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Abstract. This paper introduces data augmentation for point clouds
by interpolation between examples. Data augmentation by interpolation
has shown to be a simple and effective approach in the image domain.
Such a mixup is however not directly transferable to point clouds, as we
do not have a one-to-one correspondence between the points of two dif-
ferent objects. In this paper, we define data augmentation between point
clouds as a shortest path linear interpolation. To that end, we intro-
duce PointMixup, an interpolation method that generates new examples
through an optimal assignment of the path function between two point
clouds. We prove that our PointMixup finds the shortest path between
two point clouds and that the interpolation is assignment invariant and
linear. With the definition of interpolation, PointMixup allows to intro-
duce strong interpolation-based regularizers such as mixup and manifold
mixup to the point cloud domain. Experimentally, we show the potential
of PointMixup for point cloud classification, especially when examples
are scarce, as well as increased robustness to noise and geometric trans-
formations to points. The code for PointMixup and the experimental
details are publicly available (Code is available at: https://github.com/
yunlu-chen/PointMixup/).

Keywords: Interpolation · Point cloud classification · Data
augmentation

1 Introduction

The goal of this paper is to classify a cloud of points into their semantic cate-
gory, be it an airplane, a bathtub or a chair. Point cloud classification is chal-
lenging, as they are sets and hence invariant to point permutations. Building
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on the pioneering PointNet by Qi et al. [15], multiple works have proposed
deep learning solutions to point cloud classification [12,16,23,29,30,36]. Given
the progress in point cloud network architectures, as well as the importance
of data augmentation in improving classification accuracy and robustness, we
study how could data augmentation be naturally extended to support also point
cloud data, especially considering the often smaller size of point clouds datasets
(e.g.ModelNet40 [31]). In this work, we propose point cloud data augmentation
by interpolation of existing training point clouds.

Fig. 1. Interpolation between point clouds. We show the interpolation between
examples from different classes (airplane/chair, and monitor/bathtub) with multiple
ratios λ. The interpolants are learned to be classified as (1 − λ) the first class and λ
the second class. The interpolation is not obtained by learning, but induced by solving
the optimal bijective correspondence which allows the minimum overall distance that
each point in one point cloud moves to the assigned point in the other point cloud.

To perform data augmentation by interpolation, we take inspiration from
augmentation in the image domain. Several works have shown that generating
new training examples, by interpolating images and their corresponding labels,
leads to improved network regularization and generalization, e.g., [8,24,26,34].
Such a mixup is feasible in the image domain, due to the regular structure of
images and one-to-one correspondences between pixels. However, this setup does
not generalize to the point cloud domain, since there is no one-to-one correspon-
dence and ordering between points. To that end, we seek to find a method to
enable interpolation between permutation invariant point sets.

In this work, we make three contributions. First, we introduce data augmen-
tation for point clouds through interpolation and we define the augmentation as
a shortest path interpolation. Second, we propose PointMixup, an interpolation
between point clouds that computes the optimal assignment as a path function
between two point clouds, or the latent representations in terms of point cloud.
The proposed interpolation strategy therefore allows usage of successful regular-
izers of Mixup and Manifold Mixup [26] on point cloud. We prove that (i) our
PointMixup indeed finds the shortest path between two point clouds; (ii) the
assignment does not change for any pairs of the mixed point clouds for any inter-
polation ratio; and (iii) our PointMixup is a linear interpolation, an important
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property since labels are also linearly interpolated. Figure 1 shows two pairs of
point clouds, along with our interpolations. Third, we show the empirical benefits
of our data augmentation across various tasks, including classification, few-shot
learning, and semi-supervised learning. We furthermore show that our approach
is agnostic to the network used for classification, while we also become more
robust to noise and geometric transformations to the points.

2 Related Work

Deep Learning for Point Clouds. Point clouds are unordered sets and hence
early works focus on analyzing equivalent symmetric functions which ensures per-
mutation invariance. [15,17,33]. The pioneering PointNet work by Qi et al. [15]
presented the first deep network that operates directly on unordered point sets. It
learns the global feature with shared multi-layer perceptions and a max pooling
operation to ensure permutation invariance. PointNet++ [16] extends this idea
further with hierarchical structure by relying on a heuristic method of farthest
point sampling and grouping to build the hierarchy. Likewise, other recent meth-
ods follow to learn hierarchical local features either by grouping points in various
manners [10,12,23,29,30,32,36]. Li et al. [12] propose to learn a transformation
from the input points to simultaneously solve the weighting of input point fea-
tures and permutation of points into a latent and potentially canonical order.
Xu et al. [32] extends 2D convolution to 3D point clouds by parameterizing a
family of convolution filters. Wang et al. [29] proposed to leverage neighborhood
structures in both point and feature spaces.

In this work, we aim to improve point cloud classification for any point-based
approach. To that end, we propose a new model-agnostic data augmentation.
We propose a Mixup regularization for point clouds and show that it can build
on various architectures to obtain better classification results by reducing the
generalization error in classification tasks. A very recent work by Li et al. [11]
also considers improving point cloud classification by augmentation. They rely
on auto-augmentation and a complicated adversarial training procedure, whereas
in this work we propose to augment point clouds by interpolation.

Interpolation-Based Regularization. Employing regularization approaches
for training deep neural networks to improve their generalization performances
have become standard practice in deep learning. Recent works consider a reg-
ularization by interpolating the example and label pairs, commonly known as
Mixup [8,24,34]. Manifold Mixup [26] extends Mixup by interpolating the hidden
representations at multiple layers. Recently, an effort has been made on apply-
ing Mixup to various tasks such as object detection [35] and segmentation [7].
Different from existing works, which are predominantly employed in the image
domain, we propose a new optimal assignment Mixup paradigm for point clouds,
in order to deal with their permutation-invariant nature.

Recently, Mixup [34] has also been investigated from a semi-supervised
learning perspective [2,3,27]. Mixmatch [3] guesses low-entropy labels for unla-
belled data-augmented examples and mixes labelled and unlabelled data using
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Mixup [34]. Interpolation Consistency Training [27] utilizes the consistency con-
straint between the interpolation of unlabelled points with the interpolation of
the predictions at those points. In this work, we show that our PointMixup can
be integrated in such frameworks to enable semi-supervised learning for point
clouds.

3 Point Cloud Augmentation by Interpolation

3.1 Problem Setting

In our setting, we are given a training set {(Sm, cm)}M
m=1 consisting of M point

clouds. Sm = {pm
n }N

n=1 ∈ S is a point cloud consisting of N points, pm
n ∈ R

3 is
the 3D point, S is the set of such 3D point clouds with N elements. cm ∈ {0, 1}C

is the one-hot class label for a total of C classes. The goal is to train a function
h : S �→ [0, 1]C that learns to map a point cloud to a semantic label distribution.
Throughout our work, we remain agnostic to the type of function h used for the
mapping and we focus on data augmentation to generate new examples.

Data augmentation is an integral part of training deep neural networks, espe-
cially when the size of the training data is limited compared to the size of the
model parameters. A popular data augmentation strategy is Mixup [34]. Mixup
performs augmentation in the image domain by linearly interpolating pixels, as
well as labels. Specifically, let I1 ∈ R

W×H×3 and I2 ∈ R
W×H×3 denote two

images. Then a new image and its label are generated as:

Imix(λ) = (1 − λ) · I1 + λ · I2, (1)
cmix(λ) = (1 − λ) · c1 + λ · c2, (2)

where λ ∈ [0, 1] denotes the mixup ratio. Usually λ is sampled from a beta dis-
tribution λ ∼ Beta(γ, γ). Such a direct interpolation is feasible for images as
the data is aligned. In point clouds, however, linear interpolation is not straight-
forward. The reason is that point clouds are sets of points in which the point
elements are orderless and permutation-invariant. We must, therefore, seek a
definition of interpolation on unordered sets.

3.2 Interpolation Between Point Clouds

Let S1 ∈ S and S2 ∈ S denote two training examples on which we seek to
perform interpolation with ratio λ to generate new training examples. Given a
pair of source examples S1 and S2, an interpolation function, fS1→S2 : [0, 1] �→ S
can be any continuous function, which forms a curve that joins S1 and S2 in
a metric space (S, d) with a proper distance function d. This means that it is
up to us to define what makes an interpolation good. We define the concept of
shortest-path interpolation in the context of point cloud:

Definition 1 (Shortest-path interpolation). In a metric space (S, d), a
shortest-path interpolation f∗

S1→S2
: [0, 1] �→ S is an interpolation between the
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given pair of source examples S1 ∈ S and S2 ∈ S, such that for any λ ∈ [0, 1],
d(S1, S

(λ))+d(S(λ), S2)) = d(S1, S2) holds for S(λ) = f∗
S1→S2

(λ) being the inter-
polant.

We say that Definition 1 ensures the shortest path property because the triangle
inequality holds for any properly defined distance d : d(S1, S

(λ))+d(S(λ), S2)) ≥
d(S1, S2). The intuition behind this definition is that the shortest path property
ensures the uniqueness of the label distribution on the interpolated data. To
put it otherwise, when computing interpolants from different sources, the inter-
polants generated by the shortest-path interpolation is more likely to be discrim-
inative than the ones generated by a non-shortest-path interpolation (Fig. 2).

Fig. 2. Intuition of shortest-path interpolation. The examples lives on a metric
space (S, d) as dots in the figure. The dashed lines are the interpolation paths between
different pairs of examples. When the shortest-path property is ensured (left), the
interpolation paths from different pairs of source examples are likely to be not intersect
in a complicated metric space. While in non-shortest path interpolation (right), the
paths can intertwine with each other with a much higher probability, making it hard
to tell which pair of source examples does the mixed data come from.

To define an interpolation for point clouds, therefore, we must first select
a reasonable distance metric. Then, we opt for the shorterst-path interpolation
function based on the selected distance metric. For point clouds a proper distance
metric is the Earth Mover’s Distance (EMD), as it captures well not only the
geometry between two point clouds, but also local details as well as density
distributions [1,5,13]. EMD measures the least amount of total displacement
required for each of the points in the first point cloud, xi ∈ S1, to match a
corresponding point in the second point cloud, yj ∈ S2. Formally, the EMD for
point clouds solves the following assignment problem:

φ∗ = arg minφ∈Φ

∑

i

‖xi − yφ(i)‖2, (3)

where Φ = {{1, . . . , N} �→ {1, . . . , N}} is the set of possible bijective assign-
ments, which give one-to-one correspondences between points in the two point
clouds. Given the optimal assignment φ∗, the EMD is then defined as the average
effort to move S1 points to S2:
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dEMD =
1
N

∑

i

‖xi − yφ∗(i)‖2. (4)

3.3 PointMixup: Optimal Assignment Interpolation for Point
Clouds

We propose an interpolation strategy, which can be used for augmentation that
is analogous of Mixup [34] but for point clouds. We refer to this proposed Point-
Mixup as Optimal Assignment (OA) Interpolation, as it relies on the optimal
assignment on the basis of the EMD to define the interpolation between clouds.
Given the source pair of point clouds S1 = {xi}N

i=1 and S2 = {yj}N
j=1, the Opti-

mal Assignment (OA) interpolation is a path function f∗
S1→S2

: [0, 1] �→ S. With
λ ∈ [0, 1],

f∗
S1→S2

(λ) = {ui}N
i=1, where (5)

ui = (1 − λ) · xi + λ · yφ∗(i), (6)

in which φ∗ is the optimal assignment from S1 to S2 defined by Eq. 3. Then the
interpolant S

S1→S2,(λ)
OA (or S

(λ)
OA when there is no confusion) generated by the

OA interpolation path function f∗
S1→S2

(λ) is the required augmented data for
point cloud Mixup.

S
(λ)
OA = {(1 − λ) · xi + λ · yφ∗(i)}N

i=1. (7)

Under the view of f∗
S1→S2

being a path function in the metric space (S, dEMD),
f is expected to be the shortest path joining S1 and S2 since the definition of
the interpolation is induced from the EMD.

3.4 Analysis

Intuitively we expect that PointMixup is a shortest path linear interpolation.
That is, the interpolation lies on the shortest path joining the source pairs, and
the interpolation is linear with regard to λ in (S, dEMD), since the definition of
the interpolation is derived from the EMD. However, it is non-trivial to show the
optimal assignment interpolation abides to a shortest path linear interpolation,
because the optimal assignment between the mixed point cloud and either of the
source point cloud is unknown. It is, therefore, not obvious that we can ensure
whether there exists a shorter path between the mixed examples and the source
examples. To this end, we need to provide an in-depth analysis.

To ensure the uniqueness of the label distribution from the mixed data, we
need to show that the shortest path property w.r.t. the EMD is fulfilled. More-
over, we need to show that the proposed interpolation is linear w.r.t the EMD, in
order to ensure that the input interpolation has the same ratio as the label inter-
polation. Besides, we evaluate the assignment invariance property as a prereq-
uisite knowledge for the proof for the linearity. This property implies that there
exists no shorter path between interpolants with different λ, i.e., the shortest
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path between the interpolants is a part of the shortest path between the source
examples. Due to space limitation, we sketch the proof for each property. The
complete proofs are available in the supplementary material.

We start with the shortest path property. Since the EMD for point cloud is a
metric, the triangle inequality dEMD(A,B)+dEMD(B,C) ≥ dEMD(A,C) holds
(for which a formal proof can be found in [19]). Thus we formalize the shortest
path property into the following proposition:

Property 1 (shortest path). Given the source examples S1 and S2, ∀λ ∈
[0, 1], dEMD(S1, S

(λ)
OA) + dEMD(S(λ)

OA, S2) = dEMD(S1, S2).

Sketch of Proof. From the definition of the EMD we can derive dEMD(S1,

S
(λ)
OA) + dEMD(S2, S

(λ)
OA) ≤ dEMD(S1, S2). Then from the triangle inequity of the

EMD, only the equality remains. 
�
We then introduce the assignment invariance property of the OA Mixup as an

intermediate step for the proof of the linearity of OA Mixup. The property shows
that the assignment does not change for any pairs of the mixed point clouds with
different λ. Moreover, the assignment invariance property is important to imply
that the shortest path between the any two mixed point clouds is part of the
shortest path between the two source point clouds.

Property 2 (assignment invariance). S
(λ1)
OA and S

(λ2)
OA are two mixed point

clouds from the same given source pair of examples S1 and S2 as well as the mix
ratios λ1 and λ2 such that 0 ≤ λ1 < λ2 ≤ 1. Let the points in S

(λ1)
OA and S

(λ2)
OA

be ui = (1 − λ1) · xi + λ1 · yφ∗(i) and vk = (1 − λ2) · xk + λ2 · yφ∗(k), where φ∗ is
the optimal assignment from S1 to S2. Then the identical assignment φI is the
optimal assignment from S

(λ1)
OA to S

(λ2)
OA .

Sketch of Proof. We first prove that the identical mapping is the optimal
assignment from S1 to S

(λ1)
OA from the definition of the EMD. Then we prove

that φ∗ is the optimal assignment from S
(λ1)
OA to S2. Finally we prove that the

identical mapping is the optimal assignment from S
(λ1)
OA to S

(λ2)
OA similarly as the

proof for the first intermediate argument. 
�
Given the property of assignment invariance, the linearity follows:

Property 3 (linearity). For any mix ratios λ1 and λ2 such that 0 ≤ λ1 < λ2 ≤
1, the mixed point clouds S

(λ1)
OA and S

(λ2)
OA satisfies that dEMD(S(λ1)

OA , S
(λ2)
OA ) =

(λ2 − λ1) · dEMD(S1, S2).

Sketch of Proof. The proof can be directly derived from the fact that the
identical mapping is the optimal assignment between S

(λ1)
OA and S

(λ2)
OA . 
�

The linear property of our interpolation is important, as we jointly interpolate
the point clouds and the labels. By ensuring that the point cloud interpolation
is linear, we ensure that the input interpolation has the same ratio as the label
interpolation.

On the basis of the properties, we find that PointMixup is a shortest path
linear interpolation between point clouds in (S, dEMD).
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3.5 Manifold PointMixup: Interpolate Between Latent Point
Features

In standard PointMixup, only the inputs, i.e., the XYZ point cloud coordinates
are mixed. The input XYZs are low-level geometry information and sensitive
to disturbances and transformations, which in turn limits the robustness of the
PointMixup. Inspired by Manifold Mixup [26], we can also use the proposed
interpolation solution to mix the latent representations in the hidden layers
of point cloud networks, which are trained to capture salient and high-level
information that is less sensitive to transformations. PointMixup can be applied
for the purpose of Manifold Mixup to mix both at the XYZs and different levels
of latent point cloud features and maintain their respective advantages, which is
expected to be a stronger regularizer for improved performance and robustness.

We describe how to mix the latent representations. Following [26], at each
batch we randomly select a layer l to perform PointMixup from a set of lay-
ers L, which includes the input layer. In a point cloud network, the inter-
mediate latent representation at layer l (before the global aggregation stage
such as the max pooling aggregation in PointNet [15] and PointNet++ [16]) is
Z(l) = {(xi, z

(x)
i )}Nz

i=1, in which xi is 3D point coordinate and z
(x)
i is the corre-

sponding high-dimensional feature. For the mixed latent representation, given
the latent representation of two source examples are Z(l),1 = {(xi, z

(x)
i )}Nz

i=1 and
Z(l),2 = {(yi, z

(y)
i )}Nz

i=1, the optimal assignment φ∗ is obtained by the 3D point
coordinates xi, and the mixed latent representation then becomes

Z
(λ)
(l),OA = {(xmix

i , zmix
i )}, where

xmix
i = (1 − λ) · xi + λ · yφ∗(i),

zmix
i = (1 − λ) · z

(x)
i + λ · z

(y)
φ∗(i).

Specifically in PointNet++, three layers of representations are randomly selected
to perform Manifold Mixup: the input, and the representations after the first and
the second SA modules (See appendix of [16]).

4 Experiments

4.1 Setup

Datasets. We focus in our experiments on the ModelNet40 dataset [31]. This
dataset contains 12,311 CAD models from 40 man-made object categories, split
into 9,843 for training and 2,468 for testing. We furthermore perform experiments
on the ScanObjectNN dataset [25]. This dataset consists of real-world point
cloud objects, rather than sampled virtual point clouds. The dataset consists
of 2,902 objects and 15 categories. We report on two variants of the dataset,
a standard variant OBJ ONLY and one with heavy permutations from rigid
transformations PB T50 RS [25].
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Following [12], we discriminate between settings where each dataset is pre-
aligned and unaligned with horizontal rotation on training and test point cloud
examples. For the unaligned settings, we randomly rotate the training point
cloud along the up-axis. Then, before solving the optimal assignment, we perform
a simple additional alignment step to fit and align the symmetry axes between
the two point clouds to be mixed. Through this way, the point clouds are better
aligned and we obtain more reasonable point correspondences. Last, we also
perform experiments using only 20% of the training data (Fig. 3).

Fig. 3. Baseline interpolation variants. Top: point cloud interpolation through
random assignment. Bottom: interpolation through sampling.

Network Architectures. The main network architecture used throughout
the paper is PointNet++ [16]. We also report results with PointNet [15] and
DGCNN [29], to show that our approach is agnostic to the architecture that is
employed. PointNet learns a permutation-invariant set function, which does not
capture local structures induced by the metric space the points live in. Point-
Net++ is a hierarchical structure, which segments a point cloud into smaller
clusters and applies PointNet locally. DGCNN performs hierarchical operations
by selecting a local neighbor in the feature space instead of the point space,
resulting in each point having different neighborhoods in different layers.

Experimental Details. We uniformly sample 1,024 points on the mesh faces
according to the face area and normalize them to be contained in a unit sphere,
which is a standard setting [12,15,16]. In case of mixing clouds with different
number of points, we can simply replicate random elements from the each point
set to reach the same cardinality. During training, we augment the point clouds
on-the-fly with random jitter for each point using Gaussian noise with zero mean
and 0.02 standard deviation. We implement our approach in PyTorch [14]. For
network optimization, we use the Adam optimizer with an initial learning rate
of 10−3. The model is trained for 300 epochs with a batch size of 16. We follow
previous work [26,34] and draw λ from a beta distribution λ ∼ Beta(γ, γ). We
also perform Manifold Mixup [26] in our approach, through interpolation on
the transformed and pooled points in intermediate network layers. In this work,
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we opt to use the efficient algorithm and adapt the open-source implementation
from [13] to solve the optimal assignment approximation. Training for 300 epochs
takes around 17 h without augmentation and around 19 h with PointMixup or
Manifold PointMixup on a single NVIDIA GTX 1080 ti.

Baseline Interpolations. For our comparisons to baseline point cloud aug-
mentations, we compare to two variants. The first variant is random assignment
interpolation, where a random assignment φRA is used, to connect points from
both sets, yielding:

S
(λ)
RA = {(1 − λ) · xi + λ · yφRA(i)}.

The second variant is point sampling interpolation, where random draws with-
out replacement of points from each set are made according to the sampling
frequency λ:

S
(λ)
PS = S

(1−λ)
1 ∪ S

(λ)
2 ,

where S
(λ)
2 denotes a randomly sampled subset of S2, with λN� elements. (·�

is the floor function.) And similar for S1 with N − λN� elements, such that
S
(λ)
PS contains exactly N points. The intuition of the point sampling variant is

that for point clouds as unordered sets, one can move one point cloud to another
through a set operation such that it removes several random elements from set
S1 and replace them with same amount of elements from S2.

4.2 Point Cloud Classification Ablations

We perform four ablation studies to show the workings of our approach with
respect to the interpolation ratio, comparison to baseline interpolations and
other regularizations, as well robustness to noise.

Fig. 4. Effect of interpolation
ratios. MM denotes Manifold Mixup.

Effect of Interpolation Ratio. The first
ablation study focuses on the effect of the
interpolation ratio in the data augmenta-
tion for point cloud classification. We per-
form this study on ModelNet40 using the
PointNet++ architecture. The results are
shown in Fig. 4 for the pre-aligned setting.
We find that regardless of the interpolation
ratio used, our approach provides a boost
over the setting without augmentation by
interpolation. PointMixup positively influ-
ences point cloud classification. The inclu-
sion of manifold mixup adds a further boost
to the scores. Throughout further experiments, we use γ = 0.4 for input mixup
and γ = 1.5 for manifold mixup in unaligned setting, and γ = 1.0 for input
mixup and γ = 2.0 for manifold mixup in pre-aligned setting.
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Comparison to Baseline Interpolations. In the second ablation study, we
investigate the effectiveness of our PointMixup compared to the two interpolation
baselines. We again use ModelNet40 and PointNet++. We perform the evalua-
tion on both the pre-aligned and unaligned dataset variants, where for both we
also report results with a reduced training set. The results are shown in Table 1.
Across both the alignment variants and dataset sizes, our PointMixup obtains
favorable results. This result highlights the effectiveness of our approach, which
abides to the shortest path linear interpolation definition, while the baselines do
not.

Table 1. Comparison of PointMixup to baseline interpolations on ModelNet40
using PointNet++. PointMixup compares favorable to excluding interpolation and to
the baselines, highlighting the benefits of our shortest path interpolation solution.

Manifold mixup No mixup Random assignment Point sampling PointMixup

× × � × � × �
Full dataset

Pre-aligned 91.9 91.6 91.9 92.2 92.5 92.3 92.7

Unaligned 90.7 90.8 91.1 90.9 91.4 91.3 91.7

Reduced dataset

Pre-aligned 86.1 85.5 87.3 87.2 87.6 87.6 88.6

Unaligned 84.4 84.8 85.4 85.7 86.5 86.1 86.6

Table 2. Evaluating our approach to other data augmentations (left) and its
robustness to noise and transformations (right). We find that our approach with
manifold mixup (MM) outperforms augmentations such as label smoothing and other
variations of mixup. For the robustness evaluation, we find that our approach with
strong regularization power from manifold mixup provides more robustness to random
noise and geometric transformations.
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PointMixup with Other Regularizers. Third, we evaluate how well Point-
Mixup works by comparing to multiple existing data regularizers and mixup
variants, again on ModelNet40 and PointNet++. We investigate the following
augmentations: (i) Mixup [34], (ii) Manifold Mixup [26], (iii) mix input only
without target mixup, (iv) mix latent representation at a fixed layer (manifold
mixup does so at random layers), and (v) label smoothing [22]. Training is per-
formed on the reduced dataset to better highlight their differences. We show the
results in Table 2 on the left. Our approach with manifold mixup obtains the
highest scores. The label smoothing regularizer is outperformed, while we also
obtain better scores than the mixup variants. We conclude that PointMixup is
forms an effective data augmentation for point clouds.

Robustness to Noise. By adding additional augmented training examples,
we enrich the dataset. This enrichment comes with additional robustness with
respect to noise in the point clouds. We evaluate the robustness by adding ran-
dom noise perturbations on point location, scale, translation and different rota-
tions. Note that for evaluation of robustness against up-axis rotation, we use the
models which are trained with the pre-aligned setting, in order to test also the
performance against rotation along the up-axis as a novel transform. The results
are in Table 2 on the right. Overall, our approach including manifold mixup pro-
vides more stability across all perturbations. For example, with additional noise
(σ = 0.05), we obtain an accuracy of 56.5, compared to 35.1 for the baseline.
We similar trends for scaling (with a factor of two), with an accuracy of 72.9
versus 59.2. We conclude that PointMixup makes point cloud networks such as
PointNet++ more stable to noise and rigid transformations.

Fig. 5. Qualitative examples of PointMixup. We provide eight visualizations of
our interpolation. The four examples on the left show interpolations for different con-
figurations of cups and tables. The four examples on the right show interpolations for
different chairs and cars.



342 Y. Chen et al.

Qualitative Analysis. In Fig. 5, we show eight examples of PointMix for point
cloud interpolation; four interpolations of cups and tables, four interpolations
of chairs and cars. Through our shortest path interpolation, we end up at new
training examples that exhibit characteristics of both classes, making for sen-
sible point clouds and mixed labels, which in turn indicate why PointMixup is
beneficial for point cloud classification.

4.3 Evaluation on Other Networks and Datasets

With PointMixup, new point clouds are generated by interpolating existing point
clouds. As such, we are agnostic to the type of network or dataset. To highlight
this ability, we perform additional experiments on extra networks and an addi-
tional point cloud dataset.

Table 3. PointMixup on other networks (left) and another dataset (right). We
find our approach is beneficial regardless the network or dataset.

PointMixup on Other Network Architectures. We show the effect of Point-
Mixup to two other networks, namely PointNet [15] and DGCNN [29]. The exper-
iments are performed on ModelNet40. For PointNet, we perform the evaluation
on the unaligned setting and for DGCNN with pre-aligned setting to remain con-
sistent with the alignment choices made in the respective papers. The results are
shown in Table 3 on the left. We find improvements when including PointMixup
for both network architectures.

PointMixup on Real-World Point Clouds. We also investigate PointMixup
on point clouds from real-world object scans, using ScanObjectNN [25], which
collects object from 3D scenes in SceneNN [9] and ScanNet [4]. Here, we rely on
PointNet++ as network. The results in Table 3 on the right show that we can
adequately deal with real-world point cloud scans, hence we are not restricted to
point clouds from virtual scans. This result is in line with experiments on point
cloud perturbations.

4.4 Beyond Standard Classification

The fewer training examples available, the stronger the need for additional exam-
ples through augmentation. Hence, we train PointNet++ on ModelNet40 in both
a few-shot and semi-supervised setting.

Semi-supervised Learning. Semi-supervised learning learns from a dataset
where only a small portion of data is labeled. Here, we show how PointMixup
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directly enables semi-supervised learning for point clouds. We start from Inter-
polation Consistency Training [27], a state-of-the-art semi-supervised approach,
which utilizes Mixup between unlabeled points. Here, we use our Mixup for point
clouds within their semi-supervised approach. We evaluate on ModelNet40 using
400, 600, and 800 labeled point clouds. The result of semi-supervised learning
are illustrated in Table 4 on the left. Compared to the supervised baseline, which
only uses the available labelled examples, our mixup enables the use of addi-
tional unlabelled training examples, resulting in a clear boost in scores. With
800 labelled examples, the accuracy increases from 73.5% to 82.0%, highlighting
the effectiveness of PointMixup in a semi-supervised setting.

Table 4. Evaluating PointMixup in the context of semi-supervised (left) and
few-shot learning (right). When examples are scarce, as is the case for both settings,
using our approach provides a boost to the scores.

Few-Shot Learning. Few-shot classification aims to learn a classifier to
recognize unseen classes during training with limited examples. We follow
[6,18,20,21,28] to regard few-shot learning a typical meta-learning method,
which learns how to learn from limited labeled data through training from a
collection of tasks, i.e., episodes. In an N -way K-shot setting, in each task, N
classes are selected and K examples for each class are given as a support set,
and the query set consists of the examples to be predicted. We perform few-shot
classification on ModelNet40, from which we select 20 classes for training, 10 for
validation, and 10 for testing. We utilize PointMixup within ProtoNet [20] by
constructing mixed examples from the support set and update the model with
the mixed examples before making predictions on the query set. We refer to
the supplementary material for the details of our method and the settings. The
results in Table 4 on the right show that incorporating our data augmentation
provides a boost in scores, especially in the one-shot setting, where the accuracy
increases from 72.3% to 77.2%.

5 Conclusion

This work proposes PointMixup for data augmentation on point clouds. Given
the lack of data augmentation by interpolation on point clouds, we start by
defining it as a shortest path linear interpolation. We show how to obtain Point-
Mixup between two point clouds by means of an optimal assignment interpola-
tion between their point sets. As such, we arrive at a Mixup for point clouds,
or latent point cloud representations in the sense of Manifold Mixup, that can
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handle permutation invariant nature. We first prove that PointMixup abides to
our shortest path linear interpolation definition. Then, we show through various
experiments that PointMixup matters for point cloud classification. We show
that our approach outperforms baseline interpolations and regularizers. More-
over, we highlight increased robustness to noise and geometric transformations,
as well as its general applicability to point-based networks and datasets. Lastly,
we show the potential of our approach in both semi-supervised and few-shot set-
tings. The generic nature of PointMixup allows for a comprehensive embedding
in point cloud classification.
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