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A B S T R A C T

We investigate the use of photometric invariance and deep learning to compute intrinsic images (albedo and
shading). We propose albedo and shading gradient descriptors which are derived from physics-based models.
Using the descriptors, albedo transitions are masked out and an initial sparse shading map is calculated directly
from the corresponding 𝑅𝐺𝐵 image gradients in a learning-free unsupervised manner. Then, an optimization
method is proposed to reconstruct the full dense shading map. Finally, we integrate the generated shading
map into a novel deep learning framework to refine it and also to predict corresponding albedo image to
achieve intrinsic image decomposition. By doing so, we are the first to directly address the texture and
intensity ambiguity problems of the shading estimations. Large scale experiments show that our approach
steered by physics-based invariant descriptors achieve superior results on MIT Intrinsics, NIR-RGB Intrinsics,
Multi-Illuminant Intrinsic Images, Spectral Intrinsic Images, As Realistic As Possible, and competitive results
on Intrinsic Images in the Wild datasets while achieving state-of-the-art shading estimations.
. Introduction

Intrinsic image decomposition is the inverse problem of recovering
he image formation components, such as reflectance and shading (Bar-
ow and Tenenbaum, 1978). The shading component consists of light
ffects such as direct illumination, geometry, shadow casts and ambient
ight. The reflectance component represents the (albedo) color of an
bject and is free of any lighting effect. Intrinsic images are favorable
or various computer vision tasks. For example, albedo images are
eneficial for semantic segmentation algorithms because of their illu-
ination invariant representation (Baslamisli et al., 2018a). Similarly,
ost of the scene editing applications, such as recoloring, rely on

lbedo images (Ye et al., 2014), whereas shading images are preferred
or relighting tasks (Shu et al., 2017).

The pioneering work on intrinsic image computation is the Retinex
lgorithm by Land and McCann (1971) which uses a heuristic that is
ased on the rectilinear Mondrian world assumption. In a Mondrian
orld, where surfaces have piece-wise constant colors, strong gradients

orrespond to albedo changes, while shading variations are related to
eaker ones. Then, using a re-integration algorithm (i.e. Poisson) over

he strong (albedo) gradients, the albedo component is computed. How-
ver, classifying image gradients into albedo or shading is not a trivial
ask due to various photometric effects such as strong shadow casts,
lluminant color, surface geometry changes or weak albedo transitions.
or instance, shadow boundaries or abrupt changes in surface geometry
ay cause strong intensity shifts and may therefore be interpreted

∗ Corresponding author.
E-mail address: a.s.baslamisli@uva.nl (A.S. Baslamisli).

as albedo changes. Moreover, the Mondrian world assumption do not
apply to real world scenes. Other traditional approaches usually utilize
an optimization process by introducing constraints on the intrinsic
components (Gehler et al., 2011; Shen et al., 2011; Barron and Malik,
2015). Most of the priors aim at constraining the albedo component
such as global reflectance sparsity, piece-wise constant reflectance or
chromaticity reflectance correlation. On the other hand, the shading
intrinsic is usually constrained by a smoothness prior.

More recent methods rely on deep learning models, specialized
loss functions, and large scale datasets. For example, Baslamisli et al.
(2018b) provide an end-to-end solution to the Retinex approach in
a deep learning framework, Li and Snavely (2018a) combine four
datasets with specialized loss functions to impose constraints, and Let-
try et al. (2018a) investigate adversarial learning. With the availability
of densely annotated synthetic datasets and multiple constraints on
the albedo component, CNN-based methods are capable of estimating
high quality albedo maps. However, CNN-based shading estimations
regularly suffer from texture and intensity ambiguities (e.g. albedo
leakage) introducing (color) artifacts in the shading profiles. See Fig. 1
for an illustration.

In the early days of photometric invariance in computer vision,
invariant image descriptors were widely used for different vision tasks.
These descriptors are invariant to certain image capturing conditions so
that the vision algorithms are not affected by them, such as illumination
color, surface geometry or camera position. Successful results were
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Fig. 1. Color leakage problem in the estimated shading maps. It negatively effects the
albedo separation from the shading. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

demonstrated for object recognition (Gevers and Smeulders, 1997), im-
age retrieval (Gevers and Smeulders, 2000), and shadow removal (Fin-
layson et al., 2006). As CNN-based shading estimations suffer from
(color) artifacts, physics-based invariant features may be useful to steer
the intrinsic image decomposition process.

Therefore, we investigate the use of photometric invariance and
deep learning to compute intrinsic images (albedo and shading). We
propose albedo and shading gradient descriptors which are derived
from physics-based models. Using the descriptors, albedo transitions
are masked out and an initial shading map is calculated directly from
the corresponding 𝑅𝐺𝐵 image gradients in a learning-free manner (un-
upervised). Then, an optimization method is proposed to reconstruct
he full shading map. Finally, we integrate the shading map into a deep
earning model to achieve full intrinsic image decomposition.
Contributions. 1. We are the first to use photometric invariance

nd deep learning to address the intrinsic image decomposition task.
. We propose albedo and shading gradient descriptors using physics-
ased models as novel priors. 3. The shading map is calculated directly
rom the corresponding 𝑅𝐺𝐵 image gradients in a learning-free (un-
upervised) manner. 4. We propose a novel deep learning model to
everage the physics-based shading map for the intrinsic image decom-
osition task. By doing so 5. we are the first to directly address the
olor leakage problem in the estimated shading maps. Finally, 6. we

extend the dataset of Baslamisli et al. (2018b) from 15,000 to 50,000
images to train our models, which will be publicly available.

2. Related work

Intrinsic image decomposition is an ill-posed and under-constrained
problem. The pioneering work is the Retinex algorithm by Land and
McCann (1971) based on the assumption that albedo changes cause
large gradients, whereas shading variations result in smaller ones. In
general, traditional approaches use different optimization processes to
constrain the intrinsic components together with the Retinex heuristic.
For example, Gehler et al. (2011) impose constraints on the global
albedo sparsity. SIRFS estimates shape, chromatic illumination, albedo,
and shading from a single image by applying seven different constraints
on the intrinsic components (Barron and Malik, 2015). Intrinsic Images
in the Wild (IIW) model combines commonly used priors together
with a dense conditional random field (Bell et al., 2014). Shen et al.
(2011) use optimization to constraint neighboring pixels having similar
intensity values to have similar albedo values. Shen et al. (2008)
exploit non-local texture cues by constraining distinct points with the
same intensity-normalized textures to have the same albedo values.
Furthermore, user interactions are investigated as additional priors
to specify albedo values (Bousseau et al., 2009; Shen et al., 2013).
Finally, image sequences of the same scene under varying illumination
are used to impose constant albedo (Weiss, 2001; Matsushita et al.,
2004). Most of the priors mentioned above are related to the albedo

intrinsic. It is partially due to color information being more descriptive

2

for robust computer vision algorithms (van de Sande et al., 2009). It is
also relatively harder to define priors for the shading intrinsic, because
geometry and lighting information are entangled in the representation.

With the introduction of large-scale synthetic datasets, recent re-
search use convolutional neural networks (Shi et al., 2017; Baslamisli
et al., 2018a; Li and Snavely, 2018a). Narihira et al. (2015) are the
first to use CNNs to learn the task end-to-end in a data-driven man-
ner. Shi et al. (2017) make use of a very large scale dataset along
with a specialized network to exploit correlations between the intrinsic
components. Baslamisli et al. (2018b) convert the Retinex approach
into a deep learning framework together with a physics-based image
formation loss. Cheng et al. (2018) use a Laplacian pyramid inspired
neural network architecture to exploit scale space properties. Lettry
et al. (2018a) explore adversarial residual networks. Fan et al. (2018)
apply a domain filter guided by a learned edge map to flatten the
albedo estimations. Li and Snavely (2018a) combine four datasets with
specialized loss functions. Janner et al. (2017) explore the problem
in a self-supervised setting by estimating albedo, shape, and lighting,
where shape and lighting estimations are used to train a differentiable
shading function. Baslamisli et al. (2019) further decomposes the shad-
ing into different photometric effects. Image sequences of the same
scene under varying illumination are also explored by deep learning
approaches (Lettry et al., 2018b; Li and Snavely, 2018b). Recent work
focusing on inverse rendering tasks also achieve superior albedo es-
timations (Sengupta et al., 2019; Li et al., 2020). Nonetheless, these
methods are limited by indoor settings and require additional surface
normal and environmental lighting supervision.

CNN-based methods are capable of estimating high quality albedo
maps that are mostly free of photometric effects. However, their shad-
ing estimations are often negatively affected by albedo transitions
causing texture ambiguities and intensity variations, as illustrated in
Fig. 1. To mitigate the problem, for example, Zhou et al. (2019)
shift the problem of predicting shading to predicting surface normals
and lighting properties. Yet, their work is limited by indoor settings
and require additional modalities and supervision, similar to inverse
rendering works. Another example is CGIntrinsics which over-smooths
the shading estimations, yet that in return causes structure loss in the
shading maps (Li and Snavely, 2018a). As CNN-based shading estima-
tions suffer from albedo artifacts, invariant image representations may
be favorable to steer the process. They were widely used for various
image understanding tasks (Drew et al., 1998; Finlayson et al., 1998,
2006; Gevers and Smeulders, 1997, 1998, 2000). One example is the
illumination invariant color ratio features used for robust object recog-
nition (Finlayson, 1992). Stricker (1992) combines ratio histograms
with boundary histograms for a more robust framework. Nayar and
Bolle (1996) utilize color ratios for pose estimation. Matas et al. (1995)
embed ratio information into a graph representation also for efficient
object recognition. Barnard and Finlayson (2000) identify probable
shadow regions using color ratios. Gevers and Smeulders (2001) exploit
ratio gradients for image retrieval. As invariant image representations
are independent of the certain imaging conditions, they may be useful
to improve CNN-based shading estimations as part of intrinsic image
decomposition. To this end, in this paper, we investigate the use of
photometric invariance and deep learning to compute intrinsic images
(albedo and shading).

3. Methodology

3.1. Image formation model

We use the dichromatic reflection model of Shafer (1985) to de-
scribe an 𝑅𝐺𝐵 image. The model defines a surface (image) 𝐼 as a
combination of diffuse 𝐼𝑑 and specular 𝐼𝑠 reflections as follows:

𝐼 = 𝐼𝑑 + 𝐼𝑠 . (1)

We assume that the diffuse reflection component dominates the imag-
ing conditions and hence the effect of the specular reflection component
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is negligible, i.e. 𝐼 ≈ 𝐼𝑑 . Then, an image I over the visible spectrum 𝜔
is modeled by:

𝐼𝑐 = 𝑚(𝑛, 𝑙)∫𝜔
𝑓𝑐 (𝜆) 𝑒(𝜆) 𝜌(𝜆) d𝜆 , (2)

or three color channels 𝑐 ∈ {𝑅,𝐺,𝐵}, where 𝑛 indicates the surface
ormal, 𝑙 denotes the incoming light source direction, and m is a func-
ion of the geometric dependencies (e.g. Lambertian 𝑛 ⋅ 𝑙). Furthermore,
represents the wavelength, 𝑓 indicates the camera spectral sensitivity,
nd 𝑒 describes the spectral power distribution of the light source.
inally, 𝜌 denotes the reflectance i.e. the albedo. Then, assuming a
inear sensor response and narrow band filters (𝑓𝑐(𝜆𝑐)), the equation
an be simplified as follows:

𝑐 = 𝑚(𝑛, 𝑙) 𝑒(𝜆𝑐 ) 𝜌(𝜆𝑐 ) = 𝑚(𝑛, 𝑙) 𝑒𝑐 𝜌𝑐 . (3)

his equation models an image by the multiplication of its geometry
(𝑛, 𝑙)𝑥, albedo 𝜌𝑥𝑐 and light source properties 𝑒𝑥𝑐 at pixel 𝑥. Then, these
haracteristics are used to define intrinsic images as follows:
𝑥
𝑐 = 𝑆𝑥

𝑐 × 𝑅𝑥
𝑐 , 𝑆𝑥

𝑐 = 𝑚(𝑛, 𝑙)𝑥 𝑒𝑥𝑐 , 𝑅𝑥
𝑐 = 𝜌𝑥𝑐 , (4)

here an image 𝐼𝑐 at 𝑥 can be modeled by the element-wise product
f its shading 𝑆𝑐 and albedo 𝑅𝑐 components. If the light source 𝑒
s colored, then the color information is embedded in the shading
omponent.

.2. Albedo gradients

Using Eq. (3), the image formation model for the three color chan-
els 𝑐 ∈ {𝑅,𝐺,𝐵} becomes:

𝑅𝑥 = 𝑚(𝑛, 𝑙)𝑥 𝑒𝑥𝑅 𝜌𝑥𝑅 ,

𝐺𝑥 = 𝑚(𝑛, 𝑙)𝑥 𝑒𝑥𝐺 𝜌𝑥𝐺 ,

𝐵𝑥 = 𝑚(𝑛, 𝑙)𝑥 𝑒𝑥𝐵 𝜌𝑥𝐵 .

(5)

Considering only neighboring pixels 𝑥1 and 𝑥2, locally constant illumi-
nation can be assumed: 𝑒𝑥1𝑐 = 𝑒𝑥2𝑐 (Land and McCann, 1971). By taking
the difference of the logarithmic transformation of each color channel,
the albedo descriptors are defined as follows:

𝑚1 = 𝛥 log 𝑅
𝐺

, 𝑚2 = 𝛥 log 𝑅
𝐵

, 𝑚3 = 𝛥 log 𝐺
𝐵

. (6)

We illustrate the invariant properties of these albedo descriptors by
plugging Eq. (5) into Eq. (6) for 𝑚1 as follows (same also holds for 𝑚2
nd 𝑚3):

𝑚1 = 𝛥 log 𝑅
𝐺

= log 𝑅𝑥1

𝐺𝑥1
− log 𝑅𝑥2

𝐺𝑥2

= (log𝑅𝑥1 − log𝐺𝑥1 ) − (log𝑅𝑥2 − log𝐺𝑥2 )

= ((log𝑚(𝑛, 𝑙))𝑥1 + log 𝑒𝑥1𝑅 + log 𝜌𝑥1𝑅 ) − ((log𝑚(𝑛, 𝑙))𝑥1 + log 𝑒𝑥1𝐺
+ log 𝜌𝑥1𝐺 ) − ((log𝑚(𝑛, 𝑙))𝑥2 + log 𝑒𝑥2𝑅 + log 𝜌𝑥2𝑅 ) − ((log𝑚(𝑛, 𝑙))𝑥2

+ log 𝑒𝑥2𝐺 + log 𝜌𝑥2𝐺 )

= log
𝜌𝑥1𝑅
𝜌𝑥1𝐺

− log
𝜌𝑥2𝑅
𝜌𝑥2𝐺

= 𝛥 log
𝜌𝑅
𝜌𝐺

,

(7)

where the remaining factor is only the albedo difference between two
channels. The albedo change is a measure that is invariant to surface
geometry 𝑛, illumination direction 𝑙, and its intensity and color 𝑒. If
there is no albedo change (homogeneously colored patch), then the
difference is zero. Sensor artifacts or noise may slightly deviate the
value from zero. Therefore, the index can be used to identify regions
with constant albedo. On the other hand, when the difference deviates
significantly from zero, it corresponds to a true albedo change. Hence,
this measure encodes spatial information of an image emphasizing on
(illumination invariant) albedo edges. Then, we propose the albedo
gradient index as follows:

𝐴𝐺𝐼 =
√

(𝛥 log 𝑅 )2 + (𝛥 log 𝑅 )2 + (𝛥 log 𝐺 )2 . (8)

𝐺 𝐵 𝐵

3

Fig. 2. Finding albedo changes (edges) by the use of the albedo gradient index. Brighter
values indicate a higher degree of albedo change. Uniformly colored patches have low
scores. Note the similarity of the albedo gradient index and the albedo ground-truth
image. The sun object shows invariance to geometry and strong shading, and the raccoon
bject demonstrates invariance to shadows. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

e calculate the albedo gradients over a local neighborhood (patch)
y using derivative filters (e.g. the derivative of a 2D Gaussian or
aplacian) to identify the changes. As a result, the average response
f the albedo gradients is calculated. A neighborhood with a higher
lbedo gradient index value indicates a stronger albedo change, which
s also illustrated in Fig. 2. A patch with a constant index yields the
omogeneous regions. The albedo gradient index is very intuitive and
ealized in real time. It is computed for a small threshold to remove
ossible problems caused by sensor artifacts and noise. The threshold
hould be set to a small value, because unnecessarily high values may
egatively affect the performance by discarding some of the color
hanges.

.3. Shading gradients

So far, we have described that the albedo gradient index can be used
o identify uniformly colored (homogeneous) patches. In a color image,
f the pixel values share the same albedo, then the only source causing
hose pixel values to change is the shading component. For constant

(satisfying 𝐴𝐺𝐼 ≈ 0) over an image neighborhood, the shading
radient can be computed by taking the difference of the logarithmic
ransformation of each color channel. We illustrate it on the red channel
s follows (same also holds for green and blue channels):

𝛥 log𝑅 = ((log𝑚(𝑛, 𝑙))𝑥1 + log 𝑒𝑥1𝑅 + log 𝜌𝑥1𝑅 )

− ((log𝑚(𝑛, 𝑙))𝑥2 + log 𝑒𝑥2𝑅 + log 𝜌𝑥2𝑅 )

= log𝑚(𝑛, 𝑙)𝑥1 − log𝑚(𝑛, 𝑙)𝑥2 = 𝛥 log𝑚(𝑛, 𝑙).

(9)

Note that it is only applied on the homogeneous patches. Logarithms
re usually preferred to avoid numerical instabilities, yet note that also
he derivatives of the 𝑅𝐺𝐵 channels can be taken to yield the following
hading gradient index:

𝑆𝐺𝐼 =
√

(𝛥𝑅)2 + (𝛥𝐺)2 + (𝛥𝐵)2 . (10)

Similar to the albedo gradient index, the average response is calcu-
lated, which results in representing the gradient field of an 𝑅𝐺𝐵 image.
Note that (non-colored) shadows are included in the shading difference
component i.e. when 𝑒𝑥1 ≠ 𝑒𝑥2 .
𝑅 𝑅
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Fig. 3. AGI-assisted physics-based shading gradient index. The albedo gradient index
is directly computed from the 𝑅𝐺𝐵 image. Then, it is used to calculate a shading map
y masking out regions that have albedo changes. The same mask is applied to the
hading GT to show the resemblance. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

.4. Shading

After obtaining the shading gradient, we reconstruct the shading
ap from its shading gradient fields. We use a publicly available

lgorithm to compute the global least squares reconstruction (Harker
nd O’Leary, 2008, 2011). Note that the albedo gradient index is used
o detect uniformly colored (homogeneous) patches first. Then, the
hading gradients are calculated only on the homogeneous patches. As
result, the reconstructed shading map is computed directly from the

hading gradient fields of an 𝑅𝐺𝐵 image in an unsupervised manner.
ince it is computed only on the homogeneous image regions (satisfying
𝐺𝐼 ≈ 0), a sparse shading map is obtained. Therefore, the represen-

ation is not affected by the albedo changes. The process is illustrated
n Fig. 3. In the end, we can generate a sparse shading map that is
irectly computed from the RGB image that is also very close to the
round-truth representation.

Then, a shading smoothness constraint is used to fill in the gaps
ased on the neighboring pixel information. To achieve that, we adapt
publicly available optimization framework that is originally designed

or the depth completion task (Zhang and Funkhouser, 2018). We mod-
fy the model to impose the shading smoothness constraint to achieve
full (dense) shading map. The objective function (𝐸) is defined as the

sum of squared errors with two terms 𝐸 = 𝐸𝐷 + 𝐸𝑆 as follows:

𝐸𝐷 =
∑

𝑥∈𝑇𝑜𝑏𝑠

‖𝑆(𝑥) − 𝑆0(𝑥)‖2 ,

𝐸𝑆 =
∑

𝑝,𝑞∈𝑁
‖𝑆(𝑝) − 𝑆(𝑞)‖2 ,

(11)

here 𝑇𝑜𝑏𝑠 denotes the pixels that are available (not empty) in the
nitial sparse shading map, which are reconstructed from the 𝑅𝐺𝐵
radient fields over the homogeneous regions, and 𝑁 denotes a neigh-
orhood. 𝐸𝐷 measures the distance between the final shading map
(𝑥) and the initial (sparse) shading map 𝑆0(𝑥) at pixel 𝑥, i.e. per-pixel

econstruction accuracy. Then, 𝐸𝑆 encourages adjacent pixels to have
he same shading values, i.e. smoothness.

. Intrinsic image decomposition

Since the sparse shading map is completed by only a smoothness
onstraint, the reconstructed dense map may suffer from geometry loss
f the initial gaps are too large. It may also suffer from scale problems
ue to the least squares fitting. Therefore, we integrate the completed

ense shading map into a deep learning framework to refine it and f

4

Fig. 4. Proposed model architecture. 𝑅𝐺𝐵 image guides the shading estimation only
during the fusion phase using a 1×1 convolution and a contextual attention module (Yu
et al., 2018). Shading decoder only receives shading encoder features through skip
connections not to be affected by high resolution 𝑅𝐺𝐵 color features. Albedo decoder
only receives 𝑅𝐺𝐵 features through skip connections. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

also to predict the corresponding albedo image to achieve intrinsic
image decomposition. The network is expected to further improve the
shading maps by supervised training and also by the differentiation of
additional albedo cues. It is also expected to generate better albedo
maps as the dense shading map is robust to color leakages and intensity
ambiguities. As stated earlier, deep learning based shading estimations
are not as good as albedo estimations. They suffer from albedo color
leakages mostly due to texture ambiguities and intensity variations
(Fig. 1). On the other hand, our physics-based generated shading map is
more robust to those leakages as it is computed only on homogeneous
regions. As a result, we design a CNN model such that the 𝑅𝐺𝐵 image
nly refines the initial shading estimation, and it is not directly involved
n the reconstruction phase to avoid any further critical color leakage.
he model is illustrated in Fig. 4.

ncoders. Encoder blocks use strided convolution layers for downsam-
ling (4 times). Each convolution is followed by residual blocks (He
t al., 2016). They are preferred as the deviations from the input are
ather small. 𝑅𝐺𝐵 encoder uses 4 consecutive residual blocks, while the
hading encoder uses 1 block with different dilation rates. A residual
lock is composed of Batch Norm-ReLu-Conv(3x3) sequence, repeated
wice. The details are provided in the supplementary material.

usion. The final layers of the encoders are fused with a 1 × 1 convo-
ution and a contextual attention module (Yu et al., 2018) to create

bottleneck such that the related 𝑅𝐺𝐵 features can properly guide
he shading estimation. As a result, the 𝑅𝐺𝐵 features are fused with
he shading features (1) as a (learnable) weighted combination using
1𝑥1 convolution, and (2) by the contextual attention module. The

ontextual attention module learns where to use feature information
rom known background patches to generate missing patches for the
mage inpainting task. We adopt their module to our problem such that
he shading features use the information from the 𝑅𝐺𝐵 features. It is
xpected to help as in a homogeneously colored patch, the only source
ausing pixel values to change is the shading component, i.e. 𝛥𝐼 = 𝛥𝑆.
herefore, in those regions, the shading map and the 𝑅𝐺𝐵 image are
ighly correlated. Fusion happens at 16×16 resolution. Preliminary ex-
eriments suggested that lower resolutions (i.e. 8×8) cannot reconstruct
decent shading map (too blurry) and higher resolutions (i.e. 32 × 32)

ause further critical color leakages in the shading estimations.

ecoders. The fusion output is fed to the shading decoder, while
he albedo decoder takes 𝑅𝐺𝐵 encoder’s final layer as input. Both
ecoders share the same structure. Encoder features are passed through
onv(3x3)-Batch Norm-LeakyReLu sequence. Then, the feature maps
re (bilinearly) up-sampled and concatenated with their encoder coun-
erpart by skip connections. The process is repeated 4 times to reach
he final resolution. Shading decoder only receives shading encoder

eatures through skip connections not to be affected by high resolution
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color features. Albedo decoder only receives 𝑅𝐺𝐵 features through
skip connections. Therefore, we design a specialized network for the
intrinsic image decomposition task for robust shading estimation.

Loss Functions. The loss functions used to train the model are as
follows:

𝐴𝑙𝑏𝑒𝑑𝑜 = 𝜆𝐴1 𝑝𝑖𝑥𝑒𝑙 + 𝜆𝐴2 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + 𝜆𝐴3 𝑑𝑠𝑠𝑖𝑚 + 𝜆𝐴4 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 , (12)

𝑆ℎ𝑎𝑑𝑖𝑛𝑔 = 𝜆𝑆1 𝑝𝑖𝑥𝑒𝑙 + 𝜆𝑆2 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 + 𝜆𝑆3 𝑑𝑠𝑠𝑖𝑚 , (13)

𝑇 𝑜𝑡𝑎𝑙 = 𝜆𝐴 𝐴𝑙𝑏𝑒𝑑𝑜 + 𝜆𝑆 𝑆ℎ𝑎𝑑𝑖𝑛𝑔 + 𝜆𝐼 𝐼𝑚𝑎𝑔𝑒 , (14)

here 𝑝𝑖𝑥𝑒𝑙 is the pixel-wise reconstruction loss, which is a weighted
ombination of mean-squared-error (MSE) loss and scale-invariant MSE
oss, 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 denotes the gradient-wise reconstruction loss, 𝑑𝑠𝑠𝑖𝑚 as-
esses the structural dissimilarity, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 measures the reconstruc-
ion distance in several feature spaces of a pre-trained VGG16 (Si-
onyan and Zisserman, 2015), 𝐼𝑚𝑎𝑔𝑒 is the image formation loss

o force that the estimated reflectance and shading images should
econstruct the original 𝑅𝐺𝐵 image (i.e. 𝐼 = 𝑆 ×𝑅), and the 𝜆s are the
eights. Note that the loss functions are the standard reconstruction
odules and do not impose any intrinsic image characteristics. The

mplementation details and other training details are provided in the
upplementary material.

ataset. To train our models, we use the ShapeNet dataset of Baslamisli
t al. (2018b). The dataset includes around 20,000 (synthetic) images
f man-made objects randomly sampled from the original ShapeNet
ataset (Chang et al., 2015). Following the setup of Baslamisli et al.
2018b), we render additional images to reach around 50,000 images
or training.

. Experiments and evaluation

We conduct experiments on four datasets of real world objects with
round-truth intrinsics, MIT Intrinsics (Grosse et al., 2009), NIR-RGB
ntrinsics (Cheng et al., 2019), Multi-Illuminant Intrinsic Images (Beig-
our et al., 2015) and Spectral Intrinsic Images (Chen et al., 2017).
n addition, we provide experiments on two scene-level datasets, As
ealistic As Possible (Bonneel et al., 2017) a synthetic ground-truth
ataset, and Intrinsic Images in the Wild (Bell et al., 2014) a real world
omplex dataset with relative human annotations. Finally, we provide
urther qualitative evaluations on real world in-the-wild images. Com-
arisons are provided against several state-of-the-art intrinsic image
ecomposition algorithms. We pick three optimization based methods:
i) STAR, a structure and texture aware advanced Retinex model (Xu
t al., 2020), (ii) IIW, a framework based on clustering and a dense
RF (Bell et al., 2014), and (iii) SIRFS, a model imposing seven differ-
nt priors on reflectance, shape and illumination (Barron and Malik,
015). We include four deep learning based methods: (i) ShapeNet
ses specialized decoder links to correlate intrinsics and is trained on
.5M synthetic objects (Shi et al., 2017), (ii) IntrinsicNet uses deep
GG16 encoder–decoders and an image formation loss, trained on
0K synthetic objects, (iii) RetiNet provides an end-to-end solution to
he Color Retinex approach using gradients, trained on 20K synthetic
bjects, (iv) CGIntrinsics combines two real world scenes (around 3000)
nd two synthetic scene level datasets (around 20K) for training with
dditional smoothness constraints to achieve better intrinsics. We use
he publicly available models and the original outputs without any
ine-tuning or post-processing stages as comparison. To evaluate our
roposed method, following the common practice (Grosse et al., 2009),
hen dense ground-truths are available, we use the mean squared error

MSE), where the absolute brightness of each image is adjusted by
east squares as the ground-truth is only defined up to a scale factor
nd the local mean squared error (LMSE) with window size 20. For
ntrinsic Images in the Wild (IIW) dataset’s human annotations, we use

eighted Human Disagreement Rate (WHDR) metric as provided by
he authors (Bell et al., 2014). All the images are resized to 256 × 256
or fair comparison.
5

able 1
uantitative evaluations on MIT Intrinsic Images dataset. Our proposed model achieves
etter performance compared against other models on all metrics demonstrating better
econstruction quality. CA module leads to further improvements in performance.

MSE ↓ LMSE ↓

Shading Albedo Average Shading Albedo Average

STAR 0.0114 0.0137 0.0126 0.0672 0.0614 0.0643
SIRFS 0.0066 0.0129 0.0098 0.0309 0.0572 0.0441
IIW 0.0101 0.0210 0.0156 0.0425 0.0720 0.0573
ShapeNet 0.0075 0.0158 0.0117 0.0366 0.0543 0.0455
IntrinsicNet 0.0304 0.0104 0.0204 0.2038 0.0854 0.1446
RetiNet 0.0391 0.0097 0.0244 0.2651 0.0636 0.1644
CGIntrinsics 0.0117 0.0133 0.0125 0.0425 0.0477 0.0451

OURS 0.0069 0.0060 0.0065 0.0418 0.0438 0.0428

OURS (w Retinex) 0.0071 0.0060 0.0066 0.0444 0.0438 0.0441
OURS (w/o CA) 0.0075 0.0070 0.0073 0.0454 0.0458 0.0456

5.1. Evaluations on object-level datasets

5.1.1. MIT intrinsic images dataset
The dataset contains 20 real-world objects with ground-truth intrin-

sic images. Objects are lit by a single directional white light source.
We follow the recommendation of the authors and exclude apple, pear,
phone and potato objects as they are marked as problematic (Grosse
et al., 2009). The quantitative results are provided in Table 1. The table
also includes the effect of the contextual attention (CA) module and the
quality of our albedo descriptors as ablation studies.

The results show that comparing with the deep learning based
estimations, our proposed models achieves better performance at gen-
erating albedo and shading maps on the dataset. Optimization based
SIRFS results are better than all other learning based models. Its shad-
ing estimations yield the best results . It is known that SIRFS achieves
superior performance on single and masked objects, yet it generalize
poorly to real scenes (Narihira et al., 2015; Li and Snavely, 2018a).
Nonetheless, our albedo estimations are superior than SIRFS on all
other metrics. On average, we achieve the best results by a substantial
margin. Furthermore, the contextual attention module by Yu et al.
(2018) leads to further performance boost on all metrics. It emerges
as a fundamental building block of our proposed method. Finally,
we provide an ablation study to evaluate the quality of our albedo
descriptors against the commonly used Color Retinex (Grosse et al.,
2009). To this end, we replace our albedo gradients with the gradients
of the Color Retinex and keep the rest of the components the same
(OURS (w Retinex)), and provide the evaluation. The results further
demonstrate that our physics-based albedo gradients achieve better
shading reconstructions on both metrics also compared against the
heuristic-based Color Retinex gradients.

In addition, we are extremely efficient compared with the
optimization-based methods. To process a single image, on average,
SIRFS takes 111.38 s, whereas our model takes 1.79 s including the
albedo gradient estimation, initial shading recovery from the gradients,
filling the initial shading with the smoothness prior, and finally estimat-
ing complete intrinsic images. All in all, our model appears 78 times
faster than SIRFS. As a side note, IIW model takes 18.09 s, and STAR
takes 2.78 s to process a single image on the MIT dataset.1

Finally, we provide qualitative evaluations. Fig. 5 demonstrates the
effect of the proposed model from the initial step to reach the final
shading map with progressive improvement. The results show that our
framework first generates an initial shading map where the color transi-
tions are masked out by the physics-based albedo gradient descriptors.
Then, the initial shading maps are filled (inpainted/interpolated) with
the shading smoothness prior. They are free of color leakages and
intensity ambiguities. However, they suffer from scale problems due

1 The results are provided on Intel Xeon CPU E5-2640 v3 @ 2.60 GHz.
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Fig. 5. The effect of the proposed framework. The initial shading maps are free of
the color leakage problem. The filled shadings are rather blurry, suffers from scale
problems and missing geometric details. The deep model further refines it generating
sharper shading maps with proper scale. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

to the least squares fitting and they are rather blurry due to the
neighborhood smoothness filling. Finally, our deep learning model is
able to refine the initially filled shading maps. It makes them sharper,
adjusts the scale, and finer geometry details are visible. Fig. 7 provides
the qualitative comparison results against the state-of-the-art models. It
shows that we achieve better shadow and shading handling in albedo
predictions and our albedo estimations are significantly better. We
attribute this to our physics-based shading reconstructions as it handles
color leakage and intensity ambiguity problems. Thereby, our shading
predictions has no or minimum color leakage. Moreover, the shading
map estimations by the deep learning methods tend to severely overfit
to the 𝑅𝐺𝐵 image producing strong color leakages as texture artifacts
and intensity ambiguities.

5.1.2. NIR-RGB intrinsic images dataset
We provide additional cross dataset experiments on NIR-RGB In-

trinsic Images dataset, which was mainly generated for near-infrared
imagery research (Cheng et al., 2019). It includes seven real-world
objects with corresponding ground-truth intrinsics. The quantitative
results are provided in Table 2.

The results show that our proposed model achieves better per-
formance compared against other models on all metrics. We espe-
cially achieve significantly better albedo estimations. The results fur-
ther demonstrate the improved generalization ability of our proposed
method. In this dataset, deep learning based methods are as good
as SIRFS, even more superior in some cases. Finally, Fig. 6 shows
qualitative comparisons for a number of images.

The qualitative results further support the quantitative evaluations.
Our model predictions are closer to the ground-truth images. The colors
of our albedo estimations appear more natural and vivid, and closer to
the chromaticity patterns of the input images. Our shading estimations
do not include intensity ambiguities or texture artifacts. On the other
hand, the intensity ambiguity problem in the shading maps can be
observed on ShapeNet and IntrinsicNet estimations on the candle and
6

Fig. 6. Qualitative evaluations on NIR-RGB Intrinsic Images dataset. Our albedo
maps appear more natural and vivid, and closer to the chromaticity patterns of the
input images. Our shading estimations do not include intensity ambiguities or texture
artifacts. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Table 2
Quantitative evaluations on NIR-RGB Intrinsic Images dataset. Our proposed
model achieves better performance compared against other models on all metrics
demonstrating better generalization ability.

MSE ↓ LMSE ↓

Shading Albedo Average Shading Albedo Average

STAR 0.0028 0.0017 0.0023 0.0896 0.1131 0.1014
SIRFS 0.0020 0.0009 0.0015 0.0806 0.0950 0.0878
IIW 0.0042 0.0018 0.0030 0.1200 0.1345 0.1273
ShapeNet 0.0019 0.0008 0.0014 0.0701 0.0772 0.0737
IntrinsicNet 0.0021 0.0011 0.0016 0.0748 0.0927 0.0838
RetiNet 0.0028 0.0013 0.0021 0.0959 0.1136 0.1048
CGIntrinsics 0.0027 0.0009 0.0018 0.0862 0.0797 0.0830

OURS 0.0017 0.0006 0.0012 0.0689 0.0609 0.0649

house images. CGIntrinsics’s shading smoothness constraint tends to
generate over-smoothed estimations and cannot capture fine-grained
geometric patterns. For example, the balcony of the house object is not
visible anymore. SIRFS tends to generate incorrect colors on albedo
estimations when a scene is dominated by a single color as in the cases
of lion and house objects. The colors of the CGIntrinsics albedo maps
tend to shift towards red.

5.1.3. Multi-Illuminant Intrinsic Images (MIII) dataset
MIT Intrinsic Images and NIR-RGB Intrinsic Images datasets provide

images with uniform white illumination. In this experiment, we further
test the ability of our proposed method to generalize also to complex
multi-illuminant scenarios. The dataset includes five real-world scenes
with multi-colored non-uniform lighting, complex geometry, large spec-
ularities, and challenging colored shadows (Beigpour et al., 2015). Each
scene includes two objects and illuminated with 6 single-illuminant and
9 two-illuminants. The colors of the illuminants vary from orange to
blue. In total, there are 75 images with ground-truth intrinsics. The
quantitative results are provided in Table 3.

The qualitative results show that our proposed model achieves
better performance on almost all metrics. Only the reflectance estima-
tions of CGIntrinsics (Li and Snavely, 2018a) are better on the LMSE
metric, but their shading estimations are significantly worse. Thus,
compared with other works, on average we achieve the best results
by a large margin. Note that optimization based SIRFS (Barron and
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Fig. 7. Comparisons with state-of-the-art models. Our shading predictions are more robust to the color leakage problem, while all other methods tend to overfit to the 𝑅𝐺𝐵 image
aving severe color leakages in the shading maps. We also achieve significantly better albedo estimations. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
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alik, 2015) and learning based ShapeNet (Shi et al., 2017) are inher-
ntly modeled to estimate multi-colored illumination. Nevertheless, our
odel emerges more robust to real-world images with multi-colored
on-uniform lighting. The results further demonstrate the improved
eneralization ability of our proposed method.

.1.4. Spectral Intrinsic Images Dataset (SIID)
The dataset was mainly generated for spectral intrinsic image de-

omposition research (Chen et al., 2017). It includes nine objects
lluminated with two kinds of light sources, one white and one warm-
one white. In total, it has 18 spectral images with corresponding
hading ground-truths. The dataset also provides corresponding 𝑅𝐺𝐵
mages synthesized from the spectral images that are used as inputs to
he models. The quantitative results are provided in Table 4.

The results show that the reconstruction quality of our shading maps
re closer to the ground-truths on all metrics. Similar to the MIII dataset
xperiments with multi-colored non-uniform lighting, our models also
7

able 3
uantitative evaluations on MIII dataset with multi-colored non-uniform lighting. Our
roposed model achieves better performance and is more robust to multi-colored
on-uniform lighting.

MSE ↓ LMSE ↓

Shading Albedo Average Shading Albedo Average

STAR 0.0021 0.0023 0.0022 0.0817 0.1350 0.1084
SIRFS 0.0003 0.0003 0.0003 0.1015 0.1417 0.1216
IIW 0.0003 0.0002 0.0003 0.0869 0.1286 0.1078
ShapeNet 0.0002 0.0002 0.0002 0.0846 0.1020 0.0933
IntrinsicNet 0.0002 0.0002 0.0002 0.0597 0.0873 0.0735
RetiNet 0.0002 0.0002 0.0002 0.0590 0.0964 0.0777
CGIntrinsics 0.0004 0.0001 0.0003 0.1172 0.0707 0.0940

OURS 0.0002 0.0001 0.0002 0.0514 0.0770 0.0642

achieve more robust results on a different illumination setting of warm-
tone white. Finally, Fig. 8 shows qualitative comparisons for a number
of images.



A.S. Baslamisli, Y. Liu, S. Karaoglu et al. Computer Vision and Image Understanding 205 (2021) 103183

.

v
a
t

O
a
o
c
e
o
i
b
p
t
o
2
c
a
f
s
m
c
u

o
o
S
I
a
s
o
b
g
i

Table 4
Quantitative evaluations on SIID dataset with white and warm-tone white illuminations.
Our proposed model achieves better performance and has better generalization ability

MSE-s ↓ LMSE-s ↓

STAR 0.0034 0.0192
SIRFS 0.0186 0.0215
IIW 0.0064 0.0164
ShapeNet 0.0129 0.0424
IntrinsicNet 0.0045 0.0189
RetiNet 0.0047 0.0220
CGIntrinsics 0.0142 0.0286

OURS 0.0027 0.0156

Fig. 8. Qualitative evaluations on SIID. Our albedo maps appear more natural and
ivid. Our shading estimations do not include intensity ambiguities or texture artifacts
nd are closer to the ground-truths. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

The qualitative results further support the quantitative evaluations.
ur model predictions are closer to the ground-truth images. Our
lbedo estimations appear more natural and vivid and they are free
f geometric effects. Our model is also capable of removing shadow
asts on the platforms of the gypsum and cube objects from the albedo
stimations. Since our model is trained only on white light, the color
f the light source is also estimated in the albedo. Same behavior
s also observed on other models. To overcome this issue, a white
alancing algorithm can be applied to the input images as a pre-
rocessing step. Nonetheless, it does not cause significant problems on
he reconstruction quality as the ground-truths are not absolute and
nly defined up to a scale factor (Grosse et al., 2009; Narihira et al.,
015). SIRFS can handle the issue, but it tends to confuse albedo and
olor of the light source when a scene is dominated by a single color
s demonstrated in the previous section. Additional examples can be
ound in the upcoming sections. Likewise, as mentioned in the previous
ection, ShapeNet (Shi et al., 2017) is inherently modeled to estimate
ulti-colored illumination. However, it also fails to differentiate the

olor of the light source and albedo in this case. It also generates
ndesired color artifacts on the albedo maps.

As for the shading map generations, our model estimations are free
f any texture artifacts and intensity ambiguities. The text on the heart
f the baymax object is correctly attributed to the albedo map, whereas
hapeNet estimation is contaminated with the texture artifact, and
ntrinsicNet and CGIntrinsics estimations both contain texture artifacts
nd intensity ambiguities. The intensity ambiguity problem is more
evere on the shading estimations of the cube object. Our model and
ptimization-based SIRFS can handle those. Nevertheless, our contri-
ution is more significant on the gypsum object, where SIRFS tends to
enerate over-smooth and overly-bright estimations that the geometry
s distorted and fine-grained structures are not visible anymore. Our
8

Fig. 9. Additional real world evaluations on ALOI dataset. Rows (1,2,3) provide
examples with textures, and (4,5) with strong shading patterns. Deep learning methods
have severe color leakages in the shading maps and cannot handle strong shadings
in the albedo maps. Our method is capable of capturing decent albedo and shading
maps for also ALOI images. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

model is also not flawless. For example, we cannot capture the fine
geometric details of the cube image and our estimation appears more
rigid. That is because of the shading smoothness constraint that is used
to fill in the gaps of the initial shading map based on the neighboring
pixel information. Since the color changes happen near the holes,
shading smoothness interpolation also fills in those gaps. Therefore, the
shading estimation appears more rigid in those cases.

5.1.5. Amsterdam Library of Object Images (ALOI) dataset
We provide additional visual comparisons for real world images

without ground-truths. For the task, we use Amsterdam Library of
Object Images (ALOI) dataset (Geusebroek et al., 2005). Fig. 9 provides
a number of examples with different properties to demonstrate the ef-
fectiveness of our method. Rows (1,2,3) provide examples with textures
and rows (4,5) provides examples with strong shading patterns.

Deep learning based methods have severe color leakages in the
shading map estimations for textured objects. CGIntrinsics’s shading
smoothness constrain negatively effects the shading maps when strong
shading patterns are present. It generates homogeneously smooth im-
ages such that it cannot properly capture darker regions where the
surface normals (geometry) significantly deviate from the incoming
light source direction. It can be observed from the cup image that the
right part of the handle should be covered by the shading pattern and
should not be visible. Our proposed work is the only model that can
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Table 5
Quantitative evaluations on scene-level ARAP dataset. Our proposed model achieves
better performance and generalization ability.

MSE ↓ LMSE ↓

Shading Albedo Average Shading Albedo Average

IIW 0.0913 0.0496 0.0705 0.2050 0.0721 0.1386
ShapeNet 0.1218 0.0978 0.1098 0.2400 0.1435 0.1918
IntrinsicNet 0.0889 0.0380 0.0635 0.1867 0.0530 0.1199
RetiNet 0.0874 0.0417 0.0646 0.1875 0.0600 0.1238

OURS 0.0862 0.0337 0.0600 0.1832 0.0482 0.1157

capture that pattern. Similar behavior is also observed for the wooden
cube in the last row. Likewise, the other models cannot generate a
decent albedo map in those cases. ShapeNet generated albedo maps are
rather dull colored and blurry. Similarly, CGIntrinsics and IntrinsicNet
generated albedo maps tend to be polluted with color artifacts. On the
other hand, our model is better at avoiding attributing surface texture
to the shading maps, and our albedo estimations are sharper, have
better color augmentation and more natural for all cases. SIRFS model
is capable of producing decent shading maps for textured objects, as
well. However, its albedo predictions are not as decent when an image
is dominated by a single color as in the case of 1st and 5th rows.
Similarly, it tends to fail to capture decent shading maps when an image
has strong shading patterns.

5.2. Evaluations on scene-level datasets

There are several aspects that are challenging for our current setup
for the scene level intrinsic image decomposition. Firstly, a scene is
composed of multiple objects so that the behavior of the illumina-
tion component is more complex. Especially, the ambient light (inter-
reflection) effect is way stronger. In addition, our optimization process
using the smoothness constraint to fill in the gaps of the initial shading
map may be negatively effected if the gaps are filled from different
surfaces (e.g. filled with object boundaries). Similarly, cluttered objects
may cause way too large gaps to fill. Another thing is that since
scene level objects have different scales, one single threshold might
not be sufficient to obtain proper gradients. Nonetheless, for the sake
of completeness, we also evaluate our model on scene-level images to
provide additional insights.

5.2.1. As Realistic As Possible (ARAP) dataset
With the current technology, it is not possible to generate dense

ground-truth intrinsic images for any real world scene. Collecting
the ground-truth intrinsics happens only on object-level and in a
fully-controlled (indoor) laboratory settings, which demands extreme
care (Grosse et al., 2009; Chen et al., 2017; Cheng et al., 2019).
That is the reason why those datasets are small sampled. Therefore,
to evaluate our model on scene-level images, we utilize the synthetic
dataset of Bonneel et al. (2017). The dataset provides 53 high quality
realistic scene-level renderings with corresponding per-pixel ground-
truth intrinsics. Some of the scenes were re-rendered with different
illumination settings. Thus, the evaluation is provided for the full
dataset of 152 images. The quantitative results are provided in Table 5.
The evaluations do not include CGIntrinsics model as it uses ARAP
for training (Li and Snavely, 2018a), and also SIRFS model as it is
specifically designed for single objects and generalize poorly to real
scenes (Narihira et al., 2015; Li and Snavely, 2018a). Compared with
other frameworks our proposed model achieves better performance on
all metrics also on scene-level images, which further demonstrates our
improved generalization ability.
9

Table 6
Quantitative evaluations on IIW dataset with human annotations. Our proposed model
achieve significantly better reflectance predictions among the models trained on
object-level ShapeNet dataset.

Training set WHDR ↓

STAR – 32.9%
IIW – 20.6%

DirectIntrinsics Sintel 37.3%
CGIntrinsics SUNCG 26.1%
CGIntrinsics CGI 18.4%

ShapeNet ShapeNet (2.5 M) 59.4%
IntrinsicNet ShapeNet (20 K) 32.1%
RetiNet ShapeNet (20 K) 37.9%

OURS ShapeNet (20 K) 28.9%
OURS ShapeNet (50 K) 28.7%
OURS* ShapeNet (50 K) 26.8%

*Indicates that the CNN predictions are post-processed with a guided filter.

Fig. 10. Albedo gradient index of scene level images. Brighter values indicate a higher
degree of albedo changes. Uniformly colored patches have low scores that can be
differentiated from intrinsic color variations. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

5.2.2. Intrinsic Images in the Wild (IIW) dataset
Firstly, we show the albedo gradient index maps for scene-level

real-world images in the IIW dataset in Fig. 10. The first row shows
that the albedo descriptor does not respond to homogeneously colored
regions of the white bedspread, the large blue pillows and the walls. It
further ignores the wrinkles of the bedspread and curtains, and diverse
color changes are captured. Similarly, the second row demonstrates
that the descriptor properly identifies color changes such that the
homogeneously colored carpet, pillar, walls and the ceiling is clearly
identified by the low response.

For the evaluations, we follow the common practice and utilize the
test set used by previous work (Zhou et al., 2015; Li and Snavely,
2018a). The test split includes 1046 images with relative human an-
notations. The quantitative results are provided in Table 6. We also
train our model with less data (20K) to provide a more fair comparison
against the models of Baslamisli et al. (2018b).

Comparing with the models trained on object-level ShapeNet
dataset, our proposed model achieve significantly better reflectance
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predictions. Additional performance boost is achieved by applying a
post processing step to enforce piecewise constant reflectance (Nest-
meyer and Gehler, 2017). Decreasing the training sample size does not
significantly effect the performance for our model’s albedo estimations
on IIW. Furthermore, our proposed model is significantly better than
the structure and texture aware advanced Retinex model, and also
DirectIntrinsics model trained on scene-level Sintel dataset. We also
achieve on par results with CGIntrinsics model when trained on scene-
level SUNCG dataset. The model achieves superior performance by
combining the refined and improved renderings of scene-level SUNCG
and the integration of ARAP dataset to create their final dataset CGI.
It is also worthwhile to note that all the learning based models use
data augmentations through random flips, shifts, resizings, and crops,
whereas we do not apply any augmentation technique. Finally, Fig. 11
provides qualitative comparisons for shading estimations, and Fig. 12
for albedo estimations.

ShapeNet estimations are contaminated with artifacts and do not
appear natural. The shading of the bed image includes texture artifacts
and the text AWAI is directly copied to the shading map in the girl
image. Similar patterns are also observed in IntrinsicNet estimations.
IntrinsicNet generated shading maps also suffer from intensity am-
biguities, which can be observed from the girl image that the neck
of the t-shirt has a darker color. Its albedo estimations are better
than ShapeNet’s, yet they contain inconvenient brightness artifacts.
IIW’s albedo estimations appear natural and free of geometry effects.
However, its shading generations directly overfit to the 𝑅𝐺𝐵 inputs,
nd all the texture patterns are clearly visible in the shading maps.

CGIntrinsics trained on scene-level imagery achieves decent albedo
redictions with proper smoothing effects, and compared with others,
hey appear more natural. However, their shading estimations appear
ay too smooth and hazy and most of the structures are not visible
nymore (e.g the stairs or the fine-grained pillars of the church). It
lso suffers from the same intensity ambiguity problem as IntrinsicNet.
n the other hand, our model is also capable of producing scene-

evel shading maps that are free of texture or intensity ambiguities.
he first image shows that our model also works on outdoor scenes
apable of handling geometry differences and different light properties.
e can also handle the text on the t-shirt of the girl image and the

ext on the salt box and correctly attribute them to albedo maps. The
indows of the bed image are an example where our shading map is
egatively effected as our model tries fill in the gaps with insufficient
radient information. Although we did not enforce it as CGIntrinsics,
ur albedo estimations also appear smooth. However, our method still
akes mistakes, such as the face of the girl or right side of the church

ppear blurry. Finally, our model is the only one that can handle the
trong shadow cast under the bed. Our albedo estimations are free of
trong shadow casts in this example, whereas all other models fail to
andle it.

. Conclusion

We investigated the use of photometric invariance to steer a deep
earning model for intrinsic image decomposition (albedo and shad-
ng). We proposed albedo and shading gradient descriptors which are
erived from physics-based models as novel priors. Using the descrip-
ors, albedo transitions are masked out and an initial shading map is
alculated directly from the corresponding 𝑅𝐺𝐵 image gradients in

a learning-free unsupervised manner. Then, an optimization method
was proposed to reconstruct the full dense shading map. Finally, we
integrated the generated shading map into a novel deep learning frame-
work to refine it and also to predict corresponding albedo image
to achieve intrinsic image decomposition. Additionally, to train our
model, a large-scale dataset of synthetic images of man-made objects
was extended from 20K to 50K.

The evaluations were provided on five different object-level datasets

(MIT, NIR-RGB, MIII, SIID, and ALOI), and two scene-level datasets

10
Fig. 11. Shading evaluations on IIW. Our model can produce scene-level shading maps
that are free of texture or intensity ambiguities. Other models tend to overfit to the
RGB images. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(ARAP and IIW) with comprehensive setups without any fine-tuning
or domain adaptation stage. The evaluations proved that our proposed
model generated shading maps are more robust to texture artifacts and
intensity ambiguities, which has been a long standing problem in the
intrinsic image decomposition task. Since our model handles the unde-
sired artifacts in the shading estimations, we also better differentiate
albedo changes and achieve superior quantitative results.

Another conclusion is that deep learning based methods tend to
overfit to the 𝑅𝐺𝐵 image causing critical color leakages in the shading
maps. When quantitatively evaluating, the leakage effect may not be
reflected. That suggests that future work should focus on proposing
better metrics for evaluation. In addition, the color leakage effect may
not be observed when a model is trained and tested (or fine-tuned) on
the same dataset (Narihira et al., 2015; Cheng et al., 2018). Therefore,
it is important for intrinsic image decomposition methods to provide
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Fig. 12. Albedo evaluations on IIW. Our model can generate proper scene-level albedo
aps. We can also handle strong shadow casts. (For interpretation of the references to

olor in this figure legend, the reader is referred to the web version of this article.)

ross-dataset or in-the-wild evaluations. Finally, we also tried to adapt
everal guided image-to-image translation and feature modulation tech-
iques for our preliminary experiments to refine our initial shading
aps with the 𝑅𝐺𝐵 features. In particular, we tried the end-to-end

trainable guided filter by Wu et al. (2018), bi-directional guided image-
to-image translation by AlBahar and Huang (2019), spatially-adaptive
normalization by Park et al. (2019), and deep spatial feature transform
by Wang et al. (2018). Unfortunately, none of them were able to
address the color leakage problem in the shading maps.

Our model is also not perfect. It might encounter limitations that
mainly arise from the physics-based dichromatic reflection model from
which the invariant descriptors are derived. Factors causing deviations
from the dichromatic reflection model may cause inconsistencies. One
example is the type of the surface. Since the model assumes matte
surfaces, the descriptors are not expected to properly handle non-matte,
glossy surfaces. Another limitation can be caused by image rendering
11
or compression artifacts such as color banding, blur or heavy JPEG
compression negatively affecting the physics-based image formation
process.
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