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We propose a new model for forming beliefs and learning about unknown probabilities (such as the
probability of picking a red marble from a bag with an unknown distribution of coloured marbles).
The most widespread model for such situations of ‘radical uncertainty’ is in terms of imprecise
probabilities, i.e. representing the agent’s knowledge as a set of probability measures. We add to
this model a plausibility map, associating to each measure a plausibility number, as a way to go
beyond what is known with certainty and represent the agent’s beliefs about probability. There are
a number of standard examples: Shannon Entropy, Centre of Mass etc. We then consider learning
of two types of information: (1) learning by repeated sampling from the unknown distribution (e.g.
picking marbles from the bag); and (2) learning higher-order information about the distribution (in
the shape of linear inequalities, e.g. we are told there are more red marbles than green marbles).
The first changes only the plausibility map (via a “plausibilistic’ version of Bayes’ Rule), but leaves
the given set of measures unchanged; the second shrinks the set of measures, without changing
their plausibility. Beliefs are defined as in Belief Revision Theory, in terms of truth in the most
plausible worlds. But our belief change does not comply with standard AGM axioms, since the
revision induced by (1) is of a non-AGM type. This is essential, as it allows our agents to learn the
true probability: we prove that the beliefs obtained by repeated sampling converge almost surely to
the correct belief (in the true probability). We end by sketching the contours of a dynamic doxastic
logic for statistical learning.

1 Introduction

Our goal in this paper is to propose a new model for learning a probabilistic distribution, in cases
that are commonly characterized as those of “radical uncertainty” [32] or “Knightian uncertainty” [§]].
As an example, consider an urn full of marbles, coloured red, green and black, but with an unknown
distribution. What is then the probability of drawing a red marble? In such cases, when the agent’s
information is not enough to determine the probability distribution, she is typically left with a huge
(usually infinite) set of probability assignments. If she never goes beyond what she knows, then her only
‘rational’ answer should be “I don’t know”: she in a state of ambiguity, and she should simply consider
possible all distributions that are consistent with her background knowledge and observed evidence.
Such a “Buridan’s ass” type of rationality will not help our agent much in her decision problems.

Our model allows the agent to go beyond what she knows with certainty, by forming rational qualitative
beliefs about the unknown distribution, beliefs based on the inherent plausibility of each possible distri-
bution. For this, we assume the agent is endowed with an initial plausibility map, assigning real numbers
to the possible distributions. To form beliefs, the agent uses an AGM-type of plausibility maximization:
she believes the most plausible distribution(s). So we equate “belief” with truth in all the most plausible
worlds, whenever such most plausible worlds exist; while in more general settings, we follow the stan-
dard generalization of this notion of belief as “truth in all the worlds that are plausible enough”. This is
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the standard definition of qualitative belief in Logic and Belief Revision Theory. As a consequence, all
the usual KD45 axioms of doxastic logic will be valid in our framework. The plausibility map encodes
the agent’s background beliefs and a priori assumptions about the world. For instance, an agent whose
a priori assumptions include the Principle of Indifference will use Shannon entropy as her plausibility
function, thus initially believing the most non-informative distribution(s). An agent who assumes some
form of Ockham’s Razor will use as plausibility some measure of simplicity, thus her initial belief will
focus on the simplest distribution(s), etc. Note that, although our plausibility map assigns real values to
probability distributions, this account is essentially different from the ones using so-called “second-order
probabilities”(i.e. probabilities distributions defined on the set of probability distributions). Plausibil-
ity values are only relevant in so far as they induce a qualitative order on distributions. In contrast to
probability, plausibility is not cumulative (in the sense that the low-plausibility alternatives do not add
up to form more plausible sets of alternatives), and as a result only the distributions with the highest
plausibility play a role in defining beliefs.

Our model is not just a way to “rationally” select a Bayesian prior, but it also comes with a rational
method for revising beliefs in the face of new evidence. In fact, it can deal with two types of new in-
formation: first-order evidence gathered by repeated sampling from the (unknown) distribution; and
higher-order information about the distribution itself, coming in the form of linear inequality constraints
on that distribution. To see the difference between the two types of new evidence, take for instance the
example of a coin. As it is well known any finite sequence of Heads and Tails is consistent with all
possible biases of the coin. As such, any number of finite repeated samples will not shrink the set of
possible biases, though they may make increase the plausibility of some biases. Thus this type of infor-
mation changes only the plausibility map but leaves the given set of measures unchanged. The second
type of information, on the other hand, shrinks the set of measures, without changing their plausibility.
As for instance learning that the coin has a bias towards Tail (e.g. by weighing the coin, or receiving
a communication in this sense from the coin’s manufacturer) eliminates all distributions that assign a
higher probability to Heads. It is important to notice, however, that even with higher order information
it is hardly ever the case that the distribution under consideration is fully specified. In our coin example,
a known bias towards Tails will still leave a infinite set of possible biases consistent. Even a good mea-
surement by weighting will leave open a whole interval of possible biases. In this sense a combination of
observations and higher order information will not in general allow the agent to come to know the correct
distribution in the standards sense in which the term knowledge is used in doxastic and epistemic logics.
Instead, it may eventually allow her to come to believe the true probability (at least, with a high degree
of accuracy). This “convergence in belief” is what we aim to capture in this paper.

Our belief revision mechanism after sampling is non-Bayesian (and also different from the AGM belief
revision), though it incorporates a “plausibilistic” version of Bayes’ Rule. Instead of updating her prior
belief according to this rule (and disregarding all other possible distributions), the agent keeps all possi-
bilities in store and revises instead her plausibility relation using an analogue of Bayes’ Rule. After that,
her new belief will be formed in a similar way to her initial belief: by maximizing her (new) plausibility.
The outcome is different from simply performing a Bayesian update on the ‘prior’: qualitative jumps are
possible, leading to abandoning “wrong” conjectures in a non-monotonic way. This results in a faster
convergence-in-belief to the true probability in less restrictive conditions than the usual Savage-style
convergence through repeated Bayesian updating Note also that the belief update induced by sampling

UIn contrast to Savage’s theorem, our update ensures convergence even in the case that the initial set of possible distributions
is infinite (indeed, even in the case we start with the uncountable set of all distributions). Moreover, in the finite case (where
Savage’s result does apply), our update is guaranteed to converge in finitely many steps, while Savage’s theorem only ensures
convergence in the limit.
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does not satisfy all the standard AGM axioms for belief revision. This is essential for learning the true
probability from repeated sampling: since every sample is logically consistent with every distribution,
an AGM learner would never change her initial belief!

The second type of evidence (higher-order information about the distribution) induces a more familiar
kind of update: the distributions that do not satisfy the new information (typically given in the former
of linear inequalities) are simply eliminated, then beliefs are formed as before by focusing on the most
plausible remaining distributions. This form of revision is known as AGM conditioning in Belief Re-
vision Theory (and as update, or “public announcement”, in Logic), and satisfies all the standard AGM
axioms.

The fact that in our setting there are two types of updates should not be so surprising. It is related to
the fact that our static framework consists of two different semantic ingredients, capturing two different
attitudes: the set of possible distributions (encoding the agent’s knowledge about the correct distribution),
and the plausibility map (encoding the agent’s beliefs). The second type of (higher-order) information
directly affects the agent’s knowledge (by reducing the set of possibilities), and only indirectly her beliefs
(by restricting the plausibility map to the new set, so beliefs are only updated with fit the new knowledge).
Dually, the first type of (sampling) evidence acts directly affects the agent’s beliefs (by changing the
plausibility in the view of the sampling results), and only indirectly her knowledge (since e.g. she knows
her new beliefs).

The plan of this paper follows. We start by reviewing some basic notions, results and examples on prob-
ability distributions (Section 2). Then in Section 3, we define our main setting (probabilistic plausibility
frames), consider a number of standard examples (Shannon Entropy, Center of Mass etc), then formalize
the updates induced by the two types of new information, and prove our main result on convergence-
in-belief. In Section 4, we sketch the contours of a dynamic doxastic logic for statistical learning. We
end with some concluding remarks and a brief comparison with other approaches to the same problem
(Section 5).

2 Preliminaries and Notation

Take a finite set O = {o0y,...,0,} and let Mp = {u € [0,1]°| ¥,cot(0) = 1} be the set of probability
mass functions on O, which we identify with the corresponding probability functions on Z?(0). Let
Q = 0~ = O" be the set of infinite sequences from O, which we shall refer to as observation streams.
For any @ € Q and i € N, we write o; for the i-th component of @, and @’ for its initial segment of length i,
that is @y, . .., @;. For each o € O we define the sets o to be the cylinders o/ = {w € Q| w; =0} C Q. Let
o/ C P(Q) be the c-algebra of subsets of Q generated by the cylinders. Every probability distribution
U € My induces a unique probability function, fl over (Q,.27) by setting {1(0’) = i (o) which extends to
all of .o/ using independence. Let & be the subalgebra of o7 that is closed under complementation and
finite unions and intersections of the cylinder sets. Then & will capture the set of events generated by
finite sequences of observations.

Example 1 Let O = {H, T} be the possible outcomes of a coin toss. Then Q will be streams of Heads
and Tails representing infinite tosses of the coin, e.g. HTTHHH.... And H' (res. T7) will be the set of
streams of observations in which the j-th toss of the coin has landed Heads (res. Tails). The set My will
be the set of possible biases of the coin.

Example 2 Let O = {R,B,G} be the possible outcomes for a draw from an urn filled with marbles,
coloured Red, blue and Green. Then the set Mo will be the set of different distribution of coloured
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marbles in the urn, Q will be streams of R, B and G representing infinite draws from the urn, and R/ (res.
B/ or G7) will be the set of streams of draws in which the j-th draw is a Red (res. Blue or Green) marble.

Topology on M Notice that a probability function u € M, defined over the set O = {01, ...,0,}, can be
identified with an n-dimensional vector (i (o1),..., 1 (0,)), corresponding to the probabilities assigned
to each o; respectively. Let Zp := {¥ € [0,1]" | Yx; = 1}, then every u € My can be identified with the
point i € Y C [0,1]". Thus probability functions in .# live in the space R” (or more precisely [0, 1]™).
In the other direction every X € % defines a probability function x on O by setting x(0;) = X;. This
gives a one to one correspondence between Mo and Zp. There are various metric distances that can be
defined on the space of probability measures over a (finite) set O many of which are known to induce the
same topology. Here we will consider the standard topology of R",induced by the Euclidean metric: for
X,y € R", put d(%,¥) := /X1, (x; —yi)?; a basis for the standard topology is given by the family of all
open balls B¢ (X) centred at some point X € R" with radius € > 0; where

Be(X) ={y e R"|d(¥,y) < €}.

Proposition 1 For a finite set O, the set of probability mass functions on O, #p, is compact in the
standard topology.

Proof. Check that the set {X € [0,1]"| ¥__, x; = 1} is compact in R”. [
We will make use of the following well known facts:

Proposition 2 Let X,Y be compact topological spaces, ZC X and f: X CY

(1) Every closed subset of X is compact.

(2) If f is continuous, then f(X) is compact.

(3) If Z is compact then it is closed and bounded.

Proof. See [[17], Theorem 1.40 and Proposition 1.41. |
Proposition 3 Let X be a compact topological space and f : X — R a continuous function on X. Then
f is bounded and attains its supremum.

Proof. See [17], Theorem 7.35. [ |
Theorem 1 (Hein-Cantor) Let M,N be two metric spaces and f : M — N be continuous. If M is com-

pact then f is uniformly continuous.

Proof. See [39]. |

3 Probabilistic Plausibility Frames

A probabilistic plausibility frame over a finite set O is a structure .# = (M, pla) where M is a subset of
Mo, called the set of “possible worlds”, and pla : Mp — [0, o) is a continuous function s.t. the derivative
pld is also continuous.

So our possible worlds are just mass functions on O. Here are some canonical examples of probabilistic
plausibility frames:

e (a) Shannon Entropy as plausibility: Let pla : Mp — [0,00) be given by the Shannon Entropy,

pla(p) = Ent (i) = — Yoco k(o) log(it(0))-
Then (Mp, Ent) is a probabilistic plausibility frame. Here the most plausible distribution will be
the one with highest Shannon entropy.
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e (b) Centre of Mass as plausibility: Let pla: Mp — [0,0) be given by the Centre of Mass, pla(u) =
CM(1t) = Locolog(u(0))-
Then (Mp,CM) is a probabilistic plausibility frame. Here the plausibility ranking will be given
in terms of typicality, and higher plausibility will be given to those probability functions that are
closer to the average of M.

Example 1. (continued). In the absence of any information about the coin the set of possible biases will
be the set Mo of all probability mass functions on {H,T}. Then (Mo,Ent) is a probabilistic plausibility
frame, where the highest plausibility will be given to the distribution with highest entropy: the fair-coin
distribution u°? (since for every v # 1l we have Ent(v) < Ent(u°?)).

One of the main motivations for developing the setting that we investigate here is to capture the learning
process as iterated revision that results from receiving new information. As was pointed out earlier one
type of information essentially trims the space of possible probability measures by deleting certain can-
didates. There is however, a softer notion of revision, imposed by observations, that does not eliminate
any candidate but rather changes the plausibility ordering over them. With this in mind, the next question
we need to clarify is how the plausibility order is to be revised in light of new observations.

Definition 1 (Conditionalisation) Let pla : Mp — [0,%0), and define pla(.|.) : & x Mg — [0,00), by
pla(u|e) := pla(u)i(e). When e € & is fixed, this yields a conditional probability function pla, : Mp —
[0,00) given by pla.(1t) := pla(u|e).

Conditioning plausibilities is clearly a higher-level, “plausubilistic” analogue of Bayesian conditions.
It allows us to update the relative rankings of probability distributions, and thus captures a notion of
learning through sampling. The next three results in Lemma [I} and Propositions [5] and [ ensure that
the conditionalisation of the plausibility function given by Definition [I| behaves correctly. In particular,
Lemma |1 and Corollary {4| show that the properties of a plausibility function in our frames is preserved
by the conditionalisation and Proposition [5| guarantees that the result of repeated conditionalisation is
independent of the order. This is important as it ensures that what the agents come to believe is the result
of what they learn and not the order in which they learn them.

Lemma 1 For each e € &, the mapping F, : Mo — [0, 1] defined as F,(u) := [i(e), is continuous with
respect to L.

Proposition 4 If pla is a plausibility function on Mo and e € &, then pla, is a plausibility function.

Proof. Follows from the definition using Lemmal} |
Proposition 5 For .# as above and pla: My — [0,00) and e,e' € &: (pla,)y = plaene -

Proof. See appendix |

Example 1. (continued) Take the frame (Mo, Ent) as before where M is the set of all biases of the coin
and Ent is the Shannon Entropy. Remember that 11 is the unique maximiser of Ent on Mo. Let e € &,
be the event that “the first three tosses of the coin have landed on Heads”. After observing e, the new
plausibility function is given by pla,(1) = pla(u)fi(e) = Ent(u)fi(e).

Thus the most plausible probability function will no more be Ul and one with a bias towards Heads
will become more plausible. Let 1,y and Uz be such that uy(Heads) = 3 /4, ux(Heads) = 0.8 and
Us(Heads) = 0.9 then it is easy to check that pla,(1) < pla.(t2) > pla.(us).

Our rule for updating plausibility relation weights the plausibility of each world with how much it re-
spects the obtained evidence. In this way worlds that better correspond to the evidence are promoted in
plausibility.
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Proposition 6 Let M C Mg be closed. Then for all e € &, there exists some L € M with highest plausible
(i.e. s.t. pla,(1) > pla,(1') forall u’ € M).

Proof. Using Lemmal[I] the result follows as corollary of Proposition 3] |

Definition 2 (Knowledge and Belief) Let P C M be a “proposition” (set of worlds) in a frame (M, pla).
We say that P is known, and write K(P), if all M-worlds are in P; i.e. M C P. We say that P is believed
in frame % = (M, pla), and write B(P), if and only if all “plausible enough” M-worlds are in P; i.e.
{veM|pla(v) > pla(u)} C P for some u € M.

As mentioned in the Introduction, this is the standard notion of belief in Logic and Belief Revision
Theory, see [2}, 13} 4] for more justification of this definition.

Definition 3 (Two Forms of Conditionalisation) Let P C Mg be a “proposition” (set of distributions).
For an event e € &, we say that P is believed conditional on e in frame (M, pla), and write B(P|e), if and
only if all M-worlds that are “plausible enough given e” are in P; i.e. {v € M |pla,(v) >, pla(un)} C P
for some u € M. For a proposition Q C M, we say that P is believed conditional on Q in frame (M, pla),
and write B(P|Q), if and only if all plausible enough Q-worlds are in P; i.e. {v € Q| pla(v) > pla(un)} C
P for some 1 € Q.

It should be clear that B(P) is equivalent to B(P|Q) and to B(P|M), where the set Q of all observation
streams represents the tautological event (corresponding to “no observation”) and the set of M of all
worlds represents the tautological proposition (corresponding to “no further higher-order information™).
Belief is always consistent, and in fact it satisfies all the standard KD45 axioms of doxastic logic. Condi-
tional belief is consistent whenever the evidence is (i.e. if e # 0, then B(P|e) implies P # 0, and similarly
for B(P|Q)). In fact, when the set of worlds is closed, our definition is equivalent to the standard defini-
tion of belief (and conditional belief) as “truth in all the most plausible worlds™:

Proposition 7 If M C My is closed, then B(P|e) holds if {u € M| pla.(i) > pla,(1') for all W’ e M} C
P.

Proof. See appendix. u
We are now in the position to look into the learnability of the correct probability distribution via
plausibility-revision induced by repeated sampling.

Theorem 2 Take a finite set O of outcomes and consider a frame .# = (M, pla) with M C Mo. Suppose
that the correct probability is i € M and that pla(u) # 0. Then, with p-probability 1, the agent’s
belief will eventually stay arbitrarily close to the correct probability distribution after enough many
observations. More precisely, for every € > 0, we have

p({we Q| IKYm > K B(ZBe(n)|o™) holds in M}) = 1

(where recall that Be(1) ={v € M|d(u,v) < €}).

Proof. See appendix. u

Corollary 1 Suppose that M C My is finite, and the correct probability is L € M, with pla(lt) # 0. Then,
with [-probability 1, the agent’s belief will settle on the correct probability distribution | after finitely
many observations:

p{we Q3K forallm>K B({u}|w™) holdsin M}) = 1.
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Proof. Apply the previous Theorem to some € > 0 small enough so that {v |d(u,v) <e}nNM={u}. B
It is important to note the differences between our convergence result and the Savage style convergence
results in the Bayesian literature that we mentioned in the Introduction. Savage’s theorem only works
for a finite set of hypotheses (corresponding to finite or countable M), so that the prior can assume a
non-zero probability for each. Ours does not need this assumption and indeed, it works on the whole
My, since we don’t put a probability over hypothesis (probability measures), but rather a plausibility.
Also, in the case of a finite set of hypotheses/distributions, our approach converges in finitely many steps
(while Savage’s still converges only in the limit).

4 Towards a Logic of Statistical Learning

In this section we will develop the logical setting that can capture the dynamics of learning described
above. As was originally intended our logical language will be designed as to accommodate both type
of information, i.e. finite observations and higher order information expressed in terms of linear in-
equalities. As we pointed out at the start there is a fundamental distinction between these two types of
information which is reflected in the way that ingredients of our logical language are interpreted. The
observations are interpreted in a o-algebra & C 2?(Q) and are not themselves formulas in our logical
language as they do not correspond to properties over the set of probability measures. The reason, as
described before, lies in the fact that no finite sequence of observations can rule out any possible prob-
ability distribution and as such do not single out any subset of the domain. The formulas of our logical
language will instead be statements concerning the probabilities of observations given in terms of linear
inequalities and logical combinations thereof as well as the statements concerning the dynamics arising
from such finite observations.

Our set of propositional variables is the set of outcomes O = {0y, ...,0,}. The set of formulas, in our
language, FLg, is inductively defined as

o =Tl ﬁaiwm) > oA 0|~ |K9|B(9l0)|B(6]0)| (0] [6]0

where 0; € O, @;’s and ¢ in Q. The propositional connectives T,—, A are standard. Letters K and B stand
for knowledge and (conditional) belief operators, and [o] and [@] capture the dynamics of learning by an
observation, o and by higher order information, ¢ respectively, and stand for “after observing o”, and
“after learning ¢”. Simple belief B¢ is taken to be an abbreviation for B(¢|T).

Definition 4 (Probabilistic Plausibility Models) A probabilistic plausibility model over a finite set O
is a structure # = (M, pla,v) where M C Mo, (M, pla) is a probabilistic plausibility frame and an
evaluation function v : O — & that assigns to each propositional variable o a cylinder set 0. E]

Definition 5 (Two types of update) Let ./ = (M, pla,v) be a probabilistic plausibility model, let e € &
be a sampling event, and let P C M be a higher-order “proposition” (set of possible worlds, expressing
some higher-order information about the world). The result of updating the model with sampling evi-
dence e is the model /¢ = (M, pla,,v). In contrast, the result of updating the model with proposition P
is the model #* = (P, pla,v).

Let .# = (M, pla,v) be a probabilistic plausibility model. The semantics for formulas is given by in-
ductively defining a satisfaction relation F between worlds and formulas. In the definition, we use the
notation ||@|| s :={u eM|.#,uE ¢}:

ZNotice that since we deal with i.i.d distributions the choice of j does not matter.
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//l,/,H:Za,'w(o,')zc = Za,ﬁ(v(oi))ZC

i=1 i=1
M UE PN P = M, uE ¢ and A, uF ¢
MUE GNP < M UE P or M, UE P
M UE = = M ,UFE P
M UEKP <~ H,vE¢forallveM
M1 EB(9]6) = B9« 1116].¢) holds in (M, pla)
M1 EB(]0) <= B(|8]|« |0) holds in (M, pla)
MU F (0] = M UF P
yanacil: <:><//l,uh9:>///9,u|:¢)

As is standard, for a model .# = (M, pla,v), let ||¢|| , ={v € M|.#,v = ¢} and we shall say that a
formula ¢ is valid in .# if and only if .#,u F ¢ for all u € M. Formula ¢ € FLg; is valid (in the logic
Lgp) if it is valid in every model .# = (M, pla,v).

Proposition 8 Let .# be a probabilistic plausibility model. The set B,y = {¢ € FLpy |.# = B¢} is
consistent.

Proof. See appendix |
Proposition 9 Leto € O and ¢,0,E € FLgy. Then the following are valid formulas in Lgy,

e w(0)>0

® Yocow(o) =1

e K(0 -0)— (K¢ —K0)

e K¢ — ¢

e Ko — KK¢

e K¢ - K-K¢

e B(¢ — 6)— (Bp — BO)

e K¢ — B¢

e B¢ — BBo

e —Bp — B-B¢

Proof. Notice that at each model . and each world p, w is interpreted as a probability mass function,
namely pu itself. The rest follow easily from the definition. |
The dynamic operator in our logic that correspond to learning of higher order information, [¢], is essen-
tially an AGM type update and satisfies the corresponding axioms, that is:

Proposition 10 Letr ¢,0,& € FLg;. Then the following are valid formulas in Lgy,
* B(¢|9)

e B(6|9) = (B(G|9A0) < B(E|9))
e “B(=69) = (B(§[916) < B(6—E|9))
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o If ¢ <> 0 isvalid in A then so is B(E|¢) <> B(§|0).

Proof. Notice that the plausibility function induces a complete pre-order on the set of worlds. The
validity of the above formulas over such frames as well as the correspondence between these formulas
and the AGM axioms are given by Board in [5]]. |
Finally, we give without proofs some validities regarding the interaction of the dynamic modalities with
knowledge modality and (conditional) belief.

Proposition 11 Let ¢,0,& € FLg;. Then the following are valid formulas in Ly,
0lg <> (¢ — q) for atomic q

0lq <»— q for atomic q

¢]=6 < (¢ — —[9]6)

0|76 < (=[0]6)

¢J(6NG) < ([9]6 A [9]S)

0](6 NE) « ([o]6 A [0]E)
91K6 < (¢ — K[9]6)

0lK¢ <= Klo]¢
91B(6|5) < (¢ — B([9]6]¢ A [9]S))
0B(¢0') <= B([0l¢|0,0")

[
[
[
[
[
[
[
[
[
[

5 Conclusion and Comparison with Other Work

We studied forming beliefs about unknown probabilities in the situations that are commonly de-
scribed as the those of radical uncertainty. The most widespread approach to model such situations
of ‘radical uncertainty’ is in terms of imprecise probabilities, i.e. representing the agent’s knowl-
edge as a set of probability measures. There is extensive literature on the study of imprecise prob-
abilities [6, 9, [15) 20l 33] 134} 35]] and on different approaches for decision making based on them
[7, 18 28l 36, 37, 138} 41, 42] or to collapse the state of radical uncertainty by settling on some spe-
cific probability assignment as the most rational among all that is consistent with the agent’s infor-
mation. The latter giving rise to the area of investigation known as the Objective Bayesian account
[22] 23], 24} 125], 130, [31]].

A similar line of enquiry has been extensively pursued in economics and decision theory literature where
the situation we are investigating here is referred to as Knightian uncertainty or ambiguity. This is the
case when the decision maker has too little information to arrive at a unique prior. There has been dif-
ferent approaches in this literature to model these scenarios. These include, among others, the use of
Choquet integration, for instance Heber and Strassen [16], or Schmeidler [26] [27]], maxmin expected
utility by Gilboa and Schmeidler [14] and smooth ambiguity model by Klibanoff, Marinacci and Muk-
erji [19] which employes second order probabilities or Al-Najjar’s work [1] where he models rational
agents who use frequentist models for interpreting the evidence and investigates learning in the long run.
Cerreia-Vioglio et al [[8] studies this problem in a formal setting similar to the one used here and axioma-
tizes different decision rules such as the maxmin model of Gilboa-Schmeidler and the smooth ambiguity
model of Klibanoff e t al, and gives a overview of some of the different approaches in that literature.
These approaches employ different mechanisms for ranking probability distribution compared to what
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we propose in this paper. Among these it is particularly worth pointing out the difference between our
setting and those ranking probability distributions by their (second order) probabilities. In contrast, in
our setting, it is only the worlds with highest plausibility that play a role in specifying the set of beliefs.
In particular, unlike the probabilities, the plausibilities are not cumulative in the sense that the distribu-
tions with low plausibility do not add up to form more plausible events as those with low probability
would have had. This is a fundamental difference between our account and the account given in terms of
second order probabilities.

Another approach to deal with these scenarios in the Bayesian literature come from the series of con-
vergence results collectively referred to as “washing out of the prior”. The idea, which traces back to
Savage, see [[11} 140], is that as long as one repeatedly updates a prior probability for an event through
conditionalisation on new evidence, then in the limit one would surely converge to the true probability,
independent of the initial choice of the prior Bayesians use these results to argue that an agent’s choice
of a probability distribution in scenarios such as our urn example is unimportant as long as she repeat-
edly updates that choice (via conditionalisation) by acquiring further evidence, for example by repeated
sampling from the urn. However, it is clear that the efficiency of the agent’s choice for the probability
distribution, put in the context of a decision problem, depends strongly on how closely the chosen dis-
tribution tracks the actual. This choice is most relevant when the agents are facing a one-off decision
problem, where their approximation of the true probability distribution at a given a point ultimately de-
termines their actions at that point.

Our approach, based on forming rational qualitative beliefs about probability (based on the agent’s as-
sessment of each distribution plausibility), does not seem prone to these objections. The agent does “the
best she can” at each moment, given her evidence, her higher-order information and her background as-
sumptions (captured by her plausibility map). Thus, she can solve one-off decision problems to the best
of her ability. And, by updating her plausibility with new evidence, her beliefs are still guaranteed to
converge to the true distribution (if given enough evidence) in essentially all conditions (-including in the
cases that evade Savage-type theorems). We end by sketching the contours of a dynamic doxastic logic
for statistical learning. Our belief operator satisfies all the axioms of standard doxastic logic, and one
form of conditional belief (with propositional information) satisfies the standard AGM axioms for belief
revision. But the other form of conditioning (with sampling evidence) does not satisfy these axioms, and
this is in fact essential for our convergence results.
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Appendix

Proof of proposition [5
Proof. Let it € M, then

(Plagi) (1) = plai (1) (™) = pla(p)A(o”).fi(0™) = pla(p) (o’ No™)

where the last equality follows from the independence assumption in iid case. |
Proof of proposition

Proof. Let M C M be closed. Since pla, is a continuous function, by Propositions[I] 2} 1 and [3] there
exists 4 € M such that for all u’ # p € M, pla,(u) > pla,(u'). Let Uy, = {pt € M|YU' € M pla.(pn) >
pla,(u')}. Thus Uy, # 0. Let u € Uy, and assume Uy, € P. Then we have {v € M|pla.(v) >,
pla.(1)} = Upq, C P and thus by definition B(P|e). [ |
To prove Theorem, we need a few well-known notions and facts:
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Definition 1 For u € M, we define the set of [L-normal observations as the set of infinite sequences from
O for which the limiting frequencies of each o; correspond to |1(0;) and we will denote this set by Q;:

{i<n|o=oi}| _
n

Qu ={w € Q|0 €0 lim w0\ {weQ|3ieN u(a) = 0}.

Proposition 12 For every probability function u, fL(y) = 1.
Hence, if U is the true probability distribution over O, then almost all observable infinite sequence from
O will be -normal.

Proof. Let A= {w € Q|3i € N u(w;) = 0}. Using the law of large numbers it is enough to show that
f1(A) = 0. To see this let i(0) = 0 then

p{ocQ|ZieN o =o}) = p(J{w el o =0}) = ¥ Al)) =
ieN ieN
The result then follows from finiteness of O. [ |

Lemmal For 0 < pi,...,p, < 1 with ¥ p; = 1, the function f(¥) =1II'_x{" on domain X € {Z €
(0, )" | ¥.zi = 1} has X = P as its unique maximizer on Mo.

Proof. First we notice that f(X) > 0 on My = {Z € [0,1]"| ¥ z; = 1} and by Propositions 1] and 3] f has a
maximum on M. For any point 7 € My with any z; = 0 (or z; = 1) f(Z) = 0 thus f reaches its maximum
on{Z€(0,1)"| Lz =1}.

To show the result, we will show that log(f(X)) has X = p as its unique maximizer on this domain. The
result then follows from noticing that f(x) > 0 and the monotonicity of log function on R*. To maximise
log(f(X)) subject to condition Y ;x; = 1 we use Lagrange multiplier methods: let

G(X) =log(f Zx, —1) Zp,log xi) le —1).

Setting partial derivatives of G equal to zero we get,

dG(X) _Pi 5
ax,- X

which gives p; = Ax;. Inserting this in the condition }; p; = 1 we get AY;x; = 1 and using ¥;x; = 1 we
get A = 1 and thus x; = p;. Since f has a maximum on this domain and the Lagrange multiplier method
gives a necessary condition for the maximum, any point X that maximises f should satisfy the condition
x; = p; and thus p is the unique maximiser for f. |
Proof of Theorem 2k

Proof. Since p1(€y) = 1 (by the Strong Law of Large Numbers), it is enough to show that

Ve > 0Vw € Q, IKVm > K : B({v|d(u,v) < e}|®™) holds in M.

Let us fix some € > 0 and some @ € Q. We need to show that, there exists v € M such that for all large
enough m, for any & € M if pla(§ | @™) > pla(v| ™), then d(&, 1) < €. To show this, we will prove a
stronger claim, namely that:

JKVm>KYveMo(d(v,u) >¢e = pla(u|o™) > pla(v|o™)).
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(Note that the desired conclusion follows immediately from this claim: since we can then take u itself
to be the desired v € M. Then by the above claim, no measures & in My with d(u,&) > € satisfies
pla(&|@™) > pla(u | ®@™) and thus all measures, Vv that satisfy this inequality have to satisfy d(u,v) <
€.) By definition, for all v € My we have pla(v|®™) = pla(v)-V(®™). By independence, we obtain that
pla(v|@™) = pla(v) -TI v(0;)" = pla(v)-TI_,v/"*" were we have put v; := v(0;) and @, = -,
forall 1 <i<nandall m € N. Note that, since @ € ,, we have that lim,,, ;. ¢ ,, = p;, forall 1 <i<n,
where we had put p; := t(0;), for 1 <i <n. In particular, for v = u (so v; = u(o;) = p;), we obtain that
pla(n| @™) = pla(u) -H;’le;"'ai””. Notice also that by definition of Q if p; = p(0;) = 0 then ¢, = 0.
Hence from the assumption that pla(u) # 0 we have pla(u|@™) = pla(p) -TI  pr" %" > 0.
To prove the desired conclusion, it is enough (by the above representations of pla(v|w™) and
pla(p| @™)) to show that, for all big enough m and all v € My \ B¢(1t), we have

pla(v) - T V™" < pla(u) -TE, pi" %" (1)
We consider this in two cases. For the first case, assume that pla(v) = 0, then the left hand side of (1)) is
0 and the inequality holds. For the second case, let pla(v) >0 and let A = {1 <i <n|p; # 0}. To show
(T) it is enough to show that

pla(v) -Ticav," %" < pla(u) -Micap; " 2)

Since lim,;, s @ = pi, there must exist some N; such that % <,y <2-piforallm>Njandallic€A.
Let A= {v € Mgp|v(o;) =0 forsomei € A}, and similarly for any 6 > 0, put As = {v € Mp|v(0;) <
S for some i € A}, and so As = {v € Mp|v(0;) < 5 for some i € A} is its closure. Choose some § > 0

small enough such that we have HleAv "< Tliea pl for all v € Ag (-this is possible, since H,,GAV

pi

0 <IIieap;” forall v € A, so the continuity of H,EAV i gives us the existence of §). Hence, we have

IT v
0§L<1 forall v € Ag.
HiEApl
- 2. i
The set Ag is closed, hence the continuous functions pla(v) and L’. attain their supremum (maxi-
HIEAPI
mum) on As. Let K < oo be the maximum of pla(v), and Q < 1 be the maximum of ’9‘7’ on this set
HlEAP,

(-the fact that Q0 < 1 follows from the inequality above). Then there exists some N, > Ny, s.t. we have

o < 2R l“ ) for all m > N». Hence, for all v € A, We have

b «
pla(v )'HieAVm %om < K MV 2P SK‘(Q‘HieAP,- ) =K-Q" - Wieap; * <K'ph;§‘u)‘nieAp:n him =
mal’ﬂ

pla(u) -Ticap;
So we proved that the inequality holds on Ag. It thus remains only to prove it for all v € M’ :=

Mo — (Be(t)UAg), where B¢ (1) ={v € Mo |d(u,v) < €}. For this, note that M := Mo — (B¢ (1) UAs)
is closed and that v; # 0 over this set for all i € A and for all i ¢ A, ¢;,, = 0. Hence using the assumption
that pla(v) # 0, (1)) is equivalent over this set with:

pla(p) H? P ’”
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Applying logarithm (and using its monotonicity, and its other properties), this in turn is equivalent to
n
log(pla()) —log(pla(v)) + Y m- - (log pi —logvi) > 0. “4)
i=1
So we see that it is enough to show that, for all large m and for v € M’, we have

log(pla(v)) —log(pla(L))

5)
Y| Oim- (logp;i —logVv;)

Recall that ¢ ,, > % for all m > N, > Nj and all 1 <i < n. Thus, to prove , it is enough to show that,
for large m and for all v € M, we have

f(v)
” vy’ ©

where we introduced the auxiliary continuous functions f,g : M’ — R, defined by putting f(v) =2 -
(log(pla(v)) —log(pla(u))) and g(v) = Y1, pi- (log pi — logVv;) for all v € M.
To show (6)), note first that

n Pi

n e, pt
g(v) =Y pi-(log pi —logV;) = log <H;1€’pi> > logl =0
i=1 i=1"i

(where at the end we used the fact, proved in Lemma that the measure u, with values t(o;) = p;, is the
unique maximizer of the function IT?_, v on My). Since g is continuous and M’ is closed, g is bounded
and attains its infimum A = minyy(g) on M’. But since g is non-zero on M’, this minimum cannot be
zero: A = minyy(g) # 0. Similarly, since f is continuous and M’ is closed, g is bounded and attains its
supremum B = maxyy (f) < oo (which thus has to be finite). Take now some N > max(N,, %). For all

m > N, we have

B _ f(v)

m>— > —=

A7 g(v)
for all v e M, as desired. u
Proof of proposition 8}
Proof. Take a probabilistic plausibility model .# = (M, pla,v). Let ¢ € B ,. We show that for any
& € M there is some member of M that is at least as plausible as & but does not belong to —¢ and thus
by definition —¢ ¢ B 4.
Since ¢ € B_4, by definition there exits 4 € M such that for all v € M with pla(v) > pla(u), v € ||9]|.
Then if pla(&) > pla(p), then & € ||¢|| and thus & ¢ M\ ||¢|| = ||—¢||. Thus there exists some elements
of M, namely, & itself that is at least as plausible of & but does not belong to ||-¢||. If pla({) < pla(u)
and since p € [|@]|, u ¢ M\ ||@|| = ||—¢||. Then again there is some member of M, namely u that is more
plausible than £ but does not belong to ||—=¢||. [
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