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Intrinsic image decomposition aims to factorize an image into albedo (reflectance) and shading (illumination)
sub-components. Being ill posed and under-constrained, it is a very challenging computer vision problem. There
are infinite pairs of reflectance and shading images that can reconstruct the same input. To address the problem,
Intrinsic Images in the Wild by Bell et al . provides an optimization framework based on a dense conditional
random field (CRF) formulation that considers long-range material relations. We improve upon their model by
introducing illumination invariant image descriptors: color ratios. The color ratios and the intrinsic reflectance are
both invariant to illumination and thus are highly correlated. Through detailed experiments, we provide ways to
inject the color ratios into the dense CRF optimization. Our approach is physics based and learning free and leads
to more accurate and robust reflectance decompositions. ©2021Optical Society of America

https://doi.org/10.1364/JOSAA.414682

1. INTRODUCTION

Intrinsic image decomposition aims to factorize an image
into albedo (reflectance) and shading (illumination) sub-
components [1]. The reflectance component represents pure
material colors of a scene, independent of any illumination
effect including geometry and camera viewpoint. The shading
component is invariant to color (albedo) and encodes the illu-
mination effects within a scene such as shadows, shading due
to geometry, and ambient light. Due to their invariant proper-
ties, intrinsic images are favored by numerous computer vision
and computational photography applications. For example,
semantic segmentation algorithms may profit from the illumi-
nation invariant properties of the reflectance map for robust
estimations [2]. In addition, intrinsic images can be used for
physically plausible photo editing tasks such as recoloring [3],
color transfer, and photo fusion [4].

In an ideal diffuse environment, element-wise multiplica-
tion of the reflectance R and shading S components properly
approximates the observed image I :

I = R × S. (1)

Being ill posed and under-constrained, intrinsic image
decomposition is a very challenging computer vision problem.
Given an observed image, there exist twice as many unknowns,
reflectance and shading, to predict. Hence, there are infinite
pairs of reflectance and shading images that can reconstruct
the same input. To address the problem, early methods adapt
heuristics-based priors. For example, Land and McCann’s

pioneering Retinex algorithm is based on the assumption that
the reflectance images can directly be estimated by strong image
gradients using a surface reconstruction algorithm [5]. Recent
approaches use either an energy minimization (optimization)
framework to constrain intrinsic image estimations based on
handcrafted priors [6,7] or data driven deep-learning-based
techniques [8,9].

One of the key advantages of optimization-based methods
is that they do not require any labeled data, whereas deep-
learning-based methods demand considerable amounts of
training data to learn the model parameters. Optimization-
based methods aim to regularize the intrinsic component
computation to constrain their behavior based on handcrafted
priors. Those priors are mostly based on observations, for
example, global reflectance sparsity [10,11] and piece-wise
constant reflectance [5,12]. However, physics-based invariant
descriptors are mostly ignored for crafting priors. One example
is the photometric invariant color ratios [13]. They eliminate
shading information and thus represent an image featuring only
albedo edges. In that sense, the color ratios and the intrinsic
reflectance are both invariant to illumination and thus are highly
correlated. However, this correlation has never been explored
before. Thus, to our knowledge, this is the first work to compute
dense intrinsic reflectance maps using color ratios.

Therefore, in this paper, we explore the use of photo-
metric invariant descriptors in an optimization scheme to
compute reflectance images. We demonstrate the effective-
ness of such an approach by integrating the color ratios into
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the dense conditional random field (CRF) optimization
framework of Bell et al . [6]. Their model is publicly avail-
able (https://github.com/seanbell/intrinsic), and their CRF
framework considers long-range relative material relations as in
the case of color ratios. Our extensions to their code are straight-
forward, fully unsupervised, do not demand any additional
data such as depth or image sequences, and do not require any
domain calibration.

In particular, the main contribution of this work is not to
chase the highest performance numbers, but to put forward a
novel hypothesis that physics-based color ratios can be used to
improve and robustify reflectance predictions. To sustain our
hypothesis, (1) the ratios are integrated in the Color Retinex
paradigm to provide complementary color cues. The results
are particularly important, as almost all the optimization-based
intrinsic image decomposition methods consider the Color
Retinex approach in their framework. Thus, a more robust prior
can be achieved. (2) The ratios are used to define an adaptive
clustering initialization mechanism. Current work using the
global reflectance sparsity prior treats the number of clusters
as a hyper-parameter and decides it through a grid search.
However, the process is costly, not effective, and dataset depen-
dent. (3) The ratios are embedded into a pairwise term that uses
handcrafted priors based on observations. Unlike handcrafted
priors, the ratios are physics based and do not need domain
calibration. (4) Finally, we demonstrate that these additions
lead to reflectance predictions that are robust to outdoor natu-
ral shadow handling. Experiments on four different datasets
demonstrate the merits of the proposed method.

2. RELATED WORK

The intrinsic image decomposition task is a very challenging
computer vision problem, as it is ill posed and under-
constrained. Given a single pixel value, it seeks to find the
two unknown disentangled variables: reflectance and shading.
As a result, different combinations of the reflectance and shad-
ing may achieve the same input. An example is illustrated in
Fig. 1.

The pioneering work Retinex by Land and McCann, based
on Mondrian patterns, which are composed of piece-wise
distinctly colored patches, identifies strong image gradients
assuming they correspond to true albedo changes [5]. Then,
those selected gradients are re-integrated by a surface recon-
struction algorithm such as Poisson. Successive research focuses
on deriving priors, based on observations, that can explain the
characteristics of the intrinsic images. Usually, an optimization

approach is taken to impose these constraints. For example,
Gehler et al . and Shen et al . consider that the number of colors
in a scene is limited; thus, they sample reflectances from a sparse
set of colors [10,11]. Shen et al . and Zhao et al . observe that
the distinct points with intensity-normalized texture structures
tend to have the same reflectance values [14,15]. In a similar
manner, Shen et al . assume that a local neighborhood of pixels
with similar intensity values also has similar reflectance values
[16]. Similarly, Garces et al . assume that changes in chroma-
ticity usually correspond to changes in reflectance [17]. Jiang
et al . make the observation that correlations between local mean
luminance and local luminance in textured regions indicate
illumination changes [18]. Inspired by the Retinex algorithm’s
assumption of piece-wise constant reflectances, other works
impose piece-wise reflectance priors utilizing various regu-
larization techniques [12,19–22]. Additional user guidance is
also explored as a prior to associate reflectance values [16,23].
Moreover, when available, extra sensory information can be
incorporated to obtain specific priors. For instance, Chen
and Koltun, Jeon et al ., and Lee et al . explore supplementary
depth and surface normal cues to constrain shading estimations
[24–26]. More recently, near-infrared imagery-based pri-
ors have been explored by Chenge et al . [7]. Finally, image
sequences are utilized to impose constant reflectance priors
over time [27–29]. To conclude, single image intrinsic image
decomposition based on optimizations usually derives hand-
crafted priors based on observation. In contrast, we propose
to incorporate physics-based invariant descriptors that are not
limited by the imaging conditions or the generalization quality
of the handcrafted features.

Invariant descriptors are independent of a set of imaging con-
ditions; thus, they represent simplified versions of the observed
images. To derive them, physics-based reflection models are
used. An example is the color ratios by Finlayson [13]. As illu-
minant invariants, they are used to construct histogram features
for object recognition. Matas et al . integrate ratios into a graph
framework for efficient object recognition [30]. Nayar and Bolle
employ color ratios for robust pose estimation [31]. Barnard
and Finlayson identify possible shadow segments by color
ratios for color constancy and dynamic range compression [32].
Color ratio gradients are also employed for content-based image
retrieval of non-uniform texture objects [33]. Later, Gevers and
Smeulders extend the idea of color ratios to cross color ratios
that are also invariant to the scene geometry [34]. Not only cross
color ratios are independent of illumination and geometry, but
also the intrinsic reflectance by definition. Thus, cross color
ratios emphasizing true color variations are expected to provide

Reflectance Shading RGB Imagex = Reflectance Shading RGB Imagex =

Fig. 1. Ill-posed nature of the problem. The left part is an incorrect intrinsic image decomposition, whereas the right part presents the ground-
truth one. Both achieve the same input image through R × S = I .

https://github.com/seanbell/intrinsic
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cues for intrinsic images. Nonetheless, this natural correlation
between intrinsic images and cross color ratios has never been
incorporated as prior knowledge before. To that end, we suggest
the use of photometric invariant descriptors in optimization
to compute intrinsic reflectance. Unlike handcrafted priors
that are based on observation and require domain expertise,
cross color ratios are based on physics-based reflections models.
They are directly computed from the observed RGB image
in a learning-free manner (unsupervised) and do not require
additional sensory information or calibration.

Powerful deep-learning-based methods are also widely used
for the task. Narihira et al . introduced the first work to predict
reflectance and shading from a single RGB image in an end-to-
end manner [8]. Shi et al . predict diffuse albedo, shading, and
specular highlights from a single RGB image using millions of
synthetic images of objects [35]. Baslamisli et al . apply a Retinex
approach in a deep learning framework [9]. Li and Snavely
utilize image sequences and a constant reflectance prior in a deep
learning model [36]. Lettry et al . investigate adversarial learning
[37]. Baslamisli et al . propose fine-grained shading decompo-
sition [38]. We refer readers to the work of Sial et al ., which
provides a comprehensive overview of deep-learning-based
methods and large-scale datasets [39].

3. APPROACH

A. Image Formation Model

To describe an image I over the visible spectrum ω, we use the
diffuse dichromatic reflection model for three color channels
c ∈ {R, G, B} as follows [40]:

Ic =m(En, El)
∫
ω

fc (λ)e (λ)s (λ)dλ. (2)

In the equation, m is a function modeling the interaction
between the surface normal En and the incoming light source
direction El [e.g., Lambertian m(En, El)= (En · El)]. λ represents
the wavelength, f indicates the camera spectral sensitivity, e
describes the spectral power distribution of the light source, and
s denotes the surface reflectance, i.e., the albedo. Then, assum-
ing a linear sensor response and narrowband filters ( fc (λc ))
[41], the equation can be simplified as follows:

Ic =m(En, El) e (λc ) s (λc ) =m(En, El) e c s c . (3)

The equation models an image I by the multiplication of
surface geometry and light interaction m(En, El), reflectance s c ,
and light source properties e c per pixel. Using Eq. (3), intrinsic
images are defined (per pixel) as follows:

Ic = Sc × Rc ,

Sc =m(En, El) e c ,

Rc = s c , (4)

where an image Ic is modeled by the element-wise multi-
plication of its shading Sc and reflectance Rc components
(intrinsics). Most works assume white light, but if the light
source e is colored, then that color information is embedded in
the shading (illumination) component.

B. Color Ratios

For two neighboring (adjacent) pixels x1 and x2, locally con-
stant illumination can be assumed e x1

c = e x2
c [5]. Based on this

property, color ratios F are computed for c ∈ {R, G, B} at two
neighboring pixels x1 and x2 as follows:

F1 =
R x1

R x2
, F2 =

G x1

G x2
, F3 =

B x1

B x2
. (5)

We illustrate the invariant properties of (single) ratios by
plugging Eq. (3) into Eq. (5) for F1 as follows (holds also for F2

and F3):

F1 =
(m(En, El))

x1 e R
x1 s R

x1

(m(En, El))
x2 e R

x2 s R
x2

. (6)

Since two neighboring pixels x1 and x2 share the same locally
constant illumination, e R

x1 and e R
x2 are cancelled out in

the equation. If we assume that neighboring pixels share the
same geometry (m(En, El))x1 = (m(En, El))x2 , i.e., locally smooth
surfaces, then the ratios are invariant to photometric effects.

C. Cross Color Ratios

To overcome the geometry constraint of Eq. (6), cross color
ratios are preferred, which are not only independent of the illu-
mination conditions but also invariant to the object geometry.
For neighboring pixels x1 and x2, cross color ratios are defined as

M1 =
R x1 G x2

R x2 G x1
, M2 =

R x1 B x2

R x2 B x1
, M3 =

G x1 B x2

G x2 B x1
. (7)

As a result, the assumption that neighboring points share
the same geometry, i.e., locally smooth surfaces, is no longer
required for the cross color ratio that is invariant to photometric
effects. We illustrate the invariant properties of the cross ratios
by plugging Eq. (3) into Eq. (7) for M1 as follows (holds also for
M2 and M3):

M1=
(m(En, El))

x1e R
x1 s R

x1(m(En, El))
x2e G

x2 s G
x2

(m(En, El))
x2e R

x2 s R
x2(m(En, El))

x1e G
x1 s G

x1
=

s R
x1 s G

x2

s R
x2 s G

x1
.

(8)
Since two neighboring pixels x1 and x2 share the same

locally constant illumination, e R
x1 and e R

x2 , and e G
x1 and

e G
x2 are cancelled out. Moreover, since R x1 and G x1 and R x2

and G x2 share the same local geometry, (m(En, El)) compo-
nents are also cancelled out. Therefore, Eq. (7) can be used to
compute a measure for photometric invariance without any
additional constraint. The ratio encodes a relative reflectance
relation between two pixels. If there is no intrinsic color change
(reflectance between x1 and x2), then the ratio is one. Sensor
artifacts or noise may slightly deviate the value from one. On
the other hand, when the ratio deviates significantly from one, it
manifests an intrinsic color change. A threshold can be defined
or learned to differentiate significant deviations, identifying true
color changes. This property can also be used to measure the
number of distinct color edges in an image, which is explained in
Section 4.B.
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D. Intrinsic Image Optimization

An overview is given for the optimization framework of [6].
The problem is formulated by finding the decomposition
(reflectance R∗ and shading S∗) that most likely matches the
RGB image I based on a number of priors under probability
distribution p as follows:

R∗, S∗ = argmax
R,S

p(R, S|I ). (9)

A number of priors are utilized such that the framework
assigns a high probability to the decompositions that are consis-
tent with these priors. In particular, the priors are: (i) pixels that
are nearby and have similar chromaticity or intensity should also
have similar reflectance, (ii) reflectances are piecewise-constant
(Retinex), (iii) reflectances are sampled from a sparse set (global
reflectance sparsity), (iv) certain shading values are a priori more
likely than others, (v) neighboring pixels have similar shading
(shading smoothness), and (vi) shading is grayscale, or the same
color as the light source (color constancy). Then, the framework
incorporates the priors in a global sense using a dense CRF.

First, a set of possible labels (colors) is selected from the
observed RGB image as the initial reflectance predictions
using clustering. The clustering is based on the chromaticity
computed from the RGB image, which separates reflectances
under ideal conditions. Then, each reflectance pixel is labeled
with a chromaticity value chosen from the clusters such that
p(R, S| I ) is maximized. Second, the reflectances are tuned by
minimizing the discontinuities in the shading estimations. That
is achieved by the optimization process aiming to minimize the
energy function E (x ), composed of pairwise E p(x ) and unary
[E s (x ) and E l (x )] costs, by imposing the prior constraints:

E (x )=ωp E p(x )+ωs E s (x )+ωl E l (x ), (10)

where E p(x ) is the pairwise reflectance term that forces pixels
that are nearby in position, chromaticity, and intensity to be
assigned to the same surface reflectance, E s (x ) enforces the
shading smoothness, E l (x ) penalizes extreme values of shad-
ing for too many pixels, and x denotes the optimal labeling
(chromaticity value) for a pixel.

4. EXPERIMENTS

We show the potential merits of using color ratios by conducting
the following experiments: (1) an ablation study of the cross
color ratios on the Color Retinex performance, (2) the effect on
the cluster initialization scheme, (3) the influence of the pairwise
term, and (4) the performance on real world shadow removal.
Experiments are provided on the real world object level MIT
intrinsics dataset [42] and real world scene level Intrinsic Images
in the Wild (IIW) of complex indoor scenes for reflectance
predictions [6]. We report the mean, median, and trimean
values to measure the central tendency of the error metrics to
evaluate the robustness gains. Following the common practice,
the local mean-squared error (LMSE) with a window size of 20
for the MIT dataset and the weighted human disagreement rate
(WHDR) for IIW, as provided by the authors, are reported as
error metrics. Lower values are better for both cases. Finally, we
demonstrate the merits of our approach for the shadow removal

application on the Image Shadow Triplets Dataset (ISTD) [43]
and the Shadow Removal Dataset (SRD) [44] of real world
outdoor scenes with a variety of qualitative evaluations.

A. Combination with Color Retinex

As an ablation study, we integrate cross color ratios, Eq. (7),
into the Color Retinex algorithm. The Color Retinex algorithm
identifies reflectance changes by two threshold values, one for
strong brightness changes and the other for strong chromaticity
changes. If a pixel satisfies both thresholds, then it is classified
as a reflectance change. Then, using a surface reconstruction
algorithm, those pixels are re-integrated to achieve the final
reflectance estimation. Although powerful, the algorithm is
based on the Mondrian world hypothesis assuming piece-wise
distinctly colored patches for the gradient separation. However,
that is not always the case for real world images, as they might
contain weak color transitions or very strong photometric
effects (e.g., shadow casts) that also cause strong gradient
changes. Therefore, to show the merits, we integrate the ratios
into the Color Retinex paradigm to provide complementarity
making the algorithm more robust. For the experiments, we use
the Color Retinex implementation of [42].

For the integration, we first compute the cross color ratios by
Eq. (7) in RGB space. Before computation, Gaussian smoothing
is applied to the image. To merge the ratios and achieve a unified
map, we combine the three ratios by their geometric mean:
3
√

M1×M2×M3. It is applied in log space to avoid numerical
instabilities. Note that the arithmetic mean can also be pre-
ferred in RGB space. This way, all color information is properly
utilized. One might also use a single color ratio such as M1 (red–
green), yet given an image dominated by blue color, the ratio will
not be sufficiently responsive. Finally, a small threshold value of
0.02 is set to eliminate possible sensor artifacts and noise.

The combination is achieved such that the response maps of
Color Retinex and cross color ratios are fused using the logical
or operation. Therefore, they become complementary to each
other. If a pixel is labeled not reflectance by both, then it is dis-
carded, whereas if a pixel is labeled as reflectance at least by one
of the algorithms, it is marked as true reflectance change. We
demonstrate our contribution on the MIT intrinsics dataset
of real world objects and IIW real world indoor scenes for the
reflectance predictions in Table 1.

The results show that the cross color ratios further improve
the Color Retinex algorithm, and performance gains are
observed. All three metrics—mean, median, and trimean—are
improved. The improvements are more significant for median

Table 1. Combination of Color Retinex and Cross
Color Ratios (CCR)

a

Color Retinex CCR-Assisted Color Retinex

Mean (LMSE) 0.0315 0.0313
Median (LMSE) 0.0303 0.0295
Trimean (LMSE) 0.0314 0.0309
Mean (WHDR) 33.88 33.86
Median (WHDR) 33.10 33.00
Trimean (WHDR) 33.26 33.14

aThe ratios further improve Color Retinex on all metrics and make it more
robust.
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and trimean metrics such that Color Retinex becomes more
robust. As a result, simply using an elementary setup, we manage
to improve the reconstruction quality of the Color Retinex’s
reflectance estimations for both object and scene level cases.
Note that the computation of the ratios does not add any over-
head, is completely learning free, and realized in real time. They
are computed directly from the input RGB image (unsuper-
vised). The results are particularly important, as a large number
of works consider the Color Retinex approach in their optimiza-
tions [7,12,20–22,45]. The results suggest that future work
intending to use the Color Retinex gradient constraint should
also consider the cross color ratios for improved and more robust
estimations.

B. Adaptive Cluster Initialization

The optimization of Eq. (9) is initialized by k-means clustering
of pixel features. RGB pixels are transformed into pixel intensity,
red chromaticity, and green chromaticity as features, because
chromaticity information perfectly separates reflectances under
ideal conditions. Then, each pixel is labeled with a reflectance by
the cluster centers. That imposes the global reflectance sparsity
constraint [6,10].

Mostly, the number of clusters is treated as a hyper-parameter
and decided through a grid search. However, the process is
costly, not effective, and dataset dependent. It needs to be
adjusted per domain. The task is an active area of research (e.g.,
[46,47]). Here, we take a different approach and use the cross
color ratios to adaptively determine the number of clusters. In a
homogeneously (single) colored surface, the ratios are constant
(i.e., one). They significantly deviate from one when there is
a color change. Thus, the number of distinct color ratio val-
ues correspond to the number of distinct colors in an image.
Therefore, the number of distinct color ratio values can be used

Table 2. Effect of k for the K-Means Algorithm for the
MIT Dataset

a

Mean
(LMSE)

Median
(LMSE)

Trimean
(LMSE)

Fixed k = 10 0.0484 0.0400 0.0438
Fixed k = 20 (default) 0.0597 0.0434 0.0506
Fixed k = 30 0.0499 0.0397 0.0437
Adaptive k by ratios 0.0443 0.0356 0.0388
Adaptive k by ratios w/ratio features 0.0431 0.0353 0.0366

aAdaptive setting of the k value significantly improves the reflectance
estimations.

to determine the number of (true color) clusters per image. To
take advantage of this property, we represent each RGB pixel x
as its cross color ratios (M1(x ), M2(x ), M3(x )) computed
by Eq. (7). When at least one of the three features significantly
deviates from one, we count it as a unique color. The same ratios
are counted only once. We define the significance by the round
function. As a result, the number of clusters can be adaptively set
for each image, unlike other methods that use the same (fixed)
number of clusters for all images. Finally, we include cross color
ratios as features in the clustering. The ratios are first normalized
by the maximum value, then weighted by 0.5 for MIT and 10
for IIW experiments. Our contribution is presented in Table 2
and demonstrated in Fig. 2 for the MIT dataset and in Table 3
for IIW. An advanced Retinex model [48] is also included as a
comparison.

For the MIT dataset, Fig. 2 shows that the default approach
produces extra clusters for shadows and strong shadings. On
the other hand, strong shadings are decently handled, and the
region under the strong shadow is visible now in the raccoon
object due to the adaptive setting of the k value. In addition,
Table 2 shows that the ratio driven adaptive k leads to more

RGB Image Albedo GT Adaptive kFixed k

Fig. 2. Effect of the ratio driven clustering. Default model extra clusters shadows and strong shadings as reflectance. Adaptive setting k by the ratios
makes the model more accurate and robust to photometric effects such as strong shading and shadows.
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Table 3. Effect of k for the K-Means Algorithm for the
IIW Dataset

a ,b

Mean
(WHDR)

Median
(WHDR)

Trimean
(WHDR)

STAR [48] 31.88 32.24 32.05
Fixed k = 10 21.23 18.59 19.58
Fixed k = 20 (default) 20.08 17.91 18.26
Fixed k = 70 19.80 17.52 18.50
Adaptive k by ratios w/ratio features 19.50 17.06 17.55
Adaptive k by ratios w/ratio features∗ 17.51 15.33 15.87

aAdaptive setting of the k value further improves the reflectance estimations
for indoor scene level images.

bFurther improvements are also achieved with a guided filter post-processing
(*) [49].

robust and accurate results improving all three metrics. Finally,
additionally including the cross color ratios as features in the
clustering scheme further boosts the reconstruction perform-
ance. For the IIW dataset, Table 3 demonstrates that the ratio
driven adaptive k leads to more robust and accurate results also
for scene level images. The improvements are more significant
for median and trimean metrics such that the ratios make the
algorithm more robust. Further improvements can also be
achieved with a guided filter post-processing [49].

Calculation of the features (M1(x ), M2(x ), M3(x )) is
realized in real time and does not introduce any overhead. The
experiments suggest that a global reflectance sparsity prior is
beneficial considering the ratio driven adaptive setting of the
number of clusters. Therefore, future work intending to use the
global reflectance sparsity prior should also consider the adap-
tive setting of the number of clusters by the ratios for improved
and more robust estimations.

C. Pairwise Reflectance

Finally, we inject the color ratios into the pairwise reflectance
term E p(x ) of Eq. (10). The term forces pixels that are nearby
in position, chromaticity, and intensity to have the same
reflectance value. Under white illumination, two pixels having
the same reflectance should also have the same chromaticity.
However, the white illumination assumption is not realistic for
real world scenes. Thus, it is limited by real world applications.
Therefore, we modify the function such that it also considers
cross color ratios along with nearby pixels in position, pixel chro-
maticity, and intensity. Thus, the term is further constrained by
physics-based descriptors that are not limited in any assumption
such as white light. The ratio feature is defined as the geometric
mean of the three cross color ratios, the same as in Section 4.A.

RGB Image Baseline Final Model

Fig. 3. Reflectance evaluations for IIW dataset. Problematic parts
are marked with green bounding boxes. The final model further han-
dles discontinuities in the reflectance. It becomes more robust to direct
light effects and also to specular highlights.

We further weight it with a Gaussian to be suitable for CRF. The
results are provided in Fig. 3 for the scene level IIW estimations.
It can be observed that the ratios further handle discontinuities
in the reflectance map estimations, making them more robust to
direct light effects and also to specular highlights.

In addition, our final model contribution employing also
adaptive k-means is presented in Fig. 4 and in Table 4 for the
MIT dataset. An advanced Retinex model [48] is included as
a comparison. The quantitative results demonstrate that the
final model achieves significantly better results on all metrics
due to the cross color ratio injections. The visual results demon-
strate a significant degree of photometric invariance, capable of
handling even strong shadow casts.

RGB Image Albedo GT Adaptive kFixed k Final Model

Fig. 4. Additional effect of the cross color ratios as a pairwise term. The full model has a significant degree of photometric invariance, capable of
handling strong shadows.
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RGB Image Final Model Default Model

Fig. 5. Default model completely fails handling shadow casts. The final proposed model driven by the photometric invariant color ratios is more
robust to natural outdoor real world shadow handling. It can now differentiate drastic changes in pixel values and attribute them to the related
intrinsics.

Table 4. Effect of the Additional Pairwise Term for the
MIT Dataset

a

Mean (LMSE) Median (LMSE) Trimean (LMSE)

STAR [48] 0.0478 0.0438 0.0451
Default model 0.0597 0.0434 0.0506
Final model 0.0424 0.0325 0.0349

aIt further improves the reflectance estimations on all metrics and makes the
model more robust.

D. Scene Level Real World Shadow Removal
Application

In this section, we evaluate the proposed algorithm on a real
world application. Reflectance images being photometric
invariants should be shadow free by definition. Therefore, we
demonstrate the significant benefits that the ratios bring to
the reflectance estimations’ shadow handling performance.
To this end, we provide qualitative results on the ISTD [43]
and the SRD [44]. The results are presented in Fig. 5. It can be
observed that the photometric invariant ratios further robustify
the model. The final model can handle strong shadow casts in
real world natural scenes significantly better. We can handle
even shadows on monochromatic surfaces, as illustrated in the
second row. The default model fails and produces strong shadow
artifacts polluting the reflection estimations in all cases.

E. Comparison with Prior State of the Art

Finally, in this section, we provide a deep qualitative comparison
on ISTD and SRD with state-of-the-art methods: (1) Krebs
et al . recover the parameters of the dichromatic reflection model
using quadratic programming [50]; (2) Liu et al . introduce an

unsupervised intrinsic image decomposition model that learns
the latent features of reflectance and shading from unsupervised
and uncorrelated data [51]; (3) Bi et al . use edge-preserving
smoothing, Dirichlet process Gaussian mixture model for
adaptive clustering, and a superpixel-based CRF optimization
[45]; and (4) STAR is an advanced structure and texture aware
Retinex model [48]. Further, we provide two supervised deep
learning models: (5) CGIntrinsics combines four different
scene level real and synthetic datasets for training [52]; and
(6) ShapeNet boosts the intrinsic correlations with special
decoder links and is trained on 2.5M synthetic images [35].
Thus, the evaluation is profoundly diverse. The results are
provided in Fig. 6 for ISTD and Fig. 7 for SRD.

The evaluations further prove the quality of the proposed
invariant descriptors for natural outdoor shadow handling.
Figure 6 shows that Krebs et al . tend to produce smooth
reflectance maps, but cannot handle shadow casts. Liu et al .
fail to generate proper colors. The images appear way too dull,
and in the first two columns, the scenes have lost their intrinsic
color. It also tends to generate bright yellowish artifacts. Bi et al .
using CRF optimization and adaptive clustering appear to be
the closest work to ours. Yet, their method also fails to handle
shadow casts. Their adaptive clustering even generates addi-
tional shadow-like artifacts on the first image. Thus, with the
contribution of color ratios, it is clear that our model does not
just choose the cluster number adaptively, but the descriptors
further constrain the reflectance predictions. STAR generates
too bright images, so that most of the structures and colors
are not visible anymore. Similarly, supervised deep learning
models CGIntrinsics and ShapeNet fail to generate shadow-free
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Fig. 6. State-of-the-art comparisons on shadow cast handling on ISTD [43]. Both unsupervised and supervised models fail to handle shadows.
Our method driven by the photometric invariant color ratios is more robust, containing significantly fewer shadow cues and fewer shadow artifacts;
the colors are more vivid and realistic, and the structures are well preserved. Images are best viewed in color and on the electronic version.

albedo images. ShapeNet produces further color artifacts and
distortions.

Similar behavior is also observed in Fig. 7 for SRD. Krebs
et al . tend to produce smooth reflectance maps, but fail to han-
dle shadow casts. Liu et al . again fail to generate proper colors.
For example, the yellow color of the bench in the last row is com-
pletely washed away. Moreover, their model tends to generate
bright yellowish artifacts contaminating the reflectance maps.
Finally, Bi et al . results are similar to Krebs et al., producing
smooth reflectance maps, but they cannot properly handle
shadow casts.

On the other hand, our method driven by photometric
invariant color ratios is more robust in handling natural outdoor
real world shadow casts for two different domains of ISTD and
SRD. Compared with others, our reflectance predictions con-
tain significantly fewer shadow cues and fewer shadow artifacts.
Furthermore, the colors are more vivid and realistic, and the
structures are well preserved and not polluted with undesired
color artifacts. The results provided on two distinct dataset
domains further demonstrate the generalization capability of
the photometric invariant color ratios. In addition, the results
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RGB Image OURS Bi et al.Krebs et al. Liu et al.

Fig. 7. State-of-the-art comparisons on shadow cast handling on SRD [44]. Compared with others, our albedo estimations contain very little or
almost no shadow artifacts, the colors are more vivid and realistic, and the structures are well preserved. Images are best viewed in color and on the elec-
tronic version.

reveal a surprising fact that none of the state-of-the-art models is
able to handle natural outdoor shadow casts.

5. CONCLUSION AND FUTURE WORK

We demonstrated the concept of physics-based invariant
descriptors used in a CRF optimization framework to improve
reflectance predictions by making them more accurate and
more robust to shading variations. We provided three particular
ways to combine the ratios into the optimization, and a final
combination is presented. Experiments were provided on four
datasets: a real world object level, a real world indoor scene level,
and two different outdoor scene level image sets with various
shadow casts. Quantitative improvements were achieved on
both object level and scene level indoor scenes. On the other
hand, the significance of the proposed method is better observed
by the qualitative results. The visual results showed that the
default model has no sense of shadows, as it cannot differentiate
whether the changes in pixel intensities are caused by a color
change or photometric effects. Incorporating the color ratios
further enhances the model, making it aware of the photometric
cues including strong shadings and shadow casts. Thus, the
model can now differentiate drastic changes in pixel values and
attribute them to the related intrinsics.

Future work considering the (1) Color Retinex gradient
constraint, (2) global reflectance sparsity prior, (3) pair-wise
constant reflectance prior, or (4) natural shadow cast handling
should also consider incorporating the photometric invariant
descriptors to make their frameworks more accurate and robust.
Unlike handcrafted priors, which are based on observations and
mostly computationally intensive, the color ratios are physics
based, calculated directly from the RGB images in an unsuper-
vised manner, and realized in real time. The process does not
involve any specialized filters or labeled data, and it does not add
any additional complexity to the system. Thus, further improve-
ments are attainable without any overhead. Our future work will

focus on steering deep learning models by photometric invariant
descriptors.
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