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Abstract: Applying low concentrations of hydrogen peroxide (H2O2) to lakes is an emerging method
to mitigate harmful cyanobacterial blooms. While cyanobacteria are very sensitive to H2O2, little
is known about the impacts of these H2O2 treatments on other members of the microbial com-
munity. In this study, we investigated changes in microbial community composition during two
lake treatments with low H2O2 concentrations (target: 2.5 mg L−1) and in two series of controlled
lake incubations. The results show that the H2O2 treatments effectively suppressed the dominant
cyanobacteria Aphanizomenon klebahnii, Dolichospermum sp. and, to a lesser extent, Planktothrix
agardhii. Microbial community analysis revealed that several Proteobacteria (e.g., Alteromonadales,
Pseudomonadales, Rhodobacterales) profited from the treatments, whereas some bacterial taxa
declined (e.g., Verrucomicrobia). In particular, the taxa known to be resistant to oxidative stress
(e.g., Rheinheimera) strongly increased in relative abundance during the first 24 h after H2O2 addi-
tion, but subsequently declined again. Alpha and beta diversity showed a temporary decline but
recovered within a few days, demonstrating resilience of the microbial community. The predicted
functionality of the microbial community revealed a temporary increase of anti-ROS defenses and
glycoside hydrolases but otherwise remained stable throughout the treatments. We conclude that the
use of low concentrations of H2O2 to suppress cyanobacterial blooms provides a short-term pulse
disturbance but is not detrimental to lake microbial communities and their ecosystem functioning.

Keywords: cyanobacterial blooms; 16S rRNA gene amplicon sequencing; hydrogen peroxide; micro-
bial community; microbial diversity; resilience; ecosystem functioning; oxidative stress;
lake treatment

1. Introduction

Harmful cyanobacterial blooms often occur in eutrophic freshwater ecosystems, caus-
ing degradation of water quality and possibly ecological and economic disruption [1–4].
Many bloom-forming cyanobacteria can produce toxins which harm animals such as fish,
birds and mammals, including humans, either directly after ingestion of contaminated wa-
ter or indirectly via the food chain [5–8]. The widespread increase of harmful cyanobacterial
blooms around the globe has been linked to eutrophication and climate change [9–12].

The most effective and most preferred long-term method to reduce cyanobacterial
blooms is reduction of nutrient inputs into the water body [13,14]. Due to the difficulties in
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managing catchment nutrient loads [15] and internal nutrient loading from the sediment
of lakes [16], it often takes a long time before nutrient reduction measures result in a
decrease of cyanobacterial abundances. Hence, there is an increased interest in short-
term methods to rapidly suppress cyanobacterial blooms that can complement long-term
nutrient reduction strategies [4,17,18].

Addition of hydrogen peroxide (H2O2) to lakes is a promising method for rapid
mitigation of cyanobacterial blooms because cyanobacteria are more sensitive to low
concentrations of H2O2 than most eukaryotic organisms [19–26]. Furthermore, H2O2
is a naturally occurring compound that degrades into water and oxygen, and hence,
unlike other algicides, the added H2O2 disappears within a few days [27]. The high
sensitivity of cyanobacteria to H2O2 in comparison to eukaryotic phytoplankton can likely
be attributed to differences in the Mehler reaction. In eukaryotic organisms, photosynthesis
can lead to the production of reactive oxygen species (ROS) such as O2

− and H2O2,
which are subsequently converted to water by peroxidases and catalases to protect cells
against oxidative stress [28,29]. In cyanobacteria, the transfer of excess electrons generated
by photosynthesis is mediated by flavodiiron proteins which produce water without
the formation of O2

− or H2O2 [30,31]. Accordingly, cyanobacteria produce less H2O2
during photosynthesis, and hence they tend to be much less protected against H2O2 than
eukaryotic phytoplankton [25,27].

Effects of H2O2 on cyanobacteria have been investigated mainly in small-scale lab-
oratory experiments [32–40], mesocosms and pond experiments [21–24,26,41,42]. Only
a few studies have investigated H2O2 treatments of entire lakes, reporting the impact
on cyanobacteria, eukaryotic phytoplankton, zooplankton and macroinvertebrates at the
ecosystem scale [25,43–45]. Generally, these studies show that cyanobacteria are indeed
much more sensitive to H2O2 than most of the eukaryotic organisms.

However, what is the impact of H2O2 addition on the prokaryotic microbial com-
munities in lakes? Several papers report on laboratory experiments investigating effects
of H2O2 on specific groups of microorganisms, e.g., bacterial pathogens [46–48], root
nodule bacteria [49,50] and different members of the human microbiome [51,52]. The
effect of H2O2 on the activity and composition of natural microbial communities has been
investigated in small-scale incubations with eutrophic lake water or soils [26,42,53,54].
Santos et al. [42] recently described mesocosm experiments in which H2O2 addition led to
increased abundances of Firmicutes and Proteobacteria and decreased abundances of Acti-
nobacteria, Verrucomicrobia, Planctomycetes and Chloroflexi. Yet, the impact of large-scale
H2O2 treatments on the entire microbial community of lakes has, to our knowledge, not
been investigated thus far. Bacteria perform important ecological functions in freshwater
environments, such as the decomposition of dead organic matter and the recycling of
nutrients like carbon, nitrogen and sulfur [55,56]. From a lake management perspective,
it is therefore of key interest to gain a better understanding of the potential impact of H2O2
treatments on the microbial communities of lakes.

This study sought to fill this gap by monitoring changes in microbial diversity and
community composition using 16S rRNA gene amplicon sequencing during two H2O2
treatments of an entire lake, one in June and the other in August (Figure 1A,B). Lake treat-
ments represent “real-life” scenarios in which microbial communities are not only affected
by the treatment, but may also respond to many other factors. Without adequate controls, it
may be difficult to discern to what extent the observed changes in the microbial community
composition are caused by the H2O2 treatment, by natural variability of the community or
by concomitant changes of other environmental drivers (e.g., changing weather conditions).
Therefore, both lake treatments were accompanied by replicated in situ lake incubations
with two different H2O2 concentrations and a control (without H2O2 addition). The results
of our study give insight in the resistance and resilience of the microbial community after
lake treatments with H2O2, the taxa that suffer or benefit from the treatment and the extent
to which H2O2 impacts the functioning of microbial communities.
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Figure 1. Location of the lake and experimental design. (A) The location of lake Oosterduinse
Meer in The Netherlands and the sampling location in the lake. In June and August (B), H2O2

was carefully added to the top 5 m of the lake with the help of a specialized boat (C). Both lake
treatments were accompanied by incubation experiments (D). The incubation bags were attached to
a raft which was anchored at the sampling location in the lake. All the incubation bags were filled
with surface lake water at t = −24 h and attached to the raft in groups of four replicate incubation
bags per treatment condition (control, 2.5 and 10 mg L−1 H2O2) and sampling time point (t = 24 h,
t = 48 h and t = 96 h). At the same time as the lake was treated with H2O2, the incubation bags
of all the treatment conditions and sampling time points received 0 mg L−1 H2O2 (Milli-Q) in the
control incubations (gray) and 2.5 mg L−1 H2O2 (orange) and 10 mg L−1 H2O2 (blue) in the other
experimental treatments. The three incubation bags at t = 0 h (dark green) were treated with either 0,
2.5 or 10 mg L−1 H2O2 and immediately brought to shore and sampled 10 min after the treatment for
H2O2 concentration determination as well as phytoplankton analysis. At each consecutive time point,
the corresponding incubation bags of the three treatments (gray, orange and blue) were taken out of
the water and brought to shore for analysis. Each mesocosm bag served as a biological replicate and
was sampled only once.
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2. Materials and Methods
2.1. Lake, H2O2 Treatment and Sampling Information

Lake Oosterduinse Meer is located in a rural area close to the Dutch coast (52◦16′55” N,
4◦30′28” E) (Figure 1A). It covers 30 ha, has an average depth of 7 m (maximum depth of
13 m) and is stratified during summer months. The lake is connected with the surrounding
flower fields with a canal system. Consequently, the lake water is hypertrophic and espe-
cially rich in phosphorus, making it an excellent environment for cyanobacterial blooms.

In 2018, lake Oosterduinse Meer was treated twice with H2O2; the first treatment took
place on 19 June, the second treatment—on 7 August (Figure 1B). During each treatment,
H2O2 was applied to the top 5 m of the entire lake using a specialized boat (Figure 1C),
carefully adding 4.2 mL of a 598 g L−1 H2O2 (50% H2O2 (w/w)) stock per 1 m3 of the
lake water to treat the lake with a target concentration of ~2.5 mg L−1 H2O2. During
the June treatment, the boat first treated the shallower waters along the shore of the
lake, then went to the lake center, treating the sampling location by spiraling three times
around it, before covering the rest of the lake from south to north with 75 diagonal lanes
(Figure S1A). The average distance between the lanes was 13.3 m and the net treatment
time was 7.3 h. During the August treatment, the boat navigated the lake from south
to north with 91 diagonal lanes, while the shallower parts along the shore were treated
in between (Figure 2). The average distance between the lanes was 10.9 m and the net
treatment time was 9.2 h.
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Figure 2. H2O2 treatment of the lake. The graph shows (A) the boat track during the treatment
in August, (B) the sampling locations and the sampling depth where H2O2 concentrations were
monitored during the treatment. (C–E) H2O2 concentrations measured at different time points after
the treatment boat had passed the sampling locations, (C) at 0–1-m depth, (D) at 2–3-m depth and (E)
at the 4–5-m depth. Colors in panel (A) indicate the time of day during which a certain section of the
lake was treated; different symbols in panel (B) indicate the sampling depth; lines in panels (C–E) are
moving averages with a window size of 60 min.
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During the treatments, continuous measurements of temperature, O2 saturation, pH
and light intensity were collected using a water column (surface to the bottom) from
the center of the lake using a Hydrolab Datasonde 5 (OTT Messtechnik GmbH and Co.,
Kempten, Germany). Weather data from the weather station Schiphol located ~20 km
east of the lake were provided by the Royal Netherlands Meteorological Institute (KNMI)
(www.knmi.nl; accessed on 10 January 2020).

Samples for DNA extraction, phytoplankton identification and quantification, analyses
of nutrient concentrations and bacterial enumeration were taken from the 0-m and 5-m
depth at the sampling location in the middle of the lake. The samples from the 5-m
depth were pumped up with a 1.4-bar water pump, type 088 (Barwig Wasserversorgung,
Bad Karlshafen, Germany), connected to a 5-m-long tube. One day before the treatment
(t = −24 h), seven biological replicates were sampled from the 0-m depth, six biological
replicates—from the 5-m depth. For all the other time points, at 0 h (just before the
treatment, only for phytoplankton and nutrient analysis), 5 h, 24 h, 48 h and 96 h after the
treatment, four biological replicates were taken from both depths. All the samples were
collected in individual 5-L transparent plastic bags (DaklaPack, Lelystad, The Netherlands)
and immediately processed on the shore.

For DNA extraction, a 1-L subsample was filtered instantly through a 5-µm polycar-
bonate Cyclopore filter (Whatman GmbH, Dassel, Germany) on a Nalgene™ filtration
unit (ThermoScientific, Waltham, MA, USA) to remove most filamentous cyanobacteria,
bigger eukaryotic organisms and particles. The filtrate containing planktonic bacteria
that were not attached to bigger particles was collected and filtered again over a 0.2-µm
polycarbonate Cyclopore filter (Whatman GmbH, Dassel, Germany). This filter was then
carefully folded, placed into a 1.5-mL screw cap tube and immediately snap frozen in a
CX100 dry shipper (Taylor-Wharton/Worthington Industries, Columbus, OH, USA) at
−190 ◦C and later stored at −80 ◦C until analysis. Only 0.2-µm polycarbonate Cyclopore
filters were used for DNA extraction.

For phytoplankton analysis, 30-mL subsamples were taken from three of the biological
replicates, fixed with 600 µL acidic Lugol’s iodine and immediately stored at 4 ◦C until
further analysis.

For bacterial enumeration using flow cytometry, a 1.5-mL subsample was taken from
each replicate, fixed with glutaraldehyde (0.5% (v/v) final concentration prepared from a
25% (v/v) EM grade stock solution; VWR, Amsterdam, The Netherlands) at 4 ◦C for 15 min,
after which it was snap frozen and later stored at −80 ◦C until analysis.

For the quantification of dissolved inorganic nutrients, 55-mL subsamples from each
biological replicate were filtered over GF/C filters on a Millipore 1225 Sampling Manifold
(Merck KGaA, Darmstadt, Germany). Subsequently, 15 mL of each filtrate were frozen and
stored at −20 ◦C for nutrient analysis.

2.2. Incubation Experiments

Each lake treatment was accompanied by in situ incubation experiments with two
H2O2 concentrations and a control. In contrast to an entire lake treatment aimed to
provide valuable insight to a real-life scenario, these small-scale lake incubations allowed
replication of different H2O2 treatments including controls without H2O2, which enables a
more controlled (but less “realistic”) study of the effect of H2O2 on microbial communities.

One day before a lake treatment (t = −24 h), 47 transparent 5-L food-grade plastic
bags (DaklaPack, Lelystad, The Netherlands) were filled with lake water from 0 m. These
incubation bags were divided into nine groups of four bags each (to be sampled at t = 24,
t = 48 and t = 96 h), one group of three bags (t = 0 h) and one group of eight “refill bags”
(Figure 1D). All the incubation bags were attached to a raft at the sampling location at the
lake center. A weight was attached to each group of bags, holding them submerged below
the water at a constant depth of 1 m.

On the treatment day, at the time that the treatment boat passed the sampling location,
12 incubation bags received 10 mL of Milli-Q water to serve as controls (0 mg L−1 H2O2),

www.knmi.nl
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12 incubation bags received 10 mL of a diluted H2O2 stock solution at a final concentration
of 2.5 mg L−1 H2O2 and another 12 incubation bags received 10 mL of an H2O2 stock
solution at a final concentration of 10 mg L−1 H2O2 (Figure 1D). After each addition
of H2O2, water of the eight “refill bags” was used to completely fill up all the treated
incubation bags to their total volume so that no air remained inside. At last, the three
incubation bags of the t = 0 group were treated with Milli-Q water, 2.5 and 10 mg L−1

H2O2, respectively, directly brought to the shore and sampled 10 min later. From each of
these three incubation bags (t = 0), three individual subsamples were taken to measure
the added H2O2 as well as to monitor phytoplankton and quantify dissolved inorganic
nutrient concentrations. At each consecutive time point (t = 24, 48 and 96 h), four incubation
bags from each of the three treatments (0 mg L−1, 2.5 mg L−1 and 10 mg L−1 H2O2) were
removed from the raft and brought to the shore for immediate analysis (Figure 1D). All
four incubation bags from each of the three experimental treatments were sampled for
DNA extraction, nutrient analysis and bacterial abundances, while three incubation bags
from each experimental treatment were sampled for phytoplankton analysis. The samples
were handled and stored in the same way as described above for the field sampling.

2.3. H2O2 Measurements

The H2O2 concentration was frequently measured at several locations across the
lake throughout the treatment day using peroxide quantification strips (sensitivity range:
0.5–25 mg L−1, Quantofix®, Macherey-Nagel GmbH and Co., KG; Dueren, Germany) and
a mobile strip reader (Quantofix®, Macherey-Nagel GmbH and Co., KG). Only those mea-
surements that were taken at least 30 min after the boat had treated the monitored location
were considered. Time and GPS coordinates of the boat and each monitored location were
used to calculate the time difference between the time of sampling and the time the boat
passed nearest (and latest) by the sampling location. The H2O2 concentrations from the raft
location were additionally measured regularly with a more sensitive colorimetric assay (p-
nitrophenylboronic acid) according to Lu et al. [57] and Piel et al. [38]. These measurements
were also used to calibrate the strip measurements. In short, 55-mL samples from each
of the sampling depths were filtered through GF/C glass fiber filters (Whatman GmbH,
Dassel, Germany), and 100 µL of the filtrate were immediately mixed with 100 µL of 2 mM
p-nitrophenylboronic acid reagent (Merck KGaA, Darmstadt, Germany) in a 96-well plate.
After incubating the assay for 30–45 min in almost complete darkness, the absorption
of p-nitrophenolate was measured at its absorption peak (405 nm) using a plate reader
(Multiscan FC type 357, ThermoScientific, Waltham, MA, USA). Each sample was analyzed
in triplicates with each replicate consisting of three technical replicates. A 33% (w/w) stock
solution (VWR, Amsterdam, The Netherlands) was used to make a calibration curve (in the
range of 0.01–10 mg L−1 H2O2) that was included on each 96-well plate. Since this assay
is extremely sensitive to sunlight and cannot be easily implemented in the field, it was
necessary to perform all the steps of this analysis indoors in the dark. The measurements
of the strips and the colorimetric assay showed a close correlation (R2 = 0.93).

2.4. Quantification of Dissolved Inorganic Nutrients

The filtrates for nutrient analysis (see details above) were thawed and subsequently
filtered over 0.2-µm pore size 25-mm Whatman polycarbonate membrane filters (GE
Healthcare, Buckinghamshire, UK). Concentrations of dissolved ammonia, nitrates, nitrites
and phosphates were measured using a San++ Automated Wet Chemistry Analyzer (Skalar
Analytical B.V., Breda, The Netherlands) at a detection limit of 0.10 µmol L−1, 0.02 µmol
L−1, 0.03 µmol L−1 and 0.03 µmol L−1, respectively.

2.5. Microscopic Analysis of Phytoplankton

Phytoplankton in a 1-mL subsample of the sample fixed with Lugol’s iodine was iden-
tified to the genus or species level using an inverted microscope (Zeiss IM35, Oberkochen,
Germany) and quantified following the Utermöhl method [58] using a counting chamber.
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Biovolumes of the phytoplankton were calculated from cell numbers, measured cell sizes
and cellular geometry according to [59].

2.6. Flow Cytometric Analysis of Prokaryotes

Single-celled prokaryotes (bacteria, archaea) were quantified using a Becton Dickinson
FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA) according to the protocol
suggested by Marie et al. [60]. The thawed samples were diluted in 0.2 µm filtered (FP
30/0.2 CA-S Whatman, Dasser, Germany) 10:1 Tris–EDTA buffer (pH 8), stained with
the nucleic acid-specific green fluorescent dye SYBR Green I at a final concentration of
1 × 10−4 commercial stock (Invitrogen Molecular Probes, Eugene, OR, USA) for 15 min in
the dark at room temperature, followed by flow cytometric analysis with the trigger set on
green fluorescence. The microbial cells were discriminated by plotting green fluorescence
against the side scatter using Flowing Software (version 2.5.1; www.flowingsoftware.com;
accessed on 7 January 2020).

2.7. DNA Extraction

DNA was extracted using a DNeasy® PowerSoil® extraction kit (Qiagen, Hilde, Ger-
many) according to the manufacturer’s guidelines. The extracted DNA concentrations
were quantified using a Qubit 2.0 fluorometer (Invitrogen, Carlsbad, CA, USA) and diluted
to ~25 ng µL−1 before drying in a CentriVap Concentrator (Labconco, Kansas City, MO,
USA). Dried DNA was then shipped at room temperature for sequencing.

2.8. 16S rRNA Gene Amplicon Sequencing and Data Analysis

First, the lake samples were used to compare the suitability of different primer pairs
for 16S rRNA gene amplicon sequencing. With general primer pairs covering the V3–
V5 region (i.e., 515F–Y/926R), however, cyanobacteria comprised more than 80% of the
reads per sample, whereas the number of reads of most other bacteria in the microbial
community was low. Since cyanobacteria were already quantified by microscopy, we
therefore decided to use the primer pair 799F (5′-AACMGGATTAGATACCCKG-3′) and
1193R (5′-ACGTCATCCCCACCTTCC3′) [61,62], which targets the V5–V7 region of the 16S
rRNA gene but specifically avoids amplification of chloroplast DNA and cyanobacteria.
The main advantage of this approach is that high resolution of the microbial community
can be achieved because the data are not cluttered by large numbers of cyanobacterial reads.
A 30-cycle PCR was performed by MR DNA (Shallowater, TX, USA) with added barcodes
to the forward primer using a HotStarTaq Plus Master Mix Kit (Qiagen, Germantown,
MD, USA) under the following conditions: 94 ◦C for 3 min followed by 30 cycles of
94 ◦C for 30 s, 53 ◦C for 40 s and 72 ◦C for 1 min, with the final elongation step at 72 ◦C
for 5 min. PCR products were checked on a 2% agarose gel to determine amplification
success. The samples were then pooled in five equal pools each with equal proportions
of molecular weight and DNA concentrations and purified with calibrated AMPure XP
beads. All the five pools were then used to prepare the Illumina DNA libraries. Each
pool was sequenced on a separate run on an Illumina MiSeq at MR DNA (Shallowater, TX,
USA) according to the manufacturer’s guidelines. In addition, three samples were added
to each of the five individual runs to verify that the run-to-run variation was minimal
(Figure S2). Furthermore, four replicates of the so-called “mock community,” a mixture of
10 well-characterized bacterial strains in equal amounts (MSA-1000™, ATCC®, Manassas,
VA, USA), were added to confirm classification accuracy and check for possible primer
bias. Analysis of the mock community results with the evaluate-composition command
of the q2-quality control plugin of QIIME2 version 2019.4 [63] indicated that at the genus
level, the taxon detection rate was 100% and that the relative abundances of the observed
taxa were close to the expected levels.

The sequence data for this study were deposited in the European Nucleotide Archive
(ENA) at the EMBL-EBI under accession number PRJEB44985 (https://www.ebi.ac.uk/ena/

www.flowingsoftware.com
https://www.ebi.ac.uk/ena/browser/view/PRJEB44985
https://www.ebi.ac.uk/ena/browser/view/PRJEB44985
https://www.ebi.ac.uk/ena/browser/view/PRJEB44985
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browser/view/PRJEB44985; accessed on 6 April 2021) and the corresponding metadata are
summarized in Table S1.

Raw sequences were transformed with the FASTQ processer of MR DNA (Shallowater,
TX, USA) before analysis with QIIME2 (versions 2019.4 and 2019.10) [63]. The sequences
were demultiplexed [64,65], then joined and quality-trimmed during DADA2 denois-
ing [66] to a quality score of at least 20 and with an overlap of at least 20 nucleotides.
Feature tables of amplicon sequencing variants (ASVs) and representative sequences (rep-
seqs) tables of all the five runs were subsequently merged using the q2-feature-table
plugin. Taxonomic classification was performed with the q2-feature-classifier plugin [67]
by first training the machine-learning classifier on the sequences generated by the primer
(799F/1193R) using the fit-classifier-naive-bayes command [68]. The subsequent classi-
fication was performed using the classify-sklearn command and 99% SILVA database
version 132 as the reference [69,70]. A phylogenetic tree (SEPP) was generated using the
q2-fragment-insertion plugin [71] to allow for phylogenetic diversity analyses such as
UniFrac distances and Faith’s phylogenetic diversity (PD).

Alpha diversity analysis was performed on rarefied but unfiltered feature tables.
To allow for comparisons of alpha diversity between all the treatments and conditions
of this study, all the samples were rarefied to the same sampling depth of 22,554 using
the rarefy command in the feature-table plugin [72]. Chao-1 index and Faith’s PD were
generated using the q2-diversity plugin. Pairwise Kruskal–Wallis tests were used to
compare the indices of different time points.

Beta diversity was quantified as Bray–Curtis dissimilarity and as UniFrac distances.
Mild low-frequency filtration was applied to all the samples to remove rare or poten-
tially faulty features (i.e., features with less than four reads were removed). With the
core-metrics command of the q2-diversity plugin, all the lake samples were rarefied to a
minimal sampling depth of 22,554, all the samples of the lake incubations (including the
t = −24 samples)—to a minimal sampling depth of 23,593 before calculating Bray–Curtis
dissimilarity and unweighted UniFrac distance matrices [73–78]. Principal coordinates
analysis (PCoA) plots visualizing the beta diversity matrices were generated in QIIME2
(versions 2019.4 and 2019.10). Subsequently, a pairwise PERMANOVA was used to calcu-
late significant differences between clusters in the same PCoA plot [79].

Relative abundance plots were generated for bacterial abundances in the lake (at
the 0-m and 5-m depth) and in the incubation experiments for both the June and August
treatments using the 50 most abundant taxa at the order level (covering more than 99% of
the relative abundances) and the 25 most abundant taxa at the genus level. The graphs were
generated with the original unrarefied feature tables as rarefaction is not required with
centered log ratio (clr) transformation [80]. Since clr transformation is sensitive to sparse
data with many zero values, a prior filtration step was included to filter out all the rare
features < 25 reads and presence in less than four samples. This filtration step resulted in a
58.38± 2.27% decrease in the number of features, but only in a 0.55± 0.15% decrease in the
total read counts. Despite the strong decrease in features, the Mantel test between unfiltered
and filtered dissimilarity/distance matrixes confirmed significant correlation. Sequence
counts were clr-transformed with the aldex.clr function of the package ALDEx2 (version
1.18.0) [81,82] in R (version 3.6.2) and the median of 128 Monte Carlo Dirichlet instances was
extracted. The dot plot was generated using the scales package (version 1.1.0) in R (version
3.6.2) and a slightly adjusted DotPlot function according to Guevara Campoverde et al. [83].

Differential abundance between the control incubations (0 mg L−1 H2O2) and the
treated incubations (2.5 mg L−1 and 10 mg L−1 H2O2) 24 h and 96 h after addition of H2O2
was calculated using filtered clr-transformed feature tables that were collapsed at the order
and genus level and the aldex.ttest and aldex.effect functions [81,82,84]. The effect size
as calculated in ALDEx2 (0.7 × Cohen’s d) is shown in a heat map for each comparison
with a significant Welch’s t-test (p < 0.05 after correction for multiple hypothesis testing
according to Benjamini and Hochberg [85]). Heat maps of the effect size of differentially

https://www.ebi.ac.uk/ena/browser/view/PRJEB44985
https://www.ebi.ac.uk/ena/browser/view/PRJEB44985
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relative abundance orders was generated using the gplots (version 3.0.3) package in R
(version 3.6.2).

To predict ecological functions of bacteria during the treatments, the samples were
analyzed with PICRUSt2 [86] and Tax4Fun2 [87]. Techniques and databases for functional
predictions are still in development, and PICRUSt2 and Tax4Fun2 follow different methods
and make use of different reference databases. Therefore, we analyzed our data with
both pipelines and compared their predictions to assess the robustness of the results.
The predicted KEGG orthologs of both pipelines were corrected by the 16S gene copy
number [86,87]. The selected KEGG orthologs classified as glycoside hydrolases according
to the Carbohydrate Active Enzymes database ([88]; http://www.cazy.org; accessed on
12 January 2020) as well as the orthologs involved in the anti-ROS activity or belonging
to fundamental nutrient cycling pathways according to the KEGG database [89–91] were
clustered and analyzed further. The PICRUSt2 predicted the KEGG orthologs were clr-
transformed, and the differential relative abundances between the experimental treatments
and the control of the lake incubations were calculated using ALDEx2 as mentioned above.
The Tax4Fun2 prediction output of the KEGG orthologs is given as percentage values of
relative abundances and could not be clr-transformed as the PICRUSt2 data. The output
values were therefore log2-transformed and the Wilcoxon test with p-values corrected for
multiple hypothesis testing [85] was used to calculate the differential relative abundances
of the KEGG orthologs between the experimental treatments and the control. Dot plots
and heat maps indicating significant increases or decreases in the relative abundances were
generated using the gplots (version 3.0.3) package in R (version 3.6.2).

3. Results

The results of the two H2O2 treatments of the lake were quite comparable. For con-
ciseness, we present only the August treatment in detail here, and highlight important
differences with the June treatment (Supplementary Materials) at the end of Section 3. From
now on, we refer to the August treatment as “the treatment” unless specified otherwise.

3.1. H2O2 Concentrations during the Treatment

The lake treatment aimed to obtain the target H2O2 concentration of 2.5 mg L−1 across
the top 5 m of the entire lake by careful injection of H2O2 from a specially designed boat
(Figure 1C). Measurements in the surface water (0–1-m depth) at various locations across
the entire lake (Figure 2B) showed relatively stable average concentrations between 2 and
3 mg L−1 H2O2 for up to ~13 h after the treatment boat had passed (Figure 2C). Deeper
in the lake (2–3- and 4–5-m depth), the average concentrations varied between 0.7 and
3 mg L−1 H2O2 during this time period (Figure 2D,E). One day later (at t > 20 h), the added
H2O2 was degraded to <0.01 mg L−1.

In the incubation experiments, the first H2O2 measurement was about 10 min after
the H2O2 addition, displaying a rapid decline to 1.6 ± 0.1 mg L−1 H2O2 in the 2.5 mg L−1

treatment and to 8.5 ± 0.6 mg L−1 H2O2 in the 10 mg L−1 treatment. The added H2O2 was
degraded to <0.01 mg L−1 in all the incubation experiments after 24 h.

3.2. Environmental Data during the Treatment

The treatment day was characterized by very warm weather (maximum air tempera-
ture of 33.7 ◦C) accompanied by vertical microstratification of the lake temperature and
supersaturated oxygen concentrations in the surface layer of the lake (Figure S3, Table S2).
The subsequent cooler weather resulted in a more homogeneous temperature distribution
over the upper 4 m of the epilimnion on the day after the treatment followed by a fur-
ther deepening of the thermocline to ~6-m depth during the next few days (Figure S3B).
Dissolved oxygen in the surface layer declined in the days after the H2O2 treatment but
penetrated deeper into the water column as the anoxic hypolimnion gradually moved
from the 4-m depth prior to the treatment to > 6-m depth at day 4 after the treatment
(Figure S3D). The pH in the surface layer declined from 9.5 before the treatment to 8.7 in

http://www.cazy.org


Microorganisms 2021, 9, 1495 10 of 28

the days after the treatment (Figure S3F). The lake was very turbid prior to the treatment,
with a euphotic depth (defined as the depth receiving 1% of the surface irradiance) of
~0.9 m. Within 5 h after the start of the treatment, sunlight penetrated deeper into the water
column, and after 4 days, the euphotic zone extended to ~2.6-m depth (Figure S3H).

The NH4
+ and PO4

3− concentrations increased after the H2O2 treatment of the entire
lake, with a particularly pronounced increase of NH4

+ at the 0-m depth (whereas the NO3
−

and NO2
− concentrations remained low; Figure S4). A similar strong increase of the NH4

+

concentration was also found in the lake incubations treated with 2.5 and 10 mg L−1 H2O2,
whereas the NO3

−, NO2
− and PO4

3− concentrations in the lake incubations remained
largely unaltered after the treatment (Figure S4).

3.3. Effects of H2O2 on Phytoplankton

Prior to the lake treatment, Planktothrix agardhii and Dolichospermum sp. Were the
dominant cyanobacteria at the surface of the lake with biovolumes of 11.5 ± 1.2 mm3 L−1

and 10.5 ± 1.1 mm3 L−1, respectively (Figure 3A). The biovolumes of other cyanobac-
teria, including Microcystis and Aphanizomenon, were <0.1 mm3 L−1. Eukaryotic phyto-
plankton (almost exclusively consisting of the dinoflagellate Ceratium spp.) were also
highly abundant in the surface layer before the treatment with a total biovolume of
18.7 ± 1.8 mm3 L−1. Cyanobacteria and eukaryotic phytoplankton were hardly present at
the 5-m depth (Figure 3B). As soon as 5 h after the lake treatment, the biovolume of the
surface-dwelling Dolichospermum sp. Was reduced by 95%, and it completely disappeared
in the subsequent days. The biovolume of P. agardhii declined steadily, but at a much lower
rate than the biovolume of Dolichospermum sp. The biovolume of eukaryotic phytoplankton
also decreased after the treatment before stabilizing between 48 and 96 h after the treatment
(Figure 3A).
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Figure 3. Phytoplankton composition during the H2O2 treatment in August. (A,B) Biovolume of the
most abundant cyanobacterial taxa and of the total eukaryotic phytoplankton at (A) the 0-m and (B)
5-m depth during the H2O2 treatment of the lake in August. (C–E) Biovolumes in the incubation
experiments treated with (C) 0 mg L−1, (D) 2.5 mg L−1 and € 10 mg L−1 of H2O2. The data show the
mean (±SD) of n = three biological replicates per time point.

In the control of the incubation experiments (without H2O2 addition), the biovolume
of the cyanobacteria strongly increased while the biovolume of eukaryotes (again, mostly
Ceratium spp.) declined. In the H2O2-treated incubations, the cyanobacterium Dolichos-
permum sp. and the eukaryotic phytoplankton disappeared almost completely within
24 to 48 h, whereas the biovolume of P. agardhii remained stable throughout the entire
experiment (Figure 3C–E).
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3.4. Bacterial Abundances

In the surface layer (0 m) of the lake, bacterial abundances peaked 24 h after the
addition of H2O2, after which they declined again. In contrast, at the 5-m depth, bacterial
abundances remained stable for the first 48 h, followed by a decline to values similar to
those at 0 m (Figure 4A). In the control and the 2.5 mg L−1 H2O2-treated incubations,
bacterial abundances slowly increased towards the end of the experiment. In the 10 mg L−1

H2O2-treated incubations, bacterial numbers increased in the first 24 h before returning to
the initial numbers (Figure 4B).
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Figure 4. Total bacterial abundances during the H2O2 treatment in August. Total bacterial abun-
dances as determined with flow cytometry during (A) the lake treatment and (B) the incubation
experiments in August. The data show the mean (±SD) based on n = seven biological replicates for
t = −24 h at 0 m (A), n = six biological replicates for t = −24 h at 5 m (B) and n = four biological
replicates for all the other time points.

3.5. Microbial Community Analysis
3.5.1. Microbial Community Composition in the Lake

The microbial community composition showed clear differences between the oxygen-
rich surface layer and the oxygen-depleted waters at the 5-m depth already prior to the
H2O2 treatment of the lake (Figure 5). Although the orders Frankiales and Betaproteobacte-
riales had high relative abundances at both depths, Flavobacteriales, for example, showed
high relative abundances in the surface layer, whereas Bacteroidales, Sphingobacteriales,
WCHB1-41 and Izimaplasmatales reached high relative abundances at the 5-m depth
(Figure 5).

The bacterial taxa that showed a strong increase in the relative abundance after
the H2O2 treatment in the surface layer of the lake included the orders Bacteroidales,
Flavobacteriales, Bacillales, Alteromonadales, Methylococcales, Pseudomonadales, Iz-
imaplasmatales and Chthoniobacterales (Figure 5A). In particular, the genera Rheinheimera
(Alteromonadales) and Flavobacterium (Flavobacteriales) increased from 0.2% and 23% at
24 h before H2O2 addition to 44% and 45% of the microbial community at 24 h after H2O2
addition (Figure S5A; Table S3). Their relative abundances fell back again during the subse-
quent days, however, to 2% for Rheinheimera and 10% for Flavobacterium at 96 h after H2O2
addition. Conversely, the taxa that showed a decrease in the relative abundance after the
H2O2 treatment included the orders Microtrichales, OPB56, Caedibacterales, unclassified
Alphaproteobacteria, Myxococcales, Oligoflexales and Leptospirales (Figure 5A).

The relative abundances at the 5-m depth were somewhat more stable. The taxa that
increased in the relative abundance at the 5-m depth after the H2O2 treatment included
Flavobacteriales, uncultured Berkelbacteria, Rhodobacterales, Alteromonadales (again, es-
pecially Rheinheimera), Methylococcales, Pseudomonadales and Chthoniobacterales, while
the taxa that decreased in the relative abundance included Babeliales and Phycisphaerales
(Figure 5B; Figure S5B).
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3.5.2. Microbial Community Composition in the Incubation Experiments

The incubation experiments showed a strong initial increase in the relative abundance
of Alteromonadales, and especially the genus Rheinheimera, in response to the H2O2 treat-
ment (Figure 6; Figure S6). At t = 24 h, Rheinheimera increased to 73% and 62% of the
microbial community in the incubations treated with 2.5 and 10 mg L−1 H2O2, respec-
tively, whereas it comprised only 12% of the microbial community in the control without
H2O2 (Table S3). During the subsequent days, at t = 96 h after H2O2 addition, the relative
abundance of Rheinheimera declined again to 8% and 34% of the microbial community
in the treatments with 2.5 and 10 mg L−1 H2O2, respectively. The other taxa with a sig-
nificantly higher relative abundance after the addition of 2.5 mg L−1 H2O2 than in the
control included the orders Frankiales, Rickettsiales and Cellvibrionales, while the taxa
with a significantly lower relative abundance included Cytophagales, Flavobacteriales,
Phycisphaerales, Pirellulales, Pedosphaerales and Verrucomicrobiales (Figure 6). The other
taxa with a significantly higher relative abundance after the addition of 10 mg L−1 H2O2
included Frankiales, unclassified Bacteroidia, Bacteroidales, Bacillales, Paracaedibacterales,
Rhodobacterales, Rickettsiales, Aeromonadales, Betaproteobacteriales, Cellvibrionales and
Pseudomonadales, while the taxa with a significantly lower relative abundance included
Chitinophagales, Cytophagales, Babeliales, Phycisphaerales, Acetobacterales, uncultured
Alphaproteobacteria, Oligoflexales, Chthoniobacterales, Pedosphaerales and Verrucomi-
crobiales (Figure 6).
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Figure 5. Microbial community composition during the lake treatment in August. Relative abundance
shown as clr-transformed read counts at the phylum and order levels at (A) the 0-m and (B) 5-m
depth during the lake treatment in August. Columns of the same color represent biological replicates
at the same time point; columns of different colors represent different time points; “k__”, “p__” and
“c__” indicate that the maximum classification of these taxa is at the kingdom, phylum and class
level, respectively.

3.5.3. Microbial Diversity

The two alpha diversity indices, species richness (Chao-1) and phylogenetic diversity
(Faith’s PD), decreased significantly after the addition of H2O2 at both depths in the lake.
The initial decline in alpha diversity, which reached the minimum at 24 h after the treatment,
was followed by a strong and significant recovery after 48 h that even further increased
after 96 h, surpassing the diversity observed before the lake treatment (Figure 7A,B). Re-
covery of the microbial communities after the lake treatment was also indicated by the
beta diversity analysis using Bray–Curtis dissimilarity matrices and unweighted UniFrac
distance matrices. Strong shifts in the microbial communities after the treatment were
followed by V-shaped recovery patterns along axis 2 of the PCoA plots both for Bray–Curtis
dissimilarity (Figure 8A,B) and unweighted UniFrac distances (Figure 8C,D).
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Figure 6. Microbial community composition during the incubation experiments in August. The
graph shows the relative abundances as clr-transformed read counts of bacteria at the order level for
each of the time points during the August treatment. The first column represents the average relative
abundances in the lake prior to the incubation experiments (t = −24 h, with n = seven biological
replicates). The other columns represent the relative abundances in the incubation experiments at
three subsequent time points (t = 24, 48 and 96 h, with n = four biological replicates per time point).
Gray columns represent the control incubations (0 mg L−1 H2O2), orange columns—the 2.5 mg L−1

H2O2-treated incubations, blue columns—the 10 mg L−1 H2O2-treated incubations. Differential
abundances of orders between the treated and control incubations at t = 24 h and t = 96 h were
calculated using ALDEx2. Effect sizes of the statistical test (0.7 × Cohen’s d) are shown in the
heat map next to the t = 24 and t = 96 columns for all the significant comparisons; blue indicates a
significant decrease in the relative abundance while red indicates a significant increase in the relative
abundance in comparison to the control; “p__” and “c__” indicate that the maximum classification of
these taxa is at the phylum and class level, respectively.
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Diversity indices of the incubation bags showed very similar responses to H2O2
addition as in the lake. The Chao-1 index and Faith’s PD declined significantly 24 h
after the treatment with 2.5 mg L−1 and 10 mg L−1 H2O2, followed by a strong and
significant recovery until the end of the experiment (Figure 7C,D). The beta diversity
trajectories of the treated and control communities initially diverged but then converged
during the subsequent 48–96 h. Convergence towards the community composition of the
control is indicative of a strong recovery of the microbial communities. When analyzed
using Bray–Curtis dissimilarity, a metric that takes relative abundances into account and
therefore focuses on the more abundant features, the 2.5 mg L−1 H2O2-treated communities
showed a clear recovery whereas the trajectories suggested only a partial recovery for
the 10 mg L−1 H2O2 treatment (Figure 8E–G). When analyzed with unweighted UniFrac
distances, a metric that focuses on the rarer features, a strong recovery was observed after
the treatment with both H2O2 concentrations (Figure 8H–J).
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Figure 7. Alpha diversity of the microbial community during the H2O2 treatment in August. (A,C) The Chao-1 index
(estimated species richness), and (B,D) Faith’s phylogenetic diversity during (A,B) the lake treatment and (C,D) the
incubation experiments in August. The color of the box plots indicates (A,B) the sampling depth in the lake or (C,D) the
different H2O2 treatment concentrations of the incubations. The horizontal lines within the box plots represent the median,
the boxes—the 25% quartile and the 75% quartile, error bars—the minimum values and the maximum values. The first box
plot in each panel represents the alpha diversity in the lake prior to the incubation experiments (t = −24 h, with n = seven
biological replicates). Box plots of all the subsequent time points are based on n = four biological replicates. Box plots with
different letters indicate significant differences between time points according to pairwise Kruskal–Wallis tests.

3.5.4. Functional Prediction

Both the Tax4Fun2 and PICRUSt2 analysis indicated that the H2O2 treatment of the
lake had only a minor impact on the important ecological functions of the microbial com-
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munity, such as nitrogen and sulfur cycling. Specifically, the predicted relative abundances
of the functional pathways (KEGG orthologs) for the production of glycoside hydrolases,
nitrogen metabolism, sulfur metabolism and anti-ROS activity all remained stable at both
depths in response to the lake treatment (Figure 9).
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Figure 8. Beta diversity of the microbial community during the H2O2 treatment in August. PCoA plots of beta diversity of
the microbial community during (A–D) the lake treatment and (E–J) the incubation experiments in August. Beta diversity in
(A,B) and (E–G) is based on the Bray–Curtis dissimilarity matrix, in (C,D) and (H–J)—on the unweighted UniFrac distance
matrix. Each symbol in the graph represents one sample; all samples with symbols of the same color are biological replicates.
Gray open circles represent samples in the lake prior to the H2O2 treatment (i.e., the starting community at t = −24 h).
Arrows visualize the trajectories of the bacterial communities throughout the experiment. Pairwise PERMANOVAs revealed
significant differences between all clusters within the same panel.

In the incubation experiments, several minor but significant differences were found
between the H2O2 treatments and the control (Figure 10). At 24 h, glycoside hydrolases
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and anti-ROS orthologs showed significantly higher relative abundances in the incuba-
tions treated with H2O2 than in the control according to both PICRUSt2 and Tax4Fun.
Other significant differences were less consistent among the two pipelines. For instance,
the relative abundance of the nitrogen metabolism was significantly higher in the H2O2
treatments than in the control according to PICRUSt2 (Figure 10A), whereas it was signifi-
cantly lower according to Tax4Fun (Figure 10B). Overall, the predicted relative abundances
of the functional pathways did not show major differences between the H2O2 treatments
and the control.
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Figure 9. Functional prediction of the microbial community during the lake treatment in August.
The graphs show predicted relative abundances of the selected KEGG orthologs or pathways for
glycoside hydrolases, nitrogen and sulfur metabolism and anti-ROS enzymes at (A) the 0-m depth
and (B) the 5-m depth during the lake treatment in August. The relative abundances of the selected
KEGG orthologs or pathways were predicted by PICRUSt2 (circles) or Tax4Fun2 (triangles). The
PICRUSt2 predictions are shown as clr-transformed counts while the Tax4Fun2 predictions are shown
as log2-transformed percentages. Columns show the average of the predicted relative abundances of
n = seven biological replicates for the first time point (t = −24 h) at the 0-m depth, n = six biological
replicates for the first time point at the 5-m depth and n = four biological replicates for all the other
time points.

3.6. Comparison of the June and August Treatments

The lake treatments in June and August differed in subtle ways. The water temperature
was lower and oxygen penetrated slightly deeper in June than in August
(Figure S3). Furthermore, the measured H2O2 concentrations were slightly lower, and
H2O2 degraded faster during the lake treatment in June (Figure S1) than during the lake
treatment in August (Figure 2). The N and P nutrient dynamics were comparable for both
lake treatments, with NH4

+ concentrations strongly increasing after the addition of H2O2
in both the June and August treatments while NOx and PO4

3− were much less affected
(compare Figures S4 and S7). The phytoplankton community in June was largely domi-
nated by the cyanobacterium Aphanizomenon klebahnii. Despite the fast H2O2 degradation,
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the June treatment led to an 89% decline of the biovolume of A. klebahnii within 48 h after
H2O2 addition (Figure S8A,B).
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Figure 10. Functional prediction of the microbial community during the incubation experiments
in August. The graphs show relative abundances of the selected KEGG orthologs or pathways for
glycoside hydrolases, nitrogen and sulfur metabolism and anti-ROS enzymes during the incubation
experiments in August as predicted by (A) PICRUSt2 and (B) Tax4Fun2. The first column presents
relative abundances of the KEGG pathways in the lake prior to the incubation experiments (t = −24 h,
with n = seven biological replicates). The other columns present relative abundances in the incubation
experiments at the three subsequent time points (t = 24, 48 and 96 h, with n = four biological replicates
per time point). Gray columns represent the control incubations (0 mg L−1 H2O2), orange columns—
the 2.5 mg L−1 H2O2-treated incubations, blue columns—the 10 mg L−1 H2O2-treated incubations.
The color intensities of the columns represent different time points. Relative abundances are shown
as (A) clr-transformed counts for PICRUSt2 and (B) log2-transformed percentages for Tax4Fun2.
Significant differences in relative abundances at the same time point between the treated and control
incubations were tested using (A) ALDEx2 and (B) the Wilcoxon test (see the Materials and Section 2
for details). Significant increases compared to the control are shown in red, significant decreases—in
blue, in the heat map next to each time point. White fields in the heat map indicate that the relative
abundances were not significantly different between the treated and control incubations.

The bacterial abundances in June were higher at 0 m than at the 5-m depth (in con-
trast to August) and peaked 1 day later (Figure S9A). Most of the taxa that increased in
relative abundance after the lake treatment in June (Flavobacteriales, Rhodobacterales,
Alteromonadales and Pseudomonadales; Figure S10) were similar to those that increased in
relative abundance after the lake treatment in August (Figure 5). In particular, the genera
Flavobacterium (Flavobacteriales) and Rheinheimera (Alteromonadales) again codominated
the microbial community at 24 h after H2O2 addition and again fell back to lower relative
abundances during the subsequent days (Figure S11). Conversely, the taxa displaying
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a distinct decrease in the relative abundance after the June treatment (Bdellovibrionales
and Bacteroidales at the 5-m depth) differed from the taxa that decreased after the August
treatment (compare Figure 5 and Figure S10).

In the incubation experiments, many of the taxa responding significantly to the H2O2
treatments in June differed from those in August (compare Figure 6 and Figure S12). How-
ever, some taxa showed a more consistent pattern. Specifically, the genera Rheinheimera
(Alteromonadales) and Pseudomonas (Pseudomonadales) reached significantly higher abun-
dances in the H2O2 treatments than in the control, whereas Verrucomicrobia of the orders
Chthoniobacterales and Pedosphaerales reached significantly lower abundances in re-
sponse to H2O2 in both June and August (Figures S12 and S13).

Alpha diversity indices of species richness and phylogenetic diversity were similarly
affected after the June and August treatments, with an initial decline during the first
few days, followed by a strong recovery (Figure S14). As indicated by the beta diversity
analysis, the lake microbial community composition in June also recovered, although beta
diversity trajectories of the incubation experiments showed somewhat less convergence
between the H2O2 treatments and the control in June than in August (Figure S15). Similarly
to August, the predicted relative abundances of the functional pathways were not strongly
affected during the H2O2 treatment in June (Figures S16 and S17). Again, the significance
patterns of the incubation experiments were not fully consistent among the two pipelines
(Figure S17). At 48 h, however, glycoside hydrolases, nitrogen metabolism and anti-ROS
orthologs showed significantly higher relative abundances in the incubations treated with
H2O2 than in the control according to both PICRUSt2 and Tax4Fun.

4. Discussion
4.1. Effect of H2O2 on the Phytoplankton Community

The results of this study confirm that low concentrations of H2O2 can effectively
suppress cyanobacterial blooms. In both treatments, dominant cyanobacteria decreased
rapidly, as shown by the decline of Aphanizomenon klebahnii in the June treatment and of
Dolichospermum sp. in the August treatment. A fast decline of cyanobacterial blooms has
also been observed in two previous H2O2 treatments of lakes dominated by Planktothrix
agardhii [43] and Aphanizomenon flos-aquae [25]. During the August treatment, P. agardhii
codominated the cyanobacterial bloom, but showed more resistance to H2O2 than Dolichos-
permum sp. Remarkably, in the incubation experiments with a starting concentration of
10 mg L−1, P. agardhii did not decline. A possible explanation for the strong persistence of
P. agardhii in this study compared to Dolichospermum sp. and to P. agardhii in a previous
lake treatment [43] might be the genetic variation in H2O2 sensitivity between the different
strains as previously observed in both Planktothrix spp. [92] and Microcystis aeruginosa [93].

Eukaryotic dinoflagellate Ceratium spp. was abundant in the lake during the August
treatment and was less affected by H2O2 than the cyanobacterium Dolichospermum sp. This
observation is in line with many previous studies, which showed that cyanobacteria tend
to be more resistant than eukaryotic phytoplankton species [19–26]. In contrast to the
lake observations, Ceratium spp. declined in all the incubation experiments, including the
control. Apparently, keeping Ceratium spp. in enclosed incubation bags was detrimental
for this organism. The enclosed space may have disrupted their natural migrating behavior
and likely caused their decline even in the control without H2O2. Ceratium spp. are good
swimmers and known to form subsurface maxima by vertical migration during high light
conditions [94].

Simultaneous investigation of the zooplankton community showed that the H2O2
treatment of the lake negatively affected rotifers, small zooplankton known to graze on
bacteria and small phytoplankton [95,96]. In contrast, cladocerans and copepods, which
can also graze on bacteria but mainly feed on larger phytoplankton size classes [96,97], were
not affected by the H2O2 concentrations administered to the lake (personal communication,
Weenink and Visser).
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4.2. Bacterial Response to the H2O2 Treatment

The bacterial abundances observed in this study before the H2O2 treatment
(0.5–6 × 106 cells mL−1; Figure 4 and Figure S9) are comparable to the earlier published
values for freshwater lakes [98,99]. Overall, the bacterial numbers were not much affected
by the H2O2 treatment, except for a temporary ca. threefold increase within 1–2 days after
the treatment. The peak in bacterial abundance coincided with a temporary decline in
alpha diversity, shifts in beta diversity, increasing ammonium concentrations and increases
in the relative abundance of anti-ROS and glycoside hydrolase orthologs. Glycoside hydro-
lases are enzymes involved in the degradation of the polysaccharides derived from plant
and algal biomass such as glycogen, cellulose and starch, whereas ammonium is released
by the degradation of N-rich molecules such as proteins. Hence, these results indicate
that some bacteria with adequate H2O2 protection mechanisms temporarily profited from
the degradation of organic compounds released by the lysing cyanobacterial bloom. The
subsequent return to lower bacterial abundances might be a consequence of the temporary
nature of the lysis event, additional losses (grazing), altered organic carbon sources due to
the strongly changed phytoplankton composition or linked to the changing environmental
conditions in the lake (such as the decline in temperature, oxygen saturation and pH) [100].

4.3. Effect of H2O2 on Microbial Community Composition

Many of the dominant bacterial phyla of lake Oosterduinse Meer detected by our
primer set are also common in other freshwater lakes around the world [22,26,101–104].
However, the microbial community composition of lakes is known to vary substantially
throughout the seasons and often in accordance with changing environmental condi-
tions [98,102,103,105], as reflected by the differences in community composition between
both treatments of this study. Hence, the impacts of H2O2 treatments should be interpreted
against the background of natural changes in microbial community composition.

Some taxa consistently increased in the relative abundance after exposure to H2O2,
both in the lake treatments and in the controlled incubation experiments. In particular,
several members of the Proteobacteria strongly increased in relative abundance, as also
observed in the recent studies of Lusty and Gobler [26] and Santos et al. [42]. In our study,
these members included Alteromonadales (Gammaproteobacteria) of the genus Rhein-
heimera, which have been found to produce H2O2 themselves [106], as well as Pseudomon-
adales, which have also been described to be very resistant against oxidative stress [107].
Both Rheinheimera and Pseudomonadales also increased in relative abundance after H2O2
treatments in the field mesocosm study of Lin et al. [22]. Amongst Alphaproteobacteria,
Rhodobacterales repeatedly increased in relative abundance after H2O2 exposure in this
study, which is in line with the results in the 2 mg L−1 H2O2-treated field mesocosms of
Lin et al. [22] and the increase of Paracoccus (Rhodobacteraceae) in the mesocosm experi-
ments of Santos et al. [42]. This is not surprising given that members of Rhodobacterales
master a wide range of growth mechanisms, from photoautotrophy and (an-)aerobic respi-
ration to fermentation, and this flexibility may enable them to rapidly respond to changing
environmental conditions [108–110]. Contrary to our results, both Lusty and Gobler [26]
and Santos et al. [42] reported a decrease in the relative abundance of Actinobacteria in
outdoor incubation experiments with lake water after addition of H2O2. While small de-
creases in relative abundance were observed for Microtrichales during the June incubations
and after the August lake treatment, most orders of the phylum Actinobacteria were rather
stable or increased in response to the H2O2 treatments (e.g., the order of Frankiales).

Only a few taxa showed a consistently lower relative abundance after exposure to
H2O2 in the incubation experiments, including three orders of the phylum Verrucomicro-
bia (i.e., Chthoniobacterales, Pedosphaerales and, to a lesser extent, Verrucomicrobiales).
This agrees with previous observations that Verrucomicrobia suffered from H2O2 treat-
ments [22,26,42]. However, the increase in the relative abundance of Chthoniobacterales
within the lake two to four days after the August treatment (Figure 5) seems to con-
trast their decline in the incubation experiments (Figure 6). Chthoniobacterales belong
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to Spartobacteria, a class of heterotrophic Verrucomicrobia inhabiting soils and aquatic
environments [111,112]. A metagenomic study in the Baltic Sea found that Spartobacteria
produced a large diversity of glycoside hydrolases targeting a variety of carbohydrates and
observed a close association of Spartobacteria with cyanobacteria that may have produced
carbohydrate substrates [113]. Hence, a potential explanation for our observations might
be that Chthoniobacterales are first temporarily suppressed by H2O2, but benefit from
storage and structural polysaccharides [114] released by the lysing cyanobacterial bloom
once the added H2O2 has disappeared.

4.4. Community Resilience after the Treatment with H2O2

Changes in the microbial community in response to disturbances are best described
by the terms “resistance” and “resilience.” Resistance describes the degree to which a
community can remain unchanged during a disturbance, whereas the resilience of a
community describes the rate of recovery after a disturbance [115]. Disturbances to the
ecosystem can have both positive and negative effects on alpha diversity [102,116,117]
and sometimes even opposite effects in the epilimnion and hypolimnion of the same
lake [100]. The microbial communities in the lake and the incubation experiments were not
resistant to the H2O2 treatments as indicated by a strong decrease in species richness as
well as phylogenetic diversity (Figure 7 and Figure S14), but alpha diversity also recovered
within a few days. This temporary response was also visible in the shifts in community
composition in both the lake treatment and the incubation experiments, where Rheinheimera
and Flavobacterium strongly increased in relative abundance during the first 24 h after H2O2
addition but subsequently declined again. The temporary negative effect on alpha diversity
and concomitant shift in microbial community composition might be explained by the very
nature of H2O2 treatments. Unlike most other chemical treatments, added H2O2 rapidly
degrades to water and oxygen and hence disappears from the lake within a few days.
In ecological terms, H2O2 treatments thus represent pulse (short-term) disturbances rather
than press (long-term) disturbances [118,119]. After the added H2O2 has disappeared, the
microbial community can recover. Strong resilience of the species richness and phylogenetic
diversity observed in the lake and in the incubations indicates that most taxa survived the
applied concentrations of H2O2 and were temporarily suppressed rather than removed
from the ecosystem. Similar alpha diversity resilience patterns of microbial communities
have been reported for a variety of other ecosystems, including freshwater lakes, after
other pulse disturbances [100,115,120].

High resilience after the H2O2 treatments was also visible from the analysis of beta
diversity in the lake (Figure 8 and Figure S11). The microbial communities recovered mostly
in a V-shaped pattern for both the dissimilarity and the distance matrices. This indicates
that the community after the lake H2O2 treatment did not return to the exact same starting
point but rather to a slightly altered community composition similar to the previously
observed after other pulse disturbances [100,121]. Most likely, this V-shaped recovery is
caused by altered environmental conditions during the days after the treatment such as a
change in weather conditions leading to an increased mixing depth of the lake [100,104].
In contrast to laboratory or incubation experiments, spatial refuges for bacteria in lakes
likely facilitate the resilience of microbial communities [121], e.g., close to the sediment in
shallow parts of the lake where H2O2 degradation rates are strongly increased.

In contrast to whole lake treatment, incubation treatments allow for experimental
replication and the inclusion of controls without H2O2. The beta diversity analysis of the
incubation experiments confirmed the V-shaped recovery pattern observed in the lake.
In addition, it showed that not only the treated communities were shifting towards a
new, altered composition, but also the community composition of the untreated control
communities was shifting in the same direction. While it remains uncertain to what extent
the shift of the control communities was due to natural processes or, rather, due to the
so-called “bottle effect” [122], the convergence of the trajectories of the treated and control
communities demonstrates strong resilience of the communities after H2O2 additions.
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4.5. Microbial Functions Show Resistance after the Treatment with H2O2

H2O2 had only minor effects on the functional pathways investigated in this study.
The strong resistance to H2O2 treatments indicated by the prediction of stable relative
abundances of the functional pathways (KEGG orthologs) by both pipelines is likely due
to redundancy in functionality within microbial communities [115,123].

It is important to point out that the functional predictions were not always consistent
between both pipelines and therefore require careful interpretation. Functional predic-
tions based on the 16S rRNA gene amplicon sequencing data have strongly improved in
recent years, including due to expanded reference databases of pipelines like Tax4fun2
and PICRUSt2 [86,87]. However, the prediction accuracy is tightly linked to the coverage
of those reference databases, in which freshwater environments are still strongly under-
represented [86,124]. For more accurate analyses of the functional profiles of freshwater
microbial communities, metagenomic and metatranscriptomic studies would be required.
Despite the increasing use of metagenome reference databases to assess microbial functions
in freshwater environments [125–128], a strong degree of uncertainty of the functional
predictions is so far unavoidable.

Both pipelines indicated that the H2O2 treatments were accompanied by a tempo-
rary increase in the relative abundance of the pathways representing anti-ROS enzymes
and glycoside hydrolases. The consistency of this pattern, which was apparent in the
incubation experiments in both June and August, suggests that this result is robust. A tem-
porary increase of taxa with the anti-ROS pathways signifies that effective H2O2 defense
mechanisms play a role in the resistance to H2O2 treatment [129]. In addition, possessing
glycoside hydrolases to break down organic matter released by the decaying cyanobac-
terial bloom undoubtedly offers a clear advantage during the first few days after the
treatment [56,114,130].

5. Conclusions

The whole lake H2O2 treatments effectively suppressed the dominant cyanobacteria
Aphanizomenon klebahnii, Dolichospermum sp. and, to a lesser extent, Planktothrix agard-
hii. Analysis of the microbial community composition with primers that do not target
cyanobacteria revealed that the H2O2 concentrations used in this study had a distinct
temporary effect on the microbial community. The taxa that are known to be resistant to
oxidative stress (e.g., Rheinheimera) were favored during the first 24 h after H2O2 addition,
but subsequently their relative abundance declined again. The applied H2O2 concentra-
tions thus represented a short-term pulse disturbance, which caused a temporary decline
in alpha and beta diversity and a temporary increase of the functional pathways encoding
anti-ROS defenses and glycoside hydrolases. However, the microbial community proved
to be resilient and recovered a few days after the treatments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9071495/s1, Figure S1: H2O2 treatment of the lake, Figure S2: Run-to-run
variation, Figure S3: Environmental variables measured during the H2O2 treatments, Figure S4:
Dissolved inorganic nutrients during the H2O2 treatment in August, Figure S5: Microbial community
composition at the genus level during the lake treatment in August, Figure S6: Microbial community
composition at the genus level during the incubation experiments in August, Figure S7: Dissolved
inorganic nutrients during the H2O2 treatment in June, Figure S8: Phytoplankton composition during
the H2O2 treatment in June, Figure S9: Total bacterial abundances during the H2O2 treatment in
June, Figure S10: Microbial community composition at the order level during the lake treatment in
June, Figure S11: Microbial community composition at the genus level during the lake treatment
in June, Figure S12: Microbial community composition at the order level during the incubation
experiments in June, Figure S13: Microbial community composition at the genus level during the
incubation experiments in June, Figure S14: Alpha diversity of the microbial community during
the H2O2 treatment in June, Figure S15: Beta diversity of the microbial community during the
H2O2 treatment in June, Figure S16: Functional prediction of the microbial community during the
lake treatment in June, Figure S17: Functional prediction of the microbial community during the
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incubation experiments in June, Table S1: Overview of the accession numbers and metadata of the
16S rRNA amplicon sequences deposited at the ENA, Table S2: Weather data during the treatments
in June and August, Table S3: Feature tables of the microbial community at the genus level for the
lake treatments and the incubation experiments.
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