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Modalities in the Realm of Questions:
Axiomatizing Inquisitive Epistemic Logic

Ivano Ciardelli 1

ILLC, University of Amsterdam
Science Park 107

1098 XG Amsterdam

Abstract

Building on ideas from inquisitive semantics, the recently proposed framework of in-
quisitive epistemic logic (IEL) provides the tools to model and reason about scenarios
in which agents do not only have information, but also entertain issues. This frame-
work has been shown to allow for a generalization to issues of important notions, such
as common knowledge and public announcements, and it has been argued to form
a suitable basis for the analysis of information exchange as an interactive process of
raising and resolving issues. From an abstract point of view, the system is interesting,
in that it implies extending the logical operations, including the modalities, beyond
the truth-conditional realm, in such a way that they can embed not only standard
declarative formulas, but also interrogatives. The present paper investigates the logic
of IEL, building up to a completeness result. It is shown that the standard logical
features of the logical constants extend smoothly beyond the truth-conditional realm,
except for double negation, which is the hallmark of truth-conditionality. In partic-
ular, while the modalities of IEL operate in a crucially richer semantic space than
Kripke modalities do, they retain entirely standard logical features.

Keywords: Epistemic logic, inquisitive semantics, logic of questions.

1 Introduction

Standard epistemic logic provides a framework to reason about scenarios com-
prising facts and information. In a large body of work (see [7], [1] for recent
surveys), this framework has been taken to provide a basis for dynamic logics
that aim at describing information exchange. However, an exchange of in-
formation is not a mere sequence of informative utterances; rather, it is best
regarded as an orderly process in which participants try to achieve certain epis-
temic goals by raising and addressing issues. In order to formalize this idea, we
need a framework that describes not only the information that agents have, but
also the issues that they entertain, and that allows us to reason about them.

1 I am indebted to Jeroen Groenendijk and Floris Roelofsen for useful discussions of the
ideas presented here. Financial support from the Netherlands Organization for Scientific
Research (NWO) is gratefully acknowledged.
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Providing such a framework is the aim of the inquisitive epistemic logic pro-
posed in [6], which extends epistemic logic with issues and interrogative formu-
las, building on ideas and techniques recently developed in inquisitive semantics
([5], [3], [4], among others). From an abstract perspective, this framework is
interesting in that it shows that the standard account of the logical constants,
including the modalities, can be extended smoothly and conservatively beyond
the truth-conditional realm, to a richer setting where both declaratives and
interrogatives receive a natural interpretation. Moreover, such a generalization
has been shown in [6] to extend to other key notions of epistemic and dynamic
logics, such as common knowledge and public announcements.

In the present paper we investigate the logic to which this framework gives
rise, illustrating the significance of entailment in this richer semantic context,
and building up to a completeness result. The paper is organized as follows:
section 2 introduces inquisitive epistemic logic; section 3 discusses the combined
notion of entailment that arises from this framework; finally, in section 4 a proof
system for this logic is provided, and a completeness result is established.

2 Inquisitive epistemic logic

This section provides a concise overview of inquisitive epistemic logic. For a
more detailed introduction to the system, and for proofs of the results stated
in this section, the reader is referred to [6]. Our presentation will make use
of two fundamental ingredients, the notions of information states and issues.
The former notion is standard, while the latter comes from work on inquisitive
semantics (for motivation, see e.g. [3], [6]). An information state represents a
piece or body of information, identified with the set of worlds compatible with
it. Similarly, an issue represents a certain desire, or request, for information,
identified with those states in which it is resolved.

Definition 2.1 [States and issues] If W is a set of possible worlds, then:

• an information state is a subset s ⊆ W;

• an issue is a non-empty set I of information states which is downward closed :
if s ∈ I and t ⊆ s, then t ∈ I. We denote by I the set of all issues.

Intuitively, downward closure corresponds to the following persistence property
of resolution conditions: if I is resolved in s, and t is more informed than s,
then I is resolved in t as well. Now, an issue I can only be truthfully resolved if
the actual world w is located in some resolving state s ∈ I, that is, if w ∈

⋃
I.

Hence, an issue I assumes the information corresponding to
⋃
I: we will say

that it is an issue over the state s =
⋃
I.

With these notions in place, we are ready to define the models for our
logic. Standard epistemic logic allows us to model and reason about certain
facts, together with what certain agents know about these facts. Accordingly, a
possible world w is fully specified by two aspects: (i) a propositional valuation
V (w), which specifies which atomic sentences are true at w; and (ii) for every
agent a, an information state σa(w), representing the information available to
a in w. Thus, a model for epistemic logic is a triple 〈W, V, {σa | a ∈ A}〉,
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where the functions σa : W → ℘(W), called epistemic maps, are constrained
by certain requirements, the most standard being factivity and introspection.

In inquisitive epistemic logic, what matters is not only the information that
agents have, but also the issues that they entertain. Thus, the description of
a possible world will comprise a third aspect: for every agent a, our models
will have to specify an issue Σa(w) over σa(w), which represents the inquisitive
state of a, the agent’s desire to locate the actual world more precisely inside
her information state. Intuitively, if the inquisitive state of a is Σa(w), this
means that a’s epistemic goals are to reach some information state t ∈ Σa(w).

Now, since Σa(w) is required to be an issue over σa(w), we must have that
σa(w) =

⋃
Σa(w). Hence, the map Σa by itself describes both information and

issues of a, and we do not need σa as a separate component of our models.
Like in standard epistemic logic, the maps Σa may be constrained by specific
requirements. Since the choice of these requirements is rather orthogonal to the
main novelties introduced, IEL builds on the most standard version of epistemic
logic, requiring the maps to satisfy factivity and introspection, where the latter
now concerns both information and issues.

Definition 2.2 [Inquisitive epistemic models] An inquisitive epistemic model
for a set P of atoms and a set A of agents is a triple M = 〈W, V,ΣA〉 where:

• W is a set, whose elements we refer to as possible worlds.

• V : W → ℘(P) is a valuation map that specifies for every world w which
atomic sentences are true at w.

• ΣA = {Σa | a ∈ A} is a set of state maps Σa :W → I, each of which assigns
to any world w an issue Σa(w), in accordance with:

Factivity : for any w ∈ W, w ∈ σa(w)
Introspection : for any w, v ∈ W, if v ∈ σa(w), then Σa(v) = Σa(w)

where σa(w) :=
⋃

Σa(w) represents the information state of agent a in w.

Now that issues have entered the stage, it seems natural to equip the logical
language with the means to talk about them. Following dichotomous inquisitive
semantics ([4]), this is done in IEL by augmenting a standard logical language
of declaratives with a new syntactic category, the category of interrogatives.
The set L! of declarative formulas and the set L? of interrogative formulas of
IEL are defined by simultaneous recursion as follows.

Definition 2.3 [Syntax]
Let P be a set of atomic sentences and let A be a set of agents.

(i) For any p ∈ P, p ∈ L!

(ii) ⊥ ∈ L!

(iii) If α1, . . . , αn ∈ L!, then ?{α1, . . . , αn} ∈ L?

(iv) If ϕ ∈ L◦ and ψ ∈ L◦, then ϕ ∧ ψ ∈ L◦, where ◦ ∈ {!, ?}
(v) If ϕ ∈ L! ∪ L? and ψ ∈ L◦, then ϕ→ ψ ∈ L◦, where ◦ ∈ {!, ?}
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(vi) If ϕ ∈ L! ∪ L? and a ∈ A, then Kaϕ ∈ L!

(vii) If ϕ ∈ L! ∪ L? and a ∈ A, then Eaϕ ∈ L!

Importantly, conjunction, implication, and the modalities are allowed to apply
to interrogatives as well as declaratives. Also, notice how the two syntactic
categories are intertwined: from a sequence of declaratives, clause (iii) allows
us to form a basic interrogative, from which more complex interrogatives may
be formed by means of clauses (iv) and (v). On the other hand, clauses (vi)
and (vii) allow us to embed an interrogative under a modality, resulting in a
new declarative. In this way, we can form sentences such as Ea?Kb?p (which
will express the fact that a wants to get to know whether b knows whether p).

Besides our primitive connectives, we also make use of some defined ones.
We write ϕ↔ ψ for (ϕ→ ψ)∧ (ψ → ϕ) and ¬ϕ for ϕ→ ⊥. Moreover, for
α and β declaratives, we write α∨ β for ¬(¬α∧¬β) , and ?α for ?{α,¬α}.

Throughout the paper, we adopt the following notational convention: α, β, γ
range over declaratives, µ, ν, λ over interrogatives, and ϕ,ψ, χ over the whole
language. Moreover, Γ ranges over sets of declaratives, Λ over sets of interrog-
atives, and Φ over sets of formulas in the whole language.

We now have to specify a semantics for this language. Standardly, this
means giving truth-conditions with respect to worlds in a model. However, our
language now contains interrogatives as well as declaratives. We do not lay out
the meaning of an interrogative by specifying at which worlds it is true, but
rather by specifying what information is needed to resolve it. Thus, the natu-
ral evaluation points for interrogatives are not worlds, but rather information
states. One option would then be to define by simultaneous recursion truth for
declaratives and resolution for interrogatives. However, IEL adopts a solution
which is both more practical and conceptually more insightful: it lifts the in-
terpretation of all formulas from worlds to information states. This brings out
the interesting fact that the logical operations—conjunction, implication, and
the modalities—make a uniform semantic contribution, and display uniform
logical properties, whether they apply to declaratives or to interrogatives. The
semantics of IEL is thus defined by a relation of support between information
states and formulas. Intuitively, for a declarative being supported amounts to
being established, while for an interrogative it amounts to being resolved.

Definition 2.4 [Support] Let M be a model and s an information state in M .

(i) M, s |= p ⇐⇒ p ∈ V (w) for all worlds w ∈ s
(ii) M, s |= ⊥ ⇐⇒ s = ∅
(iii) M, s |= ?{α1, . . . , αn} ⇐⇒ M, s |= α1 or . . . or M, s |= αn

(iv) M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ

(v) M, s |= ϕ→ ψ ⇐⇒ for every t ⊆ s, if M, t |= ϕ then M, t |= ψ

(vi) M, s |= Kaϕ ⇐⇒ for every w ∈ s, M, σa(w) |= ϕ

(vii) M, s |= Eaϕ ⇐⇒ for every w ∈ s and every t ∈ Σa(w), M, t |= ϕ

The set of states in M that support ϕ is called the proposition expressed by ϕ
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and denoted [ϕ]M . Reference to the model M will be dropped when possible.

Before turning to an explanation of the clauses, let us review some fundamental
facts and notions. A first, crucial feature of IEL is that support is persistent.

Fact 2.5 (Persistence) If M, s |= ϕ and t ⊆ s, then M, t |= ϕ.

Thus, more formulas are supported as information grows. In the limit, the
empty state supports all formulas. Thus, we refer to ∅ as the absurd state.

Fact 2.6 M, ∅ |= ϕ for any M and ϕ.

Together, these two properties guarantee that [ϕ]M is always an issue, in the
sense of Definition 2.1 (or, an inquisitive proposition, as non-empty downward
closed sets of states are also called in inquisitive semantics).

Although our semantics is defined in terms of support, truth at a world can
be recovered by defining it as support at the corresponding singleton state.

Definition 2.7 [Truth]
We say that ϕ is true at a world w, notation M,w |= ϕ, in case M, {w} |= ϕ.
The set of worlds at which ϕ is true is called the truth-set of ϕ, notation |ϕ|M .

Writing out the support clauses for singletons, it is easy to see that the connec-
tives get their standard truth-conditional clauses, even when their constituents
are interrogative. Moreover, persistence implies that a world makes a formula
true iff it is contained in some supporting state.

Fact 2.8 M,w |= ϕ ⇐⇒ w ∈ s for some state s s.t. M, s |= ϕ.

This fact also tells us how truth should be viewed for interrogatives: an inter-
rogative µ is true in w iff w ∈ s for some s which resolves µ, that is, iff there
is some body of information that resolves µ and is true at w. In other words,
an interrogative is true at those worlds where it can be truthfully resolved.

In general, truth conditions do not determine support conditions. For in-
stance, the polar interrogatives ?p and ?q are both true everywhere, but clearly,
in general they have different support conditions. However, the semantics of
declaratives is, as usual, fully determined by truth-conditions: for, a declarative
is supported in a state iff it is true at all the worlds in the state.

Fact 2.9 For any M, s, and α: M, s |= α ⇐⇒ (M,w |= α for all w ∈ s).

Importantly, this does not mean that truth for declaratives can be defined
independently of support. For, the truth of a modal formula depends crucially
on the support conditions of its argument, as the following truth-clauses show.

• M,w |= Kaϕ ⇐⇒ M,σa(w) |= ϕ

• M,w |= Eaϕ ⇐⇒ for all t ∈ Σa(w), M, t |= ϕ

Another notion that will play a crucial role below is that of resolutions of a for-
mula; intuitively, the resolutions of a formula are declaratives that correspond
to the different ways in which the formula may be settled.

Definition 2.10 [Resolutions]
The set R(ϕ) of resolutions of a formula ϕ is defined recursively as follows:
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• R(α) = {α} if α is a declarative

• R(?{α1, . . . , αn}) = {α1, . . . , αn}
• R(µ ∧ ν) = {α ∧ β |α ∈ R(µ) and β ∈ R(ν)}
• R(ϕ→ µ) = {

∧
α∈R(ϕ) α→ f(α) | f : R(ϕ)→ R(µ)}

We may think of the resolutions of an interrogative as syntactic answers to it. 2

The next fact, provable by induction, says that to resolve an interrogative is to
establish some resolution of it; so, each resolution provides sufficient informa-
tion to resolve the interrogative, and, taken together, the resolutions exhaust
the ways in which an interrogative may be resolved.

Fact 2.11 For any M , s and ϕ, M, s |= ϕ ⇐⇒ M, s |= α for some α ∈ R(ϕ)

As a corollary, we get the following normal form result: every formula ϕ is
equivalent to a basic interrogative having the resolutions of ϕ as constituents. 3

Corollary 2.12 (Normal form) For any ϕ, ϕ ≡ ?R(ϕ).

In terms of resolutions we define the notion of presupposition of an interrogative.

Definition 2.13 [Presupposition of an interrogative]
The presupposition of an interrogative µ is the declarative πµ =

∨
R(µ).

Since the interrogative operator has the same truth conditions as a disjunction,
it follows from Corollary 2.12 that µ and πµ have the same truth conditions.
The notion of resolution can be generalized to sets of formulas as follows.

Definition 2.14 [Resolutions of a set]
The set R(Φ) of resolutions of a set Φ contains those sets Γ of declaratives s.t.:

• for all ϕ ∈ Φ there is an α ∈ Γ such that α ∈ R(ϕ)

• for all α ∈ Γ there is a ϕ ∈ Φ such that α ∈ R(ϕ)

That is, a resolution of a set Φ is a set of declaratives obtained by replacing
every formula in Φ by one or more resolutions. Notice that, since a declarative
has itself as unique resolution, the declarative component of Φ is inherited by
any resolution. In particular, if Γ is a set of declaratives, R(Γ) = Γ. Fact 2.11
generalizes to sets: writing M, s |= Φ for ‘M, s |= ϕ for all ϕ ∈ Φ’, we have:

Fact 2.15 For any M , s and Φ, M, s |= Φ ⇐⇒ M, s |= Γ for some Γ ∈ R(Φ)

Equipped with these basic facts and notions, we are ready to briefly explain
the support clauses. Clause (i) simply says that an atom is established in a
state iff it is true everywhere in the state, a fact that we have seen to hold for

2 Indeed, our notion of resolutions is a general version of the notion of basic answers in the
interrogative frameworks of Hintikka [8,9] and Wísniewski [11]. We use the term resolutions
as a reminder that this is only a specific technical notion, sufficient for the present purposes.
More can be said, also in a logical framework, on the complex phenomenon of answerhood.
Our notion of presupposition of a question is also shared by the mentioned theories.
3 It may seem strange that a declarative α can be equivalent to an interrogative. However,
the corresponding interrogative is the trivial interrogative ?{α}, which has a unique resolution
α. Also, while α and ?{α} are semantically equivalent, they differ in pragmatics: see [6].
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declaratives in general. Similarly for (ii), which says that the falsum is only
established in the absurd state ∅. Clause (iii) lays out the resolution conditions
for basic interrogatives: ?{α1, . . . , αn} is resolved in a state s iff some αi is
established in s. Clause (iv) says that a conjunction is established (resolved)
in a state s iff both conjuncts are established (resolved) in s.

The clause for implication requires some more explanation. First, if the
antecedent is a declarative α, clause (v) amounts to the simpler clause (v′):

(v′) M, s |= α→ ϕ ⇐⇒ M, s ∩ |α| |= ϕ

The conditional α → ϕ is established (resolved) in s iff ϕ is established (re-
solved) in the state s∩|α| which results from augmenting s with the assumption
that α is true. For a conditional declarative, this delivers a standard material
implication. At the same time, this also yields conditional interrogatives like
p→ ?q, which is resolved in a state iff either p→ q or p→ ¬q is established.

Now consider the case in which the antecedent is an interrogative µ. If
the consequent is a declarative α, then µ → α is a declarative, and may
be seen to be equivalent with πµ → α: so, interrogative antecedents may
be substituted by their presuppositions when the consequent is declarative,
and add no expressive power to the language. If the consequent is itself an
interrogative ν, on the other hand, the clause says that µ → ν is resolved in
s in case, if we extend s so as to resolve µ, the resulting state will resolve
ν. So, we can resolve µ → ν if we can resolve ν conditionally on having a
resolution of µ, i.e., if we have enough information to turn any resolution
of µ into a resolution of ν. E.g., the conditional interrogative ?p → ?q is
resolved precisely in case at least one of the following declaratives is established:

1. (p→ q) ∧ (¬p→ q) ≡ q 3. (p→ ¬q) ∧ (¬p→ q) ≡ q ↔ ¬p
2. (p→ q) ∧ (¬p→ ¬q) ≡ q ↔ p 4. (p→ ¬q) ∧ (¬p→ ¬q) ≡ ¬q

which are precisely the four ways to link the answer to ?q to the answer to ?p.
To conclude the tour, let us consider the modalities, starting with Ka.

Since Kaϕ is a declarative, Fact 2.9 guarantees that we need only look at truth-
conditions. Now, Kaϕ is true at w in case the information state σa(w) of a at w
supports ϕ. If ϕ is a declarative α, this simply means that α is true everywhere
in σa(w), and we recover the standard truth conditions familiar from epistemic
logic: Kaα is true iff α is true everywhere in a’s information state. At the same
time, Ka is more general in IEL, since it also embeds interrogatives. For an
interrogative µ, we read σa(w) |= µ as “µ is resolved in σa(w)”. Thus, Kaµ is
true at w in case the information available to a at w resolves µ. For instance, we
have: w |= Ka?α ⇐⇒ σa(w) ⊆ |α| or σa(w) ⊆ |¬α| ⇐⇒ w |= Kaα ∨Ka¬α.

Now consider the entertain modality Ea. The clause says that Eaϕ is true
at w iff any t ∈ Σa(w) supports ϕ, that is, if ϕ is supported in all the states
where a’s epistemic goals are achieved. If ϕ is a declarative α, it is not difficult
to see using Fact 2.9 that this holds iff σa(w) supports α, which means that
Eaα boils down to Kaα. On the other hand, if ϕ is an interrogative µ, then
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the clause says that Eaµ holds in case every state that a wants to reach is a
state where µ is resolved. Thus, Eaµ expresses that a wants resolve µ.

Notice that, if Kaµ holds, i.e., if σa(w) already resolves µ, then all enhance-
ments of σa(w) will resolve µ as well, so Eaµ will hold too. However, combining
Ka and Ea, we can define a modality Wa which rules out this case, expressing
not knowing and wanting to know. We read Waϕ as “a wonders about ϕ”.

• Waϕ := ¬Kaϕ ∧ Eaϕ
Finally, a remark about the mathematical workings of the modalities. In stan-
dard EL, the modality Ka expresses a relation (inclusion) between two semantic
objects of the same kind, namely, two sets of worlds: a state σa(w) associated
with the evaluation world, and a proposition |ϕ| expressed by its argument.
In general, Kripke modalities may be seen as expressing such a relation. The
modalities of our system are not Kripke modalities—they are not quantifiers
over accessible worlds—yet in a sense they behave in just the same way. Now
both the state Σa(w) associated with the evaluation world and the proposi-
tion [ϕ] expressed by a sentence are more structured objects than simple sets
of worlds, embodying both information and issues. Accordingly, more types of
relations between them are possible. Our modalities express two such relations,
as shown by the next reformulation of their truth-conditions:

• M,w |= Kaϕ ⇐⇒
⋃

Σa(w) ∈ [ϕ]

• M,w |= Eaϕ ⇐⇒ Σa(w) ⊆ [ϕ]

To sum up, IEL is a conservative extension of standard EL, in that all EL-
formulas in the language receive their standard truth conditions. At the same
time, IEL allows us to talk not only about the facts that agents know, but also
about the issues that they can resolve and that they entertain, including higher-
order ones. Moreover, containing both declarative and interrogative sentences,
IEL provides a suitable ground for a dynamics in which announcements may
both provide information and raise issues, as spelled out in detail in [6].

3 Entailment

Entailment in IEL is defined in the natural way, as preservation of support.

Definition 3.1 [Entailment]
Φ |= ψ ⇐⇒ for any model M and state s, if M, s |= Φ then M, s |= ψ.

To see what this notion captures, consider first entailment towards a declara-
tive. Fact 2.9 implies that, in this case, only truth-conditional content matters.

Fact 3.2 Φ |= α ⇐⇒ for any M and world w : if M,w |= Φ then M,w |= α.

Thus, entailment among declaratives amounts as usual to preservation of truth.
In particular, since formulas in the language of epistemic logic get their usual
truth conditions, for them entailment amounts to entailment in epistemic logic.

Fact 3.3 (Conservativity over epistemic logic)
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Let Γ, α consist of formulas in LEL. Then Γ |= α ⇐⇒ Γ |=EL α

However, the declarative fragment of IEL is strictly richer than epistemic logic,
encompassing in particular a logic of entertaining issues. As an example, con-
sider:

Ea?{p, q, r} |= Ka¬p→ Ea?{q, r}

This reads: suppose a wants to establish at least one of p, q, and r; it follows
that if a knows that ¬p, then a wants to establish one of q and r.

What about the case in which we also have some interrogative assumptions?
Well, since only truth-conditions matter when the conclusion is a declarative,
each interrogative assumption µ may be replaced by its presupposition πµ,
which shares the same truth conditions. Thus, entailment towards declaratives
is essentially a declarative business.

Let us now consider the case in which the conclusion is an interrogative. We
first establish an important characterization of entailment in IEL. Recall that
to support a formula, or a set, is to support some resolution of it (facts 2.11
and 2.15). From this, we get the following characterization, which shows how
cross-categorial entailment is grounded in declarative entailment: Φ entails ψ
iff every resolution of Φ entails some resolution of ψ.

Fact 3.4 Φ |= ψ ⇐⇒ for all Γ ∈ R(ϕ) there is an α ∈ R(ψ) s.t. Γ |= α.

Now, decomposing Φ into a set Γ of declaratives and a set Λ of interrogatives,
and assuming ψ is an interrogative µ, this tells us that Γ,Λ |= µ holds iff any
resolution of all interrogatives in Λ, together with Γ, entails some resolution of
µ; that is, if given Γ, any resolution of the interrogatives in Λ determines some
resolution of µ. For instance, the following entailment is valid

p↔ q ∧ r, ?q ∧ ?r |= ?p

since, given p↔ q∧ r, any resolution of the conjunctive question ?q ∧ ?r deter-
mines a resolution of ?p: the resolution q ∧ r determines the resolution p, the
resolution q ∧ ¬r determines the resolution ¬p, and so on. Thus, entailment
involving an interrogative conclusion and interrogative assumptions captures
the notion of interrogative dependency. 4

Finally, how about the case in which we have an interrogative conclusion
and no interrogative assumption? Well, since a set of declaratives Γ is the only
resolution of itself, it follows form Fact 3.4 that Γ entails an µ iff it establishes
some resolution of µ, i.e., in case it settles µ in a particular way.

Fact 3.5 If Γ is a set of declaratives, Γ |= ψ ⇐⇒ Γ |= α for some α ∈ R(ψ).

Summing up, the combined notion of entailment of IEL unifies three crucial and
seemingly independent notions of a logic of information and issues: standard
declarative entailment, answerhood, and interrogative dependency.

4 For a discussion of this interesting aspect of inquisitive logic, and the way in which it
relates to the framework of dependence logic ([10,12]), see [2].
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Having clarified the significance of entailment, let us turn to the formal
properties of the modalities. First, the modalities of IEL are distributive. This
is easy to check, but not obvious, since our modalities are not Kripke modalities.

Fact 3.6 2(ϕ→ ψ)→ (2ϕ→ 2ψ) is valid for 2 ∈ {Ka, Ea | a ∈ A}.
Moreover, it has been already mentioned above that Fact 2.9 implies that the
two modalities are equivalent when applied to declaratives.

Fact 3.7 For any declarative α, Kaα ≡ Eaα
The next fact says that the knowledge modality distributes over the resolutions
of a formula: that is, to know a formula is to know some resolution of it.

Fact 3.8 For any formula ϕ, Kaϕ ≡
∨
α∈R(ϕ)Kaα

Proof. Since we are dealing with declaratives, we just need to check identity
of truth conditions. Now, Kaϕ is true at a world w just in case ϕ is supported
by σa(w). By Fact 2.11, this is the case iff σa(w) supports some α ∈ R(ϕ),
which in turn is precisely what is needed for

∨
α∈R(ϕ)Kaα to be true at w. 2

Taken together, the last two facts imply that the knowledge modality can be
completely paraphrased away from our language: for, Fact 3.8 tell us that a
Ka-formula is always equivalent to one in which Ka applies only to declaratives;
then, Fact 3.7 states that, on declaratives, Ka may be replaced by Ea. Thus,
any formula is equivalent to a Ka-free one. Notice, however, that Ka is not
uniformly definable in terms of Ea and the connectives: for, the paraphrase of
Kaϕ depends on the specific formula ϕ; moreover, it is possible to show that
the size of the paraphrase may grow exponentially relative to the size of ϕ.

As for the modality Ea, it is worth remarking that Eaϕ is not in general
equivalent to a formula where the modalities are applied only to declaratives.
For, on declaratives, Ea coincides with Ka: thus, the truth-conditions of any
formula in which the modalities occur only on declaratives depend exclusively
on the epistemic states of the agents, as well as the propositional valuation;
but of course, in general, the truth of a formula Eaϕ depends crucially on a’s
issues, not just on a’s information; hence, Eaϕ cannot in general be equivalent
to any formula in which the modalities occur only applied to declaratives.

Intuitively, this witnesses that entertaining is a relation between an agent
and an issue, which is not reducible to a more basic relation between the agent
and a proposition, as in the case of knowing. Formally, it shows that the en-
richment that comes about by letting modalities embed interrogatives is sub-
stantial, as we can express things that we could not express in epistemic logic.

Finally, it is easy to verify that the factivity and introspection conditions
required from state maps render valid the usual schemes for both modalities.

Fact 3.9 The following are valid for 2 ∈ {Ka, Ea | a ∈ A}, and α declarative:

• 2α→ α

• 2ϕ→ 22ϕ

• ¬2ϕ→ 2¬2ϕ
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Conjunction Implication

ϕ ψ

ϕ ∧ ψ
ϕ ∧ ψ
ϕ

ϕ ∧ ψ
ψ

[ϕ]
...
ψ

ϕ→ ψ

ϕ ϕ→ ψ

ψ

Interrogative Falsum

αi
?{α1, . . . , αn}

[α1]
...
ϕ . . .

[αn]
...
ϕ ?{α1, . . . , αn}
ϕ

⊥
ϕ

Kreisel-Putnam axiom Double negation
(α→ ?{β1, . . . , βn}) → ?{α→ β1, . . . , α→ βn} ¬¬α→ α

This concludes our short discussion of the significance and of the features of
IEL-entailment. In the next section, the insights gained in the present section
will be put to use to provide a sound and complete proof system.

4 Axiomatization

Since the propositional fragment of IEL coincides with dichotomous inquisitive
semantics, let us start out with a proof system for this fragment. The table
above describes a natural deduction system, proved in [4] to be sound and com-
plete. The standard connectives—conjunction, implication, and falsum—are all
assigned their standard inference rules. These inference rules are generalized
to apply not only when the constituents are declarative, but also when they
are interrogative. Thus, the core proof-theoretic features of the connectives are
preserved when these operations are generalized to interrogatives.

There is, however, one element of the system which is restricted to declara-
tives, namely, the double negation axiom. Indeed, the following fact says that
the double negation axiom is valid for ϕ iff ϕ enjoys the fundamental property
of declaratives (Fact 2.9), for which support amounts to truth at each world.

Fact 4.1 (Double negation characterizes truth-conditionality)
¬¬ϕ→ ϕ is valid iff for all M, s: M, s |= ϕ ⇐⇒ (M,w |= ϕ for all w ∈ s)
The rules for the interrogative operator are simply the usual ones for a dis-
junction. This is hardly surprising, since the semantics of ? is disjunctive.
Intuitively, the introduction rule says that if we have established αi for some i,
then we have resolved ?{α1, . . . , αn}. The elimination rule says that if we can
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E-distributivity K-distributivity
Ea(ϕ→ ψ)→ (Eaϕ→ Eaψ) Ka(ϕ→ ψ)→ (Kaϕ→ Kaψ)

E-factivity K-E equivalence on declaratives
Eaα→ α Eaα↔ Kaα

E-positive introspection K distributes over interrogatives
Eaϕ→ EaEaϕ Ka?{α1, . . . , αn} → Kaα1 ∨ · · · ∨Kaαn

E-negative introspection Necessitation, for 2 ∈ {Ka, Ea | a ∈ A}
¬Eaϕ→ Ea¬Eaϕ

∅
...
ϕ
2ϕ

infer ϕ from the assumption that αi is established for each i, then we can infer
ϕ from the assumption that ?{α1, . . . , αn} is resolved. 5 The last component
of the system is the Kreisel-Putnam axiom, which distributes an implication
over an interrogative consequent, provided the antecedent is a declarative.

These ingredients provide a complete axiomatization of the propositional
fragment of IEL. We then need to extend this system with axioms and rules
for the modalities, which are described in the table above. Each of these cor-
responds to some property discussed in the previous section: for the entertain
modalities we have the distributivity axiom (valid by Fact 3.6) and the axioms
rendered valid by the constraints of factivity and introspection (Fact 3.9); for
the knowledge modalities we have again distributivity (Fact 3.6), coincidence of
Ka and Ea on declaratives (Fact 3.7) and distributivity over the interrogative
operator (a special case of Fact 3.8). Finally, we have a standard necessitation
rule for both modalities: if ϕ has been derived without undischarged assump-
tions, infer 2ϕ. This completes the description of our deduction system.

Definition 4.2 We write P : Φ ` ψ if P is a proof in our deduction system,
whose conclusion is ψ and whose set of assumptions is included in Φ. As usual,
we then write Φ ` ψ if some proof P : Φ ` ψ exists. We say that two formulas
ϕ and ψ are provably equivalent, notation ϕ a` ψ, in case ϕ ` ψ and ψ ` ϕ.

As customary, it is a tedious but straightforward matter to check that the proof
system is sound for entailment in IEL.

5 The standard rules for negation and disjunction, which are derived connectives in IEL, are
admissible, with one caveat: a disjunction may only be eliminated towards a declarative.
This restriction marks the difference between ∨ and ? and prevents unsound derivations such
as p ∨ ¬p ` ?p (remember that ?p is defined as ?{p,¬p}).
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Theorem 4.3 (Soundness) If Φ ` ψ then Φ |= ψ.

We will now prove some facts about the proof system which, besides providing
important insights into the logic, play a crucial role in the completeness proof.
First, the normal form result of Corollary 2.12 is provable in the system.

Lemma 4.4 For any ϕ, ϕ a` ?R(ϕ).

Proof. The lengthy but straightforward proof is essentially the same as that
given for the propositional fragment in [4]. We omit it in the interest of space.2

As a corollary, a formula is always derivable from any of its resolutions.

Corollary 4.5 If α ∈ R(ϕ), then α ` ϕ.

Proof. If α ∈ R(ϕ) then by a simple application of ?-introduction we have
α ` ?R(ϕ), whence by the previous lemma, α ` ϕ. 2

Lemma 4.4 also implies that interrogatives always derive their presupposition.

Corollary 4.6 For any interrogative µ, µ ` πµ.

Let us now mention a few basic facts about the modalities. First, we can prove
as usual that the distributivity axioms and the necessitation rules together
ensure that the modalities are monotonic.

Lemma 4.7
If ϕ1, . . . , ϕn ` ψ then 2ϕ1, . . . ,2ϕn ` 2ψ for 2 ∈ {Ea,Ka | a ∈ A}.

Moreover, the equivalences we have seen in facts 3.7 and 3.8 are provable in
our system: that is, Ka distributes over resolutions and coincides with Ea on
declaratives, which means that it can be paraphrased away from the language.

Lemma 4.8 For any ϕ, Kaϕ a`
∨
α∈R(ϕ)Kaα a`

∨
α∈R(ϕ)Eaα

Proof. Immediate from Lemma 4.4, using the axiom of K-distributivity over
the interrogative operator and the axiom of K-E equivalence on declaratives.2

The next thing to show is that derivability shares the fundamental property of
entailment expressed by Fact 3.4: from Φ we can derive ψ iff from any specific
resolution Γ of Φ we can derive some resolution α of ψ.

Theorem 4.9 (Resolution theorem)
Φ ` ψ ⇐⇒ for all Γ ∈ R(Φ) there exists some α ∈ R(ψ) s.t. Γ ` α.

The substantial proof is given in the appendix. In particular, the proof of
the left-to-right direction has an interesting computational interpretation. For,
suppose we have a proof P : Φ ` ψ. By soundness, Φ |= ψ, which by Fact
3.4 means that any resolution Γ of Φ entails some resolution α of ψ: the proof
of the theorem tells us to use P to find such an α and to produce a proof
Q : Γ ` α. Thus, a proof P : Φ ` ψ essentially encodes how a resolution of ψ
may be obtained from a resolution of Φ.

Notice that, since a set of declaratives has itself as unique resolution, the
resolution theorem has the following corollary.
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Corollary 4.10 (Split)
Let Γ be a set of declaratives. If Γ ` ψ then Γ ` α for some α ∈ R(ψ).

On our way to the proof of the resolution theorem, in the appendix we will also
establish the following fact.

Lemma 4.11 If Φ 6` ψ then there exists some Γ ∈ R(Φ) such that Γ 6` ψ.

Since consistency with a declarative α amounts to not deriving ¬α, an imme-
diate consequence of this lemma is that if Φ is consistent with α, then some
resolution Γ of Φ is consistent with α.

We will prove completeness by constructing a canonical model. The con-
struction is similar to the familiar one from standard modal logic, but slightly
more sophisticated, since the model we need to build has a richer structure
than a standard Kripke model.

The possible worlds in our canonical model will be complete theories of
declaratives (CTD), defined as sets Γ of declaratives which are (i) closed under
deduction of declaratives; (ii) consistent; and (iii) complete, in the sense that
for any declarative α, either α or ¬α is in Γ. The following features of CTDs
are familiar from classical logic and modal logic.

Fact 4.12 (Disjunction property)
If Γ is a CTD and α1 ∨ · · · ∨ αn ∈ Γ, then αi ∈ Γ for some i.

Fact 4.13 (Lindenbaum’s lemma)
If Θ is a consistent set of declaratives, then Θ ⊆ Γ for some CTD Γ.

We are now ready to define our canonical model for inquisitive epistemic logic.

Definition 4.14 [Canonical model for IEL]
The canonical model for IEL is the model M c = 〈Wc, V c,ΣcA〉, where:

• the elements of Wc are the complete theories of declaratives

• V c(Γ) = {p ∈ P | p ∈ Γ}
• Σca(Γ) is the set of states S ⊆ Wc defined as follows:
S ∈ Σca(Γ) ⇐⇒

⋂
S ` ϕ whenever Eaϕ ∈ Γ 6

Recall that the information state σca(Γ) of an agent a at a world Γ is defined
as the union of the inquisitive state Σca(Γ) of the agent. The following lemma
gives a direct characterization of σca(Γ) in terms of the theories that it contains.
The proof is given in the appendix.

Lemma 4.15 σca(Γ) = {∆ |α ∈ ∆ whenever Eaα ∈ Γ}

We then have to show that the structure we defined is a proper inquisitive
epistemic model, in the sense that the state maps Σca satisfy the factivity and
introspection requirements. This is precisely what the axioms of factivity and
positive and negative introspection for E are intended to enforce.

Lemma 4.16 M c is an inquisitive epistemic model.

6 The intersection of the empty state is defined as the set of all formulas,
⋂

∅ = LP .



108 Modalities in the Realm of Questions:Axiomatizing Inquisitive Epistemic Logic

Proof. It is an easy exercise to check that the axiom Eaα → α ensures that
the state maps are satisfy factivity, while the axioms Eaϕ → EaEaϕ and
¬Eaϕ→ Ea¬Eaϕ ensure that the state maps satisfy introspection. 2

The bridge between derivability and semantics in the canonical model is usually
provided by a truth lemma equating truth at a world in the canonical model
with derivability from that world. In IEL, the fundamental semantic relation is
not truth at a world, but support at a state. Accordingly, the bridge between
derivability and semantics is given by the following support lemma, stating that
support at a state S in the canonical model amounts to derivability from the
intersection

⋂
S of all the theories in S. The proof is given in the appendix.

Lemma 4.17 (Support lemma)
For any S ⊆ Wc and any ϕ, M c, S |= ϕ ⇐⇒

⋂
S ` ϕ.

We can then rely on the support lemma to prove the completeness theorem.

Theorem 4.18 (Completeness theorem) If Φ |= ψ, then Φ ` ψ.

Proof. Suppose Φ 6` ψ. By Theorem 4.9, there is a resolution Θ of Φ which
does not derive any resolution of ψ. Let R(ψ) = {α1, . . . , αn}: for each i, since
Θ 6` αi, the set Θ∪{¬αi} is consistent, and thus extendible to a CTD Γi ∈W c.
Now let S = {Γ1, . . . ,Γn}: we claim that S |= Φ but S 6|= ψ.

To see that S |= Φ, notice that by construction, Θ ∈
⋂
S, whence by the

support lemma M c, S |= Θ. But since Θ ∈ R(Φ), by Fact 2.15 we also have
M c, S |= Φ. However, suppose S supported ψ: then by Fact 2.11 it should also
support αi for some i. By the support lemma, that would mean that

⋂
S ` αi,

and so also αi ∈ Γi, since
⋂
S ⊆ Γi and Γi is closed under declarative deduction.

But that is impossible, since Γi is consistent and contains ¬αi by construction.
Hence, M c, S |= Φ but M c, S 6|= ψ, which witnesses that Φ 6|= ψ. 2

Conclusion In this paper we have investigated and axiomatized the notion
of entailment arising from inquisitive epistemic logic. Concretely, this gives us
a conservative extension of standard epistemic logic in which we can reason
not only about the agents’ information, but also about the agents’ issues, that
is, their epistemic goals, thus providing the ground for a logical account of
information exchange as a directed process of raising and resolving issues.

From an abstract standpoint, the main finding is that propositional and
modal logics generalize smoothly beyond the truth-conditional realm, to a set-
ting where both declaratives and interrogatives receive a uniform semantics. In
the proof system, the connectives are handled by their standard rules. What
does not generalize is the double negation axiom, which characterizes truth-
conditionality, and must be restricted to declaratives. Finally, while the modal-
ities of our system are not Kripke modalities, in that they operate on crucially
richer semantic objects, they enjoy completely standard logical properties: dis-
tributivity holds, and the frame conditions of factivity and introspection are
characterized by the familiar schemes.
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Appendix

Proof of theorem 4.9 Let us first show the left-to-right direction of the
theorem: if Φ derives ψ, any resolution Γ of Φ derives some resolution α of ψ.
The proof goes by induction on the complexity of the proof P : Φ ` ψ. We
distinguish a number of cases depending on the last rule applied in P . In the
interest of space, the most straightforward inductive cases are omitted.

• ψ is an undischarged assumption, ψ ∈ Φ. In this case, any resolution Γ of Φ
contains a resolution α of ψ by definition, so Γ ` α.

• ψ is an axiom. If ψ is declarative, the claim is trivially true. If ψ is in-
terrogative, it must be an instance of the Kreisel-Putnam axiom, (β →
?{γ1, . . . , γn})→ ?{β → γ1 . . . , β → γn}, since all other axioms are declara-
tives. In this case, take α =

∧
1≤i≤n((β → γi)→ (β → γi)): α is a resolution

of ψ and, being a classical tautology, we have Γ ` α for any set Γ whatsoever.

• ψ = χ → µ was obtained by an implication introduction rule. Then the
immediate subproof of P is a proof of µ from the set of assumptions Φ∪{χ}.
Take any resolution Γ of Φ. Suppose α1, . . . , αn are the resolutions of χ. For
any 1 ≤ i ≤ n, then, Γ∪{αi} is a resolution of Φ∪{χ}, whence by induction
hypothesis we have a proof Qi : Γ ∪ {αi} ` βi for some resolution βi of µ.
But then, extending Qi by an application of implication introduction, we
derive αi → βi from Γ. And since this is the case for 1 ≤ i ≤ n, from Γ we
can derive (α1 → β1)∧ · · · ∧ (αn → βn), which is a resolution of χ→ µ = ψ.

• ψ was obtained by an implication elimination rule from χ and χ→ ψ. Then
the immediate subproofs of P are a proof of χ from Φ, and a proof of χ→ ψ
from Φ. Consider any Γ ∈ R(Φ). By induction hypothesis we have a proof
Q1 : Γ ` β where β ∈ R(χ), and a proof Q2 : Γ ` γ, where γ ∈ R(χ → ψ).
Now, if R(χ) = {β1, . . . , βn}, then β = βi for some i, and, by definition of
the resolutions of an implication, γ = (β1 → γ1) ∧ · · · ∧ (βn → γn) for some
{γ1, . . . , γn} ⊆ R(ψ). Extending Q2 with a conjunction elimination rule we
get a proof of βi → γi from Γ. So, from Γ we can derive both βi and βi → γi
whence, eliminating the implication, we can derive γi, a resolution of ψ.

• ψ was obtained by a ?-elimination rule from ?{β1, . . . , βm}. Then the imme-
diate subproofs of P are a proof P0 : Φ ` ?{β1, . . . , βm} and, for 1 ≤ i ≤ n
a proof Pi : Φ ∪ {βi} ` ψ. Now consider a resolution Γ of Φ. By induc-
tion hypothesis we have a proof Q0 : Γ ` β for some β ∈ R(?{β1, . . . , βm}).
Moreover, for any 1 ≤ i ≤ n, since Γ ∪ {βi} is a resolution of Φ ∪ {βi}, by
induction hypothesis we have a proof Qi : Γ ∪ {βi} ` αi where αi ∈ R(ψ).
Now since β is a resolution of ?{β1, . . . , βm}, by definition β = βi for some i.
But then, combining the proof Q0 : Γ ` βi with the proof Qi : Γ ∪ {βi} ` αi
(more precisely, substituting any undischarged assumption of βi in Qi with
an occurrence of the proof Q0 with conclusion βi) we obtain a proof of αi
from Γ, which is what we needed, since αi is a resolution of ψ.

This case-by-case examination proves the left-to-right direction of the theorem.
In order to establish the converse, let us make a detour to prove Fact 4.11.
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Proof of Lemma 4.11 First let us prove this for the case in which Φ is finite.
We will prove by induction on the number of formulas in Φ the claim that for
any ψ, if Φ 6` ψ there is some Γ ∈ R(Φ) such that Γ 6` ψ.

If Φ = ∅, the claim is trivially true. Now make the inductive hypothesis
that the claim is true for sets of n formulas, and let us consider a set Φ of n+1
formulas. Then Φ is of the form Ψ ∪ {χ} for some set Ψ of n formulas and
some formula χ. Now consider a formula ψ such that Ψ, χ 6` ψ. By Lemma 4.4,
we must also have Ψ, ?R(χ) 6` ψ whence, by the ?-introduction rule, we must
have Ψ, α 6` ψ for some α ∈ R(χ). By the rules for implication, we must then
have Ψ 6` αi → ψ, and so by induction hypothesis there is a Γ ∈ R(Ψ) such
that Γ 6` αi → ψ. Finally, again by the rules for implication we have Γ, αi 6` ψ,
which proves the claim since Γ ∪ {α} is a resolution of Ψ ∪ {χ}.

Our inductive proof is thus complete, and the claim is proved for the case
in which Φ is finite. Now let us suppose that Φ is infinite and choose an
enumeration of Φ, so that Φ = {ϕn |n ≥ 1}. Now, for n ∈ N, put:

Tn = { 〈α1, . . . , αn〉 | αi ∈ R(ϕi) for 1 ≤ i ≤ n}

Now let T =
⋃
n∈N Tn and, for a, b ∈ T , let a ≤ b in case a is an initial segment

of b. Clearly, 〈T,≤〉 is a tree. Moreover, T is finitely branching: this is because
the immediate successors of a = 〈α1, . . . , αn〉 are a′ = 〈α1, . . . , αn, αn+1〉 where
αn+1 ∈ R(ϕn+1), and the set of resolutions of a sentence is always finite.

Now consider a formula ψ such that Φ 6` ψ. To find a resolution Γ ∈ R(Φ)
such that Γ 6` ψ, we first divide T into two parts:

• T`ψ = { 〈α1, . . . , αn〉 ∈ T | {α1, . . . , αn} ` ψ}
• T6`ψ = { 〈α1, . . . , αn〉 ∈ T | {α1, . . . , αn} 6` ψ}
Cearly, T6`ψ and T`ψ form a partition of T . Notice that T`ψ is upward closed,
that is, if a ≤ b and a ∈ T`ψ, then b ∈ T`ψ as well: for, if ψ is provable from a
certain set, it is also provable from any superset. Conversely, T6`ψ is downward
closed, that is, if a ≤ b and b ∈ T6`ψ then a ∈ T6`ψ.

We claim that T6`ψ is infinite. For, if it were finite, it would only intersect
finitely many of the Tn’s. For an index k such that T6`ψ ∩ Tk = ∅, this would
mean that Tk ⊆ T`ψ. But, recalling the definition of Tk, this means that every
resolution Γ of the set {ϕ1, . . . , ϕk} derives ψ. Since we have already proved our
claim for finite sets, we can conclude that {ϕ1, . . . , ϕk} must derive ψ as well.
But this is a contradiction, since {ϕ1, . . . , ϕk} ⊆ Φ and Φ 6` ψ by assumption.

So, T6`ψ must be infinite, and 〈T6`ψ,≤〉 is an infinite tree. Since 〈T6`ψ,≤〉 is
finitely branching, by König’s lemma it must have an infinite branch. But this
means precisely that there exists an infinite sequence αn, n ≥ 1 of declaratives
(the limit of the finite sequences on the infinite branch of T6`ψ) such that (i)
αn ∈ R(ϕn) for any n ≥ 1 and (ii) for any n ≥ 1, {α1, . . . , αn} 6` ψ.

Consider Γ = {αn |n ≥ 1}. Since αn ∈ R(ϕn) for every n ≥ 1, Γ ∈ R(Φ).
Moreover, since for every n ≥ 1, {α1, . . . , αn} 6` ψ, Γ cannot derive ψ. So we
have found a resolution Γ ∈ R(Φ) such that Γ 6` ψ. 2

Proof of theorem 4.9, right-to-left direction. Suppose Φ 6` ψ. By Lemma
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4.11 we have a Γ ∈ R(Φ) such that Γ 6` ψ. Since for any α ∈ R(ψ) we have
α ` ψ (Corollary 4.5), Γ cannot derive any α ∈ R(ψ), otherwise it would derive
ψ. So, Γ is a resolution of Φ which does not derive any resolution of ψ. 2

Proof of Lemma 4.15. First assume ∆ ∈ σca(Γ). Since σca(Γ) =
⋃

Σca(Γ),
this means that ∆ ∈ S for some state S such that

⋂
S ` ϕ whenever Eaϕ ∈ Γ.

In particular, then, if Eaα ∈ Γ we have
⋂
S ` α, whence also ∆ ` α. Since ∆

is closed under deduction of declaratives, this implies α ∈ ∆.
Conversely, suppose α ∈ ∆ whenever Eaα ∈ Γ. We claim that the singleton

state {∆} belongs to Σca(Γ), so that ∆ ∈
⋃

Σca(Γ) = σca(Γ). Since
⋂
{∆} = ∆,

to show that {∆} ∈ Σca(Γ) we must show that ∆ ` ϕ whenever Eaϕ ∈ Γ.
So, suppose Eaϕ ∈ Γ and let us show ∆ ` ϕ. If ϕ is a declarative, this

is true by assumption. Now consider an interrogative µ such that Eaµ ∈ Γ.
Corollary 4.6 gives µ ` πµ, whence by Lemma 4.7 we have Eaµ ` Eaπµ. Since
Eaµ ∈ Γ and Γ is closed under deduction of declaratives, Eaπµ ∈ Γ. But since,
unlike µ, πµ is a declarative, by assumption we have πµ ∈ ∆. By definition,
πµ =

∨
R(µ). Now, since ∆ is a CTD, it has the disjunction property (Fact

4.12), which means that we must have α ∈ ∆ for some α ∈ R(µ). But then,
since α ` µ by Corollary 4.5, it follows ∆ ` µ, as required. 2

In preparation to the support lemma, we will prove three intermediate lemmata.

Lemma A.19 For any state S ⊆ Wc and any α ∈ L!,
⋂
S ` α ⇐⇒ α ∈

⋂
S

Proof. If α ∈
⋂
S then obviously

⋂
S ` α. For the converse, suppose

⋂
S ` α.

For any Γ ∈ S we have
⋂
S ⊆ Γ, so also Γ ` α. But then, because Γ is closed

under deduction of declaratives, we must have α ∈ Γ. So, α ∈
⋂
S. 2

Lemma A.20
Let Γ ∈ Wc. If Eaϕ 6∈ Γ there exists a state T ∈ Σca(Γ) such that

⋂
T 6` ϕ.

Proof. Put ΓEa = {ψ |Eaψ ∈ Γ} (notice that ΓEa does not only contain
declaratives but also interrogatives). We claim that ΓEa does not entail ϕ. To-
wards a contradiction, suppose ΓEa ` ϕ. Let ψ1, . . . , ψn ∈ ΓEa be assumptions
such that ψ1, . . . , ψn ` ϕ. By Lemma 4.7 we have Eaψ1, . . . , Eaψn ` Eaϕ. But
the fact that ψ1, . . . , ψn are in ΓEa means that Eaψ1, . . . , Eaψn are in Γ. Hence,
we would also have Γ ` Eaϕ, and so also Eaϕ ∈ Γ, contrary to assumption.

We have thus proved ΓEa 6` ϕ. But then, by Lemma 4.9 we know that there
must be a resolution Θ pf ΓEa which entails no resolution α of ϕ. But then,
for any α ∈ R(ϕ), the set Θ ∪ {¬α} is a consistent set of declaratives, and so
by Lindenbaum’s lemma it can be extended to some CTD ∆α ∈ Wc.

Now consider the state T = {∆α |α ∈ R(ϕ)}. We claim that T has the
properties we need. First, since Θ ⊆ ∆α for each α, we have Θ ⊆

⋂
T . Now

suppose Eaψ ∈ Γ: then ψ ∈ ΓEa , and since Θ is a resolution of ΓEa , it contains
some resolution β of ψ. But then, since β ∈ Θ ⊆

⋂
T and β ` ψ, we must also

have
⋂
T ` ψ. So,

⋂
T ` ψ whenever Eaψ ∈ Γ, which means that T ∈ Σca(Γ).

On the other hand,
⋂
T 6` ϕ. For, if we had

⋂
T ` ϕ, by Corollary 4.10 we

should have
⋂
T ` α for some resolution α of ϕ, which would entail ∆α ` α,



112 Modalities in the Realm of Questions:Axiomatizing Inquisitive Epistemic Logic

since
⋂
T ⊆ ∆α. But this is impossible, since by construction ∆α contains ¬α

and is a consistent theory. Hence
⋂
T 6` ϕ and our lemma is proven. 2

Lemma A.21 Let Γ ∈ Wc. If Kaϕ 6∈ Γ, then
⋂
σca(Γ) 6` ϕ.

Proof. Suppose Kaϕ 6∈ Γ. Since Kaϕ a`
∨
α∈R(ϕ)Eaα, the latter formula

is not in Γ either. Since Γ is closed under declarative deduction, this implies
Eaα 6∈ Γ for every α ∈ R(ϕ). Now consider any α ∈ R(ϕ): since Eaα 6∈ Γ,
by Lemma A.20 there is a state Tα ∈ Σca(Γ) such that

⋂
Tα 6` α. Now since

Tα ∈ Σca(Γ) we have Tα ⊆
⋃

Σca(Γ) = σca(Γ), whence
⋂
σca(Γ) ⊆

⋂
Tα. And

since
⋂
Tα 6` α, a fortiori

⋂
σca(Γ) 6` α. But as

⋂
σca(Γ) does not derive any

resolution of ϕ, by Corollary 4.10 it cannot derive ϕ either:
⋂
σca(Γ) 6` ϕ. 2

Proof of Lemma 4.17. The proof goes by induction on the complexity of ϕ.
The straightforward cases for atoms, falsum, and conjunction are omitted.

Implication Suppose
⋂
S ` ϕ → ψ. Take any T ⊆ S: if T |= ϕ then by

induction hypothesis
⋂
T ` ϕ. Since T ⊆ S, we have

⋂
T ⊇

⋂
S, and since⋂

S ` ϕ → ψ, also
⋂
T ` ϕ → ψ. But from

⋂
T ` ϕ → ψ and

⋂
T ` ϕ it

follows
⋂
T ` ψ, which by induction hypothesis implies T |= ψ. So, every

substate of S that supports ϕ also supports ψ, which proves that S |= ϕ→ ψ.
Viceversa, suppose

⋂
S 6` ϕ→ ψ. By the introduction rule for implication,

this means that
⋂
S, ϕ 6` ψ. Now by Lemma 4.11 there is a a resolution of

(
⋂
S) ∪ {ϕ} which does not derive ψ. Since

⋂
S is a set of declaratives, this

resolution must include a set of the form (
⋂
S)∪{α} where α is a resolution

of ϕ. Hence, there must exist a resolution α of ϕ such that
⋂
S, α 6` ψ.

Now let T = {Γ ∈ S |α ∈ Γ}. First, by definition we have α ∈
⋂
T ,

whence
⋂
T ` ϕ by Corollary 4.5. By induction hypothesis we then have

T |= ϕ. Now, if we can show that
⋂
T 6` ψ we are done. For then, the

induction hypothesis gives T 6|= ψ, which means that T is a substate of S
that supports ϕ but not ψ, which shows that S 6|= ϕ→ ψ.

So, we are left to show that
⋂
T 6` ψ. Towards a contradiction, suppose

that
⋂
T ` ψ. Since

⋂
T is a set of declaratives, Corollary 4.10 tells us

that
⋂
T ` β for some resolution β of ψ, which by Lemma A.19 amounts to

β ∈
⋂
T . So, for any Γ ∈ T we have β ∈ Γ and thus also α→ β ∈ Γ, since Γ

is closed under deduction of declaratives and β ` α→ β. Now consider any
Γ ∈ S−T : this means that α 6∈ Γ; then since Γ is complete we have ¬α ∈ Γ,
whence α → β ∈ Γ, because Γ is closed under deduction of declaratives
and ¬α ` α → β. We have thus shown that α → β ∈ Γ for any Γ ∈ S,
whether Γ ∈ T or Γ ∈ S − T . We can then conclude α → β ∈

⋂
S, whence⋂

S, α ` β. And since β is a resolution of ψ we also have
⋂
S, α ` ψ. But

this is a contradiction since by assumption α is such that
⋂
S, α 6` ψ.

Question mark If S |= ?{α1, . . . , αn}, then S |= αi for some i, so by induction
hypothesis we have

⋂
S ` αi and by ?-introduction also

⋂
S ` ?{α1, . . . , αn}.

Conversely, suppose
⋂
S ` ?{α1, . . . , αn}. Since

⋂
S is a set of declaratives,

it follows from Corollary 4.10 that
⋂
S ` αi for some 1 ≤ i ≤ n. By induction

hypothesis we then have S |= αi, and thus also S |= ?{α1, . . . , αn}.
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Ea modality Suppose
⋂
S ` Eaϕ. Now consider any Γ ∈ S. Since

⋂
S ⊆ Γ,

we have Γ ` Eaϕ, and since Γ is closed under deduction of declaratives,
Eaϕ ∈ Γ. By definition of Σca, then, for any T ∈ Σca(Γ) we must have⋂
T ` ϕ, which by induction hypothesis entails T |= ϕ. Since this is true for

any Γ ∈ S and any T ∈ Σca(Γ), it follows that S |= Eaϕ.
For the converse, suppose

⋂
S 6` Eaϕ. Then Eaϕ 6∈

⋂
S, which means

that Eaϕ 6∈ Γ for some Γ ∈ S. Then, Lemma A.20 ensures that there exists
a state T ∈ Σca(Γ) such that

⋂
T 6` ψ, that is, by induction hypothesis,

such that T 6|= ψ. Therefore, we do not have T |= ϕ for every Γ ∈ S and
T ∈ Σca(Γ), which means that S 6|= Eaϕ.

Ka modality Suppose
⋂
S ` Kaϕ, which by Lemma A.19 implies Kaϕ ∈

⋂
S.

Since Kaϕ a`
∨
α∈R(ϕ)Eaα (Lemma 4.8), we have

∨
α∈R(ϕ)Eaα ∈

⋂
S.

Now consider any Γ ∈ S. Since
∨
α∈R(ϕ)Eaα ∈

⋂
S, also

∨
α∈R(ϕ)Eaα ∈ Γ.

Since complete theories have the disjunction property, Eaα ∈ Γ for some α ∈
R(ϕ). Since Eaα ∈ Γ, Lemma 4.15 tells us that α ∈ ∆ for any ∆ ∈ σca(Γ),
so α ∈

⋂
σca(Γ). Since α ` ϕ (Corollary 4.5) we then have σca(Γ) ` ϕ, which

by induction hypothesis means that σca(Γ) |= ϕ. Summing up, for any Γ ∈ S
we have σca(Γ) |= ϕ, and so S |= Kaϕ.

Conversely, suppose
⋂
S 6` Kaϕ. Then obviously Kaϕ 6∈

⋂
S, so there

is a Γ ∈ S such that Kaϕ 6∈ Γ. But then, Lemma A.21 establishes that⋂
σca(Γ) 6` ϕ, which by induction hypothesis amounts to σca(Γ) 6|= ϕ. So, it is

not the case that σca(Γ) |= ϕ for every Γ ∈ S, which means that S 6|= Kaϕ.2
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[11] Wísniewski, A., The logic of questions as a theory of erotetic arguments, Synthese 109

(1996), pp. 1–25.
[12] Yang, F., “On extensions and variants of dependence logic: A study of intuitionistic

connectives in the team semantics setting,” Ph.D. thesis, University of Helsinki (2014).


	Introduction
	Inquisitive epistemic logic
	Entailment
	Axiomatization
	References

