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Abstract
Ecologists have long sought to understand how the dynamics of natural populations
are affected by the environmental variation those populations experience. A transfer
function is a useful tool for this purpose, as it uses linearization theory to show how
the frequency spectrum of the fluctuations in a population’s abundance relates to the
frequency spectrum of environmental variation. Here, we show how to derive and
to compute the transfer function for a continuous-time model of a population that is
structured by a continuous individual-level state variable such as size. To illustrate,
we derive, compute, and analyze the transfer function for a size-structured population
model of stony corals with open recruitment, parameterized for a common Indo-
Pacific coral species complex. This analysis identifies a sharp multi-decade resonance
driven by space competition between existing coral colonies and incoming recruits.
The resonant frequency is most strongly determined by the rate at which colonies
grow, and the potential for resonant oscillations is greatest when colony growth is
only weakly density-dependent. While these resonant oscillations are unlikely to be a
predominant dynamical feature of degraded reefs, they suggest dynamical possibilities
for marine invertebrates in more pristine waters. The size-structured model that we
analyze is a leading example of a broader class of physiologically structured population
models, and the methods we present should apply to a wide variety of models in this
class.
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1 Introduction

Ecologists have long sought to understand how environmental variation affects the
dynamics of populations in nature (e.g., Ives 1995; Higgins et al. 1997; Bjørnstad
and Grenfell 2001; Greenman and Benton 2003, among many others). One way to
build this understanding is to compare the frequency spectrum (also called the power
spectrum, or just spectrum) of the fluctuations in a population’s abundance to the
frequency spectrum of the environmental fluctuations that act upon the population
(Nisbet and Gurney 1982; Greenman and Benton 2005a). Comparing these spectra
reveals how the endogenous processes acting within a population amplify, muffle,
or otherwise translate environmental fluctuations into oscillations in the population’s
dynamics.

One useful tool for comparing spectra in population models is a transfer function,
whose use in population ecology was pioneered by Gurney and Nisbet (1980), Nis-
bet and Gurney (1982). To calculate a transfer function, one first constructs a model
for the population dynamics that depends on one or more time-varying environmen-
tal drivers and converges to a locally stable equilibrium when the environment is
constant. The model is linearized about its constant-environment equilibrium, and the
linearized model is transformed to the frequency domain. Solving the resulting system
of equations yields an expression for the Fourier transform of the population fluctu-
ations as a linear function of the Fourier transform(s) of the environmental driver(s).
The frequency-dependent proportionality between the two spectra gives the trans-
fer function. Transfer functions are especially useful for characterizing resonances
in population dynamics, in which endogenous feedback within the population pre-
disposes the population to oscillate at a particular harmonic frequency in suitably
perturbed environments. Transfer functions and related linearization approaches have
since been used to study, for example, models of infectious disease (Ruxton 1996),
fisheries (Bjørnstad et al. 2004; Worden et al. 2010), and simple food webs (Ripa et al.
1998).

In this paper, we provide new methods to derive and to compute transfer functions
for a size-structured population model in continuous time. This model is a leading
example of a broader class of physiologically structured, continuous-time population
models (PSPMs) in which individuals are classified by one or more continuous state
variables such as size. PSPMs provide a natural modeling framework for analyzing
nonlinear dynamical phenomena that result from size- or stage-mediated interactions,
such as resource competition between juveniles and adults (ten Brink et al. 2019), size-
dependent maturation (de Roos and Persson 2013), and cannibalism (Claessen et al.
2000). The now-mature theory of PSPMs is described in Metz and Diekmann (1986)
and Diekmann et al. (2007), while de Roos (1997) provides a gentler introduction. We
conjecture that the methods we describe here can be extended to many other PSPMs.

Our work is motivated by a size-structured model of the common Indo-Pacific
reef-forming coral species complex Pocillopora verrucosa. Previously, we used this
model to investigate coral population dynamics in strongly disturbedwaters (Hall et al.
2021). Our analysis there found that, in a disturbance-free environment, coral cover
exhibited underdamped dynamics that eventually converged to a stable equilibrium.
The underdamped dynamics suggest that environmental stochasticity could drive reg-
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Fig. 1 Environmental stochasticity excites quasi-cycles in the Pocillopora verrucosa model. Panels a–c
show 400 yr of simulated dynamics when a colony growth, b colony mortality, or c recruitment fluctuates
in response to environmental variation, while panel d shows dynamics when all three vital rates fluctuate
concurrently and independently. When the environment is held constant at its time-averaged value, coral
cover converges to a steady state of≈ 0.525. (Coral cover is measured as a proportion of available substrate,
and is thus dimensionless.) Simulations were initiated at this steady state, and the first 200 yr were discarded
to eliminate transients. More details about the simulation methods are given in Sect. 3.2

ular oscillations in total coral cover in moderately disturbed environments (Nisbet
and Gurney 1976), and simulations confirm that this is so (Fig. 1). Here, we compute
transfer functions to characterize the resonant frequency in these dynamics, and study
how resonance depends on the population’s underlying vital rates.

More broadly, this model contributes to a rich literature on size-structured pop-
ulation models for openly recruiting populations of benthic marine invertebrates. A
prevailing theme to emerge from this literature is that intraspecific space competition
creates delayed density dependence that promotes population oscillations, especially
when available substrate is scarce (Roughgarden et al. 1985). Essentially, established
individuals and incoming recruits all compete for, and are limited by, available sub-
strate. Thus, the growth of existing colonies interferes with the recruitment of new
colonies that will comprise the bulk of the population some time hence. In deter-
ministic models, the resulting population oscillations can manifest either as stable
population cycles or as decaying oscillations en route to a stable point equilibrium.
The mathematical study of these populations was pioneered by Roughgarden et al.
(1985), and has been continued by Bence and Nisbet (1989), Pascual and Caswell
(1991), Muko et al. (2001), and Artzy-Randrup et al. (2007).

The rest of this paper proceeds as follows. First, we present a size-structured popu-
lation model with environmental forcing. The unforced version of this model derives
from the classic McKendrick–von Foerster model (McKendrick 1925; Von Foerster
1959), and a more detailed presentation of its construction can be found in, e.g., de
Roos (1997). We then derive the transfer functions for this model. To illustrate, we
then calculate the transfer functions for our P. verrucosa model. Subsequent numer-
ical explorations show how the resonant oscillations in the coral model are affected
by changes in vital rates, density-dependent growth, and self-seeding. The appendix
describes how to compute the transfer functions, while the supplementary material
provides additional figures and results as well as R computer code (2018) to repro-
duce all primary results.
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2 Mathematical Development

2.1 A Size-Structured PopulationModel with Environmentally ForcedVital Rates

We develop our results in the context of a continuous-time model for a size-structured
population. Use x ∈ R to denote the size of an individual in this population. We
assume that size is the lone individual-level state variable, meaning that individuals
of the same size at the same time will experience the same demographic fate. Let x0
denote the size of new individual entering the population, and let x1 > x0 denote
the maximum size an individual can attain. The population state is described by the
size distribution of individuals at time t , denoted n(t, x), such that n(t, x) dx is the
population density of individuals with sizes in (x, x + dx) at time t .

We assume that an individual’s demography depends on n(t, x) only through the
total population size C(t). (We use C(t) in anticipation of the coral model to follow.)
Let A(x) be the contribution of a size x individual to the total population size. In the
coral model, A(x) will be the planar area of a coral colony. Then we have simply

C(t) =
∫ x1

x0
A(x) n(t, x) dx . (1)

A size-structured population model requires specifying three demographic vital
rates: growth, mortality, and fecundity.We assume that each of these rates may depend
on an individual’s size x , the total population size C(t), and a separate, time-varying
environmental input for each rate. Use g(x,C(t), E1(t)) to denote the growth rate of
a size x individual when the total population size is C(t) and the environmental input
affecting growth is E1(t). The growth rate is simply the time derivative of an individ-
ual’s size with respect to time. Similarly, use μ(x,C(t), E2(t)) and β(x,C(t), E3(t))
to denote the mortality and fecundity rates of a size x individual, respectively, when
the total population size is C(t). The environmental inputs affecting mortality and
fecundity are E2(t) and E3(t), respectively. The fecundity rate is the rate at which an
individual parent contributes new offspring to the population.

Together with Eq. 1, assembling the components yields the full model (see de Roos
(1997) for details)

∂n(t, x)

∂t
+ ∂g(x,C(t), E1(t)) n(t, x)

∂x
= −μ(x,C(t), E2(t)) n(t, x) , (2a)

g(x0,C(t), E1(t)) n(t, x0) =
∫ x1

x0
β(x,C(t), E3(t)) n(t, x) dx . (2b)

Equation 2 is a size-structured, nonlinear, environmentally forced version of the
McKendrick–von Foerster model (McKendrick 1925; Von Foerster 1959), where
Eq. 2a is a conservation equation and Eq. 2b is a boundary condition.
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2.2 Derivation of the Transfer Function for a Size-Structured PSPM

The main contribution of this paper is a method to derive and compute the transfer
functions for the model in Eqs. 1–2. Before embarking on the derivation, we preview
it briefly to make its destination clear. We require that the environmental fluctuations
are generated by a stationary process, and we use E∗

i to denote the time-averaged
values of the environmental variables Ei (t) for i = 1, 2, 3. We also require that
the total population size C(t) approaches a locally stable equilibrium C∗ when the
Ei (t) are held constant at E∗

i . The model is linearized about its constant-environment
equilibrium, with deviations of C(t) and Ei (t) from equilibrium defined as

C(t) = C(t) − C∗ , (3a)

φi (t) = Ei (t) − E∗
i . (3b)

Now define the Fourier transforms of C(t) and φi (t) as C̃(ω) and φ̃i (ω), respectively,
where ω is the angular frequency and we recall that a Fourier transform is defined as,
for example,

C̃(ω) =
∫ ∞

−∞
C(t) e−iωt dt . (4)

Ultimately, we seek an expression for C̃(ω) in the form

C̃(ω) = T1(ω)φ̃1(ω) + T2(ω)φ̃2(ω) + T3(ω)φ̃3(ω). (5)

The term Ti (ω) is the transfer function for the environmental driver Ei (t), as it
“transfers” the environmental spectrum φ̃i (ω) to the population spectrum C̃(ω).
The derivation of the transfer functions proceeds in three steps. First, the “Murphy
trick” (Murphy 1983; Metz and Diekmann 1986) is used to reformulate the model in
terms of an individual’s age. Second, the reformulated model is linearized about its
equilibrium and then transformed to the spectral domain using standard techniques.
Third, the resulting system of equations is solved to yield an expression in the form
of Eq. 5. This concludes the preview.

We first use the “Murphy trick” (Murphy 1983; Metz and Diekmann 1986) to
reformulate the model in Eqs. 1–2 in terms of an age-distribution m(t, a) and a size-
at-age function x(t, a) for individuals in the population. Here, m(t, a) da gives the
abundance of individuals at time t with ages in the interval (a, a + da) and x(t, a)

gives the size of age a individuals at time t . The reformulated model is

∂m(t, a)

∂t
+ ∂m(t, a)

∂a
= −μ(x(t, a),C(t), E2(t))m(t, a) (6a)

m(t, 0) =
∫ x1

x0
β(x(t, a),C(t), E3(t))m(t, a) da , (6b)

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= g(x(t, a),C(t), E1(t)) , (6c)
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x(t, 0) = x0 , (6d)

C(t) =
∫ ∞

0
A(x(t, a))m(t, a) da. (6e)

Next, define the “birth rate” b(t) = ∫ x1
x0

β(x(t, a),C(t), E3(t))m(t, a) da as the rate
at which new individuals enter the population. Also define F(t, a) as the survival of
individuals recruited at time t − a to age a; we call F(t, a) the survival function.
Writing m(t, a) = b(t − a)F(t, a) allows the model to be rewritten in terms of PDEs
for x(t, a) and F(t, a) and a renewal equation for b(t), leading to

∂F(t, a)

∂t
+ ∂F(t, a)

∂a
= −μ(x(t, a),C(t), E2(t))F(t, a), (7a)

F(t, 0) = 1, (7b)

∂x(t, a)

∂t
+ ∂x(t, a)

∂a
= g(x(t, a),C(t), E1(t)), (7c)

x(t, 0) = x0 , (7d)

C(t) =
∫ ∞

0
b(t − a) A(x(t, a))F(t, a) da, (7e)

b(t) =
∫ ∞

0
b(t − a) β(x(t, a),C(t), E3(t))F(t, a) da. (7f)

We next linearize Eq. 7 about its equilibrium in the usual way. Let F∗(a),
x∗(a), C∗, b∗, and E∗

i denote the equilibrium values of F(t, a), x(t, a), C(t),
b(t), and Ei (t), respectively. Write the equilibrium growth-at-age, mortality-at-
age, fecundity-at-age, and area-at-age relationships as g∗(a) = g(x∗(a),C∗, E∗

1 ),
μ∗(a) = μ(x∗(a),C∗, E∗

2 ), β∗(a) = β(x∗(a),C∗, E∗
3 ), and A∗(a) = A(x∗(a)),

respectively. Define the following deviations from equilibrium, along with those in
Eq. 3:

B(t) = b(t) − b∗ , (8a)

ξ(t, a) = x(t, a) − x∗(a) , (8b)

f (t, a) = F(t, a) − F∗(a). (8c)

Use g∗
x (a), g∗

C (a), and g∗
E1

(a) to denote the partial derivative of g(x,C, E1) with
respect to x , C , and E1, respectively, evaluated at age a and at equilibrium. That is,
for example,

g∗
x (a) = ∂g(x,C, E1)

∂x

∣∣∣∣
(x,C,E1)=(x∗(a),C∗,E∗

1 )

. (9)

Denote the equivalent partial derivatives of mortality (μ∗
x (a), μ∗

C (a), and μ∗
E2

(a))
and fecundity (β∗

x (a), β∗
C (a), and β∗

E3
(a)) similarly. Also use A∗

x (a) to denote the
derivative d A(x)/dx evaluated at x = x∗(a). Linearization thus yields the following
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first-order approximation of Eq. 7 in the neighborhood of the equilibrium

∂ f (t, a)

∂t
+ ∂ f (t, a)

∂a
= −μ∗(a) f (t, a)

− [
μ∗
x (a) ξ(t, a) + μ∗

C (a) C(t) + μ∗
E2

(a) φ2(t)
]F∗(a)

(10a)

f (t, 0) = 0 , (10b)

∂ξ(t, a)

∂t
+ ∂ξ(t, a)

∂a
= g∗

x (a) ξ(t, a) + g∗
C (a) C(t) + g∗

E1
(a) φ1(t) , (10c)

ξ(t, 0) = 0 , (10d)

C(t) =
∫ ∞

0

{B(t − a)A∗(a)F∗(a) + b∗A∗(a) f (t, a)

+b∗A∗
x (a)ξ(t, a)F∗(a)

}
da, (10e)

B(t) =
∫ ∞

0

{
B(t − a)β∗(a)F∗(a) + b∗β∗(a) f (t, a)

+ b∗ [
β∗
x (a)ξ(t, a) + β∗

C (a)C(t) + β∗
E3

(a)φ3(t)
]F∗(a)

}
da.

(10f)

Next, let C̃(ω), B̃(ω), ξ̃ (ω, a), f̃ (ω, a), and φ̃i (ω) be the Fourier transforms of
C(t), B(t), ξ(t, a), f (t, a), and φi (t), respectively. Taking the Fourier transformation
of Eq. 10 then yields

∂ f̃ (ω, a)

∂a
= − (

μ∗(a) + iω
)
f̃ (ω, a)

−
[
μ∗
x (a) ξ̃ (ω, a) + μ∗

C (a) C̃(ω) + μ∗
E2

(a) φ̃2(ω)
]
F∗(a) , (11a)

f̃ (ω, 0) = 0 , (11b)

∂ξ̃ (ω, a)

∂a
= (

g∗
x (a) − iω

)
ξ̃ (ω, a) + g∗

C (a) C̃(ω) + g∗
E1

(a)φ̃1(ω) , (11c)

ξ̃ (ω, 0) = 0 , (11d)

C̃(ω) =
∫ ∞

0

{
e−iωa A∗(a)B̃(ω)F∗(a) + b∗A∗(a) f̃ (ω, a)

+b∗A∗
x (a)ξ̃ (ω, a)F∗(a)

}
da, (11e)

B̃(ω) =
∫ ∞

0

{
e−iωaβ∗(a)B̃(ω)F∗(a) + b∗β∗(a) f̃ (ω, a)

+ b∗ [
β∗
x (a)ξ̃ (ω, a) + β∗

C (a)C̃(ω) + β∗
E3

(a)φ̃3(ω)
]
F∗(a)

}
da. (11f)

Finally, we solve for C̃(ω) in terms of φ̃1(ω), φ̃2(ω), and φ̃3(ω) by following a path
similar to the appendix of Gurney and Nisbet (1980). To begin, note that in Eq. 11c
holding ω constant gives is a linear differential equation for ξ̃ (ω, a). Thus we can use
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an integrating factor to solve for ξ̃ (ω, a) as

ξ̃ (ω, a) =
∫ a

0

(
g∗
C (x)C̃(ω) + g∗

E1
(x)φ̃1(ω)

)
exp

(∫ a

x
(g∗

x (y) − iω) dy

)
dx . (12)

Now factor C̃(ω) and φ̃1(ω) out of the integral to obtain

ξ̃ (ω, a) = ξ̃C (ω, a)C̃(ω) + ξ̃1(ω, a)φ̃1(ω) (13)

with

ξ̃C (ω, a) =
∫ a

0
g∗
C (x) exp

(∫ a

x
(g∗

x (y) − iω) dy

)
dx , (14a)

ξ̃1(ω, a) =
∫ a

0
g∗
E1

(x) exp

(∫ a

x
(g∗

x (y) − iω) dy

)
dx . (14b)

Next, plugging the solution for ξ̃ (ω, a) into Eq. 11a allows us to re-write Eq. 11a as

∂ f̃ (ω, a)

∂a
= − (

μ∗(a) + iω
)
f̃ (ω, a)

+K1(a) C̃(ω) + K2(a) φ̃1(ω) + K3(a) φ̃2(ω) (15)

with

K1(a) = −
(
μ∗
x (a)ξ̃C (ω, a) + μ∗

C (a)
)
F∗(a) , (16a)

K2(a) = −μ∗
x (a)ξ̃1(ω, a)F∗(a) , (16b)

K3(a) = −μ∗
E2

(a)F∗(a). (16c)

This can also be solved with an integrating factor to obtain

f̃ (ω, a) = f̃C (ω, a)C̃(ω) + f̃1(ω, a)φ̃1(ω) + f̃2(ω, a)φ̃2(ω) (17)

in which

f̃C (ω, a) =
∫ a

0
K1(x) exp

(∫ a

x
−(μ∗(y) + iω) dy

)
dx , (18a)

f̃1(ω, a) =
∫ a

0
K2(x) exp

(∫ a

x
−(μ∗(y) + iω) dy

)
dx , (18b)

f̃2(ω, a) =
∫ a

0
K3(x) exp

(∫ a

x
−(μ∗(y) + iω) dy

)
dx . (18c)
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Finally, plugging solutions for ξ̃ (ω, a) and f̃ (ω, a) into Eqs. 11e–11f gives, after
some algebra,

C̃(ω) = ψb(ω)B̃(ω) + ψC (ω)C̃(ω) + ψ1(ω)φ̃1(ω) + ψ2(ω)φ̃2(ω), (19a)

B̃(ω) = ηb(ω)B̃(ω) + ηC (ω)C̃(ω) + η1(ω)φ̃1(ω) + η2(ω)φ̃2(ω) + η3(ω)φ̃3(ω) ,

(19b)

where

ψb(ω) =
∫ ∞

0
e−iωa A∗(a)F∗(a) da, (20a)

ψC (ω) = b∗
∫ ∞

0

[
A∗
x (a)ξ̃C (ω, a)F∗(a) + A∗(a) f̃C (ω, a)

]
da, (20b)

ψ1(ω) = b∗
∫ ∞

0

[
A∗
x (a)ξ̃1(ω, a)F∗(a) + A∗(a) f̃1(ω, a)

]
da , (20c)

ψ2(ω) = b∗
∫ ∞

0
A∗(a) f̃2(ω, a) da , (20d)

ηb(ω) =
∫ ∞

0
e−iωaβ∗(a)F∗(a) da , (20e)

ηC (ω) = b∗
∫ ∞

0

[
β∗
x (a)ξ̃C (ω, a)F∗(a) + β∗(a) f̃C (ω, a) + β∗

C (a)F∗(a)
]
da ,

(20f)

η1(ω) = b∗
∫ ∞

0

[
β∗
x (a)ξ̃1(ω, a)F∗(a) + β∗(a) f̃1(ω, a)

]
da , (20g)

η2(ω) = b∗
∫ ∞

0
β∗(a) f̃2(ω, a) da , (20h)

η3(ω) = b∗
∫ ∞

0
β∗
E3

(a)F∗(a) da. (20i)

Note that Eq. 19 provides a linear system of equations that show implicitly howfluc-
tuations in the environmental drivers combine to generate fluctuations in the model’s
two fundamental variables, total population size C(t) and total population birth rate
b(t). The integrals in Eq. 20 are merely the coefficients in this linear system. Solving
Eq. 19 for C̃(ω) thus yields an expression in the form of Eq. 5, with

T1(ω) = (1 − ηb(ω)) ψ1(ω) + ψb(ω)η1(ω)

(1 − ηb(ω)) (1 − ψC (ω)) − ψb(ω)ηC (ω)
, (21a)

T2(ω) = (1 − ηb(ω)) ψ2(ω) + ψb(ω)η2(ω)

(1 − ηb(ω)) (1 − ψC (ω)) − ψb(ω)ηC (ω)
, (21b)

T3(ω) = ψb(ω)η3(ω)

(1 − ηb(ω)) (1 − ψC (ω)) − ψb(ω)ηC (ω)
. (21c)

Equation 21 provides the transfer functions that we seek.
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While the formulae for the transfer functions look opaque, they have a noteworthy
structure. Each transfer function is a ratio, and those ratios share a common denomi-
nator. Moreover, the terms that capture how the vital rates depend on environmental
variation, g∗

E1
(a),μ∗

E2
(a), and β∗

E3
(a), only affect the numerators of the transfer func-

tions, while the terms capturing the density-dependence, g∗
C (a), μ∗

C (a), and β∗
C (a),

only affect the denominator. Terms that describe the size-dependence of vital rates
affect both the numerator and denominator. This structure parallels the structure of
Bjørnstad et al. (2004)’s transfer functions for discrete-time, age-structured models.
There, as Bjørnstad et al. (2004) observed, the transfer functions also took the form of
ratios, with numerators that integrated the effects of environmental stochasticity, and
denominators that integrated the effects of direct and delayed density dependence.

Finally, because both C̃(ω) and φ̃i (ω) scale with C∗ and E∗
i , we find it more useful

to compute a scaled transfer functions Ti,s(ω) that satisfy

C̃(ω)

C∗ = T1,s(ω)
φ̃1(ω)

E∗
1

+ T2,s(ω)
φ̃2(ω)

E∗
2

+ T3,s(ω)
φ̃3(ω)

E∗
3

. (22)

Simple algebra shows that

Ti,s(ω) = E∗
i

C∗ · Ti (ω). (23)

The appendix describes how to calculate the transfer functions by approximating
the integrals in Eq. 20 with the numerical solution of a system of coupled ODEs
(Kirkilionis et al. 2001).

3 Application

3.1 Coral Model

We illustrate this method by calculating the transfer functions for a size-structured
population model of the common Indo-Pacific coral species complex Pocillopora
verrucosa as it occurs at 10m depth on the north shore of Mo’orea, French Polynesia.
More details about the model and its parameterization can be found in Hall et al.
(2021).

Stony corals are colonial organisms. We count a colony as a discrete individual
because individual polyps in the same colony are tightly coupled physiologically
(Mackie 1986). Size is a natural state variable for coral colonies, because the colony
demography is thought to be determined by the colony’s size (Hughes 1984; Madin
et al. 2014), and because colony size is more easily measured than colony age. We
quantify the size of a colony by its effective diameter, such that the planar area of a
diameter x colony is A(x) = π(x/2)2.

Let n(t, x) give the size distribution of the population at time t in units of colonies
perm2. Coral population abundance is usually measured by the proportion of available
habitat covered by live colonies. Following this practice, C(t) in the model (Eq. 1)
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Fig. 2 Size-dependent vital rates for the Pocillopora verrucosa model. a Size-dependent component of
growth, g0(x). b Size-dependent mortality rate, μ(x). Redrawn from Hall et al. (2021)

gives the proportion of substrate covered by live coral. We will define demographic
inputs so that both colony growth and recruitment are 0 when C(t) = 1, thus ensuring
that C(t) ≤ 1. The proportion of available substrate is then just 1 − C(t).

For P. verrucosa, newly settled spat have a diameter of x0 = 0.4 mm (Babcock
1991), and mature coral colonies have a maximum diameter of x1 = 0.5 m (Veron
2000). We model colony growth by setting g(x,C(t), E1(t)) = g0(x) × g1(C(t)) ×
E1(t), where g0(x) captures the size-dependence of growth, g1(C(t)) captures density-
dependence, and the environmental driver has an average value of E∗

1 = 1.We estimate
g0(x) from annual photoquadrat monitoring of apparent P. verrucosa colonies from
2011–2018 (P. J. Edmunds, personal communication). Our fit suggests that g0(x)
takes a quadratic, concave form, constrained so that colonies stop growing when
they reach their maximum size (Fig. 2a). Because the reef from which these data
were obtained was recovering from a large die-off in 2002–2010 (Kayal et al. 2012;
Holbrook et al. 2018), the colonies in the data set are all small (x ≤ 0.12 m), and thus
our fit requires substantial extrapolation. To capture density dependence, we follow
previous modeling work (Muko et al. 2001) and assume that growth is proportional to
free space, g1(C(t)) = 1−C(t). Different forms of density-dependence are explored
in Sect. 3.3 below.

For mortality, we consider only backgroundmortality that acts more or less steadily
through time. We do not consider episodic mortality events such as mass bleaching
or outbreaks of corallivores that occur as distinct mortality pulses. Following Madin
et al. (2014), we estimate a convex relationship between mortality and size, with
mortality lowest for intermediate-sized colonies (Fig. 2b). This convex relationship
arises because small colonies are most susceptible to overgrowth from space competi-
tors (Ferrari et al. 2012), and large colonies are most susceptible to fragmentation or
dislodgement from hydrodynamic stress (Madin et al. 2014). Our mortality curve is
parameterized to match the mortality of small colonies observed by Holbrook et al.
(2018). Little seems to be known about density-dependence in coral mortality, so
we follow previous modeling work (Roughgarden et al. 1985; Artzy-Randrup et al.
2007) in assuming that mortality is independent of population density. Like growth,
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we assume that the environment acts multiplicatively on mortality, and so we set
μ(x,C(t), E2(t)) = μ(x)E2(t), where μ(x) captures size-dependent mortality and
E∗
2 = 1.
Like most coral reefs, the coral populations at Mo’orea are thought to recruit pri-

marily by immigration of pelagic larvae spawned elsewhere (Holbrook et al. 2018).
Thus, we depart from the closed-population model in Sect. 2 and assume instead that
immigrating larvae arrive at a rate s E3(t), where s gives the average immigration
rate and E∗

3 = 1. We follow previous modeling work (Roughgarden et al. 1985;
Artzy-Randrup et al. 2007) in assuming that the proportion of immigrating larvae
that successfully settle equals the proportion of available substrate. Thus, successful
recruits enter the population at the rate s E3(t)(1 − C(t)). This assumption changes
the boundary condition of the model (Eq. 2b) to

g(x0,C(t), E1(t)) n(t, x0) = s E3(t) (1 − C(t)) . (24)

Note that the coral model can be found as a special case of the general model in Sect.
2 by setting β(x,C(t), E3(t)) = s E3(t)(1 − C(t))A(x)/C(t). This recruitment
model also simplifies calculation of the transfer functions, because the “birth rate”
b(t) now depends on the population state only through the population size, C(t), as
b(t) = sE3(t)(1 − C(t)). Making this substitution at Eq. 7e allows us to replace
Eqs. 7e–7f with the single equation

C(t) =
∫ ∞

0
s E3(t − a) (1 − C(t − a)) A(x(t, a))F(t, a) da. (25)

We thus eliminate the need to track b(t), which simplifies many of the subsequent
steps.

We use data from Holbrook et al. (2018) to estimate s = 50 colonies m−2 yr−1.
With these parameters, the model gives an average population size in which corals
cover slightly more than half of the available substrate, C∗ ≈ 0.525.

3.2 Transfer Function

Scaled transfer functions for the P. verrucosa model show sharp peaks at a frequency
ofω/2π ≈ 0.0273 cycles per yr, corresponding to a cycle period of≈ 36.5 yr (Fig. 3).
These sharp peaks indicate that stochastically excited resonancewill emerge inC(t), as
long as the spectra of the environmental drivers do not contain sharp peaks themselves.
The frequencies at which the peak occurs are not exactly the same for the three transfer
functions, but they differ by < 1%. The modulus of the scaled transfer function at
the resonant frequency is roughly 3 times greater for growth and mortality than for
recruitment, reflecting the greater sensitivity of coral cover to growth and mortality in
this model (Hall et al. 2021).

To verify this resonance, we used the Escalator Boxcar Train (EBT) method (de
Roos 1988) to simulate dynamics with stochastically forced vital rates (Fig. 1). In
brief, the EBT divides the population into a collection of cohorts, where each cohort
consists of individuals that enter the population during a time interval of length 
t .
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A system of coupled ODEs then tracks the abundance of each cohort and the average
size of the individuals in each cohort. To add environmental forcing, we allowed either
E1(t), E2(t), or E3(t) to be a piecewise constant function with separate values for
the time intervals [0,
t), [
t, 2
t), . . .. Successive values of the forcing variable
were determined by a first-order autoregression process with a stationary coefficient
of variation of

√
0.1 ≈ 0.32, and a correlation between successive values of 0.9. We

used a time step of 
t = 0.1 yr. Thus, in these simulations the environmental varia-
tion is “pink,” that is, enriched in low-frequency oscillations, as befits environmental
fluctuations in nature (Halley 1996). Simulations clearly show the resonance emerging
at the frequency predicted by the transfer functions (Fig. 1), and with much greater
sensitivity to fluctuations in growth or mortality than to fluctuations in recruitment.
In addition, we fit a smoothed periodogram to longer (5000 yr) simulations, which
estimated spectral peaks in the Fourier transform of coral cover at 0.0270, 0.0260, and
0.0282 cycles per yr when growth, mortality, or recruitment fluctuated alone, respec-
tively, and at 0.0254 cycles per yr when all three vital rates fluctuated concurrently.

3.3 Numerical Explorations

To better understand of how colony vital rates affect resonance in this model, we
conducted several numerical experiments. First, we multiplied growth, mortality, and
recruitment functions by a factor between 0.5 and 2 and computed the resulting fre-
quency andmodulus of the peak in the scaled transfer function.When changing growth
and mortality, we scaled recruitment so that equilibrium cover would remain constant.
Colony growth has the most straightforward effect on resonance, as faster growth
accelerates oscillations by allowing incoming recruits to rebuild cover more quickly
during the cycle’s rebound phase (Fig. 4a). However, colony growth has a more com-
plicated effect on the amplitude of resonant cycles, as the strength of resonance peaks
at an intermediate growth rate (Fig. 4d). Mortality also has a complicated effect on
resonance (Fig. 4b, e), perhaps becausemortality affects both the high-mortality bottle-
neck for smaller corals and the clearance of older, larger colonies from the population.
Increased recruitment has a small effect, slowing resonant oscillations while increas-
ing their amplitude (Fig. 4c, f). Because we did not fix equilibrium cover when varying
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recruitment, the effect of recruitment on resonance is likely explained by recruitment’s
effect on average cover.

Second, although there is empirical evidence that colonies grow more slowly
in crowded conditions (Tanner 1997), little is known about exactly how density-
dependence affects growth. Our assumption that growth is proportional to free space
is motivated by an appeal to parsimony, and precedent from previous modeling work
(Muko et al. 2001). In the Supplementary Information, we show that resonant cycles
become more frequent and smaller in amplitude as density-dependence in growth
becomes stronger (Fig. S1b, c). This agrees with Artzy-Randrup et al. (2007)’s find-
ing that strong density dependence in growth dampens population oscillations by
allowing colony growth to counterbalance departures from equilibrium cover more
rapidly.

Finally, we conducted a third numerical experiment to investigate how internal
recruitment, or “self-seeding,” affects resonance. Empirical evidence for the impor-
tance of internal recruitment of corals varies widely (Sammarco and Andrews 1989;
Gilmour et al. 2009; Baskett et al. 2010), while environmental change threatens to
disrupt larval connectivity among reefs (Jones et al. 2009). In the Supplementary
Information, we show that the frequency of resonance is almost entirely indepen-
dent whether a population recruits internally or externally (Fig. S3A). However,
self-seeding dampens resonant oscillations (Fig. S3B). Closed populations are more
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strongly buffered against resonant oscillations because increased space competition
caused by an excess of coral cover is partially counterbalanced by an overproduction
of recruits, whose growth in subsequent years dampens the ensuing oscillation. This
result contrasts withmodels of space competition for unstructured populations (Levins
1969) in which open recruitment stabilizes population dynamics more strongly than
closed recruitment.

4 Discussion

The primary contribution of this article is a method to derive and compute the
transfer function for a size-structured population model in continuous time. This
size-structured model is a leading example of a more general class of physiologi-
cally structured, continuous-time population models (PSPMs) in which individuals
are classified by one or more continuously valued state variables (Metz and Diekmann
1986; de Roos 1997; Diekmann et al. 2007).We conjecture that the methods described
here can be adapted to a wide variety of PSPMs.

Our study of the common Indo-Pacific coral Pocillopora verrucosa illustrates how
transfer functions identify resonant oscillations that may emerge in suitably noisy
environments. In the model, resonant oscillations are caused by intraspecific space
competition in which high coral cover at the cycle peak interferes with the growth and
recruitment of small, young colonies thatwill constitute the bulk of the population a few
decades hence (Roughgarden et al. 1985; Pascual and Caswell 1991; Artzy-Randrup
et al. 2007). Resonant oscillations are more pronounced when colonies grow slowly
(Fig. 4), when colony growth is only weakly affected by local crowding (Fig. S1), or
when populations recruit primarily by larval immigration (Fig. S3). Becausemost coral
populations today are severely degraded, it is unlikely that multi-decade resonance
will be the chief dynamical feature of contemporary coral populations. Our model
is thus offered to demonstrate how transfer functions can be derived and computed
for PSPMs, and to suggest the potential for resonant oscillations in openly recruiting,
size-structured populations with intraspecific space competition.

These methods point to a variety of avenues for future work. First, our coral exam-
ple uses a simple description of how environmental variation impacts the vital rates
that determine population dynamics. In particular, in the model, environmental fluc-
tuations affect all individuals identically, regardless of their size. More mechanistic or
more nuanced descriptions of the effects of environmental variation may lead to more
complex transfer functions. Greenman & Benton have used network methods to show
that population spectra in discrete-time models may depend strongly on which subset
of the population is impacted by environmental fluctuations (Greenman and Benton
2005a, b). Their results are based on analysis of the eigenstructure of the underlying
model. It stands to reason that similar theory may hold for PSPMs, although general
methods for calculating eigenvalues and eigenvectors for PSPMs are not yet known.

Second, like any linearization approach, transfer functions work best when envi-
ronmental perturbations are modest and the dynamics remain in the neighborhood of
a single attracting equilibrium. While the transfer function for the coral model accu-
rately predicts the frequency and amplitude of stochastically excited oscillations under
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moderate environmental noise, we suspect the linearization works well in this case
because the dynamics generated by the unforced model are relatively well behaved. In
contrast, linearization fares less well at predicting spectral peaks in strongly nonlin-
ear models capable of more complex dynamical behaviors (Blarer and Doebeli 1999;
Reuman et al. 2006). A more complete theory of frequency spectra in PSPMs that
extends beyond the domain of locally linear approximations awaits future work.

Finally, the transfer-function approach used here envisions populations that are buf-
feted by environmental stochasticity. However, McKane and Newman (2005), Alonso
et al. (2007), Black and McKane (2010) have shown that resonant oscillations can
be excited by demographic stochasticity as well. In their approach, the shape of the
power spectra is predominantly (though not entirely) determined by the Jacobian of
a fully stochastic model’s mean-field approximation. As a result, the power spectrum
is largely governed by the system’s predominant modes of relaxation towards equi-
librium, as those modes are captured by the eigenstructure of the linearized model
(Greenman and Benton 2005b). Thus, we anticipate that a fully stochastic version
of a size-structured population model would exhibit similar resonance frequencies to
those identified by the transfer function of a PSPM. A formal study of this possibility
provides a promising direction for future research.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s11538-021-00915-2.
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5 Appendix: Computing the Transfer Function

To compute the transfer functions,we approximate the integrals in Eq. 20with a system
of ODE that can be integrated forward in time (Kirkilionis et al. 2001). To begin, it
is necessary to find the equilibrium values (C∗, b∗). While techniques for doing so
appear in Kirkilionis et al. (2001), we include that calculation here for completeness.
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We seek to solve the system of equations

C∗ = b∗
∫ ∞

0
A∗(a)F∗(a) da , (26a)

1 =
∫ ∞

0
β∗(a)F∗(a) da , (26b)

where we recall that A∗(a), F∗(a), and β∗(a) all depend on C∗. Define the following
integrals to age a:

L0(a) =
∫ a

0
A∗(y)F∗(y) dy , (27a)

L1(a) =
∫ a

0
β∗(y)F∗(y) dy. (27b)

To avoid integrating to infinity, choose a large age, aε , such that survival to age aε

is sufficiently small. For this article, we use aε = 103. We approximate Li (∞) by
Li (aε) for i = 0, 1. For a given guess of C∗, we can find Li (aε) by integrating the
following system of ODE

dx∗(a)

da
= g(x∗(a),C∗, E∗

1 ) , x∗(0) = x0;
dF∗(a)

da
= −μ(x∗(a),C∗, E∗

2 )F∗(a) , F∗(0) = 1;
dL0(a)

da
= A(x∗(a))F∗(a) , L0(0) = 0;

dL1(a)

da
= β(x∗(a),C∗, E∗

3 )F∗(a) , L1(0) = 0.

(28)

The pair (C∗, b∗) is then approximated by using a standard numerical root-finding
algorithm to solve

C∗ = b∗L0(aε) , (29a)

1 = L1(aε). (29b)

At each iteration of the root-finding algorithm, L0(aε) and L1(aε) are found by numer-
ically solving Eq. 28.

Having found (C∗, b∗), we then compute the transfer functions in a similar fashion.
Define the following integrals to age a:

Ψb(ω, a) =
∫ a

0
e−iωy A∗(y)F∗(y) dy , (30a)

ΨC (ω, a) = b∗
∫ a

0

[
A∗
x (y)ξ̃C (ω, y)F∗(y) + A∗(y) f̃C (ω, y)

]
dy , (30b)
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Ψ1(ω, a) = b∗
∫ a

0

[
A∗
x (y)ξ̃1(ω, y)F∗(y) + A∗(y) f̃1(ω, y)

]
dy , (30c)

Ψ2(ω, a) = b∗
∫ a

0
A∗(y) f̃2(ω, y) dy , (30d)

Hb(ω, a) =
∫ a

0
e−iωyβ∗(y)F∗(y) dy , (30e)

HC (ω, a) = b∗
∫ a

0

[
β∗
x (y)ξ̃C (ω, y)F∗(y) + β∗(y) f̃C (ω, y) + β∗

C (y)F∗(y)
]
dy ,

(30f)

H1(ω, a) = b∗
∫ a

0

[
β∗
x (y)ξ̃1(ω, y)F∗(y) + β∗(y) f̃1(ω, y)

]
dy , (30g)

H2(ω, a) = b∗
∫ a

0
β∗(y) f̃2(ω, y) dy , (30h)

H3(ω, a) = b∗
∫ a

0
β∗
E3

(y)F∗(y) dy. (30i)

For a given ω, the integrals in Eq. 30 can then be approximated by solving the
following system of equations together with those in Eq. 28 to age aε :

∂ξ̃C (ω, a)

∂a
= (

g∗
x (a) − iω

)
ξ̃C (ω, a) + g∗

C (a) , ξ̃C (ω, 0) = 0;
∂ξ̃1(ω, a)

∂a
= (

g∗
x (a) − iω

)
ξ̃1(ω, a) + g∗

E1
(a) , ξ̃1(ω, 0) = 0;

∂ f̃C (ω, a)

∂a
= − (

μ∗(a) + iω
)
f̃C (ω, a)

− μ∗
x (a) ξ̃C (ω, a)F∗(a) − μ∗

C (a)F∗(a) , f̃C (ω, 0) = 0;
∂ f̃1(ω, a)

∂a
= − (

μ∗(a) + iω
)
f̃1(ω, a) − μ∗

x (a) ξ̃1(ω, a)F∗(a) , f̃1(ω, 0) = 0;
∂ f̃2(ω, a)

∂a
= − (

μ∗(a) + iω
)
f̃2(ω, a) − μ∗

E2
(a)F∗(a) , f̃2(ω, 0) = 0;

∂Ψb(ω, a)

∂a
= e−iωa A∗(a)F∗(a) , Ψb(ω, 0) = 0;

∂ΨC (ω, a)

∂a
= b∗ [

A∗
x (a)ξ̃C (ω, a)F∗(a) + A∗(a) f̃C (ω, a)

]
, ΨC (ω, 0) = 0;

∂Ψ1(ω, a)

∂a
= b∗ [

A∗
x (a)ξ̃1(ω, a)F∗(a) + A∗(a) f̃1(ω, a)

]
, Ψ1(ω, 0) = 0;

∂Ψ2(ω, a)

∂a
= b∗A∗(a) f̃2(ω, a) , Ψ2(ω, 0) = 0;

∂Hb(ω, a)

∂a
= e−iωaβ∗(a)F∗(a) , Hb(ω, 0) = 0;

∂HC (ω, a)

∂a
= b∗ [

β∗
x (a)ξ̃C (ω, a)F∗(a) + β∗(a) f̃C (ω, a) + β∗

C (a)F∗(a)
]

,
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HC (ω, 0) = 0;
∂H1(ω, a)

∂a
= b∗ [

β∗
x (a)ξ̃1(ω, a)F∗(a) + β∗(a) f̃1(ω, a)

]
, H1(ω, 0) = 0;

∂H2(ω, a)

∂a
= b∗β∗(a) f̃2(ω, a) , H2(ω, 0) = 0;

∂H3(ω, a)

∂a
= b∗β∗

E3
(a)F∗(a) , H3(ω, 0) = 0. (31)

The transfer functions are then approximated by setting ψb(ω) = Ψb(ω, aε);
ψC (ω) = ΨC (ω, aε); ψi (ω) = Ψi (ω, aε) for i = 1, 2; ηb(ω) = Hb(ω, aε);
ηC (ω) = HC (ω, aε); and η j (ω) = Hj (ω, aε) for j = 1, 2, 3 in Eq. 21.
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