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Abstract

The iterative nature of the expectation max-
imization (EM) algorithm presents a chal-
lenge for privacy-preserving estimation, as
each iteration increases the amount of noise
needed. We propose a practical private EM
algorithm that overcomes this challenge us-
ing two innovations: (1) a novel moment per-
turbation formulation for differentially pri-
vate EM (DP-EM), and (2) the use of two
recently developed composition methods to
bound the privacy “cost” of multiple EM
iterations: the moments accountant (MA)
and zero-mean concentrated differential pri-
vacy (zCDP). Both MA and zCDP bound
the moment generating function of the pri-
vacy loss random variable and achieve a re-
fined tail bound, which effectively decrease
the amount of additive noise. We present
empirical results showing the benefits of our
approach, as well as similar performance be-
tween these two composition methods in the
DP-EM setting for Gaussian mixture mod-
els. Our approach can be readily extended
to many iterative learning algorithms, open-
ing up various exciting future directions.

1 Introduction

Data on all aspects of our daily lives, such as be-
havioural, health and financial data, are increasingly
collected, stored and analyzed by corporations and
government agencies, and there is a dire need for de-
veloping machine learning tools that can analyze these
data while still guaranteeing the privacy of individuals.
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Much progress has been made recently in developing
privacy-preserving methods [1, 2] and differential pri-
vacy, in particular, is emerging as the dominant notion
of algorithmic privacy [1].

In this paper, we derive differentially private vari-
ants of the expectation maximization (EM) algorithm
which has been widely used to solve statistical prob-
lems in many areas of science including bioinformatics
[3], neuroscience [4], and computer vision [5]. Expec-
tation maximization iteratively estimates the parame-
ters of models with unobserved variables. We present
a very general privacy-preserving EM algorithm which
can be used for any model with a complete-data likeli-
hood in the exponential family. We then apply our
algorithm to the mixture of Gaussians (MoG) den-
sity estimation model and the factor analysis (FA)
model. Having access to a private density estimator
is particularly valuable because it provides a means
to anonymize the data in a principled way, by simply
sampling a dataset from the model and replacing the
original data with this sampled data.

Since differentially private machine learning algo-
rithms usually achieve privacy by adding noise to per-
turb the output of the algorithm or its intermedi-
ate stages, the main challenge in developing privacy-
preserving algorithms is in controlling the associated
loss in statistical efficiency or utility per sample. This
problem is particularly exacerbated for iterative algo-
rithms such as EM. For example, recent work on the
k-means algorithm, a variant of EM for mixture of
Gaussians, requires adding noise to the parameters
where the noise standard deviation is on the order
of the input dimension times the number of iterations
[6], which may necessitate early termination. To avoid
this, more recent work proposes to apply a standard
k-means clustering algorithm to a privatized synop-
sis of the data [7]. Their synopsis generation method
consists of putting rectangular bounding boxes in the
data space and counting how many data points are in
each box. However, this method applies mainly to the
clustering task and for low-dimensional data.
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Instead, we propose to resolve the privacy-utility
dilemma using two key innovations: a private EM for-
mulation based on moment perturbation for sensible
use of the privacy budget per iteration, and recently
proposed composition methods to improve the privacy
cost across many iterations. Our moment perturba-
tion approach is applicable for any model in which
the complete-data likelihood is in the exponential fam-
ily. In such cases, the EM parameters are functions of
moments of latent and observed variables, which we
perturb for privacy. Moment perturbation for differ-
entially private estimators is not a new concept (see
[8, 9]). However, unlike [9], we do not require subsam-
pling of the data.

Furthermore, our algorithm calculates the cumulative
privacy cost using two refined composition methods,
the moments accountant and zCDP. The moments ac-
countant [10] bounds the moments of the privacy loss
random variable. Inspired by CDP [11], zCDP [12]
formulates the moments of the privacy loss random
variable in terms of the Rényi divergence between the
output distributions obtained by running an algorithm
on two datasets that differ in the value of a single in-
dividual. In both cases, the moments bound yields a
tighter tail bound, and consequently, for a given total
privacy budget, allows for a higher per-iteration bud-
get than standard methods. Our experimental results
show that by combining our moment perturbation for-
mulation of privacy-preserving EM with refined com-
position methods, we obtain a practical and effective
algorithm for privately estimating the parameters of
latent variable models.

We start by reviewing differential privacy, the mo-
ments accountant, and EM in Sec. 2. In Sec. 3, we
introduce our general DP-EM framework. We then
derive the DP-EM algorithm for mixture of Gaussians
in Sec. 4. In Sec. 5, we construct the MA and zCDP
formulation for EM under MoGs. In Sec. 6, we pro-
vide the DP-EM algorithm for factor analysis, and we
illustrate the effectiveness of our algorithms in Sec. 7.

2 Background

In this section, we provide background information on
the definitions of algorithmic privacy that we use, the
MA and zCDP formulations which provide a refined
privacy analysis, as well as the general EM algorithm.

Differential privacy. Differential privacy (DP) is
a formal definition of the privacy properties of data
analysis algorithms [1]. Given an algorithm M and
datasets X, X′ differing by a single entry, the privacy
loss random variable of an outcome o is

L(o) = log
Pr(M(X) = o)

Pr(M(X′) = o)
. (1)

M is ε-DP if and only if |L(o)| ≤ ε,∀o. Intuitively, the
definition states that the output probabilities must not
change very much when a single individual’s data is
modified, thereby limiting the amount of information
that the algorithm reveals about any one individual.
An approximate version is (ε, δ)-DP, defined to hold if
and only if |L(o)| ≤ ε, with probability at least 1− δ.

Concentrated differential privacy. Concentrated
differential privacy (CDP) is a recently proposed re-
laxation of differential privacy which aims to make
privacy-preserving iterative algorithms more practical
than for DP while still providing strong privacy guar-
antees. There are two variants of CDP. First, in (µ, τ)-
mCDP [11], L(o) subtracted by its mean µ is sub-

gaussian with standard deviation τ : E[eλ(L(o)−µ)] ≤
eλ

2τ2/2,∀λ ∈ R. Second, in τ -zCDP [12], that arises
from a connection between the moment generating
function of L(o) and the Rényi divergence between the
distributions of M(X) and that of M(X′), we require:

e(α−1)Dα = E[e(α−1)L(o)

] ≤ e(α−1)ατ ,∀α ∈ (1,∞),
where the α-Rényi divergence is denoted by Dα =
Dα(Pr(M(X))||Pr(M(X′))). Observe that in this case

L(o) is also subgaussian but zero-mean. In zCDP, com-
position is straightfoward since the Rényi divergence
between two product distributions is simply the sum
of the Rényi divergences of the marginals.

We will use zCDP rather than mCDP, since many DP
and approximate DP mechanisms can be characterised
in terms of zCDP, but not in terms of mCDP without a
large loss in privacy parameters. This correspondence
will allow us to use zCDP as a tool for analyzing com-
position under the (ε, δ)-DP privacy definition, for a
fair comparison between CDP and DP analyses.1

Moments accountant. The moments accountant
calculates a privacy budget by bounding the moments
of L(o), where the λ-th moment is defined as the log of
the moment generating function evaluated at λ [10]:

αM(λ;D,D′) = logEo∼M(D)

[
eλL

(o)
]
. (2)

The worst case over all the neighbouring databases
αM(λ) is defined as αM(λ) = maxD,D′ αM(λ;D,D′).2

Using Markov’s inequality, for any ε > 0, the λ-th
moment is converted to the (ε, δ)-DP guarantee by3

δ = min
λ

exp [αM(λ)− λε] . (3)

1See Sec. 4 in [12] for a detailed explanation.
2The form of αM(λ) is determined by the mechanism.
3See Appendix A in [10] for the proof.
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The λ-th moment in Eq (2) composes linearly, which
yields the composability theorem (Theorem 2.1 in
[10]). An immediate result from the composibility the-
orem is that the sum of each upper bound on αMj

is
an upper bound on the total λth moment after J com-
positions,

αM(λ) ≤
J∑
j=1

αMj
(λ). (4)

The general EM algorithm. Given N i.i.d. obser-
vations X := {xi}Ni=1, with each observation xi ∈ Rd,
and hidden variables Z := {zi}Ni=1, computing the
maximum likelihood estimator of a vector of model
parameters θ = [θ1, · · · , θL] is analytically intractable,
due to the integral or summation inside the logarithm,

L(θ) = log p(X|θ) = log

∫
dZ p(X,Z|θ). (5)

Instead, one can lower-bound L(θ) using the posterior
distribution over latent variables q(Z) [13],

L(θ) ≥
∫
dZ q(Z) log p(X,Z|θ)

q(Z)

def
= F(q,θ), (6)

where the lower bound is often called free energy [14],
F(q,θ) = 〈log p(X,Z|θ)〉q(Z) + H(q), where H(q) is
the entropy of q(Z). EM alternates between: (1) the
E-step: optimizing F wrt distribution over unobserved
variables holding parameters fixed, i.e., q(j)(Z) =
arg maxq(Z) F(q(Z),θ(j−1)), and (2) the M-step: max-
imizing F wrt parameters holding the latent distribu-
tion fixed

θ(j) = arg max
θ
F(q(j)(Z),θ) (7)

where F(q(j)(Z),θ) = 〈log p(X,Z|θ)〉q(j)(Z) + const
since H(q) does not directly depend on θ.

To understand what EM does, one can rewrite the free
energy in terms of the log-likelihood and the KL diver-
gence terms, F(q,θ) = L(θ)−DKL [q(Z)||p(Z|X,θ)] .
During the E-step, we set q(j)(Z) = p(Z|X,θj−1),
which makes the second term zero and the free en-
ergy equals the likelihood. Then, in the M-step, we
get the maximum likelihood estimate (MLE). For the
maximum a posteriori (MAP) estimate, we add the
log prior for the parameters log p(θ) to the right hand
side of Eq (7).

3 The general DP-EM algorithm

The EM algorithm is frequently used for models
whose joint distribution over observed and unob-
served variables remains in the exponential family:
p(X,Z) = h(X,Z) exp(θ>T (X,Z))/A(θ), while the
marginal p(X) does not. In this case, the free energy
can be rewritten as

F(q,θ) = θ>〈T (X,Z)〉q(Z) −N logA(θ) + c, (8)

where c is some constant wrt θ, and
θ>〈T (X,Z)〉q(Z) =

∑N
i=1 Eq(zi)

∑L
l=1 θlTl(xi, zi).

In the E-step, we compute the expected sufficient
statistics under q, i.e., 〈T (X,Z)〉q(Z). Then, in the
M-step, we compute partial derivatives wrt each
parameter,

∂
∂θl
F(q,θ) = 1

N

N∑
i=1

Eq(zi)Tl(xi, zi)− ∂
∂θl

logA(θ) = 0.

Although it is not straightforward to derive a closed-
form expression for each parameter update due to the
dependence on other parameters in A(θ), it is easy to
see that each parameter update depends on each ex-
pected sufficient statistics, i.e., moments, denoted by
Ml = 1

N

∑N
i=1 Eq(zi)Tl(xi, zi). So, to output priva-

tized parameters, all we need is to perturb the mo-
ments to compensate any single data point’s change.
The sensitivity of the expected sufficient statistics is
given by

∆Ml (9)

= max
|D−D̃|1=1

|Ml(D)− M̃l(D̃)|,

= max
xj ,x′

j

1
N |Eq(zj)Tl(xj , zj)− Eq(z′

j)
Tl(x

′
j , z
′
j)|,

≤ max
xj ,x′

j

1
N |〈Tl(xj , zj)〉q(zj)|+

1
N |〈Tl(x

′
j , z
′
j)〉q(z′

j)
|,

where the last line is due to the triangle in-
equality. The expectation over z can be rewrit-
ten as an inner product, and using Hölder’s in-
equality: |〈Tl(xj , zj)〉q(zj)| = |〈q(zj), Tl(xj , zj)〉| ≤
|q(zj)|1|Tl(xj , zj)|∞, where |q(zj)|1 = 1 and
|Tl(xj , zj)|∞ is maximum over all (xj , zj). As in many
existing works (e.g., [15, 16] among many others), we
also assume that datasets are pre-processed such that
the L2 norm of any xi is less than 1, meaning that any
xi stays within a unit ball. Furthermore, we assume
that q(Z) has a bounded support of Z denoted by Z.
Under these assumptions, the sensitivity is given by
∆Ml = max(xj ,zj)∈(B1(X ), Z)

2
N |Tl(xj , zj)|. Using this

sensitivity, we add noise to each moment and the per-
turbed moments are mapped by a model-specific deter-
ministic function g to the vector of privatized param-
eters, given as θ̃∗ = g({M̃l}l=1,··· ,L), where M̃l=1,··· ,L
are perturbed moments. Using this general framework,
we derive the differentially private EM algorithm for
mixture of Gaussians and factor analysis in the follow-
ing.

4 DPEM for mixture of Gaussians

4.1 EM for Mixture of Gaussians

We consider the mixture of Gaussians (MoG) model as
a first example to derive the DP-EM algorithm. For K
Gaussians and N data points X := {xi}Ni=1, the log-
likelihood under MoG is given by log p(X|π,µ,Σ) =
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 A. Abortion data B. Privatized parameters
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Figure 1: A. The abortion dataset (from destatis.de) provides per-marital-status abortion rates occurred in the state
of Baden-Württemberg in 2015, as well as from which state each individual came from. Due to the lack of exact location,
we simulated 104 data points based on the abortion rate in each state (in grey). Notice that there is only one person who
is originally from the state of North Rhine-Westphalia (top left, in red) and falls into the ‘married’ category. Hence, the
person’s information is completely revealed in the mean parameter if one runs the conventional EM algorithm. B (Left).
Given the 104 data points, by privatizing the mean and variance parameters as illustrated in Sec. 7, the married person’s
information (top left, in red) is now not easily inferrable. B (Right). When we have 50 times more datapoints, the
privatized parameters are closer to those given by the conventional EM algorithm. However, now the mean parameter for
the married category provides aggregated information from several people, which makes it hard to infer any individual
information.

∑N
i=1 log

∑K
k=1 πkN (xi|µk,Σk), where

∑K
k=1 πk = 1.

We denote the parameters by θ := {π,µ,Σ} =
{πk,µk,Σk}Kk=1.

Introducing a binary vector of length K for each data
point, zi ∈ RK , to represent the membership to which
Gaussian each datapoint belongs, e.g., zi,k ∈ {0, 1}
and

∑K
k=1 zi,k = 1, the distribution over each zi is

given by p(zi) :=
∏K
k=1 π

zi,k
k , and the distribution

over all unobserved variables Z = {zi}Ki=1 is given

by p(Z) :=
∏N
i=1 p(zi). The joint distribution over

observed and unobserved variables, which is in the
exponential family, is given by log p(X,Z|π,µ,Σ) =∑N
i=1

∑K
k=1 zi,k[log πk + logN (xi|µk,Σk)]. In the E-

step, we compute the responsibilities as 〈δzi,k=k〉q(Z)

given the parameters from the previous iteration θprev

γi,k = p(zi,k = 1|xi,θprev),

= πkN (xi|µk,Σk)/

K∑
k=1

πkN (xi|µk,Σk), (10)

and in the M-step, we update the parameters θ by

πMLE
k =

Nk
N
, µMLE

k =
1

Nk

N∑
i=1

γi,kxi, (11)

ΣMLE
k =

1

Nk

N∑
i=1

γi,k(xi − µMLE
k )(xi − µMLE

k )>,

where Nk =
∑N
i=1 γi,k. We provide the formulae for

the maximum a posteriori estimate in the supplemen-
tary material.

Before moving to the next section, we would like to
motivate why it is important to construct a privacy
preserving algorithm for MoG. In Fig. 1, we show that
if one runs the EM algorithm for the given dataset, an
individual’s information can be easily revealed by just
looking at the EM parameters, while the noised-up
parameters obtained by the method, which will be de-
scribed next, protect private information effectively.4

4.2 DPEM for MoG

Under MoG, we plug in the responsibilities given in
Eq (10) to the parameter update expressions given in
Eq (11). We then perturb each of these by taking into
account one datapoint’s worst-case difference between
two neighboring datasets. We use εi to denote a pri-
vacy budget allocated per iteration.

εi-DP or (εi, δi)-DP mixing coefficients. For two
neighbouring datasets with a single data point differ-
ence, the maximum difference in π occurs when the
data point xj is assigned to the k-th Gaussian with
γj,k = 1 and the altered data point x′j is assigned
to another, e.g., the k′-th Gaussian, with γ′j,k′ = 1.
Hence, we get the following sensitivity:

∆πMLE = max
xj ,x′

j

K∑
k=1

1
N |γj,k − γ

′
j,k| ≤ 2/N, (12)

4We first pre-processed the data by scaling down the
magnitude with the maximum L2 norm of the data points,
and then added noise to each parameter following the
derivations in Sec. 4. For visualisation, we map the results
back to the original latitude/longtitude space.
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since 0 ≤ γj,k ≤ 1 and
∑K
k=1 γj,k = 1. We add noise

to compensate the maximum difference5

π̃MLE = πMLE + (Y1, · · · , YK), (13)

where Yi ∼i.i.d. Lap(∆πMLE

ε′ ) or N (0, σ2) with σ2 ≥
2 log(1.25/δi)(∆πMLE)2/ε2i . For πMAP

k , we do not
need any additional sensitivity analysis, since the
MAP estimate is a deterministic mapping of the MLE.

εi-DP or (εi, δi)-DP mean parameters. Using the
noised-up Ñk obtained from the noised-up mixing co-
efficients, i.e., Ñk = Nπ̃k, the maximum difference in
mean parameters due to one datapoint’s difference is

∆1µ
MLE
k = max

xj ,x′
j

1
Ñk

∣∣(Ak + γj,kxj)− (Ak + γ′j,kx
′
j)
∣∣
1
,

≤ 2
√
d/Ñk, (14)

where Ak :=
∑N
i=1,i6=j γi,kxi and the L1 term is

bounded by Eq (9). The
√
d term is from the fact

that each input vector is L2-norm bounded by 1.6 We
add noise to the MLE via7

µ̃MLE
k = µMLE

k + (Y1, · · · , Yd), (15)

where Yi ∼i.i.d. Lap(∆1µ
MLE
k /ε′) or N (0, σ2) with

σ2 ≥ 2 log(1.25/δi)(∆2µ
MLE
k )2/ε2i , where ∆2µ

MLE
k =

2/Ñk.

(εi, δi)-DP covariance parameters. For covari-
ance perturbation, we follow the Analyze Gauss (AG)
algorithm [17], which provides (εi, δi)-DP. We first
draw Gaussian random variables

z ∼ N
(
0, βId(d+1)/2

)
, (16)

where β = 2 log(1.25/δi)(∆ΣMLE
k )2/(εi)

2 and the sen-
sitivity of the covariance matrix 8 in Frobenius norm
is given by

∆ΣMLE
k = max

xj ,x′
j

1
Ñk
|vec{(Bk + γj,kxjxj

> − M̃k)

− (Bk + γ′j,kx
′
jx
′
j
> − M̃k)}|2,

≤ 2
Ñk

√√√√ d∑
l=1

d∑
l′=1

(xj,lxj,l′)2 ≤ 2
Ñk

(17)

5To ensure π̃MLE
k ∈ [0, 1], we set π̃MLE

k = 0, if π̃MLE
k <

0, and π̃MLE
k = 1, if π̃MLE

k > 1. Then, we re-normalize
π̃MLE after the projection to ensure

∑K
k=1 π̃

MLE
k = 1.

6∑d
l=1 |xi,l| ≤

(∑d
l=1 |xi,l|2

) 1
2
(∑d

l=1 1
) 1

2 ≤
√
d.

7The MAP estimate only differs from the MLE in the
denominator. Hence, we simply replace Ñk with Ñk + κ0

in Eq (14) in the MAP estimation case.
8The MAP estimate only differs from the MLE in the

denominator. We replace Ñk with Ñk+ν0+d+2 in Eq (17)
in the MAP estimation case.

where Bk :=
∑N
i=1,i6=j γi,kxixi

>, and M̃k =

Ñkµ̃
MLE
k µ̃MLE

k
>. Using z, we construct a upper tri-

angular matrix (including diagonal), then copy the up-
per part to the lower part so that the resulting matrix
Z becomes symmetric. Then, we add this noisy matrix
to the covariance matrix

Σ̃MLE
k := ΣMLE

k + Z. (18)

The perturbed covariance might not be positive defi-
nite. In such case, we project the negative eigenvalues
to some value near zero to maintain positive definite-
ness of the covariance matrix.

Combinations of the perturbations. Among all
the possible combinations of these parameter pertur-
bation mechanisms, we focus on two scenarios. Sce-
nario 1 (which we call LLG) uses the εi-DP Laplace
mechanism for perturbing mixing coefficients (once)
and mean parameters (K times) and the (εi, δi)-DP
Gaussian mechanism for perturbing the covariance pa-
rameters (K times). Since there areK Gaussians, for J
iterations, there will be J(K+1) compositions of εi-DP
mechanism and JK compositions of (εi, δi)-DP mech-
anisms in total in this scenario. Scenario 2 (which we
call GGG) uses the (εi, δi)-DP Gaussian mechanism
for perturbing all the parameters. For J iterations,
there will be J(2K + 1) compositions of (εi, δi)-DP
mechanism in total in this scenario.

5 Compositions for DP-EM for MoGs

Before describing our method, we first describe the
two baseline methods. First, in Linear (Lin) com-
position (Theorem 3.16 [1]), privacy degrades linearly
with the number of iterations. This result is from the
Max Divergence of the privacy loss random variable
being bounded by a total budget. Hence, the linear
composition yields (J(2K+1)εi, JKδi)-DP under sce-
nario LLG and (J(2K + 1)εi, J(2K + 1)δi)-DP under
scenario GGG. Second, Advanced (Adv) composition
(Theorem 3.20 [1]), resulting from the Max Divergence
of the privacy loss random variable being bounded
by a total budget including a slack variable δ, yields
(J(2K + 1)εi(e

εi − 1) +
√

2J(2K + 1) log(1/δ′)εi, δ
′+

JKδi)-DP under scenario LLG and (J(2K+1)εi(e
εi−

1) +
√

2J(2K + 1) log(1/δ′)εi, δ
′ + J(2K + 1)δi)-DP

under scenario GGG.

Our method calculates the per-iteration budget using
the two composition methods below.

zCDP composition (zCDP). z-CDP composition
yields (ρ+ 2

√
ρ log(1/δ), δ)-DP, where

ρ = J(K + 1)ε2i /2 + JK∆Σ2
k/(2σ

2
3)



DP-EM: Differentially Private Expectation Maximization

under scenario LLG and

ρ = J∆π2/(2σ2
1) + JK∆µ2

k/(2σ
2
2) + JK∆Σ2

k/(2σ
2
3)

under scenario GGG, for sensitivity ∆π,∆µk,∆Σk
and σ2

1 ≥ 2 log(1.25/δi)∆π2/ε2i , σ2
2 ≥

2 log(1.25/δi)∆µ2
k/ε

2
i , and σ2

3 ≥ 2 log(1.25/δi)∆Σ2
k/ε

2
i ,

where 0 < εi < 1.

These results are obtained by using the following re-
sults in [12]: Proposition 1.4. If M satisfies εi-DP,
then M satisfies 1

2ε
2
i -zCDP; Proposition 1.6. Gaus-

sian mechanism satisfies ∆2/(2σ2)-zCDP, where ∆ is a
sensitivity; Lemma 1.7. If two mechanisms satisfy ρ1-
zCDP and ρ2-zCDP, respectively, then their composi-
tion satisfies (ρ1 + ρ2)-zCDP; and Proposition 1.3. If
M provides ρ-zCDP, thenM is (ρ+ 2

√
ρ log(1/δ), δ)-

DP for any ρ > 0.

Moments Accountant composition (MA). For
using MA, as a first step, we identify the form of pri-
vacy loss random variable and its λ-th moment in
each mechanism we use. For εi-DP Laplace mecha-
nism ML

i outputting f(D) and x ∼ Lap(0, ∆f
εi

), L(o)

at o = f(D) + x has the following form:

L(o) =


εi, if x < 0, w.p. 1

2

−εi, if x > ∆f, w.p. 1
2e−εi

− εi
∆f (2x−∆f), if 0 ≤ x ≤ ∆f, w.p. 1

2 (1− e−εi).

Following the definition in Eq (2), the λ-th moment is
given by

αL = log

[
λ+ 1

2λ+ 1
eλεi +

λ

2λ+ 1
e(−εi(λ+1))

]
. (19)

For (εi, δi)-DP Gaussian mechanism MG
i with noise

magnitude σ and x ∼ N (0, σ2), L(o) at o = f(D) + x

is L(o) =
(

∆f
σ

) (
x
σ

)
+ 1

2

(
∆f
σ

)2

. The λ-th moment is

then

αG = (λ2 + λ)
(∆f)2

2σ2
. (20)

Note that multi-dimensional Laplace/Gaussian mech-
anisms also have the same form of the λ-th moment
as the scalar version. See the Supplementary material
for the derivation.

For achieving (ε, δ)-DP, the tail bound is given by
δ = minλ exp [J(K + 1)αL + JKαG − λε] under sce-
nario LLG; and δ = minλ exp [J(2K + 1)αG − λε] un-
der scenario GGG. Under each case, we calculate εi
satisfying the tail bound with the fixed budget (ε, δ).
Algorithm 1 summarizes our method.

6 DPEM for Factor Analysis

Under FA, the conditional distributions over observed
variables xi are assumed to be Gaussian, p(xi|zi) =

Algorithm 1 DP-EM under MoG using MA

Require: Dataset D, per-iteration budget (εi, δi) cal-
culated by MA or zCDP composition

Ensure: (ε, δ)-DP parameters θ̃

Iterate until convergence (J iterations):

Compute parameters by plugging in the
responsibilities given in Eq (10).
Noise up π by Eq (13), µ by Eq (15), and
Σ by Eq (18).

N (xi|Wzi,Ψ), and the prior over latent variables zi is
also assumed to be Gaussian: p(zi) = N (zi|0, I).

In this case, the complete-data likelihood is pro-
portional to p(X,Z) ∝ exp(φ(θ)>T (X,Z)), where
φ(θ) is a vectorized version of the concatenated ma-
trix [W>Ψ−1,Ψ−1,− 1

2G
−1], G−1 = I + W>Ψ−1W ,

and where the sufficient statistics are also a vector-
ized version of a concatenated matrix T (X,Z) =

[
∑N
i=1 xizi

>,
∑N
i=1 xixi

>,
∑N
i=1 zizi

>].

Due to conjugacy the posterior over zi is also Gaussian,
where the first and second moments are given by z̄i =
GW>Ψ−1xi and 〈zizi>〉 = G + z̄iz̄i

>. The expected
sufficient statistics become a function of the data sec-
ond moment matrix, denoted by Λ := 1

N

∑N
i=1 xixi

>,

〈T (X,Z)〉q(Z)

= N
[
ΛΨ−1WG>, Λ, G+GW>Ψ−1ΛΨ−1WG>

]
.

For privacy-preserving EM, we perturb Λ by Analyze
Gauss [17], resulting in a perturbed matrix Λ̃, which
we use when updating the parameters by

Wnew =
[
Λ̃Ψ−1WG>

] [
G+GW>Ψ−1Λ̃Ψ−1WG>

]−1

,

Ψnew = diag
[
Λ̃−WGW>Ψ−1Λ̃

]
.

until convergence, at no extra privacy cost. Therefore,
unlike MoGs, FA only requires perturbing the data sec-
ond moment matrix once for privacy preservation. The
EM iterations are then post-processing steps which are
free from cumulative differential privacy loss.

7 Experiments

We used four real-world datasets to test our algorithm.
In all datasets, we preprocessed the data such that the
input vectors had maximum norm 1.

Stroke dataset was used in [18] for predicting the
occurrence of a stroke within a year after an atrial
fibrillation diagnosis. We used 100 principal compo-
nents (d = 100) of 4, 096 raw features (conditions and
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Figure 2: Stroke dataset. Test log-likelihood per data
point as a function of cumulative privacy loss after 20 EM
iterations. We fit the data with MoG using the conven-
tional EM first (in black dotted line). We then ran the
private EM algorithm with a different per-iteration pri-
vacy budget resulting from different composition methods,
in order to achieve (ε, δ)-DP EM parameters, where ε varies
from 0.1 to 4 and δ is fixed to 10−4. We fixed δi = 10−6

when using Gaussian mechanisms.

medicines) recorded from 50, 345 patients, by assum-
ing that the private database was given in this form.
We divided the extracted dataset into 10 different pairs
of training (90%) and test sets (10%), and reported the
average test log-likelihood per datapoint across the 10
independent trials in Fig. 2, setting k = 10.

Overall, the GGG scenario yielded higher test log-
likelihoods than the LLG scenario, so we focused on
this method in our experiments. We found that us-
ing the zCDP and MA compositions resulted in more
accurate estimates, while also requiring less privacy
budget, compared to other compositions. zCDP per-
formed better than MA with a small privacy budget ε,
but they both performed similarly well with a larger
budget. The difference with small ε may be due to
only searching over integer values of λ for MA, which
we do for computational reasons, following [10].

Life Science dataset is from the UCI repository [19].
The dataset contains 26,733 records, consisting of 10
principal components from chemistry and biology ex-
periments (d = 10). Following other approaches (e.g.,
[20]), we set k = 3. We divided the dataset into 10
different pairs of training (90%) and test sets (10%),
and reported the average test log-likelihood per data
point across the 10 independent trials in Fig. 3. In
this experiment, we focused on scenario GGG. Using
the zCDP and MA compositions once again resulted
in more accurate estimates while requiring less privacy
budget than linear and advanced compositions.

Gowalla dataset contains the social network’s users’
check-in locations in terms of longitude and latitude
(d = 2). The total number of data points is 1,256,384,
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Figure 3: Life Science dataset Test log-likelihood per
data point as a function of cumulative privacy loss after
10 EM iterations. We fit the data with MoG using the
conventional EM first (in black dotted line). We then ran
the DP-EM algorithm (GGG combination) with a different
per-iteration privacy budget resulting from different com-
position methods, in order to achieve (ε, δ)-DP EM param-
eters, where ε varies from 0.1 to 4 and δ is fixed to 10−4.
We fixed δi = 10−8.

which we divided into 10 cross-validation sets. We
then performed k-means clustering and compared our
method to a differentially private k-means clustering
algorithm, DPLloyd [6]. The standard Lloyd algo-
rithm for k-means clustering first partitions the data
into k clusters, with each point assigned to be in the
same cluster as the nearest centroid, and then up-
dates each centroid to be the center of the data points
in the cluster. As summarized in [7], the DPLloyd
adds noise to the updated centroids. Specifically, the
Laplace noise is added to the number of data points
assigned to each cluster as well as to the sum of each
coordinate of the data points assigned to each cluster.
Hence, the sensitivity becomes d + 1. In the original
DPLloyd algorithm, due to the conventional compo-
sition theorem for DP, their noise distribution follows
Lap((d+ 1)J/ε) for J iterations. We also tested the
DPLloyd algorithm with zCDP compositions, which
resulted in better performance in terms of normalized
intra-cluster variance (NICV) across the 10 test sets.
Our algorithm for k-means clustering also perturbs the
centroids by adding the Laplace noise with zCDP com-
position, where the sensitivity of the mean locations is
given in Eq (14). We set ε = 0.01 and δ = 10−4

for both algorithms. As shown in Fig. 4, our method
achieves smaller NICV than DPLloyd, even with a very
small value of ε.

Olivetti Faces dataset is used to illustrate our pri-
vate factor analysis method9. The dataset consists of
ten different images for each of 40 distinct subjects

9We obtained the dataset from http://scikit-learn.
org/, but the dataset is originally from AT&T Laborato-
ries Cambridge.
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Figure 4: k-Means Clustering. Visualisation of clustering results with total privacy budget ε = 0.01 and tolerance
δ = 10−4. The center locations are depicted in gray cross. The numbers in parenthesis are normalised intra-cluster
variance (NICV) values obtained by each method. Left The DPLloyd algorithm with linear composition performed
poorly due to the relatively high level of additive noise. Middle DPLloyd with zCDP composition performed better than
the original version. Right Our algorithm achieves smaller NICV than two variants of DPLloyd given the same privacy
budget.

Priv FA
(0.3)

nonPriv
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Priv FA
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Figure 5: Private Factor Analysis. Visualisation of each column of estimated W (reshaped as 64 by 64 images).
Top: Non-private EM. Middle: DP-EM with ε = 0.3 and δ = 10−4. Bottom: DP-EM with ε = 0.2 and δ = 10−4.

(N = 400), where each image is 64 by 64, resulting in
4096 features (d = 4096). Each pixel is a floating point
value on the interval [0, 1]. Each image was treated as a
datapoint, rather than each subject, though this could
readily be done via group privacy [1]. We set the la-
tent dimension to 10. We tested non-private EM, DP-
EM with ε = 0.2 and ε = 0.3 (fixing δ = 10−4), and
showed each column of the estimated loading matrix
W in Fig. 5. With ε = 0.2 (bottom) the components
were noisy, but with ε = 0.3 (middle) the FA com-
ponents’ faces were nearly as recognizable as for the
non-private FA algorithm (top), thereby accurately re-
covering a set of typical faces in the dataset.

8 Conclusion

We have developed a practical algorithm that outputs
accurate and privatized EM parameters based on mo-
ment perturbation under the MA and zCDP composi-
tion analyses, which effectively decrease the amount of
additive noise for the same expected privacy guarantee
compared to the standard analysis. We illustrated the

effectiveness of our algorithm on four datasets. Based
on our results, we recommend the use of zCDP compo-
sition analysis for EM, since it performed better than
MA in some regimes and is easier to compute. Further-
more, we found that the GGG combination performed
better than LLG under these composition methods in
the context of EM, which perhaps makes sense since
the zCDP and MA compositions are tailored to the
Gaussian mechanism.

The private EM algorithms for the mixture of Gaus-
sians and factor analysis models we discussed in this
paper are clearly only two examples of a much broader
class of models to which our private EM framework ap-
plies. Our positive empirical results with EM strongly
suggest that these ideas are likely to be beneficial for
privatizing many other iterative machine learning al-
gorithms. In future work, we plan to apply this gen-
eral framework to other inference methods. This fits
our broader vision that practical privacy preserving
machine learning algorithms will have an increasingly
relevant role to play in our field.
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