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CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks

Ana Lucic 1 Maartje ter Hoeve 1 Gabriele Tolomei 2 Maarten de Rijke 1 3 Fabrizio Silvestri 2

Abstract

Graph neural networks (GNNs) have shown
increasing promise in real-world applications,
which has caused an increased interest in un-
derstanding their predictions. However, existing
methods for explaining predictions from GNNs do
not provide an opportunity for recourse: given a
prediction for a particular instance, we want to un-
derstand how the prediction can be changed. We
propose CF-GNNEXPLAINER: the first method
for generating counterfactual explanations for
GNNs, i.e., the minimal perturbations to the input
graph data such that the prediction changes. Us-
ing only edge deletions, we find that we are able
to generate counterfactual examples for the major-
ity of instances across three widely used datasets
for GNN explanations, while removing less than
3 edges on average, with at least 94% accuracy.
This indicates that CF-GNNEXPLAINER primar-
ily removes edges that are crucial for the original
predictions, resulting in minimal counterfactual
examples.

1. Introduction
Advances in machine learning (ML) have led to break-
throughs in several areas of science and engineering, ranging
from computer vision (CV) systems, to natural language
processing (NLP) systems and conversational assistants.
Parallel to the increase in performance of AI-based systems,
there is a call for increasing the “understandability” of ML
models (Goebel et al., 2018). Having the ability to under-
stand why an ML model returns a certain output in response
to a given input is important for a range of reasons: know-
ing why an object recognition application detects the wrong
object in a picture might be useful for debugging the appli-
cation, while explaining why a loan application is rejected
is actually a legal requirement in many countries. Having
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Under Review

certified methods for interpreting ML-based predictions will
help enable their use across a variety of applications (Miller,
2017).

Explainable AI (XAI) refers to the set of techniques “focused
on exposing complex AI models to humans in a systematic
and interpretable manner” (Samek et al., 2019); a large
body of work on XAI has emerged in recent years (Guidotti
et al., 2018b). Counterfactual (CF) explanations are used
to explain predictions of individual instances with an op-
portunity for recourse in the form: “If X had been different,
Y would not have occurred” (Stepin et al., 2021). Counter-
factual explanations are based on counterfactual examples:
modifications of the input sample that change the output
response (i.e., prediction).

As an example of the use case counterfactual explanations,
consider an ML application for social media: suppose we
want to predict whether a post shared on a social network
contains misinformation or not. In a social network, a post
is part of an “ecosystem” made up of users, content, groups,
et cetera (Halevy et al., 2020). Fake news detection can
be modeled as a node classification task, where the posts
are the nodes in the graph and the relationships between
the nodes are the edges. A counterfactual explanation for
why a certain post was classified as “fake” could then show
without which of the related posts the post had not been
classified as such.

Graph Neural Networks represent the state-of-the-art in
many tasks involving graph data, like the task in our moti-
vating example (Wu et al., 2020). Existing methods for ex-
plaining the predictions of Graph Neural Networks (GNNs),
have not investigated the problem of counterfactual expla-
nations (Yuan et al., 2020b). In this paper, we address this
gap and present CF-GNNEXPLAINER: the first method for
generating counterfactual explanations for GNNs, which
are defined as the minimal perturbations to the input (graph)
data such that the prediction changes.

Similar to other CF methods proposed in the litera-
ture (Verma et al., 2020; Karimi et al., 2020), CF-
GNNEXPLAINER works by perturbing input data at the
instance-level. In particular, CF-GNNEXPLAINER itera-
tively removes edges from the original adjacency matrix
based on matrix sparsification techniques. We keep track of
the perturbations that lead to a change in prediction and we
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return the perturbation involving the smallest change in the
number of edges.

We evaluate CF-GNNEXPLAINER on three public datasets
for GNN explanations and measure the effectiveness of
our method using four metrics: coverage, explanation size,
subgraph impact (i.e., explanation size relative to graph
size), and accuracy of the generated counterfactual explana-
tions. We find that CF-GNNEXPLAINER is able to generate
counterfactual examples with at least 94% accuracy, while
removing fewer than three edges on average.

Summarizing, we make the following contributions:

1. We formalize the problem of generating counterfactual
explanations for GNNs;

2. We propose a novel method for generating counterfac-
tual explanations for GNNs, CF-GNNEXPLAINER;

3. We propose the first experimental setup for evaluating
counterfactual GNN explanations.

2. Background
In this section we provide background knowledge on Graph
Neural Networks (Section 2.1) and Matrix Sparsification
(Section 2.2), both of which are necessary for understanding
CF-GNNEXPLAINER.

2.1. GNNs

Graphs are structures that represent a set of entities (nodes)
and their relations (edges). Graph Neural Networks (GNNs)
operate on graphs, often via message passing, to produce
representations that can be used in downstream tasks such as
node classification, link prediction and graph classification.
We refer to Battaglia et al. (2018) and Chami et al. (2021)
for an extensive overview of existing GNN methods.

Now, let f be any GNN. Most GNN methods have the form
f(A,X;W ), whereA is an n×n adjacency matrix,X is an
n×p feature matrix (with p features), andW are the learned
weights of f . In other words, A and X are the inputs of f ,
and f is parameterized by W .

Although our CF-GNNEXPLAINER can operate on any type
of GNN, we explain our method with a standard, one-layer
Graph Convolutional Network (GCN) for node classification
(in our experiments we use a three-layer GCN):

f(A,X;W ) = softmax
[
D̃−1/2ÃD̃−1/2XW

]
, (1)

where Ã = A+ I , I is the identity matrix, D̃ii =
∑

j Ãij

are entries in the degree matrix D̃, X is the node feature
matrix, and W is the weight matrix (Kipf & Welling, 2017).

A node’s representation is learned by iteratively updating the
node’s features based on its neighbors’ features. The num-
ber of layers in f determines which neighbors are included:
if there are ` layers, then the node’s final representation only
includes neighbors that are at most ` hops away from that
node in the graph G. The rest of the nodes in G are not
relevant for the computation of the node’s final representa-
tion. We define the subgraph neighbourhood of a node v
as a tuple of the nodes and edges relevant for the computa-
tion of f(v) (i.e., those in the `-hop neighbourhood of f ):
Gv = (Av, Xv), where Av is the subgraph adjacency matrix
and Xv is the node feature matrix for nodes that are at most
` hops away from v. We then define a node v as a tuple of
the form v = (Av, x), where x is the feature vector for v.

2.2. Matrix Sparsification

CF-GNNEXPLAINER uses matrix sparsification to generate
counterfactual examples, inspired by Srinivas et al. (2016).
They propose a method for training sparse neural networks:
given a weight matrix W , a binary sparsification matrix is
learned which is multiplied element-wise with W such that
some of the entries in W are zeroed out. Here, the objective
is to remove entries in the weight matrix in order to reduce
the number of parameters in the model. In our case, instead
of learning a sparsification matrix to zero out weights, we
want to zero out entries in the adjacency matrix in order
to generate counterfactual explanations for GNNs. This
corresponds to removing edges which are crucial for the
prediction.

3. Problem Formulation
In this section, we formalize the problem of generating
counterfactual explanations for GNNs.

3.1. Counterfactual Explanations

In general, a counterfactual example x̄ for an instance x
according to a trained classifier f is found by perturbing
the features of x such that f(x) 6= f(x̄) (Wachter et al.,
2018). An optimal counterfactual example x̄∗ is one that
minimizes the distance between the original instance and
the counterfactual example, according to some distance
function d. The resulting optimal counterfactual explanation
is ∆∗

x = x̄∗ − x (Lucic et al., 2020b). With this in mind,
we can now define what it means to generate counterfactual
explanations for graphs.

3.2. Counterfactual Explanations for Graphs

For graph data, it is not necessarily enough to simply perturb
node features, especially since they are not always available.
This is why we are interested in generating counterfactual
examples by perturbing the graph structure instead. In other
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words, we want to change the relationships between in-
stances, rather than change the instances themselves. There-
fore, a counterfactual example for graph data has the form
v̄ = (Āv, x), where x is the feature vector and Āv is a per-
turbed version of the original Av with some edges removed,
such that f(v) 6= f(v̄). Although it is possible to perturb
x as well, this is not what we focus on in this work, since
the existence of Āv is one of the most important factors that
distinguishes graph data from non-graph data. Moreover,
there already exists an extensive body of work that focuses
on generating counterfactual examples based on feature per-
turbations for non-graph data (Verma et al., 2020; Karimi
et al., 2020).

Following Wachter et al. (2018) and Lucic et al. (2020b),
we generate counterfactual examples by minimizing a loss
function of the form:

L = Lpred(v, v̄|f, g) + βLdist(v, v̄), (2)

where v is the original node and f is the original model.
g is the counterfactual model that generates v̄, and Lpred

is a prediction loss that encourages f(v) 6= f(v̄). Ldist

is a distance loss that encourages v̄ to be close to v, and
β controls how important Ldist is compared to Lpred. We
want to find v̄∗ that minimizes Equation 2: this is the optimal
counterfactual example for v.

4. Method
To tackle the problem defined in Section 3, we propose
CF-GNNEXPLAINER, which generates v̄ = (Āv, x) given
a node v = (Av, x). To illustrate our method and avoid
cluttered notation, let f be a standard, one-layer GCN for
node classification as in Equation 1. (For the experiments
on which we report in Section 6, we use a three-layer GCN.)

4.1. Adjacency Matrix Perturbation

First, we define Āv = P � Av, where P is a binary per-
turbation matrix that sparsifies Av. Our aim is to find P
for a given node v such that f(Av, x) 6= f(P �Av, x). To
find P , we build upon the method by Srinivas et al. (2016)
for training sparse neural networks (see Section 2.2). Our
objective is to zero out entries in the adjacency matrix (i.e.,
remove edges). That is, we want to find P that minimally
perturbs Av, and use it to compute Āv = P � Av. If an
element Pi,j = 0, this results in the deletion of the edge
between node i and node j. When P is a matrix of ones,
this indicates that all edges in Av are used in the forward
pass.

Similar to Srinivas et al. (2016), we first generate an inter-
mediate, real-valued matrix P̂ with entries in [0, 1], apply
a sigmoid transformation, then threshold the entries to ar-
rive at a binary P : entries above 0.5 become 1, while those

below 0.5 become 0. In the case of undirected graphs (i.e.,
those with symmetric adjacency matrices), instead of gen-
erating P̂ directly, we first generate a perturbation vector
which we then use to populate P̂ in a symmetric manner.

4.2. Counterfactual Generating Model

We want our perturbation matrix P to only act on Av, not
Ãv, in order to preserve self-loops in the message passing
of f (i.e., we always want a node representation update to
include the node’s representation from the previous layer).
To accommodate this, we first rewrite Equation 1 for our
illustrative one-layer case to isolate Av:

f(Av, Xv;W ) =

softmax
[
(Dv + I)−1/2(Av + I)(Dv + I)−1/2XvW

](3)

To generate counterfactuals, we propose a new function g,
which is based on f , but it is parameterized by P instead of
by W . We update the degree matrix Dv based on P �Av,
add the identity matrix to account for self-loops (as in D̃v

in Equation 1), and call this D̄v:

g(Av, Xv,W ;P ) =

softmax
[
D̄v

−1/2
(P �Av + I)D̄v

−1/2
XvW

] (4)

In other words, f learns the weight matrix while holding
the data constant, while g is optimized to find a perturbation
matrix that is then used to generate new data points (i.e.,
counterfactual examples) while holding the weight matrix
constant. Another distinction between f and g is that the aim
of f is to find the optimal set of weights that generalizes well
on an unseen test set, while the objective of g is to generate
an optimal counterfactual example, given a particular node
(i.e., v̄ is the output of g).

4.3. Loss Function Optimization

We generate P by minimizing Equation 2. We adopt the
negative log-likelihood (NLL) loss for Lpred:

Lpred(v, v̄|f, g) = −1 [f(v) = f(v̄)] · LNLL(f(v), g(v̄))

(5)

Since we do not want f(v̄) to match f(v), we put a negative
sign in front of Lpred, and include an indicator function to
ensure the loss is active as long as f(v̄) = f(v). Note that f
and g have the same weight matrix W – the main difference
is that g also includes the perturbation matrix P .

For Ldist, we take d to be the element-wise difference be-
tween v and v̄. Since we do not perturb the feature values,
this corresponds to the difference between Av and Āv, i.e.,
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Algorithm 1 CF-GNNEXPLAINER: given a node v =
(Av, x) where f(v) = y, generate the minimal perturbation
of v̄ = (Āv, x), such that f(v̄) 6= y.

Input: node v = (x,Av), trained GNN model f , counter-
factual model g, loss function L, learning rate α, trade-off
parameter β, number of iterations K, distance function d.

f(v) = y # Get GNN prediction
P̂ ← Jn # Initialization

for k ∈ range(K) do
¯v(k) = GET CF EXAMPLE()
L ← L(v, v̄(k)) # Eq 2 & Eq 5
P̂ ← P (k) + α∇P̂L # Update P̂

end for

Function GET CF EXAMPLE()
P ← threshold(σ(P̂ (k)))
Āv ← P �Av

v̄
(k)
cand ← (Āv, x)

if f(v) 6= f(v̄
(k)
cand) then

v̄(k) ← v̄
(k)
cand

if Ldist(v, v̄) ≤ Ldist(v, v̄
(k)) then

v̄∗ ← v̄(k) # Keep track of best CF
end if

end if
return v̄∗

the number of edges removed. For undirected graphs, we
divide this value by 2 to account for the symmetry in the
adjacency matrices. When updating P , we take the gradient
of Equation 2 with respect to the intermediate P̂ , not the
binary P .

4.4. CF-GNNEXPLAINER

We call our method CF-GNNEXPLAINER and summarize
its details in Algorithm 1: given an instance in the test set v,
we first obtain its original prediction from f and initialize P̂
as a matrix of ones, Jn, to ensure that initially no edges are
deleted yet. Next, we run CF-GNNEXPLAINER for a fixed
number of K iterations. To find a counterfactual example,
we use Equation 4. First, we compute P by thresholding
P̂ , as explained in Section 4.1. Then we use P to obtain
the sparsified adjacency matrix which gives us a candidate
counterfactual example. This example is then fed to the
original GNN, f , and if f predicts a different output than
for the original node, we have found a valid counterfactual
example, v̄. We keep track of the “best” counterfactual ex-
ample (i.e., the most minimal according to d), and return
this as the optimal counterfactual example v̄∗ after K iter-
ations. Between iterations, we compute the loss following

Equations 2 and 5, and update P̂ based on the gradient of
the loss. In the end, we retrieve the optimal counterfactual
explanation ∆∗

v = v − v̄∗.

5. Experimental Setup
Since there is no prior work that evaluates counterfactual
examples for GNNs, we provide a detailed description of
experimental design for evaluating counterfactual examples
for GNNs.

5.1. Datasets and Models

We use the TREE-CYCLES, TREE-GRIDS, BA-SHAPES node
classification datasets from Ying et al. (2019) to run our
experiments for generating counterfactual examples. These
are synthetic datasets that were created specifically for the
task of explaining predictions from GNNs. Each dataset
consists of (i) a base graph, (ii) motifs that are attached to
random nodes of the base graph, and (iii) additional edges
that are randomly added to the overall graph. They are
all undirected graphs. The classification task is to deter-
mine whether or not the nodes are part of the motif. The
purpose of these datasets is to have a ground-truth for the
“correctness” of an explanation: for nodes in the motifs, the
explanation is the motif itself (Luo et al., 2020). The dataset
statistics are available in Table 1.

TREE-CYCLES consists of a binary tree base graph with
cycle-shaped motifs, TREE-GRIDS also has a binary tree
as its base graph, with 3×3 grids as the motifs. For BA-
SHAPES, the base graph is a Barabasi-Albert (BA) with
house-shaped motifs, where each motif consists of 5 nodes
(one for the top of the house, two in the middle, and two
on the bottom). Here, there are four possible classes (not
in motif, in motif: top, middle, bottom). We note that
compared to the other two datasets, the BA-SHAPES dataset
is much more densely connected – the node degree is more
than twice as high as that of the TREE-CYCLES or TREE-
GRID datasets, and the average number of nodes and edges
in each node’s computation graph is order(s) of magnitude
larger.

We use the same dataset splits (80% train, 10% validation,
10% test) and training setup as in Ying et al. to train a 3-
layer GCN (hidden size = 20) for each node classification
task. Our GCNs have at least 87% accuracy on the test set.

5.2. Baselines

It is not possible to compare our method to existing methods
for explaining individual predictions from GNNs because
these methods provide explanations in the form of rele-
vant subgraphs, not minimal perturbations, i.e., they are not
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Table 1: Dataset statistics.

TREE TREE BA
CYCLES GRID SHAPES

# classes 2 2 4
# nodes 871 1231 700
# edges 1950 3410 4100

Avg node degree 2.27 2.77 5.87
Avg # nodes in Av 19.12 30.69 304.40
Avg # edges in Av 18.99 33.94 1106.24

meant for generating counterfactual explanations (see Sec-
tion 7). We hope that our method can serve as a meaningful
baseline for future work on counterfactual explanations for
GNNs.

To evaluate CF-GNNEXPLAINER, we compare against 3
different baselines. The first is a random perturbation. We
randomly initialize the entries of P̂ ∈ [−1, 1] and apply the
same sigmoid transformation and thresholding as described
in Section 4.1. We repeat this K times and keep track of
the most minimal perturbation resulting in a counterfactual
example. The second baseline only keeps edges in the 1-hop
neighbourhood of v, while the third removes all edges in
the 1-hop neighbourhood of v.

5.3. Metrics

We generate separate counterfactual examples for each node
in the graph, and evaluate these counterfactual examples in
terms of four metrics: (i) Coverage, (ii) Explanation Size,
(iii) Subgraph Impact, and (iv) Accuracy. Coverage is the
proportion of nodes in the dataset that a method is able
to generate counterfactual examples for; higher values are
better.

Explanation Size is the number of removed edges. It cor-
responds to the Ldist term in Equation 2: the difference
between the original Av and the counterfactual one Āv.
Since we want to have minimal counterfactual examples, we
want a small value for this metric.

Subgraph Impact is the proportion of edges inAv that are re-
moved. A value of 1 indicates all edges inAv were removed,
therefore we want a value close to 0.

Accuracy is the proportion of explanations that are “correct”.
Following Ying et al. (2019); Luo et al. (2020), we only
compute accuracy for nodes that are originally predicted
as being part of the motifs, since accuracy can only be
computed on instances for which we know the ground truth
explanations. An explanation is considered correct if it
exclusively involves edges that are inside the motifs. In our
case, this means only removing edges that are within the
motifs.

5.4. Hyperparameters

We experiment with different optimizers and hyperparam-
eter values for the number of iterations K, the trade-off
parameter β, the learning rate α, and the Nesterov momen-
tum m (when applicable). Specifically, we test the number
of iterations K ∈ {100, 300, 500}, the trade-off parame-
ter β ∈ {0.1, 0.5}, learning rate α ∈ {0.005, 0.01, 0.1, 1},
and Nesterov momentum m ∈ {0, 0.5, 0.7, 0.9}. We test
Adam, SGD and AdaDelta as optimizers. We find that for
all three datasets, the SGD optimizer gives the best results,
with k = 500, β = 0.5, and α = 0.1. For the TREE-
CYCLES and TREE-GRID datasets, we set m = 0, while for
the BA-SHAPES dataset, we use m = 0.9.

5.5. Resources

We run approximately 375 hours of experiments on one
Nvidia TitanX Pascal GPU with access to 12GB RAM. We
found that on these datasets, CF-GNNEXPLAINER takes
approximately 45 seconds on average to generate one coun-
terfactual example when K = 500. All code and datasets
are available in the Supplementary Material.

6. Results
We evaluate CF-GNNEXPLAINER in terms of the metrics
outlined in Section 5.3. The results are shown in Table 2.
In almost all settings, we find that CF-GNNEXPLAINER
outperforms the baselines in terms of Explanation Size,
Subgraph Impact, and Accuracy, which shows that CF-
GNNEXPLAINER satisfies our objective to find minimal
counterfactual examples with high precision.

6.1. Coverage

In terms of Coverage, CF-GNNEXPLAINER outperforms
ONLY-1HOP across all three datasets, and outperforms RM-
1HOP for TREE-CYCLES and TREE-GRID. We find that
RANDOM has the highest Coverage in all cases – it is able
to find counterfactual examples for every single node. In the
following subsections, we will see that this unfortunately
comes at a high cost – RANDOM performs poorly on the
other three metrics, and it does not satisfy our objective of
finding accurate, minimal counterfactual examples.

6.2. Explanation Size

Figures 1 to 4 show histograms of the Explanation Size
for each of the four methods tested. We see that across
all three datasets, CF-GNNEXPLAINER has the smallest
(i.e., most minimal) Explanation Sizes. This is especially
true when comparing to RANDOM and ONLY-1HOP for the
BA-SHAPES dataset, where we had to use a different scale
for the x-axis due to how different the Explanation Sizes
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Figure 1: Histograms showing Explanation Size from RANDOM for each of the three datasets. Left: TREE-CYCLES, Middle:
TREE-GRID, Right: BA-SHAPES. Note the x-axis for BA-SHAPES goes up to 1500.

Figure 2: Histograms showing Explanation Size from ONLY-1HOP for each of the three datasets. Left: TREE-CYCLES,
Middle: TREE-GRID, Right: BA-SHAPES. Note the x-axis for BA-SHAPES goes up to 1500.

Figure 3: Histograms showing Explanation Size from RM-1HOP for each of the three datasets. Left: TREE-CYCLES, Middle:
TREE-GRID, Right: BA-SHAPES. Note the x-axis for BA-SHAPES goes up to 70.

Figure 4: Histograms showing Explanation Size from CF-GNNEXPLAINER for each of the three datasets. Left: TREE-
CYCLES, Middle: TREE-GRID, Right: BA-SHAPES. Note the x-axis for BA-SHAPES goes up to 70.
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were. We postulate that this difference could be because
BA-SHAPES is a much more densely connected graph; it
has fewer nodes but more edges compared to the other two
datasets, and the average number of nodes and edges in
the subgraph neighbourhood is order(s) of magnitude larger
(see Table 1). Therefore, when performing random pertur-
bations, there is lots of opportunity to perturb edges that
do not necessarily need to be perturbed, leading to much
larger Explanation Sizes. When there are many edges in
the subgraph neighbourhood, removing everything except
the 1-hop neighbourhood, as is done in ONLY-1HOP, also
results in large Explanation Sizes. In contrast, the loss func-
tion used by CF-GNNEXPLAINER ensures that only a few
edges are perturbed, which is the desirable behavior.

6.3. Subgraph Impact

CF-GNNEXPLAINER outperforms all three baselines for
all three datasets in terms of Subgraph Impact. We note that
this metric is much lower for CF-GNNEXPLAINER and
RM-1HOP in comparison to the other two methods, which
aligns with the results from Explanation Size.

6.4. Accuracy

We observe that CF-GNNEXPLAINER has the highest Ac-
curacy for the TREE-CYCLES and TREE-GRID datasets,
whereas RM-1HOP has the highest Accuracy for BA-SHAPES.
However, we are unable to calculate the accuracy of RM-
1HOP for the other two datasets since it is unable to generate
any counterfactual examples for nodes in the motifs, likely
contributing to the low Coverage on those datasets.

We observe Accuracy levels upwards of 94% for CF-
GNNEXPLAINER across all datasets, indicating that it is
consistent in correctly removes edges that are crucial for the
initial predictions in the vast majority of cases (see Table 2).

6.5. Summary of the results

Taking a holistic view of the results, we find that for all three
datasets, CF-GNNEXPLAINER can generate counterfactual
examples for the majority of nodes in the test set, while only
removing a small number of edges. For nodes where we
know the ground truth (i.e., those in the motifs) we achieve
at least 94% Accuracy.

Although RANDOM can generate counterfactual examples
for every node, they are not very minimal or accurate. The
latter is also true for ONLY-1HOP – in general, it has the
worst scores for Explanation Size, Subgraph Impact and
Accuracy.

RM-1HOP is the most competitive baseline, but it performs
poorly in terms of Coverage for the TREE-CYCLES and
TREE-GRID datasets, and its Accuracy on these datasets is

Table 2: Experimental results comparing CF-
GNNEXPLAINER (denoted CF-GNN in the table)
and the RANDOM baseline.

TREE TREE BA
Metric Method CYCLES GRID SHAPES

RANDOM 1.00 1.00 1.00
Coverage ONLY-1HOP 0.68 0.68 0.40

RM-1HOP 0.53 0.39 0.78
CF-GNN 0.79 0.93 0.61

RANDOM 4.70 9.06 503.31
Explanation ONLY-1HOP 15.64 29.30 504.18

Size RM-1HOP 2.11 2.27 10.56
CF-GNN 2.09 1.47 2.39

RANDOM 0.21 0.25 0.42
Subgraph ONLY-1HOP 0.87 0.91 0.95

Impact RM-1HOP 0.11 0.08 0.03
CF-GNN 0.10 0.06 0.002

RANDOM 0.63 0.77 0.17
Accuracy ONLY-1HOP 0.45 0.72 0.18

RM-1HOP – – 0.99
CF-GNN 0.94 0.96 0.96

unknown since it is unable to generate any counterfactual
examples for nodes in the motifs.

7. Related Work
In this section we cover the related work that is relevant
for CF-GNNEXPLAINER: methods for GNN explanations
(Section 7.1), adversarial attacks on graphs (Section 7.2),
and counterfactual explanations in general (Section 7.3).

7.1. Methods for GNN explanations

Several approaches have been proposed to explain the pre-
dictions of GNN models – a recent survey of the most rel-
evant work is presented by Yuan et al. (2020b). However,
none of the existing GNN explanation methods are based
on counterfactual explanations, like the one we propose in
this work.

GNNExplainer (Ying et al., 2019) generates local, post-
hoc explanations in the form of (i) a subgraph and (ii) a
subset of node features deemed important to the predic-
tion. It works by sampling many potential subgraphs and
then choosing the one with the highest mutual information
with the original graph. Reliance on a sampling procedure
results in different explanations for the same node when
running GNNExplainer multiple times on the same node
for the same model. Like the work in (Ying et al., 2019),
CF-GNNEXPLAINER also generates post-hoc, local ex-
planations for GNNs. However, CF-GNNEXPLAINER is
not based on finding a relevant subgraph, but on finding a
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minimal set of edge removals that result in an alternative
prediction.

GraphMask (Schlichtkrull et al., 2020) is a post-hoc
method for explaining edge importances in each GNN layer.
This technique provides local explanations in the form of
relevant walks based on erasure search, i.e., looking for the
largest subgraph that can be completely discarded. Graph-
Mask operates by training a classifier to predict whether
an edge can be dropped without affecting the original pre-
dictions. CF-GNNEXPLAINER is similar to GraphMask
in that it also provides post-hoc, local explanations, but
differs in the form those explanations come in, i.e., CF-
GNNEXPLAINER generates counterfactual explanations
whereas GraphMask does not.

GraphLIME (Huang et al., 2020) extends the LIME al-
gorithm (Ribeiro et al., 2016) to deep GNN models and
studies the importance of different node features for node
classification tasks. Given a target node in the input graph,
GraphLime considers its N -hop neighboring nodes and
their predictions as its local dataset. Then a non-linear
surrogate model, Hilbert-Schmidt Independence Criterion
(HSIC) Lasso (Yamada et al., 2014), is employed to fit the
local dataset. Finally, the subset of important features to
explain the HSIC Lasso predictions are considered as the
explanations of the original GNN prediction. This differs
from CF-GNNEXPLAINER since (i) these are not counter-
factual explanations, and (ii) the focus of the explanations
is on the node features as opposed to the graph structure.

Contrastive GNN Explanation (Faber et al., 2020) is a
method specific to explaining graph classification. Similar
to case-based reasoning, explanations for a graph based on
other graphs from the training set: in particular, this resorts
to finding the parts of the graph that make it distant to other
graphs with a different label and close to other graphs with
the same label. Graph similarity is measured in terms of Op-
timal Transport (OT) distance. CF-GNNEXPLAINER also
provides example-based explanations, but there are some
important differences, namely: (i) Contrastive GNN Expla-
nation does not generate new examples but rather locates
existing ones in the training set, (ii) the examples are not
counterfactual. Moreover, Faber et al. (2020) focus on graph
classification while our main task is node classification.

GCN Explanation Baldassarre & Azizpour (2019) and
Pope et al. (2019) propose explainability approaches for
GCNs by extending common CNN explanation techniques.
Explanations come in the form of subgraphs, identifying
nodes with positive and negative contributions to the predic-
tion. These approaches differ from CF-GNNEXPLAINER
since their explanations are not counterfactual.

XGNN (Yuan et al., 2020a) and XAI for Graphs (Schnake
et al., 2020) provide global explanations for GNNs, which

explain the model as a whole. These are in contrast to CF-
GNNEXPLAINER which provides local explanations for
individual predictions.

7.2. Adversarial attacks on graphs

Adversarial attacks (Sun et al., 2018) are also related to
counterfactual examples: they both represent instances ob-
tained from minimal perturbations to the input, which in
turn induce changes in the prediction made by the learned
model. One difference between the two is in the intent:
adversarial examples are meant to fool the model, while
counterfactual examples are meant to explain the prediction
(Lucic et al., 2020b). In the context of graph data, adver-
sarial attack methods try to make minimal perturbations to
the overall graph with the intention of degrading model
performance. They are not necessarily meant to generate
adversarial examples for individual nodes.

7.3. Counterfactual Explanations

There exists a substantial body of work on counterfactual
explanations for tabular, image, and text data (Verma et al.,
2020; Karimi et al., 2020). Some methods treat the underly-
ing classification model as a black-box (Laugel et al., 2017;
Guidotti et al., 2018a; Lucic et al., 2020a), whereas others
make use of the model’s inner workings (Tolomei et al.,
2017; Wachter et al., 2018; Ustun et al., 2019; Kanamori
et al., 2020; Lucic et al., 2020b). However, all of these
methods are based on perturbing feature values to generate
counterfactual examples – they are not equipped to han-
dle graph data with relationships (i.e., edges) between data
points. CF-GNNEXPLAINER is the first method to provide
counterfactual examples for graph data.

8. Conclusion
We propose CF-GNNEXPLAINER, the first method for
generating counterfactual explanations for any GNN by gen-
erating a perturbation matrix that sparsifies the adjacency
matrix. We find that our method is able to generate counter-
factual explanations that are (i) minimal, both in terms of the
absolute number of edges removed (Explanation Size), as
well as the proportion of the subgraph neighbourhood that
is perturbed (Subgraph Impact), and (ii) accurate, in terms
of removing edges that we know to be crucial for the initial
predictions. We evaluate our method on three commonly
used datasets for GNN explanation tasks and find that these
results hold across all three datasets.

For future work, we plan to incorporate node feature pertur-
bations in our framework and extend CF-GNNEXPLAINER
to accommodate both edge and graph classification tasks.
We also plan to investigate the potential of adapting graph
attack methods for generating counterfactual explanations.
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