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ABSTRACT
In the knowledge-grounded conversation (KGC) task systems aim to
produce more informative responses by leveraging external knowl-
edge. KGC includes a vital part, knowledge selection, where conversa-
tional agents select the appropriate knowledge to be incorporated in
the next response. Mixed initiative is an intrinsic feature of conver-
sations where the user and the system can both take the initiative in
suggesting new conversational directions. Knowledge selection can
be driven by the user’s initiative or by the system’s initiative. For
the former, the system usually selects knowledge according to the
current user utterance that contains new topics or questions posed
by the user; for the latter, the system usually selects knowledge
according to the previously selected knowledge. No previous study
has considered the mixed-initiative characteristics of knowledge
selection to improve its performance.

In this paper, we propose a mixed-initiative knowledge selection
method (MIKe) for KGC, which explicitly distinguishes between
user-initiative and system-initiative knowledge selection. Specifi-
cally, we introduce two knowledge selectors to model both of them
separately, and design a novel initiative discriminator to discrim-
inate the initiative type of knowledge selection at each conversa-
tional turn. A challenge for trainingMIKe is that we usually have no
labels for indicating initiative. To tackle this challenge, we devise an
initiative-aware self-supervised learning scheme that helps MIKe
to learn to discriminate the initiative type via a self-supervised task.
Experimental results on two datasets show that MIKe significantly
outperforms state-of-the-art methods in terms of both automatic
and human evaluations, indicating that it can select more appro-
priate knowledge and generate more informative and engaging
responses.

∗Corresponding author.
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1 INTRODUCTION
Open-domain conversational agents [12, 13, 17, 18] are mainly
based on the seq2seq framework [43], and they usually condition
the response generation only on the conversation context, lead-
ing them to generate uninformative responses [20]. Knowledge-
grounded conversations (KGCs) mitigate this problem by condition-
ing the response generation on external knowledge [8, 9]. Because
external knowledge contains information that may be redundant
or irrelevant to current conversation, knowledge selection (KS), that
is, choosing the appropriate knowledge to be incorporated in the
next response, is a vital part in KGC [14, 29].

In a conversation, initiative is the ability to drive the direction
of the conversation [36]. Mixed initiative is an intrinsic feature
of human-machine conversations [36, 45, 47], where the user and
system can both take the initiative in suggesting new conversational
directions by introducing new topics, asking questions, and so on.
KS also has the potential for mixed-initiative, i.e., the direction of KS
can be driven by the user (user-initiative KS) or by the system itself
(system-initiative KS). For user-initiative KS, the system usually
selects knowledge according to the current user utterance that
contains new topics or questions posed by the user. As depicted in
Fig. 1, at the first turn in the conversation, the current user utterance
“I love Coca-Cola. How about you?” contains a question posed by
the user, based on which the system chooses a piece of knowledge

https://doi.org/10.1145/3404835.3462824
https://doi.org/10.1145/3404835.3462824


Knowledge Selected Over TurnsConversation

I prefer it over Pepsi.

There are many brands and varieties 
of energy drinks which I prefer over 
coke, like Red Bull.

Coca-Cola, or Coke, is a carbonated soft drink 
produced by The Coca-Cola Company.

Originally intended as a patent medicine, it was 
invented in the late 19th century.

Red Bull is an energy drink sold by Austrian 
company Red Bull GmbH, created in 1987.

I love Coca-Cola. How about you?

That is old. I would like to know the 
energy drinks you prefer over Coca-Cola.

Oh yes I agree. The lovely carbonated 
soft drink that is coke is my official 
favourite!

Me too. Apparently it was made back 
in the 19th century! I cant believe it is 
that old!

System-Initiative
Knowledge Selection

User-Initiative
Knowledge Selection

User-Initiative 
Knowledge Selection 

Figure 1: An example ofmixed-initiative knowledge selection
from the Wizard of Wikipedia (WoW) dataset [8].

about Coca-Cola. A similar case can be found at the third turn.
For system-initiative KS, without user’s push, the system usually
selects knowledge according to the previously selected knowledge.
As shown in Fig. 1, at the second turn, the current user utterance
“I prefer it over Pepsi.” does not contain information suggesting a
new conversational direction. In this case, the system selects a new
piece of knowledge about the history of Coca-Cola based on the
previously selected knowledge about the basic information about
Coca-Cola.

No previous studies have considered the mixed-initiative nature
of KS. As a result, previous studies treat the roles of the current
user utterance and the previously selected knowledge equally, re-
gardless of the different roles they play for different types of KS.
We hypothesize that this omission may introduce redundant infor-
mation and lead to inferior performance of KS. However, modeling
mixed-initiative KS is challenging since there is no manual label
indicating initiative in KGC training sets. Heuristic methods are far
from enough to discriminate initiative effectively. As depicted in
Fig. 1, at the third turn in the conversation, the current KS is user-
initiative but the current user utterance only contains an implicit
information need, which is hard to capture using heuristics.

To tackle the above issues, we propose a mixed-initiative knowl-
edge selection method (MIKe) for KGC, that explicitly distinguishes
between user-initiative and system-initiative KS. Specifically, we
not only introduce two knowledge selectors to model user-initiative
and system-initiative, but also design an initiative discriminator to
discriminate the initiative type of KS at each turn in a conversation.
To overcome the challenge of absent manual labels for indicating ini-
tiative, we devise an initiative-aware self-supervised learning (ISLe)
scheme to make MIKe learn to discriminate the initiative types of
KS, which is based on two insights found in data:
(1) If there is an unsmooth knowledge shift at the current con-

versation turn (i.e., the knowledge previously selected and the
knowledge currently selected cannot be directly connected nat-
urally), the current KS tends to be user-initiative. Conversely,
the KS tends to be system-initiative. As depicted in Fig. 1, the
knowledge shift at the third turn is unsmooth (i.e., knowledge
about the history of Coca-Cola and Red Bull cannot be directly
connected naturally), and the current KS is user-initiative. The
opposite situation can be found in the second turn.

(2) If a piece of knowledge selected at one turn is deleted, the
knowledge shift between the knowledge closely before and
after the missing knowledge tends to be unsmooth. As depicted

in Fig. 1, if the knowledge selected at the second turn is deleted,
the shift between the knowledge selected at the first and third
turn is also unsmooth.

Building on these intuitions, we hypothesize that learning to lo-
cate missing knowledge (detecting the knowledge closely before
and after the missing knowledge) is approximately equivalent to
learning to detect unsmooth knowledge shifts and detect the user-
initiative KS. Thus, ISLe supervises MIKe via a self-supervised task,
locating missing knowledge, i.e., given all pieces of ground-truth
chosen knowledge in a conversation, a piece of knowledge at one
of turns is randomly deleted and then the initiative discriminator is
required to detect the knowledge closely after the missing knowl-
edge (the knowledge closely before the missing knowledge could be
known accordingly). Through the learning, at each turn, given the
previously and currently chosen knowledge, if the initiative discrim-
inator identifies the currently chosen knowledge as the knowledge
closely after the missing knowledge, the knowledge shift between
the previously and currently chosen knowledge would be unsmooth
and thus the current KS would be user-initiative. Otherwise, the
current KS would be system-initiative.

At each conversation turn, the knowledge currently selected
is the target to predict and cannot be fetched during inference.
Therefore, we further distinguish the initiative discriminator as a
teacher initiative discriminator and a student initiative discrimina-
tor and upgrade ISLe to two tasks: (1) locating missing knowledge;
the teacher is required to learn to locate the missing knowledge;
(2) learning with pseudo initiative labels; at each turn, the teacher is
first executed to generate the pseudo-label indicating the initiative
type of KS, and then the student is required to learn the pseudo
initiative label estimated by the teacher. During inference, we only
execute the student discriminator.

Experiments on the WoW [8] and Holl-E [30] datasets indicate
that MIKe can choose more appropriate knowledge, and gener-
ate more informative and engaging responses. ISLe helps MIKe to
effectively discriminate the initiative type for KS.

The contributions of this paper can be summarized as follows:
• We propose mixed-initiative knowledge selection method (MIKe)
for KGC, which explicitly distinguishes between user-initiative
and system-initiative KS at each conversation turn so as to im-
prove the performance of KS.

• We devise initiative-aware self-supervised learning (ISLe), which
helps MIKe discriminate KS initiative types via an approximately
equivalent self-supervised task, locating missing knowledge.

• We conduct automatic and human evaluations on two bench-
mark datasets, which reveals that MIKe can choose more appro-
priate knowledge and generate more informative and engaging
responses, significantly outperforming state-of-the-art methods
in terms of both automatic and human evaluation.

2 RELATEDWORK
We survey two categories of related work: knowledge-grounded
conversations (KGCs) and self-supervised learning.

2.1 Knowledge-grounded conversation
Existing work on KGC can be categorized into two groups. Meth-
ods in the first group aims to leverage structured knowledge (given
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Figure 2: An overview of MIKe. Section 3 contains a walkthrough of the model.

knowledge graphs) [31, 53, 54, 64, 65]. Methods in the second group
focus on leveraging unstructured knowledge such as document-based
unstructured knowledge (given a whole document, e.g., Wikipedia
article) [22, 28, 30, 34, 37, 44, 66] or “piece-based” unstructured knowl-
edge (given some separate pieces of knowledge, e.g., Foursquare
tips) [8, 9, 29]. For both groups, there are key research directions:
(1) improving knowledge selection (KS) [29]; (2) improving knowl-
edge-aware response generation [59] or response selection [11];
(3) leveraging multiple knowledge modalities [27, 57]; and (4) over-
coming data scarcity [21, 58]. (5) leveraging cross-lingual knowl-
edge [42].We leverage piece-based unstructured knowledge and focus
on improving KS.

Several previous publications focus on implicit KS to calculate
a weight for each piece of knowledge and get the weighted sum
of their representations [9, 25, 63]. Other studies focus on explicit
KS [1, 62], i.e., calculating a weight on each piece of knowledge
and then directly sample a piece of knowledge with the highest
weight. Ourwork also focuses on explicit KS. Dinan et al. [8] propose
transformer MemNet (TMemNet), which uses context to predict
a distribution over pieces of knowledge and then samples one of
them for the decoder. They also introduce a KS loss to supervise KS
during training. Lian et al. [23] propose posterior knowledge selec-
tion (PostKS), which uses a context to predict a prior distribution
over pieces of knowledge. During training, the prior distribution
is supervised by a posterior distribution that is predicted by the
context and the corresponding response. Kim et al. [14] propose
sequential knowledge transformer (SKT), which makes use of the
previously selected knowledge (tracked by the model) and con-
text to jointly facilitate KS. Chen et al. [3] upgrade SKT by adding
posterior information prediction module (PIPM) and proposing
knowledge distillation based training strategy (KDBTS) to further
improve KS. Zheng et al. [61] propose a difference-aware knowl-
edge selection (DiffKS) method, which introduces the difference
between the previously selected knowledge and the current pieces
of candidate knowledge to further facilitate KS. Meng et al. [29]
propose dual knowledge interaction network (DukeNet), which re-
gards tracking the previously selected knowledge and selecting the
current knowledge as dual tasks, supervised by dual learning [35] to
teach each other. Zhao et al. [59] propose a reinforcement learning
enhanced knowledge selection (RLKS) method, where the selected
knowledge is sent to a decoder to generate a response that would
be compared with the ground truth response to give feedback used
to further supervise KS.

Unlike thework listed above,MIKe considers themixed-initiative
characteristic of KS to improve the performance of KS.

2.2 Self-supervised learning
Self-supervised learning aims at supervising a network via an ob-
jective where the ground-truth labels are automatically obtained
from the raw data itself [26] It benefits a range of tasks, such as
pre-trained models [7, 19], recommender systems [40, 41, 50, 52, 67],
summarization [48] and open-domain conversational agents [51,
55, 56, 60]. The application in the last task is closest to our work.
Specifically, Wu et al. [51] devise a self-supervised inconsistent or-
der detection task, which aims to guide a detection model to predict
whether the utterances sampled in a conversation is in sequential
order. The trained detection model further provides signals used to
optimize the conversational systems via adversarial training. Zhang
et al. [56] devise self-supervised topic and persona feature extrac-
tors. The extracted features are sent to a decoder to help generate
more consistent responses. Xu et al. [55] and Zhao et al. [60] devise
a group of self-supervised tasks that help their models to produce
better features for their primary task (response generation and
response selection, respectively), and jointly train their primary
tasks with their self-supervised tasks in a multi-task manner.

To the best of our knowledge, self-supervised learning has not
been applied in KGC. Unlike the work listed above, ISLe contains a
new self-supervised task to discriminate the initiative type of KS.

3 METHODOLOGY
3.1 Task formulation
Suppose that we have a conversation C = {(𝑋𝜏 , 𝑌𝜏 )} |C |

𝜏=1 with |C|
turns, where 𝑋𝜏 and 𝑌𝜏 are the utterances produced by a user and
a system at turn 𝜏 , separately. Each turn is accompanied with a
knowledge pool K𝜏 = {𝐾𝜏,1, . . . , 𝐾𝜏,𝑖 , . . . , 𝐾𝜏, |K𝜏 |} (See §3.4.1 to
know the source of knowledge), with |K𝜏 | pieces of knowledge. At
turn 𝜏 , given the current user utterance 𝑋𝜏 , the previously selected
knowledge {𝐾1,𝑠𝑒𝑙 , . . . , 𝐾𝜏−1,𝑠𝑒𝑙 } (also written as {𝐾𝑖,𝑠𝑒𝑙 }𝜏−1𝑖=1 ) and
the knowledge poolK𝜏 , our target is to select a piece of knowledge
𝐾𝜏,𝑠𝑒𝑙 from K𝜏 and then leverage 𝐾𝜏,𝑠𝑒𝑙 to generate the response
𝑌𝜏 = (𝑦𝜏,1, 𝑦𝜏,2, . . . , 𝑦𝜏, |𝑌𝜏 |) with |𝑌𝜏 | tokens.

3.2 Overview of MIKe
As depicted in Fig. 2, MIKe consists of three layers: (1) an encoding
layer, (2) a mixed-initiative knowledge selection layer, and (3) a de-
coding layer. The encoding layer uses a BERT encoder to encode
the current user utterance 𝑋𝜏 and the knowledge pool K𝜏 into
latent representations. The mixed-initiative knowledge selection
layer contains a user-initiative selector, a system-initiative selector
and an initiative discriminator. The user-initiative selector predicts



the distribution 𝑃 (K𝜏 |𝑢𝑠𝑒𝑟 ) over the knowledge pool K𝜏 given
the current user utterance 𝑋𝜏 , while the system-initiative selector
predicts the distribution 𝑃 (K𝜏 |𝑠𝑦𝑠) over the knowledge pool 𝐾𝜏
given the previously selected knowledge {𝐾𝑖,𝑠𝑒𝑙 }𝜏−1𝑖=1 . The initia-
tive discriminator discriminates the current initiative type of KS
by estimating the probability of user-initiative KS 𝑃 (𝑢𝜏 ) ∈ [0, 1]
given the current user utterance 𝑋𝜏 and the previously selected
knowledge {𝐾𝑖,𝑠𝑒𝑙 }𝜏−1𝑖=1 . Based on 𝑃 (𝑢𝜏 ), the distributions estimated
by both selectors are combined to obtain the distribution 𝑃 (K𝜏 ) =
𝑃 (𝑢𝜏 )𝑃 (K𝜏 |𝑢𝑠𝑒𝑟 ) + (1 − 𝑃 (𝑢𝜏 ))𝑃 (K𝜏 |𝑠𝑦𝑠), from which we select
the piece of knowledge 𝐾𝜏,𝑠𝑒𝑙 . The decoding layer contains a trans-
former decoder to generate the response 𝑌𝜏 given 𝐾𝜏,𝑠𝑒𝑙 and 𝑋𝜏 .

We refer to the initiative discriminator defined above as the stu-
dent initiative discriminator and also introduce a teacher initiative
discriminator. During training, ISLe supervises MIKe to discrim-
inate the initiative type of KS via two tasks: (1) locating missing
knowledge; given all pieces of ground-truth chosen knowledge in a
conversation, a piece of knowledge at one of the turns is randomly
deleted and then the teacher is required to locatemissing knowledge
(detecting the knowledge closely after the missing knowledge); and
(2) learning with pseudo initiative labels; at each turn, the teacher
generates a pseudo-label indicating the initiative type of KS; then,
the student is required to learn the pseudo-label estimated by the
teacher via mean squared error (MSE) loss. During inference, only
the student initiative discriminator is run.

3.3 Encoding layer
Given the current user utterance 𝑋𝜏 , we encode it into latent repre-
sentation H𝑋𝜏 via BERT [7], and then convert it into the condensed
representation h𝑋𝜏 via an average pooling operation [2]:

H𝑋𝜏 = BERT(𝑋𝜏 ) ∈ R |𝑋𝜏 |×𝑑 , h𝑋𝜏 = pooling(H𝑋𝜏 ) ∈ R1×𝑑 , (1)

where 𝑑 denotes the hidden size. Likewise, given the knowledge
pool K𝜏 = {𝐾𝜏,1, . . . , 𝐾𝜏,𝑖 , . . . , 𝐾𝜏, |K𝜏 |}, we get the representations
of each piece of knowledge, H𝐾𝜏,𝑖 ∈ R |𝐾𝜏,𝑖 |×𝑑 and h𝐾𝜏,𝑖 ∈ R1×𝑑 .
We also track the previously selected knowledge representations
{h𝐾𝑖,𝑠𝑒𝑙 }𝜏−1

𝑖=1 ∈ R(𝜏−1)×𝑑 .

3.4 Mixed-initiative knowledge selection layer
3.4.1 User-initiative selector. Given the current user utterance rep-
resentation h𝑋𝜏 and the knowledge pool representation {h𝐾𝜏,1 , . . . ,

h𝐾𝜏,|K𝜏 | }, the user-initiative selector predicts the probability distri-
bution 𝑃 (K𝜏 |𝑢𝑠𝑒𝑟 ) over the knowledge poolK𝜏 , which is estimated
as follows:

𝑃 (K𝜏 |𝑢𝑠𝑒𝑟 ) = Softmax(Q𝑢𝑠𝑒𝑟K⊤
𝑢𝑠𝑒𝑟 ) ∈ R1×|K𝜏 |

Q𝑢𝑠𝑒𝑟 = MLP(h𝑋𝜏 ) ∈ R1×𝑑

K𝑢𝑠𝑒𝑟 = MLP( [h𝐾𝜏,1 ; . . . ; h𝐾𝜏,|K𝜏 | ]) ∈ R |K𝜏 |×𝑑

(2)

where MLP(·) = ·W + b is a multilayer perceptron (MLP), and [·; ·]
denotes the vector concatenation operation.

3.4.2 System-initiative selector. Given the previously selected knowl-
edge representation {h𝐾𝑖,𝑠𝑒𝑙 }𝜏−1

𝑖=1 and the knowledge pool represen-
tation {h𝐾𝜏,1 , . . . , h𝐾𝜏,|K𝜏 | }, the system-initiative selector predicts
the probability distribution 𝑃 (K𝜏 |𝑠𝑦𝑠) over the knowledge poolK𝜏 ,
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Figure 3: Two tasks of ISLe

which is estimated as follow:
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[h𝐾1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ; . . . ;h

𝐾𝜏−1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ] =

TransformerE( [h𝐾1,𝑠𝑒𝑙 ; . . . ; h𝐾𝜏−1,𝑠𝑒𝑙 ]) ∈ R(𝜏−1)×𝑑 ,

(3)

where TransformerE is a stack of transformer encoder blocks [46];
it first adds positional embeddings to inputs, where each turn has
its own distinct positional embedding. We use a left-to-right self-
attentionmask in these blocks, where every position can only attend
to previous positions, e.g. 𝐾𝜏−2,𝑠𝑒𝑙 cannot attend to 𝐾𝜏−1,𝑠𝑒𝑙 .

3.4.3 Initiative discriminator. Given the current user utterance rep-
resentation h𝑋𝜏 and the previously selected knowledge represen-
tations {h𝐾𝑖,𝑠𝑒𝑙 }𝜏−1

𝑖=1 , the initiative discriminator predicts the prob-
ability of user-initiative KS 𝑃 (𝑢𝜏 ) at turn 𝜏 , which is estimated as
follow:

𝑃 (𝑢𝜏 ) = Sigmoid(𝜓 (𝑢𝜏 )) ∈ R1×1

𝜓 (𝑢𝜏 ) = MLP( [h𝐾𝜏−1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ; h𝑋𝜏 ]) ∈ R1×1

[h𝐾1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ; . . . ;h

𝐾𝜏−1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ] =

TransformerE( [h𝐾1,𝑠𝑒𝑙 ; . . . ; h𝐾𝜏−1,𝑠𝑒𝑙 ]) ∈ R(𝜏−1)×𝑑 ,

(4)

where TransformerE here has the same setting as the one in Eq. 3,
but they do not share parameters. Accordingly, (1 − 𝑃 (𝑢𝜏 )) is re-
garded as the probability of system-initiative KS. Given above re-
sults, we get the final distribution 𝑃 (K𝜏 ) = 𝑃 (𝑢𝜏 )𝑃 (K𝜏 |𝑢𝑠𝑒𝑟 ) + (1−
𝑃 (𝑢𝜏 ))𝑃 (K𝜏 |𝑠𝑦𝑠), from which we select the piece of knowledge
𝐾𝜏,𝑠𝑒𝑙 with the highest probability.

3.5 Decoding layer
The concatenated representations of the current user utterance and
the selected knowledge H𝑋𝐾𝜏 = [H𝑋𝜏 ;H𝐾𝜏,𝑠𝑒𝑙 ]∈ R |𝑋𝐾𝜏 |×𝑑 are fed
into a transformer decoder [46] with a copying mechanism [10,



39] to generate 𝑌𝜏 . Note that during training, H𝐾𝜏,𝑠𝑒𝑙 would be
H𝐾𝜏,∗ (𝐾𝜏,∗ is the ground-truth selected knowledge). Concretely, the
probability of generating 𝑦𝜏,𝑡 at the timestamp 𝑡 is modeled as:

𝑃 (𝑦𝜏,𝑡 ) = (1 − 𝑃 (𝑐))𝑃𝑣𝑜𝑐𝑎𝑏 (𝑦𝜏,𝑡 ) + 𝑃 (𝑐)
∑︁

𝑖:𝑥𝑘𝜏,𝑖=𝑦𝜏,𝑡

𝛼𝜏,𝑡,𝑖 , (5)

where 𝑃𝑣𝑜𝑐𝑎𝑏 (𝑦𝜏,𝑡 ) is the probability of generating 𝑦𝜏,𝑡 from a pre-
defined vocabulary 𝑉 :

𝑃𝑣𝑜𝑐𝑎𝑏 (𝑦𝜏,𝑡 ) = Softmax(MLP(h𝑑𝑒𝑐𝜏,𝑡𝑡𝑟𝑎𝑛𝑠 )) ∈ R
1×|𝑉 |

h𝑑𝑒𝑐𝜏,𝑡𝑡𝑟𝑎𝑛𝑠 =TransformerD(emb(𝑦𝜏,<𝑡 ),H𝑋𝐾𝜏 ) ∈ R1×𝑑 ,
(6)

where TransformerD is a stack of transformer decoder blocks [46]
and emb(𝑦𝜏,<𝑡 ) denotes the embedding of 𝑦𝜏,<𝑡 .∑

𝑖:𝑥𝑘𝜏,𝑖=𝑦𝜏,𝑡 𝛼𝜏,𝑡,𝑖 is the probability of copying 𝑦𝜏,𝑡 from the con-
catenated sequence of the current user utterance and the selected
knowledge 𝑋𝐾𝜏 = [𝑋𝜏 ;𝐾𝜏,𝑠𝑒𝑙 ]. 𝑥𝑘𝜏,𝑖 is the 𝑖-th token in 𝑋𝐾𝜏 and
𝛼𝜏,𝑡 is the attention distribution over 𝑋𝐾𝜏 with h𝑑𝑒𝑐𝜏,𝑡𝑡𝑟𝑎𝑛𝑠 attending to
H𝑋𝐾𝜏 (see Eq. 8).
𝑃 (𝑐) is used as a soft switch to choose between generating from

the vocabulary 𝑉 and copying from 𝑋𝐾𝜏 , which is estimated as
follows:

𝑃 (𝑐) = Sigmoid(MLP( [h𝑑𝑒𝑐𝜏,𝑡𝑡𝑟𝑎𝑛𝑠 ; c𝜏,𝑡 ]) ∈ R
1×1, (7)

where c𝜏,𝑡 is the attention vector derived from h𝑑𝑒𝑐𝜏,𝑡𝑡𝑟𝑎𝑛𝑠 attending to
H𝑋𝐾𝜏 , which is calculated as follows:

c𝜏,𝑡 = 𝛼𝜏,𝑡H𝑋𝐾𝜏 ∈ R1×𝑑

𝛼𝜏,𝑡 = Softmax(Q𝑐K⊤
𝑐 ) ∈ R1×|𝑋𝐾𝜏 |

Q𝑐 = MLP(h𝑑𝑒𝑐𝜏,𝑡𝑡𝑟𝑎𝑛𝑠 ) ∈ R
1×𝑑 , K𝑐 = MLP(H𝑋𝐾𝜏 ) ∈ R |𝑋𝐾𝜏 |×𝑑 .

(8)

3.6 Initiative-Aware Self-Supervised Learning
As depicted in Fig. 3, ISLe is devised to supervise MIKe to dis-
criminate the initiative type of KS via two tasks, locating missing
knowledge and learning with pseudo initiative labels.

3.6.1 Locating missing knowledge. Given all pieces of ground-truth
chosen knowledge in a conversation {𝐾1,𝑠𝑒𝑙 , . . . , 𝐾 |C |,𝑠𝑒𝑙 }, we first
corrupt it via randomly deleting one piece of knowledge at one of
conversation turns (e.g., deleting the piece of knowledge 𝐾𝜏=𝑚,𝑠𝑒𝑙
at the𝑚-th turn, 1 < 𝑚 < |C|), and then we introduce a teacher
initiative discriminator to learn to locate the missing knowledge
𝐾𝑚,𝑠𝑒𝑙 (detecting the knowledge 𝐾𝑚+1,𝑠𝑒𝑙 that is closely after the
missing knowledge 𝐾𝑚,𝑠𝑒𝑙 ), which is estimated as follows:

[ . . . ; 𝑃 (𝑢𝑡𝑒𝑎𝑚−1); 𝑃 (𝑢
𝑡𝑒𝑎
𝑚+1); . . .] =

Sigmoid( [. . . ;𝜓 (𝑢𝑡𝑒𝑎𝑚−1);𝜓 (𝑢
𝑡𝑒𝑎
𝑚+1); . . .]) ∈ R

1×( |C |−1)

[ . . . ;𝜓 (𝑢𝑡𝑒𝑎𝑚−1);𝜓 (𝑢
𝑡𝑒𝑎
𝑚+1); . . .] =

MLP( [. . . ; h𝐾𝑚−1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ; h𝐾𝑚+1,𝑠𝑒𝑙

𝑡𝑟𝑎𝑛𝑠 ; . . .]) ∈ R1×( |C |−1)

[ . . . ; h𝐾𝑚−1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ; h𝐾𝑚+1,𝑠𝑒𝑙

𝑡𝑟𝑎𝑛𝑠 ; . . .] =

TransformerE( [. . . ; h𝐾𝑚−1,𝑠𝑒𝑙 ; h𝐾𝑚+1,𝑠𝑒𝑙 ; . . .]) ∈ R1×( |C |−1) ,

(9)

where TransformerE here has the same settings as in Eq. 3, but they
do not share parameters. [. . . ; 𝑃 (𝑢𝑡𝑒𝑎

𝑚−1); 𝑃 (𝑢
𝑡𝑒𝑎
𝑚+1); . . .] are the proba-

bilities of being the knowledge closely after the missing knowledge,

where we want that 𝑃 (𝑢𝑡𝑒𝑎
𝑚+1) equals 1 and others equal 0, meaning

that the knowledge at the𝑚-th turn is missing and the knowledge
shift between 𝐾𝑚−1,𝑠𝑒𝑙 and 𝐾𝑚+1,𝑠𝑒𝑙 is unsmooth. Therefore, the
objective function is defined as:

L𝑙𝑜𝑐 (𝜃 ) =

− 1
|C|

|C |∑︁
𝜏=1

𝐼 (𝜏) log 𝑃 (𝑢𝑡𝑒𝑎𝜏 ) + (1−𝐼 (𝜏)) log(1 − 𝑃 (𝑢𝑡𝑒𝑎𝜏 )),
(10)

where 𝜏 ≠ 𝑚 and 𝐼 (𝜏) is an indicator function that equals 1 if
𝜏 =𝑚 + 1 and 0 otherwise.

3.6.2 Learning with pseudo initiative labels. We regard the initia-
tive discriminator defined in §3.4.3 as student initiative discrimina-
tor. At turn 𝜏 , given the previously and currently selected knowl-
edge {𝐾1,𝑠𝑒𝑙 , . . . , 𝐾𝜏,𝑠𝑒𝑙 }, the teacher initiative discriminator pre-
dicts 𝑃 (𝑢𝑡𝑒𝑎𝜏 ), the probability that 𝐾𝜏,𝑠𝑒𝑙 is the knowledge closely
after the missing knowledge, which is approximately equivalent to
the probability of user-initiative KS at turn 𝜏 based on our insights:

𝑃 (𝑢𝑡𝑒𝑎𝜏 ) = Sigmoid(𝜓 (𝑢𝑡𝑒𝑎𝜏 )) ∈ R1×1

𝜓 (𝑢𝑡𝑒𝑎𝜏 ) = MLP(h𝐾𝜏,𝑠𝑒𝑙

𝑡𝑟𝑎𝑛𝑠 ) ∈ R
1×1

[h𝐾1,𝑠𝑒𝑙
𝑡𝑟𝑎𝑛𝑠 ; . . . ; h

𝐾𝜏,𝑠𝑒𝑙

𝑡𝑟𝑎𝑛𝑠 ] =

TransformerE( [h𝐾1,𝑠𝑒𝑙 ; . . . ; h𝐾𝜏,𝑠𝑒𝑙 ]) ∈ R𝜏×𝑑 ,

(11)

where 𝑃 (𝑢𝑡𝑒𝑎𝜏 ) is also regarded as the pseudo initiative label. The
student initiative discriminator learns with it via an MSE loss:

L𝑚𝑠𝑒 (𝜃 ) = − 1
|C|

|C |∑︁
𝜏=1

(𝑃 (𝑢𝜏 ) − 𝑃 (𝑢𝑡𝑒𝑎𝜏 ))2, (12)

where 𝑃 (𝑢𝜏 ) is the user-initiative KS probability predicted by the
student initiative discriminator (see Eq. 4). Note that only the stu-
dent initiative discriminator would execute during inference.

3.7 Final learning objective
Given a conversation C = {(𝑋𝜏 , 𝑌𝜏 )} |C |

𝜏=1 with |C| turns, MIKe is
optimised in a multi-task learning manner and the final objective
function is defined as:

L(𝜃 ) = L𝑝𝑟𝑖𝑚𝑎𝑟𝑦 (𝜃 ) + 𝜆𝐿𝐼𝑆𝐿𝑒 (𝜃 )
L𝐼𝑆𝐿𝑒 (𝜃 ) = L𝑙𝑜𝑐 (𝜃 ) + L𝑚𝑠𝑒 (𝜃 )

L𝑝𝑟𝑖𝑚𝑎𝑟𝑦 (𝜃 ) = L𝑘𝑠 (𝜃 ) + L𝑔 (𝜃 ),
(13)

where 𝜃 are all the parameters of MIKe and 𝜆 is a hyper-parameter
as a trade-off between the objectives of learning primary tasks (KS
and response generation) and ISLe. And L𝑘𝑠 (𝜃 ) and L𝑔 (𝜃 ) are
the learning objective functions for KS and response generation,
separately, which are defined as:

L𝑘𝑠 (𝜃 ) = − 1
|C|

|C |∑︁
𝜏=1

log 𝑃 (𝐾𝜏,∗)

L𝑔 (𝜃 ) = − 1
|C|

|C |∑︁
𝜏=1

|𝑌𝜏 |∑︁
𝑡=1

log 𝑃 (𝑦𝜏,𝑡 | 𝑦𝜏,<𝑡 , 𝑋𝜏 , 𝐾𝜏,∗),

(14)

where ∗ refers to the index of the ground-truth selected knowledge
in the knowledge pool K𝜏 .



4 EXPERIMENTAL SETUP
To assess the performance of MIKe we compare it against a num-
ber of state-of-the-art baselines. We also analyze the contribution
of some of the ingredients that make up MIKe, in particular, the
initiative discriminator and ISLe.

4.1 Datasets
Following [3, 14, 29, 61], we evaluate our model on two KGC
datasets, Wizard of Wikipedia (WoW) [8] and Holl-E [30]. Both
contain the ground-truth labels for KS (only one piece of knowledge
is true for KS per turn). We split the data into training, validation
and test as per the original papers.

WoW is a KGC dataset based on piece-based unstructured knowl-
edge, i.e., each conversation is given some separate pieces of knowl-
edge. In this dataset, a piece of knowledge is defined as a knowledge
sentence. Each conversation is conducted between a wizard who
can retrieve knowledge sentences from Wikipedia and then choose
one to produce a response and an apprentice who is active in talking
with the wizard. It contains 18,430/1,948/1,933 conversations for
training/validation/test. The test set is split into two subsets, Test
Seen (in-domain) and Test Unseen (out-of-domain): the former con-
tains conversations on topics appearing in the training set, while
the latter contains conversations on new topics. There are around
67 pieces of knowledge on average in a knowledge pool.

Holl-E is originally a KGC dataset based on document-based un-
structured knowledge. Kim et al. [14] have changed it to a version
having the same format as WoW by splitting the document into
separate sentences, and recreated the ground-truth labels for KS,
so we use the version released by them. It contains 7,228/930/913
conversations for training/validation/test. There are also two ver-
sions of the test set: one with a single reference and the other with
multiple references (more than one ground-truth pieces of knowl-
edge and responses for each given conversation context). There are
nearly 60 pieces of knowledge on average in a knowledge pool.

4.2 Baselines
We compare MIKe with state-of-the-art KGC methods focusing on
explicit KS and leveraging piece-based unstructured knowledge.
• TMemNet [8] extends a transformer model with a memory
network storing knowledge in an end-to-end manner. Follow-
ing [3, 14, 29], we replace the original transformer encoder with
a BERT encoder, naming it TMemNet+BERT.

• PostKS [23] uses context and response to jointly predict a pos-
terior knowledge distribution and regards it as pseudo-labels to
supervise KS. Following [3, 14, 29], we use a BERT encoder for
this baseline, naming it PostKS+BERT.

• SKT [14] makes use of the previously selected knowledge and
context to jointly facilitate KS. It uses a BERT encoder and incor-
porates a copying mechanism in decoder [10, 39].

• SKT+PIPM+KDBTS [3] upgrades SKT by adding a posterior
information prediction module (PIPM) and proposing knowledge
distillation based training strategy (KDBTS) to improve KS.

• DukeNet [29] regards tracking the previously selected knowl-
edge and selecting the current knowledge as dual tasks and use
dual learning [35] to supervise them. It uses a BERT encoder and
incorporates a copying mechanism in the decoder.

• DiffKS [61] utilizes the difference in information between the
previously selected knowledge and the current candidate knowl-
edge to improve KS. It uses a GRU [4] encoder, pre-trained GloVe
embedding[33] and a copying mechanism in decoder. For a fair
comparison, we replace the GRU encoder and GloVe embedding
with a BERT encoder, naming it DiffKS+BERT.

4.3 Evaluation metrics
For automatic evaluation, we evaluate KS with Recall@1 (R@1)
and evaluate response generation with sentence-level BLEU-4 [32],
METEOR [6], ROUGE-1/2/L [24], which are widely-used in previous
studies [3, 14, 29, 61, 63]. For the evaluation of multiple references
in the Holl-E dataset, we follow Meng et al. [29] who evaluate KS
by regarding the knowledge chosen by the model as correct once it
matches any of the ground-truth knowledge, and evaluate response
generation by taking the max score between responses generated
by models and the multiple ground-truth responses.

We conduct human evaluation onAmazonMechanical Turk.1 We
first randomly sample 300 examples from each test set, and each of
them is annotated by three annotators. Concretely, each annotator
is shown an example containing a context, the knowledge pool (at
most 10 pieces of knowledge are shown to reduce the workload of
the annotators), the pieces of knowledge chosen by MIKe, and a
baseline (their names are masked out during annotation), as well
as the responses generated by the both. Each annotator then needs
to give a preference (ties are allowed) between MIKe and a baseline
based on three aspects [29]: (1) appropriateness, i.e., which chosen
knowledge is more appropriate according to the given context;
(2) informativeness, i.e., which response looks more informative;
and (3) engagingness, i.e., which response is better in general.

4.4 Implementation details
For all models, we apply BERT-Base-Uncased (110M) as the en-
coder2 (hidden size 768), use the BERT vocabulary (the size is
30,522), set the learning rate to 0.00002, use the Adam optimizer [15]
to optimize parameters, use gradient clipping with a maximum
gradient norm of 0.4, train up to 10 epochs, and select the best
checkpoints based on performance on the validation set. For MIKe,
we set 𝜆 in Eq. 13 to 0.5, batch whole conversations rather than
individual turns, train our model on one NVIDIA TITAN RTX GPU.

5 EXPERIMENTAL RESULTS
5.1 Automatic evaluation
Tables 1 and 2 show the results of all approaches on the WoW and
Holl-E datasets, respectively. Overall, MIKe achieves new state-of-
the-art performance on all metrics on both datasets. There are two
main observations from the results.

First, MIKe distinctly outperforms other baselines in terms of KS
(see R@1) on both datasets. Concretely, the R@1 percentage ofMIKe
exceeds the percentage of the strongest baseline SKT+PIPM+KDBTS
by 1.01%–1.27% on the WoW dataset and by 1.06%–1.08% on the
Holl-E dataset. The gains indicate that explicitly distinguishing the
initiative type of KS makes MIKe focus on the more important one

1https://www.mturk.com/
2https://github.com/huggingface/transformers

https://www.mturk.com/
https://github.com/huggingface/transformers


Table 1: Automatic evaluation results on the WoW dataset. Bold face indicates the best result in terms of the corresponding
metric. Significant improvements over the best baseline results are marked with ∗ (t-test, 𝑝 < 0.05).

Methods Test Seen (%) Test Unseen (%)

BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L R@1 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L R@1

PostKS + BERT 0.77 14.16 22.68 4.27 16.59 4.83 0.39 12.59 20.82 2.73 15.25 4.39
TMemNet + BERT 1.61 15.47 24.12 4.98 17.00 23.86 0.60 13.05 21.74 3.63 15.60 16.33
SKT 1.76 16.04 24.61 5.24 17.61 25.36 1.05 13.74 22.84 4.40 16.05 18.19
DiffKS + BERT 2.22 16.82 24.75 6.27 17.90 25.62 1.69 14.69 23.62 5.05 16.82 20.11
DukeNet 2.43 17.09 25.17 6.81 18.52 26.38 1.68 15.06 23.34 5.29 17.06 19.57
SKT+PIPM+KDBTS 2.47 17.14 25.19 7.01 18.47 27.40 1.71 14.83 23.56 5.46 17.14 20.20

MIKe (ours) 2.78∗ 17.76∗ 25.40 7.11 18.78∗ 28.41∗ 2.00∗ 15.64∗ 23.78∗ 5.61 17.41∗ 21.47∗

Table 2: Automatic evaluation results on the Holl-E dataset. Same conventions as in Table 1.

Methods Single golden reference (%) Multiple golden references (%)

BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L R@1 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L R@1

PostKS + BERT 6.54 19.30 28.94 9.89 22.15 3.95 8.49 23.97 32.85 13.10 26.17 6.40
TMemNet + BERT 8.99 24.48 31.65 13.24 25.90 28.44 12.36 28.61 35.29 16.14 29.51 37.30
SKT 17.81 29.41 35.28 21.74 30.06 28.99 24.69 35.78 41.68 28.30 36.24 39.05
DiffKS + BERT 19.08 30.87 36.37 22.88 31.30 29.39 26.20 37.32 42.77 29.57 37.53 38.99
DukeNet 19.15 30.93 36.53 23.02 31.46 30.03 26.83 37.73 43.18 30.13 38.03 40.33
SKT+PIPM+KDBTS 20.07 31.07 36.78 24.29 31.70 30.80 27.49 37.34 43.07 30.91 37.82 40.70

MIKe (ours) 21.14∗ 32.28∗ 37.78 25.31∗ 32.82∗ 31.86∗ 28.52∗ 38.55∗ 44.06 31.92∗ 38.91∗ 41.78∗

for the current KS from two parts (the current user utterance or
previously selected knowledge), leading to better performance of KS.
It is worth noting that MIKe has a stronger ability of generalization
than the baselines. Specifically, the R@1 gap between MIKe and
the strongest baseline SKT+PIPM+KDBTS is 1.01% on Test Seen
(in-domain) and 1.27% on Test Unseen (out-of-domain). The self-
supervised task in ISLe exploits more natural and universal patterns
contained in KGC data compared to other baselines, making MIKe
perform well when fed with out-of-domain data.

Second, MIKe significantly outperforms other baselines in terms
of response generation (see BLEU-4, METEOR, ROUGE-1/2/L) on
both datasets. Note that MIKe has almost the same decoder as these
strong baselines, indicating that the better KS performance of MIKe
further improves the quality of generated responses.

5.2 Human evaluation
Table 3 shows the results of a comparison between MIKe and the
three most competitive baselines (SKT+PIPM+KDBTS, DukeNet,
DiffKS+BERT) on the more challenging WoW dataset; qualitatively
similar results were observed on the Holl-E dataset.

Overall, MIKe achieves the best performance on all metrics on
Test Seen and Test Unseen. MIKe outperforms the baselines in
terms of Appropriateness (evaluating KS), especially having more
obvious advantages over the baselines on Test Unseen. For exam-
ple, the win ratio of MIKe versus the most competitive baseline
SKT+PIPM+KDBTS is 25% on Test Seen and 29% on Test Unseen,
which is consistent with the observations of our automatic evalu-
ation. Surprisingly, in spite of having almost the same decoder as
these baselines, MIKe still has a clear advantage over these base-
lines in terms of Informativeness and Engagingness (evaluating

response generation). The knowledge selected by MIKe is more ap-
propriate and thus the corresponding generated responses contain
more coherent and useful information.

6 ANALYSIS
6.1 Ablation study
To analyze where the improvements of MIKe come from, we con-
duct an ablation study. Table 4 shows the results on the WoW
dataset; qualitatively similar results were observed also for the
Holl-E dataset. We consider four settings: (1) No ISLe (MIKe-ISLe in
Table 4); (2) No initiative discriminator (MIKe-ISLe-ID in Table 4);
(3) No user-initiative selector (MIKe-ISLe-ID-UIS in Table 4); (4) No
system-initiative selector (MIKe-ISLe-ID-SIS in Table 4).

The results show that all components are beneficial for MIKe
because removing any of them will decrease the results. Without
ISLe, the performance of MIKe falls greatly in terms of all metrics.
Concretely, it drops 0.89% and 1.03% in terms of R@1 on Test seen
and Test Unseen, separately, indicating that the training signals
only provided by KS and generation losses are not sufficient to
discriminate the initiative type of KS, and thus it’s necessary to
design ISLe. Without initiative discriminator, the performance of
MIKe further goes down a lot in terms of all metrics compared to the
case without ISLe, dropping by 0.94% and 1.09% in terms of R@1 on
Test Seen and Test Unseen, respectively, whichmeans that explicitly
distinguishing the initiative type of KS is effective. Without either
user-initiative or system-initiative selector, the performance drops
dramatically to the level of TMemNet+BERT, indicating that user-
initiative and system-initiative KS have their own roles and should
be coordinated to work together.



Table 3: Human evaluation results on the WoW dataset.

Methods
Test Seen (%) Test Unseen (%)

Appropriateness Informativeness Engagingness Appropriateness Informativeness Engagingness

Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose

MIKe vs DiffKS + BERT 32 59 9 18 76 6 26 62 12 27 67 6 19 77 4 24 64 12
MIKe vs DukeNet 27 64 9 18 75 7 22 65 13 30 66 4 18 74 8 24 61 15
MIKe vs SKT+PIPM+KDBTS 25 67 8 17 78 5 20 69 11 29 66 5 19 76 5 25 62 13

Table 4: Ablation study on the WoW dataset. -ISLe denotes removing initiative-aware self-supervised learning. -ID denotes
removing initiative discriminator. -SIS and -UIS denote removing system-initiative selector and user-initiative selector.

Methods Test Seen (%) Test Unseen (%)

BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L R@1 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L R@1

MIKe (ours) 2.78 17.76 25.40 7.11 18.78 28.41 2.00 15.64 23.78 5.61 17.41 21.47
MIKe-ISLe 2.63 17.22 25.15 6.97 18.67 27.52 1.67 15.38 23.42 5.28 17.04 20.44
MIKe-ISLe-ID 2.48 17.28 24.90 6.64 18.24 26.58 1.46 14.70 22.87 5.16 16.36 19.35
MIKe-ISLe-ID-UIS 1.70 15.88 24.37 5.17 17.33 23.95 0.89 13.68 22.17 4.09 15.98 16.67
MIKe-ISLe-ID-SIS 1.68 15.76 24.33 5.08 17.21 23.88 0.87 13.44 22.01 3.88 15.79 15.99

Table 5: Statistics about the manual annotation of initiative
type of KS on the WoW dataset.

Initiative type Test Seen (%) Test Unseen (%)

User-initiative KS 47.80 48.70
System-initiative KS 52.20 51.30

6.2 Initiative discrimination evaluation
To verify whether ISLe helps MIKe to discriminate the initiative
type of KS effectively, we again hire annotators on Amazon Me-
chanical Turk to manually annotate the initiative type of KS, and
then regard the manual annotation as ground truth to evaluate the
performance of the initiative discrimination of MIKe.

As for the collection of annotation, we randomly sample 1,000
examples from the two test sets of the WoW dataset, respectively
(1,000 examples is almost one fifth of the two test sets), and each
example is annotated by an annotator. Given an example containing
a context, the ground-truth chosen knowledge and the correspond-
ing response, the annotator needs to distinguish whether the KS
in the given example is user-initiative or system-initiative. Table 5
shows the statistics about the manual annotation on the two test
sets, where we found the initiative type of KS is skewed towards
system-initiative KS.

We evaluate the initiative discrimination of MIKe, MIKe-ISLe,
and a heuristic method with Macro-F1 score and F1 scores for these
two initiative types of KS. For the first two methods, a current KS
is classified into user-initiative KS if 𝑃 (𝑢𝜏 ) in Eq. 4 is greater than
0.5 and system-initiative KS otherwise. For the heuristic method,
a current KS is classified as user-initiative KS if the current user
utterance contains a question mark or begins with a question word,
such as “how”, “why”, “who”, “where”, “what” or “when”, and as
system-initiative KS otherwise.

As shown in Table 6, MIKe markedly outperforms others in
terms of all metrics on both. Specifically, MIKe exceeds MIKe-ISLe
by 11.83% and 14.50% on Test Seen and Test Unseen in terms of
Macro-F1, respectively, indicating that ISLe is very effective in

Table 6: The evaluation results of initiative discrimination on
the WoW dataset. M-F1 denotes Macro F1 percentage. U-F1
and S-F1 denote the F1 percentages for user-initiative and
system-initiative KS, respectively.

Methods Test Seen (%) Test Unseen (%)

M-F1 U-F1 S-F1 M-F1 U-F1 S-F1

MIKe 62.87 61.79 63.95 61.79 61.10 62.48
MIKe-ISLe 51.04 60.59 41.49 47.29 60.89 33.69
Heuristic 51.74 48.16 55.31 52.69 49.52 55.86

helping MIKe to distinguish between the two initiative types of
KS. Though the heuristic method outperforms MIKe-ISLe in some
cases, we found there are two common situations that the heuristic
method cannot handle but MIKe can. First, the current user ut-
terance usually contains implicit information needs without any
question words or question mark, such as “Let’s talk about. . . ” and
“I would like to know. . . ”, and thus the current KS is user-initiative.
Second, the current user utterance can also contains a simple ques-
tion that does not need a knowledge-grounded respons, such as
“really?” and “did you enjoy it?”. In this case, the current KS is still
system-initiative, and the corresponding response should directly
answer the simple question at first and then incorporates the chosen
knowledge, suggesting a new conversational direction.

6.3 Case study
We randomly select two examples from the WoW test set to com-
pare the performance of MIKe, SKT+PIPM+KDBTS, DukeNet and
DiffKS+BERT in Table 7. We see that MIKe chooses more appro-
priate knowledge and hence generates more engaging responses
with the help of its distinctions between the two initiative types
of KS. For instance, in Example 1, given the current user utterance
implicitly suggesting a new topic about “bulls/dream team”, MIKe
identifies the current KS as user-initiative KS and then select a piece
of knowledge about “Jordan”. In contrast, the baselines all ignore
the implicit topic drive by the user and continue to push the current



Table 7: Case study. We marked the chosen piece of knowledge in parentheses before each response and the system utterance
in the context. Note that ✓ and ✗ denote that the chosen knowledge is true or false, respectively.

Example 1 (Test seen) Example 2 (Test unseen)

Knowledge pool

𝐾1: no knowledge used . 𝐾1: no knowledge used .
𝐾2: while basketball is most often played as a team sport with five
players on each side , two-on-two , and one-on-one competitions are
also common .

𝐾2: instagram is a mobile , desktop , and internet - based photo - sharing
application and service that allows users to share pictures and videos
either publicly , or privately to pre-approved followers .

𝐾3: basketball is a limited contact sport played on a rectangular court . 𝐾3: google photos is a photo sharing and storage service developed by
google .

𝐾4: jordan played 15 seasons in the nba for the chicago bulls and wash-
ington wizards . 𝐾4: instagram is owned by facebook .

. . . . . .

Context

User: are you a basketball fan ? User: i hate to admit it but i spend way too much time on instagram !
System: (𝐾2) yes , i am a fan of the five player sport . are you ? System: (𝐾2) i use it for sharing photos and videos
User: not as much as i used to be . i watched the bulls in the 90s when
they were the dream team . (the current user utterance) User: do you have a lot of followers ? (the current user utterance)

Initiative type User-initiative KS System-initiative KS

Response

DiffKS + BERT: (𝐾3 ✗) i do know that basketball is a limited contact
sport played on a rectangular court . DiffKS + BERT: (𝐾3 ✗) i have a google

DukeNet: (𝐾2 ✗) i agree . i like to play basketball . i like the sport with
five players on each side . DukeNet: (𝐾1 ✗) i have a lot of followers .

SKT+PIPM+KDBTS: (𝐾2 ✗) i ’ m not sure but i know that while basket-
ball is most played as a team sport with five players . SKT+PIPM+KDBTS: (𝐾1 ✗) i have not i have not .

MIKe: (𝐾4 ✓) i know that jordan played 15 seasons in the nba for the
chicago bulls and washington wizards .

MIKe: (𝐾4 ✓) i have a lot of followers and i do know that it is owned by
facebook .

KS based on the previously selected knowledge. In Example 2, given
the current user utterance containing a question “do you have a
lot of followers?” that cannot be answered with knowledge, MIKe
identifies the current KS as system-initiative KS and then selects
a piece of knowledge about the owner of Instagram, based on the
previously selected knowledge about the definition of Instagram.
The part “i have a lot of followers” in MIKe’s generated response
answers the simple question at first and the part “i do know that it is
owned by facebook” incorporates the chosen knowledge. No base-
line handles this case well. Specifically, SKT+PIPM+KDBTS ignores
the previously selected knowledge, but cannot find an appropriate
piece of knowledge to answer the question, generating uninfor-
mative responses. These baselines cannot distinguish between the
two initiative types of KS, and so they cannot know which (the
current user utterance or previously selected knowledge) is the
more important feature for the current KS; misled by unimportant
features, their performance on KS suffers.

7 CONCLUSION AND DISCUSSION
In this paper, we propose a mixed-initiative knowledge selection
method (MIKe), which explicitly distinguishes between user-initia-
tive and system-initiative knowledge selection (KS) to enhance
the performance of KS. We also devise an ISLe scheme that allows
MIKe to learn to discriminate the initiative type of KS without man-
ually labeling. Extensive experiments on two benchmark datasets
demonstrate that MIKe achieves state-of-the-art performance, indi-
cating it can select more appropriate knowledge and generate more
informative and engaging responses.

Next, we discuss limitations of MIKe and future work. First, as
shown in Table 6, there is still a large room for MIKe to improve the
performance of discriminating the initiative type of KS. This shows
a limitation of MIKe, that is, the learning scheme ISLe refers to two

assumptions, which lead to inconsistencies in some situations, e.g.,
user-initiative KS may go hand-in-hand with a smooth knowledge
shift, and a smooth knowledge shift may exist between knowl-
edge before and after a missing knowledge gap. In future work,
we plan to develop a semi-supervised scheme that leverages the
self-supervised learning signals and manual annotation together to
improve the performance of initiative discrimination of KS. Second,
compared to previous methods, the introduced initiative discrim-
inator increases the computational burden of our model during
training and inference [49]. We plan to design a simple but effictive
initiative discriminator to improve the efficiency. Finally, KGC has
seen its first applications to the task of conversational search [5, 38]
during the past few years. Thus, we also plan to extend our method
to model the mixed initiative [16] in this scenario.
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