UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Deep learning with 3D and label geometry
Liao, S.

Publication date
2021

Document Version
Final published version

Link to publication

Citation for published version (APA):
Liao, S. (2021). Deep learning with 3D and label geometry.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/deep-learning-with-3d-and-label-geometry(1b3cb7ba-d2dd-4297-a0de-d2be3f0758b2).html

Deép learning with
3D and label geometry

e ‘.‘7}‘«*‘*%‘?
Q'\\ "\ ’-y\

K.newoaﬁ [age] pue gs yim Bu!mem doaqg

/

,\
'l'
R ¥ | i

oerq lenys

Deep learning
with 3D and label geometry

This book was typeset by the author using IXTEX 2¢.

Copyright © 2021 by Shuai Liao.

All rights reserved. No part of this publication may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including pho-
tocopy, recording, or any information storage and retrieval system, without
permission from the author.

Deep learning
with 3D and label geometry

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. K.I.]. Maex
ten overstaan van een door het college voor promoties
ingestelde commissie,
in het openbaar te verdedigen in de Aula
op dinsdag 22 september 2021 te 11:00 uur

door

Shuai LIAO

geboren te Sichuan, China

Promotiecommissie

Promotor: Prof. dr. C. G. M. Snoek Universiteit van Amsterdam

Co-promotor: Dr. E. Gavves Universiteit van Amsterdam

Overige leden: Prof. dr. ir. C. Sdnchez Gutiérrez Universiteit van Amsterdam
Prof. dr. ir. A. W. M. Smeulders = Universiteit van Amsterdam

Prof. dr. Th. Gevers Universiteit van Amsterdam
Prof. dr. R. C. Veltkamp Universiteit Utrecht

Dr. X. Li Renmin University, China
Dr. A. Ghodrati Qualcomm AI Research

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

X

&

X
UNIVERSITEIT VAN AMSTERDAM

This work was carried out in the ASCI graduate school, dissertation series
number 423, at the Video & Image Sense lab, and the QUVA lab of the Uni-
versity of Amsterdam.

QUVA

Deep Vision Lab

Advanced School for Computing and Imaging

Contents

1 Introduction

1.1 3D geometry and visual understanding
1.2 Label geometry and semantic understanding
1.3 ResearchQuestions

Deep learning with 3D geometry

Searching and Matching Texture-free 3D Shapes in Images

21 Introduction
211 RelatedWork
212 Contributions 0L,

2.2 Towards a 3D-to-2D Search Engine
221 Searching and Matching 3D Shapes
222 LearningtoMatch

2.3 ExperimentalSetup
2.3.1 Texture-free 3D Shape Dataset
232 Experiments
233 EvaluationCriteria

24 Results
241 Search and match specific3D shape
242 Search and match among 3D shapes
243 Search and match unseen 3D shapes
244 Search and match under noisy conditions
245 Search engine comparison

25 Conclusion L

Spherical Regression

31 Imtroductiono L.

32 Motivation

3.3 Sphericalregression. 0L
3.3.1 Constraining regression with n-spheres
3.3.2 Specializingto S!,S?and S®

34 Relatedwork. 0 L.

35 Experiments 0 0o 0oL
3.5.1 S!: Viewpoint estimation with Euler angles

iii

= GO N =

iv

IT

3.5.2 S% Surface normal estimation 46
3.5.3 S3: 3D Rotation estimation with quaternions 47
36 Conclusion 49
Deep learning with label geometry 51
Quasibinary Classifiers for Image Classification 53
41 Introduction L. 53
42 Background o 55
42.1 Ensembles of sigmoid classifiers 55
422 Softmaxclassifiers 56
4.3 Quasibinary classifiers L. 57
431 Definition 0 0L 57
432 Algorithm 58
44 Relatedwork.o o oo 61
441 Zero-label problems 61
442 Multi-label problems 00 0L 61
45 Experiments 0 L. 62
451 One-vs.-rest image classification 62
452 Zero-label image classification 63
45.3 Multi-label image classification 64
46 Conclusion oo 68
Vec2Bundle: Learning Class Hierarchies 69
51 Introduction 69
52 Relatedwork.o Lo oo 71
5.3 Learning Class Hierarchies. 73
5.4 Extending to Multi-label Classification 75
55 Experiments oL L 76
551 Experimentalsetup 77
552 Ablations o L 78

5.5.3 Balancing accuracy vs. specificity for single-label image
classification o L. 80
554 Semantics in the Vec2Bundle hierarchy 81

5.5.5 Balancing accuracy vs. specificity for multi-label image
classification oo oL 82
56 Conclusion o0 . 83
Conclusion 85
6.1 PartI. Deep learning with 3D geometry 85
6.2 Part II. Deep learning with label geometry 87

6.3 Closingremarks 88

A Supplementary Materials for Spherical Regression
A.1 S!: Viewpoint estimation with Euler angles . .
A.2 S?: Surface normal estimation
A.3 S3: 3D Rotation estimation with quaternions .
A.4 Derivation of Jacobian for S¢jy; and Sexp - - - .

A4l Spgcase.o
Ad2 Sexpcase

B Supplementary Materials for Quasibinary Classifier

B.1 ProofofEq.(46)
B.2 More results on One-vs.rest image classification

C Supplementary Materials for Vec2Bundle
C.1 Non-decreasing property of negation rule . . .
C.2 Experimental details
C.2.1 Statistics of hierarchies

C.2.2 Visualization of class-prototype embedding

C.2.3 Semantics of the Vec2Bundle hierarchy
Samenvatting

Acknowledgments

89
89
90
91
92
93
94

95
95
98

929
99
100
100
100
103

119

121

Chapter 1

Introduction

The breakthrough that revolutionized modern computer vision was made
at the University of Toronto in 2012 [83]. Their deep learning architecture,
AlexNet, achieved tremendous success in modelling the large-scale ImageNet
computer vision challenge [134], in which an algorithm is asked to classify
millions of images into a thousand classes. This image classification model,
known as a Deep Convolutional Neural Network (DCNN), is loosely in-
spired by the billions of interconnected neurons in our brain. Typically, a
deep convolutional neural network is built upon a stack of convolutional
layers, with each layer containing hundreds of thousands of functional con-
nections, i.e. the artificial neurons. The visual representations are processed
and transformed layer by layer, resembling in a relaxed way the function
of the neurons in the visual cortex of the brain. In comparison to the tra-
ditional hand-crafted features, e.g. [144, 14, 104, 22, 39], the DCNN can be
trained from scratch in an end-to-end fashion through the gradient back-
propagation. This relieves us from the reliance on expertise required when
designing hand-crafted feature descriptors. Today, going deeper [143], wider
[176] and having more connections [66] are the key characteristics of the
newly emerged deep neural network architectures [70, 33, 147, 41]. With the
increasing capacity of deep neural networks, computers are reaching human-
level -or even superhuman- accuracy in image classification [58]. The similar
successes are also achieved in object detection [47, 132, 59, 130, 101], action
recognition [142, 150, 32, 159, 15, 161, 174], creating artistic or photo realis-
tic [181, 73] images, and many more applications.

Despite the recent progress in using deep learning to solve computer vi-
sion problems, having a fine-grained understanding of an image remains
challenging. Often, such understanding of an image is two-fold: the visual
understanding and the semantic understanding. The former strives to un-
derstand intrinsic properties of the object in the image, e.g. the 2D visual
appearance, the 3D shape, the 3D position and the 3D pose etc., whereas the
latter aims at associating the diverse objects with certain semantics, e.g. a cat-
egory name of an object [47, 132, 59, 130, 101], an action [142, 150, 32, 159,
15, 161, 174] or an attribute [135, 99, 158, 135]. All of these form the basis
of an in-depth understanding of images that we wish a machine to have.

2 Chapter 1. Introduction

(A) The Ames room* (B) The underlying 3D geometryt

FIGURE 1.1: (A) The Ames room creates an illusion that the
man on the right is much higher and bigger than the man on
the left. (B) The underlying 3D geometry of Ames room shows
that the room is not square. When looking at the room from a
certain viewpoint, our vision system falsely perceives its 3D ge-
ometry. Whereas geometric distortion of the room is the cause
of the illusion, the implicit assumption of a square room is the
root of the perceptive malfunction. This illusion demonstrates
the strong bias that the human brain has in exploiting 3D ge-
ometry to interpret visual information.

Today’s default architectures of deep convolutional networks have already
shown a remarkable ability in capturing the visual appearances of images in
the 2D domain, and mapping visual content to one specific semantic class
thereafter (e.g. image classification, action recognition). However, research
on fine-grained image understanding, such as inferring the intrinsic 3D in-
formation and more structured semantics, is less explored. In this thesis, we
contribute to the two aspects by studying how geometry can be used to better
understand images. Next, we motivate our angles in looking at the problems
of visual understanding and semantic understanding of an image.

1.1 3D geometry and visual understanding

First, let us take a look at Fig. 1.1-(A). The person on the right appears much
taller and bigger than the person on the left. However, they both have a
similar size in reality. This room, known as the Ames room, constitutes a visual
illusion by its unique design. The magic of this room is that it is geometrically
distorted. Fig. 1.1-(B) shows a sketch of the real geometry of this room. When
looking at it from a certain viewpoint, the heights at the left corner and right
corner of the room appear to be the same. However, in reality, the room is
not square. The result of the illusion is that the person on the right appears
to be much taller than the person on the left, while in reality, the person to

* Photo credit Zach King; tPhoto credit Dean Odell .

https://youtu.be/uTCJuwZpimk
https://www.deanodell.co.uk/blog-list/2019/3/9/the-ames-room-1052

1.2. Label geometry and semantic understanding 3

Natural
Objects
(20)

Plants
(180)

Artifacts

‘ Animals
(420)

(160}

Person

280, .
A Geolagical Sports Fungus() Foods Microbes
(0,1,0) = N\ (1,0,0) Forms (20) (20) (20) (60) (20)
~ \ Collections Documents
) T (20) (20)
(A) The probabilistic simplex (B) A class hierarchy

FIGURE 1.2: Two example of label geometries in image classifi-
cation. (A) The probabilistic simplex plane [166] for a three-
classes classification problem, where only one label can be as-
signed to a sample (i.e. categorical distribution). The constraint
on the summation of probabilities in being each of the classes
equals to constitute such label geometry. (B) A class hierar-
chy enforces a more complex label geometry for probabilistic
model: the probability of an image being an internal node on
the hierarchy should equal the summation of probabilities from
all its children nodes. Label geometries help to build semanti-
cally meaningful image classification models.

the right is simply closer to the camera. This illusion demonstrates the strong
bias that the human brain has in exploiting 3D geometry to interpret visual
information.

Although the above is an example of a failure case of our vision system,
it reflects the importance of 3D geometry in our visual perception, albeit we
only take 2D signals as inputs. Analogously, we posit that it is important
for a computer to explore the 3D geometry when processing 2D visual con-
tents from images. In this thesis, we study how to algorithmically derive the
3D geometry information from a 2D image, and reversely make an effort to
explain a 2D image with 3D geometry.

1.2 Label geometry and semantic understanding

Often, it is the case that we need to communicate with each other in more
detail beyond just describing the visual appearances of objects. This leads to
another level of image understanding - the semantic understanding - linking
what we see with what we call it. In this thesis, the semantics of an image
mainly refers to the abstraction of visual contents in the form of nouns, or
categories. We confine our discussion to approaches that associate semantics
with images in the scope of image classification. Just like the role of the 3D
geometry in visual understanding, semantic understanding of images also
calls for geometry.

4 Chapter 1. Introduction

Typically, image classification is solved with a probabilistic model, which
outputs the probabilities of the input image depicting each of the classes.
The way probabilities are organized to the classes can be viewed from a ge-
ometrical perspective as well. For example, let us consider a three-class clas-
sification problem with only one correct label. The probability of a sample
belonging to each of the classes, denoted as {p1, p2, p3 }, follows a categor-
ical distribution, and, therefore, the probabilities must sum up to one, i.e.
p1+ p2 + p3 = 1. This corresponds geometrically to a triangular plane, see
Fig. 1.2-(A), known as a simplex [166]. Another example of geometry and
semantics is image classification with more complex class structures, such as
class hierarchies, see Fig. 1.2-(B). In this case, a probabilistic model must en-
sure that the probability of an image that belongs to an internal node on the
hierarchy is equal to the sum of probabilities of all children nodes below it.
All these constraints constitute a complex probabilistic geometry that makes
the predictions on the hierarchy semantically meaningful.

Borrowing the terminology from supervised image classification, where
the semantic category names are called “labels”, we refer to the aforemen-
tioned geometries in the probability space as “label geometry”. Whereas
previous works mainly focus on label geometry in one-vs.-rest classification,
in this thesis, we will discuss how to model label geometry when multiple
labels or none of the labels are present in an image. Interestingly, we will
find that the label geometry is also possible to be learned from, rather than
be imposed to, an image classification model.

1.3 Research Questions
This thesis strives to answer:
How to better utilize geometry for better image understanding?

Visual content and semantic meaning are two crucial perspectives in im-
age understanding. We find that although geometry plays an important role
in both perspectives, it is not fully explored in the context of deep learning.
Specifically, these directions that await to be explored further include, but
are not limited to, 1) the 3D geometry such as the shape and the pose of an
object, the viewpoint of a camera etc., and 2) the label geometry that links in-
dividual visual instances in images to linguistics. Thereupon, we initiate our
exploration of the 3D geometry in visual image understanding and the label
geometry in semantic image understanding. In the following, we briefly in-
troduce the four corresponding chapters build upon their research questions.

1.3. Research Questions 5

Part I. Deep learning with 3D geometry

In the first part of this thesis, we start from the role of 3D geometry in
visual understanding. When interpreting a scene or an object, our brain usu-
ally resorts to its life experiences of 3D geometry as prior knowledge, instead
of explicitly reconstructing the 3D geometry from scratch. The same idea is
also reflected by early works that rely on certain 3D geometric templates to
parse 2D images [117, 80, 69, 119, 9, 10, 63]. Unlike the variety of prior knowl-
edge of the 3D geometry that humans build throughout life, the number of
3D shapes or templates used by models is often rather limited.

In recent years, however, it is becoming increasingly easier to access the
prior knowledge of 3D shapes from large-scale 3D shape databases. For ex-
ample, ShapeNet [17] collects over three million 3D CAD models from the
internet and organizes them into a taxonomy. With more than 3K categories,
most of the commonly seen objects like “car”, “airplane” or “desk” are well
covered by such a 3D database. This offers computers an opportunity to
exploit them and build their own prior knowledge of the 3D geometry for
image parsing. The way how to build this prior knowledge is open and cer-
tain questions stand along the way. First, given a large enough 3D database,
how can one find the right 3D shape to match with objects in a 2D image?
Second, the 3D shapes in such database either usually miss texture or their
textures miss realism, thus being very different from the variety of appear-
ances and textures an object can have in reality and in images. Thereupon,
our first research question is,

How to search and match texture-free 3D shapes to a 2D image?

We address this research question in Chapter 2. To achieve this goal, we
tirst need to design an algorithm to automatically retrieve the right 3D shape
from the database based on the 2D appearance of an object in the image,
regardless of its texture. This can be done by training a deep classification
network, which takes an RGB image of an object as input and outputs the
most likely type of 3D shape. Second, given the retrieved texture-free 3D
shape, we need to find a correct location and a pose such that the rendered
3D shape aligns with the object in a 2D image. Matching rendered views
of 3D shapes to RGB images is challenging because, 1) 3D shapes can not
always be perfectly matched to the image queries, 2) there is a great domain
difference between rendered and RGB images, and 3) estimating the object
scale is inherently ambiguous in images taken from uncalibrated cameras, as
the size of an object in the pixel space depends not only on the physical size of
the object but also the distance from the camera. To address these challenges,
we propose a deeply learned matching function that compares a rendered
view of 3D shape with the object in a 2D query image. Through multiple such

6 Chapter 1. Introduction

comparisons, the object location and pose in the 2D image can be decided by
extracting the rendering parameters of the best matching rendered view.

In the next chapter, we explore the 3D geometry in a 2D image in an op-
posite direction. We try to derive the 3D geometry out of a 2D image, rather
than use the 3D geometry as prior knowledge to parse a 2D image. Early
works focused on the 3D shape and structure reconstruction from a sequence
of images [152, 136, 167, 122, 16]. In the pursue of a finer understanding, we
rather aim at recovering a set of 3D geometric attributes that are even more
elementary than 3D shapes, such as the direction of the normal vector on a
surface, the orientation angles of a camera, and the rotation of an object. The
advantage is that it is possible to estimate these elementary attributes from
single images. Furthermore, the inference speed is usually much faster than
algorithms that trying to recover the exact 3D shape of an object, which is
critical for applications such as robotics and autonomous driving. This di-
rection was pioneered by Lawrence Roberts who described the process of
deriving the 3D position and orientation of a simple planar-surfaced shape
from line drawing as early as 1963 [133]. More recently, complex objects such
as chairs and cars are studied in a cluttered scene under the deep learning
framework [145, 151, 160, 126, 90, 177]. However, we find that although most
3D targets are continuous in nature, modern deep learning-based solutions
tend to output discrete predictions. A natural way to model these 3D targets
would be with regression. However, most works [145, 151, 44] prefer to ap-
proach the problem as a classification one, discretizing the continuous targets
to a set of discrete outputs and modeling them with deep neural networks.
The main reason for this paradox is that historically, it has been shown that
classification lends itself to a more stable and consistent optimization proce-
dure, thus yielding better final predictions. Still, with classification, the mod-
els can only predict a limited number -and not the continuous spectrum- of
possible targets. Thereupon, the second research question becomes:

Is it possible to train deep neural networks that output continuous
estimations of viewpoints, rotations, and surface normal from a 2D image
in a reliable and accurate manner?

This research question is considered in Chapter 3. A reason to explain the
difference in the stability when training classification and regression models
is that in classification the output is naturally contained within a closed ge-
ometry, i.e. the probability n-simplex [11]. Defined by the popular softmax
activation function, this closed geometry not only restricts the learning space
but also helps to further stabilize the gradient. In contrast, regular regres-
sion does not feature such a closed geometry in its output, possibly leading
to unstable training and convergence to sub-optimal local minima. Start-
ing from this insight we revisit regression in convolutional neural networks.
We observe many problems with continuous output in computer vision are

1.3. Research Questions 7

naturally contained in closed geometrical manifolds, like the Euler angles in
viewpoint estimation or the normals in surface normal estimation. A nat-
ural framework for posing such continuous output problems is n-spheres,
which are naturally closed geometric manifolds defined in the R(**1) space.
By introducing a spherical exponential mapping on n-spheres at the regres-
sion output, we obtain well-behaved gradients, leading to stable training.
We show how our spherical regression can be utilized for predicting several
challenging 3D targets, specifically viewpoint estimation, surface normal es-
timation, and 3D rotation estimation.

Part II. Deep learning with label geometry

In the second part, we will focus on the semantic understanding of 2D im-
ages in the context of geometry. Image classification, which is at the heart of
semantic image understanding, supports a wide range of applications such
as image retrieval, tagging, and recommendation. In general, the goal of im-
age classification is to learn a function that maps a 2D input image to a set
of predefined class labels. These class labels are the linguistic abstractions of
images, which can be the name of an object that appears in the image or a
tag that is associated with the image by social media users. In a probabilis-
tic model, the probabilities of each of the labels per image are geometrically
connected by, for example, the assumption of the number of labels a sample
has or the prior knowledge of a class hierarchy. Therefore, studying the la-
bel geometry potentially helps to build better probabilistic models for image
classification.

Instead of assuming that an image will always contain one and one only
label, we note that an image may be associated with a single label, multiple
labels, or even no label given a vocabulary. Present-day methods resort to
different probabilistic models for each of these problems: one-vs.-rest classi-
fication [83, 143, 134, 58], multi-label classification [21, 91, 128, 49] or out-of-
distribution classification [61, 92, 88]. We note that the three problems are
related in the sense that they all refer to a similar modeling task, that of au-
tomatically inferring a class label given an image, the difference being in the
number of labels the image is supposed to contain. In a probabilistic model,
knowing the numbers of labels in an image introduces similar label geome-
tries, possibly allowing for modelling all three problems in a unified manner.
This prior knowledge on the number of labels is typically freely accessible
and can learned from the training set. Therefore, the third research question
is:

How to leverage the label geometry to unify image classifiers?

This research question is considered in Chapter 4. Typically, one-vs.-rest
classification is solved by a softmax classifier, which models a categorical

8 Chapter 1. Introduction

distribution. In contrast, multi-label classification is solved by an ensemble
of binary classifiers, which models a set of independent Bernoulli distribu-
tions. We observe the only difference between binary and softmax classifiers
is their normalization functions, which capture different label geometries.
Specifically, while the binary classifier self-normalizes its scores, the softmax
classifier combines the scores from all classes before normalization. Based
on this observation we introduce a normalization function that is learnable,
constant, and shared between classes and data points. By doing so, we ar-
rive at a new type of binary classifier that we coin quasibinary classifier. We
show in a variety of image classification settings, and on several datasets,
that quasibinary classifiers are considerably better in classification settings
where regular binary and softmax classifiers suffer, including zero-label and
multi-label classification. What is more, we find the quasibinary classifiers
yield well-calibrated probabilities allowing for direct and reliable compar-
isons, not only between classes but also between data points.

In the last chapter, we consider a more complex label geometry: the taxon-
omy of categories. Most existing image classification models are by design
“flat” [143, 66, 132, 59, 130, 101, 70, 33], meaning that each class is treated
equally, where each class is at the finest granularity and all classes are mu-
tually exclusive. When classifying images, however, we are not necessarily
interested in the finest of categorizations if this increases the chances of a
misclassification. For instance, we are often content with recognizing an “ea-
gle” or even “bird” instead of a “Montagu’s Harrier”, rather than confuse
that bird’s image with an “airplane”. To accommodate this, a simple solution
is to make predictions in bundles, where bundles contain confused classes
without further differentiation. As we cannot know in advance which classes
get confused or even what is the optimal way to organize them in bundles,
a common way is to group classes in terms of a hierarchy. When confusion
emerges between the most fine-grained leaf classes, predicting the internal
node (a bundle) on the higher level of a hierarchy is able to achieve an arbi-
trary high accuracy, at the cost of sacrificing specificity [26]. However, creat-
ing a large scale of class hierarchy such as Wordnet [154] or iNaturalist [112]
typically involves a huge amount of domain experts” efforts. Consequently,
the previous approaches in balancing accuracy with specificity are only ap-
plicable to a few datasets with a semantic hierarchy available. Therefore, we
ask our last research question:

How to infer the label geometry from image classification to balance
accuracy vs. specificity?

This research question is considered in Chapter 5. To learn such a label
geometry, we introduce a new embedding layer able to learn by discrimi-
native training class-prototypes from which a visual hierarchy is extracted.

1.3. Research Questions 9

Geometry = Image Image > Geometry

3D Geometry Chapter 2 Chapter 3
(PartI) . Matching3Dto2D . Spherical Regression

Label Geometry Chapter 4 Chapter 5

(PartIl) * Quasibinary Classifiers - Vec2Bundle

FIGURE 1.3: A road map of the four research topics in this
thesis.

We refer to this embedding as Vec2Bundle. Further, by introducing a nega-
tion rule in deriving probabilities on the hierarchy, we are the first to enable a
trade-off between accuracy and specificity on multi-label hierarchical classifi-
cation, wherein previous approaches were infeasible due to the exclusiveness
of leaf nodes. We validate the effectiveness of Vec2Bundle key components
with ablation experiments and compare with the state-of-the-art in balancing
accuracy and specificity for both single-label and multi-label image classifica-
tion. Interestingly, it appears that Vec2Bundle can capture semantics without
being explicitly instructed to do so.

To summarize, in this thesis we research visual image understanding and
semantic image understanding, from the perspectives of 3D geometry and
label geometry. For each perspective, our research can be subdivided into
two similar topics. That is, we study 1) how prior knowledge of geometry
can be fit to the image to help us better interpret images (i.e. Geometry —
Image), and reversely 2) how geometry can be derived from 2D images (i.e.
Image — Geometry). We investigate each topic in a separate chapter, which
we graphically organize in Fig. 1.3.

Co-authorship and Roles

For each chapter of this thesis we here declare the authors’ contributions:

Chapter 2

Shuai Liao, Efstratios Gavves, Cees G.M. Snoek (2018). “Searching and
Matching Texture-free 3D Shapes in Images”. In: Proceedings of the ACM Inter-
national Conference on Multimedia Retrieval. [93].

¢ Shuai Liao All aspects

 Efstratios Gavves Insight and supervision

10 Chapter 1. Introduction

* Cees G.M. Snoek Insight and supervision

Chapter 3

Shuai Liao, Efstratios Gavves, Cees G.M. Snoek (2019). “Spherical regres-
sion: Learning viewpoints, surface normals and 3d rotations on n-spheres”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. [94].

e S.Liao All aspects

e E. Gavves Insight and supervision

¢ C.G.M. Snoek Insight and supervision
Chapter 4

Shuai Liao, Efstratios Gavves, ChangYong Oh, Cees G.M. Snoek (2020).
“Quasibinary Classifier for Images with Zero and Multiple Labels”. In: Interna-
tional Conference on Pattern Recognition. [95].

¢ S. Liao All aspects

* E. Gavves Insight and supervision

e C.Oh Technical advice.

¢ C.G.M. Snoek Insight and supervision
Chapter 5

Shuai Liao, Amirhossein Habibian, Efstratios Gavves, Cees G. M. Snoek,
Amir Ghodrati. “Vec2Bundle: Learning Class Hierarchies to Balance Accuracy
versus Specificity”. Unpublished.

¢ S. Liao All aspects

* A.Habibian Guidance and technical advice
* E. Gavves Insight and supervision

* C.G.M. Snoek Insight and supervision

A. Ghodrati Guidance and technical advice

Part 1

Deep learning with 3D geometry

11

13

Chapter 2

Searching and Matching
Texture-free 3D Shapes in Images

2.1 Introduction

The goal of this chapter is to search and match the rendered view of a texture-
free 3D shape to an object of interest in a 2D image. Matching shapes to image
content has a long tradition in content-based image retrieval, e.g. [148, 89],
where queries have been entered by sketching [74], by combining sketch and
keywords [45], or by a provided 3D shape [2]. Inspired by these prior works,
we query a dataset of 3D shapes based on an image, but we also recognize
and localize an object of interest in the image and match the object to its
corresponding 3D model, so as to arrive at an alignment of the 3D shape in
the 2D image as precise as possible, see Fig. 2.1.

Searching and matching a 3D shape to an object in a real-world 2D image
is challenging because: (a) finding the 3D shape that has the exact shape as
the objects in the image is not always possible, even when large 3D shape
libraries, e.g. [17], are available, (b) matching a rendered image from a 3D
shape with a real image is known to suffer from domain shift: the real image
may have different texture, lighting condition, shadow and complex natural
background, and (c) estimating the object scale versus distance is inherently
ambiguous in images taken from uncalibrated cameras, where the camera
intrinsic matrix is unknown. In this chapter we study the influence of these
challenges with respect to the searching and matching of 3D shapes in im-
ages.

2.1.1 Related Work

We are inspired by recent progress, mostly reported in computer vision venues,
were several sophisticated methods for 3D to 2D object matching have been
presented, e.g. [3, 52, 4]. Most methods rely their matching on exemplar clas-
sifiers, which are trained to learn an absolute relation between particular 3D
model views and particular RGB appearances via texture-sensitive features,

14 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

Query

ching

Ranking of 3D Shape Mat
f f

Different 3D shapes Different Orientations Different Locations

FIGURE 2.1: This chapter strives to find the rendered view of
a texture-free 3D shape that best matches an object of interest
in a 2D query image. This matching is challenging because the
3D shapes are not always perfect for the image query (aero-
plane, boat, car), there is an obvious domain difference between
the appearance of the RGB object and the texture-free rendered
image, and the intrinsic camera parameters are unknown. We
propose and evaluate a deeply learned matching function that
attacks these challenges and can be used as a search engine that
finds and matches 3D shapes to objects in 2D images.

such as HOG [3, 4]. In the seminal work of [3], for example, Aubry et al.
rely on 3D models of chairs from image search engines to align 3D mod-
els to 2D objects. The authors propose an LDA-based exemplar classifier
trained on HOG features of textured 3D models to detect the 3D model and
the pose that best matches real chair images. Unfortunately, the exemplar
classifiers are trained for specific models, textures, and specific poses, namely
they learn a specific classifier for each 3D model, its different poses and RGB
appearances separately. Hence, novel 3D models or poses cannot be accom-
modated without retraining, limiting the applicability of the learned model
for general-purpose 3D shape retrieval.

2.1. Introduction 15

In [96] a method is described for aligning perfectly matched 3D shapes
of IKEA furniture on RGB living room images, be it they rely on parts that
must be defined and annotated a priori on the perfect matched 3D shapes.
In [114] 3D models are reduced to 3D cuboids, for object categories with box-
like geometry, like cars, thus making inference easier. These methods learn
absolute relations between textured 3D models and the respective 2D objects
available at training. Having textured 3D models can be beneficial, e.g. if
the texture of the object in the 2D image happens to be similar. But it can
also limit the algorithm, by biasing it to retrieving 3D models that only share
similar textures regardless of apparent differences in shape geometry. Even
with large-scale 3D shape datasets such as [17], finding similar textured 3D
models that match objects as they appear in images in the wild is still limited
by the stored variation in the dataset. What is more, the texture quality and
style is not necessarily consistent, as they are typically designed by different
3D artists. Consequently, texture-based methods are constrained to textures
already observed, and they are unable, nor intended, to transfer their knowl-
edge to new 3D models or poses at test time. An alternative [4] is to rely on
depth RGB images to learn the 3D-to-2D matching function, limiting, how-
ever, the applicability of the algorithm to RGB-D cameras only. Unlike these
approaches, our focus is a search engine of the best matching 3D shapes given
an object in a 2D images. Thus, we are also interested in transferability, even
for unseen 3D shapes. In this work we focus on texture-free 3D shapes and
standard RGB images as queries.

To alleviate the dependence on texture appearance, Choy et al. [20] first
render textured 3D models into background-free images from a set of dis-
cretized viewpoints. Then, they compute synthesized detection templates
from the extracted HOG features from these rendered views. At inference
time, a detector is applied to 2D images in a sliding window fashion with
multiple scales. When the detector is activated, the pose of 3D shape as well
as its 2D location is transferred to the target object. Similar to [20] we also aim
for localization and matching of objects in images, but rather than striving to
limit the dependence on texture, we prefer to exclude texture completely.

In a recent work from the multimedia retrieval community, Junkert et al.
[68] limit the dependency on domain shift of the generated textures of 3D
shapes by relying on a neural transfer learning scheme rather than HOG de-
scriptors. Their synthesized high quality image renderings of 3D shapes with
texture, background and casted shadows. Once these synthesized images are
obtained, they extract intermediate feature from an Inception [146] model
pre-trained on ImageNet. Given a real image at test time, also represented
by the same features, they search for the best matching 3D model by a k near-
est neighbor search. As they assume all real and rendered objects have been
centralized in the image, they are only able to return viewpoint angles with-
out the location of objects. Similar to [68] we also exploit the transfer abilities

16 ~ Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

of neural networks. Rather than matching the feature representations of tex-
tured 3D model renderings and the query image as is, we prefer to learn the
matching function between an image and a texture-free 3D shape.

2.1.2 Contributions

We propose a search engine that given a query object image, localizes and
matches the object to the appropriate 3D shape. Different from related ap-
proaches, we directly operate on texture-free 3D shapes, enabled by a novel
learned matching function. The learned function is a shallow convolutional
neural network, merged from a deep two-stream network, encapsulating the
relative differences between texture-free 3D shape views and RGB objects. As
we are interested in understanding the possibilities as well as the limitations
of searching and matching texture-free 3D shapes in images, we rely on a
controlled experimental setup on a large and diverse set of texture-free vehi-
cle categories and sub-categories from PASCAL3D+ [170], where we evaluate
its sensitivity w.r.t. available 3D shapes and object localization accuracy.

2.2 Towards a 3D-to-2D Search Engine

We cast the problem of searching and matching a 3D shape to a 2D object
in an image as a supervised optimization problem. In the offline phase, we
assume we have a library of 3D shapes ¢'*" = {g1,, gk } describing a va-
riety of object categories and their fine-grained sub-categories, where K is
the total number of fine-grained categories. At query time, we start from a
single RGB image containing an object of interest, that is either provided or
detected automatically. We denote the appearance of the object with x, and
in practice it can be the feature activations from one of the layers of a deep
convolutional neural network. For the object of interest we assume there is
an optimal, albeit hypothetical texture-free 3D model g3. Given a previously
unseen image x at query time, our goal is to search among the set of possi-
ble 3D shapes and their poses, ¢!, ¢'*!, and place the optimal (g%, ¢%) on
top. To match an RGB image with a texture-free rendering, we introduce a
geometric compatibility function G(-), which we want to maximize:

¢x = argmax G(¢;x,xcap, &1 0EAD) (2.1)

where xc4p is the rendered image given a texture-free 3D shape gi**' and
pose transformation ¢cap. The g, 91" can be equivalent to the shapes
observed at training, or expanded to contain more 3D shapes or their poses,
ghrain C olest plrain C plest We summarize the data flow of our search engine

in Fig. A.1 and detail its main components next.

17

2.2. Towards a 3D-to-2D Search Engine

yoyed adewr goyy ue Yrm SULISpPUDI 991J-9IN)X} B UYDJLU O} UILS] OM dIUM ‘MIIA PaIdpuai a3 Surydjewt
Ur ST UOTJeAOUUT UTew JnQ) ‘sadewr ur sadeys (J¢ 991j-213xa} Surydyeuwr pue Surydreas I10j MO[jeie(] :g'g TINDI]

MBI\ paJapuay

XITJRJN JTSULIXY

domm\\ | § o=\

IX¢

£X¢

doamGy\ § §Proee
doawP\ | oo

(p ‘@ ‘Dyuongvisuva] (g ‘2 ‘v)uo1Ip10y

'

(L X 1 1 L A RANX 4 4 4 4/
L B Rl Nal SR BN SR A dunnd WA
VOV PI I COwwe 9
VWD Y S @D G

-

TEANN

8uliapusy

XITJRJN JTSULIIUT

uoll1ez||edon
pue uoiju3029y
193[q0

\J

fupjuey Yomeed | Voowe ¢

[SPON
ag 3uiyduess

——

joseje adeys ae

18 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

2.2.1 Searching and Matching 3D Shapes

Object Recognition and Localization In the literature on 3D to 2D matching,
the recognition and localization of the object is often provided in the form
of ground truth, e.g. [20]. The rationale being that good object detectors are
available [131, 101, 130]. Relevant to object recognition and localization, espe-
cially for 3D shape matching, are also the so-called amodal bounding boxes
[114, 72]. Amodal boxes aim at detecting the full extent of the object, even
if the bounds of the surrounding box extent the boundaries of the image.
Amodal boxes capture the object centre location (u,v) and corresponding
scale d, also including parts that might be not visible because of occlusion or
truncation. In our experiments we quantify the sensitivity of our approach
w.r.t. the quality of the (amodal) object recognition and localization using
both (perturbed) groundtruth as well as a automatic object detection.

Searching 3D Model Once we have obtained the (fine-grained) object cat-
egory and its enclosing box, we simply query the database of texture-free 3D
shapes and forward the selected 3D shape to the rendering stage.

Rendering Each of the 3D shapes g can undergo various viewpoint trans-
formations and 3D-to-2D projection. The viewpoint transformation includes
rotation and translation that is controlled by extrinsic parameters, i.e. az-
imuth g, elevation ¢, in-plane rotation 6, camera distance d, whereas intrin-
sic parameters, i.e. principle offset (u,v), focal length f and viewport m, de-
fine the camera intrinsic matrix for 3D-to-2D projection. We aggregate the
pose transformation parameters to 4)2’1‘% = {ptsp, - PM, p}, where M is the
number of poses seen during training. In the following, to reduce notation
clutter we drop the superscript “train” whenever it can be derived from the
context.

Following [56], the formulation of the projection matrix takes the follow-
ing form:

mf 0 u , :
Rotation(a,e,0) Translation(a,e,d
P=|0 mf v|-|~ V()4 -~ () , (2.2)
0 0 1 3x3 3x1
In trins;chatrix Extrinsic Matrix

where we assume a calibrated camera, namely the focal length and viewport
are fixed to f = 1,m = 2,000 respectively [170]. Each set of ¢cap values
produces a new 3D model rendering. Similarly, for the hypothetical 3D model
g there exists an optimal transformation vector ¢5.

Matching Rendered View Ideally, we want to avoid learning an explicit
mapping from the appearance modality to the geometric modality. The rea-
son is that an explicit mapping would function well for the 3D model ren-
dering that are observed during training but not generalize well for new 3D

2.2. Towards a 3D-to-2D Search Engine 19

models. To this end we define the geometric compatibility function as a dif-
ferential on the geometric modality.

During training we have two images, x and xc4p, as well as two rotation
matrices, Ry and Rcap, one from the real and one from the rendered image.
We define our geometric compatibility function as:

vel * 09 = ¢(Ry — Rcap) - (2.3)

According to eq. (2.3) d¢ « g(Ry — Rcap) is a function of difference between
two geometries expressed by Ry and Rc4p. Unfortunately, at testing time we
cannot have Ry, as this is what we are looking for. To this end we propose
to approximate the geometric compatibility with an approximate geometric
compatibility function, which receives as inputs the appearance features of
the RGB and the CAD rendering, namely:

Grer ® Gret o 0x = f(x — Xcap) , (24)

In the spirit of [78], we define the approximate geometric compatibility
function f(-) in eq. (2.4) to be a separate neural network module, which we
coin geometric differential module. A geometric differential module is imple-
mented as a shallow convolutional neural network composed of two layers.
The first layer is convolutional with kernel size 1 x 1 and is fusing the activa-
tions from the two streams. The second layer is a fully connected layer with
a single output, which approximates d¢. Unlike the typical fully connected
layer which operates as a function approximator, the geometric differential
module approximates a function differential, see Fig. 2.3.

The geometric differential module does not output directly any rotation
matrices Ry nor any 3D model rendering ¢,. Instead, it returns relative geo-
metric compatibility values. They are relative, because they are supposed to
capture the difference of the Rc4p from Ry, and by extension the difference
of ¢cap from ¢y, solely on the basis of the appearance features x and xcap.
Effectively, the network learns to estimate directly the matching between an
RGB image and any 3D shape rendering, avoiding to compute the object’s
rotation matrix first. This has two advantages.

First, the network does not directly associate the compatibility score func-
tion in eq. (2.4) with the appearance of the particular renderings at training
time. In fact, the network does not even make any strict assumptions regard-
ing either the texture appearance of the 3D shape rendering, or the geometric
precision of the 3D model for the given RGB object. Thus, even if the 3D
model is not a perfect fit to the RGB object, either because the set of view-
point was limited, or because the geometry of the 3D model is not exactly
right for the object of interest, as in Fig. 2.1, the network can still predict
the 3D model parameters ¢, that match the object of interest. For instance,
assume our 3D shape library has models only of a Boeing 707 and a Boeing

20 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

717, while our image depicts a Boeing 747. Obviously, none of the two avail-
able shapes are perfect for our image. Nonetheless, our network returns the
best possible fit, as the matching maximizes the matching similarity with the
available models, instead of directly classifying the object appearance [3, 20,
96].

Second, since the inference returns only a compatibility score for each
provided 3D model rendering, there is no limit to the type of 3D models per-
missible at test time. The proposed network can return a compatibility score
even for 3D models that were not observed during training. As expected, the
accuracy of the compatibility score in these cases might be lower, since the
network matches 3D shapes and RGB images of object categories it has never
seen. Still, the approximate geometric compatibility function has learned how
to match at inference time on the basis of any 3D model rendering provided at
test time. Hence, in theory, the proposed network can cope with 3D shape
rendering expanded dynamically, either by adding new 3D shapes or con-
sidering a finer discretization of the viewpoints.

An important choice for the geometric differential module is what dis-
tance measure it learns to imitate. Although any geometric distance can be
used, in this work we opt for approximating the geodesic distance between
two rotation matrices of the real object and the rendered image respectively,
R, Rcap. Namely, eq. (2.3) becomes

log(RIR B
* || Og(X CAD)HF . (25)

rel — \/E

Thereafter, a Euclidean loss is used to measure how accurately the geodesic
differential module predicts G,,; by relying only on the appearance features

X, XCAD-

2.2.2 Learning to Match

We implement the matching of rendered views as a two-stream architec-
ture [142] with non-shared weights, where each stream is a convolutional
network. The first stream receives as an input the cropped RGB images of
the object of interest. The second stream receives as an input a cropped ren-
dering from a particular texture-free 3D shape and essentially, describes the
object’s candidate geometry.

For both streams we adopt the convolutional layers 1 to 5 from AlexNet
[83]. The geometric differential module is composed of a convolutional pool-
ing layer [38] with kernel size 1 x 1, that fuses the two streams, followed
by a fully connected module with a single output, predicting the geometric
compatibility score between the RGB and the rendering streams. We initial-
ize the weights for convolutional layers 1-5 from AlexNet, while we initialize

2.2. Towards a 3D-to-2D Search Engine 21

| Geometric differential subnetwork

| Gral(X, Xcap)

Euclidean loss

FIGURE 2.3: Matching a 3D model rendering to a 2D object
in an image with geometric differentials. Starting from an im-
age depicting a fine-grained object category and a texture-free
3D shapes, we derive a 3D model rendering and learn to match
them to the localized object of interest. The network is com-
posed of two streams. The first one processes the RGB input.
The second one processes the rendered image produced by a
candidate 3D model instantiation. The feature maps of the two
inputs are fused together and then the geometric differential
module estimates the geodesic distance between the two inputs
based only on the appearances. It results in a ranking of the 3D
model renderings for the localized object, ideally matching the
pose of the object.

the remaining layers with a Gaussian distribution with standard deviation
0.005. The network is trained with SGD for 70000 iterations at a learning rate
of 0.0001.

Data Preparation. The first stream receives a real image as input, while
the second stream a rendered image from a 3D shape. We first create a ren-
dering canvas with the same size as the real image. Given the selected 3D
model and viewpoint annotation, we render it onto canvas. This results in a
rendered image and a projected bounding box for the 3D model. We crop the
real image and rendered image with the projected bounding box to obtain
the input data for 2-stream network (see Fig. 2.3).

Training. During training we first sample a real image, for which we have
the ground truth 3D model instantiation. As we want to learn to estimate the

22 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

geodesic distance between different rotation matrices, we must give good es-
timates for both when the objects are close as well as far away, geometrically
speaking. As our network is a regression model, there exist no positive or
negative samples. However, to make sure that our regression model learns
to approximate accurately enough across the whole spectrum of geodesic dis-
tances, we opt for a stratified sampling of the space of the rotation matrices
to collect training examples. Specifically, per training image we sample (i)
rotation matrices that are almost equal to the ground truth one, (ii) rotation
matrices that are close enough but not equal, (iii) as well as rotation matrices
that are far from the ground truth rotation matrix. In total, we end up with 30
rotation matrices per object of interest in training images. We then proceed
with the training as usual, relying on SGD for backpropagation.

Inference. During inference and given one image, we traverse over pos-
sible renderings. Namely, we render all available 3D shapes in all desired
viewpoints. We retain the most confident 3D model instantiation, namely, the
3D shape and viewpoint, whose rendering generates the smallest geodesic
distance to the input RGB image.

2.3 Experimental Setup

2.3.1 Texture-free 3D Shape Dataset

We evaluate our approach on the PASCAL3D+ dataset [170]. PASCAL3D+
extends the PASCAL VOC 2012 [36] by matching to every object location a
corresponding texture-free 3D shape in its specific pose. As the 3D shapes
are category- and not instance-specific and the size of the 3D shape library is
finite, the matching quality varies across categories. We perform our exper-
iments on the three vehicle categories with the most examples, namely aero-
plane, boat, and car, for which 24 texture-free shapes exist in total, see Fig. 2.6.
While this dataset is typically used for the problem of viewpoint estimation
[145, 151], we rely on the texture-free 3D shapes for searching and matching.
We follow the provided train/test splits. The statistics on the image/object
data used in our experiments are summarized in Table 2.1.

2.3.2 Experiments

Experiment 1: Search and match the best rendered view given a specific 3D
shape. In our first experiment, we assume the object is perfectly localized in
the 2D image and the sub-category of the corresponding 3D shape is known.
Thus we simply need to match the object of interest in the real image to a
set of rendered views of the corresponding shape. Naturally this is an ide-
alized setting, nonetheless it provides us with the opportunity to establish

2.3. Experimental Setup 23

an upper-bound for our matching network to compare against in follow-up
experiments.

Experiment 2: Search and match the best rendered view among a col-
lection of 3D shapes. Although fine-grained object recognition approaches,
e.g. [98], can be used for 3D shape selection directly, the matching module of
our system should also be able to do this. In this experiment we study the
performance of our system doing 3D shape search and rendered view match-
ing at the same time. To be more specific, given a test object of interest in a
2D image, we only know the super category it belongs to (e.g. aeroplane),
but without knowledge of whether it is an airliner or jet fighter. Hence, for
each test object of interest, we have to match it with respect to all possible
rendered views and all available fine-grained sub-category 3D shapes. This
potentially add difficulties to our approach in distinguishing the best match
especially when a few 3D shape candidates are of similar shape (e.g. car01,
car02 and car(5 in Fig. 2.6).

Experiment 3: Search and match the best rendered view from unseen
3D shapes Despite the discrepancy amongst 3D shapes under each category
in experiment 1 and 2, all of them are seen both at training and test time.
Thus, one interesting question is whether our approach is able to find and
match unseen 3D shapes within one super category. Specifically, we con-
sider using only half of the three super categories, aeroplane, boat and car,
for training. At test time, we apply the trained network on an unseen sub-
category to study whether our network is able to transfer the knowledge
from the set of seen sub-categories. Note that, as an ablation study, we con-
tinue the setting from experiment 1, where location and scale of the 2D object
is known.

Experiment 4: Search and match the best rendered view when object lo-
cation and scale are imperfect. In this experiment, we investigate how much
localization noise our system can tolerate. We first study imperfect object lo-
cation and scale separately. To simulate the object location error, we perturb
the ground truth annotation (u, v) by adding random noise (Au, Av) propor-
tional to the size of ground truth amodal bounding box (width, height). We
further evaluate inaccurate detection of object scale in terms of the camera
distance d, by randomly scaling it down/up to a maximum of {80%, 90%,
100%, 110%, 120%} of the original value. This results in the 3D shape being
rendered smaller/bigger than the object in the real image. Note that scal-
ing down camera distance d means bringing an object closer to the camera
and thus a larger amodal bounding box on the 2D space. In the third sub-
experiment, we perturb (u,v) and d at the same time, keeping the noise of
(Au, Av) at alevel of 10% , while randomly varying the scale d to {90%, 100%,
110%]} of the original. Note that the fine-grained shape is given in this exper-
iment for a better understanding of the effect of noise on our system.

Experiment 5: Search engine comparison. In our last experiment, we

24 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

compare our system with Choy et al. [20]. The comparisons are conducted
with two settings: (1) search and match given the ground truth object location
and (2) fully automatic search and match. As an object detector returns the
bounding box coordinates, but not the full object extent in terms of principle
point u,v and distance d, we simply choose the center of the bounding box
provided by [101] and a scale value d that best matches the bounding box.
In contrast, [20] relies on the detected bounding box and a local search is
conducted with a multi-scaled detector template. For a fair comparison with
[20], we run their software on our rendered images from the 24 texture-free
3D shapes and train both methods in the same way.

FIGURE 2.4: 2D annotation bounding box (dashed blue) vs
amodal bounding box (solid green). The difference of the two
bounding boxes indicates the shape disagreement between a
3D model to the 2D object in image. For the car the two boxes
align almost perfectly, while for the sailing boat there is a no-
ticeable discrepancy. In general, in the PASCAL3D+ dataset,
the 3D shapes of cars have the best agreement with the 2D ob-
ject in an image, while boats have the worst. We show statistics
of the amodal intersection over union (AIOU) in Table 2.1.

2.3.3 Evaluation Criteria

To test the searching and matching accuracy of our network, we first dis-
cretize the rotation parameter space of azimuth g4, elevation e and in-plane
rotation 6 uniformly into 21, 11, 11 bins respectively. This results in 2,541
rendering views in total. At test time we report results when considering the
ground truth rendering as well, resulting in 2,542 rendering views and thus
2,542 predictions of the matching score. We report the precision@5, namely
a prediction is correct if it contains the ground truth 3D shape in the top-
5 ranked positions. On top of the alignment precision at 5 we also mea-
sure the amodal intersection over union (AIOU), see Fig. 2.4, to quantify the
shape disagreement given a 2D object of interest and a 3D shape. To com-
pute the AIOU we measure the intersection over union overlap between the

2.4. Results 25

2D ground truth bounding box and the amodal bounding box[72] derived
by the optimal 3D shape from the annotators. A perfectly fitting 3D shape
will have very high IOU with the 2D box, while a poor fitting 3D shape will
return a very different amodal bounding box and thus low AIOU. We also
report the mean over all test queries, indicated by Query Mean.

For the comparison with Choy et al. [20], we follow their setup and report
accuracy at 6 (ACC@0) when the ground truth bounding box is given. This
metric evaluates the fraction of viewpoint predictions that are within a fixed
threshold (6) of its ground truth. When incorporating automatic objection
detection, we report Average Viewpoint Precision (AV P) for evaluation. It is
similar to Average Precision (AP) in object detection, but it only counts detec-
tions as correct when the bounding box overlap ratio exceeds 0.5 and when
the prediction of the discretized azimuth angle is in the right bin. We report
performance on different levels of azimuth angle discretization, {4,8,16,24}
bins. The finer the discretization becomes the harder the task is.

2.4 Results

2.4.1 Search and match specific 3D shape

We present the matching accuracy and AIOU results in Table 2.1. Cars are
matched the best, as cars generally have a simple box-like shape. In contrast,
boats are more challenging . For one, boats exhibit large variation in shape
and object size/scale: a boat includes sub-categories from tanker to canoes,
see Fig. 2.6. Moreover, for boats occlusion exists naturally since half of the
boat is almost always underwater, thus confusing the matching network that
expects the object to be fully visible. When excluding the ground truth pose
from the rendered view search space, the precision@5 drops from 0.64 to 0.48
for aeroplanes, from 0.44 to 0.27 for boats and from 0.75 to 0.68 for cars. In this
scenario, a poor-fitted amodal bounding box hurts even more. To decouple
the matching from the rendered view search strategy, we include the ground
truth rendering in the rendering search space in the remaining experiments.

When considering individual sub-categories we observe that apart from
having a sufficient number of examples available for training, the consis-
tency in shape appearance is important. For example, boat03 is relatively
hard. This is due to the fact that sailing boats can have large shape variance
and the sail may have different orientation from its body. In contrast, boat04
and boat06 are relatively easy because both of them are big ships resembling
a 3D box floating on the water, which facilitates the matching. Similar ob-
servations hold for airplanes. Cars generally have more consistent accuracy.
Interesting cases are car(7 and car04, with car07 being better matched than
car04 despite having fewer training samples. The reason is the frontal and

Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

26

TABLE 2.1: Experiment 1: Search and match the best rendered view given a specific 3D shape. Note the

correlation between precision at 5 and quality of the amodal bounding box per category measured by AIOU.

aeroplane boat car

Subtype #Train #Queries AIOU p@5 Subtype #Train #Queries AIOU p@5 Subtype #Train #Queries AIOU p@5
aeroplane01l 761 128 0.80 0.73 boat01 572 123 0.60 0.51 carO1 696 97 0.84 0.78
aeroplane02 105 0 081 - boat02 363 24 0.73 0.25 car02 729 37 0.87 0.73
aeroplane03 80 11 075 036 boat03 519 46 0.68 0.22 car03 932 35 0.87 0.63
aeroplane04 82 26 0.75 0.50 boat04 530 16 0.78 0.62 car04 141 24 0.82 0.54
aeroplane05 88 45 076 0.64 boat05 40 11 0.66 0.55 car05 139 17 0.82 0.76
aeroplane06 478 44 076 050 boat06 492 12 0.69 0.58 car06 1261 18 0.85 0.83
aeroplane07 392 21 0.73 0.62 car(Q7 137 5 0.79 1.00
aeroplane08 88 0 080 - car08 107 8 0.83 0.75
car(09 884 42 0.82 0.98

carl0 641 25 0.86 0.56

Query Mean 0.78 0.64 Query Mean 0.69 0.44 Query Mean 0.85 0.75

2.4. Results 27

TABLE 2.2: Experiment 2: Search and match the best rendered
view among a collection of 3D shapes. Per super-category,
we go over all N 3D shapes per sub-category, namely N - 2,542
3D shape hypotheses. Matching is feasible even when the sub-
categories are unknown (compare with Table 2.1).

aeroplane boat car

Subtype p@5 Subtype p@5 Subtype p@5
aeroplane01 0.35 boat01 0.15 car01 0.46
aeroplane02 - boat(02 0.00 car02 0.27
aeroplane03 0.27 boat03 0.22 car03 0.23
aeroplane04 0.31 boat04 0.44 car04 0.08
aeroplane05 0.24 boat05 0.09 car05 0.35
aeroplane06 (.34 boat06 0.42 car06 0.28

aeroplane07 0.33 car07 0.40
aeroplane08 - car(08 0.25
car(09 0.69
carl0 0.16

Query Mean 0.32 Query Mean 0.18 Query Mean 0.37

rear view of car(7 are quite distinguishable, whereas car04 looks like a box,
with front and rear poses being often confused.

2.4.2 Search and match among 3D shapes

We show results in Table. 2.2. When the fine-grained sub-category of the ob-
ject is unknown the network must iterate over all possible 3D shapes. This
amounts to an N-fold increase of possible 3D shape instantiations, where N
is the number of possible sub-categories. Despite this N-fold increase, we ob-
serve that the matching network accuracy drops only 2-fold, approximately.
As a reference, a random baseline is about 2 - 10~* for aeroplanes, where our
matching network scores 0.32. Loosely inspired by the work of Junkert et al.
[68], intended for textured renderings, we also report a baseline based on a
nearest neighbor search strategy. Specifically, we extract fc7 features of a pre-
trained AlexNet [83] from the object of interest in both the real and rendered
images with K = 2,542 different viewpoints, and rank them based on cosine
similarity. The results show this approach does not work well in our set-
ting, with p@5 around 0.07, as the domain shift from real images to rendered
images without texture and background context is simply too large.

28 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

TABLE 2.3: Experiment 3: Search and match the best rendered
view from unseen 3D shapes. Intra-category knowledge trans-
fer can be performed when new 3D shapes added at test time
are somewhat similar to the ones seen during training (marked

in gray).

aeroplane boat car

Subtype p@5 Subtype p@5 Subtype p@5
aeroplane01 0.67 boat01 0.43 car01 0.85

aeroplane(2 - boat02 0.29 car(2 0.84
aeroplane03 0.45 boat03 0.37 car03 0.57
aeroplane04 0.62 car04 0.62

car05 0.71

aeroplane05 0.40 boat04 0.06 car06 0.61
aeroplane06 0.14 boat05 0.55 car07 1.00
aeroplane07 0.33 boat06 0.00 car08 0.25
aeroplane(8 - car09 0.88

carl0 0.44

2.4.3 Search and match unseen 3D shapes

We report the performance of our network trained on both seen and un-
seen sub-categories in Table 2.3. The network is able to transfer its match-
ing knowledge to unseen shapes to some extent. Note that this experimental
setting is quite close to zero-shot image classification [81] where one classi-
ties a category without having seen its visual examples, a challenging task
where accuracy drops are generally high. Focusing on sub-categories, aero-
plane05 is matched best, while aeroplane06 is affected more. Likely because
aeroplane(5 looks similar to both aeroplane(01 and aeroplane(2, while aero-
plane06 (jet fighter) is more different. Similarly, boat05 is well matched be-
cause it resembles boat02. However, boat04 and boat06 refer to big ships, and
transferring the matching knowledge from the considerably smaller boats
(yachts, canoes and sailing boats) is harder. For cars, where all sub-categories
are quite similar we observe a good matching accuracy. We conclude that if
new 3D shapes added at test time are somewhat similar to the seen ones, our
network can match them reasonably well.

2.4.4 Search and match under noisy conditions

Noisy object location. We first look at the effect of noise on the object lo-
cation (u,v), see Fig. 2.5 (A). For a limited amount of 5% noise the impact
on the network is modest, when averaged over categories the loss is 0.59 for
aeroplane, 0.41 for boat and 0.73 for car. When we add more noise perfor-
mance starts to suffer, with 10% noise the numbers drop to 0.52, 0.32 and

2.4. Results 29

Noisy object location Noisy object scale

10—

10—

e—e aeroplane| e—e aeroplane|

—> boat —> boat
0.8} =—a car 8 0.8} =—a car

0.6 4 0.6 8
)
l | I ’/\\.\‘ 7
0.2 s 0.2 4
0.0L— 0.0—
o

0% 5% 10% 20% 40% fff 90% 100% 110% 120%

Percentage of noise on (u, v) Percentage of noise on d
(A) (B)

p@5
p@5

Noisy object location and scale

e—e aeroplane|
> boat
0.8 =—a car
06l r/\. |
0
@ — — .
ISH

0.4

0.2

0.0

90% 100% 110%

__| -

Percentage of noise on d
(€)

FIGURE 2.5: Experiment 4: Search and match the best ren-

dered view when object location (1,v) and d scale are imper-

fect. On the x axis we visualize the indicative overlap displace-

ment with respect to the perfect box. For moderate noise (5-
10%) the model recovers a good match.

0.59 respectively. Unsurprisingly the performance drops as more and more
noise is added, be it that the drop is less pronounced after 20%.

Noisy object scale. Next, we investigate the sensitivity when adding
noise to the camera distance d, which relates to the detected object scale
(smaller d — larger object scale), see Fig. 2.5 (B). As before, the larger the de-
viation the larger the drop in performance and any noise in the range £10%
leads to an acceptable matching accuracy. Interestingly, when scaling d down
to 90% it leads to a slight increase in performance for boats. The reason is that
scaling down the camera distance d results in a bigger amodal bounding box
that often is a better fit to the actual object.

Noisy object location and scale. Last, we assess the impact of having
noise in both the location and the scale. Results are shown in Fig. 2.5 (C).
We observe the accuracy remains stable for all categories, indicating the two
different types of noise do not reinforce each other too much.

30 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

TABLE 2.4: Experiment 5: Search engine comparison with Choy

et al. [20] using ground truth object location, where we run the

software of Choy et al. on our texture-free setting. In terms

of ACC@0 our approach is especially beneficial for 3D shapes

that have sufficient training samples, where Choy et al. profit

from limited example regimes (see Table 2.1). For boats both
approaches perform modestly.

aeroplane boat car

Subtype Choy et al. This chapter = Subtype Choyefal. This chapter Subtype Choy etal. This chapter
aero0l 0.48 0.59 boat01 0.32 0.36 car(01 0.39 0.62
aero(2 - - boat02 0.48 0.21 car02 0.62 0.60
aero03 0.55 0.46 boat03 0.33 0.26 car(03 0.54 0.57
aero04 0.39 0.31 boat04 0.19 0.19 car(04 0.42 0.50
aero05 0.40 0.56 boat05 0.50 0.09 car(05 0.35 0.71
aero06 0.39 0.57 boat06 0.42 0.25 car(6 0.83 0.61
aero07 0.33 0.52 car07 0.40 0.80
aero(08 - - car08 0.63 0.50
car09 0.76 0.74
carl0 0.60 0.48

Query Mean 0.35 0.54 Query Mean 0.22 0.29 Query Mean 0.29 0.61

TABLE 2.5: Experiment 5: Search engine comparison with Choy

et al. [20] with automatically detected object location, using

their public software on our texture-free setting. The proposed

system achieves better performance in terms of AV P for aero-
plane and car and worse for boat.

aeroplane boat car

#Bins 4 8 16 24 4 8 16 24 4 8 16 24
Choyetal. 035 0.22 0.10 0.05 0.14 0.06 0.02 0.01 0.23 0.17 0.10 0.07
This chapter 0.44 0.24 0.10 0.05 0.07 0.04 0.01 0.01 0.30 0.26 0.19 0.11

2.4.5 Search engine comparison

Results for given ground truth object location are shown in Table 2.4. In
terms of the mean over all queries, we obtain better ACC@6 than [20] for
all 3 categories. The boat category has relatively low performance for both
methods, because of the low AIOU rate (see Table 2.1) that indicates large
shape discrepancies. Looking into the sub-category comparisons, Choy et al.
is better in some cases (e.g. aeroplane03, aeroplane04, boat02-boat06), mostly
when less training examples are provided which results in our two-stream

2.5. Conclusion 31

network being underfitting. Table 2.5 reports results of joint object detec-
tion and 3D-to-2D matching. In terms of AVP we outperform Choy et al.
also in this setting. As expected, performance for both search engines suffers
when azimuth angle discretization becomes finer. While aeroplanes and cars
are again matched better, now aeroplane are easier to match than cars, pre-
sumably due to their easier detection of typically simpler backgrounds. We
conclude that our system with a learned matching function is beneficial over
hand-engineered feature matching approaches when sufficient (>80) training
samples are available. At the same time there is still a lot of work needed be-
fore we arrive at generic and precise searching and matching of 3D shapes in
images.

2.5 Conclusion

This chapter focuses on searching and matching the best rendered view of a
texture-free 3D shape to an object of interest in a 2D image. Matching ren-
dered views of 3D shapes to RGB images is challenging because of imperfect
3D shapes and domain shift in appearance due to texture mismatch. We pro-
pose a deeply learned matching function that attacks these challenges and
can be used as a search engine of 3D shapes to objects in 2D. We evaluate
the proposed search engine on the most populated PASCAL3D+ vehicle cat-
egories, testing the capabilities of transferring the learnt function to unseen
3D shapes and its sensitivity to imperfect 3D shapes and localization. We also
identify the need for accurate amodal bounding box detection in 2D images
as an important 3D-to-2D matching topic for further investigation.

32 Chapter 2. Searching and Matching Texture-free 3D Shapes in Images

o o IR A

aeroplane01 aeroplane02 aeroplane03 aeroplane04

aeroplane05 aeroplane06 aeroplane07 aeroplane08
boat01 boat02 boat03
boat04 boat05 boat06

DGO

carQ1 car02 car03 car04 car05
car06 car07 car08 car09 carl0

FIGURE 2.6: Texture-free 3D shapes for the 24 fine-grained
aeroplane, boat, and car objects used in our experiments.

33

Chapter 3

Spherical Regression

3.1 Introduction

Computer vision challenges requiring continuous outputs are abundant. View-
point estimation [151, 145, 124, 125], object tracking [149, 46, 65, 71], and sur-
face normal estimation [4, 35, 179, 126] are just three examples. Despite the
continuous nature of these problems, regression based solutions that seem a
natural fit are not very popular. Instead, classification based approaches are
more reliable in practice and, thus, dominate the literature [151, 145, 110,
149, 85]. This leads us to an interesting paradox: while several challenges are
of continuous nature, their present-day solutions tend to be discrete.

In this work we start from this paradox and investigate why regression
lags behind. When juxtaposing the mechanics of classification and regres-
sion we observe that classification is naturally contained within a probability
n-simplex geometry defined by the popular softmax activation function. The
gradients propagated backwards to the model are constrained and enable
stable training and convergence. In contrast, regression is not contained by
any closed geometry. Hence, the gradients propagated backwards are not
constrained, potentially leading to unstable training or convergence to sub-
optimal local minima. Although classification solutions for continuous prob-
lems suffer from discretization errors in annotations and predictions, they
typically lead to more reliable learning [110, 85].

Founded on the relation between classification, regression and closed ge-
ometric manifolds, we revisit regression in deep networks. Specifically, we
observe many continuous output problems in computer vision are naturally
contained in closed geometrical manifolds defined by the problem at hand.
For instance, in viewpoint estimation, angles cannot go beyond the [—7, 7]
range. Or, in surface normal estimation the ¢/, norm of the surface normals
must sum up to 1 to form unit vectors that indicate directionality. It turns out
that a natural framework for posing such continuous output problems are
the n-spheres S" [40, 34], which are naturally closed geometric manifolds
defined in the R("+1) space. We, therefore, rethink regression in continu-
ous spaces in the context of n-spheres, when permitted by the application.

34 Chapter 3. Spherical Regression

Y (cose, sing)

(a) 2D rotation St cos?p +sin?gp =1

(b) Surface normal vector

0
S Z
(c) 3D rotation S$:a2+b>+c2+d?*=1

FIGURE 3.1: Many computer vision problems can be con-

verted into a n-sphere problem. n-spheres are naturally closed

geometric manifolds defined in the R("*1) space. Examples are

a) viewpoint estimation, b) surface normal estimation, and c)

3D rotation estimation. This chapter proposes a general regres-

sion framework that can be applied on all these n-sphere prob-
lems.

It turns out that if we introduce a proposed spherical exponential mapping
on n-spheres at the regression output we obtain regression gradients that are
constrained and well-behaving, similar to classification-based learning. We
refer to regression using the proposed spherical exponential mappings on 5"
spheres as S" spherical regression.

In this work we make the following contributions. First, we link the
framework of n-spheres to continuous output computer vision tasks. By
doing so, they are amenable to the properties of the n-spheres formulation,

3.2. Motivation 35

leading to spherical regression. Second, we propose a novel nonlinearity, the
spherical exponential activation function, specifically designed for regressing
on §" spheres. We show the activation function improves the results obtained
by regular regression. Third, we show how the general spherical regression
framework can be utilized for particular computer vision challenges. Specifi-
cally, we show how to recast existing methods for viewpoint estimation, sur-
face normal estimation and 3D rotation estimation to the proposed spherical
regression framework. Our experiments demonstrate the benefit of spherical
regression for these problems.

We now first describe in Section 3.2 the motivation behind the deep learn-
ing mechanics of classification and regression. Based on the insights derived,
we describe in Section 3.3 the general framework for spherical regression on
S spheres. We then explain how to specialize the general frameworks for
particular applications, see Fig. 3.1. We describe the related work for these
tasks in Section 5.2. In Section 5.5, we evaluate spherical regression for the
three applications.

3.2 Motivation

Deep classification and regression networks. We start from an input image
x of an object with a supervised learning task in mind, be it classification or
regression. Regardless the task, if we use a convolutional neural network
(CNN) we can split it into two subnetworks, the base network and the pre-
diction head, see (eq. 3.1).

0o Po
H(- 01 . P1 L,
x— 0 Lo |] U L p [P Ly 3
base network : activation : loss
On Pn
Base I:gtwork Predict;(:n head

The base network considers all the layers from input x till layer O. It de-
fines a function O = H(x) that returns an intermediate latent embedding
O = [op, 01, ..., on]T of the raw input x. The function comprises a cascade of
convolutional layers intertwined with nonlinearities and followed by fully
connected layers, H = hjoh;_q---0hgo---0hyohy, where h is the 6-
parameterized mapping of k-th layer. Given an arbitrary input signal x, the
latent representation O is unconstrained, namely x = H(x) — R""*1).

The prediction head contains the last (1 4 1)-dimensional layer P before
the loss function, which is typically referred to as the network output. The
output is obtained from an activation function g(-), which generates the out-
put P : py = g(ox; O) using as input the intermediate raw embedding O

36 Chapter 3. Spherical Regression

returned by the base network. The activation function g(-) imposes a struc-
ture to the raw embdedding O according to the task at hand. For instance, for
a CNN trained for image classification out of 1,000 classes we have a 1,000-
dimensional output layer P that represents softmax probabilities. And, for a
CNN trained for 2D viewpoint estimation we have a 2-dimensional output
layer P that represents the trigonometric functions P = [cos¢, sing]. After
the prediction head lies the loss function £(P,Y) that computes the distance
between the prediction P and the ground truth Y = [yo,y1,...] ", be it cross
entropy for classification or sum of squared errors for regression.

The dimensionalities of O and P vary according to the type of classifica-
tion or regression that is considered. For classification P represents the prob-
ability of (n + 1) discretized bins. For regression, P depends on the assumed
output representation dimensionality, e.g., regression 1D [124], regression
2D [124, 8] or regression 3D [120] and beyond can have different output di-
mensions. Together the subnetworks comprise a standard deep architecture,
which is trained end-to-end.

Training. During training, the k-th layer parameters are updated with stochas-
tic gradient descent, 6 < 6 — 'yg—é}i, where 7 is the learning rate. Expanding

by the chain rule of calculus we have that

AL _DLIP 20 Dy O
30, 9PJO ‘oh,_, " oh o6,

(3.2)

Training is stable and leads to consistent convergence when the gradients are
constrained, otherwise gradient updates may cause bouncing effects on the
optimization landscape and may cancel each other out. Next, we examine the
behavior of the output activation P and the loss functions for classification
and regression.

Classification. For classification the standard output activation and loss func-
tions are the softmax and the cross entropy, thatis g(0;; 0) = {p; = e’/ }; €,
i=0---n},L(0,Y) = —Y,yilog(p;). The p; and y; are the posterior proba-
bility and the one-hot vector for the i-th class, and d is the number of classes.
Note that softmax maps the raw latent embedding O € R"+1) to a struc-
tured output P, known as n-simplex, where each dimension is positive and
the sum equals to one, i.e.) ; p; = 1 and p; > 0. The partial derivative of the
probability output with respect to the latent activation equals to

i _ [pj-(1—p;), whenj=i 33)
d0; —Pi* Pjs when j # i .

. . e . Opj .
Crucially, we observe that the partial derivative a_? does not directly depend
on O. This leads the partial derivative of the loss function with respect to o;,

3.3. Spherical regression 37

namely

0
fo Pk — pi— vy, (3.4)

aol k d0;

to be independent of O itself. As P corresponds to a probability distribution
that lies inside the n-dimensional simplex, it is naturally constrained by its
¢1 norm, p; < 1. Thus, the partial derivative 88 depends only on a quantity
that is already constrained.

Regression. In regression usually there is no explicit activation function in
the final layer to enforce some manifold structure. Instead, the raw latent
embedding O is directly compared with the ground truth. Take the smooth-
L1 loss as an example,

r_ J05lyi- o> ifly; — ?il <1 (35)
ly; —0;] — 0.5 otherwise.

The partial derivative of the loss with respect to o; equals to

oL _ {—(}/i —0;) ifly; — ol <1 (3.6)

d0; —sign(y; —o0;) otherwise.

Unlike classification, where the partial derivatives are constrained, for re-
gression we observe that the aﬁ directly depends on the raw output O. Hence,
if O has high variance, the unconstrained gradient will have a high variance
as well. Because of the unconstrained gradients training may be unstable.

Conclusion. Classification with neural networks leads to stable training and

convergence. The reason is that the part1a1 derivatives gf; gg are constrained,

and, therefore, the gradient updates 0., are constrained. The gradients are
constrained because the output P 1tse1f is constrained by the ¢; norm of the
n-simplex,) ; p; = 1. Regression with neural networks may have instabilities
and sub-optimal results during training because gradient updates are uncon-
strained. We examine next how we can define a similar closed geometrical
manifold also for regression. Specifically, we focus on regression problems
where the target label Y lives in a constrained n-sphere manifold.

3.3 Spherical regression

The n-sphere, denoted with 5", is the surface boundary of an (1 + 1)-dimensional
ball in the Euclidean space. Mathematically, the n-sphere is defined as St =
{x € R"": ||x|| =r} and is constrained by the ¢, norm, namely }; x? = 1.
Fig. 3.1 gives examples of simple n-spheres, where S! is the circle and S? the

38 Chapter 3. Spherical Regression

surface of a 3D ball. Where the n-simplex constrains classification by the ¢;
simplex norm, we next present how to constrain regression by the ¢, norm of
an n-sphere.

3.3.1 Constraining regression with n-spheres

To encourage stability in training regression neural networks on S” spheres,
one reasonable objective is to ensure the gradients are constrained. To con-
strain the gradient 95 55 we propose to insert an additional activation func-
tion in regression after the raw embedding layer O. The activation function
should have the following properties.

(I) The output of the activation, P = {py}, must live on n-sphere, namely
its ¢, norm Y ;_; p7 = 1 must be constant, e.g., cos?¢ + sin’¢p = 1. This
is necessary for spherical targets.

(IT) Similar to classification, the gradient 8 must not directly depend on

the input signal. That is, % must not depend directly on the raw latent
embedding O € R(*+1),

To satisfy property (I), we pick our activation function such that it pro-
duces normalized values. We opt for the /> normalization form: p; = g(0;; 0) =
——L__ where f(-) corresponds to any univariate mapping. The partial

VTG fC) p y pping p

derivative of the output with respect to the latent O then becomes:

a[f(o)) 1

i _ _LVEfP]

do; do;
(d{i(oii) 'Z> (1-p?), whenj=i
(- %) - (=pi-p), whenj#i

where A = /Y f(0x)? is the normalization factor.
Still, ? is potentially depending on the raw latent embedding O through
df (o))

the partial function derlvatlves ~Zo,~ and the normalization factor A. To sat-

(3.7)

isfy property (II) and make a mdependent from the raw output O, and thus
df (o))

constrained, we must make sure that < ol Z) becomes independent of
)

O. In practice, there are a limited number of choices for f(-) to satisfy this
constraint. Inspired by the softmax activation function, we resort to the ex-

ponential map f(0;) = e%, where df(%) — f(0;) and f(%) . = f(Z") = p;.

3.3. Spherical regression 39

Thus Eq. 3.7 is simplified as

%: pi- (1—p?), whenj=i (3.8)
00; —p?-pj, when j # i
removing all dependency on O.

Since our activation function has a similar form as softmax, which is also
known as normalized exponential function, we refer to our activation func-
tion as Spherical Exponential Function. It maps inputs from R"*! to the posi-
tive domain of the n-Sphere, i.e. Spxp(-) : R — St

e’i

Vv Lk (eo%)?

Converting Eq. 3.8 into matrix provides Jacobian as Js,,, = (I-P®P)-
diag(P) where ® denotes outer product (see supplementary material for de-
tails). Notice that if we only do ¢, normalization without exponential, the
Jacobian is given as Js,,, = (I - P®P) - ﬁ, which is influenced by the
magnitude of O in gradient, which is unconstrained.

Unfortunately, the exponential map in S,y (-) restricts the output to be in
the positive range only, whereas our target can be either positive or negative.
To enable regression on the full range on n-sphere coordinates we rewrite
each dimension into two parts: p; = sign(p;) - |pi|. We then use the output
from the spherical exponential function to learn the absolute values |p;|,i =
0,1,...,n only. At the same time, we rely on a separate classification branch
to predict the sign values, sign(p;),i = 1,...,d of the output. The overall
network is shown in Fig. 3.2:

Conclusion. Given the spherical exponential mapping for g(-), the gradi-
ent g—g is detached from O, and P is constrained by the n-Sphere. Thus, to
make the parameter gradients also constrained, we just need to pick a suit-
able loss function. It turns out that there are no significant constraints for the
loss function. Given ground truth ¥, we can set the loss to be the negative
dot product £ = —(|P|, |Y|). Since both P and Y are on sphere with ¢, norm

pi = Sexp(oj; O) = 3.9)

equal to 1 (i.e. ||P||2 = ||Y||2 = 1), this is equivalent to optimize with cosine
proximity loss or L2 loss *. In this case, the gradients are g—é = —sign(p;)|vil

and only relate to P. We could also treat the individual outputs {p?, p3...} as
probabilities with a cross-entropy loss on continuous labels 7, in which case
we would have that H(Y?, P?) = ¥,y log #. We conclude that the Spherical

Regression using the spherical exponential mapping allows for constrained

__{PLYD
[1P[l2-[1YT]2

2 2
1Pz + 1Yl = 2(|P[, [Y[) = 2 = 2{|P], [Y]).

*For cosine proximity loss: £ = (IP|,]Y]). For L2 loss: £ = [|P = Y|[5 =

40 Chapter 3. Spherical Regression

Regression

1 0p S |p0| Olyol
F 0, xp 1p;1€C) aly,l
‘ o 1P, aly,l

sign(P)
[+ +-+]

® [++--]

FIGURE 3.2: Regressing on n-spheres with targets ¥ =
[Yo, ..., Yn), i.e. Y;y7 = 1. The model processes the input im-
age and first returns a raw latent embedding O = oy, ...,0,] €
R0, Then, a regression branch using the proposed spheri-
cal exponential acctivation Sgx, maps O to a structured output
|P| = [|pol, ---, | pn|]- A classification branch is also used to learn
the sign labels of P. Prediction is made by P = sign(P) - |P|.

parameter updates and, thus, we expect it to lead to stable training and con-
vergence. We verify this experimentally on three different applications and
datasets.

3.3.2 Specializing to S!, S? and S°

Next, we show how to specialize the general n-sphere formulation for differ-
ent regression applications that reside on specific n-spheres.
S! case: Euler angles estimation. Euler angles are used to describe the ori-
entation of a rigid body with respect to a fixed coordinate system. They are
defined by 3 angles, describing 3 consecutive rotations around fixed axes.
Specifically, each of the angles ¢ € [0,27] can be represented by a point on a
unit circle with 2D coordinate [cos¢, sing), see Fig. 3.1. Since cos?¢ + sin’p =
1, estimating these coordinates is an S sphere problem. Consequently, our
prediction head has two components: i) a regression branch with spher-
ical exponential activations for absolute values |P| = [|cos¢|, |sing|] and,
ii) a classification branch to learn all possible sign combinations between
sign(cos¢) and sign(sin¢g), that is a 4-class classification problem: sign(P) €
{(+,+),(+ =), (=, +), (=, —)}. We could also predict the signs indepen-
dently and have fewer possible outputs, however, this would deprive the
classifier from the opportunity to learn possible correlations.

During training time, we jointly minimize the regression loss (cosine prox-
imity) and the sign classification loss (cross-entropy). For the inference, we

3.3. Spherical regression 41

do the final prediction by merging the absolute values and sign labels to-
gether:

C(')S(P = szjgn(a.)qu) : ‘C(')S(P‘ (3.10)
sing = sign(sing) - |sing|

Beyond Euler angles, other 2D rotations can be learned in the same fashion.

S? case: Surface normal estimation. A surface normal is the direction that

is perpendicular to the tangent plane of the point on the surface of objects

in a 3D scene, see Fig. 3.1.(b). It can be represented by a unit 3D vector
v = [Ny, Ny, N;] for which N,% + N§ + NZ2 = 1. Thus, a surface normal lies on

the surface of a unit 3D ball, i.e. an S? sphere. Surface normal estimation from
RGB images makes pixel-wise predictions of surface normals of the input
scene.

It is worth noticing that all surface normals computed by a 2D image
should always be pointing outwards from the image plane, that is N, < 0,
since only these surfaces are visible to the camera. This halves the prediction
space to a semi-sphere of S?. Again, when designing the spherical regressor
for surface normals, we have a regression branch to learn the absolute normal
values [|Ny|, N[, |N;|] and a classification branch for learning all combina-
tions of signs for Ny and N,.. The total number of possible sign classes is 4,
similar to Euler angle estimation. The training and inference is similar to Eu-
ler angles as well. Other S? problems include learning the direction of motion
in 2D /3D flow fields, geographical locations on the Earth sphere and so on.
S? case: 3D rotation estimation. Rotational transformations are relevant in
many computer vision tasks, for example, orientation estimation, general-
ized viewpoint and pose estimation beyond Euler angles or camera reloca-
tion. Rotational transformations can be expressed as orthogonal matrices of
size n with determinant +1 (rotation matrices). We can think of the set of
all possible rotation matrices to form a group that acts as an operator on vec-
tors. This group is better known as the special orthogonal Lie group SO(n) [53].
Specifically, the SO(2) represents the set of all 2D rotation transformations,
whereas SO(3) represents the set of all possible 3D rotations.

We have already shown that 2D rotations can be mapped to a regression
on an S! sphere, thus the set SO(2) of all 2D rotations is topologically equiv-
alent to the S! sphere. Interestingly, the topology of 3D rotations is not as
straightforward [53], namely there is no n-sphere that is equivalent to SO(3).
Instead, as shown in Fig. 3.1.(c) a 3D rotation SO(3) can be thought of as first
choosing a rotation axis v and then rotating by an angle 6. This approach
leads to the well known S° representation of quaternions [55], which is the
closest equivalent to the 3D rotation [139].

A unit quaternion is equal to § = a + bi + ¢j + dk, where a® + b*> + ¢* +
d*> = 1. As g and —q give the same rotation, we restrict ourselves to a > 0,
which again halves the output space. We, therefore, need to predict the signs

42 Chapter 3. Spherical Regression

of only 3 imaginary components {b, ¢, d} to a total of 8 (2%) classes. The design
of the prediction heads and the loss functions are similar to the case of surface
normal prediction on S2, only now having 8 sign classes. Given the axis-
angle representation (6, v) of SO(3), we can, therefore, rewrite a quaternion
into g = (cosg,singv). Constraining a > 0 is equivalent to restricting the
rotation angle 6 € [0, 7r]. Furthermore, predicting the 8 sign categories is
equivalent to predicting to which of the 8 quadrants of the 3D rotation space

the v belongs.

3.4 Related work

Viewpoint Estimation. In general, viewpoint estimation focuses on recover-
ing the 3 Euler angles, namely, azimuth, elevation and in-plane rotation (see
Fig. 3.3-(a)). Tulsiani and Malik [151] discretize continuous Euler angles into
multiple bins and convert viewpoint estimation into a classification problem.
Su et al. [145] propose a finer-grained discretization that divides the Euler an-
gles into 360 bins. However, training for all possible outputs requires an
enormous amount of examples that can only be addressed by synthetic ren-
derings.

Albeit more natural, regression-based viewpoint estimation is less pop-
ular. Because of the periodical nature of angles, most approaches do not
regress directly on the linear space of angles, a,e,t € [—7, 7]. The reason
is that ignoring the angle periodicity leads to bad modeling, as the 1° and
359° angles are assumed to be the furthest apart. Instead, trigonometric rep-
resentations are preferred, with [124, 8, 125] proposing to represent angles
by [cos¢, sing]. They then learn a regression function / : x — [cos¢, sing],
without, however, enforcing the vectors to lie on Sl In comparison to view-
point classification, regression gives continuous and fine-grained angles. In
practice, however, training regression for viewpoint estimation is not as easy.
Complex loss functions are typically crafted, e.g., smooth L loss [110], with-
out reaching the accuracy levels of classification-based alternatives.

In this chapter, we continue the line of work on regression based view-
point estimation. Built upon the S! representations [cos¢, sing] of Euler an-
gles [124, 8, 125], we assess our spherical regression for viewpoint prediction.
Surface Normal Estimation. Surface normal estimation is typically viewed
as a 2.5D representation problem, one that carries information for the geome-
try of the scene, including layout, shape and even depth. The surface normal
is a 3-dim vector that points outside the tangent plane of the surface. In the
surface normal estimation task, given an image of a scene, a pixel-wise pre-
diction of the surface normal is required [4, 35, 179, 42, 86, 140, 126, 156] (see
Fig. 3.3-(b)).

Fouhey et al. [42] infer the surface normal by discovering discriminative
and geometrically 3D primitives from 2D images. Building on contextual and

3.4. Related work 43

In-plane rotation

<«

§

(a) $%: Viewpoint (Pascal3D+)

RGB Image Surface Normal Image

(b) $2: Surface Normal (NYU v2)

=
/ \.\ - \ ///\ “\\\

s’ \

/ = \ \ ’\, / Q"
\)) / Y

OIS

/

(c) $3: 3D rotations (ModelNet10-SO3)

FIGURE 3.3: We assess spherical regression on 3 computer vi-
sion tasks. (a) S': Viewpoint estimation on Pascal3D+ [170],
which needs to predict 3 Euler angles: azimuth, elevation
and in-plane rotation. (b) S?: Surface normal estimation on
NYU v2 [140], where pixel-wised dense surface normal predic-
tion is required. (c) S 3D rotation on our newly proposed
ModelNet10-SO3, where given one rendered view of a CAD
model, we predict the underlying 3D rotation that aligns it back
to standard pose.

segment-based cues, Ladicky et al. [86] build their surface normal regressor
from local image features. They both use hand crafted features. Eigen and
Fergus [35] propose a multi-scale CNN architecture adapted to predicting
depth, surface normals and semantic labels. While the network outputs are

44 Chapter 3. Spherical Regression

¢> normalized, the gradients are not constrained. Bansal et al. [4] introduce
a skip-network model optimized by the standard sum of squared errors re-
gression loss, without enforcing any structure to the output. Zhang et al. [179]
propose to predict normals with deconvolution layers and rely on large scale
synthetic data for training. Similar to [35], they also enforce an ¢, norm on
the output but have unconstrained gradients. Recently, Qi et al. [126] pro-
posed two-stream CNN s that jointly predict depth and surface normals from
a single image and also rely on the sum of squared errors loss for training.

In our work we propose a spherical exponential mapping for performing
spherical regression. This new mapping can be directly applied to any of the
surface normal estimation methods that rely on a regression loss on n-spheres
and improve their accuracy, as we show in the experiments.
3D Rotation Estimation. 3D Rotations are a component of several tasks in
computer vision and robotics, including viewpoint and pose estimation or
camera relocation. The rotation matrix for 3D rotation is a 3 x 3 orthogonal
matrix (determinant= 1). Direct regression on the rotation matrix via neural
networks is difficult, as the output lies in the R? (3 x 3) space. Moreover,
regressing a rotation matrix directly cannot guarantee its orthogonality. Re-
cently, Falorsi et al. [37] take a first step toward regressing 3D rotation matri-
ces. Instead of predicting the 9 elements of rotation matrix directly, they pose
the 3D rotation as an S? x S? representation problem reducing the number of
elements to regress on to a total of 6.

Viewpoint [151, 145,110, 30, 8, 110, 114] and pose [120, 124] consider the
relative 3D rotation between object and camera. With 3 consecutive rotation
angles, see Fig. 3.3 (a), Euler Angles can uniquely recover the rotation matrix.
As such a decomposition is easy to be interpreted and able to cover most of
the viewpoint distribution, it has been widely adopted. However, this ap-
proach leads to the gimbal lock problem [64], where the degrees of freedom
for the rotations are reduced.

Mahendran et al. [107] studied an axis-angle representation for viewpoint
estimation by first choosing a rotation axis and then rotating along it by an
angle 6. To constrain the angle € [0, 77) and the axis v; € [—1, 1], they pro-
pose a 71 - tanh non-linearity. Also, instead of a standard regression loss, e.g.
cosine proximity or sum of squared errors loss, they propose a geodesic loss
which directly optimizes the 3D rotations in SO(3). Do et al. [31] consider
the Lie-algebra SO(3) representation to learn the 3D rotation of the 6 DoF
pose of an object. It is represented as [x,y,z] € R, and can be mapped to a
rotation matrix via the Rodrigues rotation formula [12]. They conclude that
an /1 regression loss yields better results.

Last, both Kendall et al. [76] and Mahendran et al. [107] consider quater-
nion for camera re-localization and viewpoint estimation. As quaternions
allow for easy interpolation and computations on the S3 sphere, they are also
widely used in graphics [139, 24] and robotics [111]. Although Do et al. [31]

3.5. Experiments 45

argue that quaternion is over-parameterized, we see this as an advantage that
gives us more freedom to learn rotations directly on the n-sphere.

Despite the elegance and completeness of the aforementioned works, mod-
elling 3D rotations is hard and methods specialized for the task at hand, in-
stead, typically reach better accuracies. Unlike most of the aforementioned
works, we learn to regress on the Euclidean space directly. Furthermore, we
present a framework for regressing on n-spheres with constrained gradients,
leading to more stable training and good accuracy, as we show experimen-
tally.

3.5 Experiments

3.5.1 S!: Viewpoint estimation with Euler angles

Setup. First, we evaluate spherical regression on S! viewpoint estimation on
Pascal3D+ [170]. Pascal3D+ contains 12 rigid object categories with bound-
ing boxes and noisy rotation matrix annotations, obtained after manually
aligning 3D models to the 2D object in the image. We follow [151, 145, 125,
108, 114] and estimate the 3 Euler angles, namely the azimuth, elevation and
in-plane rotation, given the ground truth object location. A viewpoint pre-

logRT.R,,
diction is correct when the geodesic distance A(Rgt, Rpr) = W be-

tween the predicted rotation matrix Ry, (constructed from the predicted Eu-
ler angles) and the ground truth rotation matrix R is smaller than a thresh-
old 6 [151]. The evaluation metric is the accuracy Acc@rr/6 given thresh-
old 8 = 7t/6. We use ResNet101 as our backbone architecture, with a wider
penultimate fully connected layer in the prediction head that is shared by the
regression branch and classification branch (see supplementary material for
details). As many of the annotations are concentrated around the x-axis, we
found that rotating all annotations by 45° during training (and rotating back
at test time) leads to more balanced distribution of annotations and better
learning. For training data, we also use the synthetic data provided by [145],
without additional data augmentations like in [107, 108].

Results. We report comparisons with the state-of-the-art in Table 3.1. Note
that our spherical exponential mapping can be easily used by any of the
regression-based methods with S! representation [cos¢, sing] [124, 8]. In
this experiment we combine it with Penedones et al. [124], who tried to di-
rectly regress 2D representation [cos¢, sin¢g] of angels, obtaining a significant
improvement in accuracy over other regression and classification baselines.
That said, during experiments we observed that classification-based meth-
ods are more amenable to large data sets, most probably because of their
increased number of parameters. As expected, the continuous outputs by

46 Chapter 3. Spherical Regression

TABLE 3.1: S': Viewpoint estimation with Euler angles. Com-

parison with state-of-the-art on Pascal3D+. Adding our ngp

spherical regression on top of the backbone network of [124]

leads to best accuracy. We report a class-wise comparison in
supplementary.

MedErr, Acc@Z+

Mahendran et al. [107] 16.6 N/A
Tulsiani and Malik [151] 13.6 80.8
Mousavian et al. [114] 11.1 81.0
Su et al. [145] 11.7 82.0
Penedones et al. [124]1 11.6 83.6
Prokudin et al. [125] 12.2 83.8
Grabner et al. [50] 10.9 83.9
Mahendran et al. [108] 10.1 85.9
This chapter: [124]t+ S;,, 9.2 88.2

T Based on our implementation.

the spherical regression are better suited for finer and finer evaluations , that
is Acc@rt/12 and Acc@rt/24 (supplementary material). We conclude that
spherical regression is successful for viewpoint estimation with Euler angles.

3.5.2 S2%: Surface normal estimation

Setup. Next, we evaluate spherical regression for S? surface normal estima-
tion on the NYU Depth v2 [140]. The NYU Depth v2 dataset contains 1,449
video frames of indoor scenes associated with Microsoft Kinect depth data.
We use the ground truth surface normals provided by [140]. We consider all
valid pixels across the whole test set during evaluation [179]. The evalua-
tion metrics are the (Mean and Median), as well as the accuracy based metric,
namely the percentage of correct predictions at given threshold 11.24°, 22.5°
and 30°). We implement our ngp spherical regression based on the network
proposed by Zhang et al. [179], which is built on top of VGG-16 convolutional
layers, and a symmetric stack of deconvolution layers with skip connections
for decoding. As in viewpoint estimation, we also rotate the ground truth
around the z-axis by 45° to yield better results. We follow the same training
setup as [179], that is we first pre-train on the selected 568K synthetic data
provided by [179] for 8 epochs, and fine-tune on NYU v2 for 60 epochs.

Results. We report results in Table 3.2. Replacing regular regression in [179]
with spherical regression on S? improves the estimation of the surface nor-
mals considerably. We found the improvement is attentuated by the fact that
for surface normal estimation we perform one regression per pixel location.

3.5. Experiments 47

TABLE 3.2: S% Surface normal estimation Comparison with

state-of-the-art on NYU v2. Adding our ngp spherical regres-

sion on top of the backbone network of Zhang et al. [179] leads
to best accuracy.

Mean, Median, 11.25°+ 22.5°+ 30.0°¢

Fouhey et al. [42] § 37.7 341 14.0 32.7 44.1
Ladicky et al. [86] § 35.5 255 240 456 559
Wang et al. [156] § 28.8 179 352 571 65.5
Eigen and Fergus [35] 22.3 15.3 386 64.0 739
Zhang et al. [179] 21.7 14.8 394 663 76.1

This chapter: [179] + S3,, 19.7 12.5 458 72.1 80.6

§ Copied from [35].

TABLE 3.3: S3: 3D Rotation estimation with quaternions.

Comparison on newly established ModelNet10-SO3. Adding

our ngp spherical regression on top of an AlexNet or VGG16
backbone network leads to best accuracy.

MedErr| Acc@% + Acc@51 Acc@7; 1
AlexNet (Direct+smooth-L1) 46.1 325 112 2.5

AlexNet + S 1y 333 535 341 139
AlexNet + S7.., 253 654 485 244
VGG16 (Direct+smooth-L1) 368 467 294 134
VGG16 + Sy 259 635 487 295
VGG16 + S3y, 203 709 589 384

As each one of these regressions could return unstable gradients, bounding
the total sum of losses with spherical regression is beneficial. Especially for
the finer regression thresholds of 11.25°,22.5°. We conclude that spherical
regression is successful also for surface normal estimation.

3.5.3 S 3D Rotation estimation with quaternions

Setup. Last, we evaluate s’;:"xp spherical regression on 3D rotation estima-

tion on S° with quaternions. For this evaluation we introduce a new dataset,
ModelNet10-SO3, composed of images of 3D synthetic renderings. ModelNet10-
SO3 is based on ModelNet10 [169], which contains 4,899 instances from 10
categories of 3D CAD models. In ModelNet10 the purpose is the classifi-
cation of 3D shapes to one of the permissible CAD object categories. With
ModelNet10-SO3 we have a different purpose, we want to evaluate 3D shape

48 Chapter 3. Spherical Regression

alignment by predicting its 3D rotation matrix w.r.t. the reference position
from single image. We construct ModelNet10-SO3 by uniformly sampling
per CAD model 100 3D rotations on SO(3) for the training set and 4 3D ro-
tations for the test set. We render each view with white background, thus the
foreground shows the rotated rendering only. We show some examples in
Fig. 3.3-(c).

Relying on Euler angles for ModelNet10-SO3 is not advised because of the
Gimbal lock problem [64]. Instead, alignment is possible only by predicting
the quaternion representation of the 3D rotation matrix. For this task, we test
the following 3 regression strategies:

(I) Direct regression with smooth-L1 loss. It may cause the output to no
longer follow unit £, norm.

(I) Regression with ¢, normalization Syy4;.

(IIT) Regression with Sy (this chapter).

We report results based on AlexNet and VGG16 as our CNN backbones,

with a class-specific prediction head. We borrow the evaluation metric from
viewpoint estimation, namely MedErr and Acc@{7t/6,7w/12,71/24} so that
we also examine finer-grained predictions.
Results. We report results in Table 3.3. First, both S, and ngp regression on
quaternions improve over direct regression baselines. This shows the impor-
tance of constraining the output space to be on a sphere when regress spher-
ical target. Second, putting /; normalization constraint on output space, ngp
improves over Sgj; with both AlexNet and VGG16. For AlexNet we obtain
about 8 — 12% improvement across all metrics. VGG16 is higher overall, but
the improvement over the baseline is less. This shows that with the VGG16
we are potentially getting closer to the maximum possible accuracy attain-
able for this hard task. That can be explained by the fact that the shapes have
no texture. Thus, a regular VGG16 is close to what can be encoded by a good
RGB-based model. Note that estimating the 3D rotation with a discretization
and classification approach [151, 145, 110, 30] would be impossible because
of the vastness of the output space on SO(3) manifold.

Further, we investigate the variance of the gradients % by recording its
average ¢, norm during training progress. The results are shown in Fig.
3.4. We observe the gradient norm of the spherical exponential mapping
has much lower variance. Spherical exponentiation achieves this behav-
ior naturally without interventions, unlike other tricks (e.g. gradient clip-
ping, gradient reparameterization) which fix the symptom (gradient insta-
bility /vanishing /exploding) but not the root cause (unconstrained input sig-
nals). We conclude that spherical regression is successful also for the appli-
cation of 3D rotation estimation.

3.6. Conclusion 49

18511 (1e-4) 1361l(1e-3)

12511 (1e-2).

4
8 2
2
7 1
60 : : : : : : 0
0 100k 200k 300k 0 100k 200k 300k 0 100k 200k 300k
(I) Direct smooth-L1 regression (II) Regression with Sy, (12 norm) (1) Regression with S,,, (this paper)

FIGURE 3.4: Variance of the average gradient norm ||%H.
Spherical exponentiation Sy, yields lower variance on mini-
batch over entire train progress.

3.6 Conclusion

Spherical regression is a general framework which can be applied to any con-
tinuous output problem that lives in n-spheres. It obtains regression gra-
dients that are constrained and well-behaving for several computer vision
challenges. In this work we have investigated three such applications, specif-
ically viewpoint estimation, surface normal estimation and 3D rotation esti-
mation. Generally, we observe that spherical regression improves consider-
ably the regression accuracy in all tasks and different datasets. We conclude
that spherical regression is a good alternative for tasks where continuous
output prediction are needed.

51

Part 11

Deep learning with label geometry

53

Chapter 4

Quasibinary Classifiers for Image
Classification

41 Introduction

Learning deep convolutional neural networks to classify an image requires a
proper prediction activation function. It maps an internal network represen-
tation from feature space to prediction space, where a loss can be more easily
defined. Softmax has been the dominant choice, and very successfully so [83,
146, 58, 66]. In general, the softmax classifier is designed to model the prob-
abilities for one-vs.-rest classification problems, where the number of ground
truth labels per sample is assumed to be one. As the output predictions are
normalized to be summed to one, softmax becomes a natural fit to return the
categorical distribution prediction. However, this one-label assumption lim-
its the application of softmax for problems where the number of labels for a
sample is not one, most notably zero-label [92, 88] and multi-label [127, 49,
91] classification problems. Nonetheless, the softmax classifier is sometimes
still being considered for zero-label [61, 60] and multi-label [127, 173, 91] clas-
sification problems, with the risk of violating the categorical assumption.

Instead of ‘abusing’ the softmax for out-of-distribution and multi-label
problems, one may opt to build a set of binary classifiers for each of the
classes, e.g. [116, 87, 115, 162, 163, 18]. However, binary classifiers suffer
from modeling class likelihoods independently. As a result, building binary
classifiers becomes a suboptimal choice when the number of classes is large
or imbalanced [116, 87, 138, 162]. Moreover, given an input image, the con-
fidence scores per classifier are uncalibrated, making them incomparable in
practice.

In this chapter, we introduce a new definition of binary classifiers, which
we coin quasibinary classifiers. Similar to regular binary classifiers, quasibi-
nary classifiers compute probabilities for binary outputs. Yet, different from
regular binary classifiers, quasibinary classifiers incorporate the information
that other labels may exist in the image. We achieve this by having the nor-
malization function of the quasibinary classifiers learnt rather than defined,

54 Chapter 4. Quasibinary Classifiers for Image Classification

Binary Classifier Softmax classifier Quasibinary classifier
: | Car % 10% Car [|1%
i ARP S
Gp W, Co Train 15% Train [1%
— 4 |
Zero-Label Plane | 1% Plane| 1%
DonglO%a o
Dog 90%:
L Cat [25% Cat |77 90%
|
Bird || 1% Birdl 1%
Multi-Label !

FIGURE 4.1: Comparison of quasibinary classifiers with bi-
nary and softmax classifiers for zero-label and multi-label
classification. While binary classifiers can in principle handle
both cases, the confidence scores are not credible. Softmax fails
in both cases as it restricts the sum of all the confidence to be
equal to one. Our proposed quasibinary classifiers are trained
jointly and assign credible confidence scores in both cases.

as with binary and softmax classifiers. Specifically, quasibinary classifiers set
the normalization function to be a constant and share it not only between
classes but also between data points, allowing for tractability, high efficiency,
and most importantly better calibration in computing the probabilities. As
a result, quasibinary classifiers can work seamlessly in a variety of classifi-
cation settings without the need for any specialized adaptation. They work
well in regular single-label, multiple-class settings, as well as in multiple-
label multiple class settings. They even work well when none of the labels are
present in the image, that is out-of-distribution classification [61, 163] where
the out-of-distribution samples are visible during training, but without any
label attached to them. Importantly, quasibinary classifiers yield calibrated
probabilities that can be used to compare predictions more reliably amongst
different classes and different images, see Fig. 4.1.

We make the following contributions. First, we identify restrictions of the
widely used binary and softmax classifiers. Second, on the basis of these re-
strictions, we propose quasibinary classifiers that learn a constant normaliza-
tion function shared among classes and data points to return well calibrated
binary outputs. Third, we show that quasibinary classifiers perform well on
a variety of classification settings that are important in realistic application
scenarios, including multiple- or even zero-label out-of-distribution image
classification.

4.2. Background 55

4.2 Background

Thanks to deep learning, probabilistic learning has become the de facto choice
for training classifiers [83, 146, 58, 66]. Probabilistic classifiers, be it binary
or multi-class, maximize the (log-) likelihood p(Y|X) on the training data
{X,Y} = {(xD,yD)}. Specifically, both binary and multi-class classifiers
assume the following decomposition of the total probability

p(YIX) = [Tp(y"1x") (41)

The decomposition in equation (4.1) is based on the assumption that the class
predictions y(!) are conditionally independent given the input data points
x(). The classifiers are then typically the neurons py, k = 1, ..., K for K classes
in the ultimate layer of the neural network. For probabilistic training of
the classifiers the neurons py must correspond to valid probabilities, namely,
px € [0,1]. In a probabilistic, rather than a frequentist perspective, this prob-
ability can also represent the belief that one has in the event k being true or
not.

4.2.1 Ensembles of sigmoid classifiers

For binary classifiers given K classes, the random variables ygi) € {0,1},..., yg)
€ {0,1} of the i-th sample correspond to the K independent predictions.
These K random variables follow a Bernoulli distribution, ylgl) ~ Bernoulli(p,(cl)
which means pj can be conveniently modelled by independent sigmoids,
that is
(i) ()(i) exp(z”)
pk :p(k |X): (i) (42)
1+exp(z,’)

where z](f) = h(x\) is the k-th logit computed by the neural network h(-)

on the input x(!). The probability output space of the Bernoulli random vari-
able is complemented by pi, such that py = 1 — py. This is guaranteed by

the normalization factor Clgl) =1+ exp(z](:)). Since binary classifiers work
independently for each class given a data sample, it is possible to use the
binary classifier in multi-label classification settings. As binary classifiers do
not consider the dependency between classes, their performance is usually
sub-optimal [116, 87, 138, 162].

We note that while sigmoid activation functions have been conflated with
binary and independent classifiers, their function is simply to return binary

56 Chapter 4. Quasibinary Classifiers for Image Classification

decisions. Being independent is a modeling choice. This is important to em-
phasize in the context of the proposed quasibinary classifiers that we intro-
duce later.

4.2.2 Softmax classifiers

When having multiple classes in the training set while knowing that each

image contains only a single class, i.e., #label = 1, the classifier neurons are

usually parameterized by softmax functions. The softmax function models

the probability of a categorical distribution parameterized by the means
exp(z](;))

(i))'

pi = p(y?|x@); #label=1) =
X eXP(Zj

(4.3)

We observe that both definitions of the binary classifier and the softmax
classifier in equations (4.2) and (4.3) have a similar form. The numerator is

(i)

precisely the same and equal to the exponentiation of the logit z, . We refer
to this as the scoring function s](cl) = exp(z,(cl)). The denominator, however, is
different. While in the binary classifier the denominator only depends on the
same logit z,(;), in the softmax classifier the denominator depends on the log-
its from all classes. This is beneficial for optimization, as using the logits from
all classes couples together the otherwise independent scoring functions and
trains them jointly.

Despite the popularity and accuracy of softmax over the binary classifier,
however, the softmax classifier also suffers from a limitation: the number of
labels is not always known at test time. Most notable for out-of-distribution
data (#label=0) and multiple-label data (#label=n). In both cases, the proba-
bility outputs are meaningless.

In this work, we are interested in defining a classifier that inherits the
flexibility of binary classifiers, while leveraging the prior knowledge of the
number of labels per sample that is given for free for optimization. To this
end, we present quasibinary classifiers. Quasibinary classifiers seamlessly han-
dle any-label (even zero-label) classifications like a binary classifier, but they
can be trained in a coupled way like softmax. They also return much more
calibrated probabilities as per the definitions recently introduced by Guo et

al. [51].

4.3. Quasibinary classifiers 57

4.3 Quasibinary classifiers

4.3.1 Definition

As with the ensembles of binary classifiers, we want binary decisions since
in the image there can be multiple classes present. That is, we have again

random variables ygl) € {0,1},.., yg) € {0,1} mapped to the binary output
space. Different from the ensembles of binary classifiers, we do not assume
that these binary classifiers are independent to each other. That is, we want
the likelihood terms of the random variables to be both binary and correlated.
In defining our model, we also start from Bernoulli random variables.
However, in the mean parameters of the Bernoulli distributions we introduce
a shared constant C that is not a random variable and is shared across all
likelihood terms across classes (like softmax) and -importantly- all images.
Namely, our Bernoulli variables are modelled as y,(cl) ~ Bernoulli(gy), where
() exp(z)) _ exp(z)

— gyl —
% =AU |X()IX\(i))_C(x(i),X\(i)) o) “d

Note that, as intended, the normalization constant is shared between sam-
ples and does not depend on specific classes. Therefore, the predictions
modelled by the Bernoulli random variables are still binary but not inde-
pendent. As such, quasibinary classifiers can seamlessly work in multiple-
label or zero-label setting, where an image may contain several objects from
different classes or none at all. In the case of multiple labels present in an im-
age, each of the Bernoulli variables shall return their confidence in the class
being present or not, albeit these confidences are not independent to each
other. And in the case the image contains no relevant objects, the Bernoulli
variables shall all return low confidence without being forced to either select
wrongly one of the classes as being present or to assign the same likelihood
to all wrong classes.

For the quasibinary classifiers we use the same scoring function as the
binary and softmax classifiers, that is an exponential exp(-), which ensures
positivity. Importantly, note that now the normalization function depends on
all the training data, C(X). Namely, we have a normalization function that is
shared across all classes and training data points, as it depends on the logits
of all the training data points. This is crucial, since (i) a shared normalization
function across classes is able to couple individual binary classifiers together,
thus jointly optimizing them while taking into account the knowledge of how
many labels are present. Moreover, (ii) having a shared normalization func-
tion across training data points allows the quasibinary scoring functions to
“communicate” with each other. Thus, the classifiers learn to predict con-
tidence scores that are comparable across classes and different data points,

58 Chapter 4. Quasibinary Classifiers for Image Classification

thus returning better calibrated probabilities.

As with ensembles of binary classifiers, the probability output space is
complemented by py = 1 — py, thus having the total sum p; + pr = 1, which
is a requirement for a valid probability space. Furthermore, for a valid prob-
ability space we need to make sure that 0 < py < 1, which is possible by a
careful choice of an activation function for the classifier neurons. In the end,
the joint likelihood is equal to

p(Y1X) =TTr1) =TTy 1x", X\), (4.5)

where the conditioning variables x(?), X, (i)) together make up for the X vari-
able in the normalization constant C(X).

Choosing normalization function C(X). Clearly, the choice of the nor-
malization function is critical. There exist several requirements.

First, we want our quasibinary classifiers to be jointly optimized while ex-
ploiting the free prior knowledge of the number of labels per training sample,
i.e.#label = nwheren € [0,1, - - - , K]. We can show that this prior knowledge
is equivalent to the following constraint in the predicted probability gy,

qu = #label. (4.6)
k

We provide the proof in the supplementary material. Note that the reason for
the sum of all g, being possibly greater than 1 is that the presence (or not) of
the various labels y; in a training sample is not mutually exclusive. As a spe-
cial case, consider #label=1, equation (4.6) is exactly what the softmax clas-
sifier enforces. A second requirement regarding the normalizing function is
computational tractability, as depending on all data, x(), X\ (i), Is potentially
prohibitive.

4.3.2 Algorithm

In the previous section we explained that the normalization function of qua-
sibinary classifiers is a function shared across classes and across data points.
As this normalization function is shared across all data points and classes, it
needs to be a constant function. This constant normalization function must
then be learned throughout the training so as to satisfy several constraints.
First, by the end of the training the probability estimates must lie within the
[0,1] range. Second, the normalization function must be trained to adhere to
the constraint of equation (4.6). That is, we want our quasibinary classifiers

4.3. Quasibinary classifiers 59

to satisfy
argmax) y]((i) log(q,((i)) (4.7)
ik
st g\ €[0,1) Vi k (4.8)
qu((i) = #labels'”) 4.9)
k

Similar to stochastic gradient descent, we rely on stochastic mini-batches B
instead of the whole training set.

Training. Rather than enforcing the constraint in equation (4.6) for all
samples, we relax the constraint to batch level for computational tractability.
Namely, given that our normalizing function is a constant we have that

B K . |
ZZQXP(ZI((Z))/C _ Z#label(l)
i k -

= Z Z exp(z (4.10)

zlk

where N is the total number of labels a batch of data has. Following [84]
we resort to Lagrange relaxation to derive the final learning objective and
optimize for the model parameters 6

1 B K (i) 0

= =YY - logg” — max(loggy”, 0), (411)
i=1k=1

where loggy =z ~logC (4.12)

The summands correspond to the losses by the gi likelihood terms. The
second term makes sure that g; yields by the end of the training a valid prob-
ability (in log-space the maximum probability is 0).

Note that because of the Lagrange relaxation, it is not theoretically guar-
anteed that q; will always be within the (0,1) range and thus yield a proba-
bility. However, we find the optimizer is able to find good enough solution
to satisfy the constraint. In practice, we only observed a negligible amount
(~ 0.1%) of violations i.e. (g > 1) on test data, which are simply clipped
to [0,1] to makes sure gy are proper probabilities. Similar optimizations for
learning to compute probabilities were also previously proposed in [28] with
success. Note also that during training time as the model gets updated per
iteration, C varies till convergence.

Training in batches. It is important to note that we define the normal-
ization function in equation (4.10) as a batch-level implementation of equa-
tion (4.6). This means that the number of labels changes per image. Also, just

60 Chapter 4. Quasibinary Classifiers for Image Classification

1.6e9 80 mean[C) | =—
Std[C‘r(llgrm] ——
8e8 60
0 Iteration 0 Iteration
Ok 30k 60k Ok 30k 60k
(a) Softmax (b) Quasibinary

FIGURE 4.2: The normalization function C(X) converges over
time to a constant value on CIFAR100. We observe that the
mean and variance of the softmax normalization are up to 8x
larger than for the quasibinary normalization. As we can see in
(a), the variance is extreme due to alternating spikes (we only
show a cropped range between 0 and 1.6e9). The fluctuations
continue with no convergence. That is expected, as for softmax
the normalization needs not to converge for accurate classifica-
tion. However, a fluctuating normalizing constant means that
scores between different images are hardly comparable. Over-
all, softmax behaves completely opposite to the quasibinary.

like other multi-label classification settings, the total number of classes K is
fixed both at training and test. As the training is in batches, with imbalanced
datasets it is important to account for the class frequencies in the batch con-
stitution. We simply follow the spirit of SGD to randomly select a mini-batch
of samples [49, 173, 18].

Testing. After training we substitute the normalization function C(X) in
equation (4.4) with the moving average of C(™28) as a constant to make
prediction at test time. Thus, unlike softmax classifiers that assume #label=1
on test data to compute normalization factor, we do not need to make any
such assumptions.

Moving average of normalization constant. Since it is inefficient to com-
pute at test time the normalization factor C based on training data, we track
a moving average of C(!) over training iterations,

C(mavg) _ (1 _ (X) . C(man) + - C(t), (4.13)

where C(*) is the constant normalization function at iteration t, see Fig 4.2.
This is similar to batch-normalization. Note that just like in batch normal-
ization, the a smooths out the fluctuations and helps the learnt constant to
converge to a single value consistent for all images, as shown in Fig. 4.2. Fur-
ther, we empirically find that the training is not negatively affected by the

4.4. Related work 61

moving average computation in terms of accuracy. We find that the algo-
rithm is rather robust in the choice of a with the differences in the variance
of C(Mav8) up to le-2. We find that setting & = 0.1 is good enough.

4.4 Related work

4.4.1 Zero-label problems

In general, zero-label data refers to irrelevant samples that belong to neither
class of the in-distribution training data. Recent deep models achieve good
accuracy on in-distribution data, but are known to be over-confident on out-
of-distribution data [61, 60]. Based on statistics of the softmax prediction,
Hendrycks and Gimpel [61] introduce a baseline detector to differentiate mis-
classified samples from out-of-distribution samples. They point out the soft-
max probabilities have a poor direct correspondence to model confidence,
but do not provide a solution. Liang et al. [92] find that using temperature
scaling and adding small perturbations to the input data increases the sta-
tistical significance of the softmax output for the in- and out-of-distribution
samples. This leads to an improvement in detection performance.

Passively detecting zero-label out-of-distribution data based on a trained
model is not enough. Rather, one may opt to build a model that is aware
of out-of-distribution data during training. To do so, Lee et al. [88] add two
additional loss terms upon the standard cross-entropy loss to train a soft-
max classifier. The first loss models out-of-distribution data by enforcing
the softmax to output a uniform distribution prediction. The second loss
guides a generative adversarial network to generate the most effective out-of-
distribution samples for training. In contrast, Hein et al. [60] introduce noise
data as out-of-distribution samples during training. With the same intention
as Lee et al. [88] to encourage an uniform distribution prediction for out-of-
distribution data, Hein et al. [60] propose a loss function that suppresses the
largest predicted confidence from softmax.

In this chapter, we continue the line of work on explicitly modeling out-
of-distribution data. However, instead of introducing new losses for the soft-
max classifier, we introduce the quasibinary classifier which is able to handle
out-of-distribution data by design.

4.4.2 Multi-label problems

In most real life classification problems, one sample may be associated with
multiple labels at the same time, rather than just one. For example, an im-
age from a social network can have multiple user tags and a medical im-
age may show none or multiple symptoms of a certain diseases. Multi-label
classification considers problems where the number of labels for a sample is

62 Chapter 4. Quasibinary Classifiers for Image Classification

unknown. The traditional strategy is to reduce the multi-label classification
problem to multiple binary classification problems [115, 162, 163, 18]. When
each class is being modeled independently, an ensemble of binary classifiers
is able to make multi-label predictions. However, as binary classifiers are
trained independently, their confidence scores lack calibration. As a result,
binary classifiers have difficulty when extended to multi-label problems with
a large number of classes.

Although softmax is exclusively designed for one-vs.-rest classification,
it is also being adapted to solve multi-label classification [127]. For exam-
ple, the softmax with cross-entropy loss is trained to push the prediction of
a multi-label sample to be an equally weighted multi-hot vector. However,
as softmax forces the sum of the output predictions to be one, a softmax clas-
sifier cannot provide credible confidence scores for multi-label classification
problems. Alternatively, one may transform a multi-label classification prob-
lem into a ranking problem [165, 49, 178, 91, 168]. Given training data, the
objective is to learn a model able to rank the most relevant labels above the
irrelevant ones. However, as such a strategy does not directly solve a classifi-
cation problem it cannot provide model confidence of the predictions. In this
chapter, we are interested in building a multi-label classifier that can provide
reasonable model confidence scores.

4.5 Experiments

In this section, we evaluate the quasibinary classifier on several classification
problems, with a variety of benchmark datasets and a Resnetl8 [57] back-
bone. Although the evaluation settings may depend on the specific problem,
the training settings are mostly the same. To avoid repeated description, we
tirst detail this common training setting for all models.

Common training protocol. All model parameters are randomly initial-
ized, following He et al. [58]. We use the SGD optimizer with momentum set
to le-4. The initial learning rate is set as 0.1 and decreased by a factor of 10
after 50% and 75% of the epochs. We train all the models for 200 epochs with
a batch size of 64. For the quasibinary classifier, we set the momentum of the
moving average used to track the normalization factor during training as 0.9.

4.5.1 One-vs.-rest image classification

Setup. First, we evaluate the performance of the quasibinary classifier on
the common image classification problem with one ground truth label per
image. While we are particularly interested in the comparison with the bi-
nary classifier, we also compare with the softmax classifier, known to be the
better solution for this problem. We choose four datasets, i.e. CIFAR10 [82],
CIFAR100 [82], Tiny-ImageNet and ImageNet [27] with {10, 100, 200, 1000}

4.5. Experiments 63

TABLE 4.1: One-vs.-rest image classification. Comparison of
top-1 error rate on CIFAR10, CIFAR100, Tiny ImageNet and Im-
ageNet, with the total number of classes being 10, 100, 200 and
1000. Binary classifiers are good for small amounts of classes,
but have difficulty to converge as the number of classes in-
creases. In that case our quasibinary classifier does much bet-
ter. For up to 200 classes it is even comparable with the softmax
classifier.

CIFAR10 CIFAR100 Tiny-ImageNet ImageNet

Binary classifier 4.8 35.4 X X
Quasibinary classifier (Ours) 4.9 21.9 429 25.4
Softmax classifier 5.2 22.2 43.3 23.9

classes respectively. The total number of images for each of the three datasets
are 60K, 60K, 110K, and 1200K, and for all datasets the images are equally dis-
tributed over each class. Except for the ImageNet experiments where we use
standard 224 x224 input size, we always use a 32x32 input size in order to
share the same network architecture. The top-1 error rate on the test sets is
reported.

One-vs.rest image classification results. We report results with models
trained with a Resnet18 [57] backbone in Table B.1. Similar results were ob-
tained with VGG16 and DenseNets, see supplementary material. The perfor-
mance differences between the binary classifier and our quasibinary classifier
are subtle on CIFAR10, when there are only a small number of classes. Al-
ready for 100 classes, on CIFAR100, our quasibinary classifier does much bet-
ter. When increasing the number of classes further the binary classifier fails
to converge. This is partially due to the fact that each binary classifier models
the likelihood prediction independently. We further suspect the optimization
difficulty of binary classifiers on large class dataset is due to the sigmoid ac-
tivation function, which is known to saturate easily [48]. Interestingly, the
quasibinary classifier is even competitive with the softmax classifier for clas-
sification problems up to 200 classes. For the more challenging ImageNet
setting with 1000 classes, the softmax classifier performs better, as expected.

4.5.2 Zero-label image classification

Setup. Next, we evaluate the performance of the quasibinary classifier in
modeling zero-label image data. In particular, our goal is to build a model
that is able to separate out data samples that belong to neither of the pre-
defined classes (out-of-distribution classes), while maintaining the classifica-
tion performance on the in-distribution classes. Similar to [88, 60], we use

64 Chapter 4. Quasibinary Classifiers for Image Classification

out-of-distribution data for training. Previous works [61, 92, 88, 60] con-
struct out-of-distribution samples by either taking natural image samples
from other datasets different from the training source or by synthesizing
noise images. As those out-of-distribution samples are usually easy to distin-
guish from the source dataset, and consequently most methods achieve near
perfect performance, we construct a new dataset based on CIFAR100.

In CIFAR60+40 the zero-label out-of-distribution data is created to have
more confusion with the in-distribution data. The original CIFAR100 dataset
has 20 coarse classes where each of them is subdivided into 5 fine-grained
classes. Thus, a total of 100 fine-grained classes are considered in CIFAR100.
We take the identical image data from CIFAR100 for CIFAR60+40, however,
for each coarse class, 2 out of the 5 fine-grained classes the labels are re-
moved, meaning they become our zero-label out-of-distribution samples. As
a result, images for 60 classes are retained as labeled in-distribution (IN) and
the images from the remaining 40 classes are treated as zero-label out-of-
distribution (OUT). Splits will be made available.

Baselines. We compare the quasibinary classifier with three methods for
modeling out-of-distribution data: 1) binary classifiers; 2) softmax classifier
with Lyniform loss [88] that minimizes KL-divergence of predicted probabil-
ity distribution for OUT samples w.r.t. a uniform distribution; and 3) softmax
classifier with Lygaxconf l0ss [60] that suppresses the predicted probability di-
mension with the maximum confidence for OUT samples.

Evaluation. We consider three metrics: 1) Accuracy on IN samples, 2)
Mean of Maximum Confidence (MMC) [60] for OUT samples and 3) AU-
ROC measure to evaluate how good a model can differentiate OUT from IN.

Results. We report results in Table 4.2. The quasibinary classifier and soft-
max with Lynpiform l0ss [88] obtain a similar accuracy on IN samples, but soft-
max with Lypiform loss fails to suppress the MMC for OUT samples. Com-
pared to the softmax classifier with Lyfaxcont 1l0ss [60], the quasibinary classi-
fier obtains a slightly better MMC performance on OUT samples, but a much
better accuracy is achieved on IN samples (80.6% vs 45.2%). What is more,
since [88, 60] optimize the softmax classifier towards a uniform distribution
prediction for OUT samples, they both have a theoretical upper bound for
MMC performance that is equal to 1/#classes. In theory, the quasibinary
classifier and binary classifier can both assign 0% confidence to OUT data.
However, in practice, we observe binary classifiers obtain a suboptimal per-
formance on the accuracy for IN data and MMC for OUT data. We conclude
our quasibinary classifier is successful in modeling zero-label samples.

4.5.3 Multi-label image classification

Setup. Last, we evaluate the quasibinary classifier for multi-label image clas-
sification on NUS-WIDE [21] and MS-COCO [97]. NUS-WIDE consist of

4.5. Experiments 65

TABLE 4.2: Zero-label image classification on CIFAR60+40.

Binary classifiers perform reasonable, but do not excel. Soft-

max based methods obtain good performance on either in-

distribution accuracy [88] or out-of-distribution MMC [60], but

cannot do both well. Our quasibinary classifier achieves good
performance on all measures.

IN OouT BOTH
Accuracy + MMC | AU-ROCt

Binary classifiers [128, 18, 162] 77.8 % 14.7 % 0.901

Softmax + Luniform [88] 80.7% 59.8% 0.800
Softmax + LyfaxConf [60] 452% 74% 0.764
Quasibinary classifier 80.6% 69% 0.913

TABLE 4.3: Multi-label image classification. Although the

softmax returns good predictions in multi-label settings, their

calibrated confidence scores (ECE) suffer compared to the pro-

posed quasibinary classifiers, even when softened with a tem-

perature. This indicates that softmax classifiers make unjustifi-
ably overconfident predictions.

MS-COCO NUS-WIDE
Fi+ ECE(%). Fi+ ECE(%).

Binary classifier [128, 18, 162] 51.2 26.8 40.7 23.6
Softmax [106] 54.7 322 432 25.8
Softmax w/ temperature [62] 54.7 314 43.2 24.6
Quasibinary classifier 54.7 2.8 435 3.3

260K Flickr images with 81 classes selected from high frequency user tags.
MS-COCO consists of 120K images that are labeled by 80 object classes. The
average number of labels per image for the two datasets are 2.41 and 2.94,
respectively. We follow Gong et al. [49] to remove 60K invalid images in
NUS-WIDE and split the rest into a 150K training set and a 50K test set. For
MS-COCO, we use the original training/validation splits, namely 82K for
training and 40K for testing. We compare three classifiers: 1) binary clas-
sifiers [128, 18, 162], 2) Softmax classifier [127, 173, 91] and 3) quasibinary
classifier. We follow the setting of Li et al. [91] to fine-tune a VGG16 [143]
backbone for 20 epochs. During test time, the top-4 most confident predic-
tions are outputted as suggested by Li et al. [91].

Evaluation. For evaluation, we first follow the conventional evaluation
protocol to report macro F; score, which assesses the quality of the confi-
dence score for ranking. However, we are more interested in how credible

66 Chapter 4. Quasibinary Classifiers for Image Classification

. o(a) Binary classifier (b) Softmax classifier (C) Quasibinary classifier

z2 Gap
-4 HEE Output

o°
0

°
o

N
>

Accuracy

et
N

ECE: 26.8% ECE: 32.2%

0.0 02 04 06 0.8 1.000 0.2 04 06 08 1.000 0.2 04 06 08 1.0
Confidence Confidence Confidence

o
=)

FIGURE 4.3: Reliability diagrams for multi-label classification

on MS-COCO, where being diagonal means a perfect calibrated

confidence prediction (with ECE=0). Our quasibinary classifier

achieves the best confidence calibration, leading to more credi-
ble confidence scores.

the predicted confidence scores are. Thus, we also report the Expected Cali-
bration Error (ECE) [51], which indicates how well the predicted confidence
score indicates the actual likelihood of the model to make a correct predic-
tion. Notice that ECE is mostly used to evaluate the reliability of the top-1
confidence in single-label classification problem. In our setting, we evaluate
the top-4 confidence reliability.

Results. We report results in Table 4.3. Regarding the F; score, the perfor-
mance of the quasibinary classifier and softmax are similar, while the binary
classifier is worse. This is mainly because binary classifiers do not use the
#labels as a prior during training. Considering the ECE score, we observe the
quasibinary classifier improves the reliability of the confidence predictions
over binary classifiers and softmax considerably. Further, we show in Fig. 4.3
the 10-bins reliability diagrams [51] as a visualization of the ECE score, where
being diagonal means the accuracy of test samples in each bin aligns with re-
ceived confidence score, i.e. perfect calibrated confidence prediction (with
ECE=0). We again observe the quasibinary classifier achieves the best perfor-
mance. Although modulating the temperature for softmax helps with over-
confident scores in one-vs-rest classification (data not shown), when multiple
labels are present the returned scores are still overconfident. The reason is
that even with multiple labels the sum of outputs remains 1 and more than
one logits must still share the “max” score. Last, we show qualitative results
in Fig. 4.4. We observe that only the quasibinary classifier is able to assign
high confidence to multiple correct labels at the same time. Most interest-
ingly, we observe quasibinary classifier helps to retrieve part of the missing
annotations with high confidence, e.g. “sunset” and “clouds” for the second
image of NUS-WIDE examples. We conclude that the quasibinary classifier
models multi-label classification problems with credible confidence scores.

4.5. Experiments

67

book: 13.
laptop: 13.
cell phone: 9.
mouse: 8.

(b) Softmax

laptop:
cell phone:
book :

bed:

13.5%
12.3%
11.3%

MS-COCO examples

(¢) Quasibinary classifiers (Ours)

laptop:100.0%
cell phone:
book:

bed:

i
(a) Binary classifiers

person: 98.9% person: 65.6% person: 92.5%
baseballglove: 1.0% car: 14.3% skis: 7.4%
baseball bat: 0.1% truck: 13.0% backpack: 0.1%
sports ball: 0.0% handbag: 1.5% snowboard: 0.0%
baseballglove: 34.4% person: 17.0% skis: 45.9%
person: 31.2% handbag: 12.9% person: 35.6%

sports ball: 14.9% car: 12.8% backpack: 10.8%
baseball bat: 13.3% truck: 10.9% snowboard: 2.4%
baseballglove:100.0% person:100.0% person:100.0%
person:100.0% handbag:100.0% skis:100.0%
baseball bat: 74.9% truck:100.0% backpack: 43.9%
sports ball: 63.5% car: 91.5% snowboard: 11.6%

NUS-WIDE examples

animal: 78.1% water: 28.5%
snow: 11.6% sky: 26.8%
dog: 6.1% clouds: 22.3%
person: 0.8% ocean: 14.6%
(b) Softmax classifier
animal: 36.7% ocean: 19.1%
snow: 28.2% sky: 17.6%
dog: 22.0% clouds: 15.8%
sky: 2.1% water: 13.6%
(¢) Quasibinary classifiers (Ours)
dog:100.0% water:100.0%
snow:100.0% sunset:100.0%
animal:100.0% sky:100.0%
sky: 20.4% clouds:100.0%

FIGURE 4.4: Multi-label image

buildings:
nighttime:

water:
reflection: 5.

nighttime:
buildings:

water: 15.
reflection:

water:
nighttime:
reflection:
buildings:

buildings:
reflection:

buildings:
window: 7.

person: 97.
dining table: 0.
cup: 0.

bottle: ©

person: 12.
bottle: 11.
dining table: 11.
cup: 7.

person:
bottle:
dining table:
cup:

sky:
mountain:
clouds: 17.
valley: 11.

valley:
mountain:
sky: 15.
clouds: 13.

mountain:
sky:
clouds:
valley:

classification with credible

confidence. We show the top-4 most confident predictions and
scores for all three classifiers, with the correct prediction be-
ing marked in bold font. The images are from NUSWIDE and
MS-COCO. While binary classifiers perform sub-optimal and
softmax has to enforce the predictions to be summed to one,
the quasibinary classifier provides credible confidence scores

by design.

68 Chapter 4. Quasibinary Classifiers for Image Classification

4.6 Conclusion

Softmax and binary classifiers face difficulties in image classification settings
beyond the regular multi-class classification. Characteristic examples are
multiple class, multiple label problems, where an image may contain more
than one object. Another example is the zero-label out-of-distribution prob-
lem, where the image may contain none of the relevant labels. To address the
limitations of binary and softmax classifers, we introduce the quasibinary
classifiers. Quasibinary classifiers define a novel normalization function that
is learnable, constant, and shared between classes and data points. This al-
lows them to compute probabilities that are better calibrated and, thus, more
directly comparable between classes as well other data points. We show in a
variety of settings and datasets that quasibinary classifiers are considerably
better in image classification settings where regular binary and softmax clas-
sifiers suffer, including zero-label and multi-label image classification. Im-
portantly, we show that quasibinary classifiers yield well calibrated proba-
bilities allowing for direct and reliable comparisons not only between classes
but also between data points.

69

Chapter 5

Vec2Bundle: Learning Class
Hierarchies

5.1 Introduction

While image classification has progressed in the last decade with leaps and
bounds, it is natural that with an ever-increasing number of finer and finer
classes more mistakes are inevitable. A root cause is the increasing visual
similarity as we move towards more fine-grained categorizations, as well as
the long-tail problem [102, 182, 121, 153] in collecting enough training exam-
ples for infrequently appearing classes. When classifying images, however,
we are not necessarily interested in the finest of categorizations if this in-
creases the chances of a misclassification. For instance, we are often content
with recognizing an “eagle” or even “bird” instead of a “Montagu’s Harrier”,
rather than confuse that bird’s image with an “airplane”. To accommodate
this a simple solution is to make predictions in bundles, where bundles con-
tain confused classes without further differentiation. As we cannot know
in advance which classes get confused or even what is the optimal way to
organize them in bundles, a common way is to group classes in terms of hi-
erarchy. Specifically, in this work, we want to learn class hierarchies from
data so that the resulting bundles balance between minimizing classification
mistakes while avoiding trivially true predictions.

Balancing accuracy and specificity is commonly achieved by semantic hi-
erarchies. However, semantic hierarchies are not always available for our
task at hand. Moreover, when available the primary goals of semantic hier-
archies are unaligned with the goals of visual categorization. The first goal
is to ensure each node has a semantic interpretation. The second goal is to
divide each node into mutually exclusive children nodes, or groups, till the
finest possible categorization. From the standpoint of visual classification,

©2020 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Re-
served.

70 Chapter 5. Vec2Bundle: Learning Class Hierarchies

o o) Bicycle O
O Motorcycle O Wheeled vehicle
: o) Tractor (o} O
fo) O Pickup truck O Motor vehicle
O Bus (@)
© O O O Streetcar O -O
o) Train (o} Public transport
O Neckbrace O
o Tripod o Support
o) Pier (o} ~O
O Maypole O
(A) Vec2Bundle Hierarchy (B) Semantic Hierarchy

FIGURE 5.1: Vec2Bundle learns a class hierarchy that is fine-

grained, captures visual confusion, and even carries certain se-

mantics while being able to balance accuracy and specificity
like traditional semantic hierarchies.

the intermediate semantic interpretations may very well be irrelevant. Fur-
thermore, the way of grouping may not even be optimal due to bias in exper-
tise or annotation collection. For instance, although the supernodes “bird”
and “fish” are of the same depth in ImageNet, the sub-hierarchy of “bird” is
much deeper than the sub-hierarchy of “fish”. All in all, relying on seman-
tic hierarchies to balance the accuracy and specificity trade-off is not always
optimal.

In this chapter, we propose hierarchies learned directly from the data to
optimize the accuracy vs. specificity trade-off. We argue that the main point
behind a hierarchy should be to maximize the information gain, that is to
minimize the number of misclassifications while maximizing the relevance
of the prediction. As the misclassifications typically happen between visu-
ally similar classes, e.g. a “bus” and a “streetcar”, by grouping the two we
would arrive at a correct prediction while losing a bit of prediction relevance.
Grouping classes has been proposed before [25, 5, 103, 129], using however
existing semantic hierarchies like WordNet [112], iNaturalist [154], and Wiki-
data [155]. We propose, instead, to learn these hierarchies from the ground
up and by combining classes that are confused together. Interestingly, this
comes in contrast to standard discriminative learning that pushes the con-
fused classes apart in order to maximize separation.

In this chapter, we propose a generalized accuracy-specificity trade-off
framework that can tackle the above limitations. Our contribution can be
summarized as follows: 1) We propose the Vec2Bundle hierarchy, a visual-
data driven hierarchy that is learned through class prototype embedding, to
help balance accuracy vs. specificity. 2) We propose a negation rule to com-
pute a probabilistic hierarchy, making it possible to extend the current frame-
work in balancing accuracy vs. specificity to multi-label image classification.

5.2. Related work 71

5.2 Related work

Hierarchical classification considers an image classification problem where
a class hierarchy present. A class hierarchy H describes the abstractions
among classes V = {V;}M,, which can be encoded as a set of acyclic “is-
a” relations €={Vparent <= Vchia} [112]. The class hierarchy is often thought
of as a tree [129, 118, 103] or in a more general way as a directed acyclic
graph [26]. Thatis, H = (&,V). The task of hierarchical classification is to
learn a classification function f(-) that maps the input image X to the output
Y, which is possibly a node on the hierarchy [141]. In a probabilistic frame-
work, the classifier function f : X — Y can be decomposed into a likelihood
function p : X — P, where P=[py,-- -, ppm]| is the posterior for each class, and
a predictor function 7 : P — Y that decides the final output label(s) Y given the
posteriors. Thatis f(X) = (wop)(X) — Y. Previously, extensive attention
has been put on improving p for better top-1 accuracy and efficiency [129,
62, 172], making better mistakes [7], semantically aware in hyper-spherical
space [43, 5] or hyperbolic space [77, 100, 103]. However, the attention on the
predictor 7t has been largely overlooked. In this chapter, we mainly focus on
the design of 7t to balance accuracy vs. specificity.

Accuracy-specificity trade-off can be achieved by a predictor 7 that fol-
lows a certain prediction policy. Depending on whether the structure be-
tween class labels are considered or not, we identify two types of predictors
from the literature: unstructured and structured predictors. Unstructured pre-
dictors are a class of predictors that return a bundle of labels without con-
sidering the structure between class labels. In the one-vs.-rest classification,
Top-K predictor is a natural fit [134, 83, 143, 75, 157, 91] where the trade-
off between accuracy and specificity can be achieved by varying K, i.e. the
trade-off parameter. As an example, Top-1 predictor 1= argmax(P) is the
most specific, while in contrast, Top-5 predictor 7= arg sort5(P) is more ac-
curate. For multi-label classification threshold-based predictor is used [19,
29] to return a set of labels with confidences higher than a threshold, i.e.
i={ly | px > threshold}. Li et al. [91] learns a linear regression model to
predict the number of output labels K as well as a confidence threshold for
each test image. Since this class of predictors does not take into account any
prior knowledge of class-correlation, their prediction bundle consists of arbi-
trary combinations and in principle would have 2N possible patterns (where
N is the number of classes). This huge output space makes it difficult to
develop an optimized trade-off between accuracy and specificity.

In contrast, a structured predictor makes predictions following fixed pat-
terns. This is usually achieved by leveraging a class hierarchy. We con-
sider the leaf nodes of the class hierarchy are the N most specific classes, i.e.
C=[l,l---,In] C V. Given the class hierarchy, a predictor should predict

72 Chapter 5. Vec2Bundle: Learning Class Hierarchies

either leaf nodes (the most specific classes) or internal nodes. While model
confidence increases from leaves to the root, the specificity of the predic-
tion decreases since returning an internal node as prediction is essentially
equivalent to making a prediction on the bundle of its leaf nodes. As a
result, there are different predictors proposed in the literature to optimize
such accuracy-specificity cost of selecting a node in the hierarchy [26, 67].
The MAX-REW predictor [26], mvax-Rew, takes a confidence threshold 6 as
the trade-off parameter and predicts the node with the highest information
gain among those with probabilities greater than or equal to 6. DARTS [26],
ipARrTS, outputs the node with the maximum expected reward, which is
learned as a function of a trade-off parameter A. Since the class hierarchy
regularizes the patterns of the prediction bundles, the output space for struc-
tured predictors is much smaller, i.e. |V|. In this chapter, we continue the line
of work on structured predictors. However, the hierarchy is to be learned
from the data rather than predefined by human experts.

Building class hierarchy Hinton et al. [62] consider a classification prob-
lem on very big datasets with tens of thousands of classes. They build a
two-layer hierarchy of classes by performing K-means clustering on the co-
variance matrix between classes. With the top-level classification problem
being solved by a classifier called generalist, the second level classes on dif-
ferent branches are handled by a set of paralleled trained classifiers called
specialists. Yan et al. [172] build a hierarchical deep CNN that follows a simi-
lar two-level hierarchy. Such hierarchy is the result of spectrum clustering on
the confusion matrix from a flat classifier. Their model separates easy classes
using a coarse category classifier while distinguishing difficult classes using
fine category classifiers. Unlike [62], their model can be trained end-to-end.
Bengio et al. [6] emphasize the importance of hierarchical structure in dealing
with a large number of classes. They learn a disjoint tree-structure of labels
by optimizing the overall tree loss that encourages the learnability of classi-
fication problems specified by such a tree. Following this direction, Deng et
al. [25] further builds a balanced label tree to help accuracy vs. computational
efficiency trade-off. They highlight that such a balanced label-tree can be si-
multaneously learned along with the set of classifiers associated with each
tree node. In this chapter, we are more interested in building a class hier-
archy that is dedicated to resolving confusion and thus favors the accuracy-
specificity trade-off.

5.3. Learning Class Hierarchies 73

Class Embeddin Class Hierarchy
e : °
A A éHierarchicaI IR
X L, . == 1 °
Al clustering l I Ho‘
o i AAAAAAAA

FIGURE 5.2: Learning a class hierarchy is achieved by first

training a deep neural network to embed class-prototypes,

and then applying a hierarchical clustering. We call this the

Vec2Bundle hierarchy. In comparison to a semantic hierarchy,

our Vec2Bundle hierarchy captures both the visual and seman-
tic correlation between classes.

5.3 Learning Class Hierarchies

Although a semantic hierarchy ensures each node to have semantic meaning,
it is often not the optimal structure when performing an accuracy vs. speci-
ficity trade-off. First, handcrafted hierarchies are not balanced due to human
interests or expertise, and second, it does not take into account visual con-
fusion. We propose a method to discover a hierarchy from the data. While,
in theory, the learned hierarchy does not represent semantics, in practice we
observe that a good proportion of the learned nodes correspond to semantic
themes. As summarized in Fig. 5.2, our method discovers a class hierarchy
by clustering a class prototype embedding learned from a classification net-
work.

Class prototype embedding. To build a class prototype embedding, we start
from the design of a fully-connected (FC) layer. In the last FC layer, given
the feature vector X for image X, the N-way logit outputs [zq, -+ ,zn]T are
obtained by comparing X with all pairs of weights and bias tied to each class:

(W1, b1) z1
. Wo, b z
x 1O 55 (> 2) | _ 20 (5.1)
base network : :
(W, bN) ZN

where { (W], by) |k=1--- N} are FC parameters. In most works, the last layer
is implemented as a linear mapping, i.e. zx=wj] X + by, where the output logit
z connects to the loss function. During training, wy and X are updated si-
multaneously. We notice such a learning process does not yield a meaningful
embedding space where Wy and X are comparable. This is because logit zj
does not explicitly encode the similarity between Wy and X, but rather the
relative strength w.r.t. other logits z; (j # k). Thus, upon convergence, the
value of z; € (—o0, +00) cannot interpret the correlation between wy and X.

74 Chapter 5. Vec2Bundle: Learning Class Hierarchies

As a consequence, the learned Wy cannot be treated as an embedding of class
prototypes.
To fix this, we propose to learn class prototypes by replacing the last linear
mapping with a squared Euclidean distance mapping i.e.:
2 %||2
dp = M’ (5.2)
Tk

where 7y is a positive scaling factor and dy > 0. Given the squared Euclidean
distances for all classes, i.e. [dy,- - - ,dy], the final likelihood estimation of an
image being the k-th class for a one-vs.-rest classification problem is com-
puted together with softmax, which gives
o o2
efdk exp (—IBL) e

K X)
o7 Loexp(i) L K(R, R

Pr= (5.3)

where (-, -) € (0,1] is an RBF kernel, a proper similarity measure between
Wy and X. In this setup, K(Wy,X) — 1 indicates an image X is closely cor-
related to the k-th class, and vice versa. Thus, once the majority of images
from the same class are mapped to a shared local embedding space, Wy nat-
urally becomes their representative, i.e. the class-prototype. Moreover, when
images from the j-th class and the k-th class have confusion with each other,
both K(%;,X) and IC(wk, X) will have a similarly high value, which helps to
pull class-prototypes w; and wy close to each other. Subsequently, structures
between classes are implicitly created. We refer to this proposed layer as the
RBF embedding layer.

The likelihood estimation for multi-label classification problems is nor-
mally done by modeling N independent binary classifications using a sig-
moid function. However, the sigmoid function requires an input value in
(—o0, 400) whereas Eq. 5.2 only produces d € [0, +o0). To bypass this limi-
tation, instead of generating one single logit value per class, we propose to
compute a pair of logits:

[|lwy — x| _ ?
df ="k " and d, = —k 5.4)
‘ T - T
where W' is the prototype for the k-th class and W, is an auxiliary prototype
for not being the k-th class. The final likelihood estimation of p; becomes a

softmax form:

e % K(w,,X)
ph=—f5——> = LA (5.5)
e i +e i

5.4. Extending to Multi-label Classification 75

That is, the multi-label classification problem is solved by N independent
binary softmax classifiers.

We learned the proposed embedding layer following standard Maximum

Likelihood Estimation. Once the network converges, we extract the weights
of the last embedding layer {W;} and treat them as class prototypes.
Extract class hierarchy. Given the learned class-prototypes {Wy}, next, we
extract class hierarchy based on their distance in the embedding space. To
this end, we compute the pairwise distance between the class-prototypes and
performance an agglomerative hierarchical clustering [109] to group them
into bundles in a bottom-up fashion. This results in a class hierarchy with
its leaf nodes as all N classes. Since we learn class-prototype with a squared
Euclidean space, we wish the linkage criteria, i.e. distance measure between
clusters, also works in such space. To this end, we use Ward linkage crite-
ria [164], where a pair of clusters (A, B) will be merged if the total within-
cluster variance d(A, B) is minimum, i.e.

d(A,B)= Y |[[W;—muusl?

i€ AUB
— Y || —mgu P = Y ||W; — gl (5.6)
i€A i€B

where m; is the center of cluster j. In doing so, we are able to discover the
most confused combination of classes at each step, with the least loss in speci-
ticity. We coin such extracted hierarchy the Vec2Bundle hierarchy.

Now, with the learned Vec2Bundle hierarchy, a structured predictor is
able to balance accuracy-specificity for one-vs.-rest classification, as it is em-
pirically shown in our experiments. However, extending such a framework
to multi-label classification is non-trivial as we will discuss next.

5.4 Extending to Multi-label Classification

Given a class hierarchy in multi-label classification, be it a Vec2Bundle hier-
archy or a semantic hierarchy, we explore in this section for the first time how
to perform the accuracy vs. specificity trade-off in a multi-label setting. In a
probabilistic framework, the first step is to assign each node in the hierarchy
with a probability score that is non-decreasing along the path to root. There
are two approaches to achieve this: top-down [113, 129] and bottom-up [7].
The top-down approach [113, 129] follows the product rule [137, 79] and
starts from the root to build a tree of probabilistic classifiers at each branching
node. The probability for each node is conditioned on all the nodes from the
root to that node. The bottom-up approach [7] follows the sum rule [183]. The
probability of an internal node is computed by summing up the probability
of its children. However, both approaches assume that the leaf nodes are

76 Chapter 5. Vec2Bundle: Learning Class Hierarchies

mutually exclusive. These assumptions are typically violated for multi-label
classification. To this end, we propose a negation rule, for computing inter-
nal confidences where leaves are not mutually exclusive like in a multi-label
scenario.

Negation rule. We start by revisiting the event of an image is eligible to
be labeled with an internal node V. Assuming V has leaf nodes {I,--- ,I,},
such event is equivalent to an image has at least one label from the leaf nodes
of V. Thus the event V happens when an image does not have any label from

its leaf nodes. The probability can be written out as P(V)=P(l; - - - I,), which
can be further expanded to P(I;) - - - P(l,) by assuming that the leaf nodes are
independent. Thus the probability for V can be written as:

P(V)=1=P(V) =1—-P(Iy)--- P(L)
=1—-J] (@ —P)). (5.7)

i=1n

It can be shown that the probabilistic hierarchy computed from the nega-
tion rule also satisfies the property of non-decreasing hierarchical probabil-
ity, just as the product rule and sum rule do. That is, P(A) > P(B) if node
A is the ancestor of node B in the hierarchy. We show the proof in the sup-
plementary materials. However, the negation rule does not ensure that the
probability for the root node is 1. Therefore, we propose to re-calibrate the
confidences by scaling the probability of all nodes by a factor of the reciprocal
of the root probability, so that the root probability is always 1.

Predictor. Now, with predicting internal probabilities, a structured predic-
tor is able to balance the accuracy-specificity trade-off. We use a variant
of the MAX-REW predictor, called MaxK-REW, for multi-label classification.
Rather than returning a single prediction that maximizes the reward in speci-
ticity, a MaxK-REW returns K most specific predictions on the hierarchy among
those nodes satisfying a confidence threshold, i.e. trade-off parameter, 6. Thus,
varying 6 from low to high results in multi-label predictors that range from
the most specific to the most accurate.

5.5 Experiments

In this section, we evaluate the accuracy vs. specificity trade-off with our
Vec2Bundle hierarchies for general classification problems on several datasets.
We first detail our experimental setup in Seciton 5.5.1. Then, we provide an
ablation study in Section 5.5.2. It is followed by the evaluation of trade-off
performance for one-vs.-rest classification in Section 5.5.3. Last, we demon-
strate a multi-label trade-off classification in Section 5.5.5.

5.5. Experiments 77

CIFAR100 CIFAR100 (Predictor: DARTS) 0770 CIFAR100 (Predictor: DARTS)
s

0.760

0.750 07501

0.725

0.730

720

Specificity

Specificity
P
Specificity

o o
3 2 g 3

0650 0.710

)\ \ —e— ward

251 —e— Structured: DARTS ToRe 06251 —e— RBF embedding 07001 -e-- centroid

—e— Structured: MAX-REW \ —e— Linear embedding \ —— single

0.600 A 0.600 \ 0690

+— Unstructured: Top-K Top5 +— Label embedding \ *- complete
- - 0.680

0.90 095 0.75 0.80 0.85 0.90 095 078 080 082 084 086 088 090 092 094

075 0.80 0.85
Accuracy Accuracy Accuracy

(A) Structured or unstruc- (B) Influence of embeddings (C) Sensitivity to linkage cri-
tured predictor? teria

FIGURE 5.3: Ablations on Vec2Bundle hierarchy for single-
label image classification. Equipping structured predictors
with class hierarchy prevails over unstructured predictors. In
building such a class hierarchy, the RBF class-prototype embed-
ding and ward linkage criteria for class clustering are essential.

5.5.1 Experimental setup

Datasets. Although the proposed Vec2Bundle hierarchy is motivated by the
absence of semantic hierarchy in the majority of classification, for sake of
comparison, we experiment with datasets that include a semantic hierar-
chy. Specifically, we consider CIFAR100 [82], ILSVRC65 [26] and ImageNet
Large Scale Visual Recognition (ILSVRC) 2012 [27] for one-vs.-rest classifica-
tion problem, and MS-COCO14 [97] for multi-label classification. These 4
datasets have 100, 57, 1000, 80 classes respectively, which form the leaf nodes
of the hierarchy.

Hierarchies. The semantic hierarchy of CIFAR100 is created by Barz and
Denzler [5], which is a strict tree-shaped structure. The hierarchy has 62
internal nodes in total, with a maximum depth of 8. Following the Word-
Net [112] ontology, Deng et al. [27] construct ImageNet by collecting and or-
ganizing images into a semantic hierarchy. The original hierarchy is not a
strict tree. Following [129], we use a trimmed version of the hierarchy that
keeps the shortest path to the root for each node if there is more than one
path. The hierarchy has 372 internal nodes, with a maximum depth of 16.
ILSVRC65 has the simplest semantic hierarchy with 8 internal nodes with a
maximum depth of 16. For MS-COCO, we adapt the semantic hierarchy for
the “things” category of COCO-Stuff [13]. We clean the original hierarchy
by renaming the duplicate node names with different names. All hierarchies
will be released.

Implementation. Since the likelihood function is not the focus of this pa-
per, we always adopt ResNet18 [57] as the backbone for assigning class con-
fidences to each image. All the models are trained from scratch with the
weights of the backbone network being randomly initialized following He et

78 Chapter 5. Vec2Bundle: Learning Class Hierarchies

al. [58]. For our proposed FC layer, we randomly initialize weights W from
a Gaussian distribution N(0,0.005) and fix 7y as constant 1. The whole net-
work is trained with an SGD optimizer with momentum set to le-4. We use a
weight decay of 0.0005 for CIFAR100 and 0.0001 for the other datasets. Note
that we exclude the learnable weights of the last layer from being penalized
by the weight decay regularization. This gives the class prototypes more
freedom to move in the embedding space so that class-to-class relationships
can be captured. We train the network for 120 epochs on CIFAR100, and 90
epochs on the other datasets. The initial learning rate is set to 0.1 and de-
creased by a factor of 10 at 50% and 75%. As predictor, we use DARTS and
MAX-REW with the trade-off parameter 6=[0,0.1, - - - , 1.0]. Since the DARTS
predictor needs a hold-out dataset to learn the trade-off parameter, we al-
ways split the original training set into a train-set and validation-set with a
ratio of 4:1. The evaluation is always carried out on the original test set.
Metrics Following [26], we use a normalized version of information gain to
measure the specificity of a prediction. Given a prediction bundle Y={I; | i €
1--- N}, the specificity is defined as:

_ log, Y|

r(Y) =1 (5.8)

log, N’

where N is the total number of classes and |Y]| is the size of the prediction
bundle. Therefore, in the case of a structured predictor on the class hierarchy,
making predictions on a single leaf node receives a specificity 1 (|Y|=1) and
at root node receive 0 (]Y|=N). Further, the accuracy and specificity for a
predictor 7 on the entire test dataset is defined as the expectation over each
test sample, i.e.:

Acc(m) =E(L [|[Yn Y| > 0]), (5.9)
Spec(m) =E(L [|[YN Y| > 0] -r(Y)), (5.10)

where) is the ground truth and 1 [-] denotes the Iverson bracket that returns
1 when the expression inside is true, and 0 otherwise.

5.5.2 Ablations

We ablate Vec2Bundle’s ability to balance accuracy and specificity in image
classification on CIFAR100.

Structured or unstructured predictor? In this ablation, we compare the Top-
K unstructured predictor with the structured MAX-REW and DARTS [26]
predictors. The structured predictors use our Vec2Bundle hierarchy. We
show the comparison in Fig. 5.3a. The MAX-REW predictor and Top-K pre-
dictor start at the same point on the upper left. This is because when the

5.5. Experiments 79

trade-off parameter 6 of MAX-REW starts at 0, MAX-REW predicts the most
likely leaf node, which is the same behavior as a Top-1 predictor. As 6 and
K increases, we observe MAX-REW clearly outperforms Top-K. This demon-
strates that the structured bundles defined by the class-hierarchy are more
effective in resolving confusion than the unstructured bundles of a fixed size
of K. Further, we observe DARTS obtains better performance than MAX-
REW. This owns to DARTS ability to learn the optimal trade-off parameters
on a validation set while MAX-REW used pre-defined trade-off parameters.
We conclude class-hierarchy helps the structured predictor to regularize the
predictor and outperform the unstructured predictor. In the following exper-
iments, we only report results for the best performing structured predictor,
i.e. DARTS.
Influence of embedding. Next, we verify the influence of the embedding
when building the Vec2Bundle hierarchy, with the same clustering algorithm.
We consider two other embeddings in addition to our class-prototype em-
bedding: 1) the weights of the last layer implemented by the linear mapping
and 2) a label embedding method by Habibian et al. [54] that maps class-
prototypes and image representation into a shared space and optimizes with
a quadratic error loss. We report results in Fig. 5.3b. We observe our RBF em-
bedding obtains the best performance. The performance of the label embed-
ding method is sub-optimal, we suspect this is because the quadratic error
loss is not as stable as the cross-entropy loss where the RBF layer and linear
layer are learned. We conclude the proposed class-prototype embedding is
most suitable for building the Vec2Bundle hierarchy.
Sensitivity to linkage criteria Last, we show how different linkage criteria,
i.e. the distance measure between two clusters, for the hierarchical cluster-
ing affect our result. We compare our choice, i.e. Ward’s criteria, with three
other common choices: ‘centroid’-linkage, ‘single’-linkage, and ‘complete’-
linkage. The ‘centroid’-linkage considers the Euclidean distance between the
centroid of each cluster, i.e. the arithmetic mean of all elements. In contrast,
the ‘single’-linkage and ‘complete’-linkage consider the nearest or farthest
pair of elements from two clusters respectively. We report results in Fig. 5.3c.
Despite the ‘centroid’-linkage being the most natural choice, it results
in a hierarchy that performs the worst for trade-off. We suspect this is be-
cause these criteria rely on Euclidean distance whereas the class-prototype
is learned in the squared Euclidean distance space. Further, we observe
‘complete’-linkage performs slightly better than ‘single’-linkage, possibly due
to the fact of avoiding ‘chaining phenomenon’. The ‘ward’-linkage performs
the best, it is able to find the two most confused clusters to merge. We con-
clude the hierarchical clustering is sensitive to linkage criteria and it is crucial
to take into account the learning space of the class-prototypes in choosing the
proper linkage criteria. Thereupon, we stick to ‘ward’-linkage in our experi-
ments.

80 Chapter 5. Vec2Bundle: Learning Class Hierarchies

CIFAR100 (Predictor: DARTS) ILSVRC65 (Predictor: DARTS) IMAGENET (Predictor: DARTS)

078
0.75 LT —
073

Z o070

0.68

Specifici
Specificity
o
3
Specificity

—e— Semantic Hierarchy
0.637 -e-- Learned Hierarchy (Hinton) \\
--4-- Learned Hierarchy (HDcnn) \\ 3 --4-- Learned Hierarchy (HDcnn) \ -4-- Learned Hierarchy (HDcnn) \

—e— Vec2Bundle Hierarchy (Ours) \\\ ‘yy —e— Vec2Bundle Hierarchy (Ours) ‘, 0351 —e— Vec2Bundle Hierarchy (Ours) “

—e— Semantic Hierarchy
--- Learned Hierarchy (Hinton)

—e— Semantic Hierarchy

0.40 --- Learned Hierarchy (Hinton)

085 0.90 075 080 085 090 0.5 075 080 085
Accuracy Accuracy Accuracy

FIGURE 5.4: Balancing accuracy vs. specificity for single-label

image classification by comparing Vec2Bundle with alternative

hierarchies. While a semantic hierarchy demonstrates superior-

ity over two previously learned hierarchies [62, 172], our pro-

posed Vec2Bundle hierarchy balances accuracy and specificity
best.

5.5.3 Balancing accuracy vs. specificity for single-label image
classification

Setup. Next, we compare our Vec2Bundle hierarchy with alternative hier-
archies in terms of their accuracy-specificity trade-off performance on three
image classification datasets. As baselines, we consider two learned class hi-
erarchy alternatives proposed by Hinton et al. [62] and Yan et al. [172]. Hinton
et al. [62] generate their hierarchy by applying K-means clustering on the co-
variance matrix w.r.t. each class. Yan et al. [172] resort to spectral clustering
on a confusion matrix of the validation set. For both of the two methods,
we set the ratio of the number of clusters vs. the number of leaf nodes as
1:10. A summary of the hierarchy statistics is provided in the supplementary
materials.

Result. We report results in Fig. 5.4. We first observe the HDcnn hierarchy
by Yan et al. [172] demonstrates better performance on CIFAR100 than the
one by Hinton et al. [62]. This is because, in HDcnn, the ground truth la-
bels from the validation set are used to construct a confusion matrix, which
captures more accurate model confusions. Hinton et al. [62] prefer a simpler
solution with a covariance matrix where a validation set is not needed. Inter-
estingly, we observe the two baseline methods have similar performance on
ILSVRC65 and ImageNet. This is partially due to the image resolution of CI-
FAR100 (32x32) being much lower than ILSVRC65 and ImageNet (224x224).
As a result, the visual confusion on ILSVRC65 and ImageNet is hard to be
captured by simply clustering on the confusion/co-variance matrix. Hence,
the semantic hierarchy performs better than the two baselines on all datasets,
showing semantic groupings are more efficient in resolving confusion. Over-
all, we observe our Vec2Bundle hierarchy consistently outperforms all hi-
erarchies, be they learned or semantic, on all datasets. We attribute this to

5.5. Experiments 81

COCO14 (Predictor: Max1-Rew) COCO014 (Predictor: Max3-Rew) COCO14 (Predictor: Max5-Rew)

Specificity
Specificity
Specificity

¥
11 —e— Semantic hierarchy —e— Semantic hierarchy —e— Semantic hierarchy
ol ~*- Vec2Bundle hierarchy (Ours) 00/ —®- Vec2Bundle hierarchy (Ours) 00/ —*- Vec2Bundle hierarchy (Ours)

0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00 0.75 0.80 0.85 0.90 0.95 1.00
Accuracy Accuracy Accuracy

FIGURE 5.5: Balancing accuracy vs. specificity for multi-label

image classification by comparing Vec2Bundle with a semantic

hierarchy. Vec2Bundle hierarchy helps MaxK-REW predictor
achieve better balancing performance in multiple predictions.

the learned class-prototype embedding and the agglomerative clustering in
discovering the hierarchy. We conclude Vec2Bundle hierarchy is suitable for
balancing accuracy and specificity in single-label image classification.

5.5.4 Semantics in the Vec2Bundle hierarchy

Setup. In this experiment, we assess whether the learned Vec2Bundle hier-
archy captures semantics. Since the semantic hierarchy is the only source
of semantics that we are certain about, we propose to match for each inter-
nal node Y={I;} on a source semantic hierarchy Hg. to a closest internal
node Z={l;} on the target Vec2Bundle hierarchy Hig. The quality of all such
matchings reflect how much semantics the target Vec2Bundle hierarchy car-
ries. Quantitatively, we measure this with an overall matching score defined
as:

YNZ
g

where |Y N Z| and |Y U Z| are the cardinalities of the intersection and the
union of set Y and Z in term of the leaf nodes. As such, if every semantic node
Y can be exactly matched to a Vec2Bundle node Z, the overall matching score
will be 1. Note that this measure is non-symmetric, i.e. m(Hge — Higt) #
m(Htgt — Hgrc). We evaluate on CIFAR100 and ImageNet the matching score
from the semantic hierarchy to other Vec2Bundle hierarchies learned by Hin-
tonet al. [62], HDcnn [172] and ours. As references, we also report the match-
ing score between the semantic hierarchy on CIFAR100 we used throughout

the experiment [5] and another simpler semantic hierarchy Hﬁiinmapﬁfﬁz defined

by Krizhevsky et al. [82] that only contains two levels of coarse categories and
fine-grained categories.

82 Chapter 5. Vec2Bundle: Learning Class Hierarchies

Source — Target | CIFAR100 | ImageNet
Hsemantic — HveCZbundle (Hinton) 0.47 0.31
Hsemantic — HveCZbundle (HDCHH) 0.61 0.32

Hsemantic — Hvechundle (Ours) 0.74 0.56
impl
Hegmantic = HEmPe) 0.70 -
Hézlrrnnfnz)c — Hsemantic 0.78 -

TABLE 5.1: Semantics in the Vec2Bundle hierarchy. Our

Vec2Bundle hierarchy performs the best among the competi-

tors, and comes close to the reference score between two se-

mantic hierarchies, showing that a good amount of semantics

is captured by our Vec2Bundle hierarchy without being explic-
itly instructed to do so.

Result. We report results in Table 5.1. Hierarchies from HDcnn show better
semantic matching than hierarchies from Hinton et al. We attribute this to the
extra information of the ground truth label on the validation set HDcnn uses.
Overall, our Vec2Bundle hierarchy outperforms both HDcnn and Hinton et
al. on both CIFAR100 and ImageNet, with a matching score of 0.74 and 0.56
respectively. In the meanwhile, we notice that the matching score between
two semantic hierarchies on CIFAR100 is 0.70 and 0.78, which are quite close
to the matching score of ours, i.e. 0.74. This shows a good proportion of
nodes on our Vec2Bundle hierarchy are semantically meaningful. Further, we
show a 2D visualization of the class-prototype embedding with T-SNE [105]
in supplementary materials, where the captured semantics can be identified.
We conclude our Vec2Bundle hierarchies are able to learn a certain amount
of semantics.

5.5.5 Balancing accuracy vs. specificity for multi-label image
classification

Setup. Last, we evaluate the accuracy-specificity trade-off for multi-label
classification on the MS-COCQO14 dataset. We consider both the semantic
hierarchy and Vec2Bundle hierarchy learned with Eq. 5.5. As mentioned in
Section 5.4 the leaves are not mutually exclusive and the associated classi-
fiers are independently trained, so we adopt the negation rule (Eq. 5.6) in
deriving a probabilistic hierarchy for the trade-off. Note that directly extend-
ing the information gain to define specificity on multi-label classification can
be nontrivial since the output follows a Multivariate Bernoulli distribution
[23], which has a rather complex probability mass function. Thus, we simply

5.6. Conclusion 83

borrow the form of the specificity definition in Eq. 5.8 for each of the multi-
label predictions, and the total specificity w.r.t. one test example is their av-
erage. Since the multi-label predictor 77 returns multiple predicted nodes on
the hierarchy per image example, the accuracy definition is slightly differ-
ent. Specifically, each prediction is evaluated to be 1 if at least one of the leaf
nodes hit the ground labels, otherwise 0. We average all evaluation outcomes
on one image to get correctness value per-image. The final accuracy is the ex-
pectation of the correctness value on all test images. We evaluate Max1-REW,
Max3-REW, and Max5-REW predictor in this experiment.

Results. We report results in Fig. 5.5. First, all of the three plots show
accuracy vs. specificity is possible for multi-label classification, justifying the
correctness of the proposed negation rule in deriving a probabilistic hierar-
chy. Second, we observe that the semantic hierarchy has a better performance
with the Max1-REW predictor. This is because a predictor with Vec2Bundle
hierarchy tends to predict bundle with smaller sizes, resulting in a low recall
of ground truth labels. However, when the number of predictions increases
to 3 and 5, i.e. Max3-REW and Max5-REW, the proposed Vec2Bundle hierar-
chy consistently outperform semantic hierarchy. We attribute this to the cap-
tured relationships, such as visual similarity and contextual co-occurrence,
between class by our embedding space. We show the 2D visualization of
class-prototype embedding on MS-COCO14 in the supplementary materials.
We conclude balancing accuracy vs. specificity on multi-label classification
is feasible with class hierarchies, and the Vec2Bundle hierarchy helps MaxK-
REW predictor achieve better balancing performance in multiple predictions.

5.6 Conclusion

We introduce a visual data-driven hierarchy, called Vec2Bundle, for balanc-
ing accuracy vs. specificity in image classification. The Vec2Bundle hierarchy
is extracted from a class-prototype embedding layer that is trained discrim-
inatively. In comparison to a semantic hierarchy, our Vec2Bundle hierarchy
is cheap to obtain and shown to better balance accuracy vs. specificity. Sur-
prisingly, we find the Vec2Bundle hierarchy carries a considerable amount
of semantics without being instructed to do so. Further, we introduce a new
tool, called the negation rule, in computing the probabilities on the hierarchy
that has non-mutually exclusive leaf nodes. This enables Vec2Bundle to be
extended to multi-label classification. We conclude Vec2Bundle hierarchy is
suited to balance accuracy vs. specificity for both one-vs.-rest classification
and multi-label classification.

85

Chapter 6

Conclusion

This thesis strives to answer “How to better utilize geometry for better image un-
derstanding?”. This question is answered from two aspects, namely, geometry
in visual image understanding and geometry in semantic image understand-
ing. In Part I of this thesis, we study the roles of 3D geometry for visual
image understanding. We first show that it is possible to automatically ex-
plain a variety of visual contents in the image with texture-free 3D shapes,
by searching the closest 3D shape from a database and then matching it onto
the 2D image. Furthermore, we develop a deep learning framework to re-
liably recover a set of 3D geometric attributes from a 2D image. In Part II,
we explore label geometry for semantic image understanding. We show that
a set of image classification problems have geometrically similar probabil-
ity spaces. To this end, we introduce label geometry, unifying one-vs.-rest
classification, multi-label classification, and out-of-distribution classification
in one framework. Moreover, we show that we can learn hierarchical label
geometries to better model image classification tasks, when a class hierarchy
is used to balancing the accuracy and specificity of an image classifier. Now,
we return to the four research questions raised in Chapter I.

6.1 PartI. Deep learning with 3D geometry

How to search and match texture-free 3D shapes to a 2D image?

We answer this question in Chapter 2, where we set our goal as searching
and matching the best-rendered view of a texture-free 3D shape to an object
of interest in a 2D query image. Matching rendered views of 3D shapes to
RGB images is challenging because, 1) 3D shapes are not always a perfect
match for the image queries, 2) there is great domain difference between ren-
dered and RGB images, and 3) estimating the object scale versus distance is
inherently ambiguous in images from uncalibrated cameras. In this chapter,
we propose a deeply learned matching function that attacks these challenges
and can be used for a search engine that finds the appropriate 3D shape and
matches it to objects in 2D query images. We evaluate the proposed matching
function and search engine with a series of controlled experiments on the 24

86 Chapter 6. Conclusion

most populated vehicle categories in PASCAL3D+. We test the capability of
the learned matching function in transferring to unseen 3D shapes and study
overall search engine sensitivity w.r.t. available 3D shapes and object local-
ization accuracy, showing promising results in retrieving 3D shapes given 2D
image queries.

While the deeply learned matching function shows its viability in com-
paring the rendered view to a 2D image, the drawback of this approach is
its computational cost - a total of 2,541 comparisons are encountered in pro-
cessing a single image. As a future work, one direction to reduce the number
of comparisons would be to integrate the viewpoint estimation from a sin-
gle image. In this case, we may generate a quick initial guess of the 3D ob-
ject pose from viewpoint estimation. Then, comparisons between rendered
views and a 2D image are restricted to a few nearby poses.

Is it possible to train deep neural networks that output continuous
estimations of viewpoints, rotations, and surface normal from a 2D image
in a reliable and accurate manner?

This research question is answered in Chapter 3. We depart from the ob-
servation that many computer vision challenges require continuous outputs,
but tend to be solved by discrete classification. The reason is the natural con-
tainment of classification is within a probability n-simplex, as defined by the
popular softmax activation function. Regular regression lacks such a closed
geometry, leading to unstable training and convergence to suboptimal lo-
cal minima. Starting from this insight we revisit regression in convolutional
neural networks. We observe that many continuous output problems in com-
puter vision are naturally contained in closed geometrical manifolds, like the
Euler angles in viewpoint estimation or the normals in surface normal esti-
mation. A natural framework for posing such continuous output problems
are n-spheres, which are naturally closed geometric manifolds defined in the
R("*1) space. By introducing a spherical exponential mapping on n-spheres
at the regression output, we obtain well-behaved gradients, leading to sta-
ble training. We show how our spherical regression can be utilized for sev-
eral computer vision challenges, specifically viewpoint estimation, surface
normal estimation, and 3D rotation estimation. For all these problems our
experiments demonstrate the benefit of spherical regression.

One limitation of the proposed spherical regression is that it can only han-
dle the spherical 3D targets. However, we may also be interested in quite a
few 3D targets that are non-spherical, for example, depth information and
3D bounding box. These targets are quite common in 3D computer vision
and are mostly linear. Thus, for further work, it is worthwhile to extend the
spherical regression for the linear targets. For this purpose, the challenge
could be to find a natural containment in linear space in replacement of a
n-sphere.

6.2. PartII. Deep learning with label geometry 87

6.2 PartII. Deep learning with label geometry
How to leverage the label geometry to unify image classifiers?

This question is answered in Chapter 4. In classical image classification
problems, the softmax and binary classifier are commonly preferred solu-
tions. We note that softmax has a closed label geometry, i.e. the probabil-
ity simplex, and thus can be trained stably. However, as softmax is specif-
ically designed for categorical classification, it assumes each image has just
one class label. This limits its applicability for problems where the num-
ber of labels does not equal one, most notably zero- and multi-label prob-
lems. In these challenging settings, binary classifiers are, in theory, bet-
ter suited. However, as they ignore the correlation between classes, they
are not as accurate and scalable in practice. In this chapter, we start from
the observation that the only difference between binary and softmax classi-
fiers is their normalization function. Specifically, while the binary classifier
self-normalizes its score, the softmax classifier combines the scores from all
classes before normalization. Based on this observation, we introduce a nor-
malization function that is learnable, constant, and shared between classes
and data points. By doing so, we arrive at a new type of binary classifier that
we coin quasibinary classifier. We show in a variety of image classification
settings, and on several datasets, that quasibinary classifiers are considerably
better in classification settings where regular binary and softmax classifiers
suffer, including zero-label and multi-label classification. What is more, we
show that quasibinary classifiers yield well-calibrated probabilities allowing
for direct and reliable comparisons, not only between classes but also be-
tween data points.

Despite quasibinary classifiers do not need to know the number of labels
per sample at test time, they largely rely on knowing the accurate number
of labels at training time. However, previous works [171, 1, 180, 123, 175]
show that the annotations we use to train classification models are in fact
noisy - it is not rare to have missing labels or wrong labels for training sam-
ples. This may cause quasibinary classifiers to have biased estimations of
normalization function at training time. For this reason, we believe studying
the normalization function in the noisy annotation setting is a worthwhile
further direction for quasibinary classifiers to pursue.

How to infer the label geometry from image classification to balance
accuracy vs. specificity?

This question is answered in Chapter 5. In image classification, a class hi-
erarchy is an import label geometry to balance accuracy vs. specificity. With
the class hierarchy, a classifier may choose to predict an internal node in-
stead of the most specific leaf node to avoid confusion, and by doing so,

88 Chapter 6. Conclusion

improve accuracy. Previous approaches in balancing accuracy vs. specificity
rely on manually defining a semantic hierarchy of classes, and are also lim-
ited to the one-vs-rest classification problems. In this chapter, we introduce
a new embedding layer that is able to learn by discriminative training of
class-prototypes. From the trained class-prototypes then a visual hierarchy
is extracted. We refer to this embedding as Vec2Bundle. Further, by introduc-
ing a negation rule in deriving probabilities on the hierarchy, we are the first
to enable a trade-off on multi-label hierarchical classification, wherein pre-
vious approaches that was infeasible due to the exclusiveness of leaf nodes.
We validate the effectiveness of Vec2Bundle key components with ablation
experiments and compare with the state-of-the-art in balancing accuracy and
specificity for both single-label and multi-label image classification. Interest-
ingly, it appears that Vec2Bundle can capture semantics without being explic-
itly instructed to do so.

Setting aside we have shown the learned hierarchies are better at balanc-
ing accuracy and specificity than manually defined counterparts, the learn-
ing stage of a hierarchy and the balancing stage for accuracy and specificity
are independently optimized in our solution. Thus, finding an end-to-end
solution that directly optimizes a class hierarchy towards an optimal per-
formance in balancing accuracy vs. specificity can be a fruitful direction to
explore in the future.

6.3 Closing remarks

In this thesis, we have explored the geometry for image understanding. Ge-
ometry, as a structural descriptor, exists ubiquitously not only in 3D space
but also in semantic space. While we are only able to skim the surfaces of
both topics through a limited stretch of discussions, we have revisited the
importance of 3D geometry for visual image understanding and have gener-
alized the label geometry in probabilistic models for semantic image under-
standing. Under the current frameworks of deep learning, we have shown
geometry is either useful in explaining the visual content of a 2D image or is
crucial in building probabilistic models to associate images with semantics.
Along the journey in making computers to see the world in the same way as
we human beings see, we believe endeavors in exploiting the 3D geometry
and label geometry are valuable and rewarding.

89

Appendix A

Supplementary Materials for
Spherical Regression

A.1 S!: Viewpoint estimation with Euler angles

We show the viewpoint estimation network architecture used in this chap-
ter in Fig. A.1. Given ResNet101 as backbone to provide a shared Pool5
feature (with 2048 output unit), we have 3 branches to estimate azimuth,
elevation and in-plane rotation (theta) angels. Each branch begins with a
fully-connected layer (Fc8), with 1024 output units, and makes a prediction
for the 12 categories in Pascal3D+. Our prediction head is composed of two
components: 1) absolute value prediction and 2) sign prediction.

Fe8 gero
(1024 boat

azimuth Héﬂ,’:___,b [lcosal, [sinal]

1 ——— L [sign(cos a), sign(sin a)]
Pool5 ’ :

(2048)."
- aero

e boat

layati car [|cosel, |sinel|]
elevation ,

/ ——— L [sign(cos e), sign(sin e)]

Resnet101

. dero
.. [] boat
theta~. || car [lcost|, |sint|]

——— L [sign(cos t), sign(sin t)]

FIGURE A.1: Network architecture for viewpoint estimation
by Euler angles on Pascal3D+.

We show the fine-grained evaluation in Table. A.1. In comparison with

Penedones et al. [124], spherical regression improves the performance in all

evaluation metrics, namely Acc@{%, {5, 7 }-

90 Appendix A. Supplementary Materials for Spherical Regression

We report the class-wise performance comparison in Table. A.2. Prokudin
et al. [125] wins the most categories under MedError metric (5 out of 12).
However, they made a larger mistake on difficult categories like boat, where
the visual appearance has larger variance. For Acc@% metric, our method
wins the most (6 out of 12 categories). In comparison with Penedones et
al. [124], adding spherical regression module consistently helps increase the
accuracy across almost all categories.

TABLE A.1: Viewpoint estimation with fine-grained evalua-

tion on Pascal3D+. We report results of Acc@{ %, {5, 77} T Re-

sults generated by spherical regression module (Sg’xp) have a
better alignment to the ground truth models.

MedErr| Acc@7 T Acc@f; T Acc@g; 1
Penedones et al. [124]t 11.6 83.6 66.3 359
This chapter: [124]t+ S}, 9.2 88.2 74.1 46.0

T Based on our implementation.

TABLE A.2: Category-wise evaluation of viewpoint estima-
tion on Pascal3D+.

Method aero bike boat bottle bus car chair table mbike sofa train tv mean
Mahendran et al. [107] 145 226 358 93 43 81 191 306 188 132 73 160 16.6
5 Tulsiani et al. [151] 13.8 177 213 129 58 9.1 148 152 147 137 87 154 136
5 Mousavian et al. [114] 136 125 228 83 3.1 58 119 125 123 128 63 119 111
2 Suetal. [145] 154 148 256 93 36 6.0 97 108 167 95 6.1 126 117
= Penedones et al. [124]+ 123 115 313 69 44 71 122 139 131 77 70 121 116
Prokudin et al. [125] 9.7 155 456 54 29 45 131 126 118 9.1 43 120 122
Grabner et al. [50] 10.0 156 19.1 86 33 51 137 11.8 122 135 6.7 11.0 109
Mahendran et al. [108] 8.5 148 20.5 70 31 51 93 113 142 102 56 11.7 10.1
This chapter: [124]t+ ‘ngp 9.2 11.6 20.6 73 34 48 82 85 121 87 6.1 101 9.2
Mahendran et al. [107] N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
© Tulsiani et al. [151] 0.81 0.77 059 093 0.98 0.89 0.80 0.62 0.88 0.82 0.80 0.80 0.808
& Mousavian ef al. [114] 0.78 0.83 057 093 094 090 0.80 0.8 0.86 0.82 0.82 0.85 0.810
% Su et al. [145] 074 0.83 052 091 091 0.88 0.86 0.73 0.78 090 0.86 0.92 0.820
< Penedones et al. [124]+ 0.80 0.85 048 0.96 094 091 0.84 0.70 0.86 095 0.84 091 0.836
Prokudin et al. [125] 0.89 0.83 046 0.96 093 090 0.80 0.76 090 090 0.82 091 0.838
Grabner et al. [50] 0.83 0.82 0.64 095 097 094 0.80 0.71 0.88 0.87 0.80 0.86 0.839
Mahendran et al. [108] 0.87 0.81 0.64 0.96 097 0.95 092 0.67 0.85 097 0.82 0.88 0.859

This chapter: [124]t+ S} 0.88 0.88 0.61 0.96 097 093 093 074 0.93 0.98 0.84 0.95 0.882

exp

1 Based on our implementation.

A.2 S%: Surface normal estimation

We show the visualization of surface normal prediction in Fig. A.2. The re-
sults from Zhang et al. [179] are smoother than our results from spherical

A.3. S3: 3D Rotation estimation with quaternions 91

regression, but it makes some mistake with quite large surface area, e.g. the
wall on the picture at row 3 column 2. In terms of boundaries, our results
tend to be sharper. This is mainly due to the classification branch, which
forces the prediction to choose the main direction in one out of four quad-
rants. Overall, our results maintain more details than Zhang et al. [179].

Input
image

Ground
Truth

Zhang et al.

This chapter:
Zhang et al.
+SZ

FIGURE A.2: Visualization of Surface Normal Estimation on

NYU v2. Predictions are made by model: “Zhang et al. [179]”

and “Zhang et al. [179] + ngp”. While results from Zhang et

al. [179] are smoother, our method generates sharp boundaries
and thus maintains details.

A.3 S% 3D Rotation estimation with quaternions

We show a class-wise performance comparison based on Acc@7% in Fig. A.3.
Since we are predicting the 3D rotation just from a single image, it can be seen
that categories with high degree of symmetry have worse performance, e.g.
bathtub, desk, night-stand and table. In comparison with the regression of
quaternion with flat VGG16, spherical regression consistently helps increase
the accuracy.

We show a visualization of 3D rotation estimation in Fig. A.4. The first
row is the ground truth input images. We render the predicted rotations from
VGG16 and VGG16+S§’xp in second and third rows. We can see our result
have a better alignment to the ground truth models.

92 Appendix A. Supplementary Materials for Spherical Regression

Y VGG16 (Direct regress) el VGG16+Ssat

o
o
1

=1 VGG16+S3,,

(=)
o
1

Acc@n/12
Ey
o
1

N
o
1

o

FIGURE A.3: Class-wise comparison of 3D rotation estimation

on ModelNet10-SO3. Categories with high degree of symme-

try are observed to have worse performance, e.g. bathtub, desk,

night-stand and table. Spherical regression module (s;j’xp) con-

sistently helps increase the performance over flat regression of
quaternion by VGG16.

Ground Truth ; 4 |

VGG16+Sya

VGG16+S3, ’ \ \ i
-— \ Y

FIGURE A.4:

A
’,.wlll\\
-
—

Visualization of 3D rotation estimation on
ModelNet10-SO3.

A.4 Derivation of Jacobian for 5S¢, and S,

First, we provide detailed derivation of Eq. 7 in the main chapter. Given the
¢> normalization form:

pj =8(0;0) = —TC (;j()ok)z

with arbitrary univariate mapping f(-), we have:

A.4. Derivation of Jacobian for Sfj,; and Sexp 93
df (o) 9
i _ ao ASO) G (A1)
aOi A2)
df(o; df (o;
B —{i(o(:]) - A= f(oj) pi- L N
_ 1 [df(o)) df (o)
_Z[do; PP T (A.3)
fﬁf") “(1—pi-pj), whenj=i
R P oy Ad)
a- (0—pi-pj), whenj#i
where A = /Y f(0x)?.
Thus the Jacobian matrix of g : O — P is as follows
opP oP oP opP
[9P0 9Po 9Po
doy dop doy
apr Ip I
— dog d0q 90y, (A6)
o o o
L dog doq 00y,
1-pope —pipo - —pupo | | TR o
— 1— cee = 01
_ P_0P1 ?1P1 . dePl A (A7)
| —PoPn —P1Pn 0 1 —pupn f/EZn
pora pipo - papol) [FA o
e 01
|1 PO:P1 P1:P1) Pn:P1 A (A.8)
PoPn Pi1Pn - PnPn '(on)

A4.1 Sgy case

In this case, we only take flat /; normalization on O to obtain P, namely
. This means f(0;) = o; and f'(0;) = 1. Thus Eq. A.8

pj = g(0;;0) =

becomes:

\/ Lk 0%

94 Appendix A. Supplementary Materials for Spherical Regression

oP
Jsflut:%
poPo PiPo - PnPo % .
_ | [porr papL o pupn X
pPoPn P1Pn - PuPn
_ P P 9P,
a 800,801’ ,aOn
1
=(I-P®P)

where ® denotes outer product.

A42 Sy case

(A.9)

(A.10)

BN

(A.11)

(A.12)

In this case, we take spherical normalization on O to obtain P, namely pj =

g(0;;0) = zio(je"k)f This means f(0;) = €% and f’(0;) = €%. Thus Eq. A.8
becomes:
oP
T = 305 (A.13)
PoPo P1Po - - PnPo Po
|- PO.Pl Pl.Pl : Pn.Pl P1 (A.14)
PoPn P1Pn - PnPn Pn
= (I—P-P") diag(P) (A.15)
= (I-P®P)-diag(P) (A.16)
where ® denotes outer product.
opP TN s
JSuy = 30 = (I-—P-P")-diag(P) (A17)

95

Appendix B

Supplementary Materials for
Quasibinary Classifier

B.1 Proof of Eq. (4.6)

Given gy as the probability for a sample to be the k-th class, we will prove
that the sum of all g; equals the total number of labels (#label) in the sample
(Eq. (6) in the main chapter), i.e.:

Y gi = #label (B.1)
k

As a quick explanation, we first show a simple example. The mathemati-
cal proof is followed after.

Example. Let us consider a 3-class problem, e.g. {A, B,C} and for a spe-
cific sample we have #label=2. We can decompose the Bernoulli probabilities
P(A), P(B) and P(C) for each class into the summation of joint probabilities
from a set of mutually exclusive joint events. The decompositions are:

P(A) = P(ABC) + P(ABC) (B.2)
P(B) = P(ABC) + P(ABC) (B.3)
P(C) = P(ABC) + P(ABC) (B.4)

Note that #label=2 indicates a sample can only have 2 labels, thus proba-
bilities like P(ABC), P(ABC) are 0, since they correspond to #label=1 and
#label=3. As a result, we have

P(A) + P(B) + P(C) (B.5)
=2 x (P(ABC) + P(ABC) + P(ABC)) (B.6)
=2x1 (B.7)

=#label (B.8)

96 Appendix B. Supplementary Materials for Quasibinary Classifier

Problem definitions. Let us now consider a K-class problem. We define a
binary random variable Y, € (2 = {0,1} as the event for a data sample to
associate with the k-th label (Y; = 1) or not (Yy = 0). Thus, P(Y}) follows
Bernoulli distribution, and we have

P(Q)=p(Ye=1)+p(Vk=0) =1 (B.9)
and P(Yx) €[0,1], (B.10)
where O = {Y;, =0,Y, = 1}.

If we assume Y7, - - - , Y are independent w.r.t. to each other, we naturally
have

K
0< ZP(Yk) < K, where {Y} are independent.
k

But now, given the constraint of #label = n, Y7,---,Yg are no longer
independent. Essentially, Eq. (6) in the main chapter need us to prove:

K
ZP(Yk =1)=mn, given #label=n. (B.11)
k

Proof. We denote the event set @ = QX as the joint probability for a sample
to have/not have each of the K labels as:

]:(Yl,"‘,Yk,"',YK)EQD

Since each Y} has a binary choice and they are mutually exclusive, the
joint event space @ is of size ||®|| = 2K, and

Y P(J) =1 (B.12)

Jed

Now, we know a sample only has 7 labels, i.e. #label=n, the non-zero
probability of joint event | corresponds to the n-combinations of choosing
n classes out of K to have Y; = 1. We denote such a subset of the joint events

space as @(Irf), which has a size of (I;) = n!(lﬁn)!.
Y. P(J) =1, when #label=n. (B.13)

Jeo()

Decomposing binary event p(Yy = 1) as the summation of the joint prob-

ability like equations (B.2),(B.3),(B.4), we observe each | € CD(I;) contributes
n times in such a decomposition of each binary event p(Y; = 1) separately.

B.1. Proofof Eq. (4.6) 97
Thus, according to equation (B.13), we get:
K
Y p(Yk=1)=nx Y P()=n (B.14)
k

98 Appendix B. Supplementary Materials for Quasibinary Classifier

B.2 More results on One-vs.rest image classifica-
tion

TABLE B.1: One-vs.-rest image classification. Comparison of

top-1 error rate on CIFAR10, CIFAR100 and Tiny ImageNet,

with the total number of classes being 10, 100, and 200. Binary

classifiers are good for small amounts of classes. Quasibinary
classifiers are competitive with softmax.

CIFAR10 CIFAR100 Tiny-ImageNet

ResNet18
Binary classifiers 4.8 35.4 X
Quasibinary classifiers (Ours) 4.9 21.9 42,9
Softmax classifiers 52 22.2 43.3
DenseNet40
Binary classifiers 8.6 X X
Quasibinary classifiers (Ours) 6.7 32.6 55.0
Softmax classifiers 6.4 31.2 53.0
VGG16
Binary classifiers 6.1 25.8 X
Quasibinary classifiers (Ours) 8.3 25.5 48.9
Softmax classifiers 8.0 25.8 48.7

x: Failed to converge.

99

Appendix C

Supplementary Materials for
Vec2Bundle

C.1 Non-decreasing property of negation rule

In Section 4 of the main chapter, we discuss the problem of balancing ac-
curacy with specificity for multi-label classification. For this purpose, we
introduce a negation rule for deriving the probabilities of internal nodes on
a class hierarchy given the probabilities of the leaf nodes. Since an internal
node corresponds to the event that an image is relevant to at least one of the
leaf nodes of such internal node, the higher level internal node on the hi-
erarchy should correspond to a higher probability. Therefore, we need the
resulting probability derived from the negation rule to satisfy this property.
We now prove the negation rule guarantees P(A) > P(B) if node A is the
ancestor of node B.

Proof. Let us first rewrite node A and B as a set of their leaf nodes, i.e. A =
{Lili € [1,N]} and B = {;|j € [1,N]}, where N is the total number of leaf
nodes. According to the negation rule, we have:

P(A)=1-TT(1-P()) (C.1)
LA

P(B)=1—-J](1—-P(1)) (C.2)
l;eB

Since A is the ancestor of B, we have B C A, and as a result A = BU A\B.
Thus, P(A) can be rewritten as:

P(A)=1-TT(-P()- TT (1-P() 3)

liEB ZJEA\B

Since probability are all within [0, 1], we have [Tica\n (1—P(l;)) < 1. Thus

[Ta-Pu)) [T Q=P@)) <] -PWE)) (C4)

liEB ZJEA\B liEB

100 Appendix C. Supplementary Materials for Vec2Bundle

Combine Eq. C.2,C.3,C .4, we arrive at P(A) > P(B).

C.2 Experimental details

C.2.1 Statistics of hierarchies

We show in Table. C.1 the statistics of class hierarchies that we experimented
with in Section 5.3, for balancing accuracy vs. specificity of single-label image
classification. In comparison, Vec2Bundle hierarchy has a similar or higher
height than semantic hierarchies as well as the two learned hierarchies [62,
172]. In terms of the number of internal nodes (#Inter), Vec2Bundle hierar-
chies have the largest number. Since each internal node corresponds to a
different bundle of leaf nodes, Vec2Bundle hierarchies have the richest bun-
dle patterns available for balancing accuracy and specificity. Moreover, we
also show the mean and standard deviation of the number of direct children
the internal nodes have. These two statistics reflect how fine-grained and
balanced the branches on the hierarchy are. As we can see, Vec2Bundle has
a mean of 2.0 (Mean(#child)) and a standard deviation of 0.0 (Std(#child))
on all 3 datasets. That is to say, all the internal nodes on the Vec2Bundle
hierarchy have exactly two children (i.e. binary tree). This is attributed to
the hierarchical clustering algorithm we adopted, where a pair of the closest
clusters are merged at each clustering step. Subsequently, making prediction
to an internal node one level higher by the classifier only sacrifices the least
amount of specificity (information gain), which is inversely proportional to
the number of leaf nodes of such internal node. We conclude the hierarchical
structure of the Vec2Bundle hierarchy makes it suitable for balancing accu-
racy and specificity in single-label image classification.

C.2.2 Visualization of class-prototype embedding

To have a qualitative view of how the learned embedding from the proposed
RBF embedding layer (Section 3) captures the class relationships, we visual-
ize class-prototype embedding with T-SNE [105] in 2D. Fig. C.1 and Fig. C.2
show the results.

Class-prototype embedding for single-label classification We show in Fig.
C.1 the 2D visualization of the class-prototypes learned on CIFAR100. Quite
a few semantic meaningful local structures can be observed such as {‘cup’,
‘bowl’, ‘plate’}, {"sunflower’, ‘tulip’, “poppy’, ‘rose’, ‘orchid’} and {‘oak_tree’,
‘pine_tree’, ‘willow_tree’, “‘palm_tree’}. Moreover, we also observe a few vi-
sually correlated local structures such as {’bicycle’, ‘motorcycle’}, {“'worm’,
‘snake’} and {"plate’, ‘clock’}. These local structures reflect the confusion pat-
terns a single-label classifier may experience and thus are potentially helpful
for accuracy-specificity trade-off.

101

C.2. Experimental details

-0eds Surppaquud S Ur PaAIdSqo
are ({ oo, pue ,ae[d,} “§3) pajerar1od Afrensia 10 ({,9e[d, /,;moq, *,dnod,} §-3) y3uruesws A[feonuewas are
Jey) saInjonus [ed07 "00LYVAID uo (g ur Surppaquid sad£jojoxd-ssed yo uonezifensia gNS-L :1°D TANOI]

(0)74 0c 0 0Z- ov—
5
Emongﬂu:o« b n_<
uewv leyy 20el
uewon? _ weoq dwel UoISINS[9] -
t_w g Soy Puoydder Y - 0¢
qe wum Q_< ue¥ aqoiplem
yunyy ?op« amod
uoodoel wiom dn¥
v
%w%o%wca:u_oa oeud ¥ L o1
Jnesoutp XOly ooyefuey Joiswedl
M v J1nbsy 912Ad1q v
piedod] Tobn u_ggmh_ M nodl a|pA21030W¥
uolf Emmxmouew v Jamow umel
; PIEZI isqom abuelo jaddad 3eams Jopesf Lo
sonead qe.y woouysnuF v v N1y dmpid
aazuedwiyy FE 4 jeuy Jead sidde suef MJQ
ucmcww_%tmmﬁw je3s Japidsy . JESELYE AT A
[pwed 313ed Uydoeoud0dv v
ysiae? 311994 sad” Ad1ng asnoy L o1
=) 4 v
sjun? yeysy Aeliidisredy apsed.
uiydio A ot Jadeinshyd 20PUd
sley —wny piy2ud
ysiy wnienbe 3so 19307 oeo? oz
diny¥Y YAddod eas¥, ¥
Jsamopuny pno|Y c_<_
urejunow
2211 wjed
dauy auld¥ 1550, - 0€
mwblv_mo<< mm«b|>>o___>>
9943 9|dew :

Appendix C. Supplementary Materials for Vec2Bundle

102

)

20 A
Hmﬁ%m_mj Lie Aerson
£ell phogemckpack
P $andyag case
v sed A3p%tted plant EBU_,m__m»m ifain
10 1 i Hook bench
cisso icvel .
frair gotte nwm:u_mwm Kurfboard ?oﬁ%_nnvv%%zmﬁmcoma Snekisoar
£
o Aining tabiane glass £lock aoilet
) tor Ao0othbrus cat
nife oven foas _ hairdriepeprg
cake 407K POBow] inicrowave ging fog b
. Jefrigerator ot shegow drisbgate
P1zza AQirarre LJOq.mm
LHear
£eddy bedit sandwich leph
—10 1 £lephant
of 3o bird
%n_,mw_ﬂ. POrgngs! boat
! e .
t
panana Aire :vmﬁmmﬁm_@:
bmﬂx_:_@ meter
—20 - fruger Araffic light
Hus
ennis racket
ports ball
=301 pRasshgLelove
-30 =20 -10 0 10 20 30

FIGURE C.2: T-SNE visualization of class-prototypes embedding in 2D on MS-COCO. Class dependencies
in terms of co-occurrence are observed in the embedding space.

C.2. Experimental details 103

CIFAR100 Height #Inter Mean(#child) Std(#child)

Semantic 9 63 2.6 1.4
Hinton [62] 3 11 10.0 5.5
HDcnn [172] 3 11 10.0 25.7

Vec2Bundle (ours) 11 99 2.0 0.0

ILSVRC65 Height #Inter Mean(#child) Std(#child)

Semantic 4 8 8.0 9.0
Hinton [62] 3 6 10.3 9.9
HDcnn [172] 3 6 10.3 16.9

Vec2Bundle (ours) 11 56 2.0 0.0

ImageNet Height #Inter Mean(#child) Std(#child)

Semantic 16 372 3.7 3.0
Hinton [62] 3 101 10.9 11.7
HDcnn [172] 3 101 10.9 89.0

Vec2Bundle (ours) 16 999 2.0 0.0

TABLE C.1: Statistics of hierarchies in Section 5.3. The inter-

nal nodes of Vec2Bundle hierarchies have the largest popula-

tion (#Inter), the smallest number of the mean (Mean(#child))
and standard deviation (Std(#child)) of children.

Class-prototype embedding for multi-label classification We show in Fig. C.2
the 2D visualization of the class-prototypes learned on MS-COCO14. In com-
parison to the class-prototype learned on single-label classification problem,
visually-correlated local structures are less common in this case. Instead,
we observe local structures capture co-occurrence relationships are more of-
ten, e.g. {cup” and ‘bottle’}, {’knife’,’fork’,’spoon’, ‘bowl’}, {"remote’, ‘couch’},
{"toilet’, “toothbruch’}. This is because an image with multiple class-labels is
learned to embed its feature representation X to stay close to multiple class-
prototypes at the same time. This in return forces classes that frequently
co-occur in the same image to share a local embedding structure.

We conclude the learned class-prototype embedding is able to capture
class relationships such as visual-correlation or co-occurrence.

C.2.3 Semantics of the Vec2Bundle hierarchy

Last, we show in Fig. C.3 the 3 class hierarchies we analysed in Section 5.4 on
CIFAR100. Namely, a simple semantic hierarchy Hs(smple) with 3 levels [82],

emantic
a more complex semantic hierarchy Hgemantic [5] and a Vec2Bundle hierar-
chy Hyecobundle: We observe Vec2Bundle hierarchy Hyecopundle 1S as complex

as semantic hierarchy Hgemantic, Which allows more pattern of bundles for

104 Appendix C. Supplementary Materials for Vec2Bundle

balancing accuracy vs. specificity. In comparison of the two semantic hier-
archies with the Vec2Bundle hierarchy, the internal nodes on Hyecopundle do
not have a semantic names. However, we do find similar hierarchy struc-
tures shared between Heemantic and Hyecobundle, fOr example, {'man’, ‘woman’,
‘boy’,’girl’, ‘baby’}, {‘dolphin’, ‘whale’} and {‘orchid’, ‘poppy’, ‘sunflower’,
‘rose’, “tulip’}. This once again justifies the certain amount of semantics car-
ried by Vec2Bundle, as it is suggested by Table 1. in main chapter. Moreover,
we also find Vec2Bundle discovers a more fine-grained hierarchical structure
than semantic hierarchy. For example, {‘bus’, ‘streetcar’, ‘train’} are bundled
as ‘public transport’ in the semantic hierarchy, whereas Vec2Bundle hierar-
chy bundles {‘bus’, ‘streetcar’} first and then merges with ‘train’. This enables
Vec2Bundle to resolve confusions (i.e. between ‘bus” and ‘streetcar”’) more ef-
fectively without increasing the size of the bundle too much, which explains
why Vec2Bundle outperforms semantic hierarchy in balancing accuracy vs.
specificity trade-off. Last, we also find Vec2Bundle discovers weak seman-
tic structures such as {‘’bicycle’, ‘'motorcycle’}, {"snake’, ‘worm’} and {’clock’,
‘plate’}, which are not on a semantic hierarchy. Although they do not directly
correspond to any structure on a semantic hierarchy, however, they capture
the frequent visual confusions patterns. In theory, we can attach a semantic
name to these bundles such as ‘ridable vehicle’, ‘tube-shaped creature’, and
‘round-shaped item’, we look upon this as the further works. We conclude
our Vec2Bundle hierarchies are able to learn a certain amount of semantics.

C.2. Experimental details

105

aquallc_mammals

fowers.

food_contaners

fnit_and_vegetables

household_electrical_devices

household_furiture

nsects

large_camivores

large_man-made_outdoor.things

ot

large_natural_outdoos_scenes:

large_omnivores_and_herbivores.

medum_mammals.

Pon-insect_invertebrates -

people >

repties

small_mamms

trees

vehicles_1

vehicles 2

Semantic Hierarchy (Simple)

obeaver

dolfin

oo
Cihale

oaquarium_fish

A

oapple
Rishroom

orangs.

“EVeet_pepper
oclock

{poars

“icebone

“iSlehisn

obed

Shair
Coch

E
e

i

E

s

ke

<bridge

“Fou
Creads

Siscraper

camel

“impanzee

“gertant

Dcupine

“passiim

<maple tree
by
“pakn e

“bine tree

Biice Tree

cticycle

‘Bt

FIGURE C.3:
Vec2Bundle hierarchy on
Vec2Bundle hierarchy contains a certain amount of semantics.

&

contaner

O vsa 8 3 vote

bowl

oard

device O B
telephone
television

bed chair
furniture. ot couch
artifact O © e e

bridge
strucure-O building g = 8 sl?;‘::mwr

ol awh) mower vau
O e °0 nk ‘
vetide O motorcycle
el veh\c\g ot Qeticte peiup ruck
way O
bus
pumc_transwn o iBetcar

citrus O nge
fit-O aqua
food O

mushroony
vegetable O

Lsweet |
aquencismmal

fish O

cartilaginous_fish O

crustacean O

bee
5245
spiger buttert
bgﬂo s P et

rthropod
invertebrate 3 - (Jenal

entity O metatherian Orarsupial O

e
me. [e]
pome mmmf,‘8 apple O cotcean 3
suﬁ finned_fish O
h- O
‘Spiny-fimned_fish-O

8 dolphin

i

3 aguarum_fin
it

O flafish

8 P

crab
obster

oBers 198 0
possam

bear
oud o,
natural_scenes-O mouniain e 8
& \eupard
camivore O« 1eline-O g o
animal
© musteine_mammal- O 8 gter,
procyonid O O raceoon
insectivore O O shrew
lagomorph O O rabbit
placental) vderm O O elephant
primate O O chimpanzee
e
iving O odent-O gl
Patupine
Equre!
unguiate O 8z
anapsid- O O turte
e O e
organism OX diapsid O ‘;Z:‘aa:(ﬂe“
aqut O 8B
people O O baby
chid- O 8k
g i
blooming O ﬁse sunflower
vegetation O ue

BT
Willow_iree

maple_tree
- S

Comparison

Semantic Hierarchy

CIFAR100

1950

1970

186 ©

1920

194 0

196 ©

1510

184 0

1880

1890

1900

1910

1850

1930

1450
1490

1760

1810

1360

1720

1750

1820

1610

1830

1740

1770

1290

168 O

1350

1870

ghamster
possiim

140 ouse
° pomupm Moo Skangarpo
156012 8 rabbit © salfre
1280 Qraggoon
173040 el
g 3 Jeopard
70118 it
o
1320107 beavef.sef o
Toro 1250 122°came|0elephaﬁt°‘ e
o
ol Sl
S whale 3 frocqdie
1590 140 S

1430 Sihe

13 hark
16201108 i

ofoEs ter
1700

S but n rﬁ’ °°%é’5°h 142 A8, ote®
640 Gaterpillar

ob
er
o TR oom
1260 Qgnske
1790 ea
1460 9pear
9 bicydle
S molorcycle
Olﬂwn mower
ractor

1080

1240

opy

S SHetcar

3 pastle
3use

1540

153 8bndgsc tank
1090 O maple

ueo Owillow, ?,sé?-f"ee
- fores

g O

]
Ol yscraper
O cloud
1380 © mountain

glaln

158 0

1410

1440

1710
1030
13901038, 40
1183 anger SRS pepper
100 8 greh
o
csunﬂovg)er

o
SRR
bo
1008 gpy S8R
1050 3W§r’?\an O bed
o 130011048 5 B8lcn
teag 1480 100 3E
eybod
reso Yarn 1280 S 0RM
o bottle

Steleyisior
Otelephong™"

155

1020

1660

r‘alm
1800 1270
1780

150 O

Vec2Bundle Hierarchy (Ours)

shows

of semantic hierarchies vs.
that

the

107

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Gorkem Algan and Ilkay Ulusoy. “Image classification with deep learn-
ing in the presence of noisy labels: A survey”. In: Knowledge-Based Sys-
tems (2021).

Jurgen Assfalg, Alberto Del Bimbo, and Pietro Pala. “Retrieval of 3D
Objects by Visual Similarity”. In: MIR. 2004.

Mathieu Aubry et al. “Seeing 3D chairs: exemplar part-based 2D-3D
alignment using a large dataset of CAD models”. In: CVPR. 2014.

Aayush Bansal, Bryan Russell, and Abhinav Gupta. “Marr revisited:
2d-3d alignment via surface normal prediction”. In: CVPR. 2016.

Bjorn Barz and Joachim Denzler. “Hierarchy-based image embeddings
for semantic image retrieval”. In: WACV. 2019.

Samy Bengio, Jason Weston, and David Grangier. “Label embedding
trees for large multi-class tasks”. In: NeurIPS. 2010.

Luca Bertinetto et al. “Making Better Mistakes: Leveraging Class Hi-
erarchies with Deep Networks”. In: CVPR. 2020.

Lucas Beyer, Alexander Hermans, and Bastian Leibe. “Biternion nets:

Continuous head pose regression from discrete training labels”. In:
GCVPR. 2015.

Silvia Biasotti, Simone Marini, Michela Mortara, et al. “An overview
on properties and efficacy of topological skeletons in shape modelling”.
In: Shape Modeling and Applications, International Conference on. 2003.

Silvia Biasotti et al. “3D shape matching through topological struc-
tures”. In: International conference on discrete geometry for computer im-
agery. 2003.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex op-
timization. Cambridge university press, 2004.

R. W. Brockett. “Robotic manipulators and the product of exponen-
tials formula”. In: Mathematical Theory of Networks and Systems. 1984.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. “COCO-Stuff: Thing
and stuff classes in context”. In: CVPR. 2018.

John Canny. “A computational approach to edge detection”. In: TPAMI
(1986).

108 Bibliography

[15] Joao Carreira and Andrew Zisserman. “Quo vadis, action recogni-
tion? a new model and the kinetics dataset”. In: CVPR. 2017.

[16] Jonathan L Carrivick, Mark W Smith, and Duncan] Quincey. Structure
from Motion in the Geosciences. John Wiley & Sons, 2016.

[17] Angel X. Chang et al. “ShapeNet: An Information-Rich 3D Model
Repository.” In: CoRR (2015).

[18] Haomin Chen et al. “Deep Hierarchical Multi-label Classification of
Chest X-ray Images”. In: MIDL. 2018.

[19] Zhao-Min Chen et al. “Multi-label image recognition with graph con-
volutional networks”. In: CVPR. 2019.

[20] Christopher Bongsoo Choy et al. “Enriching Object Detection with
2D-3D Registration and Continuous Viewpoint Estimation”. In: CVPR.
2015.

[21] Tat-Seng Chua et al. “NUS-WIDE: a real-world web image database
from National University of Singapore”. In: CIVR. 2009.

[22] Gabriella Csurka et al. “Visual categorization with bags of keypoints”.
In: ECCV workshop. 2004.

[23] Bin Dai, Shilin Ding, Grace Wahba, et al. “Multivariate bernoulli dis-
tribution”. In: Bernoulli (2013).

[24] Erik B Dam, Martin Koch, and Martin Lillholm. Quaternions, interpola-
tion and animation. Datalogisk Institut, Kebenhavns Universitet, 1998.

[25] Jia Deng et al. “Fast and balanced: Efficient label tree learning for large
scale object recognition”. In: NeurIPS. 2011.

[26] Jia Deng et al. “Hedging your bets: Optimizing accuracy-specificity
trade-offs in large scale visual recognition”. In: CVPR. 2012.

[27] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”.
In: CVPR. 2009.

[28] Jacob Devlin et al. “Fast and robust neural network joint models for
statistical machine translation”. In: ACL. 2014.

[29] Ali Diba et al. “Large Scale Holistic Video Understanding”. In: arXiv
preprint arXiv:1904.11451 (2019).

[30] Gilad Divon and Ayellet Tal. “Viewpoint Estimation—Insights & Model”.
In: ECCV. 2018.

[31] Thanh-Toan Do et al. “Real-time monocular object instance 6D pose
estimation”. In: BMVC. 2018.

[32] Jeffrey Donahue et al. “Long-term recurrent convolutional networks
for visual recognition and description”. In: CVPR. 2015.

Bibliography 109

[33] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Trans-
formers for image recognition at scale”. In: arXiv preprint arXiv:2010.11929
(2020).

[34] Maura Eduarda and David G Henderson. Experiencing geometry: On
plane and sphere. Prentice Hall, 1996.

[35] David Eigen and Rob Fergus. “Predicting depth, surface normals and
semantic labels with a common multi-scale convolutional architec-
ture”. In: ICCV. 2015.

[36] Mark Everingham et al. “The pascal visual object classes challenge: A
retrospective”. In: IJCV (2015).

[37] Luca Falorsi et al. “Explorations in Homeomorphic Variational Auto-
Encoding”. In: arXiv preprint arXiv:1807.04689 (2018).

[38] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. “Convo-
lutional two-stream network fusion for video action recognition”. In:
CVPR. 2016.

[39] Pedro F Felzenszwalb et al. “Object detection with discriminatively
trained part-based models”. In: TPAMI (2009).

[40] Harley Flanders. Differential Forms with Applications to the Physical Sci-
ences by Harley Flanders. Elsevier, 1963.

[41] Pierre Foret et al. “Sharpness-Aware Minimization for Efficiently Im-
proving Generalization”. In: (2020).

[42] David F Fouhey, Abhinav Gupta, and Martial Hebert. “Data-driven
3D primitives for single image understanding”. In: ICCV. 2013.

[43] Andrea Frome etal. “Devise: A deep visual-semantic embedding model”.
In: NeurIPS. 2013.

[44] Huan Fuetal. “Deep ordinal regression network for monocular depth
estimation”. In: CVPR. 2018.

[45] Thomas Funkhouser et al. “A Search Engine for 3D Models”. In: ACM
Trans. Graph. (2003).

[46] Jin Gao et al. “Transfer learning based visual tracking with gaussian
processes regression”. In: ECCV. 2014.

[47] Ross Girshick. “Fast r-cnn”. In: ICCV. 2015.

[48] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of
training deep feedforward neural networks”. In: AISTATS. 2010.

[49] Yunchao Gong et al. “Deep convolutional ranking for multilabel im-
age annotation”. In: arXiv preprint arXiv:1312.4894 (2013).

110 Bibliography

[50] Alexander Grabner, Peter M Roth, and Vincent Lepetit. “3d pose es-
timation and 3d model retrieval for objects in the wild”. In: CVPR.
2018.

[51] Chuan Guo et al. “On calibration of modern neural networks”. In:
ICML. 2017.

[52] Saurabh Gupta et al. “Aligning 3D models to RGB-D images of clut-
tered scenes”. In: CVPR. 2015.

[53] David Gurarie. “Symmetries and Laplacians: Introduction to harmonic
analysis, group representations and applications”. In: Bull. Amer. Math.
Soc (1993).

[54] Amirhossein Habibian, Thomas Mensink, and Cees GM Snoek. “Videostory:
A new multimedia embedding for few-example recognition and trans-
lation of events”. In: ACMMM. 2014.

[55] William Rowan Hamilton. “On quaternions; or on a new system of
imaginaries in algebra”. In: The London, Edinburgh, and Dublin Philo-
sophical Magazine and Journal of Science (1844).

[56] Richard Hartley and Andrew Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

[57] Kaiming He et al. “Deep residual learning for image recognition”. In:
CVPR. 2016.

[58] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification”. In: ICCV. 2015.

[59] Kaiming He et al. “Mask r-cnn”. In: ICCV. 2017.

[60] Matthias Hein, Maksym Andriushchenko, and Julian Bitterwolf. “Why
ReLU networks yield high-confidence predictions far away from the
training data and how to mitigate the problem”. In: CVPR. 2019.

[61] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclas-
sified and out-of-distribution examples in neural networks”. In: ICLR.
2017.

[62] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowl-
edge in a neural network”. In: arXiv preprint arXiv:1503.02531 (2015).

[63] David A Hirshberg et al. “Coregistration: Simultaneous alignment
and modeling of articulated 3D shape”. In: ECCV. 2012.

[64] David Hoag. “Apollo guidance and Navigation: Considerations of
apollo imu gimbal lock”. In: Cambridge: MIT Instrumentation Labora-
tory (1963).

[65] Seunghoon Hong et al. “Online tracking by learning discriminative
saliency map with convolutional neural network”. In: ICML. 2015.

Bibliography 111

[66] Gao Huang et al. “Densely connected convolutional networks”. In:
CVPR. 2017.

[67] Ahsan Igbal and Juergen Gall. “Level Selector Network for Optimiz-
ing Accuracy-Specificity Trade-offs”. In: ICCV Workshops. 2019.

[68] Fabian Junkert et al. “Cross-modal Image-Graphics Retrieval by Neu-
ral Transfer Learning”. In: ICMR. 2017, pp. 330-337.

[69] Frédéric Jurie and Michel Dhome. “Real time 3d template matching”.
In: CVPR. IEEE. 2001.

[70] HM Kabir et al. “Spinalnet: Deep neural network with gradual input”.
In: arXiv preprint arXiv:2007.03347 (2020).

[71] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. “Tracking-learning-
detection”. In: PAMI (2010).

[72] Abhishek Kar et al. “Amodal completion and size constancy in natu-
ral scenes”. In: ICCV. 2015.

[73] Tero Karras et al. “Analyzing and improving the image quality of
stylegan”. In: CVPR. 2020.

[74] Toshikazu Kato et al. “A sketch retrieval method for full color image
database-query by visual example”. In: ICPR. 1992.

[75] Will Kay et al. “The kinetics human action video dataset”. In: arXiv
preprint arXiv:1705.06950 (2017).

[76] Alex Kendall and Roberto Cipolla. “Geometric loss functions for cam-
era pose regression with deep learning”. In: CVPR. 2017.

[77] Valentin Khrulkov et al. “Hyperbolic image embeddings”. In: CVPR.
2020.

[78] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational
Bayes”. In: ICLR. 2014.

[79] Henry E Klugh. Statistics: The essentials for research. Psychology Press,
2013.

[80] Yoshinori Konishi et al. “Real-Time 2D /3D Object Detection and Pose
Estimation based on Template Matching”. In: ().

[81] Svetlana Kordumova, Thomas Mensink, and Cees G. M. Snoek. “Pool-
ing Objects for Recognizing Scenes without Examples”. In: ICMR. 2016.

[82] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of fea-
tures from tiny images. Tech. rep. 2009.

[83] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: NeurIPS.
2012.

112 Bibliography

[84] Harold W Kuhn and Albert W Tucker. “Nonlinear programming”. In:
Traces and emergence of nonlinear programming. 2014.

[85] Lubor Ladicky, Jianbo Shi, and Marc Pollefeys. “Pulling Things out of
Perspective”. In: CVPR. 2014.

[86] Lubor Ladicky, Bernhard Zeisl, and Marc Pollefeys. “Discriminatively
Trained Dense Surface Normal Estimation”. In: ECCV. 2014.

[87] T Jaya Lakshmi and Ch Siva Rama Prasad. “A study on classifying
imbalanced datasets”. In: ICNSC. 2014.

[88] Kimin Lee et al. “Training confidence-calibrated classifiers for detect-
ing out-of-distribution samples”. In: ICLR (2018).

[89] Michael S Lew et al. “Content-based multimedia information retrieval:
State of the art and challenges”. In: ACM TOMCCAP (2006).

[90] Bo Li et al. “Depth and surface normal estimation from monocular
images using regression on deep features and hierarchical crfs”. In:
CVPR. 2015.

[91] Yuncheng Li, Yale Song, and Jiebo Luo. “Improving pairwise ranking
for multi-label image classification”. In: CVPR. 2017.

[92] Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. “Enhancing the re-
liability of out-of-distribution image detection in neural networks”.
In: ICLR. 2018.

[93] Shuai Liao, Efstratios Gavves, and Cees GM Snoek. “Searching and
Matching Texture-free 3D Shapes in Images”. In: ICMR. 2018.

[94] Shuai Liao, Efstratios Gavves, and Cees GM Snoek. “Spherical re-
gression: Learning viewpoints, surface normals and 3d rotations on
n-spheres”. In: CVPR. 2019.

[95] Shuai Liao et al. “Quasibinary Classifier for Images with Zero and
Multiple Labels”. In: ICPR. 2020.

[96] Joseph] Lim, Aditya Khosla, and Antonio Torralba. “FPM: Fine pose
parts-based model with 3d cad models”. In: ECCV'. 2014.

[97] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In:
ECCV. 2014.

[98] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. “Bilinear
cnn models for fine-grained visual recognition”. In: ICCV. 2015.

[99] Pengze Liuetal. “Localization guided learning for pedestrian attribute
recognition”. In: arXiv preprint arXiv:1808.09102 (2018).

[100] Shaoteng Liu et al. “Hyperbolic Visual Embedding Learning for Zero-
Shot Recognition”. In: CVPR. 2020.
[101] Wei Liu et al. “Ssd: Single shot multibox detector”. In: ECCV'. 2016.

Bibliography 113

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Ziwei Liu et al. “Large-scale long-tailed recognition in an open world”.
In: CVPR. 2019.

Teng Long et al. “Searching for Actions on the Hyperbole”. In: CVPR.
2020.

David G Lowe. “Object recognition from local scale-invariant features”.
In: ICCV. 1999.

Laurens van der Maaten and Geoffrey Hinton. “Visualizing data us-
ing t-SNE”. In: JMLR (2008).

Dhruv Mahajan et al. “Exploring the Limits of Weakly Supervised
Pretraining”. In: ECCV. 2018.

Siddharth Mahendran, Haider Ali, and René Vidal. “3D pose regres-
sion using convolutional neural networks”. In: ICCV. 2017.

Siddharth Mahendran, Haider Ali, and Rene Vidal. “A mixed classification-
regression framework for 3D pose estimation from 2D images”. In:
BMVC. 2018.

Oded Maimon and Lior Rokach. “Data mining and knowledge dis-
covery handbook”. In: (2005).

Francisco Massa, Renaud Marlet, and Mathieu Aubry. “Crafting a
multi-task CNN for viewpoint estimation”. In: BMVC. 2016.

J Michael McCarthy. Introduction to theoretical kinematics. MIT press,
1990.

George A Miller. “WordNet: a lexical database for English”. In: Com-
munications of the ACM (1995).

Frederic Morin and Yoshua Bengio. “Hierarchical probabilistic neural
network language model.” In: Aistats. 2005.

Arsalan Mousavian et al. “3d bounding box estimation using deep
learning and geometry”. In: CVPR. 2017.

Jinseok Nam et al. “Large-scale multi-label text classification — revis-
iting neural networks”. In: ECML PKDD. 2014.

Krystyna Napierala and Jerzy Stefanowski. “Types of minority class
examples and their influence on learning classifiers from imbalanced
data”. In: JIIS (2016).

Vladimir Nedovi¢ et al. “Stages as models of scene geometry”. In:
TPAMI (2009).

Maximillian Nickel and Douwe Kiela. “Poincaré embeddings for learn-
ing hierarchical representations”. In: NeurIPS. 2017.

114 Bibliography

[119] Roberto Opromolla et al. “A model-based 3D template matching tech-
nique for pose acquisition of an uncooperative space object”. In: Sen-
sors (2015).

[120] Margarita Osadchy, Yann Le Cun, and Matthew L Miller. “Synergistic
face detection and pose estimation with energy-based models”. In:
JMLR (2007).

[121] Wanli Ouyang et al. “Factors in finetuning deep model for object de-
tection with long-tail distribution”. In: CVPR. 2016.

[122] Onur Ozyesil et al. “A survey of structure from motion”. In: arXiv
preprint arXiv:1701.08493 (2017).

[123] Giorgio Patrini et al. “Making deep neural networks robust to label
noise: A loss correction approach”. In: CVPR. 2017.

[124] Hugo Penedones et al. Improving Object Classification using Pose Infor-
mation. Tech. rep. Idiap, 2012.

[125] Sergey Prokudin, Peter Gehler, and Sebastian Nowozin. “Deep Direc-
tional Statistics: Pose Estimation with Uncertainty Quantification”. In:
ECCV. 2018.

[126] Xiaojuan Qi et al. “Geonet: Geometric neural network for joint depth
and surface normal estimation”. In: CVPR. 2018.

[127] Jesse Read. “Scalable multi-label classification”. PhD thesis. 2010.

[128] Jesse Read et al. “Classifier chains for multi-label classification”. In:
Machine learning (2011).

[129] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”.
In: CVPR. 2017.

[130] Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: CVPR. 2016.

[131] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection
with region proposal networks”. In: NeurIPS. 2015.

[132] Shaoqing Ren et al. “Faster R-CNN: towards real-time object detection
with region proposal networks”. In: TPAMI (2016).

[133] Lawrence G Roberts. “Machine perception of three-dimensional solids”.
PhD thesis. Massachusetts Institute of Technology, 1963.

[134] Olga Russakovsky et al. “Imagenet large scale visual recognition chal-
lenge”. In: IJCV (2015).

[135] Nikolaos Sarafianos, Xiang Xu, and Ioannis A Kakadiaris. “Deep im-
balanced attribute classification using visual attention aggregation”.
In: ECCV. 2018.

Bibliography 115

[136] Johannes L Schonberger and Jan-Michael Frahm. “Structure-from-motion
revisited”. In: CVPR. 2016.

[137] David A Schum. The evidential foundations of probabilistic reasoning. North-
western University Press, 2001.

[138] Chris Seiffert et al. “Resampling or reweighting: A comparison of
boosting implementations”. In: ICTAI 2008.

[139] Ken Shoemake. “Animating rotation with quaternion curves”. In: SIG-
GRAPH. 1985.

[140] Nathan Silberman et al. “Indoor segmentation and support inference
from rgbd images”. In: ECCV. 2012.

[141] Carlos N Silla and Alex A Freitas. “A survey of hierarchical classifica-
tion across different application domains”. In: Data Mining and Knowl-
edge Discovery (2011).

[142] Karen Simonyan and Andrew Zisserman. “Two-stream Convolutional
Networks for Action Recognition in Videos”. In: 2014.

[143] Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint
arXiv:1409.1556 (2014).

[144] Irwin Sobel and Gary Feldman. “A 3x3 isotropic gradient operator for
image processing”. In: a talk at the Stanford Artificial Project in (1968).

[145] Hao Su et al. “Render for cnn: Viewpoint estimation in images using
cnns trained with rendered 3d model views”. In: ICCV. 2015.

[146] Christian Szegedy et al. “Going deeper with convolutions”. In: CVPR.
2015.

[147] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling
for convolutional neural networks”. In: ICML. 2019.

[148] Johan W. H. Tangelder and Remco C. Veltkamp. “A survey of content
based 3D shape retrieval methods”. In: MTAP (2007).

[149] Ran Tao, Efstratios Gavves, and Arnold W M Smeulders. “Siamese
Instance Search for Tracking”. In: CVPR. 2016.

[150] Du Tran et al. “Learning spatiotemporal features with 3d convolu-
tional networks”. In: ICCV. 2015.

[151] Shubham Tulsiani and Jitendra Malik. “Viewpoints and keypoints”.
In: CVPR. 2015.

[152] Shimon Ullman. “The interpretation of structure from motion”. In:
Proceedings of the Royal Society of London. Series B. Biological Sciences
(1979).

116 Bibliography

[153] Grant Van Horn and Pietro Perona. “The devil is in the tails: Fine-
grained classification in the wild”. In: arXiv preprint arXiv:1709.01450
(2017).

[154] Grant Van Horn et al. “The inaturalist species classification and detec-
tion dataset”. In: CVPR. 2018.

[155] Denny Vrandeci¢ and Markus Krotzsch. “Wikidata: a free collabora-
tive knowledgebase”. In: Communications of the ACM (2014).

[156] Anran Wang et al. “Multi-modal unsupervised feature learning for
RGB-D scene labeling”. In: ECCV. 2014.

[157] Jiang Wang et al. “Cnn-rnn: A unified framework for multi-label im-
age classification”. In: CVPR. 2016.

[158] Jingya Wang et al. “Attribute recognition by joint recurrent learning
of context and correlation”. In: ICCV. 2017.

[159] Limin Wang, Yu Qiao, and Xiaoou Tang. “Action recognition with
trajectory-pooled deep-convolutional descriptors”. In: CVPR. 2015.

[160] Xiaolong Wang, David Fouhey, and Abhinav Gupta. “Designing deep
networks for surface normal estimation”. In: CVPR. 2015.

[161] Xiaolong Wang et al. “Non-local neural networks”. In: CVPR. 2018.

[162] Xiaosong Wang et al. “Chestx-ray8: Hospital-scale chest x-ray database
and benchmarks on weakly-supervised classification and localization
of common thorax diseases”. In: CVPR. 2017.

[163] Xiaosong Wang et al. “Tienet: Text-image embedding network for com-
mon thorax disease classification and reporting in chest x-rays”. In:
CVPR. 2018.

[164] Joe H Ward Jr. “Hierarchical grouping to optimize an objective func-
tion”. In: Journal of the American statistical association (1963).

[165] Jason Weston, Samy Bengio, and Nicolas Usunier. “Wsabie: Scaling
up to large vocabulary image annotation”. In: IJCAI 2011.

[166] Wikipedia contributors. Simplex — Wikipedia, The Free Encyclopedia.
2021.

[167] Changchang Wu. “Towards linear-time incremental structure from mo-
tion”. In: 3DV. 2013.

[168] Fei Wu et al. “Weakly semi-supervised deep learning for multi-label
image annotation”. In: IEEE Transactions on Big Data (2015).

[169] Zhirong Wu et al. “3d shapenets: A deep representation for volumet-
ric shapes”. In: CVPR. 2015.

[170] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. “Beyond pascal: A

benchmark for 3d object detection in the wild”. In: WACYV. 2014.

Bibliography 117

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Tong Xiao et al. “Learning from massive noisy labeled data for image
classification”. In: CVPR. 2015.

Zhicheng Yan et al. “HD-CNN: hierarchical deep convolutional neu-
ral networks for large scale visual recognition”. In: ICCV. 2015.

Li Yao et al. “Learning to diagnose from scratch by exploiting depen-
dencies among labels”. In: arXiv preprint arXiv:1710.10501 (2017).

Joe Yue-Hei Ng et al. “Beyond short snippets: Deep networks for video
classification”. In: CVPR. 2015.

Sangdoo Yun et al. “Re-labeling ImageNet: from Single to Multi-Labels,
from Global to Localized Labels”. In: arXiv preprint arXiv:2101.05022
(2021).

Sergey Zagoruyko and Nikos Komodakis. “Wide residual networks”.
In: arXiv preprint arXiv:1605.07146 (2016).

Bernhard Zeisl, Marc Pollefeys, et al. “Discriminatively trained dense
surface normal estimation”. In: ECCV. 2014.

Min-Ling Zhang and Zhi-Hua Zhou. “Multilabel neural networks with
applications to functional genomics and text categorization”. In: TKDE
(2006).

Yinda Zhang et al. “Physically-based rendering for indoor scene un-
derstanding using convolutional neural networks”. In: CVPR. 2017.

Zhilu Zhang and Mert R Sabuncu. “Generalized cross entropy loss for
training deep neural networks with noisy labels”. In: arXiv preprint
arXiv:1805.07836 (2018).

Jun-Yan Zhu et al. “Unpaired image-to-image translation using cycle-
consistent adversarial networks”. In: ICCV. 2017.

Xiangxin Zhu, Dragomir Anguelov, and Deva Ramanan. “Capturing
long-tail distributions of object subcategories”. In: CVPR. 2014.

Daniel Zwillinger and Stephen Kokoska. CRC standard probability and
statistics tables and formulae. Crc Press, 1999.

119

Samenvatting

Deze dissertatie wil een antwoord geven op de vraag “Hoe geometrie beter
te gebruiken voor een beter beeldbegrip?”. Deze vraag wordt beantwoord
vanuit twee invalshoeken, namelijk geometrie in visueel beeldbegrip (Deel
I) en geometrie in semantisch beeldbegrip (Deel II). In Deel I worden 3D-
geometrieén zoals de 3D-vorm, het camerastandpunt, de normaalvector, en
de 3D-rotatie bestudeerd. In Deel II wordt een nieuw type geometrie in de
waarschijnlijkheidsruimte van beeldclassificatie onderzocht, namelijk label-
geometrie. Onze bijdragen zijn:

Deel 1. Deep learning met 3D-geometrie

Hoofdstuk 2: We stellen een op deep learning gebaseerd model voor dat
in staat is om textuurloze 3D-vormen over te brengen naar soortgelijke ob-
jecten in 2D natuurlijke beelden. Dit wordt bereikt door het vergelijken van
een zoekafbeelding in 2D met opeenvolgende gerenderde 3D-beelden in ver-
schillende posities, tijdens welk proces een deep learning matching-functie
wordt gebruikt om de overeenkomsten te beoordelen. Zodra het best overeen-
komende gerenderde beeld is gevonden, leiden de parameters die worden
gebruikt om het gerenderde beeld te genereren tot een beter begrip van de
objectposities in het 2D-beeld.

Hoofdstuk 3: Ons uitgangspunt is de waarneming dat veel continue re-
gressieproblemen in de computer vision worden opgelost door afzonderli-
jke classificatie. De reden hiervoor is dat classificatie een natuurlijke, d.w.z.
waarschijnlijke n-simplex heeft, wat leidt tot stabiele training. Hierdoor gein-
spireerd, introduceren wij een sferische regressie die de onbegrensde outputs
schetst van diepe neurale netwerken tot n-bollen, door middel van sferische
exponentiéle mapping, waardoor de regressie van een set 3D-doelen, bv.
gezichtspunten, normaalvector en 3D-rotatie, even stabiel wordt als classi-
ficatienetwerken.

Deel II. Deep learning met label-geometrie

120 Samenvatting

Hoofdstuk 4: We stellen een nieuw type beeldclassificator voor, quasibi-
naire classificator genaamd, voor ‘one-vs.-rest’ classificatie, multi-label clas-
sificatie en out-of-distribution classificatie, die voorheen op zichzelf staande
oplossingen in één model onderbrengt. Het waarschijnlijkheidsmodel van
een quasibinaire classificator wordt gespecificeerd door een label-geometrie
die verandert athankelijk van het aantal labels (d.w.z. nul, één of meer) dat
elk monster heeft. De quasibinaire classificator leert een dergelijke labelge-
ometrie door middel van een gedeelde normalisatiefunctie voor alle klassen
en datapunten, en laat zien dat dit niet alleen de complexiteit van het model
vereenvoudigt, maar ook de betrouwbaarheid van de betrouwbaarheidss-
cores verhoogt.

Hoofdstuk 5: We leveren een door visuele data gestuurde methode voor
het genereren van klasse-hiérarchie, Vec2Bundle, die wordt geleerd door het
integreren van klasse-prototypes. De Vec2Bundle hiérarchie is goedkoop
te verkrijgen en blijkt beter te zijn in het afwegen van nauwkeurigheid vs.
specificiteit bij beeldclassificatie. Verrassend genoeg blijkt de Vec2Bundle
hiérarchie een aanzienlijke hoeveelheid semantiek te bevatten zonder dat het
hier instructies voor heeft gekregen. Verder breiden we het huidige model
uit met het in evenwicht brengen van nauwkeurigheid en specificiteit tot
multi-label beeldclassificatie door een negatieregel voor te stellen die een
waarschijnlijkheids-hiérarchie berekent.

121

Acknowledgments

The journey of a Ph.D. can never be easily finished without the support from
so many people. Amongst them, the two most important persons for me are
my supervisor Cees G.M. Snoek, and co-supervisor E. (Stratis) Gavves.

First and foremost, I would like to express my gratitude to Cees, for
his skillful, patient, and responsible guidance. It is my luck to become his
second-generation Ph.D. student, preceded by Dr. Xirong Li, who was his
first Ph.D. student, and my Master’s supervisor as well. As a supervisor,
Cees guided me to be creative, precise, and persuasive in pursuing scientific
truth. As a senior researcher, he influenced me to be strategic, focused, mod-
est, and punctual. Particularly, I would like to thank Cees for his generosity
in tolerating my occasional obsession and stubbornness.

I owe a deep sense of gratitude to Stratis, who helped me to horn my
practical research skills in all aspects. Stratis has always been my idol in aca-
demics who manages to work on so many threads, but still gives insightful
suggestions. I miss every brainstorming session and every deadline sprint
we had. I also appreciate the generosity of Stratis for his patience in listening
to my unorganized explanation of each half-cooked idea and waiting for me
to catch up with his idea development slowly. Reading through his opera-
tions on my papers brings me so much satisfaction, and helps me learn so
much about writing.

I thank Arnold Smeulders for his insightful suggestions and thought-
provoking questions on my research. I also thank his encouragement and
help in chairing SOOS talks.

I thank the committee members for my Ph.D. defense: Prof. C. Sdnchez
Gutiérrez, Prof. A.W.M. Smeulders, Prof. dr. Th. Gevers, Prof. dr. R.C.
Veltkamp, Dr. X. Li, Dr. and A. Ghodrati. Thanks for your time in reading
and commenting on my thesis. It is my honor to have you as my esteemed
opponent.

I would also like to thank Qualcomm research Netherlands, for support-
ing my Ph.D. and giving me the internship opportunity. The perception team
I interned with treated me so well. Special thanks go to Amir Ghodrati and
Amirhossein Habibian, who supervised me during this internship. While
it was a pity that the pandemic prevented us from working together in the
office, both of them spent plenty of time discussing with me. I appreciate
Amir Ghodrati for spending so many off-hours discussions in formulating

122 Acknowledgments

the problem, whereas I still miss a few in-person discussions with Amirhos-
sein Habibian in the open air at the Science Park.

I would like to also thank my colleague in Quva-Lab - the daily office-
mates - Kirill Gavrilyuk, Noureldien Hussein, Berkay Kicanaoglu, Mert Kil-
ickaya, Peter O’Connor, Changyong Oh, Adeel Pervez, Tom Runia, Matthias
Reisser, Maurice Weiler, for the interesting discussions and social events. I
also thank my colleagues at different locations, Deepak Gupta, Zhengyang
Li, Ran Tao.

I thank the ISIS colleagues: Marcel Worring, Pascal Mettes, Andrew Brown,
Deepak Gupta, Nanne van Noord, Mehmet Altinkaya, Shuo Chen, Yunlu
Chen, Sadaf Gulshad, Tao Hu, Ivan Sosnovik, Zenglin Shi, Fida Thoker, William
Thong, David Zhang, Jiaojiao Zhao, Riaan Zoetmulder, Devanshu Arya, Sarah
Ibrahimi, Ivan Sosnovik, Gjorgji Strezoski, David Zhang, Mihir Jain, Masoud
Mazloom. Having you along the journey brings me so many happy mo-
ments. Special thanks also go to Dennis and Virginie, for your support and
help every now and then.

I thank my family for the long-lasting support and forgiveness for the
absence of the happy time that I should stay accompanied with.

	1 Introduction
	1.1 3D geometry and visual understanding
	1.2 Label geometry and semantic understanding
	1.3 Research Questions

	I Deep learning with 3D geometry
	2 Searching and Matching Texture-free 3D Shapes in Images
	2.1 Introduction
	2.1.1 Related Work
	2.1.2 Contributions

	2.2 Towards a 3D-to-2D Search Engine
	2.2.1 Searching and Matching 3D Shapes
	2.2.2 Learning to Match

	2.3 Experimental Setup
	2.3.1 Texture-free 3D Shape Dataset
	2.3.2 Experiments
	2.3.3 Evaluation Criteria

	2.4 Results
	2.4.1 Search and match specific 3D shape
	2.4.2 Search and match among 3D shapes
	2.4.3 Search and match unseen 3D shapes
	2.4.4 Search and match under noisy conditions
	2.4.5 Search engine comparison

	2.5 Conclusion

	3 Spherical Regression
	3.1 Introduction
	3.2 Motivation
	3.3 Spherical regression
	3.3.1 Constraining regression with n-spheres
	3.3.2 Specializing to S1, S2 and S3

	3.4 Related work
	3.5 Experiments
	3.5.1 S1: Viewpoint estimation with Euler angles
	3.5.2 S2: Surface normal estimation
	3.5.3 S3: 3D Rotation estimation with quaternions

	3.6 Conclusion

	II Deep learning with label geometry
	4 Quasibinary Classifiers for Image Classification
	4.1 Introduction
	4.2 Background
	4.2.1 Ensembles of sigmoid classifiers
	4.2.2 Softmax classifiers

	4.3 Quasibinary classifiers
	4.3.1 Definition
	4.3.2 Algorithm

	4.4 Related work
	4.4.1 Zero-label problems
	4.4.2 Multi-label problems

	4.5 Experiments
	4.5.1 One-vs.-rest image classification
	4.5.2 Zero-label image classification
	4.5.3 Multi-label image classification

	4.6 Conclusion

	5 Vec2Bundle: Learning Class Hierarchies
	5.1 Introduction
	5.2 Related work
	5.3 Learning Class Hierarchies
	5.4 Extending to Multi-label Classification
	5.5 Experiments
	5.5.1 Experimental setup
	5.5.2 Ablations
	5.5.3 Balancing accuracy vs@汥瑀瑯步渠. specificity for single-label image classification
	5.5.4 Semantics in the Vec2Bundle hierarchy
	5.5.5 Balancing accuracy vs@汥瑀瑯步渠. specificity for multi-label image classification

	5.6 Conclusion

	6 Conclusion
	6.1 Part I. Deep learning with 3D geometry
	6.2 Part II. Deep learning with label geometry
	6.3 Closing remarks

	A Supplementary Materials for Spherical Regression
	A.1 S1: Viewpoint estimation with Euler angles
	A.2 S2: Surface normal estimation
	A.3 S3: 3D Rotation estimation with quaternions
	A.4 Derivation of Jacobian for Sflat and Sexp
	A.4.1 Sflat case
	A.4.2 Sexp case

	B Supplementary Materials for Quasibinary Classifier
	B.1 Proof of Eq. (4.6)
	B.2 More results on One-vs.rest image classification

	C Supplementary Materials for Vec2Bundle
	C.1 Non-decreasing property of negation rule
	C.2 Experimental details
	C.2.1 Statistics of hierarchies
	C.2.2 Visualization of class-prototype embedding
	C.2.3 Semantics of the Vec2Bundle hierarchy

	Samenvatting
	Acknowledgments

