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Abstract

A key feature of many nonlinear time series models is that they allow for the possibility
that the model structure experiences changes, depending on for example the state of
the economy or of the �nancial market. A common property of these models is that it
generally is not possible to fully understand the structure of the model by considering
the estimated values of the model parameters only. Put di�erently, it often is diÆcult to
interpret a speci�c nonlinear model. To shed light on the characteristics of a nonlinear
model it can then be useful to consider the e�ect of shocks on the future patterns of a
time series variable. Most interest in such impulse response analysis has concentrated
on measuring the persistence of shocks, or the magnitude of the (ultimate) e�ect of
shocks. Interestingly, far less attention has been given to measuring the speed at which
this �nal e�ect is attained, that is, how fast shocks are `absorbed' by a time series.
In this paper we develop and implement a framework that can be used to assess the
absorption rate of shocks in nonlinear models. The current-depth-of-recession model
of Beaudry and Koop (1993), the 
oor-and-ceiling model of Pesaran and Potter (1997)
and a multivariate STAR model are used to illustrate the various concepts.
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1 Introduction

Nonlinear time series models are frequently considered in, for example, empirical macroe-

conomics and empirical �nance to describe and forecast the relevant time series variables,

see Granger and Ter�asvirta (1993), Kuan and Liu (1995) and Franses and van Dijk (2000),

among many others. Typical examples of such variables are GNP, industrial production

and unemployment, all of which display pronounced business cycle 
uctuations, and ex-

change rates and interest rates. A key feature of many nonlinear time series models is that

they allow for the possibility that the model structure (lag length, parameters, variance)

experiences changes, depending on the state of the economy (expansions or recessions) or

of the �nancial market (for example, high or low volatility). Examples of often considered

models are the threshold autoregressive [TAR] model, see Tong (1990), the smooth transi-

tion (auto)regression [ST(A)R] model, see Ter�asvirta (1994, 1998), the Markov-Switching

model put forward in Hamilton (1989), and the Arti�cial Neural Network [ANN] model

advocated by Kuan and White (1994), among others.

A common property of many of these (univariate) nonlinear models (and this holds

true even more so for their multivariate counterparts) is that it generally is not possible

to completely grasp the implied properties of time series generated by the model by only

considering (estimates of) the model parameters. Put di�erently, it is diÆcult to interpret

a speci�c nonlinear model and to understand why it can or should be useful in a particular

application. Therefore, to shed light on the characteristics of a nonlinear model it often

is useful to consider the e�ect of shocks on the future patterns of a time series variable.

Impulse response functions provide a convenient tool to measure such e�ects of shocks.

Most interest in impulse response analysis has concentrated on measuring the persistence

of shocks, indicated by the magnitude of the (ultimate) e�ect of shocks. Interestingly, far

less attention has been given to measuring the speed at which this �nal e�ect is attained,

that is, how fast shocks are `absorbed' by a time series. Due to the properties of impulse

responses in linear models, they can be used straightforwardly to gain insight in this rate of

absorption of shocks as well, see, for example, L�utkepohl (1991) for a discussion of impulse

response functions in linear models. However, impulse response analysis in nonlinear

models is more complicated, as discussed at length in Koop, Pesaran and Potter (1996).

The complications arise because in nonlinear models (1) the e�ect of a shock depends on

the history of the time series up to the point where the shock occurs, (2) the e�ect of a
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shock need not be proportional to its size and (3) the e�ect of a shock depends on shocks

occurring in periods between the moment at which the impulse occurs and the moment at

which the response is measured. Because of these properties of impulse responses, assessing

the absorption speed of shocks in nonlinear models also is more involved, as will become

clear below. In this paper we develop and implement a framework that can be used to

assess the absorption rate of shocks in nonlinear models. Among others, we demonstrate

that our absorption measure can be used to address relevant questions such as

1. Are positive and negative shocks absorbed at the same speed?

2. Are shocks absorbed at the same speed by the di�erent components of a multivariate

time series?

3. Are shocks absorbed at the same speed by linear combinations of the components in

a multivariate time series and by the individual components themselves?

Hence, together with familiar impulse response functions, our absorption measure al-

lows one to obtain a more complete picture of the propagation mechanism of a nonlinear

model as it can highlight interesting asymmetric or common properties of shocks to eco-

nomic time series.

Finally it should be remarked that an alternative approach to absorption is considered

by Lee and Pesaran (1993) and Pesaran and Shin (1996). They examine the time pro�le

of the e�ect of shocks by means of so-called `persistence pro�les', de�ned as the di�erence

between the conditional variances of n-step and (n� 1)-step ahead forecasts, viewed as a

function of n.

Our paper proceeds as follows. In Section 2, we brie
y recapitulate the main aspects

of impulse response analysis in nonlinear time series models and the Generalized Impulse

Response Functions introduced by Koop et al. (1996). In Section 3, we develop our measure

of the speed of the absorption of shocks. To facilitate the understanding of the concept of

absorption, we concentrate on univariate models �rst. In this section we also demonstrate

how to address the question whether positive and negative shocks are absorbed at di�erent

speeds. Empirical examples involving the current-depth-of-recession model of Beaudry

and Koop (1993) and the 
oor-and-ceiling model of Pesaran and Potter (1997) are used

to illustrate the various concepts. In Section 4, we generalize our absorption measure

to multivariate models. Particular attention is given to the question whether shocks are
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absorbed at the same speed by the di�erent components of a multivariate time series. We

also outline how to obtain the absorption speed for a linear combination of the components

of a multivariate time series. An empirical example involving a trivariate nonlinear STAR

model for income, consumption and investment is used for illustration. Finally, Section 5

contains some concluding remarks.

2 Preliminaries

Consider the nonlinear multivariate time series model

Yt = F (Yt�1; : : : ; Yt�p; �) + Vt; (1)

where Yt is a (k�1) random vector, F (�) is a known function which depends on the (q�1)

parameter vector �, Vt is a (k � 1) vector of random disturbances with E[Vtj
t�1] = 0

and E[VtV
0
t j
t�1] = H(Yt�1; : : : ; Yt�p; �), where the (k � k) conditional covariance matrix

H(Yt�1; : : : ; Yt�p; �) � Ht = fHt;ij; i; j = 1; : : : ; kg depends on the (r � 1) parameter

vector �.

Throughout, we use upper-case letters to denote random variables and lower-case let-

ters to denote realizations of those random variables. For example, yt and vt are real-

izations of Yt and Vt, respectively. The `history' or information set at t � 1, which is

used to forecast future values of Yt, is denoted as 
t�1, with corresponding realizations

denoted as !t�1. Because the nonlinear model (1) is Markov of order p, it suÆces to take


t�1 = fYt�1; : : : ; Yt�pg.

2.1 Impulse response functions

Impulse response functions are meant to provide a measure of the response of Yt+n to a

shock or impulse vt at time t. The impulse response measure which is commonly used in

the analysis of linear models is de�ned as the di�erence between two realizations of Yt+n

which start from identical histories !t�1. In one realization, the process is hit by a shock

of size vt at time t, while in the other realization no shock occurs at time t. All shocks in

intermediate periods between t and t+n are set equal to zero in both realizations. Hence,

the traditional impulse response function [TI] is given by

TIY (n; vt; !t�1) = E[Yt+njVt = vt; Vt+1 = : : : = Vt+n = 0; !t�1]�

E[Yt+njVt = 0; Vt+1 = : : : = Vt+n = 0; !t�1]; (2)
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for n = 0; 1; 2; : : : . The second conditional expectation usually is called the benchmark

pro�le.

This traditional impulse response function has some characteristic properties in case

the model is linear. First, it is symmetric in the sense that a shock of �vt has exactly

the opposite e�ect as a shock of size +vt. Furthermore, it might be called linear as the

impulse response is proportional to the size of the shock. Finally, the impulse response is

history independent as it does not depend on the particular history !t�1. For example, in

the univariate AR(1) model Yt = �Yt�1+Vt, it follows easily that TIY (n; vt; !t�1) = �
n
vt,

which clearly demonstrates the aforementioned properties of the impulse response function.

These properties do not carry over to nonlinear models. In nonlinear models, the

impact of a shock depends on the sign and the size of the shock, as well as on the history

of the process. Furthermore, if the e�ect of a shock on the time series n > 1 periods ahead

is to be analyzed, the assumption that no shocks occur in intermediate periods might give

rise to quite misleading inference concerning the propagation mechanism of the model, see

Pesaran and Potter (1997) for an example.

The Generalized Impulse Response Function [GI], introduced by Koop et al. (1996),

provides a natural solution to the problems involved in de�ning impulse responses in

nonlinear models. The GI for a speci�c shock vt and history !t�1 is de�ned as

GIY (n; vt; !t�1) = E[Yt+njVt = vt; !t�1]� E[Yt+nj!t�1]; (3)

for n = 0; 1; 2; : : : . In the GI, the expectations of Yt+n are conditioned only on the history

and/or on the shock at time t. Put di�erently, the problem of dealing with shocks occurring

in intermediate time periods is dealt with by averaging them out. Given this choice, the

natural benchmark pro�le for the impulse response is the expectation of Yt+n conditional

only on the history of the process !t�1. Thus, in the benchmark pro�le the current shock

is averaged out as well. It is straightforward to show that for linear models the GI in (3)

is equivalent to the traditional impulse response in (2).

The GI as de�ned in (3) is a function of vt and !t�1, which are realizations of the

random variables Vt and 
t�1. Koop et al. (1996) stress that hence GIY (n; vt; !t�1) itself

is a realization of a random variable given by

GIY (n; Vt;
t�1) = E[Yt+njVt;
t�1]� E[Yt+nj
t�1]: (4)

It is useful to note that GIY (n; vt; !t�1) can still be interpreted as a random variable if

parameter uncertainty is taken into account, as in Koop (1996).
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Using this interpretation of the GI as a random variable, various conditional versions

can be de�ned which are of potential interest. For example, one might consider a particular

history !t�1 and treat the GI as a random variable in terms of Vt only, that is,

GIY (n; Vt; !t�1) = E[Yt+njVt; !t�1]� E[Yt+nj!t�1]: (5)

Alternatively, one could reverse the role of the shock and the history by �xing the shock

at Vt = vt and consider the GI as a random variable in terms of the history 
t�1. In

general, one might compute the GI conditional on subsets A and B of shocks and histories

respectively, that is, GIY (n;A;B). For example, one might condition on all histories such

that Yt�1 � 0 and consider only negative shocks.

Finally, note that as for nonlinear models analytic expressions for the conditional ex-

pectations involved in the GI in (4) usually are not available, stochastic simulation should

be used to obtain estimates of the impulse response measures. See Koop et al. (1996) for

a detailed description of the relevant techniques.

The two aspects of impulse responses that appear to be of interest are (1) the �nal

response to an impulse, and (2) the speed at which this �nal response is approached.

Traditionally, most attention has been given to the �rst aspect, usually referred to as

persistence. In the present paper we focus on the second aspect, which we call absorption

rate. Before we proceed to discuss how this absorption rate can be measured in the next

section, we summarize how persistence of shocks can be assessed by means of the GI. This

section then closes with some remarks on how to determine whether positive and negative

shocks have asymmetric e�ects.

2.2 Measuring persistence of shocks

A shock vt is said to be transient at history !t�1 if in the long run the shock does not

a�ect the pattern of the time series, that is, if GIY (n; vt; !t�1) becomes equal to 0 as the

horizon n goes to in�nity. If this is not the case, the shock is said to be persistent. The

�nal impulse response for a speci�c shock and history can be obtained as

GI
1
Y (vt; !t�1) = lim

n!1GIY (n; vt; !t�1); (6)

if this limit exists. In practice, the �nal impulse response GI1Y (vt; !t�1) can be estimated

by GIY (m; vt; !t�1) for certain large m.

Potter (1995a) and Koop et al. (1996) suggest that the dispersion of the distribution

of GIY (n; Vt;
t�1) at �nite horizons can be interpreted as a measure of persistence of
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shocks. It is intuitively clear that if a time series process is stationary and ergodic, the

e�ect of all shocks eventually becomes zero for all possible histories of the process. Hence,

GI
1
Y (vt; !t�1) in (6) is equal to zero for all choices of vt and !t�1. Alternatively, the

distribution of GIY (n; Vt;
t�1) collapses to a spike at 0 as n ! 1. By contrast, for

nonstationary time series the dispersion of the distribution of GIY (n; Vt;
t�1) is positive

for all n. Conditional versions of the GI are particularly suited to assess the persistence

of shocks. For example, one might compare the dispersion of the distributions of GIs

conditional on positive and negative shocks to determine whether negative shocks are

more persistent than positive, or vice versa. A potential problem with this approach is

that no unambiguous measure of dispersion exists, although the notion of second-order

stochastic dominance might be useful in this context, see Potter (2000).

2.3 Measuring asymmetric impulse response

One possible use of the GI is to assess the signi�cance of asymmetric e�ects of positive and

negative shocks. Potter (1994) de�nes a measure of asymmetric response to a particular

shock Vt = vt given a particular history !t�1 as the sum of the GI for this particular shock

and the GI for the shock of the same magnitude but with opposite sign, that is,

ASYY (n; vt; !t�1) = GIY (n; vt; !t�1) +GIY (n;�vt; !t�1): (7)

By taking into account parameter uncertainty as an additional source of randomness,

ASYY (n; vt; !t�1) can still be interpreted as a random variable. Potter (1995b) uses a

straightforward simulation procedure to assess whether the asymmetry measure is signi�-

cantly di�erent from zero or not.

Alternatively, one could consider the distribution of the random asymmetry measure

ASYY (n; V
+
t ;
t�1) = GIY (n; V

+
t ;
t�1) +GIY (n;�V +

t ;
t�1) (8)

where V +
t = fvtjvt > 0g indicates the set of all possible positive shocks. If positive

and negative shocks have exactly the same e�ect (with opposite sign), ASYY (n; V
+
t ;
t�1)

should be equal to zero almost surely. More generally, we say that shocks have a symmetric

e�ect (on average) when ASYY (n; V
+
t ;
t�1) has a symmetric distribution with mean equal

to zero. The dispersion of this distribution might be interpreted as a measure of the

asymmetry in the e�ects of positive and negative shocks.
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3 Absorption of shocks in univariate models

Irrespective of whether shocks are persistent of not, it should be of interest to assess

how fast innovations are absorbed, that is, how fast the GI approaches the �nal response

GI
1
Y (vt; !t�1). In this section we discuss how this absorption rate can be measured.

3.1 De�nition of absorption

Suppose for the moment that Yt is a univariate time series. De�ne the indicator function

IY (�; n; vt; !t�1) � I[jGIY (n; vt; !t�1)�GI
1
Y (vt; !t�1)j � �jvt �GI

1
Y (vt; !t�1)j]

for certain � such that 0 � � � 1, where I[A] = 1 if the event A occurs and 0 otherwise,

and where it is assumed that the limit de�ning GI1Y (vt; !t�1) in (6) exists. In words, the

function IY (�; n; vt; !t�1) is equal to 1 if the absolute di�erence between the GI at horizon

n and the eventual response to the shock vt, as given by GI1Y (vt; !t�1), is less than or

equal to a fraction � of the absolute di�erence between the shock vt, which is equal to

the initial impact of the shock or the GI at horizon 0, and the eventual response. Put

di�erently, IY (�; n; vt; !t�1) = 1 if at least a fraction 1 � � of the initial e�ect of vt has

been absorbed after n periods. Notice that for a random walk, GIY (n; vt; !t�1) = vt for

all n � 0, so that IY (�; n; vt; !t) = 1 in all cases.

The `�-life' or `�-absorption time' of vt can now be de�ned as

NY (�; vt; !t�1) =
1X
n=0

 
1�

1Y
m=n

IY (�;m; vt; !t�1)

!
: (9)

In words, NY (�; vt; !t�1) is the minimum horizon beyond which the di�erence between

the impulse responses at all larger horizons and the eventual response is less than or

equal to a fraction � of the di�erence between the initial impact and the eventual re-

sponse. That is, NY (�; vt; !t�1) = m if IY (�; n; vt; !t�1) = 1 for all n � m and IY (�;m�

1; vt; !t�1) = 0. The reason for not de�ning NY (�; vt; !t�1) as the smallest horizon for

which IY (�; n; vt; !t�1) = 1 is that the GI need not approach the limit GI1Y (vt; !t�1)

monotonically.

Just like the shock- and history-speci�c GI in (3) can be regarded as a realization of

the random variable GIY (n; Vt;
t�1) in (4), the �-absorption time NY (�; vt; !t�1) in (9)

can be regarded as a realization of the random variable

NY (�; Vt;
t�1) =
1X
n=0

 
1�

1Y
m=n

IY (�;m; Vt;
t�1)

!
; (10)
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where the random indicator function IY (�; n; Vt;
t�1) is de�ned as

IY (�; n; Vt;
t�1) � I[jGIY (n; Vt;
t�1)�GI
1
Y (Vt;
t�1)j � �jVt �GI

1
Y (Vt;
t�1)j]:

Conditional versions NY (�;A;B) for particular subsets A and B of shocks and histories

respectively can be de�ned in a straightforward manner.

As an example of the �-absorption measure, consider again the linear AR(1) model Yt =

�Yt�1+Vt with j�j < 1. It then follows that GIY (n; vt; !t�1) = �
n
vt, and GI

1
Y (vt; !t�1) =

0. Thus, IY (�; n; vt; !t�1) = I[j�nvtj � �jvtj], which is equal to 1 if j�nj = j�jn � �, or

n � ln(�)= ln(j�j). From (9) it then follows that NY (�; vt; !t�1) = ln(�)= ln(j�j). Thus,

for linear models, the �-absorption time for � = 0:50 corresponds to the usual measure of

the half-life of shocks. Observe that NY (�; vt; !t�1) increases as � approaches 1, whereas

the �-absorption time is 0 for a random walk. This illustrates that models with persistent

shocks may display faster absorption than models with transient shocks. Finally, note that

NY (�; vt; !t�1) is independent of vt and !t�1 in this case. Hence, the dispersion of the

distribution of NY (�; Vt;
t�1) might be interpreted as a rough measure of the `degree of

nonlinearity' of a particular model.

3.2 Measuring asymmetric absorption

Possible asymmetry in the absorption of positive and negative shocks can be examined

in a way similar to asymmetry in impulse responses, as discussed in Section 2.3. For a

speci�c shock vt and history !t�1, a measure of asymmetric absorption can be de�ned as

the di�erence in �-absorption times of vt and �vt, that is,

ASY NY (�; vt; !t�1) = NY (�; vt; !t�1)�NY (�;�vt; !t�1): (11)

If vt has symmetric absorption speed at !t�1, ASY NY (�; vt; !t�1) = 0 for all values of �.

Note that symmetry in GIY (n; vt; !t�1), that is, ASYY (n; vt; !t�1) = 0 for all n � 0

in (7), implies symmetry in the absorption speed, that is, ASY NY (�; vt; !t�1) = 0 for all

� 2 (0; 1). Interestingly, the reverse does not hold, that is, a shock can have symmetric

absorption speed but an asymmetric impulse response. Also, ASY NY (�; vt; !t�1) 6= 0 for

certain � 2 (0; 1) implies that ASYY (n; vt; !t�1) 6= 0 for certain n � 0, whereas the reverse

does not hold. This again indicates the added value of the absorption measure.

As before, the asymmetry measure in (11) can be regarded as a realization of the

random variable

ASY NY (�; V
+
t ;
t�1) = NY (�; V

+
t ;
t�1)�NY (�;�V +

t ;
t�1); (12)
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where V +
t is de�ned just below (8). If positive and negative shocks have symmetric e�ects,

in the sense that they are absorbed at the same speed on average, ASY NY (�; V
+
t ;
t�1)

should have a distribution with mean equal to zero. Obviously, the asymmetry measure

can also be de�ned for subsets A and B of shocks and histories.

By taking into account parameter uncertainty, one can examine whether a speci�c

shock vt has symmetric absorption rate at !t�1 by examining whether ASY NY (�; vt; !t�1)

is signi�cantly di�erent from zero. To assess whether the absorption of shocks in the set

A for the set of histories B is symmetric on average, it is necessary to test whether the

mean of the distribution of ASY NY (�;A
+
; B) is equal to zero. This is complicated by

the fact that the di�erent realizations ASY NY (�; vt; !t�1) which are used to estimate this

distribution are not independent across histories !t�1. Hence, the standard error for the

mean of ASY NY (�;A
+
; B) is not equal to �ASYNY (�;A+;B)=

p
nAB, where �ASYNY (�;A+;B)

is the standard deviation of ASY NY (�;A
+
; B) and nAB is the number of combinations

of shocks vt and histories !t�1 for which ASY NY (�; vt; !t�1) is computed. Note however

that the ASY NY (�; vt; !t�1) are independent across shocks vt. Therefore, as a conservative

standard error for the mean of ASY NY (�;A
+
; B) we suggest to use �ASYNY (�;A+;B)=

p
nA,

where nA is the number of shocks vt for which ASY NY (�; vt; !t�1) is computed.

Alternatively, the asymmetry of the distribution of ASY NY (�;A
+
; B) can be assessed

by con�dence regions. Following Hyndman (1995), we consider three di�erent 100�(1��)%

con�dence regions:

1. An interval symmetric around the mean of the distribution

S� = (�̂ASYNY (�;A+;B) �w; �̂ASYNY (�;A+;B) + w);

where �̂ASYNY (�;A+;B) is the mean of the asymmetry measure ASY NY (�;A
+
; B)

and w is such that P (ASY NY (�;A
+
; B) 2 S�) = 1� �.

2. The interval between the �=2 and (1 � �=2) quantiles of the distribution, denoted

q�=2 and q1��=2, respectively,

Q� = (q�=2; q1��=2):

3. The highest-density region [HDR]

HDR� = fASY NY (�;A
+
; B)jg(ASY NY (�;A

+
; B)) � g�g; (13)
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where g(�) is the density of the argument and g� is such that P (ASY NY (�;A
+
; B) 2

HDR�) = 1� �.

For symmetric and unimodal distributions, these three regions are identical. For asym-

metric or multimodal distributions they are not, see Hyndman (1995) for discussion. In

the applications below, we report ��, which is the minimum value of � 2 (0; 1) such that

0 would not be included in the relevant con�dence region. Note that the three con�dence

regions all provide di�erent information. The interval symmetric around the mean indi-

cates the position of 0 relative to the mean of the distribution. The interval with equal

quantiles in the tail indicates whether 0 is located in the tails or in the central part of the

distribution. Finally, the HDR indicates the probability that the asymmetry measure is

equal to 0.

3.3 Example A: the current-depth-of-recession model

As a �rst example, we consider the model of Beaudry and Koop (1993), which includes the

gap between the current value of output and its historical maximum value as an additional

variable in a linear autoregressive model for the growth rate. De�ne the current depth of

recession [CDR] as

CDRt = Yt �max
j�0

Yt�j; (14)

where Yt denotes the logarithm of output. Note that CDRt has a negative value when

current output is below its historical maximum, and is equal to 0 if current output is at

its historical maximum. The current-depth-of-recession model for output growth then is

given by

�(L)�Yt = �0 + (�(L)� 1)CDRt + Vt; (15)

where �(L) = 1��1L� � � � ��pLp and �(L) = 1+ �1L+ � � �+ �qLq are lag polynomials of

orders p and q, respectively, with the lag operator de�ned as LmYt = Yt�m for all m and

� = 1�L is the �rst-di�erence operator. A di�erence with the original model of Beaudry

and Koop (1993) is that we allow the variance of the shock to be di�erent in recessions

(CDRt�1 < 0) and expansions (CDRt�1 = 0), as the disturbance Vt is assumed to have

conditional mean equal to zero and conditional variance given by

E[V 2
t j
t�1] � Ht = �

2
RI[CDRt�1 < 0] + �

2
EI[CDRt�1 = 0]: (16)
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As we use similar data, we follow Beaudry and Koop (1993) and set p = 2 and q = 1 in

(15), that is, we consider the model

�Yt = �0 + �1�Yt�1 + �2�Yt�2 + �1CDRt�1 + Vt:

We use quarterly observations on seasonally adjusted real US GNP, from 1947:1-1995:2.

The series is taken from Citibase. Parameter estimates are obtained by iterative weighted

least squares as �̂0 = 0:178, �̂1 = 0:432, �̂2 = 0:199, �̂1 = �0:328, which are similar

to the estimates obtained by Beaudry and Koop (1993) for US GDP over the sample

1947:1-1989:4. The residual standard deviations in the two regimes are estimated to be

�̂R = 1:090 and �̂E = 0:845. The CDRt�1 variable takes a negative value in 50 of the 191

quarters in the e�ective estimation sample (1947:4-1995:2).

We compute impulse responses GI�Y (n; vt; !t�1) for all 191 histories in the sample, for

values of the normalized shock equal to vt=
p
ht = �3;�2:9; : : : ;�0:1; 0, where ht denotes

a realization of Ht in (16). Note that in this case the relevant history consists of the

growth rate in the two previous periods and the lagged CDR variable, that is 
t�1 =

f�Yt�1;�Yt�2; CDRt�1g. GIs are computed for horizons n = 0; 1; : : : ; N with N = 20,

using the algorithm outlined in Koop et al. (1996), using R = 10000 replications to average

out the e�ect of shocks occurring in intermediate periods. The shocks in intermediate

periods are sampled from a normal distribution. Impulse responses for the log level of

GNP are obtained by accumulating the impulse responses for the growth rate, that is

GIY (n; vt; !t�1) =
Pn

i=0GI�Y (i; vt; !t�1). Figure 1 shows distributions of GIY (n;A;B)

at horizons n = 0; 4; 8 and 20, where A is taken to be the set of either all, negative

or positive shocks, and B is the set of all histories or all histories for which CDRt�1 is

either negative or zero. The latter two are labeled recession and expansion, respectively.

These and all subsequent distributions are obtained with a standard Nadaraya-Watson

kernel estimator, using �(vt=
p
ht) as weight for GIY (n; vt; !t�1), where �(z) denotes the

standard normal probability distribution. The reason for using this weighting scheme is

that the standardized shocks vt=
p
ht then e�ectively are sampled from a discretized normal

distribution and the resulting distribution of GIY (n; Vt;
t�1) should resemble a normal

distribution if the e�ect of shocks is symmetric and proportional to their magnitude (as is

the case in linear models).

Figure 1 shows that in both regimes, the �nal impulse response appears to be larger

for positive shocks. This is con�rmed by the distributions of the asymmetry measure

11



ASYY (n; V
+
t ; B) shown in panels (j)-(l) of Figure 1. Table 1 contains summary statistics

for these distributions at horizon n = 20, as well as for ASYY (n;A
+
; B), where A is taken

to be the set of small (0 < jVtj � 1), medium (1 < jVtj � 2) or large (2 < jVtj � 3) shocks.

The mean of ASYY (n; V
+
t ; B) is seen to be close to zero in all three cases, suggesting that,

on average, shocks have symmetric e�ects. Distinguishing between di�erent magnitudes

of shocks shows that small negative shocks have larger e�ects than positive ones and vice

versa for medium and large shocks. The means of ASYY (n;A
+
; B) which are larger than

two times the conservative standard error �ASYY (�;A+;B)=
p
nA in absolute value are marked

with an asterisk. It appears that the asymmetry is signi�cant for all sets of shocks and

histories considered. This is con�rmed by the values of �� reported in the �nal three rows

for the di�erent con�dence regions. Note that the main conclusion of Beaudry and Koop

(1993) is that positive shocks are more persistent than negative ones. The results in Table

1 suggest that this depends on the magnitude of the shock.

Truncating the summations in (9) at N = 20 and using GIY (N; vt; !t�1) as an estimate

of the �nal impulse responseGI1Y (vt; !t�1), we compute �-absorption timesNY (�; vt; !t�1)

and asymmetry measures ASY NY (�; vt; !t�1) for � = 0:50; 0:40; : : : ; 0:10. Table 2 reports

the means of NY (�;A;B), while Table 3 contains summary statistics for the distribution of

ASY NY (�;A
+
; B), where A and B are de�ned above. To save space, Table 3 only reports

results for � = 0:50 and 0.10. Results for other values of � are available on request.

From Table 2 it is seen that large shocks occurring in a recession are absorbed faster

than small shocks, which in turn are absorbed faster than medium-sized shocks. By con-

trast, this ordering of average absorption times is reversed during expansions. Absorption

of small and medium-sized shocks during recessions occurs much slower than in expan-

sions, whereas absorption of large shocks occurs at roughly the same speed. The mean

asymmetry measures in Table 3 show that in both regimes negative shocks are absorbed

faster when they are small and slower when they are medium-sized or large. The fact that

the overall mean of the asymmetry measure is positive is caused by the weighting scheme

that we use, which gives (much) larger weight to small shocks. Based on the conservative

standard error �ASYNY (�;A+;B)=
p
nA the hypothesis that the mean of ASY NY (�;A

+
; B)

does not di�er signi�cantly from zero can be rejected only for large shocks at � = 0:50

and 0.10, and for small and medium shocks occurring during expansions at � = 0:10. The

values of �� for HDR-regions, symmetric intervals around the mean and equal quantile

intervals con�rm that the distribution of ASY NY (�;A
+
; B) is most asymmetric for large

12



shocks, particularly those occurring during expansions.

Figures 2 and 3 show distributions of NY (�;A;B) for � = 0:50 and 0:10, respectively,

with A the set of all, negative or positive shocks. Distributions of ASY NY (�;A
+
; B) are

shown in Figures 4 and 5 for the same values of �, with A the set of all, small, medium

or large shocks. From the last two �gures, it is seen that even though the distribution

can have all kinds of highly asymmetric shapes, quite a large probability is attached to 0,

especially for small and medium shocks. This explains the large values for �� based on

the HDR (and, to a lesser extent, the equal-quantile interval), as reported in Table 3.

Based on these results we conclude that this current-depth-of-recession model generates

data that seems to have only a modest degree of nonlinearity. Whether this is due to the

model or the data can perhaps be learned from looking at the properties of an alternative,

more elaborate, nonlinear model for the same data. This is done in the next section.

3.4 Example B: the 
oor-and-ceiling model

As a second example, we consider the 
oor-and-ceiling model of Pesaran and Potter (1997),

which extends the current-depth-of-recession model discussed above by including an `over-

heating variable' as additional regressor in a linear autoregressive model for the growth

rate. De�ne the indicators Ft, Ct for the 
oor and ceiling regimes recursively as

Ft =

(
I[�Yt < rF ] if Ft�1 = 0;

I[CDRt�1 +�Yt < rF ] if Ft�1 = 1;
(17)

Ct = I[Ft = 0]I[�Yt > rC ]I[�Yt�1 > rC ]; (18)

where the current-depth-of-recession variable now is de�ned as

CDRt =

(
(�Yt � rF )Ft if Ft�1 = 0;

(CDRt�1 ��Yt)Ft if Ft�1 = 1;
(19)

and the overheating variable is given by

OHt = Ct(OHt�1 +�Yt � rc): (20)

Note that (19) with (17) is identical to (14) in case the 
oor threshold rF = 0. The


oor-and-ceiling model for output growth then is given by

�(L)�Yt = �0 + �1CDRt�1 + �2OHt�1 + Vt; (21)

where E[Vtj
t�1] = 0 and the conditional variance of Vt is given by

E[V 2
t j
t�1] � Ht = �

2
FFt�1 + �

2
CORCORt�1 + �

2
CCt�1;
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where the indicator for the corridor regime is de�ned as

CORt = I[Ft + Ct = 0];

see Pesaran and Potter (1997) for an extensive discussion and motivation of this model.

Following Pesaran and Potter (1997), we set p = 2 in (21) and estimate the model with

iterative weighted least squares, using a grid search over the 
oor and ceiling thresholds

rF and rC . Again we use quarterly observations on seasonally adjusted real US GNP, from

1947:1-1995:2. The parameter estimates are given by �̂0 = 0:206, �̂1 = 0:441, �̂2 = 0:283,

�̂1 = �0:540, �̂2 = �0:055, �̂F = 1:337, �̂COR = 0:890, �̂C = 0:717, r̂F = �0:716, and

r̂C = 0:531. Similar estimates are obtained by Pesaran and Potter (1997) for US GDP over

the sample 1954:1-1992:4. In the e�ective estimation sample, 24, 77 and 90 observations

are located in the 
oor, corridor and ceiling regimes, respectively.

We compute impulse responses GI�Y (n; vt; !t�1) for all 191 histories in the sample, for

values of the normalized shock equal to vt=
p
ht = �3;�2:9; : : : ;�0:1; 0. GIs are computed

for horizons n = 0; 1; : : : ; N with N = 20 with R = 10000 replications.

Figure 6 shows distributions of impulse responses for the log level of GNPGIY (n;A;B),

where B is the set of all histories in a particular regime. In all three regimes, the �nal

impulse response appears to be larger for positive shocks. This is con�rmed by the dis-

tributions of the asymmetry measure ASYY (n; V
+
t ; B) shown in panels (j)-(l) of Figure 6.

Table 4 contains summary statistics for these distributions at horizon n = 20, as well as

for ASYY (n;A
+
; B), where A again is taken to be the set of small (0 < Vt � 1), medium

(1 < Vt � 2) or large (2 < Vt � 3) shocks. The mean of ASYY (n; V
+
t ; B) is seen to be

close to zero in all three cases, thus suggesting that on average shocks have symmetric

e�ects. Distinguishing between di�erent magnitudes of shocks shows that small negative

shocks have larger e�ects than small positive ones and vice versa for medium and large

shocks. Comparing the mean of ASYY (n;A
+
; B) with the conservative standard error

�ASYY (�;A+;B)=
p
nA, it appears that the asymmetry is signi�cant in the 
oor and corridor

regimes for all magnitudes of shocks, and only for large shocks in the ceiling regime. The

values of �� reported in the �nal three rows for the di�erent con�dence regions suggest

that the asymmetry is most pronounced for large shocks occurring in the 
oor and corri-

dor regimes. This is in contrast with Pesaran and Potter (1997), who �nd that negative

shocks are more persistent than positive ones on average. We do con�rm their �nding that

shocks are more persistent in the corridor regime, although the di�erence with especially
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the ceiling regime is not all that large.

Again truncating the summations in (9) at N = 20 and using GIY (N; vt; !t�1) as

an estimate of the �nal impulse response GI1Y (vt; !t�1), we compute �-absorption times

NY (�; vt; !t�1) and asymmetry measures ASY NY (�; vt; !t�1) for � = 0:50; 0:40; : : : ; 0:10.

Table 5 reports the means of NY (�;A;B), while Table 6 contains summary statistics for

the distribution of ASY NY (�;A
+
; B) for � = 0:50 and 0.10, where A and B are de�ned

as above.

Comparing the columns headed `A' in Table 5 shows that the ranking of the absorption

speed in the di�erent regimes depends on the value of �. For � = 0:50 and 0.40, shocks

are absorbed fastest in the corridor regime, followed by the ceiling and 
oor regimes. For

� = 0:30 and 0.20, absorption is still fastest in the corridor regime but now the absorption

speed in the 
oor regime is higher than in the ceiling regime. For � = 0:10, absorption

is fastest in the 
oor regime, followed by the corridor and ceiling regimes. Hence, one

can conclude that absorption of shocks in the 
oor regime is slow initially, but accelerates

during the second half of the `lifetime of shocks'. Comparing the mean absorption speeds

for the di�erent subsets of shocks shows that this e�ect is present for all magnitudes of

shocks, although it is more pronounced for small and large shocks.

The columns headed `A' in Table 6 show that the mean absorption time of positive

shocks is larger than that for negative shocks in the corridor and ceiling regimes, whereas

the opposite holds in the 
oor regime. Focusing on the subsets of shocks, it is seen that

positive small shocks are absorbed faster in the 
oor regime, and vice versa in the corridor

and ceiling regimes. Negative medium-sized shocks are absorbed faster in the 
oor regime,

and vice versa in the ceiling regime. Note that in the 
oor regime there is a `reversal', in

the sense that positive large shocks are absorbed faster for larger values of �, while they are

absorbed slower for smaller values than �. A similar reversal occurs for medium-sized and

large shocks in the corridor regime. In the ceiling regime, large positive shocks are absorbed

faster for all values of � considered. Based on the standard error �ASYNY (�;A+;B)=
p
nA,

the mean absorption time is di�erent from zero for all shocks in the corridor regime and

for large shocks occurring in the ceiling regime at � = 0:50, and for medium and large

shocks in the 
oor regime and for small shocks in the corridor regime at � = 0:10.

Figures 7 and 8 show distributions of NY (�;A;B) for � = 0:50 and 0:10, respectively.

Distributions of ASY NY (�;A
+
; B) are shown in Figures 9 and 10. Comparing panels (j)

and (k) in Figure 9 helps to understand the di�erences that occur in the values of �� for
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large shocks in the 
oor and corridor regimes at � = 0:50. In both cases, the probability

that ASY NY (�;A
+
; B) = 0 is rather small, hence the small value of �� based on the

HDR. In the corridor regime, most probability mass is concentrated close to the mean of

�3:13, which explains the small values of �� based on the symmetric interval around the

mean and the equal-quantile interval. By contrast, in the 
oor regime the probability that

ASY NY (�;A
+
; B) is positive is quite large. Hence, when a symmetric interval around the

mean of �0:71 is constructed, 0 will be included already for small con�dence levels. A

similar reasoning holds for the equal-quantile interval.

Upon comparing the two univariate nonlinear models for US GNP, while relying on

the empirical results for the persistence and absorption of shocks, we conclude that both

models perform equally good (or bad), in the sense that one model is not outperforming

the other by extracting more nonlinearity (if there is any) from the data.

4 Absorption of shocks in multivariate models

The absorption rate can also be used to investigate the properties of multivariate non-

linear models. In this section, we �rst de�ne the multivariate extension of the univariate

absorption measure used so far. Next, we discuss how to measure common absorption,

which we then illustrate for a trivariate STAR model.

4.1 De�nition of absorption in multivariate models

Extending the concept of �-absorption times to multivariate models is fairly straightfor-

ward. Following Pesaran and Shin (1998), we restrict attention to the generalized impulse

response of the e�ect of a shock in the j-th equation only, while integrating out the e�ects

of shocks to the other equations. In this case we have

GIY (n; vjt; !t�1) = E[Yt+njVjt = vjt; !t�1]�E[Yt+nj!t�1]: (22)

The immediate e�ect of the shock is given by the impulse response at horizon n = 0, which

is equal to GIY (0; vjt; !t�1) = E[VtjVjt = vjt; !t�1]. In case Vt is conditionally normally

distributed with covariance matrix ht, that is, conditional upon the history !t�1, it can

be shown that

E[VtjVjt = vjt; !t�1] = (ht;1j ; ht;2j ; : : : ; ht;kj)
0
h
�1
t;jjvjt = htejh

�1
t;jjvjt;
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where ej is a (k�1) vector with unity as its j-th element and zeros elsewhere, see Pesaran

and Shin (1998). Thus, the indicator function IYi(�; n; vjt; !t�1) now should be de�ned as

IYi(�; n; vjt; !t�1) =

I[jGIYi(n; vjt; !t�1)�GI
1
Yi
(vjt; !t�1)j � �jht;ijh�1t;jjvjt �GI

1
Y (vjt; !t�1)j]:

The `�-life' or `�-absorption time' of vjt for Yi then can be de�ned as

NYi(�; vjt; !t�1) =
1X
n=0

 
1�

1Y
m=n

IYi(�;m; vjt; !t�1)

!
: (23)

As in the univariate case, NYi(�; vjt; !t�1) can be regarded as a realization of the random

variable

NYi(�; Vjt;
t�1) =
1X
n=0

 
1�

1Y
m=n

IYi(�;m; Vjt;
t�1)

!
; (24)

where the random indicator function IYi(�;m; Vjt;
t�1) is obviously de�ned. Similarly,

one can de�ne the asymmetry measure

ASY NYi(�; V
+
jt ;
t�1) = NYi(�; V

+
jt ;
t�1)�NYi(�;�V

+
jt ;
t�1); (25)

where V +
jt = fVjtjVjt > 0g, which can be used to assess whether positive and negative

shocks are absorbed at di�erent speeds.

4.2 Measuring common absorption

In multivariate models, an additional question of interest is whether shocks are absorbed

at the same speed by di�erent variables in the system. De�ne the random variable

CNYi;Yl(�; Vjt;
t�1) as the di�erence of the �-absorption times of Yi and Yl, that is

CNYi;Yl(�; Vjt;
t�1) = NYi(�; Vjt;
t�1)�NYl(�; Vjt;
t�1): (26)

If shocks Vjt are absorbed at the same speed by Yi and Yl on average, CNYi;Yl(�; Vjt;
t�1)

should have a distribution with mean equal to zero.

Alternatively, one may ask whether there exists a linear combination �0Y , for certain

(k�1) vector �, for which the e�ects of shocks die out faster than for the component series

Yi, i = 1; : : : ; k. If so, this linear combination can be viewed as a more stable variable as

shocks last shorter. From the de�nition of the GI given in (4) and elementary properties

of the conditional expectations operator it follows that

GI�0Y (n; Vt;
t�1) = �
0
GIY (n; Vt;
t�1): (27)
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Hence, the GI for a linear combination of the elements in Yt can be obtained directly as

the same linear combination of the GI of Yt. Note that such a simple relationship does

not exist between the �-absorption times of a linear combination and the absorption times

of the elements of Yt. That is, in general

N�0Y (�; Vjt;
t�1) 6= �
0
NY (�; Vjt;
t�1);

whereNY (�; Vjt;
t�1) = (NY1(�; Vjt;
t�1); : : : ; NYk(�; Vjt;
t�1))0. It is however straight-

forward to de�ne the �-absorption time for �0Yt as

N�0Y (�; Vjt;
t�1) =
1X
n=0

 
1�

1Y
m=n

I�0Y (�;m; Vjt;
t�1)

!
;

where the indicator function I�0Yt(�;m; Vjt;
t�1) is de�ned as

I�0Y (�; n; vjt; !t�1) =

I[j�0(GIY (n; vjt; !t�1)�GI
1
Y (vjt; !t�1))j < �j�0(htejh�1t;jjvjt �GI

1
Y (vt; !t�1))j]:

From this de�nition it should be clear that N�0Y (�; Vjt;
t�1) 6= �
0
NY (�; Vjt;
t�1), as

j�0xj 6= �
0jxj in general.

Consequently, an alternative common absorption measure CANYi;Yl(�; Vjt;
t�1) can

be de�ned as the di�erence of the �-absorption times of Yi and �
0
Y , that is

CANYi;�0Y (�; Vjt;
t�1) = NYi(�; Vjt;
t�1)�N�0Y (�; Vjt;
t�1); i = 1; : : : ; k: (28)

If shocks Vjt are not absorbed at a di�erent speed by the linear combination �
0
Y than

by the individual series Yi on average, CANYi;�0Y (�; Vjt;
t�1) should have a distribution

with mean equal to zero for all i = 1; : : : ; k.

4.3 Example C: A STARmodel for income, consumption and investment

For illustration, we consider the smooth transition vector error-correction model [STVECM]

for US income, consumption and investment of Anderson and Vahid (1998). The data

are quarterly, covering the period 1951:1-1992:4. Let Yt = (Xt; Ct; It)
0 denote the vec-

tor consisting of log transformed per-capita income, consumption and investment, and

Zt = (Xt � Ct;Xt � It)
0 the vector consisting of the `great ratios'. A STVECM then is

given by

�Yt = �0 +�Zt�1 +�1�Yt�1 + � � �+�p�Yt�p

+ (�0 +	Zt�1 +�1�Yt�1 + � � �+�p�Yt�p)F (St; 
; c) + Vt; (29)
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where �i and �i, i = 1; : : : ; p, are (3 � 3) matrices, � and 	 are (3 � 2) matrices, and

F (St; 
; c) is the logistic function

F (St; 
; c) = (1 + expf�
(St � c)g)�1; 
 > 0: (30)

The parameter c in (30) can be interpreted as the threshold between the two regimes

corresponding to F (St; 
; c) = 0 and F (St; 
; c) = 1, in the sense that the logistic function

changes monotonically from 0 to 1 as the transition variable St increases, while F (c; 
; c) =

0:5. The parameter 
 determines the smoothness of the change in the value of the logistic

function and, thus, the smoothness of the transition from one regime to the other.

Based on a set of linearity tests, Anderson and Vahid (1998) select the growth rate in

investment lagged one quarter as the transition variable, that is, St = �It�1. Furthermore,

they consider a model with so-called common nonlinearity. In general, the k-dimensional

time series Yt is said to contain s common nonlinear components if there exist k� s linear

combinations �0iYt, i = 1; : : : ; k � s, whose conditional expectations are linear in the past

of Yt. For example, in the STVECM in (29), the existence of two common nonlinear

components means that there exists a (3� 1) vector � such that

�
0(�0 +	Zt�1 +�1�Yt�1 + � � �+�p�Yt�p)F (St; 
; c) = 0; (31)

for all Zt�1, �Yt�1; : : : ;�Yt�p and St. Anderson and Vahid (1998) develop test statistics

for the existence of common STAR-type nonlinearity based upon canonical correlations.

Anderson and Vahid (1998) �nd evidence for a single common nonlinear component

in the STVECM for income, consumption and investment. This implies that (29) can be

rewritten as

�Yt = �0 +�Zt�1 +�1�Yt�1 + � � �+�p�Yt�p

+ �
�(�0 +  Zt�1 + �

0
1�Yt�1 + � � �+ �

0
p�Yt�p)F (St; 
; c) + Vt; (32)

where �� and �i, i = 1; : : : ; p, are (3� 1) vectors, �0 is a scalar,  is a (2� 1) vector.

The STVECM with common nonlinearity (32) is estimated with nonlinear least squares

using the complete sample period, where p = 1 and some additional parameter constraints

are imposed to obtain a parsimonious model (that is, �21 = 0, �1;13 = 0, �1;22 = 0,

�1;32 = 0, �1;33 = 0,  1 = 0,  2 = ��22, �1;1 = ��1;21, �1;2 = 0, and �1;3 = ��1;23, where

Al;ij denotes the (i; j)-th element of the matrix Al). This leaves 18 parameters to be

estimated in total. For the parameters in the transition function (30) with St = �It�1 we
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obtain estimates 
̂ = 5:11 and ĉ = �0:73. This implies that for 51 of the 176 observations

in the e�ective estimation sample, the value of the transition function is smaller than 0.5,

while the transition of F (�It�1; 
; c) is rather smooth and occurs as �It�1 changes from

about �4 to 2 percent.

We compute generalized impulse responses GI�Yi(n; vjt; !t�1) as given in (22) for

all 176 histories in the sample, for values of the normalized shock equal to vjt=
p
ht =

�3;�2:8; : : : ;�0:2; 0. GIs are computed for horizons n = 0; 1; : : : ; N with N = 40 with

R = 2500 replications. We also obtain impulse responses for the great ratios, according

to (27) with � = (1;�1; 0) and (1; 0;�1), respectively. Figures 11-13 show distributions

of impulse responses GIYi(n; Vjt; B) at horizons n = 0; 4; 8; 20 and 40 for the log levels of

income, consumption and investment for shocks occurring in either of the three variables.

The set B consists of all histories or those histories for which the value of the transition

function F (�It�1; 
; c) is either larger or smaller than 0.5. The latter two are referred

to as recession and expansion, respectively. Clearly, shocks have persistent e�ects on the

individual variables in the system. However, shocks are transient for the great ratios, as

the distributions of their impulse responses quickly collapse to a spike at zero as the hori-

zon n increases. Therefore these results are not shown here. There appears to be little

asymmetry in the GI for positive and negative shocks, as the distributions in Figures 11-13

seem quite symmetric.

Figures 14 and 15 show distributions of absorption times NYi(�; Vjt;
t�1) de�ned

in (24) for � = 0:50 and 0.10. Tables 7 and 8 contain means of the absorption times

NYi(�;A;B) and asymmetry measure ASY NYi(�;A
+
; B) for choices of A and B de�ned

earlier. The mean absorption times in Table 7 suggest that on average shocks are absorbed

at approximately the same speed in recessions and expansions. The mean asymmetry

measures in Table 8 however suggest that absorption can be very asymmetric and, fur-

thermore, that the asymmetry can be very di�erent depending on the regime. This holds

especially for medium and large shocks, which show positive asymmetry during recessions

and negative asymmetry during expansions. Based on the conservative standard error

�ASYNYi
(�;A+;B)=

p
nA, the asymmetry is signi�cant in a limited number of cases only.

Shocks in income are absorbed fastest by income, followed by investment, followed

by consumption. Shocks in consumption are absorbed fastest by investment, followed by

consumption, followed by income. Finally, shocks in investment are absorbed fastest by

investment, followed by income, followed by consumption. The di�erences in absorption
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times are largest for shocks to income, and smallest for shocks to investment.

Note that the absorption times for the great ratios are, generally, not smaller than

the absorption times for the individual variables. In fact, in most cases they are larger.

Also, the absorption time of X�C resembles that of I, while the absorption time of X�I

resembles that of C. This e�ect is observed in particular for shocks to income. This �nding

might be explained by the fact that exp(X) � exp(C) + exp(I).

In quite a few cases the distribution of absorption times is bi-modal - see, for example,

panel (b) of Figure 14 (absorption of shocks to income by consumption). This also leads

to bi-modality in the distribution of the common absorption measure CNYi;Yl(�; Vjt;
t�1)

as de�ned in (26). The latter distributions are shown in Figures 16 and 17.

Tables 9, 10 and 11 contain summary statistics for the distribution of CNYi;Yl(�;A;B)

in case of a shock to income, consumption and investment, respectively. As expected, com-

mon absorption is never rejected for shocks to investment (except for medium-sized shocks

during expansions for � = 0:50, Yi = X and Yl = I), more so for shocks to consumption,

and quite often for shocks to income, especially for � = 0:10. Hence, assuming the validity

of the nonlinear model, it seems that most nonlinearity in this trivariate system is due to

the income variable.

5 Concluding remarks

In this paper we proposed a new tool which can be used to examine the properties of

univariate and multivariate nonlinear models. This tool, which we called the absorption

rate, can be viewed as complementary to the familiar impulse response function, as both

consider certain aspects of the propagation of shocks. The absorption rate can be used to

examine whether the speed of the propagation of di�erent types of shocks, such as large

and small shocks, positive and negative shocks, and shocks in various regimes, follows the

same or di�erent patterns. In multivariate models, the absorption rate can also reveal

whether the e�ects of shocks last longer on certain variables than on others or not. Hence,

the absorption rate can help to interpret a possibly complicated nonlinear model, with

potentially a large number of parameters.

In a sense, the absorption rate is informative for the degree of nonlinearity a particular

model is picking up from the data. If all kinds of shocks have similar e�ects on the future

path of a time series variable, the nonlinear model can be said to have linear properties,

even though parameters for the nonlinear component are highly signi�cant. Such a �nding
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can imply that, either, there is not enough nonlinearity in the data, or the model is not

capturing the nonlinear features adequately.

The above leads to the suggestion that the absorption rate can provide useful prior

information as to how successful a particular nonlinear model will be when it comes to out-

of-sample forecasting. With respect to our illustrations on US GNP, we found only little

evidence for asymmetry in the absorption rate of di�erent types of shocks in the di�erent

regimes in the current-depth-of-recession model and the 
oor-and-ceiling model. Hence,

it may not come as a surprise that linear models tend to beat these nonlinear models in

terms of forecasting.
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Table 1: Asymmetry measures for impulse responses in current-depth-of-recession model

Unconditional Recession Expansion

A S M L A S M L A S M L

Mean 0:01 �0:34� 0:61� 2:25� 0:02 �0:50� 0:93� 3:19� 0:01 �0:28� 0:50� 1:92�

St.dev. 0:73 0:26 0:53 0:90 1:02 0:34 0:65 0:88 0:60 0:19 0:43 0:64

Skewness 2:11 �0:66 1:07 0:66 1:80 0:05 0:74 0:13 2:07 �0:23 0:71 0:05

HDR�� 0:61 0:19 0:48 0:00 0:57 0:15 0:21 0:00 0:57 0:16 0:55 0:00

S�� 0:98 0:16 0:22 0:02 0:99 0:17 0:15 0:00 0:98 0:16 0:26 0:00

Q�� 0:81 0:15 0:20 0:00 0:82 0:17 0:08 0:00 0:77 0:13 0:23 0:00

Summary statistics for asymmetry measure ASYY (�;A
+
; B) in current-depth-of-recession model. Entries in the

row labelled Mean which are larger than two times �ASYY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYY (�;A+;B) is the standard deviation of ASYY (�;A
+
; B) and nA is the number of shocks vt for which

ASYY (�; vt; !t�1) is computed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) such

that 0 would not be included in the relevant con�dence region Z�, Z = HDR, S and Q. The di�erent sets

of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.

Table 2: Absorption times in current-depth-of-recession model

Unconditional Recession Expansion

� A S M L A S M L A S M L

0.50 3.05 3.03 3.00 3.67 4.27 4.13 4.74 3.70 2.61 2.64 2.39 3.66

0.40 3.46 3.48 3.33 3.96 4.74 4.63 5.15 4.05 3.00 3.07 2.68 3.93

0.30 4.01 4.02 3.89 4.53 5.26 5.11 5.76 4.54 3.56 3.63 3.23 4.53

0.20 4.69 4.73 4.54 5.17 5.96 5.83 6.45 5.12 4.24 4.33 3.87 5.18

0.10 6.01 6.05 5.88 6.26 7.11 6.93 7.69 6.28 5.62 5.73 5.25 6.25

Mean of NY (�;A;B) in current-depth-of-recession model. The di�erent sets of shocks are

de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Table 3: Asymmetry measures for absorption times in current-depth-of-recession model

Unconditional Recession Expansion

A S M L A S M L A S M L

� = 0:50

Mean 0:35 1:11 �1:12 �3:16� 0:07 0:90 �1:69 �2:72� 0:45 1:19 �0:92 �3:32�

St.dev. 2:89 2:51 2:87 2:87 3:24 2:73 3:66 2:02 2:75 2:42 2:50 3:10

Skewness �0:06 1:04 �1:20 �0:12 �0:23 0:49 �0:48 1:31 0:08 1:35 �1:65 �0:17
HDR�� 1:00 1:00 1:00 0:20 1:00 1:00 1:00 0:10 1:00 1:00 1:00 0:30

S�� 1:00 0:85 0:98 0:36 1:00 0:86 0:94 0:19 1:00 0:91 1:00 0:42

Q�� 1:00 1:00 1:00 0:56 1:00 0:93 1:00 0:34 1:00 1:00 1:00 0:64

� = 0:10

Mean 0:31 1:45 �2:07 �3:93� 0:23 0:71 �0:64 �2:43� 0:33 1:72� �2:58� �4:47�

St.dev. 3:26 2:61 3:03 3:05 2:88 2:58 3:23 2:62 3:39 2:57 2:79 3:01

Skewness �0:25 0:51 �0:44 �0:26 �0:32 �0:10 �0:35 0:24 �0:23 0:78 �0:80 �0:34
HDR�� 1:00 0:82 1:00 0:19 1:00 1:00 1:00 0:49 1:00 0:51 1:00 0:02

S�� 1:00 0:76 0:63 0:23 1:00 0:81 0:89 0:62 1:00 0:62 0:46 0:19

Q�� 1:00 0:83 0:82 0:33 1:00 0:99 1:00 0:68 1:00 0:77 0:68 0:21

Summary statistics for asymmetry measure ASYNY (�;A
+
; B) in current-depth-of-recession model. Entries in

rows labelled Mean which are larger than two times �ASYNY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYNY (�;A+;B) is the standard deviation of ASYNY (�;A
+
; B) and nA is the number of shocks vt for which

ASYNY (�; vt; !t�1) is computed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) such

that 0 would not be included in the relevant con�dence region Z�, Z = HDR, S and Q. The di�erent sets

of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.

Table 4: Asymmetry measures for impulse responses in 
oor-and-ceiling model


oor regime corridor regime ceiling regime

A S M L A S M L A S M L

Mean 0:02 �0:65� 1:19� 4:04� 0:01 �0:47� 0:83� 3:10� 0:00 �0:14 0:22 1:12�

St.dev. 1:31 0:46 0:87 1:14 1:06 0:34 1:08 0:75 0:45 0:27 0:39 0:89

Skewness 1:76 �0:27 0:74 0:29 1:76 0:22 0:13 �0:61 2:16 0:32 1:20 0:11

HDR�� 0:63 0:18 0:31 0:00 0:48 0:12 0:74 0:02 0:67 0:42 0:98 0:57

S�� 0:98 0:17 0:18 0:00 1:00 0:13 0:67 0:01 1:00 0:55 0:54 0:20

Q�� 0:85 0:17 0:13 0:00 0:65 0:10 0:75 0:02 0:86 0:55 0:68 0:19

Summary statistics for asymmetry measure ASYY (�;A
+
; B) in 
oor-and-ceiling model. Entries in the row

labelled Mean which are larger than two times �ASYY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYY (�;A+;B) is the standard deviation of ASYY (�;A
+
; B) and nA is the number of shocks vt for which

ASYY (�; vt; !t�1) is computed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) such

that 0 would not be included in the relevant con�dence region Z�, Z = HDR, S and Q. The di�erent sets

of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Table 5: Absorption times in 
oor-and-ceiling model


oor regime corridor regime ceiling regime

� A S M L A S M L A S M L

0.50 4.41 4.22 5.06 3.56 3.35 3.61 2.69 3.26 3.91 4.20 3.31 2.89

0.40 4.94 4.73 5.61 4.12 3.90 4.14 3.30 3.62 4.70 4.85 4.44 3.76

0.30 5.49 5.24 6.24 4.74 4.53 4.75 4.00 4.05 5.55 5.58 5.60 4.68

0.20 6.26 6.01 6.95 6.00 5.83 5.81 5.96 5.28 6.60 6.47 7.02 6.26

0.10 7.66 7.46 8.23 7.37 8.30 8.45 8.04 7.52 8.69 8.77 8.61 7.91

Mean of NY (�;A;B) in 
oor-and-ceiling model. The di�erent sets of shocks are de�ned as

A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g, L(arge)=

fVtj3 � jVt=
p
Htj > 2g.

Table 6: Asymmetry measures for absorption times in 
oor-and-ceiling model


oor regime corridor regime ceiling regime

A S M L A S M L A S M L

� = 0:50

Mean �0:44 �1:16 1:50 �0:71 1:56� 3:01� �1:58� �3:13� 0:41 1:60 �2:30 �2:48�

St.dev. 3:62 3:24 3:94 2:99 3:66 3:20 2:19 1:54 4:39 4:11 3:86 2:73

Skewness �0:39 �0:99 �0:13 0:74 0:65 1:32 0:30 �3:79 �0:01 �0:01 �0:90 0:60

HDR�� 0:84 0:79 0:40 0:00 0:57 0:19 0:53 0:04 1:00 0:68 1:00 0:59

S�� 1:00 0:64 0:40 0:97 0:74 0:31 0:59 0:04 1:00 0:73 0:78 0:51

Q�� 1:00 0:83 0:54 0:83 0:87 0:47 0:65 0:04 1:00 0:83 0:97 0:71

� = 0:10

Mean �0:75 �2:51 3:43� 2:26� 1:62� 2:29� 0:03 0:32 1:13 2:40 �1:79 �1:51
St.dev. 5:07 4:40 4:23 3:01 3:37 3:57 2:12 2:67 5:08 5:19 3:43 2:81

Skewness �0:01 �0:01 �0:40 �0:05 1:31 1:26 0:85 �2:19 0:40 0:24 �0:63 0:67

HDR�� 1:00 1:00 0:41 0:09 1:00 1:00 1:00 0:31 1:00 1:00 1:00 0:51

S�� 0:89 0:56 0:44 0:26 0:73 0:71 1:00 1:00 0:84 0:70 0:69 0:51

Q�� 1:00 0:65 0:34 0:16 1:00 0:92 1:00 0:62 1:00 0:76 0:82 0:55

Summary statistics for asymmetry measure ASYNY (�;A
+
; B) in 
oor-and-ceiling model. Entries in rows

labelled Mean which are larger than two times �ASYNY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYNY (�;A+;B) is the standard deviation of ASYNY (�;A
+
; B) and nA is the number of shocks vt for which

ASYNY (�; vt; !t�1) is computed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) such

that 0 would not be included in the relevant con�dence region Z�, Z = HDR, S and Q. The di�erent sets

of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Table 7: Absorption times in STVECM for income, consumption and investment

Unconditional Recession Expansion

Yi � A S M L A S M L A S M L

Shock to income

X

0.50 9.00 9.07 8.84 8.63 9.04 9.16 8.79 8.47 8.98 9.03 8.86 8.70

0.10 12.97 13.21 12.40 12.22 13.35 13.60 12.79 12.54 12.81 13.05 12.24 12.08

C

0.50 16.26 14.68 20.23 19.06 14.82 12.85 19.80 17.94 16.87 15.45 20.41 19.53

0.10 29.11 27.95 31.98 31.39 28.42 26.94 32.07 31.28 29.40 28.38 31.94 31.43

I

0.50 8.90 8.98 8.72 8.55 8.91 9.00 8.73 8.49 8.90 8.98 8.72 8.57

0.10 20.56 20.43 20.90 20.72 20.40 20.25 20.79 20.52 20.63 20.50 20.95 20.80

X � C

0.50 8.80 8.77 8.88 8.78 8.74 8.71 8.82 8.78 8.82 8.79 8.91 8.78

0.10 15.98 16.05 15.78 16.02 16.42 16.47 16.26 16.50 15.79 15.87 15.58 15.82

X � I

0.50 11.69 12.07 10.77 10.76 10.75 11.29 9.46 9.39 12.08 12.40 11.32 11.34

0.10 26.38 26.36 26.40 26.47 26.48 26.46 26.53 26.58 26.34 26.33 26.35 26.42

Shock to consumption

X

0.50 15.23 14.91 16.13 15.08 14.31 14.09 14.98 13.85 15.61 15.25 16.61 15.60

0.10 22.89 22.76 23.30 22.55 21.59 21.65 21.57 20.61 23.43 23.22 24.03 23.37

C

0.50 12.21 12.36 11.93 11.15 11.24 11.43 10.86 10.21 12.62 12.75 12.38 11.55

0.10 19.03 19.70 17.63 15.94 17.54 18.32 15.80 14.57 19.65 20.27 18.39 16.52

I

0.50 10.55 10.62 10.40 10.24 10.48 10.54 10.35 10.18 10.58 10.66 10.43 10.27

0.10 15.47 15.78 14.73 14.45 14.63 14.95 13.86 13.66 15.82 16.13 15.10 14.79

X � C

0.50 16.91 15.67 19.89 20.12 16.13 15.03 18.76 19.01 17.24 15.94 20.37 20.58

0.10 27.03 26.13 29.21 29.00 27.14 26.33 29.10 28.94 26.98 26.05 29.26 29.03

X � I

0.50 9.85 9.89 9.77 9.65 9.78 9.83 9.68 9.59 9.88 9.92 9.81 9.67

0.10 14.08 14.46 13.18 13.04 13.99 14.27 13.35 13.18 14.12 14.55 13.10 12.98

Shock to investment

X

0.50 9.46 9.77 8.79 8.15 9.40 9.85 8.38 7.81 9.48 9.74 8.96 8.29

0.10 14.56 15.18 13.26 11.77 14.28 14.99 12.65 11.86 14.68 15.26 13.51 11.73

C

0.50 9.41 9.62 9.09 7.51 8.90 9.33 8.03 6.65 9.62 9.75 9.53 7.87

0.10 15.10 15.51 14.39 12.08 14.08 14.58 13.07 11.59 15.53 15.90 14.94 12.29

I

0.50 8.44 8.51 8.32 7.82 8.28 8.41 8.04 7.54 8.51 8.56 8.44 7.94

0.10 12.74 13.02 12.11 11.60 12.18 12.40 11.69 11.35 12.97 13.28 12.29 11.71

X � C

0.50 9.08 9.16 8.90 8.80 8.87 8.92 8.76 8.71 9.17 9.26 8.96 8.83

0.10 14.51 15.26 12.79 11.97 14.48 15.23 12.71 12.44 14.52 15.27 12.82 11.78

X � I

0.50 8.16 8.21 8.09 7.65 8.05 8.17 7.84 7.39 8.20 8.23 8.19 7.76

0.10 12.47 12.71 11.93 11.76 12.04 12.31 11.42 11.15 12.65 12.87 12.14 12.02

Mean of NYi(�;A;B) in STVECM for income, consumption and investment. The column headed Yi con-

tains the (linear combination of) variable(s) for which the impulse response is measured. The di�erent

sets of shocks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=
p
Ht;jj j > 0g, M(edium)= fVjtj2 �

jVjt=
p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The recession and expansion regimes con-

tain all histories for which the value of the transition function F (St; 
̂; ĉ) is smaller and larger than 0.5,

respectively.
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Table 8: Asymmetry measure for absorption times in STVECM for income, consumption and

investment

Unconditional Recession Expansion

Yi � A S M L A S M L A S M L

Shock to income

X

0.50 1:66� 2:38 �0:03 �0:39 2:20� 2:73 0:93� 0:82 1:44 2:24 �0:43 �0:90�

0.10 1:75 2:63 �0:33 �0:81� 1:98 2:69 0:32 �0:06 1:65 2:61 �0:60 �1:12�

C

0.50 2:28 3:61 �0:40 �4:58 4:49 2:29 9:60 11:43� 1:36 4:17 �4:60 �11:29�

0.10 0:02 0:41 �0:68 �2:53 0:75 �0:66 3:99 5:24 �0:28 0:86 �2:64 �5:79�

I

0.50 1:48 2:13 �0:06 �0:33 1:72� 2:13 0:74� 0:71 1:37 2:13 �0:40 �0:77�

0.10 2:06� 2:87 0:14 �0:22 2:66� 3:40 0:89� 0:73 1:81� 2:65 �0:17 �0:62

X � C

0.50 0:27 0:40 �0:02 �0:11 0:25 0:24 0:25 0:41 0:29 0:47 �0:13 �0:33
0.10 �1:80� �2:42� �0:35 �0:03 �1:90� �2:13� �1:34� �1:41� �1:76� �2:54� 0:06 0:55

X � I

0.50 2:43 2:52 2:21 2:29 1:84 2:37 0:60 0:26 2:68 2:58 2:89 3:14

0.10 �0:60 �0:83 �0:07 0:13 �0:60 �0:65 �0:48 �0:48 �0:61 �0:91 0:10 0:38

Shock to consumption

X

0.50 0:81 1:50 �0:62 �2:57 2:90 2:31 4:26 4:76 �0:07 1:15 �2:66 �5:64
0.10 1:86 2:48 0:51 �0:54 4:63� 4:01 5:96 7:37� 0:70 1:84 �1:77 �3:85

C

0.50 1:75 2:78 �0:70 �1:07 3:08 3:28 2:49 3:46� 1:19 2:57 �2:03 �2:98
0.10 2:57 4:31 �1:48 �2:80 4:42 5:16 2:61 2:75 1:79 3:95 �3:19 �5:13

I

0.50 0:39 0:65 �0:22 �0:38 0:65 0:66 0:59 0:81 0:28 0:64 �0:56 �0:88�

0.10 1:61 2:03 0:63 0:41 1:19 1:51 0:41 0:46 1:79 2:24 0:72 0:39

X � C

0.50 0:78 1:20 �0:22 �0:36 2:65 2:33 3:31 4:08 �0:01 0:72 �1:71 �2:22
0.10 0:10 0:70 �1:28 �1:80 1:72 1:65 1:83 2:30 �0:57 0:31 �2:59 �3:51

X � I

0.50 0:20 0:33 �0:09 �0:22 0:45 0:43 0:48 0:65 0:09 0:28 �0:33 �0:58�

0.10 0:56 0:72 0:20 0:11 0:54 0:62 0:34 0:40 0:57 0:76 0:14 �0:01

Shock to investment

X

0.50 1:51 2:08 0:08 0:50 1:12 0:76 1:95� 2:24� 1:67 2:63 �0:71 �0:22
0.10 2:56 3:76 �0:38 �0:04 1:95 1:86 2:32 1:25 2:81 4:55 �1:51 �0:58

C

0.50 1:96 2:74 �0:08 1:15 2:20 1:30 4:34� 4:56� 1:86 3:35 �1:93 �0:28
0.10 2:59 3:56 0:15 1:01 2:26 1:36 4:59� 3:32� 2:73 4:48 �1:71 0:03

I

0.50 0:85 1:15 0:12 0:35 0:51 0:09 1:53� 1:57� 1:00 1:59 �0:48 �0:16
0.10 1:50 1:95 0:37 0:68 0:83 0:67 1:25 1:05 1:78� 2:49 0:00 0:52

X � C

0.50 0:38 0:50 0:11 0:15 0:01 �0:15 0:39 0:57� 0:54 0:77 �0:00 �0:02
0.10 1:00 1:71 �0:73 �0:54 1:44 1:89 0:49 �0:61 0:82 1:63 �1:24 �0:51

X � I

0.50 0:72 0:97 0:07 0:29 0:42 0:08 1:24� 1:24� 0:84 1:35 �0:42 �0:11
0.10 0:81 0:74 0:94 1:33 1:08 1:09 1:04 1:05 0:70 0:59 0:90 1:44

Mean of ASYNYi(�;A
+
; B) in STVECM for income, consumption and investment. The column headed Yi contains

the variable (or linear combination of variables) for which the impulse response is measured. Entries which are

larger than two times �ASYNYi
(�;A+;B)=

p
nA are marked with an asterisk, where �ASYNYi

(�;A+;B) is the standard

deviation of ASYNYi(�;A
+
; B) and nA is the number of shocks vjt for which ASY NYi(�; vjt; !t�1) is computed.

The di�erent sets of shocks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=
p
Ht;jj j > 0g, M(edium)= fVjtj2 �

jVjt=
p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The recession and expansion regimes contain all

histories for which the value of the transition function F (St; 
̂; ĉ) is smaller and larger than 0.5, respectively.
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Table 9: Common absorption measure in STVECM for income, consumption and investment, shock

to income equation

Unconditional Recession Expansion

A S M L A S M L A S M L

� = 0:50; Yi = X;Yl = C

Mean �6:45� �5:62 �11:39� �10:43� �5:05� �3:69 �11:01� �9:47� �7:05� �6:42 �11:54� �10:83�

St.dev. 9:60 9:17 8:60 8:88 9:64 8:78 9:27 9:30 9:52 9:21 8:30 8:66

Skewness �0:32 �0:50 �0:09 �0:14 �0:47 �0:66 0:00 �0:08 �0:26 �0:44 �0:16 �0:19
HDR�� 0:73 0:48 0:62 0:32 0:63 0:56 0:31 0:43 0:69 0:45 0:59 0:26

S�� 0:73 0:79 0:34 0:42 0:88 0:99 0:40 0:52 0:63 0:72 0:30 0:38

Q�� 0:91 1:00 0:46 0:57 1:00 0:88 0:59 0:71 0:84 0:92 0:41 0:51

� = 0:10; Yi = X;Yl = C

Mean �14:59� �14:74� �19:58� �19:17� �13:69� �13:35� �19:28� �18:73� �14:97� �15:32� �19:71� �19:35�

St.dev. 8:98 7:80 4:28 4:27 9:20 8:25 4:51 4:57 8:86 7:52 4:17 4:12

Skewness 1:35 1:39 �0:18 �0:34 1:54 1:73 �0:01 �0:22 1:26 1:19 �0:28 �0:44
HDR�� 0:09 0:03 0:00 0:00 0:14 0:02 0:00 0:00 0:06 0:04 0:00 0:00

S�� 0:09 0:05 0:00 0:00 0:10 0:08 0:00 0:00 0:09 0:05 0:00 0:00

Q�� 0:19 0:11 0:00 0:00 0:20 0:14 0:00 0:00 0:18 0:09 0:00 0:00

� = 0:50; Yi = X;Yl = I

Mean �0:38 0:09 0:12 0:08 �0:35 0:17 0:06 �0:02 �0:40 0:05 0:14 0:13

St.dev. 2:93 1:52 0:39 0:32 2:96 1:77 0:40 0:26 2:92 1:40 0:39 0:34

Skewness �3:97 1:98 1:02 1:65 �3:60 5:10 0:51 �0:70 �4:14 �0:76 1:29 2:07

HDR�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

S�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

Q�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

� = 0:10; Yi = X;Yl = I

Mean �7:38� �7:21� �8:50� �8:50� �6:92� �6:66� �8:00� �7:98� �7:58� �7:45� �8:72� �8:72�

St.dev. 3:78 3:56 1:05 1:00 3:92 3:93 1:08 0:97 3:69 3:37 0:96 0:94

Skewness 1:83 2:59 0:67 0:59 1:92 2:42 0:64 0:18 1:79 2:67 0:63 0:84

HDR�� 0:05 0:04 0:00 0:00 0:04 0:03 0:00 0:00 0:08 0:04 0:00 0:00

S�� 0:07 0:07 0:00 0:00 0:09 0:10 0:00 0:00 0:06 0:06 0:00 0:00

Q�� 0:12 0:15 0:00 0:00 0:15 0:20 0:00 0:00 0:11 0:12 0:00 0:00

� = 0:50; Yi = C; Yl = I

Mean 6:07� 5:70 11:50� 10:51� 4:69 3:85 11:07� 9:45� 6:65� 6:48 11:69� 10:95�

St.dev. 10:23 9:22 8:66 8:93 10:14 8:62 9:40 9:37 10:21 9:34 8:33 8:71

Skewness 0:13 0:50 0:06 0:11 0:31 0:79 �0:02 0:07 0:06 0:39 0:12 0:16

HDR�� 0:74 0:69 0:47 0:27 0:65 0:57 0:26 0:29 0:66 0:60 0:59 0:24

S�� 0:75 0:80 0:32 0:40 0:92 0:98 0:41 0:52 0:69 0:73 0:30 0:38

Q�� 0:94 1:00 0:46 0:57 1:00 0:92 0:59 0:71 0:87 0:92 0:41 0:51

� = 0:10; Yi = C; Yl = I

Mean 7:20� 7:53� 11:08� 10:66� 6:77� 6:69� 11:28� 10:75� 7:39� 7:88� 10:99� 10:63�

St.dev. 7:43 5:94 4:14 4:21 7:62 6:41 4:15 4:11 7:34 5:70 4:13 4:25

Skewness �1:10 �0:30 0:24 0:32 �0:98 �0:44 0:07 0:13 �1:15 �0:17 0:31 0:39

HDR�� 0:24 0:33 0:00 0:00 0:28 0:38 0:00 0:00 0:19 0:17 0:00 0:00

S�� 0:30 0:21 0:00 0:00 0:34 0:28 0:00 0:00 0:30 0:21 0:00 0:00

Q�� 0:31 0:24 0:00 0:00 0:35 0:31 0:00 0:00 0:29 0:20 0:00 0:00

Summary statistics for common absorption measure CNYi;Yl(�;A;B) in STVECM for income, consumption and

investment. Entries in rows labelled Mean which are larger than two times �CNYi;Yl
(�;A;B)=

p
nA are marked with an

asterisk, where �CNYi;Yl
(�;A;B) is the standard deviation of CNYi;Yl(�;A;B) and nA is the number of shocks vjt for

which CNYi;Yl(�; vjt; !t�1) is computed. The entries in rows labelled Z�� represent the minimum value of � 2 (0; 1)

such that 0 would not be included in the relevant con�dence region Z� for the distribution of the common absorption

measure CNYi;Yl(�;A;B) with Z = HDR, S and Q. The di�erent sets of shocks are de�ned as A(ll)= fVjtg, S(mall)=

fVjtj1 � jVjt=
p
Ht;jj j > 0g, M(edium)= fVjtj2 � jVjt=

p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The

recession and expansion regimes contain all histories for which the value of the transition function F (St; 
̂; ĉ) is smaller

and larger than 0.5, respectively.
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Table 10: Common absorption measure in STVECM for income, consumption and in-

vestment, shock to consumption equation

Unconditional Recession Expansion

A S M L A S M L A S M L

� = 0:50; Yi = X;Yl = C

Mean 2:72 2:55 4:19 3:93 2:83 2:67 4:12 3:64� 2:68 2:50 4:22 4:05

St.dev. 7:37 7:25 5:42 4:95 7:07 6:83 4:69 3:94 7:49 7:42 5:71 5:31

Skewness �0:78 �0:75 0:07 0:25 �1:00 �1:01 0:95 1:24 �0:70 �0:66 �0:14 0:04

HDR�� 0:62 0:63 0:42 0:17 0:49 0:48 0:35 0:16 0:63 0:64 0:37 0:12

S�� 0:53 0:52 0:30 0:30 0:44 0:42 0:25 0:21 0:56 0:58 0:33 0:28

Q�� 0:44 0:49 0:19 0:09 0:37 0:38 0:14 0:07 0:47 0:53 0:21 0:10

� = 0:10; Yi = X;Yl = C

Mean 3:31 3:06 5:67 6:61� 3:61 3:33 5:77� 6:04� 3:19 2:95 5:63 6:85�

St.dev. 8:80 8:67 6:91 5:97 8:00 7:92 5:88 5:22 9:11 8:97 7:29 6:24

Skewness �0:66 �0:49 �0:78 �1:08 �0:70 �0:54 �0:04 �0:33 �0:64 �0:46 �0:93 �1:29
HDR�� 0:71 0:86 0:46 0:37 0:87 0:89 0:71 0:69 0:65 0:68 0:33 0:26

S�� 0:77 0:75 0:32 0:19 0:64 0:68 0:29 0:19 0:80 0:82 0:33 0:19

Q�� 0:63 0:67 0:41 0:29 0:57 0:62 0:36 0:30 0:65 0:69 0:43 0:29

� = 0:50; Yi = X;Yl = I

Mean 3:85� 4:29 5:72� 4:84 2:98 3:55 4:63 3:67 4:21� 4:60 6:18� 5:33�

St.dev. 6:93 6:13 5:70 5:46 7:03 5:86 5:60 4:81 6:86 6:22 5:68 5:65

Skewness �0:22 0:45 0:86 1:18 �0:41 0:56 1:30 1:76 �0:13 0:41 0:71 0:99

HDR�� 0:69 0:67 0:50 0:43 0:68 0:66 0:45 0:40 0:69 0:68 0:15 0:39

S�� 0:53 0:47 0:25 0:34 0:51 0:47 0:37 0:39 0:50 0:43 0:18 0:30

Q�� 0:43 0:40 0:13 0:16 0:51 0:46 0:26 0:30 0:40 0:37 0:07 0:11

� = 0:10; Yi = X;Yl = I

Mean 6:25� 6:97� 8:57� 8:10� 5:86� 6:69� 7:70� 6:95� 6:42� 7:09� 8:93� 8:58�

St.dev. 7:94 6:99 5:17 4:99 8:14 7:12 6:04 5:54 7:84 6:94 4:71 4:66

Skewness �0:86 �0:41 0:46 0:52 �0:77 �0:34 0:29 0:18 �0:90 �0:43 0:76 0:92

HDR�� 1:00 1:00 0:81 0:79 1:00 1:00 1:00 1:00 0:40 0:61 0:17 0:07

S�� 0:37 0:31 0:14 0:14 0:52 0:39 0:31 0:36 0:32 0:25 0:08 0:05

Q�� 0:39 0:32 0:18 0:20 0:58 0:48 0:48 0:57 0:31 0:25 0:05 0:04

� = 0:50; Yi = C; Yl = I

Mean 1:12 1:74 1:53 0:91 0:15 0:88 0:51 0:03 1:53 2:10 1:96 1:28

St.dev. 6:10 5:48 4:45 3:82 5:66 5:06 3:37 3:03 6:23 5:61 4:77 4:04

Skewness 0:98 2:59 3:76 4:95 0:79 3:21 4:44 4:53 1:02 2:40 3:55 4:98

HDR�� 1:00 1:00 0:76 1:00 1:00 0:80 0:77 0:74 1:00 1:00 1:00 1:00

S�� 0:69 0:65 0:53 0:79 1:00 0:88 0:77 1:00 0:62 0:61 0:53 0:63

Q�� 1:00 1:00 0:91 1:00 1:00 1:00 1:00 1:00 0:97 0:94 0:86 1:00

� = 0:10; Yi = X;Yl = I

Mean 2:94 3:91 2:90 1:49 2:24 3:37 1:94 0:90 3:23 4:14 3:30 1:73

St.dev. 7:63 7:29 6:63 5:43 7:07 7:09 4:48 3:11 7:84 7:36 7:31 6:14

Skewness 0:73 1:16 1:63 1:82 0:97 1:42 2:89 3:56 0:64 1:06 1:35 1:51

HDR�� 1:00 1:00 0:74 0:73 1:00 1:00 0:72 0:63 1:00 0:80 0:75 1:00

S�� 0:65 0:62 0:59 0:60 0:67 0:68 0:52 0:63 0:63 0:58 0:61 0:62

Q�� 0:84 0:77 0:81 0:93 0:96 0:94 0:83 0:89 0:79 0:70 0:81 0:94

Summary statistics for common absorption measure CNYi;Yl(�;A;B) in STVECM for income, consump-

tion and investment. Entries in rows labelled Mean which are larger than two times �CNYi;Yl
(�;A;B)=

p
nA

are marked with an asterisk, where �CNYi;Yl
(�;A;B) is the standard deviation of CNYi;Yl(�;A;B) and nA

is the number of shocks vjt for which CNYi;Yl(�; vjt; !t�1) is computed. The entries in rows labelled Z��

represent the minimum value of � 2 (0; 1) such that 0 would not be included in the relevant con�dence

region Z� for the distribution of the common absorption measure CNYi;Yl (�;A;B) with Z = HDR, S

and Q. The di�erent sets of shocks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=
p
Ht;jj j > 0g,

M(edium)= fVjtj2 � jVjt=
p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The recession and

expansion regimes contain all histories for which the value of the transition function F (St; 
̂; ĉ) is smaller

and larger than 0.5, respectively. 31



Table 11: Common absorption measure in STVECM for income, consumption and in-

vestment, shock to investment equation

Unconditional Recession Expansion

A S M L A S M L A S M L

� = 0:50; Yi = X;Yl = C

Mean 0:32 0:15 �0:30 0:65 0:55 0:52 0:36 1:16 0:22 �0:01 �0:58 0:43

St.dev. 4:51 4:70 2:47 1:02 4:46 4:91 1:92 1:47 4:53 4:59 2:62 0:65

Skewness �0:39 �0:77 �4:78 1:52 �0:50 �0:47 �0:90 0:80 �0:34 �0:93 �5:40 0:21

HDR�� 1:00 1:00 1:00 1:00 1:00 0:81 0:73 1:00 1:00 1:00 1:00 1:00

S�� 1:00 1:00 1:00 0:67 0:83 0:81 1:00 0:64 1:00 1:00 0:77 1:00

Q�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 0:91 1:00 1:00 1:00 1:00

� = 0:10; Yi = X;Yl = C

Mean �0:47 �0:33 �1:13 �0:31 0:01 0:41 �0:41 0:27 �0:68 �0:65 �1:43 �0:55
St.dev. 5:46 6:09 2:82 2:02 5:57 6:22 2:22 1:75 5:40 6:00 2:99 2:08

Skewness 0:10 �0:04 �2:20 �1:81 �0:11 �0:18 �1:62 �2:23 0:19 0:01 �2:22 �1:71
HDR�� 1:00 1:00 1:00 1:00 0:80 0:80 1:00 1:00 1:00 1:00 1:00 1:00

S�� 1:00 1:00 0:75 1:00 1:00 1:00 1:00 1:00 0:88 0:90 0:75 0:92

Q�� 1:00 1:00 1:00 1:00 1:00 0:97 1:00 1:00 1:00 1:00 1:00 1:00

� = 0:50; Yi = X;Yl = I

Mean 0:48 1:25 0:47 0:33 0:43 1:44 0:35 0:27 0:49 1:18 0:52� 0:35

St.dev. 3:44 2:82 0:56 0:51 4:09 3:19 0:54 0:56 3:12 2:64 0:55 0:48

Skewness �0:43 3:48 1:46 0:31 �0:79 3:26 �0:01 �0:03 �0:05 3:54 2:09 0:59

HDR�� 1:00 0:56 1:00 1:00 1:00 1:00 1:00 1:00 0:57 0:54 0:50 1:00

S�� 1:00 0:52 1:00 1:00 1:00 0:54 1:00 1:00 1:00 0:51 0:50 1:00

Q�� 1:00 0:89 1:00 1:00 1:00 0:90 1:00 1:00 1:00 0:88 0:99 1:00

� = 0:10; Yi = X;Yl = I

Mean 1:22 2:16 1:14 0:17 1:40 2:59 0:96 0:51 1:14 1:98 1:22 0:02

St.dev. 4:64 4:33 2:42 1:67 5:01 4:54 1:78 0:96 4:48 4:22 2:64 1:87

Skewness �0:16 0:91 1:14 �1:03 �0:07 1:36 2:54 4:01 �0:23 0:66 0:87 �1:10
HDR�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

S�� 0:75 0:68 0:70 1:00 0:73 0:67 0:66 0:63 0:76 0:71 0:73 1:00

Q�� 1:00 0:86 1:00 1:00 1:00 0:86 1:00 1:00 1:00 0:86 1:00 1:00

� = 0:50; Yi = C; Yl = I

Mean 0:16 1:11 0:77 �0:32 �0:12 0:92 �0:01 �0:89 0:27 1:19 1:09 �0:08
St.dev. 4:62 3:91 2:66 1:24 4:48 3:96 2:23 1:81 4:67 3:89 2:75 0:78

Skewness 0:41 3:01 4:15 �1:49 0:57 2:89 0:51 �0:73 0:35 3:07 5:07 �0:38
HDR�� 1:00 1:00 0:69 1:00 0:85 0:84 0:55 0:69 1:00 0:77 1:00 1:00

S�� 1:00 0:68 0:69 1:00 1:00 0:89 1:00 0:88 1:00 0:64 0:57 1:00

Q�� 1:00 1:00 0:98 1:00 1:00 1:00 1:00 1:00 1:00 0:99 0:97 1:00

� = 0:10; Yi = C; Yl = I

Mean 1:69 2:49 2:27 0:48 1:39 2:18 1:37 0:24 1:82 2:62 2:65 0:58

St.dev. 6:04 6:15 3:94 2:13 5:66 6:06 3:06 2:02 6:19 6:19 4:20 2:17

Skewness 0:92 1:50 2:09 1:58 1:35 1:75 1:40 2:05 0:77 1:40 2:10 1:42

HDR�� 1:00 1:00 1:00 1:00 1:00 0:81 1:00 1:00 1:00 1:00 1:00 1:00

S�� 0:77 0:73 0:74 1:00 0:76 0:70 0:76 1:00 0:79 0:72 0:70 0:88

Q�� 1:00 0:95 0:96 1:00 1:00 0:97 1:00 1:00 1:00 0:94 0:90 1:00

Summary statistics for common absorption measure CNYi;Yl(�;A;B) in STVECM for income, consump-

tion and investment. Entries in rows labelled Mean which are larger than two times �CNYi;Yl
(�;A;B)=

p
nA

are marked with an asterisk, where �CNYi;Yl
(�;A;B) is the standard deviation of CNYi;Yl(�;A;B) and nA

is the number of shocks vjt for which CNYi;Yl(�; vjt; !t�1) is computed. The entries in rows labelled Z��

represent the minimum value of � 2 (0; 1) such that 0 would not be included in the relevant con�dence

region Z� for the distribution of the common absorption measure CNYi;Yl (�;A;B) with Z = HDR, S

and Q. The di�erent sets of shocks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=
p
Ht;jj j > 0g,

M(edium)= fVjtj2 � jVjt=
p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The recession and

expansion regimes contain all histories for which the value of the transition function F (St; 
̂; ĉ) is smaller

and larger than 0.5, respectively. 32



Figure 1: Impulse response functions and asymmetry measures in current-depth-of-

recession model

(a) A, unconditional (b) A, recession (c) A, expansion

(d) N, unconditional (e) N, recession (f) N, expansion

(g) P, unconditional (h) P, recession (i) P, expansion

(j) unconditional (k) recession (l) expansion

Note: Distribution of impulse response functions and asymmetry measure in current-depth-of-recession model.

The di�erent sets of shocks are de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 2: Absorption times in current-depth-of-recession model, � = 0:50

(a) A, unconditional (b) A, recession (c) A, expansion

(d) N, unconditional (e) N, recession (f) N, expansion

(g) P, unconditional (h) P, recession (i) P, expansion

Note: Distribution of absorption times in current-depth-of-recession model. The di�erent sets of shocks are

de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 3: Absorption times in current-depth-of-recession model, � = 0:10

(a) A, unconditional (b) A, recession (c) A, expansion

(d) N, unconditional (e) N, recession (f) N, expansion

(g) P, unconditional (h) P, recession (i) P, expansion

Note: Distribution of absorption times in current-depth-of-recession model. The di�erent sets of shocks are

de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 4: Asymmetry measures for absorption times in current-depth-of-recession model,

� = 0:50

(a) A, unconditional (b) A, recession (c) A, expansion

(d) S, unconditional (e) S, recession (f) S, expansion

(g) M, unconditional (h) M, recession (i) M, expansion

(j) L, unconditional (k) L, recession (l) L, expansion

Note: Distribution of asymmetry measures for absorption times in current-depth-of-recession model. The di�er-

ent sets of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj >

1g, L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Figure 5: Asymmetry measures for absorption times in current-depth-of-recession model,

� = 0:10

(a) A, unconditional (b) A, recession (c) A, expansion

(d) S, unconditional (e) S, recession (f) S, expansion

(g) M, unconditional (h) M, recession (i) M, expansion

(j) L, unconditional (k) L, recession (l) L, expansion

Note: Distribution of asymmetry measures for absorption times in current-depth-of-recession model. The di�er-

ent sets of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj >

1g, L(arge)= fVtj3 � jVt=
p
Htj > 2g.

37



Figure 6: Impulse response functions and asymmetry measures in 
oor-and-ceiling model

(a) A, 
oor (b) A, corridor (c) A, ceiling

(d) N, 
oor (e) N, corridor (f) N, ceiling

(g) P, 
oor (h) P, corridor (i) P, ceiling

(j) 
oor (k) corridor (l) ceiling

Note: Distribution of impulse response functions in 
oor-and-ceiling model. The di�erent sets of shocks are

de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 7: Absorption times in 
oor-and-ceiling model, � = 0:50

(a) A, 
oor (b) A, corridor (c) A, ceiling

(d) N, 
oor (e) N, corridor (f) N, ceiling

(g) P, 
oor (h) P, corridor (i) P, ceiling

Note: Distribution of absorption times in 
oor-and-ceiling model. The di�erent sets of shocks are de�ned as

A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 8: Absorption times in 
oor-and-ceiling model, � = 0:10

(a) A, 
oor (b) A, corridor (c) A, ceiling

(d) N, 
oor (e) N, corridor (f) N, ceiling

(g) P, 
oor (h) P, corridor (i) P, ceiling

Note: Distribution of absorption times in 
oor-and-ceiling model. The di�erent sets of shocks are de�ned as

A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 9: Asymmetry measures for absorption times in 
oor-and-ceiling model, � = 0:50

(a) A, 
oor (b) A, corridor (c) A, ceiling

(d) S, 
oor (e) S, corridor (f) S, ceiling

(g) M, 
oor (h) M, corridor (i) M, ceiling

(j) L, 
oor (k) L, corridor (l) L, ceiling

Note: Distribution of asymmetry measures for absorption times in 
oor-and-ceiling model. The di�erent sets

of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Figure 10: Asymmetry measures for absorption times in 
oor-and-ceiling model, � = 0:10

(a) A, 
oor (b) A, corridor (c) A, ceiling

(d) S, 
oor (e) S, corridor (f) S, ceiling

(g) M, 
oor (h) M, corridor (i) M, ceiling

(j) L, 
oor (k) L, corridor (l) L, ceiling

Note: Distribution of asymmetry measures for absorption times in 
oor-and-ceiling model. The di�erent sets

of shocks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Figure 11: Impulse response functions in STVECM, income shock

(a) unconditional (b) recession (c) expansion

(d) unconditional (e) recession (f) expansion

(g) unconditional (h) recession (i) expansion

Note: Distribution of impulse response functions for STVECM model for income, consumption and investment

with common nonlinear component, for shock given to income equation.
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Figure 12: Impulse response functions in STVECM, consumption shock

(a) unconditional (b) recession (c) expansion

(d) unconditional (e) recession (f) expansion

(g) unconditional (h) recession (i) expansion

Note: Distribution of impulse response functions for STVECM model for income, consumption and investment

with common nonlinear component, for shock given to consumption equation.
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Figure 13: Impulse response functions in STVECM, investment shock

(a) unconditional (b) recession (c) expansion

(d) unconditional (e) recession (f) expansion

(g) unconditional (h) recession (i) expansion

Note: Distribution of impulse response functions for STVECM model for income, consumption and investment

with common nonlinear component, for shock given to investment equation.
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Figure 14: Absorption times in STVECM, � = 0:50

(a) income shock (b) income shock (c) income shock

(d) consumption shock (e) consumption shock (f) consumption shock

(g) investment shock (h) investment shock (i) investment shock

Note: Distribution of absorption times for STVECM for income, consumption and investment with common

nonlinear component.
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Figure 15: Absorption times in STVECM, � = 0:10

(a) income shock (b) income shock (c) income shock

(d) consumption shock (e) consumption shock (f) consumption shock

(g) investment shock (h) investment shock (i) investment shock

Note: Distribution of absorption times for STVECM for income, consumption and investment with common

nonlinear component.
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Figure 16: Common absorption measure in STVECM, � = 0:50

(a) income shock (b) income shock (c) income shock

(d) consumption shock (e) consumption shock (f) consumption shock

(g) investment shock (h) investment shock (i) investment shock

Note: Distribution of common absorption measure for STVECM for income, consumption and investment with

common nonlinear component.
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Figure 17: Common absorption measure in STVECM, � = 0:10

(a) income shock (b) income shock (c) income shock

(d) consumption shock (e) consumption shock (f) consumption shock

(g) investment shock (h) investment shock (i) investment shock

Note: Distribution of common absorption measure for STVECM for income, consumption and investment with

common nonlinear component.
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