement

A 2D face image Ii can be described using latent parametersP = {α,β,δ,γ,ω, t} ∈ R257

from which the original face can be reconstructed. We use CNN to predict those
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parameters. α = {αi}, β = {βi} ∈ R80 and δ = {δi} ∈ R64 are parameters correspond
to 3D face geometry, albedo and expression; γ ∈ R9×3 describes scene illumination;
ω ∈ SO(3) and t ∈ R3 describe face rotation and translation.

Our model consists of two CNN backbones. The first component, Identity CNN, is used
to predict identity and environment related parameters (identity geometry α, albedo β
and lighting condition γ). Face image is passed to the MobileNetV2 backbone [Sandler
et al., 2018]. Its last layer is replaced by a fully connected layer with linear activation to
predict α, β, γ parameters. The second component, Temporal CNN, is used to predict
face expression δ and object transformations w, t based on a sequence of RGB face
images {Ii} ∈ RW×W×3. MobileNetV2 backbone is followed by a recurrent layer LSTM
and a fully connected layer with linear activation to predict δ,w, t.

We use LSTM to capture temporal relations between video frames and as an expression
and pose-related feature space for the Deceptive Prediction network.

Disentanglement of expression and pose feature space from other properties is achieved
by simultaneously learning all latent parameters P using 2D-to-3D reconstruction via
Physics-based encoder. Disentanglement is an important property for our deception
framework since it allows it to be unbiased towards identity and environment properties
by assuming that lie cues are dependent on temporally related properties (expression,
pose) only.

3.3.3 2D-to-3D Reconstruction

Albedo and Geometry

3D face geometry and albedo are parametrized using a multi-linear PCA model [Gerig
et al., 2018]. Face geometry is represented as a point cloud X in the Euclidean space
with the corresponding albedo attributes B ∈ RN×3.

X = Ageom + Pid[α ·σid] + Pexp[δ ·σex p], (3.2)

B= Aalb + Palb[β ·σal b], (3.3)

where Ageom,Aalb ∈ RN×3 are the mean face geometry and skin albedo; Pid,Palb ∈
RN×3×80,Pexp ∈ RN×3×64 are principal components of PCA models for face identity,
albedo and expression respectively; together with their standard deviations σid , σal b ∈
R80, σex p ∈ R64.
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Face Transformation

We model face movement in the scene using 6DoF transformation T. Rotation matrix
R(w) : R3 → R3×3 is represented in ω ∈ R3 ∈ SO(3), and translation t ∈ R3 in x, y, z
directions.

Illumination Model

Illumination changes are modeled using the first 3 bands of spherical harmonics basis
function H j assuming face is a Lambertian surface [Thies et al., 2016b]. The intensity of
the i-th vertex ci is defined as a product of vertex reflectance bi and a shading component.

ci = bi

32
∑

j=1

γ jH j

�

R(ω)ni

�

, i ∈ 1..N , (3.4)

where ni is a vertex normal of the i-th vertex. We define illumination parameters γ j

separately for each RGB channels, and consequently have 27 parameters in total. Vertex
normal is estimated based on 1-ring triangle neighbors. Triangle topology is known from
the face morphable model.

Projection Model

An obtained 3D point cloud X is mapped into a 2D plane by applying a rigid transforma-
tion T and perspective transformation Π which is a product of projection V and viewport
P ∈ R4×4 matrices:
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û, v̂ coordinates, and depth can be obtained by division by the homogeneous coordinate
d̂. The focal length is assumed to be fixed and principal points to be in the middle of
the projection screen. û, v̂ together with vertex color c are used for producing the final
reconstructed face.
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Figure 3.2: Sample video frames from the RLT dataset. The dataset contains videos of
trials under different lighting conditions, pose, with multiple people in the scene. Some
of the videos are heavily occluded and don’t contain visible facial features.

3.3.4 Training Losses

We use cross-entropy loss between ground-truth labels ygt ∈ {0, 1} and predictions
y ∈ [0, 1] to train our Deceptive Prediction pipeline.

Ldec = ygt · logy+ (1− ygt) · log(1− y). (3.6)

For 2D-to-3D reconstruction we employ the energy minimization strategy of Tewari et al.
[2017]. In total our loss consists of 3 main components: landmark loss Eland , vertex-wise
photometric loss Ever t and regularization term Ereg .

L = wland Eland +wver t Ever t + Ereg . (3.7)

L2 difference between landmark projections p from a predicted 3D face model and
ground truth landmark l j are used. In total, we use |F |= 48 landmarks for optimization
covering eyebrows, eye corners, nose, mouth, and chin.

Eland =
1
|F |

∑

j∈F

‖pk j
− l j‖2

2, (3.8)

where we define k j as an annotated vertex index of the j-th landmark on the 3D model.

We define photometric loss as a L2,1 difference [Ding et al., 2006] between vertex
intensity color and its corresponded color from the original image. To find an intensity
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Figure 3.3: Distribution of videos per person in the RLT dataset. RLT dataset is
imbalanced, with a few identities with a large number of videos.

color on image space we perform interpolation. We filter out vertices which contribute
to the photometric loss based on normal direction, |V | is the number of vertices.

Ever t =
1
|V |

∑

i∈V

‖ci −Xûi ,v̂i
‖2. (3.9)

We use Tikhonov regularization [Thies et al., 2016b] to enforce parameters to be in the
plausible range.

Ereg = wα

80
∑

i=1

α2
i +wβ

80
∑

i=1

β2
i +wδ

64
∑

i=1

δ2
i . (3.10)

3.4 Datasets

Real-Life Trial Dataset

We employ the Real-Life Trial dataset [Pérez-Rosas et al., 2015] which contains 121
videos from real-life high-stakes scenarios that are publicly available. See Fig. 3.2 for
visual samples from dataset. It has 61 deceptive and 60 truthful trial clips of 21 female
and 35 male subjects whose ages vary between 16 and 60. The average duration of
videos is about 28 seconds. When constructing the dataset, Pérez-Rosas et al. [2015]
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enforce some visual constrains for videos such as the defendant or witness and his or her
face should be identified during most of the footage.

Nonetheless, the video quality is noisy: the defendant’s face is not always clearly visible
in the video, the defendant and witnesses may appear both in the scene. Previous works,
which rely on the confidence of the face detector alone, extract visual features from both
defendant and witnesses for deceptive prediction. In addition, the dataset is unbalanced:
the amount of videos per identity differentiates significantly (Fig. 3.3). One performing
K-fold validation might include videos of the same person both in testing and training
split, and hence achieving high accuracy. Consequently, for each video in the dataset, we
have manually annotated all witnesses and removed them from the video sequence. If
multiple faces appear in the scene, we remove all faces except the defendant. 5 videos
without faces in the scene / occluded faces have been removed which leaves 116 videos
for LOPO validation.

Low-Stakes Deceit (LSD) Dataset

We have collected a new dataset of low-stakes deceit which contains 624 high-res record-
ings of 143 males and 169 females interviewees under a controlled environment. Data
collection was carried out as a part of Science Live, the innovative research programme
of Science Center NEMOI. To our knowledge, our dataset is the first visual dataset
available for studying low-stakes deceit in the literature. The age of participants varies
between 7 to 72 years (Fig. 3.6). Among them, 209 participants speak Dutch and 103
participants speak English. Participants are facing the camera frontally and answer the
interviewer’s questions. The environmental conditions (e.g. illumination, background)
are remained the same during whole recording sessions.

The interviewees are asked to describe two abstract scenes (Fig. 3.4): one on the visual
card provided to the interviewee beforehand, and another which s/he did not see in
advance. We define the first description as truth and the second as a lie. As a result, we
have collected 2 recordings for every 312 identities with positive and negative labels.
Since the experiment setting doesn’t imply a punishment for the contrived answer, the

collected recordings can be used to study low-stakes lie. Samples of our novel LSD
dataset are shown in Fig. 3.5. We asked interviewees to judge peer recordings and used
this information to measure the human accuracy on this dataset.

IScience Center NEMO, Amsterdam, http://www.e-nemo.nl.
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Figure 3.4: Example of abstract scenes provided to the interviewees during the LSD
dataset collection process.

Figure 3.5: Sample video frames from our newly collected LSD dataset. The dataset
contains video of the similar lighting conditions, pose with a single person in the scene.

3.5 Implementation Details

We train our 2D-to-3D face reconstruction network for 200K iterations on 300VW
[Chrysos et al., 2018] and CelebA datasets [Liu et al., 2015] using a batch size of 5
and Adam optimizer [Kingma and Ba, 2014] with learning rate of 10−5. Loss weights
are set to be wver t = 1.92, wland = 0.0019, wα = 2.9 × 10−5, wβ = 4.93 × 10−8,
wδ = 2.32× 10−5.

For training the Deceptive Prediction network we use RLT dataset for high-stakes lies
and our newly collected LSD dataset for low-stakes lies. Models are trained on the batch
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Figure 3.6: Age distribution of interviewees in our novel LSD dataset. Distribution is
heavily tilted to 10 since it has been collected in the Science Museum popular among
children.

size of 8 for 100 epochs. Early stopping is performed based on the validation score. We
use Adam optimizer with a learning rate of 10−3.

300VW contains video sequences with annotated 68 landmarks for each frame. We
crop faces based on a bounding box on ground truth landmarks with 10% expansion.
We process CelebA using dlib [King, 2009] for face detection and FAN [Bulat and
Tzimiropoulos, 2017] for landmark detection. In total, we have collected 94K images
from 300VW coming from 49 videos and 200K images from CelebA. Images from RLT
and LSD datasets are processed in the same manner.

For each video sequence of 300VW we randomly select a cropped face as an input for the
Identity-CNN. We randomly sample a sequence of 3 crop faces with a random step size
from 1 to 5 frames as an input for the Temporal-CNN. For CelebA we assume that we
have a 1-frame video sequence for each image. Images are randomly flipped to augment
the dataset size. We train the model alternating CelebA and 300VW batches.

MobileNetV2 backbones are pretrained using ImageNet. We add offset to the 0-th band
SH coefficient and z-translation to make sure the initial 3D face model has a plausible
initial illumination and is centered in the middle of the screen. Basel Face Model 2017
[Gerig et al., 2018] is used for 3D face geometry, albedo and expression.
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Type Model Feature Accuracy Precision Recall

Manual Pérez-Rosas et al. [2015] DT* Hand-labeled features 0.67 0.64 0.74
Pérez-Rosas et al. [2015] RF* Hand-labeled features 0.71 0.70 0.70

Automatic

Morales et al. [2017] DT* OpenFace features 0.50 0.48 0.38
Morales et al. [2017] RF* OpenFace features 0.56 0.57 0.40

Hara et al. [2018] CNN features 0.59 0.57 0.63
Wu et al. [2017b] RF Motion Features 0.54 0.55 0.42

Zhao et al. [2017] CNN features 0.47 0.44 0.26
Ours LSTM features 0.68 0.66 0.72

Table 3.1: State-of-the-art comparison on the high-stakes lies task using RLT dataset (*:
only facial features are used).

Model Feature Accuracy (EN/NL) Precision (EN/NL) Recall (EN/NL)

Human Visual + Audio 0.516 - -

Morales et al. [2017] DT OpenFace features 0.55 / 0.52 0.55 / 0.52 0.57 / 0.53
Morales et al. [2017] RF OpenFace features 0.55 / 0.50 0.54 / 0.50 0.57 / 0.45

Hara et al. [2018] CNN features 0.53 / 0.54 0.53 / 0.55 0.53 / 0.52
Zhao et al. [2017] CNN features 0.47 / 0.51 0.47 / 0.52 0.51 / 0.44

Ours LSTM features 0.54 / 0.52 0.53 / 0.52 0.64 / 0.65

Table 3.2: State-of-the-art comparison on the low-stakes lies task using LSD dataset.

3.6 Experiments and Results

In this section, we provide the details and results of conducted experiments. We start
with a comparison with other methods on the high-stakes lies task. Next, we evaluate
how methods designed for the low-stakes lies task performs in the low-stakes settings.
Last, we provide additional analysis of age and gender effects. We considered lie as
positive and truth as negative throughout the experiments when calculating accuracy,
precision, and recall.

3.6.1 Baselines

In this section, we describe baselines for our experiments.
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Morales et al. [2017] is tested with a decision tree (DT) and random forest (RF) clas-
sifiers with default parameters as in the papers. OpenFace [Baltrušaitis et al., 2016] is
used to extract facial features in default output (i.e. basics, gaze, pose, 2D and 3D facial
landmark locations, rigid and non-rigid shape parameters, action units) and apply some
statistical metrics (max, min, mean, median, std, kurtosis, skewness, etc.) to create one
feature vector per video.

Pérez-Rosas et al. [2015], which is the basis for Morales et al. [2017], is also implemen-
ted with a decision tree (DT) and random forest (RF) classifiers with default parameters
as mentioned in their papers. They use manually labeled features. Since our system fo-
cuses only on facial features, we excluded hand-related features from their experimental
setup to obtain comparable results.

3D-ResNext [Hara et al., 2018] is pretrained on Kinetics dataset [Kay et al., 2017] and
finetuned starting from the third block. During training, a random temporal sampling of
30 frames is used. In inference, we use a non-overlapping sliding window of size 30 and
take the mean scores of windows as the final score per video.

Time-CNN [Fawaz et al., 2019, Zhao et al., 2017] is a CNN for time series classification.
This method reveals time series patterns through 1D convolutions on the temporal vector
of each feature dimension.

DARE [Wu et al., 2017b] is a multimodal deception method. For our experiments we
use a model with motion features only provided by authors.

3.6.2 High-stakes Deceit

We perform a comparison with other methods on the high-stakes deceit settings using
the Real-Life Trial dataset. Results are reported in the Table 3.1. Leave-one-person-out
(LOPO) validation is used to solve the dataset’s flaw: the imbalanced amount of videos
per subject (Fig. 3.3) which causes one subject to appear in both training and test splits
when using K-Fold or leave-one-out validation. Subjects who have either too few (1) or
too many videos (20% of the remaining videos) are always kept in the training set. 15%
to 20% of the remaining videos are randomly separated as the validation. We try to get
as much balanced as possible training and validation splits in terms of classes. To have a
balanced training set, we randomly downsampled the majority class in terms of quantity
to have an equal number of instances from each class.

Morales et al. [2017] mentioned 71.07% and 73.55% accuracy results for their visual
model with DT and RF classifiers, respectively. However, they obtained these figures
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erroneously by applying leave-one-out validation which causes subject overlaps between
the test and train dataset. In this experiment, the results of both Morales et al. [2017] and
Pérez-Rosas et al. [2015] are reported under LOPO settings instead.

The last row of Table 3.1 shows the performance of our proposed deception detection
method. Our method performs on par with manual deceit methods that rely on hand-
labeled features and achieves the best performance among automatic methods. Note that
hand-labeled features are not possible in a real-life scenario. A significant improvement
over other automatic facial feature extraction based methods shows that our method
can extract more reliable facial features under challenging conditions since RLT dataset
consists of varying illumination conditions and subjects are recorded under various
viewing angles at various distances to the camera.

3.6.3 Low-stakes Deceit

We compare methods, which are designed for high-stakes settings, on the low-stakes
deceit detection task using our newly collected LSD dataset. To our knowledge, we
are the first to evaluate automatic deception detection methods on low-stakes deceit
detection. Methods are evaluated separately on subsets with Dutch and English speakers.
We applied X-Fold validation and made sure the same subject didn’t occur simultaneously
in training/validation/testing splits. Results are reported in the Table 3.2.

Automatic methods in general works as well as human evaluators (51.6% accuracy)
on our benchmark, in spite of using visual-only features versus visual and audio for
humans. In the case of our method, it’s constrained to facial expression and pose related
properties alone. This constraint prevents the model from biases toward subject identity
and environment condition (an important property for deceit detection systems), however,
simultaneously creates more challenges for deceptive behavior prediction. In addition,
our dataset is collected under controlled settings (e.g. subjects are frontally facing the
camera, subjects are sitting at a certain distance from the camera, faces are well lit). Such
a controlled setting eases the problem of reliable facial feature extraction which explains
why all automatic facial feature extraction based deceit detection methods achieve similar
accuracy (54%) in our dataset.

Low-stakes deceit detection is a very challenging problem since people in low-stakes
situations tend to behave less nervous, and hence showing less behavioral changes. In
more than 20 human behavior studies on low-stakes deceit conducted by other researchers
an average accuracy of 55% has been achieved by professional experts in comparison
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with high-stakes deceit studies with an average accuracy of 67% [O’Sullivan et al., 2009].
Thus, our deceit detection method performs with similar accuracy to that of professional
experts in the low-stakes deceit detection task on our benchmark.

3.6.4 Influence of Age

Since our LSD dataset provides age labels, we have clustered results into age classes
to evaluate the correlation between age and deceit detection accuracy (Table 3.3). We
separated samples into 3 categories: children, young adult, middle age, and above. We
have observed higher accuracy on lie detection for children in comparison to adults in the
English language split. This might be explained by children being more expressive with
their expression. However, results require further research for a definitive conclusion.

Age Lang. Accuracy Precision Recall # samples

< 18
EN 0.56 0.56 0.58 62
NL 0.51 0.51 0.64 228

≥ 18, < 45
EN 0.53 0.52 0.66 106
NL 0.53 0.52 0.70 134

≥ 45
EN 0.50 0.50 0.64 28
NL 0.54 0.53 0.57 56

Table 3.3: Clustering low-stakes results by age.

3.6.5 Influence of Gender

We investigate the effect of gender on RLT and our LSD datasets. RLT dataset has been
manually annotated with gender labels. The results are summarized in Table 3.4. High
precision and recall values of females may suggest that the feature extraction of males is
more challenging and has high variation. However, this can also be related to the number
of samples as we have female subjects almost as twice as males subjects in the RLT
dataset. For the low-stakes settings, we have observed better accuracy on the female split
for English speakers with less conclusive results for Dutch.
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Dataset Gender Accuracy Precision Recall # samples

RLT
Male 0.65 0.38 0.50 46

Female 0.70 0.76 0.77 70

LS EN
Male 0.53 0.53 0.58 106

Female 0.55 0.54 0.69 98

LS NL
Male 0.52 0.51 0.67 176

Female 0.52 0.52 0.64 242

Table 3.4: Gender-specific deceit detection results on the RLT and LSD datasets.

3.7 Conclusion

We have presented a novel method for deception detection based on reliable facial
expression and head pose related features. Those properties have been disentangled
using a 2D-to-3D face reconstruction technique which simultaneously learns (a) face
identity, environment parameters, and (b) facial expression and head pose using separate
convolutional neural networks, and hence achieves their separation. Our pipeline models
deceit detection as a Multiple Instance Learning problem conditioned on reconstruction
features. It’s real-time and (with an accuracy of 68%) improves the state-of-the-art
as well as providing on par results with the use of manually coded facial attributes
(71%) in the high-stakes deception detection on the challenging RLT dataset. We have
collected a new low-stake deceit detection dataset. To our knowledge, we are the first
to evaluate automatic visual-based high-stake deceit detection methods on low-stakes
deceit detection tasks. In the low-stakes lies deception detection task it has achieved
results on par with professional experts however there is still room for improvement. We
hope that the newly collected dataset will allow further research to be done on low-stake
deceit detection.
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Self-supervised Face Image Manipulation

We present a novel architecture for manipulating facial expressions, head poses,
and lighting conditions from a single monocular image. Recent methods based

on Generative Adversarial Networks show promising results in expression manipulation.
However, the variation is either defined by a limited number of classes or not well suitable
for explicit manipulation of different attributes such as pose and lighting conditions.
Besides, state-of-the-art methods are mostly focused on frontal faces.

Therefore, in this paper, a new Generative Adversarial Network architecture is proposed
by explicitly conditioning on the appearance image space which is the product of direct
manipulation of facial expressions, light and pose conditions of the face model in 3D
space. In addition, the method only requires video sequences for training. Therefore,
it is self-supervised. Unlike other face manipulation methods, the proposed method
does not require target specific training. Large scale experiments show that our method
outperforms state-of-the-art methods for different scenarios.

4.1 Introduction

Facial attribute (e.g. expression, pose, and lighting) manipulation from a single monocu-
lar image is important for different applications, such as video dubbing, augmented reality,

Published in IEEE Transaction on Multimedia (TMM), 2021 [Ngo et al., 2021]
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Figure 4.1: Manipulation (i.e. expression, pose, and illumination) of a single face image.
We propose a novel GAN pipeline conditioned on facial appearance. Given a single
image (the first column in this figure), the proposed method generates faces with new
expressions, poses, and illumination conditions. The proposed method is self-supervised
and does not require target specific training.

and emotion recognition. Based on recent developments of Generative Adversarial Net-
works (GAN’s), current state-of-the-art methods in conditional image synthesis are able
to generate realistically-looking images.

A pioneering method is StarGAN [Choi et al., 2018] producing realistic images by
conditioning on a set of defined discrete attributes. In general, the set of attributes
is limited as it requires annotation of the training data. Moreover, each attribute is
concatenated to the input image as a separate channel resulting in a linear increase in
the number of input parameters for the first layer. Recent modifications provide more
flexibility by introducing conditioning over continuous variables such as landmarks and
body poses [Pumarola et al., 2018b, Sanchez and Valstar, 2020].

GANimation [Pumarola et al., 2018a] achieves remarkable performance in manipulating
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facial expressions by conditioning a GAN by the Facial Action Coding System (FACS).
Because the use of FACS is a many-to-one mapping, different combinations of action
units may lead to the same facial appearance. This makes face-to-face mapping difficult
to learn. Moreover, FACS can only model facial expressions ignoring other attributes
such as pose and illumination conditions.

Another line of work using GAN’s, involves the manipulation of facial attributes in video
sequences [Kim et al., 2018a, Wu et al., 2018a]. Those methods require a target-specific
model training. Hence, face images of unseen examples cannot be manipulated. A
separate model should be trained for each specific video which is a limiting factor in
usability.

In this work, we propose a novel GAN pipeline conditioned on facial appearances.
Appearance modeling is based on 2D-to-3D reconstruction. Facial appearance allows for
simultaneously modeling different face attributes (See Fig. 4.1 for an illustration) in the
same feature space in a flexible and compact manner. By transferring the conditioning
to the appearance space, the many-to-one mapping problem of FACS is circumvented
and the method provides the flexibility of a continuous feature space from FACS and
landmarks. For training, our method requires datasets of video sequences [Chrysos
et al., 2018, Gross et al., 2010, Wolf et al., 2011] without any label/GT. During test time,
our method manipulates different facial attributes given only one single unseen sample
with possibly varying backgrounds and illumination conditions. Choi et al. [2018] and
Pumarola et al. [2018a] perform conditioning in attribute and FACs space respectively
without direct 2D image correspondences.

The main contributions of the chapter are as follows:

• We introduce a pipeline for self-supervised face manipulation. Only a single
unseen monocular image is used as input. No target-specific training is required.

• The proposed method uses image formation (i.e. face image decomposition)
as the basis of GAN conditioning. Therefore, it manipulates different face im-
age components (expression, pose, and light) based on a compact appearance
representation.

• Deep insights (with numerical experiments) are provided for the potential applica-
tion of our novel pipeline.
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4.2 Related Works

4.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GANs) have shown to produce results with high
visual realism on the task of image synthesis. They aim to approximate the target data
distribution by training alternately two models, one trying to generate samples close to
the real distribution and another trying to distinguish the generated from real samples
[Goodfellow et al., 2014]. Many of the follow-up methods are focusing on stabilization of
the training process of GANs by introducing modification on training losses (Wasserstein
GAN [Mahajan et al., 2018], Geometric GAN [Lim and Ye, 2017], cycle consistency
[Zhu et al., 2017]), normalization techniques (spectral normalization [Miyato et al.,
2018], layer normalization [Ba et al., 2016]) and GANs architecture (by introducing
multiple decoders for a generator [Zhou et al., 2019] or adversarial approximator [Xu
et al., 2019]).

4.2.2 Image-to-image Translation

Methods based on conditional GANs [Isola et al., 2017, Mirza and Osindero, 2014]
makes modeling on conditional distribution on an input data possible, and hence can
be used for image-to-image translation tasks including style transfer [Zhu et al., 2017],
scene generation [Wang et al., 2018], intrinsic image decomposition [Lettry et al., 2018]
and inpainting [Yu et al., 2018]. Pix2Pix [Isola et al., 2017] combines an encoder-decoder
architecture with adversarial training to predict a target image given a source image based
on pixel correspondences. To overcome the limitation of pixel-to-pixel correspondence,
Zhu et al. [2017] introduces a cycle consistency loss which allows the model to be trained
without image pairs. To manipulate an input image using attributes, StarGAN [Choi
et al., 2018] proposes to concatenate attributes as additional channels. As attributes are
discrete, they are limited in coping with semantically meaningful interpolation. To this
end, GANimation [Pumarola et al., 2018a] extends the StarGAN architecture to include
continuous attributes. Conditioning on attributes in StarGAN and GANimation results
in a linear complexity: the number of attributes is equal to the additional channels to
be concatenated to the input. Besides, the GANimation model focuses on modeling a
single type of continuous attributes (i.e. action units). In contrast, by using the face
decomposition space, our proposed method models different types of attributes, such as

50



4.2. Related Works

face identity, expression, pose, and lighting condition. This enables us to compress the
representation of attributes into a 3 channel-image (Fig. 4.2).

4.2.3 Face Image Manipulation

Face image manipulation focuses on editing different face attributes used in various
applications such as virtual makeup [Chen et al., 2019], face enhancement [He et al.,
2019], beautification [Diamant et al., 2019], aging [Liu et al., 2019] and relighting [Han
et al., 2020]. Chen et al. [2019] condition a generative network on an input face image
and a reference non-makeup domain face. Their Glow architecture tries to disentangle
make-up features from non-makeup features and forces a prediction to remove makeup
features. He et al. [2019] condition the decoder of a generative network on discrete
space attributes, similar to Liu et al. [2019] which condition their model on discrete
age and gender attributes. Han et al. [2020] use light source classes to condition their
generative model to produce images with certain lighting conditions. Diamant et al.
[2019] condition a model on a continuous attribute representing the level of beauty of
the desired face. In the case of He et al. [2019] and Han et al. [2020], additional attribute
classification loss is used together with discriminator to improve the adversarial signal,
while Liu et al. [2019] come up with a modification on discriminator based on wavelet
packet transformation. In many cases, Perceptual loss is used to encourage similarity
between predicted and generated images [Chen et al., 2019, Diamant et al., 2019, Liu
et al., 2019].

Input to the face image manipulation algorithm can be either a single monocular image
[Choi et al., 2018, Pumarola et al., 2018a], an image sequence of the same person [Kim
et al., 2018a, Thies et al., 2016b, Wu et al., 2018a] or a 3D texture [Nagano et al., 2018].
Early approaches addressed the problem of face image manipulation by warping using
landmarks [Averbuch-Elor et al., 2017], intrinsic image decomposition [Li et al., 2018],
and face priors [Blanz and Vetter, 1999]. Most of the recent methods are GAN-based
[Diamant et al., 2019, Han et al., 2020, He et al., 2019, Kim et al., 2018b, Liu et al., 2019,
Pumarola et al., 2018a, Wu et al., 2018a]. However, those GAN methods are constrained
by the discrete number of classes for manipulation [Choi et al., 2018, Han et al., 2020,
He et al., 2019, Liu et al., 2019], same head poses and lighting conditions [Nagano et al.,
2018, Pumarola et al., 2018a], or they require a model to be trained specifically for each
target image/video [Kim et al., 2018a, Wu et al., 2018a]. In contrast, our method (1)
only requires a single monocular image during test time, (2) no target-specific training
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is required, (3) can change simultaneously different face image components such as
expression, pose and illumination direction.

Recently, GAN-based face reenactment methods are proposed [Nirkin et al., 2019,
Siarohin et al., 2019, Zakharov et al., 2020] capable of manipulating both the head pose
and facial expressions. However, for large pose variations, these methods may produce
unrealistic results [Nirkin et al., 2019, Siarohin et al., 2019], or may fail to preserve
the image background [Zakharov et al., 2020] and the identity of the face [Nirkin et al.,
2019]. In contrast, our model maintains the face identity and image background while
keeping the facial expressions consistent.

Changeexpression

Reflectance Normals Shading Reconstructed
appearance

Changepose

Changelight

Face image XS

Figure 4.2: Appearance modeling via 2D-to-3D reconstruction. Using a single repres-
entation, appearance conditioning allows for different facial attributes to be changed
simultaneously such as facial expressions, head poses, and lighting conditions.

4.3 Proposed Method

An overview of our method is shown in Fig. 4.3. Given a cropped source face image
XS ∈ RH×W×3 and a target appearance image YT , the generative model G produces a face
image X̂S ∈ RH×W×3 with a new expression, pose and lighting condition described by YT ,
but preserves the face identity and background constrained by XS (Section 4.3.1).

The appearance image representation is obtained using a 2D-to-3D reconstruction of the
face image XS, followed by applying expression, light and pose in latent space x and
projecting it back onto the (original) image plane (see Fig. 4.2 and Section 4.3.2).
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Figure 4.3: Our proposed method generates realistically-looking face images with
different facial expressions, lighting conditions, and poses. Generative model G predicts
a face with background X̂S conditioned on the source image XS and the reconstructed
target appearance YT . Architectural blocks with the same color have shared weights.

We train our model by optimizing alternately the generator G and the discriminator D in
a two-player minimax game (Eq. 4.1). G tries to fool D with fake examples X̂S, and D

tries to differentiate the generated examples X̂S from real images XS (Section 4.3.3).

G∗= ar g min
G

max
D
L (G, D). (4.1)

4.3.1 Network Architecture

Generator

Our architecture is inspired by the network design of Conditional GAN’s for the image-
to-image translation task [Choi et al., 2018, Isola et al., 2017, Pumarola et al., 2018a, Zhu
et al., 2017]. For the generatator, a ResNet-based encoder-decoder is used to produce
two outputs, i.e. an attention mask A = GA(XS,YT ) ∈ [0,1] together with the color
transformation C= GC(XS,YT ). The final prediction is obtained by interpolating C and
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XS using A.

X̂S = (1−A) ◦C+A ◦XS. (4.2)

The attention mechanism enforces the network to directly learn a residual over the
appearance image by taking features from the source image into consideration.

Discriminator

For the discriminator D, PatchGAN [Zhu et al., 2017] is used to predict real/fake for
overlapping local patches of size 70× 70. We use spectral normalization on convolution
weights [Miyato et al., 2018] to stabilize the training. In contrast to previous methods, the
generated image X̂S is conditioned not only on itself, but also on the target appearance YT

and original face XS. Hence, our discriminator enforces that the generated examples are
photo-realistic and that the results are consistent with respect to the expected properties
of the target representation without the need for an auxiliary classification task as in
StarGAN [Choi et al., 2018] or GANimation [Pumarola et al., 2018a].

4.3.2 Appearance Translation using 2D-to-3D Reconstruction and
Image Formation

Given a 2D image of a human face, a 3D model is estimated. We parameterize a 3D
model of M vertices using a semantic code vector x ∈ R257.

x= {α,β,γ,δ,w, t}, (4.3)

where α ∈ R80 corresponds to a neutral face shape, β ∈ R80 denotes skin reflectance,
γ ∈ R27 relates to the lighting condition, w ∈ R3 and t ∈ R3 are the face rotation in
SO3 space and translation respectively. We follow the approach of Tewari et al. [2018]
and use the AlexNet [Krizhevsky et al., 2012] backbone to produce the code vector x.
However, other methods for 3D face reconstruction from a monocular image can be used
as well [Kim et al., 2018b, Tewari et al., 2018, Thies et al., 2016b]. Representing a 2D
image as a compact latent vector allows us to efficiently manipulate different attributes
of the appearance conditioning. A sample appearance translation is shown in Fig. 4.2.
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Reflectance and Geometry

We constraint the facial geometry S(α,δ) ∈ RM×3 and reflectance R(β) ∈ RM×3 by a
multilinear PCA model using the Basel Face Model 2017 [Gerig et al., 2018]:

B(α,δ) = µneut +ασneutEneut +µex p + δσex pEex p

L(β) = µre f + βσre f Ere f ,
(4.4)

where µneut , µex p, µre f ∈ RM×3 represent the mean neutral identity geometry, expression
and skin reflectance respectively, Eneut , Ere f ∈ RM×3×80, Eex p ∈ RM×3×64 correspond to
linear bases of the PCA model together with their standard deviations σneut , σre f ∈ R80,
σex p ∈ R64. Expression (blend shape) basis covers more than 99% of the original PCA
model.

Camera Model

We model the face transformation to the camera space using a rigid transformation
consisting of rotation parameters R(w) : R3→ R3×3 and translation t along x , y, z axes
together with a full perspective transformation Π : R3→ R2. Since the camera intrinsics
of images in the wild are unknown, we fix the field of view and the principal point to
be 0.5 and {W

2 , H
2 } given an image of size W ×H forcing the model to compensate the

intrinsics by the pose parameters.

u,v=Π ◦ (R(w)B(α,δ) + t), (4.5)

where u, v ∈ RM are u, v coordinates of mesh vertices on the camera plane and ◦ is the
Hadamard product.

Vertex Normals

Vertex normals N = {ni} ∈ RM×3 are estimated using a 1-ring neighbour triangles. We
are using a triangle topology provided by the morphable model.
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Illumination Model

Shading S = {s( j)i } ∈ R
M×3, j ∈ {r, g, b} is modelled using the first B = 3 bands of

Spherical Harmonics [Ramamoorthi and Hanrahan, 2001] basis functions Hb : R3→ R
separately per RGB image channels assuming the face to be a Lambertian surface with
distant illumination while ignoring self-occlusion and cast shadows.

s( j)i =
B2
∑

b=1

γ
( j)
b Hb(ni). (4.6)

The final per-vertex color intensity I ∈ RM×3 is computed as an element-wise product
between the shading S and reflectance L components.

Appearance Image Formation

Given a triangle mesh topology and u, v coordinates, we render the vertex attributes using
z-buffer based rendering F : RM×3→ RW×H×3 to produce the face reconstruction I from
vertex-wise representations I. Now, our physics-based image formation model converts
a semantic code vector x estimated from a monocular image XS into a reconstructed
appearance image representation YS. Different appearances can be obtained by changing
the parameters of x (i.e. expression δ, light γ and pose w).

4.3.3 Training Losses

Our training objective combines the adversarial loss Ladv with feature matching LF M ,
perceptual LP , reconstruction L1 and cycle consistency Lc yc losses. Parameters λF M ,
λP , λ1, λc yc regulate their contributions.

min
G

�

�

max
D
Ladv(G, D)

�

+λ1L1(G) +λF MLF M(G) +λc ycLc yc(G) +λPLP(G)
�

.

(4.7)

Adversarial Loss

The adversarial loss enables to produce sharp photo-realistic results. The standard formu-
lation of GAN’s is trained by minimizing the Jensen-Shannon divergence [Goodfellow
et al., 2014, Isola et al., 2017] between the real and generated image distributions. In
our experiments, we are using a non-saturated version of the adversarial lossI which has

IWe replace EXS∼p(XS) by E∆ in the formulas.
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shown to provide comparable results to later modifications such as Wasserstein GAN
and Geometric GAN [Kurach et al., 2018].

Ladv = E∆
�

log(1− D(G(XS,YT )))
�

+E∆
�

log D(XT )
�

, (4.8)

where XT is the target ground truth image.

Reconstruction Loss and Cycle Consistency

G is not able to produce plausible face images with the adversarial loss alone. Therefore,
we force the generator output X̂S = G(XS,YT ) to be close to the ground truth target image
XT using L1 norm.

L1 = E∆
�

|G(XS,YT )−XT |
�

. (4.9)

In addition, the generator is encouraged to produce the same original source image XS

given X̂S and appearance YS of XS.

Lc yc = E∆
�

|G(X̂S,YS)−XT |
�

. (4.10)

Perceptual Loss

We further regularize training by the perceptual loss [Johnson et al., 2016] encouraging
high level style features F(X) of the pretrained on ImageNet Deep Neural Network (in
our case AlexNet [Krizhevsky et al., 2012]) from X̂S to be similar to the one extracted
from XT .

LP = E∆ |F(X̂S)− F(XT )|. (4.11)

Mean Feature Matching Loss

Finally, we employ a form of feature matching loss [Wang et al., 2018] to penalize the
difference between mean discriminator features given the generated image and mean
discriminator features given the real image.

LF M = |E∆
� 1

K
D(G(XS,YT ))

�

−E∆
� 1

K
D(XT )

�

|. (4.12)

Ladv in combination with L1, LF M , Lc yc and LP provides the best results in our
experiments.
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4.4 Experimental Setup

4.4.1 Datasets

For training, our GAN pipeline uses a combination of YoutubeFaces [Wolf et al., 2011],
Multi-PIE [Gross et al., 2010] and 300VW [Chrysos et al., 2018] datasets. In total, we
collect about 500K images which are split into 3279 chunks. We make sure that different
people are not in the same chunk. However, one person can occur in multiple chunks.

We crop the face boxes based on landmark boxes with 10% extension from its boundary.
Ground truth landmarks are available in 300VW and face boxes are available in Youtube-
Faces. When ground truth is not available, FAN [Bulat and Tzimiropoulos, 2017] is used
when considering landmarks. The dlib CNN-based face detector [King, 2009] is used to
detect face bounding boxes. Landmark information is not used during training, except
for face box cropping.

In one epoch, for each image in the training set, we uniformly sample a target image from
the same chunk. We increase the dataset variability by randomly flipping horizontally
image pairs and randomly cropping the target image.

Figure 4.4: Qualitative comparison to state-of-the-art methods. We are performing cross-
dataset comparison on CelebA [Liu et al., 2015] applying RaFD [Langner et al., 2010]
expressions on a source image. It can be seen that for both StarGAN and GANimation,
the best approaches in the literature for emotion manipulation, that they lose identity
information, while our method preserves facial identity. Also, some of the results of
StarGAN and GANimation show strong artifacts.

4.4.2 Training Setup

Our implementation is in Tensorflow. We train our model using Adam optimizer [Kingma
and Ba, 2014] with β1 = 0.001, β2 = 0.9 and a learning rate 0.0001 for 40 epochs. The
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learning rate is decayed linearly to 0 in the last 10 epochs. Input images have size of
128× 128 and are fed to the network in batches of 32.

Our discriminator weights use spectral normalization [Miyato et al., 2018]. Generator
weights are updated once per discriminator weight update. We use λ1 = 10, λc yc = 100,
λP = 1, λ f m = 1 for the training loss.

4.5 Experiments and Results

4.5.1 Ablation Study

We conduct an ablation study to analyze the influence of each loss component. We
used video frames from the test split of 300VW [Chrysos et al., 2018] consisting of
113K images. We randomly select a subset of 10K images. For each video frame in
the validation split, we randomly sample a target image from the same sequence. The
trained model is used to apply the appearance of the target image on the source. Average
FID score [Heusel et al., 2017] and its standard deviation are reported in table 4.1 for
different configurations. We train each model for 30 epochs. All configurations are
trained using adversarial and reconstruction losses. Removing the reconstruction loss
during the training leads to mode collapse. Results show that each loss component
improves the quality of the final results. The most significant contribution is obtained
by the perceptual loss (40 FID) and cycle consistency (86 FID). Feature matching loss
contributes the third (24 FID).

LL1 Lc yc LF M LP FID Score ↓

Ø Ø Ø Ø 147.02 ± 6.65
Ø Ø Ø 171.29 ± 7.43
Ø Ø Ø 211.44 ± 10.68
Ø Ø 222.49 ± 9.46
Ø 308.04 ± 8.01

Table 4.1: Ablation study performed on the 300VW test split. We report average and std
FID scores for each configuration.
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4.5.2 Expression Manipulation: Comparison to State-of-the-Art

In this experiment, we qualitatively compare our method against the state-of-the-art
baseline methods, StarGAN [Choi et al., 2018], and GANimation [Pumarola et al.,
2018a]. For a fair comparison, we compare discrete emotion categories which are
represented in the RafD [Langner et al., 2010] dataset on the independent CelebA dataset
[Liu et al., 2015], since StarGAN requires training on the annotated RafD dataset. We
train both GANimation and StarGAN using the provided source code, default parameters
on RafD and EmotioNet dataset respectively. For GANimation, we extract the target
Action Unit’s using OpenFace [Baltrusaitis et al., 2015]. For our method, we perform
2D-to-3D reconstruction to extract the desired target expression. Results are reported in
Fig. 4.4. As can be observed in Fig. 4.4, the proposed method not only preserves source
identity better but also do not have artifacts like other methods. More visuals can be
found in the supplementary material.

4.5.3 Head Pose Manipulation

In this experiment, we qualitatively evaluate the effectiveness of the proposed method
for changing the head pose of a given face image. We systematically (in each direction
30 degrees with an interval of 10 degrees) apply yaw rotation to the source images. We
use the model trained on the 300VW dataset. Test images are used from Helen dataset.
The results are shown in Fig. 4.5.

Fig. 4.5 clearly shows that the proposed method can robustly apply head pose ma-
nipulation to face images. Although most of the profile views are occluded for the
source images, the proposed method realistically generates profile views. In addition,
the proposed method uses scene illumination of the source while generating the target
appearance. Therefore, generated faces have consistent and smooth illumination changes.

4.5.4 Light Direction Manipulation

In this experiment, we qualitatively evaluate the effectiveness of the proposed method
for changing light directions for a given face image. We use the Multi-PIE [Gross et al.,
2010] dataset for extracting illumination direction. CelebA [Liu et al., 2015] is used as
the source image. For visualization, 3 dominant light directions are selected (i.e. left,
frontal, and right). The extracted light directions are transferred to the target appearance
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Figure 4.5: Head pose manipulation. Qualitative results on the Helen dataset. Images in
the middle column are the source images. 4th, 5th, and 6th column images are 10°, 20°,
and 30°rotated images respectively. 1st, 2nd, and 3rd column images are -30°, -20°, and
-10°rotated images respectively.

which is used to condition the source image. Since the proposed method models light
using the Lambertian assumption (SH based light prediction), shading is formed by the
dominant light source direction. The results are shown in Fig. 4.6.

The results show that the light direction of the target robustly applied to source images.
The side of the face, which is lit by the dominant scene illumination, has lighter image
pixels whereas the other side has darker image pixels. It is clear that the topmost source
image has a strong shading line on the right side of the face (due to directional scene
light). After applying the target light direction, the strong shading line disappears.
Instead, there is a smooth illumination change that appears on the face. This is due to the
fact that the proposed method assumes Lambertian reflection.

4.5.5 Quantitative Comparison

We provide additional numerical comparisons of our proposed method to related GAN-
based face reenactment methods, which can do both expressions and pose manipulation,
using the 300VW test split (Table 4.2). 30 videos are selected from the Category 1 subset,
which contains talking faces with variations in expressions and head poses. To obtain a
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Method Reconstruction Type Identity Preservation ↑ Expression correctness ↓

Nirkin et al. [2019], ICCV’19 N/A 0.474 17.426
Siarohin et al. [2019], NeurIPS’19 N/A 0.827 24.493
Zakharov et al. [2020], ECCV’20 N/A 0.557 26.378

Ours Tewari et al. [2017] 0.574 8.594
Ours Deng et al. [2019] 0.671 13.228

Table 4.2: Quantitative comparison on the 300VW test split. We evaluated identity
preservation and expression correctness for each method.

balanced dataset, we select 100 frames from each video (each 5th frame). Expression
and head pose from selected videos are transferred to 3 randomly selected face identities
from other videos. Identity frames are selected to be the most frontal face of the video
based on the head pose prediction computed by a pretrained Hopenet [Ruiz et al., 2018].
In total, we evaluate our method on 9100 reenacted images coming from 90 video pairs.

Identity preservation is compared using cosine similarity from the latent space of VGG-
Face2 features [Cao et al., 2018] between generated and target face images (higher
is better). Expression correctness is compared using the mean L1 distance of facial
landmarks (in pixels, image resized to 256) using a pretrained FAN detector [Bulat and
Tzimiropoulos, 2017] between source and generated images (lower is better).

In terms of identity preservation, on our benchmark First Order Motion method [Siarohin
et al., 2019] performs the best, followed by our method and Bi-layer [Zakharov et al.,
2020]. First Order Motion [Siarohin et al., 2019] exploits dense optical flow and warping
features capturing better the target image color distribution. Bi-layer [Zakharov et al.,
2020] under-performs our method on identity preservation because it focuses on the
face region. It produces better low-frequency details on the skin region but fails on the
background and hair. FSGAN [Nirkin et al., 2019] is designed for face swapping and
has limited capacity on the face reenactment task.

In terms of expression preservation, our method outperforms the baselines, followed
by FSGAN and First Order Motion. First Order Motion fails on large head poses due
to misalignments caused by optical flow features. Expressions generated by Bi-layer
are dependent on the accuracy of the landmarks. Our method is more robust since it’s
conditioned on the full face representation.

Conditioning on Deep3DReconstruction provides better identity preservation. MoFA
provides better expression preservation. Those observations correspond with the quality
of the 2D-to-3D reconstruction results provided by reconstruction methods.
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Figure 4.6: Light direction manipulation qualitative results on the CelebA dataset. The
source images are represented in the left-most column. The target light direction is
presented in the topmost right. The light direction is extracted from the target image
using SH coefficients. Then, the extracted light direction is applied to the target image
appearance.

Deep3DReconstruction uses additional a Perceptual loss for training which improves
the quality of the identity. It also uses the full 3D face model for the reconstruction
loss which may influence expression preservation in comparison to MoFA which uses a
cropped 3D face region.

In conclusion, our method outperforms GAN-based face reenactment methods in terms of
facial expression transfer errors (8.594 vs 17.426 for FSGAN) and provides comparable
results on identity preservation.

4.6 Limitations

In spite of the promising results in comparison to state-of-the-art methods for face image
manipulation, our method still has few limitations. The quality of generated images are
dependent on the quality of 2D-to-3D reconstruction and consequently is prone to the
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same errors of 2D-to-3D reconstruction algorithms such as occlusions and extreme poses
(for which even face detection algorithm may fail), and dependency on the quality of
face tracker (Fig. 4.7). However such problematic cases are also a problem for FACS
extraction. In addition, due to a limitation of the morphable face model, expressiveness
of expression basis are constrained by the PCA basis.

Figure 4.7: Failure cases of our method. (1) - heavily occluded faces, (2) - extreme
facial expressions, (3) - occlusions not modeled by 2D-to-3D fitting and attention map,
(4) and (5) - extreme head poses.

4.7 Conclusion

This chapter proposes a self-supervised method to manipulate a single monocular face
image by conditioning GAN on face decomposition using appearance transfer. Our
conditioning has shown to be a more flexible representation in comparison to previous
GAN-based methods that use discrete classes, landmarks, or action units. Thus, condi-
tioning on the appearance image allows us to manipulate head pose, scene illumination,
and facial expression using a single conditioning space.

The qualitative results on 300VW dataset show that the proposed method is outperforming
GAN-based state-of-the-art face reenactment methods, which can do both expression and
head pose manipulation, in terms of expression correctness, and provides competitive
results in term of identity preservation. We show that our method is agnostic to face
decomposition methods and works with any 2D-to-3D reconstruction method which
allows pose, expression, and light manipulation.
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Face Reenactment and Swapping

Face reenactment and face swap have gained a lot of attention due to their broad range
of applications in computer vision. Although both tasks share similar objectives

(e.g. manipulating expression and pose), existing methods do not explore the benefits of
combining these two tasks.

In this chapter, we introduce a unified end-to-end pipeline for face swapping and reen-
actment. We propose a novel approach for isolated disentangled representation learning
of specific visual attributes in an unsupervised manner. A combination of the proposed
training losses allows us to synthesize results in a one-shot manner. The proposed method
does not require subject-specific training.

We compare our method against state-of-the-art methods for multiple public datasets of
different complexities. The proposed method outperforms other SOTA methods in terms
of realistic-looking face images.

5.1 Introduction

Generating images or videos by manipulating facial attributes (i.e. face reenactment
and swapping) has gained a lot of attention in recent years due to their broad range of
computer vision and multimedia applications such as video dubbing [Suwajanakorn

Published in Asian Conference on Computer Vision, 2020 [Ngo et al., 2020]
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Figure 5.1: Our algorithm takes source and target images and produces reenacted and
swapped face results using a single unified pipeline.

et al., 2017], gaze correction [Kuster et al., 2012], actor capturing [Kim et al., 2018a,
Thies et al., 2016a], and virtual avatar creation [Nagano et al., 2018].

Face reenactment [Siarohin et al., 2019, Thies et al., 2016a] aims to manipulate facial
attributes such as expression, pose or gaze of a video or a single image, whereas face
swap [Nirkin et al., 2019, 2018] tries to seamlessly replace a face from a source image
with a target face while maintaining the realism of the facial appearance. To perform
such transfer, face swap techniques manipulate face attributes such as expression, pose,
and identity. Although the face attribute manipulation for both face reenactment and face
swap is similar, they have never been considered in a unified pipeline. To this end, in
this work, we propose a single unified model for both face swapping and reenactment
tasks allowing the model to produce a more robust face representation and exploiting the
constraints from the two tasks to improve the realism of facial appearances.

Before the introduction of deep neural networks, face reenactment and swapping are typ-
ically solved by 3D modeling [Dale et al., 2011, Garrido et al., 2014, Nirkin et al., 2018,
Thies et al., 2015, 2016a]. The 3D face image is transformed into a 3D representation,
where latent parameters of the 3D representation are manipulated and projected back in
a 2D space. Although those methods produce results with high realism, they are not able
to generalize well on unseen data. Hence, for each target face the model parameters have
to be tuned.

Current generative models make it feasible to synthesize realistic-looking images [Choi
et al., 2018, Karras et al., 2019a]. Consequently, recent research is focused on improving
the quality of the face image generation process [Choi et al., 2018, Karras et al., 2019a,
Pumarola et al., 2018a] using generative models. Only a few methods explore the
direction of using generative models for face reenactment or face swapping. Although
these tasks share similarities, previous methods only focus on solving one of the two
tasks independently and are supervised [Korshunova et al., 2016, Li et al., 2019, Wu
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et al., 2018a]. Recently methods show that face swap targeted methods can be used for
face reenactment and vice versa. Unfortunately, the visual results on the second task are
typically inferior to the first one [Nirkin et al., 2019, Siarohin et al., 2019]. Since those
methods are designed for one of the tasks separately, they are not optimal for both. In
contrast to existing methods, we integrate both tasks into one combined model. To our
knowledge, our method is the first unsupervised method designed to perform both tasks
in a unified end-to-end manner.

In this work, we propose a novel pipeline that unifies face swapping and reenactment
(Fig. 5.1). A combined approach benefits from the similarities of the two tasks. Learning
them together allows for robust face representation and enhances the realism of facial
appearance. The proposed algorithm learns an isolated disentangled representation for
face attributes without any supervision. Hence, our model can manipulate expression/-
pose, face identity, and style independently in latent space. We achieve this by directly
mapping the disentangled latent representation to the latent space of a pre-trained gener-
ator. During inference time, the encoders condition the latent space by source and target
face images together with their landmarks and generate the reenacted or swapped face
using the pre-trained decoder. Prediction is done in a one-shot manner (i.e. only a single
image of a person is required). The model’s training loss incorporates contextual and
identity losses to preserve the face identity, regardless of the source face. As a result, our
model obtains visually more appealing results in cross-gender face swapping compared
to the baselines.

We evaluate our method on multiple datasets of various complexities: 300VW with
videos of talking people [Chrysos et al., 2015], and UvA-NEMO with spontaneous
and fake smiles in a controlled environment [Dibeklioğlu et al., 2012]. Experiments
demonstrate that our method (on average) performs better on face reenactment and face
swapping tasks than existing state-of-the-art methods focusing only on a single task.

To summarize, our contribution is four-fold:

• A novel method is proposed to perform face swapping and reenactment tasks in a
joint manner. To our knowledge, our method is the first method to jointly perform
the two tasks in a unified end-to-end architecture.

• The proposed method is subject agnostic: it does not require subject-specific
training.

• A novel approach is proposed to learn an isolated disentangled representation
for single visual attributes (i.e. the expression/pose, identity, and style) by using
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a pre-trained generator with a disentangled latent space. This allows for a full
control over the face manipulation process in an unsupervised manner. Hence, our
approach does not require ground truth data for expression/pose, identity, and style
learning of reenactment outputs.

• A combination of training losses allows us to synthesize results in a one-shot
manner and to outperform competitive methods in cross-gender face manipulation.

5.2 Related Works

5.2.1 Generative Models

Generative models based on Generative Adversarial Networks (GANs) are advantageous
for the task of image synthesis [Nguyen et al., 2016, Radford et al., 2015]. However,
until recently, those models can be considered as black boxes with latent representations
which are hard to interpret. In addition, the realism of the generated results, in particular
for face image synthesis [Choi et al., 2018, Pumarola et al., 2018a], is limited (with
artifacts in identity preservation).

Recently, StyleGAN [Karras et al., 2019a] introduces a novel way to condition the
latent code through an affine transformation, corresponding to a specific style [Karras
et al., 2019b], by using Adaptive Instance Normalization (AdaIN) [Huang and Belongie,
2017]. AdaIN allows the model to generate images with more realistic face appearance
compared to previous methods [Karras et al., 2017]. Furthermore, the aforementioned
architecture modifications, combined with a revised training approach [Karras et al.,
2019a,b], enable the separation of high-level and stochastic attributes making the latent
representation easier to interpret. Hence, the face attributes of a generated image can
be changed accordingly by manipulating the latent representation (i.e. disentanglement
property). Recent methods integrate StyleGAN into different applications as a pre-
trained network for face enhancement and animation [Gabbay and Hoshen, 2019]. The
state-of-the-art StyleGAN2 [Karras et al., 2019b] enhances the architecture of StyleGAN
by redesigning normalization flow and by applying the same network topology for low
and high resolution. Image2StyleGAN [Abdal et al., 2019] proposes a method to map
an existing image to the latent representation of StyleGAN by iteratively optimizing a
latent code to minimize the loss function. Mapping an image to latent space enables
a user to change specific image attributes provided by the StyleGAN latent space.
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However, this method has a drawback in terms of efficiency and generalization: each
new image is optimized separately until convergence to obtain a corresponding latent
space limiting the applicability of the method for real-time applications. In contrast,
our novel isolated disentangled representation learning method solves this problem by
introducing encoders that learn to map the desired facial attributes to the corresponding
changes in the latent representation. By constraining the mapping by encoders and by
using a specific unsupervised training procedure, our approach manipulates the latent
space in such a way that it is able to mix disentangled expression/pose, identity and style
attributes in a robust manner.

5.2.2 Face Reenactment

Face reenactment focuses on changing attributes of the face image while keeping the
face identity the same. Prior methods focus on different facial attributes like expression
[Choi et al., 2018, Pumarola et al., 2018a], skin color [Choi et al., 2018], lighting
[Zhou et al., 2019] and pose, or a combination of those [Thies et al., 2016a]. These
methods are mostly used in applications such as virtual avatar or puppeteering, targeting
high realistic-looking faces but ignoring background preservation [Nagano et al., 2018].
Other approaches focus more on video dubbing and deepfake generation, preserving the
realism for both the foreground and background of the scene [Kim et al., 2018a, Pumarola
et al., 2018a, Thies et al., 2016a]. Attribute conditioning is modeled by using different
modalities like facial landmarks [Sanchez and Valstar, 2018], action units [Pumarola
et al., 2018a] and 3D morphable models [Kim et al., 2018a] for pose and/or expression,
and spherical harmonics for lighting [Zhou et al., 2019]. Some methods simplify attribute
inference by conditioning directly on the face image. In contrast, our method uses a
face image to condition identity and style together with facial landmarks for pose and
expression.

Several methods perform face reenactment by manipulating the latent space [Abdal
et al., 2019, Fu et al., 2019, Shen et al., 2020]. Abdal et al. [2019] compute the relative
difference between two images by calculating the differences in their latent spaces and
applied to the source latent code afterwards. Fu et al. [2019] propose an approach capable
of reenacting faces by using encoders to compute the representations of pose, expression,
style and identity in the latent space.

In combination with the use of a pre-trained generator, we aim to condition the generator
in a one-shot manner during both training and testing time. InterFaceGAN [Shen et al.,
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2020] on the other hand, does use a pre-trained generator, but computes latent codes
based on attribute scores (e.g. smile, glasses, gender etc.) making it a supervised method.
Since our approach does not require ground-truth labels or attribute scores, we have full
control over the face manipulation process using only a minimal amount of training data.

Methods that focus on the quality of images and identity/background preservation are
typically target-specific [Kim et al., 2018a]. Hence, the model is trained for a particular
scene with a single face identity. Other non-target, one-shot methods [Choi et al., 2018,
Pumarola et al., 2018a] produce decent results, but they fail in producing consistent
face identities between images of the same person (video sequence) [Choi et al., 2018,
Siarohin et al., 2019]. Our method is also a one-shot method. However, in contrast
to previous methods, the aim of our method is to produce realistic-looking faces with
identity-preservation by exploiting the disentanglement property of the pre-trained model.

5.2.3 Face Swapping

Face swapping aims to change the facial identity but to keep other face attributes constant.
Applications range from face identity obfuscation [Bitouk et al., 2008] to recreation
[Kemelmacher-Shlizerman, 2016] and entertainment [Nirkin et al., 2018]. Recent meth-
ods obtain realistic results by using GANs [Korshunova et al., 2016, Li et al., 2019,
Nirkin et al., 2019] conditioning identity attributes using either a face image or its facial
landmarks. Besides, face segmentation is usually required to position a generated face
on the original face [Nirkin et al., 2019, 2018].

Most face reenactment and swapping approaches rely on the use of generative adversarial
networks [Abdal et al., 2019, Choi et al., 2018, Fu et al., 2019, Pumarola et al., 2018a,
Zakharov et al., 2019, Zhu et al., 2017]. A major drawback of the aforementioned
methods is their training process, the interpolation quality and lack of disentanglement.

Despite the similarity between face reenactment and face swapping tasks, there are no
methods, to the best of our knowledge, which successfully unify these tasks. Siarohin
et al. [2019] mainly focuses on the problem of face reenactment, but shows inferior
results on the task of face swapping. Nirkin et al. [2019] shows the opposite. This
approach is mainly focused on face swapping, but the results on face reenactment lack
realistic-looking appearance. Moreover, those methods are complex and multi-staged.
Thus, Nirkin et al. [2018] proposes four separate GANs for reenactment, segmentation,
inpainting and blending. Siarohin et al. [2019] uses a separate motion network to extract
dense optical flow and requires an extra segmentation network for face swapping. In
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contrast, to our knowledge, we are the first method to unify face reenactment and face
swap in one single unified pipeline.

Face Swapping

Face Reenactment Data Sample I

C
on

ve
x

H
ul

l

Data Sample I

Data Sample II

Figure 5.2: Our architecture combines Face Swapping and Reenactment into a single
unified pipeline with the help of our novel isolated disentangled representation learning
algorithm.

5.3 Proposed Method

An overview of our method is shown in Fig. 5.2. Our goal is to produce a face image
x̂ while predicting identity attributes wi, style attributes ws and pose/facial expression
attributes wpe from a given face image and its landmarks. We propose a novel isolated
disentangled representation learning algorithm to separate wi, ws and wpe. Using the
proposed algorithm, attributes of the source and target images can be manipulated in
the latent space via mixing using linear addition, since changing one attribute doesn’t
influence another due to their isolation. For the face swapping task, wi is taken
from the source image, while other attributes are taken from the target image. For the
face reenactment task, wpe and ws are taken from the source image, keeping
identity wi from the target.

5.3.1 Disentanglement Property and Vector Computations

Our encoders are trained to compute a latent code in the latent space w ∈ W + of a
pre-trained generator. Since the latent space is disentangled, face attributes can be
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manipulated by using vector arithmetics inW + [Abdal et al., 2019]. For example, given
an image NA and its latent code w1 (person A with a neutral expression), NB and its
latent code w2 (person B with a neutral expression) and another image SB with a latent
code w3 (person B smiling), it’s possible to generate an image of a person A smiling by
conditioning the generator G on a latent code G

�

w1 + (w3 −w2)
�

.

Our method uses that principle by predicting isolated latent codes for style ws, identity
wi and pose/expression wpe based on the input image and its corresponding landmarks,
assuming those latent codes to be with a disentanglement property. Final latent code can
be constructed via linear addition of the three isolated components:

w= µG +wi +ws +wpe, (5.1)

where µG is the mean of the generator’s latent spaceW + with disentanglement property
[Abdal et al., 2019, Karras et al., 2019b].

Since w is constructed from the latent codes ws, wi, and wpe, full control is obtained for
changing the style, identity, pose and expression of the resulting image I , by exploiting
the high-quality images produced by the pre-trained generator. Note that our method
allows for subject-agnostic face manipulation executed in a one-shot fashion during
inference.

5.3.2 Architecture

The source face and the target face (together with its facial landmarks) are used as inputs
to the two separate encoders Ei and Epe respectively. These encoders approximate a
latent code for face style ws, identity wi and pose/expression wpe. The network latent
space is manipulated using encoder outputs to obtain either face swap by swapping the
identity latent code or face reenactment by swapping the pose latent code. All latent
codes are combined into the final latent code w. Then, w is fed to a decoder G to produce
the final visual result. In the case of face swapping, a face mask M is generated by using
the convex hull of the landmarks [Yang and Lim, 2019].

Encoders

Our architecture contains two different types of encoders: (1) the identity encoder Ei , and
(2) the pose encoder Epe. These encoders predict a latent code w ∈W + corresponding to
either the identity, style, or pose of the input image.
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For the design of the architecture, we base our encoders on the encoder of Pix2Pix
[Isola et al., 2017]. To map the input images and landmarks to their corresponding latent
codes, we add n separate fully connected blocks to the architecture, where n is the first
dimension of the extended latent space. This fully connected blocks consist of 2 fully
connected layers. Ei contains 2 of these fully connected block sets, for style (ws) and
identity (wi) respectively.

Identity encoder Ei(x) takes an input image x and estimates the identity latent code
wi ∈W + and style latent code ws ∈W +. Latent code wi is trained to contain only pose-
and expression-invariant identity features of the person.

Pose encoder Epe(xs) uses the facial landmarks of x denoted by xs as an input. Epe(xs)
predicts a latent code wpe ∈ W + containing both the pose and expression of xs. The
landmarks are represented as RGB images of landmark boundaries [Zakharov et al.,
2019].

wx
i , wx

s = Ei(x), wx
pe = Epe(xs). (5.2)

Decoder

Generator G(w) is a pre-trained network with fixed weights. It takes a latent code
w ∈ W + as an input. Here W + is the latent space of G(w). G(w) generates an image
x̂ corresponding to latent code w. In this work, the StyleGANv2 architecture is used.
However, other models with similar disentanglement properties and continuous latent
spaces can be used instead.

5.3.3 Face Reenactment and Swapping

The reconstructed original face is defined as a function G(w) over its identity wx
i , style

wx
s and expression/pose wx

pe parameters:

x̂= G(µG +wx
i +wx

s +wx
pe). (5.3)

Face Reenactment

Faces are reenacted by changing the expression and pose parameters wy
pe to the pose/-

expression shown in the target image y and keeping other parameters identical wx
i and
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wx
s . Since wx

i , wx
s and wx

pe parameters are separated, the resulting image ẋ is defined as a
function of their sum:

ẋ= G(µG +wx
i +wx

s +wy
pe). (5.4)

Face Swapping

Face swapping is performed by keeping the wx
s and wx

l parameters unchanged and to
modify the identity latent code to wy

i :

x̃= G(µG +wy
i +wx

s +wx
pe). (5.5)

To swap faces, a facial mask M is obtained by computing a convex hull of the landmarks
and to add a Gaussian blur [Yang and Lim, 2019]. The final swapped face is generated
by interpolation:

(1−M) · x+M · x̃. (5.6)

5.3.4 Losses

The objective function, to train our unified face swapping/reenactment architecture,
consists of 5 terms: reconstruction loss LMSE , perceptual loss Lper , landmark loss LL,
identity losses for the aligned reconstructed image L a

id and for the unaligned identity-
swapped/reenacted image L u

id . Those terms are weighted using hyperparameters λi, i ∈
{1..5}.

L = λ1LMSE +λ2Lper +λ3LL +λ4L a
id +λ5L u

id . (5.7)

Reconstruction and Perceptual Losses

We compute the mean squared error between input and predicted images as a recon-
struction loss for efficient color embedding. LMSE is calculated for the reconstructed
image x̂ and the identity-swapped image x̃. This loss function mainly helps to isolate
ws ensuring a proper color embedding. To capture finer features, the LPIPS distance is
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used [Banerjee et al., 2018, Karras et al., 2019b, Zhang et al., 2018]. Lper is taken as the
reconstruction loss and is calculated only for the reconstructed image x̂.

LMSE =‖ x̂− x ‖2
2 + ‖ x̃− x ‖2

2, (5.8)

Lper = LPIPS(x̂,x). (5.9)

Landmark Loss

The landmark loss term is used to isolate pose and expression from identity and style.
A pre-trained facial landmark extraction network ψ [Bulat and Tzimiropoulos, 2017]
is taken to extract the landmark heatmaps from an image x. The loss function attempts
to minimize the L2 distance between the extracted heatmaps of the facial landmarks of
the source image x and the target image y, while keeping the latent code for identity and
style identical. Landmarks do contain identity (e.g. eye and mouth shape). This means
that landmark loss adds an identity bias to the resulting image.

We separate the heatmap sets into two different sets, the expression landmarks ψE and
the jaw landmarks ψJ . Parameters γ1, γ2 adjust the importance of these landmark sets
respectively.

LL =γ1 ‖ψ(ẋ)E −ψ(y)E ‖2
2 +γ2 ‖ψ(ẋ)J −ψ(y)J ‖2

2 . (5.10)

Identity Loss

The identity loss [Fu et al., 2019, Hu et al., 2018] isolates identity in a separate latent
code wi. The layer activations are used of a pre-trained identity recognition network Φ
[Wu et al., 2018b]. For our purpose, we use activations l ∈ L of two specific convolution
layers and the last two fully connected layers.

The identity loss is applied to the convolution layers by calculating the contextual loss
[Mechrez et al., 2018] L a

id over these layers. Note that this will only work for images
with the same pose (the reconstructed image), since the convolutions do not capture
rotations properly.

L a
id =

∑

l∈L

‖ CX(Φ(x̂),φ(x) ‖2
2 . (5.11)

To ensure correct identity in the reenacted frames, a loss function is required to detect
the identity of a face independent of the pose. A mean squared error is calculated for
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the activations of the fully connected layers of Φ. During training, faces are reenacted
with random landmarks from the dataset making our approach more robust to landmark
biases.

L u
id =

∑

l∈L

�

‖ Φ(ẋ, l)−Φ(x, l) ‖2
2 + ‖ Φ(x̃, l)−Φ(y, l) ‖2

2

�

. (5.12)

5.3.5 Training Details

We trained both our method and the pre-trained generator on the subset of 183K images
from the CelebA face dataset [Liu et al., 2015]. Faces are detected using the Dlib [King,
2009]. Face bounding boxes are computed based on an expanded by 10% bounding
boxes over facial landmarks [Bulat and Tzimiropoulos, 2017] and resized to 128× 128.
Parameters of the network were optimized using the Adam optimizer with a learning rate
of 10−5 for 100 epochs, batch size = 4. In our experimental setup, we used λ1,λ2 = 5,
λ3 = 1, λ4,λ5 = 0.05, γ1 = 1 and γ2 = 50, since it yielded the best results.

We use StyleGANv2 in our experiments. For StyleGANv2 latent code manipulation, we
use the extended latent space w ∈W +, which predicts a different latent code for every
level of a pre-trained generator. UsingW + allows for a better embedding of an image,
but is also possible to cope with images that do not have a latent embedding.

5.4 Experiments and Results

In this section, we evaluate the qualitative and quantitative performance of our proposed
method and compare it to the state-of-the-art. We perform an ablation study to analyze the
influence of the loss components in section 5.4.1. Results on latent space interpolation are
discussed in section 5.4.2. Comparison to state-of-the-art in face swap and reenactment
are provided in section 5.4.3. For all experiments, a cross-dataset evaluation is conducted
for our method and baselines.

5.4.1 Ablation Study

An ablation study is conducted for the loss components to assess their influence on the
face swapping and reenactment tasks on the 300VW dataset [Chrysos et al., 2015]. This
dataset contains 114 high-quality videos of talking people. The dataset is preprocessed
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Figure 5.3: Ablation Study. Face swap and reenactment results of our method trained
with different loss configurations. Our full model results are shown in the last row.

Face reenactment Face swap
Metric C1 C2 C3 C4 C1 C2 C3 C4

(a) 2.4 ±0.08 2.02 ±0.08 1.96 ±0.1 2.69 ±0.16 2.68 ±0.13 2.59 ±0.12 2.63 ±0.12 2.56 ±0.14
(b) 1.57 1.57 1.48 1.46 1.54 1.50 1.51 1.48
(c) 7.12 ±0.22 7.47 ±0.21 6.84 ±0.2 5.31 ±0.23 5.44 ±0.21 5.01 ±0.21 5.27 ±0.2 4.4 ±0.21
(d) N/A N/A N/A N/A 0.42 0.49 0.52 0.51
(e) N/A N/A N/A N/A 1.84 ±0.18 1.78 ±0.16 2.08 ±0.16 1.45 ±0.15

Table 5.1: Quantitative ablation study evaluation on 300VW dataset. Reported metrics
are (a) Inception Score, (b) FID source vs generated, (c) KID source vs generated, (d)
FID target vs generated and (e) KID target vs generated.

by cropping faces based on the given (ground truth) landmark bounding boxes with 10%
extension to each direction.

The qualitative results of our method trained with 4 different loss configurations are
shown in Fig. 5.3:

C1 - L without contextual loss L a
id and identity loss L u

id ;

C2 - L without L u
id ;

C3 - L without L a
id ;

C4 - our final model with L .

Configurations with other losses being disabled produce significantly degenerated visual
results. Consequently, they are crucial for our method.
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Contextual loss L a
id supports identity preservation of the source image both in reenact-

ment and face swapping tasks (C2 vs C1). However, it has difficulty with the pose and
expression preservation of the target image. Thus, expression and pose are influenced by
the content of the source face.

Identity loss L u
id is beneficial for expression/pose isolation and visual sharpness. How-

ever, it has difficulties in identity preservation (C3 vs C1). Besides, for the face reenact-
ment task, the reenacted shape of the source person is morphed by target images. It can
be seen that the source rounded face becomes oval (C3: Face Reenactment, columns 1,
2). A trade-off result is obtained by combining L a

id and L u
id together (C4 vs C1).

For quantitative evaluation, different metrics are computed which are commonly used
in image synthesis evaluation and shown in Table 5.1. Inception Score [Salimans et al.,
2016] uses pre-trained on ImageNet Inception Network to compute the KL divergence
between conditional and marginal label distributions over generated data (higher - bet-
ter). Frechet-Inception distance [Heusel et al., 2017] computes Wasserstein-2 distance
between distributions of real and generated samples in the Inception Net feature space
(lower - better). Kernel-Inception distance [Bińkowski et al., 2018] measures dissimilarity
between distributions of real and generated samples (lower - better).

Since the generated results of our method are unaligned in term of face attributes, FID
and KID metrics are used only as an indicator of how our face identity is similar to the
real data distribution. In case of face reenactment, the identity should be as close as
possible to source face image. In case of face swap, we want a generated face to capture
both properties of source and target image. Consequently, for face swap generated
images, the FID and KID metrics are reported both in comparison with the source and
target image data distributions. Source and target subjects are randomly selected from
the 300VW dataset. Evaluation is performed on a sample of 10K generated images.

In the task of face reenactment, the evaluation metrics support our qualitative experi-
mental results: our method with combined contextual and identity losses generates visual
results with identity closer to the source face image distribution (C1 vs C2, 1.57 vs 1.46
FID). In the case of face swap, it can be observed that the distribution of generated
images is closer to the distribution of target face images (C4 1.48 vs 0.51 FID). With the
introduction of the additional regularization into our model, visual results start to capture
more and more properties from the source image (C1 vs C4, 1.54 vs 1.48 FID).
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Figure 5.4: Interpolation of the latent space. Row 1: expression and pose interpolation.
Row 2: Style interpolation. Row 3: identity interpolation. The last column represents a
target expression/pose, style, or identity respectively. The results show that our novel
disentangled representation learning algorithm can robustly isolates face attributes so
that we can manipulate each attribute independently.

5.4.2 Latent Space Interpolation

In this section, our method is analyzed to interpolate over different face attribute dimen-
sions. Given a source image, its face attributes are gradually changed where expression/-
pose, style or identity are modified to become closer to the target face image. Qualitative
results on the 300VW dataset are shown in Fig. 5.4. The 300VW dataset is preprocessed
in the same way as described in the section 5.4.1. The first column shows the source
image. Our algorithm changes gradually an attribute dimension to become closer to the
target image of the last column.

Given a source w1 and target attribute w2, our model generates meaningful face images
conditioned on the interpolated latent code αw1 + (1−α)w2. Note that in the case of
style, a costume of John Oliver gradually starts to appear, while in the case of identity,
we can observe the disappearance of beard, an emergence of his glasses and eyebrows.
Despite the challenges given by cross-dataset evaluation, our model preserves attributes
dimensions on challenging cases with face accessory and occlusion. Image2StyleGAN
[Abdal et al., 2019] show the capability to map face attributes into the latent space of
StyleGAN. However, the latent space of expression/pose, identity and style are not fully
disentangled. For example, it’s not possible to manipulate expression/pose property
separately without influencing identity or style. In contrast, our mapping to the latent
space provides more flexibility.
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Figure 5.5: Qualitative comparison of face reenactment results on 300VW and UvA-
NEMO datasets. Pose and expression from target images (second column) are applied on
the source image (first column). Faces are produced by the baseline methods, FSGAN
and First Order Motion Model, and predictions provided by our novel unified pipeline.

5.4.3 Face Swap and Reenactment State-of-the-Art Comparison

Qualitative Evaluation

We evaluate qualitatively our method on the face swapping and face reenactment tasks.
We perform cross-dataset evaluation of our method with results produced by FSGAN
[Nirkin et al., 2019] and First Order Motion Model [Siarohin et al., 2019] on the 300VW
[Chrysos et al., 2015] and UvA-NEMO [Dibeklioğlu et al., 2012] datasets. These
methods are selected because they are state-of-the-art which can do both face swap
and reenactment. For our purpose, the available pre-trained model is used provided
by authors of FSGAN and First Order Motion. For fairness of comparison, we use
models trained on a different dataset from UvA-NEMO and 300VW. The datasets are
preprocessed by cropping faces based on landmark bounding boxes with 10% extension
to each direction. For 300VW, the provided ground truth landmarks are used. For
UvA-NEMO, the landmarks are extracted by using FAN [Bulat and Tzimiropoulos,
2017].

In the first experiment, we qualitatively compare our method with the state-of-the-art
for the face reenactment task. The visual comparison is shown in the Fig. 5.5. For the
First Order Motion model, its pre-trained model is used with absolute motion for both
face reenactment and face swap experiments, since only the absolute motion mode is
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Figure 5.6: Qualitative comparison of face swapping results on the 300VW and UvA-
NEMO datasets. First column: source image from which identity properties are taken.
Second column: target images, on which those properties are applied. Faces produced
by the baseline methods, FSGAN [Nirkin et al., 2019] and First Order Motion Model
[Siarohin et al., 2019], and predictions provided by our novel unified pipeline.

capable of computing face swaps. Our method shows comparable quality of reenactment
results to First Order Motion and outperforms FSGAN in terms of identity preservation.
Besides, since our latent space is constrained by the pre-trained generator, it’s less prone
to produce artifacts not inherent to a human face (First Order Motion, second row, middle
image, eyes). However, this constraint has also a drawback in terms of facial accessories
it’s capable of modeling (the disappearance of a microphone in the second row). Note
that, since First Order Motion is focused on the face reenactment task, it produces better
results than the FSGAN model.

In the second experiment, we qualitatively compare our method with state-of-the-art
in the context of face swapping. The visual comparison is shown in the Fig. 5.6. For
the face swapping task, GAN based methods may fail in cross-gender face swapping
due to the difference between gender appearance and shape. We show that our method
produces realistic-looking results both for male-to-female (rows 1, 3, 6) and female-to-
male swapping (row 2) compared to competitive methods: First Order Motion keeps the
lipstick color of a target face (row 3), FSGAN loses the identity of the source image
(rows 1, 3, 6). Note that, since FSGAN is focused on the face swapping task, it produces
better results than the First Order Motion model.
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Quantitative Evaluation

We provide additional quantitative evaluations on 300VW to verify preservation of iden-
tity/expression/pose w.r.t. SOTA and to motivate the benefit of joint learning (Table 5.2).
We compare identity preservation using cosine similarity between latent space of VGG-
Face2 features [Cao et al., 2018]. Headpose correctness is compared using absolute
distance in degrees of yaw-pitch-roll predicted from a pretrained Hopenet [Ruiz et al.,
2018]. Expression correctness is compared using mean absolute distance of facial
landmarks (in pixels, image resized to 256) using a pretrained FAN detector [Bulat
and Tzimiropoulos, 2017]. Our method outperforms SOTA in the swapping task on 3
benchmarks. On the reenactment task Firt Order Motion performs better on identity and
headpose preservation however, on average, our method outperforms SOTA.

Identity ↑ Headpose ↓ Expression ↓
First Order FSGAN Ours First Order FSGAN Ours First Order FSGAN Ours

Reenactment 0.578 0.461 0.517 2.811 4.268 3.364 4.883 51.56 3.983
Swap 0.308 0.317 0.412 2.628 2.823 2.113 3.902 2.554 3.072
Avg 0.443 0.389 0.464 2.719 3.546 2.739 4.393 27.057 3.528

Table 5.2: Quantitative evaluation on 300VW.

5.5 Limitations

Despite promising results presented in this work, our method has several limitations.
First, the expressiveness of the generated facial expressions is dependent on its presence
in the training dataset and the quality of face landmarks provided by the landmark
detector. Second, our model does not explicitly model occlusion and consequently relies
on a pre-trained generator to have a capacity of modeling occlusions, such as accessories
or makeup. Finally, both landmark plots and source images contain a bias in terms of
identity, pose and expression.

5.6 Conclusion

In this work, we proposed a novel approach for isolated disentangled representation
learning combined with an end-to-end method capable of performing both face reenact-
ment and swapping. To our knowledge, our method is the first approach that is designed
to solve both objectives in a unified pipeline.
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5.6. Conclusion

We showed that our method is trained in an unsupervised way to achieve equally good
visual results on both tasks. In addition, it’s capable of producing results in a one-shot
manner during inference time. The qualitative results on multiple public datasets show
that the proposed method is outperforming SOTA methods which can perform both face
reenactment and swap.
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Summary and Conclusion

Below are individual chapter summary followed by the thesis conclusion.

6.1 Summary

6.1.1 Pose- and Expression- Robust Age Estimation

We show that by incorporating prior knowledge about face image formation one can sig-
nificantly improve the age estimation performance. Our method takes a single 2D image
and derives 3D reconstruction features as a new source of pose and facial expression
robustness by employing a monocular 3D face reconstruction model.

Experiments show our method to be consistently more robust across expression and pose
variation and improved the baseline the most with extreme head poses (1.4 MAE) and
intensive expressions (1.82 MAE).

6.1.2 Identity-Unbiased Deception Detection

We show that face image formation prior can be used to disentangle identity and
environment-related features from the face input data. The newly proposed deception
detection method is based on reliable facial expression and head pose-related features.
We achieve separation of those properties by simultaneously learning two separate CNNs
using 2D-to-3D face reconstruction: (a) one CNN for face identity and environment
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parameters, and (b) another CNN for facial expression and head pose. Our pipeline
predicts a single label given a frame sequence and models deceit detection as Multiple
Instance Learning problems conditioned on reconstruction features.

Prior works have been focusing on high-stakes deceit detection mainly because of the
lack of publicly available datasets for low-stake deceit. A new Low-Stakes Deceit (LSD)
dataset has been collected to address this issue. To our knowledge, we are the first to
evaluate automatic visual-based high-stake deceit detection methods on low-stakes deceit
detection tasks.

Experiments show our method to improve the state-of-the-art as well as providing on
par results with the use of manually coded facial attributes (71%) in the high-stakes
deception detection on the challenging RLT dataset. In the low-stakes lies deception
detection task it has achieved results on par with professional experts however there is
still room for improvement.

6.1.3 Self-supervised Face Image Manipulation

In prior chapters, the benefit of attribute decomposition using face image formation prior
has been shown for discriminative learning tasks. In this chapter, we explore further the
benefit of attribute decomposition for generative learning tasks.

We propose a self-supervised method to manipulate a single monocular face image by
conditioning GAN on face decomposition using appearance transfer. Our conditioning
has shown to be a more flexible representation in comparison to previous GAN-based
methods that use discrete classes, landmarks, or action units. Thus, conditioning on
the appearance image allows us to manipulate head pose, scene illumination, and facial
expression using a single conditioning space.

Experiments show that our proposed method provides competitive results in terms of
identity preservation, and outperforms, in terms of expression correctness, GAN-based
state-of-the-art face reenactment methods, which can do both expression and head pose
manipulation. Our method is agnostic to face decomposition methods and works with any
2D-to-3D reconstruction method which allows pose, expression, and light manipulation.

6.1.4 Face Reenactment and Swapping

In prior chapters, we study the benefit of face image formation prior knowledge in
various face analysis and synthesis tasks. In this chapter, we explore the possibility to
learn attribute decomposition without such prior knowledge.
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6.2. Conclusion

We propose a method for isolated disentangled representation learning combined with
an end-to-end method capable of performing both face reenactment and swapping. To
our knowledge, this is the first approach that is designed to solve both objectives in a
unified pipeline in an unsupervised manner. It achieves that by mapping the disentangled
latent representation to the latent space of a pre-trained generator with disentanglement
property. During the test time, our method requires source and target images together
with their facial landmarks to predict reenacted or swapped results.

Experiments show the proposed method to achieve equally good visual results on reen-
actment and swapping tasks. In addition, it’s capable of producing results in a one-shot
manner during inference time. The qualitative results on multiple public datasets show
that the proposed method outperforms state-of-the-art methods, which can perform both
face reenactment and swap.

6.2 Conclusion

This thesis is focused on learning face attribute decomposition to improve face analysis
and synthesis. Given an image of a face, prior knowledge about its interaction with the
environment, light source, and how the face may geometrically change, are considered.
By incorporating such kind of prior knowledge, one can achieve a better, more robust
predictive models which generalize well on unseen data. In the case of the infeasibility
of modeling a prior, a commonality between face analysis or synthesis tasks can be
considered to learn a joint attribute representation conditioned on constraints from those
tasks.

Prior knowledge about face can help to achieve better discriminative learning models. In
this thesis, we show how domain knowledge about face can be explicitly incorporated
into age estimation and deception detection models. A similar idea can be adapted for
generative learning models for the monocular face image manipulation task. In the
absence / incapability of explicit modeling, implicit modeling of prior knowledge via
multi-task learning can be used.

In Chapter 2 we answer the first research question and show how deep learning-based
age estimation can be robustified by jointly learning 2D-to-3D face reconstruction and
age estimation tasks. The second research question concerns the identity biases in the
existing deception detection methods. We answer it in Chapter 3 by proposing a deep
learning-based deception detection method, which is capable of the disentanglement
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of the identity and environment-related features from input data. To address the third
research question we propose in Chapter 4 a self-supervised conditional GAN-based
method that is capable of face image manipulation given face decomposition. The
fourth research question concerns the feasibility of learning face reenactment and
swapping tasks without explicit prior. We address the question in Chapter 5 by proposing
an unsupervised model which is capable of solving both objectives by mapping the
disentangled latent representation to the latent space of a pre-trained generator with
disentanglement property.

In conclusion, decomposition of the face representation using prior knowledge benefits
deep learning models by making them generalize better on unseen data. Our research
support this conclusion in age estimation, deception detection, and manipulation of
attributes of a face image. However, further research is required to evaluate our hypothesis
in other face-related tasks, such as emotion and kinship recognition.
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Self-supervised Face Image Manipulation

A.1 Implementation Details

This supplemental material provides more results and evaluation and implementation
details of our novel pipeline for self-supervised face image manipulation. Fig. A.2
shows generator and discriminator architectures of our pipeline. Source image XS is
concatenated with target appearance YT to form an input (6 channels) of the generative
model. For the discriminator, the input is 9 channels image consist of source image XS,
target appearance YT , and target image XT / fake target image X̂S.

We use convolutions followed by instance normalization and leaky relu (α = 0.2) for
generator. For discriminator spectral normalization [Miyato et al., 2018] for convolution
together with leaky relu are used. Note that amount of filters in our generator/discrim-
inator architectures is 2 times less than the one used in competitive methods StarGAN
[Choi et al., 2018] and GANimation [Pumarola et al., 2018a].

A.2 Additional Results

Fig. A.3 shows additional cross-dataset qualitative comparison to state-of-the-art methods
GANimation [Pumarola et al., 2018a] and StarGAN [Choi et al., 2018] under RaFD
expression settings. Next we provide additional qualitative results of manipulation of
pose (Fig. A.1), face expression (Fig. A.4) and light (Fig. A.5). Finally, simultaneous
change of head pose and expression produced by our pipeline is shown in the Figure A.6.
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Figure A.1: Additional qualitative results for pose manipulation of a single face image
from CelebA.
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A.2. Additional Results

Figure A.2: Generator and discriminator architectures of our pipeline. As ConvSN we
denote convolution layer with spectral normalization [Miyato et al., 2018]. Note that
amount of filters in our generator is 2 times less than the one used in competitive methods
StarGAN and GANimation [Choi et al., 2018, Pumarola et al., 2018a].

Figure A.3: Additional results for qualitative comparison to state-of-the-art methods
GANimation [Pumarola et al., 2018a] and StarGAN [Choi et al., 2018]. We are per-
forming cross-dataset comparison on CelebA [Liu et al., 2015] applying RaFD [Langner
et al., 2010] expression on a source image.
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Figure A.4: Additional qualitative results for expression manipulation of a single face
image from CelebA.
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A.2. Additional Results

Figure A.5: Additional qualitative results for light manipulation of a single face image.
Target light direction (first column) from the Multi-PIE [Gross et al., 2010] dataset is
applied on images from the CelebA [Liu et al., 2015] dataset.

Figure A.6: Additional qualitative results for expression and pose manipulation of a
single face image from CelebA.
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Hoofdstuk 2

We tonen aan dat de nauwkeurigheid voor de taak van leeftijdsschatting aanzienlijk
verbeterd kan worden door het integreren van a priori kennis over het in beeld brengen van
gezichten. Onze methode neemt één 2D-beeld en leidt hieruit 3D-reconstructiefeatures
af, als een nieuwe bron van robuustheid voor pose en gezichtsuitdrukking, door gebruik
te maken van een monoculair 3D-gezichtsreconstructiemodel.

De experimenten laten zien dat onze method consist robuuster is voor gezichtsuit-
drukkking en variatie in pose, en overtreft de baseline het meest voor extreme poses van
het hoofd (1,4 MAE) en intensieve gezichtsuitdrukkingen (1,82 MAE).

Hoofdstuk 3

We laten zien dat a priori kennis over het in beeld brengen van gezichten gebruikt
kan worden om onderscheid te maken tussen de identiteit van het gezicht en omgev-
ingsgerelateerde features, uit de ingevoerde data van gezichten. De nieuw ontwikkelde
fraudedetectiemethode is gebaseerd op betrouwbare gezichtsuitdrukkings- en posegerelat-
eerde features. Het lukt ons de genoemde twee eigenschappen uit elkaar te houden, door
tegelijkertijd twee CNNs te trainen met behulp van 2D-naar-3D gezichtsreconstructie: (a)
één CNN voor de parameters van identiteit van het gezicht en omgevingsfactoren, en (b)
één CNN voor gezichtsuitdrukking en pose van het hoofd. Onze pipeline voorspelt één
label, gegeven een reeks frames, en modelleert fraudedetectie als een Multiple Instance
Learning-probleem, geconditioneerd op reconstructiefeatures.

Eerder werk heeft zicht vooral gericht op fraudedetectie waarbij de inzet (mogelijke
positieve of negatieve consequenties) hoog is, vooral door een gebrek aan openbaar
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toegankelijke datasets voor misleiding waarbij de inzet laag is. Wij hebben een lage-
inzetfraudedataset (Low-Stakes Deceit, LSD) verzameld om aan dit probleem tege-
moet te komen. Naar ons weten zijn wij de eersten die automatische visuele hoge-
inzetfraudedetectiemethoden evalueert op lage-inzetfraudedetectietaken.

Experimenten laten zien dat onze methode beter presteert dan de state-of-the-art en
daarnaast resultaten laat zien die gelijkwaardig zijn aan het gebruik van handmatig
gecodeerde gezichtseigenschappen voor hoge-inzetfraudedetectie op de uitdagende RLT
dataset (71%). Op de lage-inzetfraudedetectietaak behaalde onze methode vergelijkbare
resultaten als professionele experts, hoewel er nog ruimte is voor verbetering.

Hoofdstuk 4

In eerdere hoofdstukken is het voordeel aagetoond van de decompositie van attributen met
behulp van a priori kennis over het in beeld brengen van gezichten voor discriminatieve
leertaken. In dit hoofdstuk bespreken we het potentieel van decompositie van attributen
voor generatieve leertaken.

We introduceren een zelf-gesuperviseerde methode voor het manipuleren van één mon-
oculair beeld van een gezicht, door het conditioneren van een GAN op gezichtsdecom-
positie, door gebruik te maken van overdracht van uiterlijk. Onze conditionering blijkt
een meer flexibele representatie in vergelijking met eerdere GAN-gebaseerde methoden
die discrete klassen, oriëntatiepunten of actie-eenheden gebruiken. Het conditioneren op
het beeld van het uiterlijk maakt het mogelijk om gezichtspose, belichting van de scène
en gezichtsuitdrukking te manipuleren met behulp van één conditionerende ruimte.

Uit de experimenten blijkt dat de methode die wij voorstellen competitieve resultaten laat
zien in termen van behoud van identiteit, en overtreft zelfs, in termen van de correctheid
van de gezichtsuitdrukking, GAN-gebaseerde state-of-the-art gezichtsoverdrachtsmeth-
oden, die zowel gezichtsuidrukking als pose van het hoofd kunnen manipuleren. Onze
methode is onafhankelijk van de gebruikte gezichtsdecompositiemethode en werkt met
elke 2D-naar-3D reconstructiemethode die pose, uitdrukking en lichtmanipulatie onder-
steunt.

Hoofdstuk 5

In eerdere hoofdstukken onderzochten we het voordeel van a priori kennis over het in
beeld brengen van gezichten voor meerdere gezichtsanalyse en -synthesetaken. In dit
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hoofdstuk onderzoeken we de mogelijkheid om de decompositie van attributen te leren
zonder a priori kennis.

We introduceren een methode voor het leren van geïsoleerde ontwarde representaties
gecombineerd met een end-to-end methode die zowel de overdracht van pose/uitdrukkin-
gen als het verwisselen van gezichten mogelijk maakt. Naar ons weten is dit de eerste
methode die is ontwikkeld om beide doelen binnen één gezamenlijke pipeline uit te
voeren, middels een ongesuperviseerd paradigma. Dit wordt bereikt door een functie
op te stellen van de ontwarde latente representatie naar de latente ruimte van een ge-
pretrainde generator met ontwarringseigenschap. Tijdens de evaluatiefase kan onze
methode, op basis van bron- en doelafbeeldingen en hun oriëntatiepunten, overgedragen
of verwisselde resultaten voorspellen.

Onze experimenten laten zien dat de voorgestelde methode goede visuele resultaten
bereikt op de overdrachts- en verwisseltaken. Bovendien is het model in staat one-shot
resultaten te produceren tijdens de evaluatiefase. De kwalitatieve resultaten op verschil-
lende openbare datasets tonen dat de voorgestelde methode state-of-the-art methoden,
die zowel overdracht als verwisseling kunnen uitvoeren, overtreft.
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importance of helping other scholars, as I have been helped by others. Thank you for
being a friend, for your constant support and guidance, and for challenging my points
of view. From you, I have learned to accept more my failures, to go with the flow, and

115



Epilogue

recognize the fact that many things in life are not under my control. Also, thank you for
organizing BBQs! The best BBQs are definitely Turkish!

I would like to thank Prof. Peter van Emde Boas, Prof. Albert Salah, Prof. Elmar
Eisemann, Prof. Evangelos Kanoulas, Dr. Stevan Rudinac, and Dr. Pascal Mettes,
who agreed to be a part of my defense committee despite their busy schedules, and for
reviewing my thesis. In addition, I would like to thank Evangelos and Stevan who taught
me Information Retrieval and Information Visualization during the masters program.
During these courses, I have acquired knowledge, which has remained relevant until
today. The hard-working attitude of Stevan was inspirational. When I was hanging
around the midnight third floor during my first year, I have frequently been entertained
by the wonderful violin music of Shuai Liao and Stevan, who were out for coffee.

I would like to thank Dr. An Le and Riaan Zoetmulder who kindly agreed to be my
paranymphs. I would also thank Riaan for getting me into the gym, and for giving
Jonathan Israel’s book for light reading. I thank An for valuable conversations in the
cantine. I would like to thank Peter Dekker for helping with the Dutch translation of
the thesis summary. In addition, I have learned a lot from Peter about Dutch culture.
Furthermore, I would like to thank Elena Ponomareva, Bohdan Rybak, and Dr. An Le
who spent their valuable time proofreading the thesis draft. Many thanks to Dr. Anıl
Baslamisli, Partha Das, and Dr. An Le who helped with proofreading paper submissions.
I would like to thank Finde Xumara for helping me fix the cover page and the thesis
layout. I am so lucky to have a UI/UX genius sitting next to me at the office! Finally, I
would like to thank my co-authors Christian aan de Wiel, Nedko Savov, Burak Mandira,
Wei Wang, and Dr. Hamdi Dibeklioğlu without whom the publications in this thesis
would not have existed at all.

Many thanks to my colleagues at 3DUniversum and UvA I had the chance to talk to or
collaborate with, these colleagues are; Dr. Anıl Baslamisli (your SoundCloud tracks
are amazing, Qt Sessions Radio Show - the best deep house music ever!), Dr. Yang
Liu (your hot pot is delicious!), Sjoerd Dijkstra (thank you for showing me homebrew
and git pipeline!), Morris Franken (you’re a inkscape-gimp-blender wizard, Morris!),
Giuseppe Cilli, Masoumeh Bakhtiariziabari, Rick Groenendijk, Dr. Hanan ElNaghy,
Gjorgji Strezoski (many thanks for helping with a poster!), Emiel Hoogeboom, Dr. Shuai
Liao, Dr. Noureldien Hussein (I have learned a lot from you on the train to Den Haag!),
Dr. Berkay Kicanaoğlu (thank you for TAing me CV1 labs!), Mert Kilickaya, Tushar
Nimbhorkar, Shaojie Jiang (thank you for being a kind housemate!), William Thong
(Japanese food was nice indeed!), Yunlu Chen (I am amazed with your math skill!),

116



Epilogue

Zhiwei Ai, Ozzy Ülger, Wei Zeng, Partha Das (thank you for sharing your experience
about India!), Wei Wang, Jian Han, Yahui Zhang, Dr. Deepak Gupta, Kirill Gavrilyuk
(the only person with whom I could practice Russian at the university), Jiaojiao Zhao,
Shuo Chen, Zhiwei Ai, Kien Nguyen. It was a fun experience running the Computer
Vision 2 lab sessions for 4 years together with many of you! Collaboration with Jian
and Anıl didn’t lead to the final product, nevertheless, it was a valuable experience!
Many Thanks to the senior Computer Vision lab staff; Dr. Leo Dorst, Dr. Arnoud Visser,
Dr. Shaodi You, Dr Dennis Koelma, Dr. Thomas Mensink, Dr. Emrah Bostan, and
Dr. Jan-Mark Geusebroek. Many thanks to Dr. Maarten van Someren for his kindness,
support, and guidance through the difficulties of the first master’s years at UvA.

Special thanks to Dennis and Morris, without whom all servers would have died, and to
Leo, who is an inspiration on what a real researcher should be like. Many thanks to Leo
for his books, which he left in the CV lab, where I had an opportunity to read them.

I thank the master students, who I had the privilege to supervise during my PhD time. I
have learned a lot from you. I would like to thank Axel Bremer, Mattijs Blankesteijn,
Tim de Haan, Christian aan de Wiel, Ipek Ganiyusufoğlu, and Filip Pandža.
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