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Abstract
Introduction Fecal volatile organic compounds (VOC) reflect human and 
gut microbiota metabolic pathways and their interaction. VOC behold 
potential as non-invasive preclinical diagnostic biomarkers in various 
diseases, e.g., necrotizing enterocolitis and late onset sepsis. There is a 
need for standardization and assessment of the influence of clinical and 
environmental factors on the VOC outcome before this technique can be 
applied in clinical practice. The aim of this study was to investigate the 
influence of gestational age (GA) and mode of delivery on the fecal VOC 
pattern in preterm infants born below 30 weeks of gestation. 

Material and Methods Longitudinal fecal samples, collected on days 
7, 14, and 21 postnatally, were analyzed by an electronic nose device 
(Cyranose 320®). 

Results In total, 58 preterm infants were included (29 infants born at GA 
24–26 weeks vs. 29 at 27–29 completed weeks, 24 vaginally born vs. 34 via 
C-section). No differences were identified at any predefined time point in 
terms of GA and delivery mode (p > 0.05). 

Conclusions We concluded that correction for gestational age and mode 
of delivery in this population is not warranted when performing fecal VOC 
analysis in the first three weeks of life.
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Introduction
In recent decades, new diagnostic methods and therapeutic options in the 
care for preterm infants have resulted in improved outcomes, particularly 
after extremely preterm birth [1]. Nevertheless, mortality and morbidity 
are still high, especially in very and extremely preterm born children [2-4]. 
Late onset sepsis (LOS) and necrotizing enterocolitis (NEC), for example, 
are major causes of death in this population with incidence of ca. 20% 
and 8% and mortality rate of more than 20% and 30%, respectively [5-
11]. Timely detection and prompt treatment are often impeded by lack of 
early and specific clinical signs and diagnostic tools [12, 13]. Moreover, the 
currently available techniques include painful, invasive venous and lumbar 
puncture in the LOS and/or NEC diagnostic workup [4, 14]. Therefore, the 
development of noninvasive and early diagnostic tools remains crucial for 
optimization of care [13, 15].

In the past decade, metabolic research has pointed to new potential 
biomarkers for various medical conditions, including oncologic, 
inflammatory, endocrine, and infectious diseases in both adults and 
children [16-32]. The sensitivity of a metabolomics approach to detect 
subtle alterations in metabolic pathways can, in addition, provide insight 
into mechanisms underlying various (patho)physiological conditions [33]. 
The main technologies used in identifying metabolites are untargeted 
and targeted mass spectrometry (MS), often used in combination with 
either liquid or gas chromatography (LC-MS and GC-MS, resp.) [33]. In 
NEC, for example, several volatile organic compounds (VOC), including (Z-)
hept-2-enal, pent-1-en-3-one, 2-ethylfuran, pentanal and 2-penthylfuran, 
as measured by GC-MS, have been reported to predict the disease with 
a moderate accuracy 3–4 days prior to clinical diagnosis [27]. Although 
crucial for gaining (patho)physiological insight, these techniques are costly 
in time and resources, complex to use, and labor-intensive, which makes 
them less fit for bedside application [34]. Alternatively, instruments such 
as electronic nose (eNose) devices and field asymmetric ion mobility 
spectrometry (FAIMS) can provide quicker analysis of VOC based on 
pattern recognition [35, 36]. With the latter technology, the presented VOC 
are first ionized and subsequently transported toward a build-in sensor 
using a carrier gas. During the transport, the electric field is modulated, 
which makes the ions drift in a ‘zigzag-like’ pattern before reaching the 
sensor. As a result, a wide variety of different ionized molecules can be 
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separated by (ion-specific) differences in mobility [35].

In eNose devices, on the other hand, the odor sample is drawn across 
a sensor array, which results in a competitive interaction between the 
sensors and VOC upon exposure. Subsequently, reversible physical and/or 
chemical alterations in the sensing material occur, changing the electrical 
properties in each sensor. These changes are registered and result in a 
scent pattern [37]. Specifically in neonatal care, eNoses have proven their 
potential in diagnosis of LOS, NEC, and bronchopulmonary dysplasia (BPD) 
in the clinical prodrome [38-41]. To optimize their diagnostic accuracy, 
however, it is important to assess and correct for physiological conditions 
influencing the VOC composition.

Since part of excreted VOC are products of metabolic pathways of 
(commensal) micro-organisms, it is hypothesized that VOC in newborns 
would be affected by factors affecting the microbiota composition, such as 
mode of delivery, gestational age (GA), and feeding [42-47]. In a previous 
study, it was demonstrated that VOC patterns, as measured by an eNose 
device (Cyranose320®), are influenced by enteral feeding practice in 
preterm neonates born at GA <30 weeks [48]. The current study focused 
on GA and mode of delivery. Together with other studies on the impact 
of pre-analytical and post-analytical variables on VOC composition, this 
research could contribute to methodological guidelines for future VOC 
research [44, 45, 49].
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Materials and Methods

Subjects
The current study was part of an ongoing prospective multicenter 
cohort study in nine participating neonatal intensive care units (NICUs) 
in the Netherlands and Belgium in which infants born before 30 weeks 
of gestation are included [39]. The aim of that study is to identify novel 
noninvasive biomarkers for LOS and NEC. Of all included infants, clinical 
data and a fecal sample was collected daily from birth up to 28 days 
postnatally.

For the current study, infants born at four out of nine centers were 
included in order to limit center-specific variation in fecal VOC outcome: 
Emma Children’s Hospital (location Academic Medical Center, Amsterdam, 
The Netherlands), Máxima Medical Center (Veldhoven, The Netherlands), 
Wilhelmina Children’s Hospital (Utrecht, The Netherlands), and University 
Hospital Leuven (Leuven, Belgium). Selection of participating centers was 
based on availability of fecal samples in the study biobank. Samples from 
infants born in the period between December 2014 and December 2016 
were selected for further analyses. Probiotics were not administered 
routinely in any of the participating centers. Infants with congenital 
gastrointestinal malformations (anus atresia, Hirshprung’s disease) and 
surgery of the gastro-intestinal tract were excluded. Additional exclusion 
criteria include the development of bacterial sepsis and/or meningitis 
(with both clinical signs of systemic infection and culture-derived bacterial 
pathogens from blood and/or cerebral spinal fluid (CSF)), diagnosis or 
suspicion for NEC (conform Bell’s criteria), and spontaneous intestinal 
perforation (SIP) [50]. Infants with insufficient fecal sample mass (<100 mg) 
on two or more of the predefined time points were excluded. The study 
was approved by the local institutional review boards of all participating 
centers (amendment A2016.363) and written informed consent was 
obtained from parents of included infants.

Study Groups
Included infants were categorized according to the variables of interest: 
GA and mode of delivery. Cases and controls were defined as born 24–26 
6/7 and 27–29 6/7 weeks of gestation, respectively. From epidemiological 
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data, it is known that the morbidity and mortality of infants is inversely 
correlated with the gestational age at birth, with larger week-to-week 
variations at earlier GA [51]. Assuming this would reflect on VOC patterns, 
but also taking into account the low incidence of birth at 24 and 25 
completed weeks of gestation in the participating centers (ca. 4/year/
center), the cut-off was arbitrarily set at 27 weeks. For mode of delivery, 
infants were assigned to the subgroup of (1) vaginally born infants or (2) 
infants born by C-section. Infants were matched exclusively based on the 
birth center.

Sample Size Calculation
We were not able to perform a sample size calculation due to lack of 
previous studies on this subject. Based on research on the effect of 
sampling conditions and enteral feeding type on VOC patterns, we 
assumed that a sample size of 15 subjects per group would suffice to 
identify clinically significant differences in VOC patterns [48, 52].

Definitions
The enteral feeding practice was categorized as (1) predominantly 
consisting of mother’s milk (MM >75% of total daily enteral feeding volume 
consisted of raw or pasteurized own mother’s milk +/− pasteurized donor 
milk), (2) predominantly consisting of formula milk (FM >75% of total daily 
enteral feeding volume consisted of formula milk) and (3) consisting of a 
combination of mother’s and formula milk (MM/FM). GA was defined as 
the number of weeks since the last maternal menstrual period. Age at full 
enteral feeding was defined as the first day of life at which infants were 
enterally fed >120 mL/kg/day or did not receive parenteral feeding for 
over two consecutive days.

Sample Collection
Fecal samples were collected by the nurses at the participating NICUs 
from the diaper, placed in a container (Stuhlgefäß 10 mL, Frickenhausen, 
Germany), and subsequently stored at −20 °C within one hour after 
collection, until further handling. In case of multiple stool productions per 
day, the first fecal sample was stored. Sample collection was ceased in 
case of transfer to a referral hospital or decease before the postnatal age 
of 28 days. Fecal samples collected at 7 (t1), 14 (t2), and 21 (t3) (±2) days 
postnatally were selected for fecal VOC analysis.
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VOC Analysis
The VOC analysis method was analogous to previous studies conducted 
by our research group [48]. In short, fecal samples were analyzed for 
eight days within two consecutive weeks by means of an eNose device 
(Cyranose 320®, Smiths Detections, Pasadena, CA, USA). Approximately 
150 mg sample mass was weighted on a calibrated scale (Mettler Toledo, 
AT 261 Delta Range, Columbus, OH, USA) and transferred into a sealed 
vacutainer (BD vacutainer, Belliver Industrial Estate, Plymouth, UK). 
Prior to analysis, samples were thawed to room temperature (18 °C) for 
10 min, and subsequently connected to the eNose in an airtight loop 
system to prevent ambient air dilution (Figure 1a). The airtight system 
consisted of two needles (Terumo Europe N.V., Leuven, Belgium) pierced 
through the top of the vacutainer and connected to the eNose by a tube 
(Argyle Kendall tube, 3 mm, Mansfield, MA, USA). To control the airflow, 
a three-way stopcock system (BD Connecta, Helsinborg, Sweden) was 
used. The needles, tubes, and three-way stopcocks were replaced after 
each measurement to prevent contamination. To prevent condensation 
contamination of the eNose, a polyethersulfone syringe water filter (VWR 
International B.V., Arlington Heights, IL, USA) was added to the system. 
In between sample analysis, sensors were purged with filtered ambient 
air (VOC-filter, A1, North Safety, Middelburg, The Netherlands) in order 
to eliminate the remaining VOC on the sensors (Figure 1b). In addition, a 
baseline measurement was obtained by analyzing an empty vacutainer.

The applied eNose device allows for the differentiation of groups based 
on pattern recognition analysis. This pattern is recognized based on a 
nanocomposite array consisting of 32 polymer sensors. Each sensor has a 
unique polymer coating, which results in a competitive interaction between 
the sensors and VOC from the sample upon exposure. Subsequently, 
changes in electrical resistance in each sensor occur, depending on 
sensor material and chemical composition of the VOC. These changes 
are registered and result in a scent pattern that can be read out using 
the manufacturer’s software [53]. The specific VOC to which a particular 
sensor reacts belongs to the company’s proprietary and is not generally 
known.
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Figure 1. A schematic illustration of electronic nose setup during: (a) purging of the 
sensors and subsequently obtaining a baseline reference signal and (b) performing the 
actual sample measurement. A dark cone in a three-way valve (number 5) illustrates an 
air flow can pass, while a white cone prevents this. The arrows depict the air flow through 
the measurement setup. (a) First, the sensors are purged for 90” with filtered air derived 
from ambient air passing the A1-filter. The airflow, containing the residual volatile organic 
compounds (VOC), detached from the sensors, and is expelled through the exhaust port. 
Subsequently, a baseline reference signal is obtained in 30” using filtered air. (b) After 
the baseline reference signal is obtained, the actual measurement takes place in 60”. 
By rotating several three-way valves, a closed loop in connection with the fecal sample 
is formed (6). This loop prevents dilution of fecal VOCs with ambient air and, moreover, 
causes a continuous flow of fecal VOC passing the sensors. After the measurement, the 
three-way valves are rotated back to their original positions (Figure 1a) and the sensors 
are purged. (1) A1 filter, (2) Cyranose320®, (3) Polyethersulfone filter, (4) blunt needle, 
(5) three-way valve, (6) a vacutainer containing feces, (7) purge inlet, (8) sensor inlet, (9) 
exhaust portal, and (10) oxygen hose. Adapted with permission from Berkhout et al., 2016, 
Supplementary Material [54].

Statistical Analysis
Demographic and Clinical Data
Statistical analyses of demographic and clinical data were performed 
using Statistical Package for the Social Science (SPSS) version 26.0 (IBM 
Corp., Armonk, NY, USA). Where considered appropriate, Mann-Whitney 
U-test, Student’s t-test, Chi-Square test, or Fisher’s exact tests were 
used to compare study groups. Normally distributed continuous data 
are presented as mean and standard deviation, whereas non-normally 
distributed continuous data are presented as a median and interquartile 
range (IQR). Distribution of the data was visually assessed. Categorical 
data are presented as numbers and percentages. A p-value <0.05 was 
considered statistically significant.
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eNose Data
The statistical analyses of VOC profiles in relation to GA and mode of 
delivery were conducted using R version 3.6.3 packages ‘stats’, ‘gplot’, and 
‘global test’. The R script is made available in Supplement 1, Statistical 
analysis. First, the empirical distributions of the measurements per sensors 
were assessed. A variation in sensor output based on the measurement 
date was observed, a trend comparable across all sensors (Supplement 1, 
Statistical analysis, pages 6–10, boxplots s1–s32). We investigated if any 
of the clinical variables, namely gestational age, mode of delivery, birth 
weight, and enteral feeding type, could explain this trend, but there was 
no strong association explaining the day-to-day variation in the sensor’s 
output. Therefore, the sensor data were corrected for the date on which 
samples were measured. First, the date of measurement was read as a 
factor, and the 32 sensors’ outcome was read as numeric, continuous 
variables. The empirical data distribution of each sensor variable seemed 
to follow a continuous distribution, with each fitting a linear regression 
as response variables and with the measurement date presenting as an 
explanatory variable. The residuals of these regression models yield the 
new sensor data set with values corrected for the effect of measurement 
dates (cfr. Supplement 1). The original measurements are supplemented 
in Supplement 2.

In order to identify the association between fecal VOC profiles and the 
various study groups, the values representing the electrical resistance of 
each one of the 32 Cyranose® polymer sensors, corrected by the previously 
mentioned linear regression model, were compared according to GA and 
mode of delivery. To do so, both an ANOVA (ANalysis of VAriances) was 
applied per sensor to compare the measurements between groups as 
well as a global test to compare measurements of all sensors between 
groups. For this analysis, GA was categorized using 27 weeks as a cut-
off, creating two groups, so that both it and the mode of delivery are 
binary variables. As such, the global test with a logistic link function was 
used. Including all 32 sensors’ data, this test allows for the assessment of 
changes in sensor data patterns between groups of GA on the one hand, 
and mode of delivery on the other hand. Results of the F-test from a one-
way ANOVA were reported for the sensor with the lowest p-value on a 
given time point.
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Results

General Characteristics
Fifty-eight infants were included in the study of which 29 were born at GA 
24–26 6/7 weeks’ gestation and 24 were born vaginally (Figure 2). Birth 
weight was significantly lower in infants born at GA 24–26 6/7 weeks, 
compared to infants born from 27 to 29 6/7 weeks of gestation. None of 
the included neonates had developed sepsis (early-/late-onset), NEC, SIP, 
or bacterial meningitis. One neonate (GA <27 weeks, vaginally delivered) 
was suspected of meningitis and was treated with broad spectrum 
antibiotics (meropenem) for 20 days, but was never formally diagnosed 
with an invasive bacterial infection, given the repeatedly negative blood 
and CSF cultures. All but four children received antibiotics in the first 
three weeks of life, of whom 39 were exposed to antibiotics for longer 
than two days, and 28 received one or more courses after the first week 
of life. The overall median duration of antibiotic exposure was five days 
(IQR 3–7). Infants born at GA <27 weeks were exposed for a longer time, 
compared to infants born after 27 weeks of gestation (Table 1). Further 
demographic and clinical data are depicted in Tables 1 and 2, according to 
GA and delivery mode, respectively, with no other statistically significant 
differences (raw data available in Supplement 2).

Figure 2. Flow of participants. Abbreviations: GA, gestational age. * Day of life 7 (+/− 2 
days), 14 (+/− 2 days), and 21 (+/− 2 days).
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Table 1. Baseline characteristics for included neonates, based on gestational 

age (GA).
24–26 Weeks

(n = 29)

27–29 Weeks

(n = 29)

p-Value

Included neonates t1, t2, t3 (n) 23, 27, 27 24, 27, 26 0.98
GA days (mean [SD]) 184 [5] 199 [5] <0.001 *
Gender female (n[%]) 16 [55] 15 [48] 0.60
Birth weight grams (mean [SD]) 856 [140] 1166 [198] <0.001 *
Mode of delivery vaginal (n[%]) 12 [41] 12 [41] 1.00
Center of birth (n [%]) 1.00
1 7 [24] 7 [24]
2 6 [21] 6 [21]
3 8 [28] 8 [28]
4 8 [28] 8 [28]
Feeding mode prior to t1 (n[%]) 0.28
Mother’s milk 12 [52] 7 [29]
Formula milk 4 [17] 6 [25]
Combination MM/FM 7 [30] 11 [46]
Feeding mode prior to t2 (n[%]) 0.50
Mother’s milk 21 [78] 24 [89]
Formula milk 3 [11] 2 [7]
Combination MM/FM 3 [11] 1 [4]
Age at full enteral feeding days (mean 

[SD])

14 [3] 14 [2] 0.25

Feeding mode prior to t3 (n[%]) 0.58
Mother’s milk 20 [74] 21 [84]
Formula milk 3 [11] 1 [4]
Combination MM/FM 4 [15] 3 [12]
Parental feeding days (median [IQR])
Prior to t1 7 [6–7] 7 [6–7] 0.53
Prior to t2 11 [9–14] 12 [9–13] 0.99
Prior to t3 11 [9–14] 12 [11–13] 0.27
Antibiotic exposure prior to t3 (n[%]) 27 [100] 22 [85] 0.05
Antibiotic exposure days (median 

[IQR])
Prior to t1 3 [2–4] 3 [2–4] 0.22
Prior to t2 4 [2–6] 3 [2–5] 0.04 *
Prior to t3 5 [3–8] 3 [2–6] 0.03 *
Invasive ventilation prior to t3 (n[%]) 13 [48] 6 [23] 0.09
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Invasive ventilation days (median 

[IQR])
Prior to t1 5 [1–6] 3 [2–4] 0.33
Prior to t2 6 [4–12] 3 [2–5] 0.10
Prior to t3 7 [4–16] 3 [2–6] 0.11
Sample weight grams (median [IQR])
t1 149 [128–163] 151 [137–163] 0.22
t2 154 [146–161] 152 [137–158] 0.68
t3 155 [141–162] 148 [137–157] 0.34
Sample age months (median [IQR])
t1 35 [32–50] 35 [33–44] 0.82
t2 35 [31–46] 35 [33–44] 0.73
t3 35 [32–45] 35 [33–45] 0.78
Abbreviations: n, number. SD, standard deviation. IQR, interquartile range. t1, day of life 
7. t2, day of life 14. t3, day of life 21. MM, mother’s milk. FM formula milk. *p-value < 0.05
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Table 2. Baseline characteristics for infants compared based on birth weight.
Vaginal

(n = 24)

C-Section

(n = 34)

p-Value

Included neonates t1, t2, t3 (n) 21, 24, 21 26, 30, 32 0.84
GA in days (mean [SD]) 190 [10] 192 [9] 0.29
Gender female (n[%]) 12 [50] 18 [53] 0.83
Birth weight grams (mean [SD]) 1055 [237] 980 [225] 0.23
Center of birth (n [%]) 0.05
1 8 [33] 6 [18]
2 6 [25] 6 [18]
3 2 [8] 14 [41]
4 8 [33] 8 [24]
Feeding mode prior to t1 (n[%]) 0.93
Mother’s milk 9 [43] 10 [39]
Formula milk 4 [19] 6 [23]
Combination MM/FM 8 [38] 10 [39]
Feeding mode prior to t2 (n[%]) 0.23
Mother’s milk 18 [75] 27 [90]
Formula milk 4 [17] 1 [3]
Combination MM/FM 2 [8] 2 [7]
Feeding mode prior to t3 (n[%]) 0.27
Mother’s milk 14 [70] 27 [84]
Formula milk 3 [15] 1 [3]
Combination MM/FM 3 [15] 4 [13]
Age at full enteral feeding days (median 

[IQR])

14 [12–17] 14 [12–16] 0.83

Parental feeding days (median [IQR])
Prior to t1 7 [7–7] 7 [6–7] 0.25
Prior to t2 11 [10–13] 11 [9–14] 0.84
Prior to t3 11 [11–13] 11 [9–14] 0.62
Antibiotic exposure prior to t3 (n[%]) 20 [95] 29 [91] 1.00
Antibiotic exposure days (median [IQR])
Prior to t1 3 [2–3] 3 [2–4] 0.67
Prior to t2 3 [2–6] 4 [2–5] 0.70
Prior to t3 4 [2–7] 5 [2–6] 0.60
Invasive ventilation prior to t3 (n [%]) 7 [33] 12 [38] 0.76
Invasive ventilation days (median [IQR])
Prior to t1 5 [2–5] 4 [1–6] 0.95
Prior to t2 6 [4–12] 4 [1–7] 0.28
Prior to t3 11 [4–19] 5 [2–7] 0.34
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Sample weight grams (median [IQR])
t1 149 [128–

159]

151 [132–

163]

0.42

t2 154 [139–

162]

152 [141–

158]

0.30

t3 154 [131–

162]

149 [141–

162]

0.98

Sample age months (median [IQR])
t1 36 [32–46] 34 [33–45] 0.91
t2 35 [31–44] 35 [33–45] 0.94
t3 35 [32–44] 35 [32–44] 0.73
Abbreviations: n, number. SD, standard deviation. IQR, interquartile range. t1, day of life 
7. t2, day of life 14. t3, day of life 21.

Influence of Gestational Age and Delivery Mode on Fecal VOC
Fecal VOC profiles, as measured by the Cyranose® eNose, did not differ 
significantly in the first three weeks of life between infants born at 24–26 
6/7 weeks and those born at 27–29 6/7 weeks of gestation (Supplement 1, 
Figure S1, S3 and S5, Heatmaps for corrected sensor data by gestational age 
at day 7, 14, and 21, resp.). Similarly, VOC profiles did not differ between 
infants born vaginally and via C-section (Supplement 1, Figure S2, S4, and 
S6, Heatmaps for corrected sensor data by mode of delivery at day 7, 14, 
and 21, resp.). These results were consistent when combining all sensors 
together (global test) and analyzing each sensor separately (F-test) (Table 
3).

Table 3. F test for one-way ANOVA and global test for gestational age and mode 

of delivery at each predefined time point.
p-Value (t1) p-Value (t2) p-Value (t3)

Gestational age 
F test for ANOVA * 0.36 0.13 0.61
Global test 0.38 0.65 0.96
Mode of delivery 
F test for ANOVA * 0.52 0.50 0.27
Global test 0.72 0.95 0.33
Abbreviations: t1, day of life 7. t2, day of life 14. t3, day of life 21. * For the F-test, only the 
smallest p-values across all sensors is reported.
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Discussion
In the current study, the potential influence of GA and delivery mode on 
VOC outcome was assessed. In our cohort of preterm infants, longitudinal 
fecal VOC profiles up to three weeks of postnatal age were not significantly 
influenced by GA or mode of delivery, when measured by an eNose device.

Influence of Gestational Age on Fecal VOC
To our knowledge, previous studies investigating the effect of GA on 
metabolomics in preterm neonates are only performed within the 
first week of life [55]. Available microbiota research in the first months 
postnatally shows that fecal composition is influenced by GA, but 
mainly after ca. 30 weeks postmenstrual age (PMA) [44, 56]. Between 
24 and ca. 30 weeks’ PMA, regardless of the GA at birth, the microbiota 
predominantly consists of Bacili, while Gammaproteobacteria become 
more abundant after 29 to 30 weeks [56]. This PMA term is also associated 
with an increased development of immune-competent intestinal Paneth 
cell’s, which change the gut metabolism and, hypothetically, fecal VOC 
patterns [57]. Our cohort consisted of two groups, born at 24–26 and 
27–29 completed weeks of gestation and fecal samples were compared 
on predefined time points, based on postnatal day of life, rather than 
PMA. It is, therefore, possible that stratification of patients according to 
PMA at sample collection, rather than GA at birth, would influence fecal 
VOC patterns, similar to the findings in microbiota studies [44, 56]. This 
hypothesis should be investigated in future research. An additional 
explanation for our results is that potentially only a weak effect of GA 
exists on fecal VOC, which is undermined by other factors to which the 
very preterm infants in our cohort are exposed, such as broad spectrum 
antibiotics and increased oxidative stress, caused by, e.g., BPD and 
intraventricular hemorrhage (IVH) [38, 58].

Influence of Mode of Delivery on Fecal VOC
The second aim of this study was to compare the longitudinal course of 
fecal VOC patterns between vaginal birth and birth via C-section in the 
same cohort. Our results suggest that mode of delivery does not affect 
VOC profiles significantly during the first weeks of life in infants born at GA 
<30 weeks. To our knowledge, no previous metabolic research has been 
conducted on this topic, but several microbiome studies are available [59, 



Chapter 6  

194

60]. In line with our findings on fecal VOC, mode of delivery was reported 
not to impact gut microbiota diversity and composition in the first 100 
days of life of preterm infants (GA <32 weeks), while, in infants born prior 
to 37 weeks of gestation, the delivery mode influenced the microbiota 
composition in the first week, but not in the second and third week 
postnatally [59, 60]. This is in contrast with studies on term infants, which 
show short- and long-term differences in the microbiome community 
structure and function after birth via C-section when compared to vaginally 
born infants [45, 61]. It is hypothesized that antibiotic exposure, oxidative 
stress, and environmental factors inherent to NICU hospitalization would 
have a more dominant effect on the gut microbial community, and 
potentially on VOC signals, than mode of delivery [62].

Strengths and Limitations
The first strength of this study is the prospective and standardized 
collection and handling of fecal samples by which we reduce the risk of 
potential pre-analytical errors [48, 52, 54]. A second advantage is that 
we have longitudinal samples from cases that were strictly matched 
to controls based on center of birth, and, thus, indirectly by center-
specific treatment protocols. By this approach, we avoid a non-random 
distribution of factors already known for their influence on VOC, such as 
feeding type and center-specific environmental factors [48, 54]. This is also 
expressed in the homogeneity in distribution of these variables between 
groups (Tables 1 and 2). Lastly, by excluding infants with congenital 
gastrointestinal malformations and infants who developed LOS, NEC, SIP, 
and early onset sepsis, we exclude the measurement of disease-specific 
VOC.

There are several limitations that need to be addressed. First, within 
the group of mother’s milk-fed children, it was decided not to make a 
distinction between infants receiving raw own mother’s milk (OMM) and 
those receiving pasteurized own mother’s or pasteurized donor human 
milk (resp. pOMM and DHM). Based on previous studies, a (mildly) 
different microbiota, and potentially VOC profile, could be supposed [46]. 
Yet, we do not expect this to have significantly influenced the VOC patterns 
in this study as, based on in-house protocols, the proportion of infants 
receiving predominantly DHM or pOMM is estimated to be very small. In 
three of four participating centers, DHM was only administered in case of 
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insufficient OMM production, while, in the fourth center, OMM was only 
pasteurized if pathogens were cultured in an OMM sample. An additional 
limitation is that our exclusion criteria did not include non-infectious 
diseases with a potential effect on the infant’s metabolic state, such as 
BPD, severe IVH, and patent ductus arteriosus (PDA) [38, 58, 63, 64]. The 
role of IVH and PDA in a VOC outcome has not yet been established and 
should be further investigated.

Conclusions
Our results show that VOC profiles, as measured by an eNose device, in 
preterm infants born at GA <30 weeks, are not influenced by GA or mode of 
delivery during the first three weeks of life. If reproduced in other cohorts, 
these results implicate that it would be methodologically appropriate 
not to correct for GA and mode of delivery when performing fecal VOC 
research in a preterm population born before 30 weeks’ gestation until 
three weeks postnatally. We hypothesized that environmental factors 
(e.g., enteral feeding type and medication exposure) and clinical conditions 
(e.g., BPD and IVH) are likely to influence fecal VOC outcome to a greater 
extent than GA and delivery mode in this particular population. When not 
yet investigated, these variables should be addressed in further research.
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