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Abstract
In general, intrinsic image decomposition algorithms interpret shading as one unified component including all photometric
effects. As shading transitions are generally smoother than reflectance (albedo) changes, these methods may fail in distin-
guishing strong photometric effects from reflectance variations. Therefore, in this paper, we propose to decompose the shading
component into direct (illumination) and indirect shading (ambient light and shadows) subcomponents. The aim is to distin-
guish strong photometric effects from reflectance variations. An end-to-end deep convolutional neural network (ShadingNet)
is proposed that operates in a fine-to-coarse manner with a specialized fusion and refinement unit exploiting the fine-grained
shading model. It is designed to learn specific reflectance cues separated from specific photometric effects to analyze the
disentanglement capability. A large-scale dataset of scene-level synthetic images of outdoor natural environments is provided
with fine-grained intrinsic image ground-truths. Large scale experiments show that our approach using fine-grained shading
decompositions outperforms state-of-the-art algorithms utilizing unified shading on NED, MPI Sintel, GTA V, IIW, MIT
Intrinsic Images, 3DRMS and SRD datasets.

Keywords Intrinsic image decomposition · Photometric effects · Shadow · Albedo · Reflectance

1 Introduction

Intrinsic image decomposition aims to recover the image
formation components in terms of reflectance (albedo) and
shading (illumination) (Barrow and Tenenbaum 1978). The
reflectance component contains information about the real
color (i.e. albedo) of an object and is independent of illu-
mination and camera viewpoint. The shading component
contains different types of photometric effects such as direct
light, ambient light (inter- and intra- reflections) and shadow
casts. As a result, using intrinsic images rather than raw RGB
images can be favourable for different computer vision tasks.
For instance, reflectance images (i.e. illumination invariant)
are useful for semantic segmentation task for scene under-
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standing (Baslamisli et al. 2018a). They are also preferred by
computational photography applications for plausible photo
editing tasks such as recoloring, material editing and retex-
turing (Meka et al. 2016). Even recently, the textile industry
favors them for improved fabric recolorization (Xu et al.
2019). On the other hand, shading images are a source of
information for 3D shape reconstruction tasks (Wada et al.
1995; Henderson and Ferrari 2020), and for color constancy
(Gijsenij et al. 2008).

Theproblemof intrinsic imagedecomposition is ill-posed,
because there can be multiple solutions to reflectance and
shading that reconstruct the same input. As a consequence,
most of the traditional methods impose priors on the intrin-
sic components to constrain the search space by means of an
optimization process (Gehler et al. 2011; Shen et al. 2011;
Barron and Malik 2015). Recent approaches use large scale
datasets with powerful deep learning methods (Shi et al.
2017; Baslamisli et al. 2018b; Li and Snavely 2018a).

In general, most of the intrinsic image decomposition
methods (traditional and new ones) assume a single unified
shading component containing all the photometric effects.
The common assumption is that strong image variations are
due to reflectance changes and that smooth image variations
are caused by shading. However, this assumption does not
always hold for real images as they may suffer from strong
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photometric changes due to environmental conditions such as
heavy shadow casts and inter-reflections. In fact, it is demon-
strated that intrinsic image decomposition methods perform
poorly in handling shadow casts (Isaza et al. 2012). Altering
strong shadow casts by reflectance variations may negatively
influence the quality of the resulting intrinsic image decom-
position.

Therefore, our goal is to represent the different photo-
metric effects separately into direct (i.e. light source) and
indirect light (i.e. ambient light and shadow cast) compo-
nents. The aim is to explicitly model photometric effects
that may cause drastic changes in pixel values to provide
extra cues to the reflectance map estimations for better dis-
entanglement of color changes from those strong intensity
variations. To this end, we extend the standard image forma-
tion model to decompose the shading component into direct
(light source) and indirect light conditions (ambient light and
shadow casts). Based on the fine-grained model, an end-to-
end deep convolutional neural network (CNN) is proposed
that operates in a fine-to-coarse manner with a specialized
fusion and refinement unit. More precisely, the contributions
of our work are as follows:

– We propose ShadingNet, the first end-to-end model for
learning the fine-grained shading decompositions (pho-
tometric effects) of natural scenes (Fig. 2).

– We specifically design the model to couple a shading
decomposition with a reflectance prediction to learn spe-
cific reflectance cues separated from specific photometric
effects to analyze the disentanglement capability.

– We propose a generic rendering pipeline to generate fine-
grained shadingdecompositions.Wedemonstrate it using
Blender Cycles and extend a subset of the Natural Envi-
ronments Dataset (NED) (Sattler et al. 2017; Baslamisli
et al. 2018a; Le et al. 2020)1.

– We systematically analyze the quality and contributions
of the fine-grained shading decompositions using quan-
titative and qualitative evaluations on seven different
datasets (NED, MPI Sintel, GTA V, IIW, MIT Intrinsic
Images, 3DRMS and SRD), achieving superior perfor-
mance compared with state-of-the-art models estimating
a unified shading map.

2 RelatedWork

Intrinsic image decomposition is an ill-posed and under-
constrained problem, because different reflectance and shad-
ing maps can reconstruct the same input. Traditional work
usually aims to constrain the search space by imposing
priors on the intrinsic components. One of the pioneering

1 The models and the dataset will be made publicly available.

work is the Retinex algorithm (Land and McCann 1971).
It assumes that reflectance changes cause large gradients,
whereas shading variations result in smaller ones. Since then,
many priors have been introduced to approach the problem,
such as reflectance sparsity (Gehler et al. 2011; Shen andYeo
2011), texture (Shen et al. 2008; Zhao et al. 2012), depth (Lee
et al. 2012; Barron and Malik 2013) and infrared (Cheng
et al. 2019). It is also shown that using image sequences
(video) is favorable for intrinsic image decomposition as
it imposes a constant reflectance prior and varying shad-
ing for the same pixels within the sequence (Weiss 2001).
On the other hand, recent research generally use large-scale
datasets and supervised CNNs. DirectIntrinsics is the first
work that directly regresses reflectance and shading maps
from RGB images (Narihira et al. 2015). Since then, many
deep learning based methods are proposed. For instance,
ShapeNet model exploits the correlations between the intrin-
sic components by interconnecting decoder features (Shi
et al. 2017). Baslamisli et al. (2018b) consider both a physics-
based reflection model and intrinsic gradient supervision to
steer the learning process. Lettry et al. (2018a) utilize adver-
sarial learning, and CGIntrinsics leverage 4 different datasets
for better intrinsic image decompositions (Li and Snavely
2018a). Baslamisli et al. (2021) steers the learning process by
physics-based invariant descriptors. Fan et al. (2018) incor-
porates a guidance network and a domain filter to obtain
realistically flattened reflectance images. The task is also
approached in an unsupervised fashion using a single RGB
image (Liu et al. 2020; Liu and Lu 2020). In addition, image
sequences over time are exploited to constrain the reflectance
also within deep learning frameworks (Lettry et al. 2018b; Li
and Snavely 2018b). Finally, recent works on inverse scene
rendering also aim at estimating scene-level reflectancemaps
(Sengupta et al. 2019; Yu and Smith 2019; Li et al. 2020).

Most of the intrinsic image decomposition algorithms
represent shading as one unified component including all
photometric effects. Nonetheless, there are a number of
optimization-based methods that disentangle the shading
problem by performing additional decompositions. For
instance, the illumination image can be separated into direct
and multiple indirect components for plausible material col-
oring (Carroll et al. 2011). However, this method requires
additional user strokes. SIRFS recovers shape, reflectance
and chromatic illumination (Barron and Malik 2015), but
it performs poorly on natural scenes. An improved ver-
sion requires depth information (Barron and Malik 2013).
Laffont et al. (2013) propose a model that not only sepa-
rates reflectance from illumination, but also factorizes the
illumination into sun, sky and indirect layers. The model
requires multiple views of the same scene. In another work,
an image is decomposed into reflectance, shading, direct irra-
diance, indirect irradiance and illumination color by using a
multiplicative model that prevents further decomposition of
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shadow casts and ambient light (Chen and Koltun 2013).
Likewise, their method is dependent on depth information.
On the other hand, there are a few deep learning based meth-
ods that perform additional decompositions. Janner et al.
(2017) decomposes single images into reflectance, shape,
and lighting maps. However, instead of modelling the pho-
tometric effects, they approximate the shading process of
a rendering engine, which again aims at estimating a uni-
fied shading component. Innamorati et al. (2017) decompose
an object centered image to reflectance, occlusion, diffuse
illumination, specular shading and surface normals for user
friendly photo editing. Finally, GLoSHpredicts global spher-
ical harmonics for lighting, reflectance and surface normals
(Zhou et al. 2019). In contrast to existing methods, we pro-
pose to decompose (scene-level) shading into direct and
indirect shading terms to model the different photometric
effects without any specialized regularization or additional
sensory information such as depth. We further factorize the
indirect shading term to model ambient light and shadow
casts, whereas the direct shading is defined by object geom-
etry and light source interactions. The aim is to explicitly
model photometric effects to provide specific cues to the
reflectance map estimation for better disentanglement of
color changes from those strong photometric intensity vari-
ations.

Recently, supervised-based CNNmethods use large-scale
datasets (Shi et al. 2017; Baslamisli et al. 2018a; Li and
Snavely 2018a; Sengupta et al. 2019). Outdoor scenes are
frequently influenced by strong shadow casts and varying
lighting conditions. Unfortunately, existing datasets lack
variations of these types of photometric effects, except for
the Natural Environments Dataset (NED) (Sattler et al. 2017;
Baslamisli et al. 2018a; Le et al. 2020). Other datasets are
either object centered or taken from indoor scenes. NED con-
tains natural (outdoor) environments under varying illumi-
nation conditions with dense intrinsic image ground-truths.
We extend a subset of this dataset to generate direct shading
(shading due to surface geometry and illumination condi-
tions), shadow casts, and ambient light (inter-reflections)
ground-truth images (≈ 30k images). Additionally, we
provide a generic rendering pipeline to generate those fine-
grained shading decompositions.

3 Fine-Grained Shading Decomposition

3.1 Standard Image FormationModel

We use the Lambertian component of the dichromatic reflec-
tionmodel as the basis of our image formation (Shafer 1985).

Then, an image I over the visible spectrumω is modelled by:

I = m(n, l)
∫

ω

ρb(λ) e(λ) f (λ) dλ , (1)

where n indicates the surface normal, l denotes the (direct)
light source direction, and m is a function of the geomet-
ric dependencies (e.g. Lambertian n · l). Furthermore, λ

represents the wavelength, f indicates the camera spectral
sensitivity, and e describes the spectral power distribution
of the illuminant. Finally, ρb denotes the reflectance i.e.
the albedo (intrinsic color). Then, assuming a linear sensor
response, a single light source, and narrow band filters, the
equation can be simplified as follows:

I = ρsu , (2)

where an image I can be modelled by a product of its unified
shading su and reflectance ρ components. If the light source
e is colored, then that color information is embedded in the
illumination (shading) component. In general, in the context
of intrinsic image decomposition, the shading component su
is only defined for direct light (i.e. no occlusion) as follows:

sd = ed (n · l) , (3)

where ed is the intensity of the light source. Obviously,
Eq. (3) does not include photometric effects such as ambient
light or shadow casts. However, this assumption is often vio-
lated for real images. To compute intrinsic images, explicitly
modelling these photometric effects may help correctly dis-
tinguish strong shadow cues causing drastic changes in pixel
values from reflectance variations.

3.2 Image FormationModel with Composite
Shading

To incorporate the photometric effects of the ambient lights,
and assuming that the ambient light is uniform, we use a
linear function to model the relationship between direct and
indirect light:

I = ρed (n · l) + ρea , (4)

where ea is the intensity of ambient. To model a cast shadow,
an occluder is used that blocks the direct illumination ed
entirely and a portion αS of the ambient light. The shadowed
intensity is:

I S = αSρea = ρea(1 − αS) = ρ(ea − αSea) , (5)

where, for an occluder, αS indicates the fraction of reduced
ambient light caused by the cast shadow. We denote ea by
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Fig. 1 A sample scene fromNEDwith ground-truth intrinsics and fine-
grained shading components. Ambient light further illuminates parts
that direct light cannot reach. Shadow casts occur when direct light is
occluded

e+
a and −αSea by e−

a , then we arrive at a linear function to
model the relationship between direct light, ambient light and
shadow casts by:

I = ρed (n · l) + ρe+
a + ρe−

a . (6)

The indirect light ei = e+
a + e−

a consists of ambient light,
denoted by e+

a , resulting in an additive term. Shadows are
modelled by a negative term e−

a . Ambient light e+
a causes

objects to appear brighter, whereas shadows e−
a cause objects

to appear dimmer.

4 Dataset

4.1 Natural Environments Dataset (NED)

To train our models and baselines, we extend a subset of
the (synthetic) Natural Environment Dataset (NED) intro-
duced by Sattler et al. (2017); Baslamisli et al. (2018a); Le
et al. (2020) to generate reflectance, direct shading (shading
due to surface geometry and illumination conditions), ambi-
ent light and shadow cast ground-truth images. The dataset
contains garden/park like natural (outdoor) scenes includ-
ing trees, plants, bushes, fences, etc. Furthermore, scenes
are rendered with different types of terrains, landscapes, and
lighting conditions. Additionally, real HDR sky images with
a parallel light source are used to provide realistic ambi-
ent light. Moreover, light source properties are designed to
model daytime lighting conditions to enrich the photometric
effects. Figure 1 illustrates a sample scene from the dataset
with dense ground-truth annotations. For the experiments,
the dataset is randomly (scene) split resulting 15 gardens

for training, around 25k images, and 3 gardens for testing,
around 5k images.

4.2 Fine-grained Shading Rendering Pipeline

We re-render the aforementioned 18 gardens to obtain fine-
grained shading components with dense ground-truth anno-
tations. Scenes are re-rendered using physics-based Blender
Cycles engine2. The rendering pipeline is modified to out-
put reflectance and (unified) shading ground-truth intrinsic
images, ground-truth surface normal images, and light source
properties (color, position, and intensity). Then, we use Lam-
bert’s law to form the direct shading (sd ) component by
Eq. (3). Since Blender Cycles engine is modified to out-
put surface normals and light source properties, ground-truth
direct shading component is computed using Eq. (3).

Then, the ground-truth indirect light effects (i.e. ambi-
ent light and shadow casts) are created. For the task, we
use the ground-truth unified shading component, which is
already made available by the rendering engine. Ambient
light is due to extra light present on top of the direct shading,
while shadow casts cause reductions in intensity values. As
a result, subtracting the direct shading ground-truth from the
unified shading ground-truth, we are left with indirect light
effects that are modelled as significant deviations from the
direct shading component. After subtraction, the resulting
component has both positive (due to extra indirect light) and
negative (due to lack of direct light) pixel values. We classify
positive values as ambient light, whereas negative values are
classified as shadow casts. Therefore, the procedure labels a
pixel based on the dominant indirect light cue. Scenes can
be simultaneously shadowed from direct light source and
lit by indirect ambient light. The simultaneous action only
regulates the pixel intensities, and in the end, the dominant
light cue is labeled according to the signage of the indirect
light. For shadows cats, note that a pixel is not classified as
either in shadow or not, but has a continuous value. In that
sense, umbra and penumbra regions can also be observed
in the shadow maps depending on the intensity. Nonethe-
less, the formulation can be modified to facilitate a binary
shadow map using a threshold. Finally, the input image is
constructed by element-wise multiplying the unified shading
and reflectance components to obtain a composite image that
follows the physics-based image formation model.

2 https://www.blender.org/
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5 Method

5.1 ShadingNet

Using the image formation model of Eq. (6), we propose
ShadingNet to learn the fine-grained shading components for
natural outdoor scenes.Themodel not only estimates the pho-
tometric effects, but also refines the reflectance predictions
with a specialized fusion and refinement unit in a coarse-to-
fine manner. It is illustrated in Fig. 2. The generation module
has one encoder and three decoders. The decoders generate
unified shading (su), shadowcast (e−

a ), ambient light (e+
a ) and

related reflectance predictions (ρu , ρa− , ρa+ ). To enhance
feature discriminability and forward most relevant features
to the decoders, soft attention modules are adapted on the
encoder bottleneck. Thus, each decoder receives specialized
bottleneck features.

Each decoder tightly couples a reflectance prediction with
a shading intrinsic to further enforce feature discriminability.
For example, the shadow decoder is designed to disentangle
shadow and reflectance cues. Thus, the aim of each decoder
is to learn specific reflectance cues separated from specific
photometric effects and from the unified shading. This ratio-
nale allows us to analyze the disentanglement quality of each
photometric effect over the reflectance predictions.

Finally, the estimated fine-grained photometric compo-
nents and the reflectance predictions are fused and refined
to generate the final reflectance map. Since the reflectance
images are predicted with different conditions and parame-
ters in the decoders, they are expected to be not identical. That
is exploited by the fusion unit aiming at generating learnable
weighted combinations of the different reflectance images.
Then, in contrast to the generation module which provides
feature level cues and conditions the reflectances on the pho-
tometric cues as outputs, the refinement module conditions
the fused reflectances on the photometric cues as inputs for
full exploitation of the photometric effects.

Since our main motivation is to explicitly distinguish
strong photometric effects from reflectance variations, we
do not predict the direct shading component. Nonetheless, it
is used as an indirect supervision signal, which is explained
in the next section. The entire model is end-to-end trainable.

5.1.1 Network Details

Intrinsics Generation Module The encoder block uses 2-
strided convolution layers for downsampling (5 times),
except for the initial convolution layer. Each convolution
is followed by 4 consecutive residual blocks (He et al.
2016). A residual block is composed of Batch Norm-ReLu-
Conv(3 × 3) sequence, repeated twice. The bottleneck of
the encoder is fed to 3 distinct efficient channel attention
modules (Wang et al. 2020), which are then individually

Fig. 2 ShadingNet model architecture. Each decoder tightly couples a
reflectancepredictionwith a shading intrinsic in theGenerationModule.
Learnable soft attention modules are applied to the encoder bottleneck
features before forwarding to the relevant decoders to enhance feature
discriminability. The Fusion Module combines reflectance predictions
with 1 × 1 convolutions as learnable weighted averages. The fusion
is combined with the photometric cues and is fed to the Refinement
Module to generate the final reflectance map

fed to the decoders. The decoders use Conv(3 × 3)-Batch
Norm-LeakyReLu sequence. The feature maps are bilinearly
up-sampled and concatenatedwith their encoder counterparts
by skip connections (Maoet al. 2016). Theprocess is repeated
5 times to reach the final resolution.

The initial encoder block takes a single input image of
3 channels (RGB) and produces 16 feature maps. Then,
the number of feature maps is doubled for each following
convolution operation until the penultimate block. Thus, the
bottleneck has 256 feature maps. Efficient channel atten-
tion blocks use a kernel size of 5 and generate 256 feature
maps. Then, each decoder receives specialized bottleneck
features. Decoders generate 128 feature maps each, except
the last layer that generates a single channel or three channels
depending on the intrinsic component. All kernel weights are
initialized using He initialization (He et al. 2015). The slope
for theLeakyReLus is set to 0.01. The final outputs are passed
through ReLus to avoid negative pixel values.
Fusion The three reflectance predictions are combined with
learnable 1 × 1 convolutions to generate weighted combi-
nations. The kernel weights are initialized using He initial-
ization. The module takes 3 reflectance images as inputs (9
channels) and generates 24 channels combination. They are
then concatenated with the photometric effects and fed to the
final refinement network.
Refinement Module The module takes input as the fused
intrinsics and the photometric effects and outputs a single
final reflectance map. Unlike the generation module which
provides feature level cues, the refinementmodule conditions
the fused reflectances on the photometric cues as inputs. The
module starts with a convolution layer followed by 6 consec-
utive residual blocks with dilations (2− 2− 4− 8− 8− 1).
Similar to the generation module, a dilated residual block
is composed of Batch Norm-ReLu-Conv(3 × 3) sequence,
repeated twice. The kernel weights are initialized using He
initialization. The module does not involve any downsam-
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pling or upsampling operations. Each layer generates 32
features maps, except the last layer that predicts 3 chan-
nel reflectance image. The final output is passed through
a ReLu to avoid negative pixel values. Since the entire
model is trained end-to-end, the refinement module also
improves the estimations of the generation module by back-
propagation.

5.1.2 Training Details

Themodel is trained byusingAdamoptimizerwith a learning
rate of 0.00128 (Kingma andBa2014). The batch size is set to
10. The learning rate is halved every 4 epochs and the model
is trained until convergence. The input and output images are
not normalized and directly used as 8-bits.

Following the common practice, the models are trained
until convergence using the scale invariant mean squared
error (SMSE). Let Ĵ be the ground-truth intrinsic image and
J be the estimation of the network. Then, mean squared error
(MSE) is defined as:

MSE( Ĵ , J ) = 1

N

∑
|| Ĵ − J ||22 , (7)

where N is the total number of valid pixels. Then, SMSE first
scales J and then compares its MSE with Ĵ by least squares:

SMSE( Ĵ , J ) = MSE(α J , Ĵ ) , (8)

α = argmin MSE(α J , Ĵ ) . (9)

Then, MSE and SMSE are combined into one loss function;
Lc. Thus, to evaluate the quality of the estimation of an intrin-
sic component, the loss becomes:

Lc(J , Ĵ ) = γSMSE SMSE( Ĵ , J ) + γMSE MSE( Ĵ , J ) ,

(10)

where the γ s are the loss weights. For the experiments, we
follow the backbone implementation and set γSMSE to 0.95
and γMSE to 0.05. This is also the common practice in the
field. Then, one Lc is assigned to each intrinsic component,
yielding four distinct loss functions (reflectances are com-
bined into one, shading, ambient light and shadow cast).
Furthermore, an image formation loss (IMF) is included to
constrain that the generated final reflectance map and the
shading map should follow the image formation model to
reconstruct the original image. Enforcing Eq. (2), it com-
pares the input image I with the reconstructed image of the
predicted reflectance ρ and shading images (su):

I MF(ρ, su, I ) = MSE((ρ × su), I ) . (11)

Fig. 3 Baseline fine-grained shading models. On the left, a standard
encoder-decoder architecture (Eq. (2)), in the middle, Baseline-a with
Squeeze − and − Excitation blocks (Hu et al. 2018), on the right,
Baseline-b with extra decoders. ed denotes direct shading, e−

a is for
shadow casts and e+

a is for ambient light, su is for unified shading, and
ρ is for reflectance

Finally, we use the direct shading component as a indirect
supervision signal (IS). In Sect. 3.2, we derived the inten-
sity of the composite lighting effects as s = ed + e+

a + e−
a .

Since the model predicts ambient light (e+
a ), shadow cast

(e−
a ) and unified shading (su) maps, we can reconstruct the

direct shading component as follows:

ed = su − e+
a − e−

a . (12)

Then, similar to the image formation loss, we compare the
calculated direct shadingwith the ground-truth direct shading
images using MSE. Finally, for the generation module, all
loss functions are combined as follows:

Lgenerator = Lρ + Le+
a

+ Le−
a

+ LI MF + LI S , (13)

where Lρ is weighted with 1/3, since the loss is defined for
three albedo predictions, and LI MF is weighted with 0.01
and LI S is weighted with 0.1. Additionally, for the refine-
ment module’s final reflectance prediction, supervised L1
pixel loss and L2 gradient losses are utilized. Image gra-
dients are computed by using the intermediate differences
between the neighboring pixels. The process is applied ver-
tically and horizontally. Then, L1 pixel loss and L2 gradient
losses are added to the generation losswithout anyweighting.
The entire model is trained end-to-end from scratch.

5.2 Baselines

Since we are the first to estimate fine-grained shading intrin-
sics, we extend two versions of a state-of-the-art model to
provide a fair comparison. The modifications can be applied
to any regular encoder-decoder type CNN architecture that
is designed for the standard intrinsic image decomposition
task. To this end, we extend the ShapeNet model (Shi et al.
2017). The network is designed to further enforce correla-
tions between intrinsic components. Since we increase the
number of intrinsic components to predict, the model is well
equipped. Figure 3 illustrates the modifications.

For the first baseline, we extend the shading decoder
to contain multiple outputs for the photometric effects
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(Baseline-a). The shading decoder includes all shading fea-
tures which can be further decomposed into the correspond-
ing photometric effects and the direct shading component. To
this end, three Squeeze-and-Excitation (SE) blocks (Hu et al.
2018) are added to the end of the shading decoder to perform
feature re-calibration. By using SE blocks, predictions of the
fine-grained shadings are conditioned by one unified shading
decoder enhancing the feature discriminability.

For the second baseline, we extend the main architec-
ture by adding extra decoder blocks per fine-grained shading
component (Baseline-b). As a result, the architecture has
one encoder and four distinct decoders for reflectance,
direct shading, shadow cast and ambient light predictions.
Unlike baseline-a, shading features are not derived from one
decoder. Similar to the ShapeNet model, all decoder fea-
tures are interconnected. In this way, the gradient flow from
separate decoders individually increases the feature discrim-
inability. 3

6 Experiments and Evaluation

In order to fairly evaluate the capability of the deep intrin-
sic image decomposition models, along with the baselines,
we train several state-of-the-art deep supervised CNN archi-
tectures on NED’s training split until convergence by using
the training details provided by the authors. In addition, we
compare ourmodel to a number of state-of-the-art deep unsu-
pervised CNN models. Finally, we include a learning-free
optimization based advanced Retinexmodel (Xu et al. 2020).
All the models are directly applied to the test images with-
out any fine-tuning or domain adaptation steps. Following
the common practice, we report on the scale-invariant mean
squared error (SMSE), where the absolute brightness of each
image is adjusted by least squares, the local mean squared
error (LMSE) with window size 20, and the structural dis-
similarity index (DSSIM) for perceptual quality comparison
(Chen and Koltun 2013). For IIW, Weighted Human Dis-
agreement Rate (WHDR) is provided (Bell et al. 2014).

6.1 Models

Direct Intrinsics (Narihira et al. 2015). It is the first work
that directly regresses reflectance and shading maps from an
RGB image in a supervised fashion. It adapts a multi-scale
architecture that first extracts global contextual information
that is then refined using a sub-network. It is trained using
SMSEon reflectance and shadingpredictions andL2gradient
losses on reflectance predictions.

3 The details of the baseline networks and the training parameters are
provided in Appendix A

ShapeNet (Shi et al. 2017). The model is supervised and it
is composed of 5 encoder and 5 decoder layers. It exploits
the correlations between the intrinsic components by inter-
connecting decoder features. Skip connections are included
from the encoder to the decoders. It is trained using SMSE on
reflectance and shading predictions. SMSEs are re-weighted
with imagegradients formore accurate and sharp predictions.
IntrinsicNet (Baslamisli et al. 2018b). The model is super-
vised and it employs deep VGG16 architectures as encoder
and decoders. Skip connections are applied from the encoder
to the decoders. It is trained using standard MSE on
reflectance and shading predictions together with an image
formation loss.
ParCNN (Yuan et al. 2019). The model is supervised and it
diverges using two distinct encoders, designed as two parallel
variant U-Nets. It is trained using SMSE, L1 gradient on
reflectance and shading predictions and an image formation
loss.
USI3D (Liu et al. 2020). The model adversarially learns
the latent feature representations of reflectance and shad-
ing intrinsics from unsupervised and uncorrelated data. It is
trained based on the assumptions about the distributions of
different image domains such as domain invariant content,
reflectance-shading independence and the reversible latent
code encoders.
IIDWW (Li and Snavely 2018b). It is an unsupervised deep
CNN model trained on image sequences of the same scenes
under changing illumination. Therefore, it learns that in a
sequence the constant factor is the reflectance and the illu-
mination varies over time. The learning process is further
boosted by smoothness priors on both reflectance and shad-
ing intrinsics. The evaluations are of particular importance
as the model is expected to have strong shadow handling
capability due to the multi-view exposure.
InverseRenderNet (Yu and Smith 2019). It is an inverse
rendering architecture that is trained using large scale uncon-
trolled real world outdoor image collections without ground-
truths. The network uses 15 encoder layers and 15 decoder
layers. It is trained by self supervision modelled by a dif-
ferentiable renderer and structure-from-motion followed by
multi view stereo. Finally, it utilizes a prior constraint on the
reflectance generations forcing them to be piecewise smooth.
The model appears to be powerful being aware of multi
view images, surface normals and a natural illumination prior
based on spherical harmonics.
STAR (Xu et al. 2020). It is a structure and texture aware
advanced Retinex model based on exponentiated local
derivatives. The model is optimization based and does not
require labeled data.
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6.2 Datasets

Evaluations are provided on seven datasets. Quantitative
results are presented when ground-truth labels are available.
Natural Environments Dataset (NED). The test split includes
4800 RGB images with corresponding ground-truths (test
data unseen during training).
MPI Sintel. Cross dataset evaluations are provided on the
full image set of 890 RGB images with ground-truths. The
scenes are rendered from an animated cartoon like short film
(Butler et al. 2012). Blender software is used for rendering,
but the process, color distributions, and surface, material and
camera properties are different from the ones of NED.
GTA V. Cross dataset evaluations are provided on a subset
of the test set. The original test set includes scenes having
different weather conditions. We exclude scenes with rain,
snow, fog as well as night time scenes as they are outside of
the scope of this work. Then, we randomly pick 11 scenes
yielding around 1800 RGB images. The dataset provides
reflectance ground-truths. The scenes are extracted from the
GrandTheftAutoVgame (Krahenbuhl 2018). The scenes are
rendered by a special game engine called Rockstar Advanced
Game Engine (RAGE). The rendering process, color dis-
tributions, and surface, material and camera properties are
different from the ones of NED and MPI Sintel.
Intrinsic Images in the Wild (IIW). Cross dataset evaluations
are provided on real world complex scenes. The dataset con-
sists of sparse, crowd-sourced (noisy) relative reflectance
annotations on real, mostly indoor images. The annotations
are based on the classification task of deciding, given two
pair of pixels, which pixel has a darker surface color. From
the dataset, we identify around 130 outdoor scenes for eval-
uations. The images are gathered from Flickr taken from
different cameras and setups. See the original work for
detailed information on the annotations and the evaluation
metric (Bell et al. 2014).
MIT Intrinsic Images. Cross dataset evaluations are provided
on the real world object-centered images. The dataset ini-
tially contains 20 objects. However, we follow the authors’
recommendation and exclude apple, pear, phone and potato
objects as they are deemed problematic (Grosse et al. 2009).
Different from the previous datasets, MIT Intrinsic Images
are object centered and recorded in a controlled laboratory
environment.
3DRMS. Cross dataset evaluations are provided on a real
world outdoor garden dataset. The images are recorded by a
gardening robot driving through a semantically rich garden
with photometric effects (Sattler et al. 2017). The camera
setup and the scene properties are similar to the ones of NED.
Thus, it can be considered as the real world equivalent of
NED.Only qualitative evaluations are provided as the dataset
does not provide any ground-truth.

Shadow Removal Dataset (SRD). Cross dataset evaluations
are provided on a real world outdoor dataset that is specifi-
cally constructed for the shadow removal task. The images
were taken by a Canon 5D camera with a tripod, where
the shadows are introduced by various objects. It provides
a different camera elevation setup. It also includes differ-
ent illumination conditions, semantically rich scenes, objects
with different reflectance phenomena and various shadow
silhouettes (Qu et al. 2017). Only qualitative evaluations are
provided as the dataset does not provide any ground-truth.

Unfortunately, it is not possible (yet) to densely annotate
intrinsic images for any real world outdoor scene. With the
current technology, collecting and generating ground-truth
real world (object-level) intrinsic images is only possible
in a fully-controlled (indoor) laboratory settings (Cheng
et al. 2019; Grosse et al. 2009). Scene-level densely labeled
ground-truth intrinsic images do not exist at all.

6.3 Evaluations on NED, MPI Sintel and GTAV

In this section, we provide extensive quantitative evalua-
tions on three (synthetic) outdoor datasets having completely
different rendering processes. The results are provided in
Table 1 for NED and MPI Sintel for full evaluations. Table 2
presents reflectance evaluations forGTAV. In addition, Fig. 4
provides a qualitative comparison on reflectance estimations,
and a qualitative comparison on shading estimations for a
number of images with strong photometric effects of NED is
provided in Appendix G. Finally, the qualitative evaluations
on MPI Sintel are provided in Appendix F.

The quantitative evaluations on the NED’s test set (when
there is no domain gap) show that the baselines improve the
reflectance estimations of the ShapeNet backbone. Hence,
further decompositions of the shading component appears to
improve reflectance maps by providing explicit photometric
cues. A significant difference between the baselines is not
observed. On the other hand, the baselines are not as good
as our ShadingNet. For all metrics of reflectance and shad-
ing, our model outperforms the baselines having fine-grained
shadings, state-of-the-art models predicting a unified shad-
ing, and the advanced Retinex method.

The qualitative comparisons for reflectance estimations
on NED’s test set show that the proposed ShadingNet pro-
duces significantly better reflectance images with almost
no/minimal shadow leakages, very close to the ground-
truth images. A significant visual difference is not observed
with the extended baselines and ShapeNet backbone. The
extended baselines do not exhibit proper shadow handling.
IntrinsicNet estimations are problematicwith undesired color
cast artefacts. Similarly, DirectIntrinsics generations are too
blurry and lack proper color information. The qualitative
comparisons for shading estimations on NED’s test set is
provided in Appendix G.
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Table 2 Reflectance evaluations on GTA V scenes

SMSE LMSE DSSIM

STAR 0.0165 0.0767 0.3029

USI3D 0.0129 0.0676 0.2642

IIDWW 0.0146 0.0723 0.2713

InverseRenderNet 0.0198 0.0884 0.2837

DirectIntrinsics 0.0146 0.0800 0.2981

ShapeNet 0.0138 0.0603 0.1771

IntrinsicNet 0.0128 0.0603 0.1989

ParCNN 0.0151 0.0656 0.4331

Baseline-a 0.0145 0.0622 0.1883

Baseline-b 0.0134 0.0612 0.1851

ShadingNet (Ours) 0.0124 0.0590 0.1698

The baselines cannot further improve ShapeNet backbone. Our model
outperforms others on all metrics achieving better generalization capa-
bility. Bold numbers denote the best performing method

MPI Sintel and GTA V serve as cross dataset evaluations
to assess the generalization capabilities of the models. Note
that all the models are directly applied to the test images
without any fine-tuning or domain adaptation steps. For MPI
Sintel, similar to NED, the baselines further improve the
reflectance estimations of ShapeNet backbone. On the other
hand, the baselines are not as good as our ShadingNet. Our
model outperforms others on allmetrics except for the LMSE
for shading estimations. Nonetheless, our model is specifi-
cally designed to improve reflectance estimations. For GTA
V, the baselines cannot further improve the reflectance esti-
mations of ShapeNet backbone.On the other hand, ourmodel
is again better on all metrics. The qualitative comparisons
show that the proposed ShadingNet generates reflectances
that are closer to the ground-truth ones with minimal shadow
artefacts and performs better on shadow and low-light han-
dling is provided in Appendix F.

To conclude, experiments conducted on three datasets
having completely different rendering processes show that
our model with fine-grained shading estimations outperform
other methods. Our method has also an improved general-
ization capability. The baselines having fine-grained shading
components further improve ShapeNet backbone on NED
and MPI Sintel, but not on GTA V, whereas we achieve
superior performance on all. That also highlights the impor-
tance of our design choices. Qualitative results further prove
the quality of our proposed model. We generate reflectance
images with almost no/minimal shadow leakages, and with
decent colors that are very close to the ground-truth images.
Similarly, we achieve sharper shading predictions.
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Fig. 4 Qualitative reflectance estimation results on NED’s test set. Our
proposed ShadingNet produces significantly better reflectance images
with almost no/minimal shadow leakages, very close to the ground-
truth images. A significant visual difference is not observed with the

extended baselines and ShapeNet backbone. IntrinsicNet estimations
are problematic with undesired color cast artefacts. Similarly, DirectIn-
trinsics generations appear too blurry and lack proper color information.
Images are best viewed in color and on the electronic version

6.4 Evaluations on Intrinsic Images in theWild (IIW)

In this section, we provide evaluations on the real world
IIW dataset (Bell et al. 2014). The quantitative evaluations
are provided in Table 3 and Fig. 5 provides qualitative
examples for reflectance predictions. The quantitative eval-
uations show that our model with fine-grained photometric
estimations outperforms other learning based methods esti-
mating uniform shading, the inverse rendering model, and
the optimization based advanced Retinex method. Baseline-
a improves ShapeNet backbone results by a small margin,
but Baseline-b further deteriorates the results by a large
margin. State-of-the-art models predicting a unified shad-
ing map achieve very similar results. On the other hand,
our proposed method suppresses also the baseline models
that estimate the fine-grained shading components, which

highlights the importance of our design choices. Among the
models, IIDWWachieves the best results.We attribute this to
the models exposure to image sequences and to the smooth-
ness priors that are used to train the model. It is known
that the WHDR metric is biased towards piece-wise smooth
reflectance predictions (Nestmeyer and Gehler 2017). On the
other hand, our data driven approach exploits NED using
the standard reconstruction losses without any piece-wise
smoothness prior. NED includes various rough terrains with
different textures, scattered grass, bush and flower patterns
that are not piece-wise smooth. Therefore, it is expected
that the supervised learning models without proper smooth-
ness constraints may fall short on the metric of the dataset.
Nonetheless, it is possible to further improve the performance
by applying a guided filter (Nestmeyer and Gehler 2017) to
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Table 3 Reflectance evaluations on real world IIW outdoor scenes

WHDR ↓
STAR 36.21

USI3D 36.69

IIDWW 21.60

InverseRenderNet 36.05

DirectIntrinsics 41.64

ShapeNet 40.33

IntrinsicNet 38.17

ParCNN 40.06

Baseline-a 46.22

Baseline-b 39.11

ShadingNet (Ours) 35.73

ShadingNet (Ours)∗ 29.98

Our method achieves superior results also on real world complex out-
door images. ∗ indicates that the CNN predictions are post-processed
with a guided filter (Nestmeyer and Gehler 2017). Bold number denotes
the best performing method. Underline denote the second best perform-
ing method

enforce the piece-wise constant reflectance assumption as a
post-processing step.

The merits of the results are more compelling when
evaluated visually. The qualitative comparisons show that
Baseline-a predictions are corrupted by a yellowish color

cast and the model fails to generate a proper reflectance
image when the scene is dominated by a single color as in
the case of the 4th row. Baseline-b predictions displaying
partial chromaticity information in several regions are rela-
tively better than Baseline-a ones, but the generated colors
appear rather dull. ShapeNet estimations strongly resembles
the input image intensities. Although it is possible to see the
smoothing effects, InverseRenderNet predictions fail most
of the time. The model fails to properly generate colors as
in the cases of the 1st and 4th rows having blue color casts.
It further generates artefacts in the 2nd row where the face
of the person appears blue, his blue jeans appear brown and
his blue jacket appears dark red. The shading effects are still
visible. IIDWW colors are rather dull and faded having blur
like casts. We attribute this to the smoothness losses used
in its training. Quantitatively it contributes, but qualitatively
they generate undesired effects. STAR estimations can han-
dle strong shadings, but appear way too bright that most of
the structures and colors are not visible anymore. The model
appears to handle low light conditions better than other learn-
ing based models. Qualitative comparison with other models
are provided in Appendix B.

On the other hand, our proposed ShadingNet generates
significantly better reflectancemaps.Colors appearmore nat-
ural and vivid, and the structures are well-preserved. The 1st
row shows that we perform better on shadow handling as

Fig. 5 Qualitative estimation results on IIW. Our proposed ShadingNet
generated reflectance maps perform better on shadow handling (1st
row), strong shading handling (2nd and 4th rows) and low light envi-
ronments (3rd row). The colors appear more natural and vivid, and

the structures are well-preserved. The chromaticity patterns are clearly
visible in our reflectance estimations. Best viewed on the electronic
version
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Fig. 6 Shadow evaluations on real world IIW scenes. Our model gen-
erates sharper and richer shadowmaps capable of handling diverse cues
for complex scenes

the shadows due to the bushes are mostly eliminated. The
stairs in the 2nd row and upper background of the 4th row
present strong shading patterns and our model is capable of
handling them properly. The jeans of the person in the 2nd
row presents abrupt geometry changes and our model is able
to generate relatively smooth reflectance predictions in that
case. In addition, the 3rd row presents a case of a low light
environment that our model presents better handling capa-
bility. Finally, the chromaticity patterns are clearly visible in
our reflectance predictions: the green bushes and the red car-

pet in the 1st row, the green grass and the green tree leaves in
the 2nd row, the green moss puddle in the 3rd row and the red
flowers and the red stair rail in the 4th row. The results are
particularly important as the chromaticity information per-
fectly separates reflectances under ideal conditions. Thus,
our model is capable of extracting meaningful reflectance
information from the RGB images.

Finally, Fig. 6 provides shadow map evaluations. The
results prove that our model generates richer shadow maps.
The 1st row shows that our model captures the shadows on
the hallway, on the portico, on the left arch, on the eaves and
due to the self occlusions of the bushes. Baselines fail to cap-
ture the shadows on the hallway, on the left arch, and on the
eaves. The 2nd row shows that our model is better at detect-
ing the self occlusions of the grass and tree leaves and the
strong intensity drops of the stairs. The 3rd row shows that
all models perform similarly on low light conditions, yet our
model estimations appear sharper. The 4th row shows that all
models are capable of detecting shadowsdue to the self occlu-
sions of the ivy and theflowers.However,Baseline-awrongly
detects the stair rails as shadowy regions and Baseline-b fails
to detect the region over the upper right background.

To conclude, ShadingNet generated reflectance images
emerge more stable, obtain better quantitative results, have
more vivid, realistic and natural colors, can handle strong
shadings, low light environments and abrupt geometry
changes, and have better generalization capability for in-the-
wild realworld complex outdoor images.Our shadow images
appear sharper and they are capable of handling a lot more
diverse cues for various complex outdoor scenes. Although
IIDWW achieves better quantitative results, it uses images
sequences for training and applies smoothness priors to
address themetric.We show that explicitly estimating photo-
metric effects further contributes to improve the reflectances.

Table 4 The baselines further improves ShapeNet backbone

SMSE LMSE DSSIM
Albedo Shading Average Albedo Shading Average Albedo Shading Average

STAR 0.0137 0.0114 0.0126 0.0614 0.0672 0.0643 0.1196 0.0825 0.1011

USI3D 0.0156 0.0102 0.0129 0.0640 0.0474 0.0557 0.1158 0.1310 0.1234

IIDWW 0.0126 0.0105 0.0116 0.0591 0.0457 0.0524 0.1049 0.1159 0.1104

InverseRenderNet 0.0234 0.0137 0.0186 0.0573 0.0957 0.0765 0.1148 0.1276 0.1212

DirectIntrinsics 0.0164 0.0093 0.0129 0.0683 0.0449 0.0566 0.1218 0.1159 0.1189

ShapeNet 0.0207 0.0106 0.0157 0.0606 0.0595 0.0601 0.1027 0.0886 0.0957

IntrinsicNet 0.0191 0.0089 0.0140 0.0618 0.0407 0.0513 0.0905 0.0989 0.0947

ParCNN 0.0109 0.0086 0.0098 0.0462 0.0537 0.0500 0.0929 0.0999 0.0964

Baseline-a 0.0141 0.0089 0.0115 0.0523 0.0548 0.0536 0.0929 0.0947 0.0938

Baseline-b 0.0156 0.0086 0.0121 0.0563 0.0522 0.0543 0.0939 0.0953 0.0946

ShadingNet (Ours) 0.0107 0.0071 0.0089 0.0390 0.0447 0.0419 0.0758 0.0865 0.0812

Our reflectance estimations are significantly better than others also on on object-centeredMIT Intrinsic Images demonstrating superior generalization
ability. Bold numbers denote the best performing method
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6.5 Evaluations onMIT Intrinsic Images

In this section, we evaluate our model on the real world
object-centered MIT Intrinsic Images (Grosse et al. 2009).
The quantitative evaluation results are provided in Table 4
and Fig. 7 provides a number of qualitative examples for
reflectance predictions.

The quantitative results demonstrate that the baselines
estimating fine-grained shading components further improve
the reflectance estimations of ShapeNet backbone estimat-
ing a unified shading. On the other hand, our proposed
ShadingNet generates reflectance maps that significantly
outperforms all other methods on all metrics. IntrinsicNet
shading estimations achieve better results for the LMSE for
shading estimations and the learning free advanced Retinex
model STAR achieves better shading estimations for the
DSSIM metric. Nonetheless, on average we achieve signif-
icantly better results for all cases. Moreover, our shading
estimations appear competitive and our model is specifi-
cally designed to improve reflectance estimations and all the
reflectance metrics are improved also for a real world object-
centered dataset of a completely different domain.

The qualitative results demonstrate that our model gen-
erates better reflectance maps than other learning-based
models. Similar to the previous experiments, the baselines
tend to generate undesired yellowish color cast. ShapeNet
generated colors are rather dull and faded. Similar to IIW
experiments, InverseRenderNet tends to confuse color with
light generating erroneous reflectance images. Moreover, it
fails to handle shading cues from reflectance predictions.
USI3D generated reflectance maps are contaminated by arte-
facts and the colors are rather dull and faded. On the other
hand, ShadingNet generated reflectance images are sharper
and closer to the ground-truth images with better color repro-
duction and shading handling. Qualitative comparison with
other models are provided in Appendix H.

Previous experiments on scene-level NED, MPI Sintel,
GTA V and IIW have already proved the greater gener-
alization ability of the proposed ShadingNet. In addition
to those, ShadingNet model offers significantly better per-
formance also on a totally different domain of real world
object-centered images both quantitatively and qualitatively.
Therefore, ShadingNet model presents an exceptional gen-
eralization performance compared with the baselines having
fine-grained shadings, state-of-the-art models predicting a
unified shading, and the advanced Retinex method.

6.6 Evaluations on 3DRMS of Outdoor Garden
Scenes

In this section, we present extensive qualitative comparisons
for a real world in-the-wild outdoor garden dataset, 3DRMS
(Sattler et al. 2017). It can be considered as the real world

Fig. 7 We generate sharper estimations that are closer to the ground-
truths with better color reproduction and shading handling. We exhibit
significantly better generalization performance also on MIT Intrinsic
Images

equivalent of NED. The results are presented in Fig. 8 for
reflectance predictions.

Similar to the previous experiments, Baseline-a predic-
tions are corrupted by a yellowish color cast. The model
detects a number of shadow patterns, but it cannot properly
eliminate them from the reflectance generations. Baseline-b
provides better shadow handling than Baseline-a and also
from ShapeNet backbone. ShapeNet model fails to gener-
ate proper colors and wrongly classifies shadows cues into
reflectance predictions. InverseRenderNet model generates
smooth reflectance predictions. However, it has no sense of
shadows or other photometric effects. All the reflection pre-
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Fig. 8 Qualitative reflectance evaluations on a real world gar-
den images. Our proposed ShadingNet generates significantly bet-
ter reflectance maps that the colors appear more natural and

vivid, and the structures are well-preserved. We perform bet-
ter on handling various shadow patterns and also low light
conditions
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Fig. 9 Shadow evaluations on real world garden scenes. Baseline-a
wrongly focuses to the sky. Baseline-b appears to be limited by the
field of view and the depth, and it puts too much emphasis on the self

occlusions of the bushes rather than the strong shadow casts. We gen-
erate richer shadow maps with diverse shadow patterns

dictions are contaminated by shadow cues. Furthermore, the
surfaces with lighter colors are negatively affected by green
color casts. Similar behaviour is also observed for IIDWW
that the images have green color casts. This may indicate
that the models fail when a scene is dominated by a sin-
gle color (green in this case). Moreover, IIDWW predictions
highly resemble the input RGB images. Although the model
is trained with image sequences and is expected to have high
quality shadowhandling, it fails to achieve so. Finally,USI3D
estimations are contaminated with artefacts and the colors
are rather dull and faded. Similar to InverseRenderNet and
IIDWW, themodel has no sense of shadows.Qualitative com-
parison with other models are provided in Appendix E.

On the other hand, our proposed ShadingNet generates
better reflectance maps that the colors appear more natural
and vivid, and the structures are well-preserved. Especially,
the trees appear more lively. The 1st column shows that we
perform better on shadow handling as the shadows due to the
bushes and the trees aremostly eliminated. Similar behaviour
is also observed on 2nd and 3rd columns that the shadows due
to to the bushes are handledwell. Even the strong shadowcast
patters on the eaves of the buildings are mostly eliminated.
None of the other models is able to handle or recognize them.
Likewise, our model is better at handling the shadows of the
boxwood and the shadings of the posts, and the building in
front with low light is more visible than others.
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Fig. 10 Ambient light evaluations on real world garden scenes. The baselines overfit to the brightest pixels as ambient light predictions. Our model
can better differentiate brightness changes and attribute them to reflectance or illumination

Finally, we provide the qualitative evaluations of the pho-
tometric effect estimations. Figure 9 provides shadow gener-
ation evaluations. Baseline-a wrongly focuses to numerous
regions of the sky. Baseline-b appears to be limited by the
field of view and the depth as it does not generate any infor-
mation for further away and small objects. For example, the
regions with the background buildings are totally discarded
and the self occlusions of the tree on the 3rd column is com-
pletely neglected. On the other hand, our model can generate
richer shadow maps and it is aware of various shadow pat-
terns. The 1st column shows that the baselines cannot capture
the shadows due to the bushes placed on the right. Baseline-b
cannot detect the shadow of the bottom left bush. In addi-
tion, it puts too much emphasis on the self occlusions of
the bushes rather than the strong shadow casts. 2nd and 3rd
columns show that our model can detect the strong shadow
casts of the eaves of the background buildings of the right

sides, and the very strong shadow cast on the background
building of the left side. Baseline-b detects the one on the
left up to a degree, but the baselines fail to detect the strong
shadow casts of the eaves.

Figure 10 presents ambient light estimation evaluations.
All models mostly focus on the sky as our image formation
and data generation process model ambient illumination as
the extra light present on top of the direct shading component.
Although the training data do not include sky regions (since
it is not possible to generate proper synthetic ground-truth
for the sky), the models are mostly aware of the nature of the
ambient light. However, the baselines directly anticipate that
the brightest pixels highlight ambient light cues. It can be
observed from the figure that the baselines put much of the
emphasis on the aluminum-like roof covers of the buildings
with shiny reflectance properties, because these regions are
among the most bright pixels of that scenes. Thus, the results
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suggest that the baselines overfit to the brightest pixels as
ambient light predictions. On the other hand, our model can
better differentiate brightness changes and attribute them to
reflectance or illumination. It can be observed from the 2nd
and 3rd columns that our model mostly focuses on the sky
rather the shiny roof reflectance, whereas Baseline-a high-
lights more to the roof material and the shadow cast edges
and Baseline-b uniformly highlights the roof material and
puts less emphasis on the sky.

To conclude, ShadingNet generated reflectance images
emergemore stable, generatemore vivid, realistic and natural
colors, can handle diversified shadow patterns and low-light
environments, and have better generalization capability for
in-the-wild real world outdoor garden scenes. Our shadow
estimations are capable of capturing a lot more diverse cues,
they are aware of the sky, and they are not limited by the
depth of the scene. Finally, our model can better differentiate
brightness changes and attribute them to reflectance or illumi-
nation, whereas the baselines directly overfit to the brightest
pixels.

6.7 Evaluations on Shadow Removal Dataset (SRD)

In this section, we demonstrate the quality of our model
on a real world complex outdoor dataset that is specifically
crafted for the shadow removal task (Qu et al. 2017). A num-
ber of qualitative comparisons are provided in Fig. 11 for
reflectance predictions.

The results suggest that the baselines do not further
improve ShapeNet backbone, yet Baseline-b generates bet-
ter colors. Baseline-a generates additional shadow artefacts
(1st, 2nd and 5th colums). ShapeNet predictions have rather
dull colors. Similar to previous experiments, InverseRender-
Net tends to confuse color with light generating erroneous
reflectance images. The reflectance estimation in the 4th
column is completely off. In addition, instead of remov-
ing shadow cues from reflectance images, the model further
boosts the shadow pixels. For example, in the 1st column,
the area under the tree is further clustered and in the 5th
column, the intensity and contrast of the shadow is fur-
ther emphasized. It suggests that the model cannot properly
handle outdoor shadows. IIDWW estimations resemble the
input RGB images. Similar to the previous experiments, the
images are rather dull in color and all the shadowcues are also
present in the reflectance estimations. Although the model is
trained on image sequences, it cannot properly handle out-
door shadows. All learning-based methods fail on handling
shadow casts on SRD. STAR model can handle the shadow
casts of 2nd, 3rd and 5th columns. However, for others, it
again generates reflectance images that are way too bright
that most of the structures and colors are not visible anymore.
For example, the background building and the boxwood of

the 1st column is not visible anymore. Qualitative compari-
son with other models are provided in Appendix C.

On the other hand, our proposed ShadingNet generates
significantly better reflectance maps that the colors appear
more natural and vivid, and the structures are well-preserved.
The 1st column shows that we perform better on shadow han-
dling as the shadows below the tree and shadows due to the
self occlusion of the boxwood are mostly eliminated. Simi-
larly, we can handle the relatively small shadow cast of the
stone in the 2nd column. In addition, we are the only model
that can properly handle the shadow cast of the leave where
the surface is achromatic. In the 4th column, the uniformity
of the background is observed with minimum shadow leak-
age, whereas othermodels generate additional light artefacts.
Finally, the 5th column appears more realistic and natural.

Finally, Fig. 12 provides the qualitative evaluations of the
shadow cast estimations. The 1st column shows that the base-
lines can only detect the self occlusions of the tree leaves
and a small part on top right where the boxwood meets the
ground. Our model can fully detect the intersection between
the boxwood and the ground (also the one on the left), the
shadow region below the tree and even micro self occlusions
of the grass. The models behave practically the same in the
2nd column. The 3rd column shows that our model can fully
detect the shadow cast of the leave on an achromatic surface,
whereas the baselines focus more on the region where the
darker pixels are distributed. Baseline-b can partially detect
it, but most of the emphasis is on the darker brownish moss
puddle which should have been attributed to the reflection
estimation. In the 4th column,Baseline-b generates relatively
sharper estimations, yet it ignores the rugged nature of the
surface of the running track which cause small shadows due
to self occlusions. The 5th column shows our model can
detect the shadow cast better, whereas Baseline-a fails.

To conclude, ShadingNet generates significantly better
reflectance intrinsics also on a different camera elevation
setup. Our generated colors appear more natural and vivid. In
addition, our model can handle various shadow cast patterns
including achromatic surfaces and single color dominated
scenes, whereas the baselines generally struggle to cover
diverse patterns and distributions.

6.8 Evaluation of the Refinement Module

In this section, we evaluate the quality of the individual
reflectance estimations and the final refinement module.
Quantitative results are provided in Table 5 for NED when
there is no domain gap and for GTA V as cross dataset eval-
uation to assess the generalization performance. It can be
observed that the refinement module further improves the
reconstruction quality of the reflectance estimations for all
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Fig. 11 Qualitative reflectance evaluations on a real world shadow
removal dataset. Our proposed ShadingNet generates significantly bet-
ter reflectance maps that the colors appear more natural and vivid, and
the structures arewell-preserved,whereas other learning-basedmethods

cannot properly handle shadow casts and some even generate additional
artefacts. Our model is also able to remove shadow casts on achromatic
surfaces (3rd column). Images are best viewed in color and on the elec-
tronic version
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Fig. 12 Shadow cast evaluations on a real world shadow removal dataset. Our model can generate richer shadow maps, it can capture various
shadow patterns, and it is aware of achromatic surfaces

Table 5 Evaluation of the refinement module

SMSE LMSE DSSIM

(a) Evaluations on NED (when there is no domain gap)

ρa+ 0.0032 0.0160 0.1005

ρa− 0.0030 0.0144 0.0910

ρu 0.0030 0.0157 0.0982

ρ 0.0027 0.0122 0.0798

(b) Evaluations on GTA V (as cross dataset generalization)

ρa+ 0.0130 0.0620 0.2169

ρa− 0.0125 0.0598 0.1970

ρu 0.0127 0.0613 0.2096

ρ 0.0124 0.0590 0.1968

It further improves the reconstruction quality of the reflectance maps
for all metrics. ρa+ denotes the ambient light branch, ρa− denotes the
shadow cast branch, ρu denotes the unified shading branch reflection
predictions. ρ denotes the final refined reflectance estimation. Bold
numbers denote the best performing method

metrics. The reflectance maps estimated from the shadow
branch achieve the best results compared with other photo-
metric effects. It suggests that the strong shadow cast cues
negatively effect reflectance estimations the most. Explicitly
classifying them generates better reflectance maps.

In addition, Fig. 13 provides a number of examples for
NED. The qualitative results further demonstrate the ben-
efits of the proposed refinement module. The 1st column
demonstrates that the shading branch generated reflectance
ρu suffers the most and has the worst estimation quality. It is
possible to see the strong shadow cast patterns on the ground
below the tree and on the fences. Likewise, 2nd and 3rd
columns show that the shading branch generated reflectance
generations cannot properly handle photometric cues and
they are contaminated with strong shadow cast patterns.
There is no significant visual difference between ρa+ and ρa−
estimations. Nonetheless, they are better than ρu predictions
with less shadow leakages. On the other hand, the reflectance
map generated by the refinement module is very close to
the ground-truth. The module further handles the shadow
leakages, generates sharper estimations, improves color aug-
mentation, and it can capture fine-grained thin objects such
as the orange flowers in the 1st column. Visual evaluations
for real world images without ground-truths are provided in
Appendix D.

6.9 Evaluation of the Fine-Grained Shadings

In this section, we evaluate the reconstruction qualities of the
fine-grained shading estimations on the extended NED. The
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Fig. 13 Evaluationof the refinementmodule. Shadingbranchgenerated
reflectance ρu suffers the most and has the worst estimation quality. The
refinement module further handles the shadow leakages and improves
color augmentation for natural scenes

baselines are provided as comparisons. Quantitative results
are provided in Table 6. It can be observed that Baseline-a
conditioning the photometric predictions to a single uni-
fied shading decoder achieves better results than Baseline-b
with individual decoders. On the other hand, our model
significantly achieves better reconstruction quality over the
baselines for all components. Even though we do not predict
direct shading component and use it as a self supervision sig-
nal, we also achieve better reconstruction quality on direct
shading map generation. That also highlights the importance

Table 6 Evaluation of the fine-grained shadings

SMSE (e+
a ) SMSE (e−

a ) SMSE (ed )

Baseline-a 0.0155 0.0256 0.0545

Baseline-b 0.0162 0.0293 0.0579

ShadingNet (Ours) 0.0103 0.0209 0.0459

We significantly achieve better reconstruction quality for all compo-
nents on all metrics. e+

a is for ambient light, e−
a is for shadow casts,

and ed is for direct shading. Bold numbers denote the best performing
method

Fig. 14 Shadow estimations on NED. Our model is aware of diverse
patterns and generates sharper maps

of our design choices. Among all the fine-grained shading
components, the direct shading component appears to be the
most challenging for all models.

In addition, Fig. 14 provides a number of examples for
the shadow cast estimations. The baselines are able to handle
certain cues. Baseline-a estimations appear relatively better.
Our model is aware of diverse shadow patterns and the esti-
mations are closer to the ground-truth images and sharper
than the baselines. Additionally, Fig. 15 provides a number
of examples for the ambient light estimations. Our model
is aware of the indirect light cues and it can recognize the
regions that the direct light cannot reach. The baselines tend
to fail most of the cases, yet the 4th row demonstrates that
they perform relatively reasonable on low light handling.
Similar to the shadow cast evaluations, Baseline-a estima-
tions appear better than Baseline-b. On the other hand, our
ambient light estimations are significantly superior than the
baselines. Finally, Fig. 16 provides a number of examples
for the direct shading estimations. The 1st row shows that
Baseline-a is aware of the texture cues of the pot, but can-
not properly assess the light source position. Likewise, they
fail to capture the light source position in the 2nd row and
the rock is not visible anymore. The last two rows show that
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Fig. 15 Ambient light estimations on NED. Our model is aware of the
regions that the direct light cannot reach

Fig. 16 Direct shading estimations on NED. Our model is better aware
of the light properties, texture cues and the cast shadow features

the estimations are polluted with (indirect) shadow cast fea-
tures. On the other hand, our model is better aware of the
light source position, texture cues and the cast shadow fea-
tures. Our method still makes mistakes, such as the shadow
patterns of the rock (3rd row), and the fence, rock on the left
and ground (4th row) still contain shadow cues. This can be
attributed to our self-supervision mechanism that the direct
shading component is calculated by Eq. (12) using the esti-
mated shading components. Therefore, the individual errors
might be accumulated. Furthermore, the quantitative results
have shown that the direct shading component appears to
be the most challenging component for all models. The rea-
son might be that the geometry and lighting information are
entangled in the representation and the ground-truth com-
ponent is calculated by the Lambertian shading using the

surface normals and the light source properties, whereas the
estimations are extracted from single RGB images without
any explicit supervision or regularization on surface normal
features or light source properties.

6.10 Shading Estimations

So far, we have focused on the reflectance predictions and
fine-grained shading components. The experiments have
shown that explicitly modelling the photometric cues fur-
ther improves the reflectance estimation qualities. We have
also provided quantitative evaluations for shading estima-
tions when ground-truth labels are available. In this section,
we provide a number of qualitative evaluations of the shading
estimations on real world images in Fig. 17. The baselines
generate rather blurry shading maps. The robot is not clearly
visible in the 1st row and in the 2nd row Baseline-a fails to
capture the crisp shadows. There is no significant difference
between the baselines and ShapeNet backbone. InverseRen-
derNet generates additional undesired shadow like artifacts.
IIDWW estimations are oversmoothed and too blurry due
to its smoothness priors. STAR achieves more decent esti-
mations than other methods. Its shading estimations are
remarkably better than the reflectance ones. On the other
hand, ShadingNet generates better shading maps that are
sharper and it can properly capture the photometric cues com-
paredwith the other learning-basedmethods. Comparedwith
STAR, our generations are rather sharper in the first two rows,
yet STAR estimations appear better in terms of contrast.

7 Conclusion

Our aim was to improve the reflectance image estimation
quality by explicitly modelling the photometric cues. To
achieve that, the standard (Lambertian) image formation
model was extended to incorporate the fine-grained shading
components. The shading component is further factorized
into different photometric effects such as shading caused
by direct shading (object geometry) and indirect shading
(shadows and ambient light) to generate better reflectance
maps for natural scenes. An end-to-end supervised CNN
model, ShadingNet, were utilized to exploit the fine-grained
model. The model was specifically designed to improve
the reflectance estimations with special decoders, soft atten-
tion mechanisms and a novel refinement module. Since we
are the first work to estimate fine-grained shading intrin-
sics, we extended two versions of a state-of-the-art intrinsic
image decomposition model as baselines to provide a fair
comparison. Along with the two baselines exploiting the
fine-grained model, the performances of four supervised
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Fig. 17 Shading evaluations on real world objects. ShadingNet generates better shading maps that are sharper and it can properly capture the
photometric cues. Images are best viewed on the electronic version

state-of-the-art deep learningmodels utilizing a unified shad-
ing map were evaluated. Furthermore, to train the models, a
large-scale dataset of synthetic images of outdoor natural
environments (NED) was extended generating fine-grained
intrinsic images. All themodels were trained on the extended
NED. Then, three unsupervised learning based methods,
including an outdoor inverse rendering and a model trained
on image sequences also included for the evaluations. Finally,
a structure and texture aware optimization based advanced
Retinex was evaluated. The evaluations were provided on
seven different datasets (NED,MPI Sintel, GTAV, IIW,MIT
Intrinsic Images, 3DRMS and SRD) with comprehensively
different setupswithout any fine-tuning or domain adaptation
stage.

The evaluations prove that intrinsic image decomposi-
tion highly benefits from the proposed fine-grained shading
model. Explicitly classifying the photometric effects signif-
icantly improves the reflectance estimations. For most of
the cases, the baselines with fine-grained estimations further
improve the backbone model predicting a unified shading
component. On the other hand, our proposed ShadingNet
constantly outperforms the baselines having fine-grained
shadings, state-of-the-art supervised models predicting a
unified shading, the outdoor inverse rendering method,
the model trained on image sequences and an advanced
Retinex method by a large margin. The qualitative com-
parisons demonstrated that ShadingNet properly handles
diverse shadow patterns, low-light environments and strong

shading effects. It is able to generate reflectance maps that
are sharper, more natural and vivid with proper color aug-
mentation and reproduction. In addition, it can generate
sharper and richer shadow maps with various shadow pat-
ters, and it is aware of achromatic surfaces. Our model can
also better differentiate brightness changes. It can detect the
source of the bright pixels and can decently attribute them
to reflectance or ambient light maps. Finally, our model
emerges more stable. It presents an exceptional generaliza-
tion performancewith the ability to properly handle synthetic
scenes, in-the-wild complex natural scenes and also object-
level images.

Acknowledgements This project was funded by the EU Horizon 2020
program No. 688007 (TrimBot2020). The authors would like to thank
the anonymous reviewers for their valuable comment.

Delcarations

Conflict of interest The authors declare they have no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your

123



International Journal of Computer Vision (2021) 129:2445–2473 2467

intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

A Implementation Details of the Baselines

The training of the baselines aligns with the implementa-
tion details of the ShapeNet backbone. All filter weights
are initialized using a normal distribution. Adadelta opti-
mizer with learning rate of 0.01 is utilized (Zeiler 2012).
The learning rate is decayed until 1e − 5. The input images
are normalized to the range of [0, 1]. Following the back-
bone, themodels are trained until convergence using the scale
invariant mean squared error. Similar to ShadingNet, one Lc

is assigned to each intrinsic component, yielding 4 distinct
loss functions (reflectance, direct shading, ambient light and
shadows). Finally, all loss functions are added upwithout any
weight tuning (all the weights are set to 1). Finally, following
the backbone implementation, pixel errors are re-weighted
with image gradients to generate more accurate and sharp
edges.

B Additional Qualitative Results on IIW

Additional qualitative comparisons for IIW are provided in
Fig. 18. IntrinsicNet generated reflectance maps are more
vivid than ShapeNet variants and the stairs of the 2nd row
displays a better shading handling performance than others.
However, it generates color artefacts on the last row. Par-
CNN estimations are rather blurry and color artefacts are
detectable. USI3D fails to capture proper colors. It gener-
ates rather dull reflectance images with artefacts. Moreover,
it does not display decent shading handling performance.

C Additional Qualitative Results on SRD

Additional qualitative comparisons for SRD are provided
in Fig. 19. IntrinsicNet estimations extremely resemble the
input RGB images, yet it can be observed that the direct light
effects are slightly smoothed out. ParCNN generates (color-
wise) relatively better reflectance images than other models.
USI3D fails to capture proper colors. It generates rather dull
reflectance images and all contaminated with shadow cues.

Fig. 18 Additional qualitative comparisons on IIW. Our method
achieves superior results also on real world complex outdoor images

DAdditional Qualitative Refinement Results
on Real World Images

Figure 20 provides examples for SRD (1st row) and 3DRMS
(2nd row) real world outdoor scenes to evaluate the refine-
ment module. The 1st row demonstrates that ρu and ρa+ have
the worst estimation quality. The reflectance map generated
by the refinement module has minimum shadow leakage and
the colors appearmore vivid and natural. The 2nd row repeat-
edly shows that the shading branch generated reflectance ρu
suffers the most and has the worst estimation quality. The
refinement module further handles the shadow leakages and
generates relatively smoother estimations.

Fig. 19 Additional qualitative comparisons on USR. Our proposed
ShadingNet generates significantly better reflectance maps that the col-
ors appearmore natural and vivid, and the structures are well-preserved.
Other learning-basedmethods cannot properly handle shadow casts and
some even generate additional artefacts
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Fig. 20 Evaluationof the refinementmodule. Shadingbranchgenerated
reflectance ρu suffers the most and has the worst estimation quality.
The refinement module further handles the shadow leakages, generates
sharper estimations and improves color augmentation

E Additional Qualitative Results on 3DRMS

Additional qualitative comparisons for 3DRMS are provided
in Fig. 21. IntrinsicNet model fails to generate proper col-
ors and wrongly classifies shadows cues into reflectance
predictions. It can smooth out the direct light effects, but
clearly fails on handling indirect light cues. ParCNN gen-
erates reflectance images better than IntrinsicNet, but tends
to fail on the sky regions (2nd and 3rd columns) generat-
ing purple/black artefacts and contaminating the reflectance
generations. STARmodel can handle a variety of the shadow
casts, but by doing so it generates reflectance images that are
way too bright that most of the structures and colors are not
visible anymore. For example, in the 2nd column it appears
that the irregular terrain filled with wood chips are falsely
further extended to right with the white color artefacts and
the color of the buildings are not recognizable.

Fig. 21 Additional comparisons on3DRMS.ShadingNet generates sig-
nificantly better reflectance maps with more natural and vivid colors,
and the structures are well-preserved. We perform better on handling
various shadow patterns and also low light conditions

F Qualitative Evaluations onMPI Sintel

The qualitative comparisons for MPI Sintel are provided in
Fig. 22. It shows that the proposed ShadingNet generates
reflectances that are closer to the ground-truth oneswithmin-
imal shadow artefacts. We also perform better on shadow
and low-light handling. Similarly, our shading generations
are sharper and closer to the ground-truth ones. A significant
visual difference is not observed between the baselines and
ShapeNet backbone. ParCNN appears color-wise better than
other models, yet it does not perform as well as others on
shadow handing.

123



International Journal of Computer Vision (2021) 129:2445–2473 2469

Fig. 22 Qualitative estimation results on MPI Sintel. Our proposed
ShadingNet generated reflectance maps are closer to the ground-truth
ones with minimal shadow artefacts. We also perform better on shadow
and low-light handling. Similarly, our shading generations are sharper

and closer to the ground-truth ones. A significant visual difference is not
observed between the baselines and ShapeNet backbone. Best viewed
on the electronic version

GQualitative Shading Evaluations on NED

The qualitative comparisons for shading estimations on
NED’s test set are provided in Fig. 23. It shows that the pro-
posed ShadingNet produces sharper shading maps that are

very close to the ground-truth images. A significant visual
difference is not observed among other models. IntrinsicNet
shading estimations are better than its reflectance estima-
tions, but again problematic with checkerboard artefacts.
Likewise, DirectIntrinsics generations are too blurry.
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Fig. 23 Qualitative shading estimation results on NED’s test set. Shad-
ingNet produces sharper outputs that are very close to the ground-truth
images. A significant visual difference is not observed among other

models. IntrinsicNet estimations are problematic with checkerboard
artefacts. DirectIntrinsics generations appear too blurry

H Additional Qualitative Results onMIT

Additional qualitative comparisons for MIT are provided in
Fig. 24. IntrinsicNet estimations have less artefacts than oth-
ers, but themodel cannot properly handle the strong shadings.
ParCNN generates additional brightness artefacts, wrongly
eliminates the black dots on the head of the turtle and con-

fuses them with shading cues, and completely fails on the
sun image. IIDWW generated colors are dull and the images
contain yellowish color cast. Further, the model cannot han-
dle strong shadings due to geometry such as the right-hand
parts of the objects where the curvature is the strongest and
the farthest from the light source.

123



International Journal of Computer Vision (2021) 129:2445–2473 2471

Fig. 24 Additional comparisons on MIT. We generate sharper estimations that are closer to the ground-truths with better color reproduction and
shading handling
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