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Gauge Equivariant Convolutional Networks and the Icosahedral CNN

Taco S. Cohen * 1 Maurice Weiler * 2 Berkay Kicanaoglu * 2 Max Welling 1

Abstract

The principle of equivariance to symmetry trans-
formations enables a theoretically grounded ap-
proach to neural network architecture design.
Equivariant networks have shown excellent per-
formance and data efficiency on vision and med-
ical imaging problems that exhibit symmetries.
Here we show how this principle can be extended
beyond global symmetries to local gauge transfor-
mations. This enables the development of a very
general class of convolutional neural networks on
manifolds that depend only on the intrinsic geom-
etry, and which includes many popular methods
from equivariant and geometric deep learning.

We implement gauge equivariant CNNs for sig-
nals defined on the surface of the icosahedron,
which provides a reasonable approximation of the
sphere. By choosing to work with this very regu-
lar manifold, we are able to implement the gauge
equivariant convolution using a single conv2d call,
making it a highly scalable and practical alterna-
tive to Spherical CNNs. Using this method, we
demonstrate substantial improvements over pre-
vious methods on the task of segmenting omnidi-
rectional images and global climate patterns.

1. Introduction
By and large, progress in deep learning has been achieved
through intuition-guided experimentation. This approach
is indispensable and has led to many successes, but has not
produced a deep understanding of why and when certain
architectures work well. As a result, every new application
requires an extensive architecture search, which comes at a
significant labor and energy cost.

*Equal contribution 1Qualcomm AI Research, Amsterdam,
NL. 2Qualcomm-University of Amsterdam (QUVA) Lab. The-
ory co-developed by Cohen & Weiler. Correspondence to:
Taco S. Cohen <taco.cohen@gmail.com>, Maurice Weiler
<m.weiler@uva.nl>.
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Figure 1. A gauge is a smoothly varying choice of tangent frame
on a subset U of a manifold M . A gauge is needed to represent
geometrical quantities such as convolutional filters and feature
maps (i.e. fields), but the choice of gauge is ultimately arbitrary.
Hence, the network should be equivariant to gauge transformations,
such as the change between red and blue gauge pictured here.

Although a theory that tells us which architecture to use for
any given problem is clearly out of reach, we can neverthe-
less come up with general principles to guide architecture
search. One such rational design principle that has met with
substantial empirical success (Winkels & Cohen, 2018; Za-
heer et al., 2017; Lunter & Brown, 2018) maintains that
network architectures should be equivariant to symmetries.

Besides the ubiquitous translation equivariant CNN, equiv-
ariant networks have been developed for sets, graphs, and
homogeneous spaces like the sphere (see Sec. 3). In each
case, the network is made equivariant to the global symme-
tries of the underlying space. However, manifolds do not
in general have global symmetries, and so it is not obvious
how one might develop equivariant CNNs for them.

General manifolds do however have local gauge symmetries,
and as we will show in this paper, taking these into account
is not just useful but necessary if one wishes to build mani-
fold CNNs that depend only on the intrinsic geometry. To
this end, we define a convolution-like operation on general
manifolds M that is equivariant to local gauge transforma-
tions (Fig. 1). This gauge equivariant convolution takes as
input a number of feature fields on M of various types (anal-
ogous to matter fields in physics), and produces as output
new feature fields. Each field is represented by a number of
feature maps, whose activations are interpreted as the coef-
ficients of a geometrical object (e.g. scalar, vector, tensor,
etc.) relative to a spatially varying frame (i.e. gauge). The
network is constructed such that if the gauge is changed,
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the coefficients change in a predictable way so as to pre-
serve their geometrical meaning. Thus, the search for a
geometrically natural definition of “manifold convolution”,
a key problem in geometric deep learning, leads inevitably
to gauge equivariance.

Although the theory of gauge equivariant networks devel-
oped in this paper is very general, we apply it to one specific
manifold: the icosahedron. This manifold has some global
symmetries (discrete rotations), which nicely shows the
difference between and interplay of local and global sym-
metries. In addition, the regularity and local flatness of this
manifold allows for a very efficient implementation using
existing deep learning primitives (i.e. conv2d). The result-
ing algorithm shows excellent performance and accuracy on
segmentation of omnidirectional signals.

Gauge theory plays a central role in modern physics, but has
a reputation for being abstract and difficult. So in order to
keep this article accessible to a broad machine learning au-
dience, we have chosen to emphasize geometrical intuition
over mathematical formality.

The rest of this paper is organized as follows. In Sec. 2,
we motivate the need for working with gauges, and define
gauge equivariant convolution for general manifolds and
fields. In section 3, we discuss related work on equivariant
and geometrical deep learning. Then in section 4, we dis-
cuss the concrete instantiation and implementation of gauge
equivariant CNNs for the icosahedron. Results on IcoM-
NIST, climate pattern segmentation, and omnidirectional
RGB-D image segmentation are presented in Sec. 5.

2. Gauge Equivariant Networks
Consider the problem of generalizing the classical convolu-
tion of two planar signals (e.g. a feature map and a filter)
to signals defined on a manifold M . The first and most
natural idea comes from thinking of planar convolution in
terms of shifting a filter over a feature map. Observing that
shifts are symmetries of the plane (mapping the plane onto
itself while preserving its structure), one is led to the idea
of transforming a filter on M by the symmetries of M . For
instance, replacing shifts of the plane by rotations of the
sphere, one obtains Spherical CNNs (Cohen et al., 2018b).

This approach works for any homogeneous space, where by
definition it is possible to move from any point p ∈ M to
any other point q ∈M using an appropriate symmetry trans-
formation (Kondor & Trivedi, 2018; Cohen et al., 2018c;a).
On less symmetrical manifolds however, it may not be pos-
sible to move the filter from any point to any other point
by symmetry transformations. Hence, transforming filters
by symmetry transformations will in general not provide a
recipe for weight sharing between filters at all points in M .

Figure 2. On curved spaces, parallel
transport is path dependent. The black
vector is transported to the same point via
two different curves, yielding different re-
sults. The same phenomenon occurs for
other geometric objects, including filters.

Instead of symmetries, one can move the filter by parallel
transport (Schonsheck et al., 2018), but as shown in Fig. 2,
this leaves an ambiguity in the filter orientation, because
parallel transport is path dependent. This can be addressed
by using only rotation invariant filters (Boscaini et al., 2015;
Bruna et al., 2014), albeit at the cost of limiting expressivity.

The key issue is that on a manifold, there is no preferred
gauge (tangent frame), relative to which we can position our
measurement apparatus (i.e. filters), and relative to which
we can describe measurements (i.e. responses). We must
choose a gauge in order to numerically represent geomet-
rical quantities and perform computations, but since it is
arbitrary, the computations should be independent of it.

This does not mean however that the coefficients of the
feature vectors should be invariant to gauge transformations,
but rather that the feature vector itself should be invariant.
That is, a gauge transformation leads to a change of basis
ei 7→ ẽi of the feature space (fiber) at p ∈M , so the feature
vector coefficients fi should change equivariantly to ensure
that the vector

∑
i fiei =

∑
i f̃iẽi itself is unchanged.

Before showing how this is achieved, we note that on non-
parallelizable manifolds such as the sphere, it is not possible
to choose a smooth global gauge. For instance, if we extend
the blue gauge pictured in Fig. 1 to the whole sphere, we
will innevitably create a singularity where the gauge changes
abruptly. Hence, in order to make the math work smoothly,
it is standard practice in gauge theory to work with multiple
gauges defined on overlapping charts, as in Fig. 1.

The basic idea of gauge equivariant convolution is as follows.
Lacking alternative options, we choose arbitrarily a smooth
local gauge on subsets U ⊂M (e.g. the red or blue gauge
in Fig. 1). We can then position a filter at each point p ∈ U ,
defining its orientation relative to the gauge. Then, we
match an input feature map against the filter at p to obtain
the value of the output feature map at p. For the output to
transform equivariantly, certain linear constraints are placed
on the convolution kernel. We will now define this formally.

2.1. Gauges, Transformations, and Exponential Maps

We define a gauge as a position-dependent invertible linear
map wp : Rd → TpM , where TpM is the tangent space
of M at p. This determines a frame wp(e1), . . . , wp(ed) in
TpM , where {ei} is the standard frame of Rd.
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A gauge transformation (Fig. 1) is a position-dependent
change of frame, which can be described by maps gp ∈
GL(d,R) (the group of invertible d × d matrices). As in-
dicated by the subscript, the transformation gp depends on
the position p ∈ U ⊂ M . To change the frame, simply
compose wp with gp, i.e. wp 7→ wpgp. It follows that com-
ponent vectors v ∈ Rd transform as v 7→ g−1p v, so that the
vector (wpgp)(g

−1
p v) = wpv ∈ TpM itself is invariant.

If we derive our gauge from a coordinate system for M
(as shown in Fig. 1), then a change of coordinates leads
to a gauge transformation (gp being the Jacobian of the
coordinate transformation at p). But we can also choose a
gauge wp independent of any coordinate system.

It is often useful to restrict the kinds of frames we consider,
for example to only allow right-handed or orthogonal frames.
Such restrictions limit the kinds of gauge transformations we
can consider. For instance, if we allow only right-handed
frames, gp should have positive determinant (i.e. gp ∈
GL+(d,R)), so that it does not reverse the orientation. If
in addition we allow only orthogonal frames, gp must be a
rotation, i.e. gp ∈ SO(d).

In mathematical terms, G = GL(d,R) is called the struc-
ture group of the theory, and limiting the kinds of frames
we consider corresponds to a reduction of the structure
group (Husemöller, 1994). Each reduction corresponds to
some extra structure that is preserved, such as an orienta-
tion (GL+(d,R)) or Riemannian metric (SO(d)). In the
Icosahedral CNN (Fig. 4), we will want to preserve the
hexagonal grid structure, which corresponds to a restriction
to grid-aligned frames and a reduction of the structure group
to G = C6, the group of planar rotations by integer multi-
ples of 2π/6. For the rest of this section, we will work in
the Riemannian setting, i.e. use G = SO(d).

Before we can define gauge equivariant convolution, we
will need the exponential map, which gives a convenient
parameterization of the local neighbourhood of p ∈M . This
map expp : TpM → M takes a tangent vector V ∈ TpM ,
follows the geodesic (shortest curve) in the direction of V
with speed ‖V ‖ for one unit of time, to arrive at a point
q = expp V (see Fig. 3, (Lee)).

2.2. Gauge Equivariant Convolution: Scalar Fields

Having defined gauges, gauge transformations, and the ex-
ponential map, we are now ready to define gauge equivariant
convolution. We begin with scalar input and output fields.

We define a filter as a locally supported function K : Rd →
R, where Rd may be identified with TpM via the gauge wp.
Then, writing qv = expp wp(v) for v ∈ Rd, we define the
scalar convolution of K and f :M → R at p as follows:

(K ? f)(p) =

∫
Rd

K(v)f(qv)dv. (1)

Figure 3. The exponential map and the gauge wp.

The gauge was chosen arbitrarily, so we must consider what
happens if we change it. Since the filter K : Rd → R is a
function of a coordinate vector v ∈ Rd, and v gets rotated by
gauge transformations, the effect of a gauge transformation
is a position-dependent rotation of the filters. For the convo-
lution output to be called a scalar field, it has to be invariant
to gauge transformations (i.e. v 7→ g−1p v and wp 7→ wggp).
The only way to make (K ? f)(p) (Eq. 1) invariant to ro-
tations of the filter, is to make the filter rotation-invariant:

∀g ∈ G : K(g−1v) = K(v) (2)

Thus, to map a scalar input field to a scalar output field in a
gauge equivariant manner, we need to use rotationally sym-
metric filters. Some geometric deep learning methods, as
well as graph CNNs do indeed use isotropic filters. However,
this is very limiting and as we will now show, unnecessary
if one considers non-scalar feature fields.

2.3. Feature Fields

Intuitively, a field is an assignment of some geometrical
quantity (feature vector) f(p) of the same type to each point
p ∈ M . The type of a quantity is determined by its trans-
formation behaviour under gauge transformations. For in-
stance, the word vector field is reserved for a field of tangent
vectors v, that transform like v(p) 7→ g−1p v(p) as we saw
before. It is important to note that f(p) is an element of
a vector space (“fiber”) Fp ' RC attached to p ∈ M (e.g.
the tangent space TpM ). All Fp are similar to a canonical
feature space RC , but f can only be considered a function
U → RC locally, after we have chosen a gauge, because
there is no canonical way to identify all feature spaces Fp.

In the general case, the transformation behaviour of a C-
dimensional geometrical quantity is described by a rep-
resentation of the structure group G. This is a mapping
ρ : G→ GL(C,R) that satisfies ρ(gh) = ρ(g)ρ(h), where
gh denotes the composition of transformations in G, and
ρ(g)ρ(h) denotes multiplication ofC×C matrices ρ(g) and
ρ(h). The simplest examples are the trivial representation
ρ(g) = 1 which describes the transformation behaviour of
scalars, and ρ(g) = g, which describes the transformation
behaviour of (tangent) vectors. A field f that transforms
like f(p) 7→ ρ(g−1p )f(p) will be called a ρ-field.
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In Section 4 on Icosahedral CNNs, we will consider one
more type of representation, namely the regular representa-
tion of C6. The group C6 can be described as the 6 planar
rotations by k · 2π/6, or as integers k with addition mod 6.
Features that transform like the regular representation of C6

are 6-dimensional, with one component for each rotation.
One can obtain a regular feature by taking a filter at p, ro-
tating it by k · 2π/6 for k = 0, . . . , 5, and matching each
rotated filter against the input signal. When the gauge is
changed, the filter and all rotated copies are rotated, and so
the components of a regularC6 feature are cyclically shifted.
Hence, ρ(g) is a 6× 6 cyclic permutation matrix that shifts
the coordinates by k′ steps for g = k′ · 2π/6. Further ex-
amples of representations ρ that are useful in convolutional
networks may be found in (Cohen & Welling, 2017; Weiler
et al., 2018a; Thomas et al., 2018; Hy et al., 2018).

2.4. Gauge Equivariant Convolution: General Fields

Now consider a stack ofCin input feature maps onM , which
represents a Cin-dimensional ρin-field (e.g. Cin = 1 for a
single scalar, Cin = d for a vector, Cin = 6 for a regular
C6 feature, or any multiple of these, etc.). We will define a
convolution operation that takes such a field and produces
as output a Cout-dimensional ρout-field. For this we need a
filter bank with Cout output channels and Cin input channels,
which we will describe mathematically as a matrix-valued
kernel K : Rd → RCout×Cin .

We can think of K(v) as a linear map from the input feature
space (“fiber”) at p to the output feature space at p, these
spaces being identified with RCin resp. RCout by the choice
of gauge wp at p. This suggests that we need to modify Eq.
1 to make sure that the kernel matrix K(v) is multiplied
by a feature vector at p, not one at qv = expp wp(v). This
is achieved by transporting f(qv) to p along the unique1

geodesic connecting them, before multiplying by K(v).

As f(qv) is transported to p, it undergoes a transformation
which will be denoted gp←qv ∈ G (see Fig. 2). This trans-
formation acts on the feature vector f(qv) ∈ RCin via the
representation ρin(gp←qv ) ∈ RCin×Cin . Thus, we obtain the
generalized form of Eq. 1 for general fields:

(K ? f)(p) =

∫
Rd

K(v)ρin(gp←qv )f(qv)dv. (3)

Under a gauge transformation, we have:

v 7→ g−1p v, f(qv) 7→ ρin(g
−1
qv )f(qv),

wp 7→ wpgp, gp←qv 7→ g−1p gp←qvgqv .
(4)

For K ? f to be well defined as a ρout-field, we want it to
1For points that are close enough, there is always a unique

geodesic. Since the kernel has local support, p and qv will be close
for all non-zero terms.

transform like (K ? f)(p) 7→ ρout(g
−1
p )(K ? f)(p). Or, in

other words, ? should be gauge equivariant. This will be the
case if and only if K satisfies

∀g ∈ G : K(g−1v) = ρout(g
−1)K(v)ρin(g). (5)

One may verify this by making the substitutions of Eq. 4 in
Eq. 3 and simplifying using ρ(gh) = ρ(g)ρ(h) and Eq. 5,
to find that (K ? f)(p) 7→ ρout(g

−1
p )(K ? f)(p).

We note that equations 1 and 2 are special cases of 3 and 5
for ρin(g) = ρout(g) = 1, i.e. for scalar fields.

This concludes our presentation of the general case. A gauge
equivariant ρ1 → ρ2 convolution onM is defined relative to
a local gauge by Eq. 3, where the kernel satisfies the equiv-
ariance constraint of Eq. 5. By defining gauges on local
charts Ui ⊂ M that cover M and convolving inside each
one, we automatically get a globally well-defined operation,
because switching charts corresponds to a gauge transfor-
mation (Fig. 1), and the convolution is gauge equivariant.

2.5. Locally Flat Spaces

On flat regions of the manifold, the exponential parameteri-
zation can be simplified to ϕ(expp wp(v)) = ϕ(p)+v if we
use an appropriate local coordinate ϕ(p) ∈ Rd of p ∈ M .
Moreover, in such a flat chart, parallel transport is trivial, i.e.
gp←qv equals the identity. Thus, on a flat region, our con-
volution boils down to a standard convolution / correlation:

(K ? f)(x) =

∫
Rd

K(v)f(x+ v)dv. (6)

Moreover, we can recover group convolutions, spherical
convolutions, and convolution on other homogeneous spaces
as special cases as well (see supplementary material).

3. Related work
Equivariant Deep Learning Equivariant networks have
been proposed for permutation-equivariant analysis and pre-
diction of sets (Zaheer et al., 2017; Hartford et al., 2018),
graphs (Kondor et al., 2018b; Hy et al., 2018; Maron et al.,
2019), translations and rotations of the plane and 3D space
(Oyallon & Mallat, 2015; Cohen & Welling, 2016; 2017;
Marcos et al., 2017; Weiler et al., 2018b;a; Worrall et al.,
2017; Worrall & Brostow, 2018; Winkels & Cohen, 2018;
Veeling et al., 2018; Thomas et al., 2018; Bekkers et al.,
2018; Hoogeboom et al., 2018), and the sphere (see below).
Ravanbakhsh et al. (2017) studied finite group equivariance.
Equivariant CNNs on homogeneous spaces were studied
by (Kondor & Trivedi, 2018) (scalar fields) and (Cohen
et al., 2018c;a) (general fields). In this paper we generalize
G-CNNs from homogeneous spaces to general manifolds.
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Geometric Deep Learning Geometric deep learning
(Bronstein et al., 2017) is concerned with the generalization
of (convolutional) neural networks to manifolds. Many def-
initions of manifold convolution have been proposed, and
some of them (those called “intrinsic”) are gauge equivari-
ant (although to the best of our knowledge, the relevance of
gauge theory has not been observed before). However, these
methods are all limited to particular feature types ρ (typ-
ically scalar), and/or use a parameterization of the kernel
that is not maximally flexible.

Bruna et al. (2014); Boscaini et al. (2015) propose to use
isotropic (spectral) filters (i.e. scalar field features), while
(Masci et al., 2015) define a convolution that is essentially
the same as our scalar-to-regular convolution, followed by
a max-pooling over orientations, which in our terminology
maps a regular field to a scalar field. As shown experimen-
tally in (Cohen & Welling, 2016; 2017) and in this paper,
it is often more effective to use convolutions that preserve
orientation information (e.g. regular to regular convolution).
Another solution is to align the filter with the maximum cur-
vature direction (Boscaini et al., 2016), but this approach is
not intrinsic and does not work for flat surfaces or uniformly
curved spaces like spheres.

(Poulenard & Ovsjanikov, 2018) define a multi-directional
convolution for “directional functions” (somewhat similar
to what we call regular fields), but they parameterize the
kernel by a scalar function on the tangent space, which is
very limited compared to our matrix-valued kernel (which
is the most general kernel mapping ρ1 fields to ρ2 fields).

Spherical CNNs Besides the general theoretical frame-
work of gauge equivariant convolution, we present in this
paper a specific model (the Icosahedral CNN), which can be
viewed as a fast and simple alternative to Spherical CNNs
(Cohen et al., 2018b; Esteves et al., 2018; Boomsma &
Frellsen, 2017; Su & Grauman, 2017; Perraudin et al., 2018;
Jiang et al., 2018; Kondor et al., 2018a). Liu et al. (2019)
use a spherical grid based on a subdivision of the icosahe-
dron, and convolve over it using a method that is similar
to the one presented in Sec. 4 (and thus ignores curvature),
but this method is not equivariant and does not take into
account gauge transformations. We show in Sec. 5 that both
are important for optimal performance.

Mathematics & physics To deeply understand gauge
equivariant networks, we recommend studying the mathe-
matics of gauge theory: principal & associated fiber bundles
(Schuller, 2016; Husemöller, 1994; Steenrod, 1951). The
work presented in this paper can be understood as replacing
the principal G-bundle H → H/G used in G-CNNs over
homogeneous spaces H/G (Cohen et al., 2018a) by the
frame bundle of M , which is another principal G-bundle.
More details can be found in the supplementary material.

4. Icosahedral CNNs
In this section we will describe a concrete method for per-
forming gauge equivariant convolution on the icosahedron.
The very special shape of this manifold makes it possible to
implement gauge equivariant convolution in a way that is
both numerically convenient (no interpolation is required),
and computationally efficient (the heavy lifting is done by a
single conv2d call).

4.1. The Icosahedron

The icosahedron is a regular solid with 20 faces, 30 edges,
and 12 vertices (see Fig. 4, left). It has 60 rotational sym-
metries. This symmetry group will be denoted2 I.

4.2. The Hexagonal Grid

Whereas general manifolds, and even spheres, do not ad-
mit completely regular and symmetrical pixelations, we
can define an almost perfectly regular grid of pixels on the
icosahedron. This grid is constructed through a sequence of
grid-refinement steps. We begin with a gridH0 consisting
of the corners of the icosahedron itself. Then, for each tri-
angular face, we subdivide it into 4 smaller triangles, thus
introducing 3 new points on the center of the edges of the
original triangle. This process is repeated r times to obtain
a gridHr with N = 5× 22r+1 + 2 points (Fig. 4, left).

Each grid point (pixel) in the grid has 6 neighbours, except
for the corners of the icosahedron, which have 5. Thus, one
can think of the non-corner grid points as hexagonal pixels,
and the corner points as pentagonal pixels.

Notice that the grid Hr is perfectly symmetrical, which
means that if we apply an icosahedral symmetry g ∈ I to
a point p ∈ Hr, we will always land on another grid point,
i.e. gp ∈ Hr. Thus, in addition to talking about gauge
equivariance, for this manifold / grid, we can also talk about
(exact) equivariance to global transformations (3D rotations
in I). Because these global symmetries act by permuting
the pixels and changing the gauge, one can see that a gauge
equivariant network is automatically equivariant to global
transformations. This will be demonstrated in Section 5.

4.3. The Atlas of Charts

We define an atlas consisting of 5 overlapping charts on the
icosahedron, as shown in Fig. 4. Each chart is an invertible
map ϕi : Ui → Vi, where Ui ⊂ Hr ⊂ M and Vi ⊂ Z2.
The regions Ui and Vi are shown in Fig. 4. The maps
themselves are linear on faces, and defined by hard-coded
correspondences ϕi(cj) = xj between the corner points cj
inHr and points xj in the planar grid Z2.

2As an abstract group, I ' A5 (the alternating group A5), but
we use I to emphasize that it is realized by a set of 3D rotations.
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Figure 4. The Icosahedron with grid Hr for r = 2 (left). We
define 5 overlapping charts that cover the grid (center). Chart V5

is highlighted in gray (left). Colored edges that appear in multiple
charts are to be identified. In each chart, we define the gauge by
the standard axis aligned basis vectors e1, e2 ∈ Vi. For points
p ∈ Ui ∩ Uj , the transition between charts involves a change of
gauge, shown as +1 · 2π/6 and −1 · 2π/6 (elements of G = C6).
On the right we show how the signal is represented in a padded
array of shape 5 · (2r + 2)× (2r+1 + 2).

Each chart covers all the points in 4 triangular faces of the
icosahedron. Together, the 5 charts cover all 20 faces of the
icosahedron.

We divide the charts into an exterior V i ⊂ Vi, consisting of
border pixels, and an interior V ◦i ⊂ Vi, consisting of pixels
whose neighbours are all contained in chart i. In order to
ensure that every pixel inHr (except for the 12 corners) is
contained in the interior of some chart, we add a strip of
pixels to the left and bottom of each chart, as shown in Fig.
4 (center). Then the interior of each chart (plus two exterior
corners) has a nice rectangular shape 2r × 2r+1, and every
non-corner is contained in exactly one interior V ◦i .

So if we know the values of the field in the interior of
each chart, we know the whole field (except for the corners,
which we ignore). However, in order to compute a valid con-
volution output at each interior pixel (assuming a hexagonal
filter with one ring, i.e. a 3× 3 masked filter), we will still
need the exterior pixels to be filled in as well (introducing a
small amount of redundancy). See Sec. 4.6.1.

4.4. The Gauge

For the purpose of computation, we fix a convenient gauge in
each chart. This gauge is defined in each Vi as the constant
orthogonal frame e1 = (1, 0), e2 = (0, 1), aligned with the
x and y direction of the plane (just like the red and blue
gauge in Fig. 1). When mapped to the icosahedron via (the
Jacobian of) ϕ−1i , the resulting frames are aligned with the
grid, and the basis vectors make an angle of 2 · 2π/6.

Some pixels p ∈ Ui ∩ Uj are covered by multiple charts.
Although the local frames e1 = (1, 0), e2 = (0, 1) are
numerically constant and equal in both charts Vi and Vj ,
the corresponding frames on the icosahedron (obtained by

pushing them though ϕ−1i and ϕ−1j ) may not be the same.
In other words, when switching from chart i to chart j, there
may be a gauge transformation gij(p), which rotates the
frame at p ∈ Ui ∩ Uj (see Fig. 1).

For the particular atlas defined in Sec. 4.3, the gauge trans-
formations gij(p) are always elements of the group C6 (i.e.
rotations by k · 2π/6), so G = C6 and we have a C6-atlas.

4.5. The Signal Representation

A stack of C feature fields is represented as an array of
shape (B,C,R, 5, H,W ), where B is the batch size, C the
number of fields, R is the dimension of the fields (R = 1 for
scalars and R = 6 for regular features), 5 is the number of
charts, andH,W are the height and width of each local chart
(H = 2r + 2 and W = 2r+1 + 2 at resolution r, including
a 1-pixel padding region on each side, see Fig. 4). We can
always reshape such an array to shape (B,CR, 5H,W ),
resulting in a 4D array that can be viewed as a stack of CR
rectangular feature maps of shape (5H,W ). Such an array
can be input to conv2d.

4.6. Gauge Equivariant Icosahedral Convolution

Gauge equivariant convolution on the icosahedron is imple-
mented in three steps: G-Padding, kernel expansion, and 2d
convolution / HexaConv (Hoogeboom et al., 2018).

4.6.1. G-PADDING

Figure 5. G-Padding (scalar
signal)

In a standard CNN, we can
only compute a valid convolu-
tion output at positions (x, y)
where the filter fits inside the
input image in its entirety. If
the output is to be of the same
size as the input, one uses zero
padding. Likewise, the Ico-
Conv requires padding, only
now the padding border V i of
a chart consists of pixels that
are also represented in the interior of another chart (Sec.
4.3). So instead of zero padding, we copy the pixels from
the neighbouring chart. We always use hexagonal filters
with 1 ring, which can be represented as a 3× 3 filter on a
square grid, so we pad by 1 pixel.

As explained in Sec. 4.4, when transitioning between charts
one may have to perform a gauge transformation on the
features. Since scalars are invariant quantities, transition
padding amounts to a simple copy in this case. Regular C6

features (having 6 orientation channels) transform by cyclic
shifts ρ(gij(p)) (Sec. 2.3), where gij ∈ {+1, 0,−1} · 2π/6
(Fig. 4), so we must cyclically shift the channels up or down
before copying to get the correct coefficients in the new



Gauge Equivariant CNNs

chart. The whole padding operation is implemented by four
indexing + assignment operations (top, bottom, left, right)
using fixed pre-computed indices (see Supp. Mat.).

4.6.2. WEIGHT SHARING & KERNEL EXPANSION

Figure 6. Kernel expansion for scalar-to-regular (Rin = 1, Rout =
6; left) and regular-to-regular (Rin = Rout = 6; right) convolution.
Top: free parameters. Bottom: expanded kernel used in conv2d.

For the convolution to be gauge equivariant, the kernel must
satisfy Eq. 5. The kernel K : R2 → RRoutCout×RinCin is
stored in an array of shape (RoutCout, RinCin, 3, 3), with the
top-right and bottom-left pixel of each 3× 3 filter fixed at
zero so that it corresponds to a 1-ring hexagonal kernel.

Eq. 5 says that if we transform the input channels (columns)
by ρin(g) and the ouput channels (rows) by ρout(g), the
result should equal the original kernel where each channel
is rotated by g ∈ C6. This will the case if we use the
weight-sharing scheme shown in Fig. 6.

Weight sharing can be implemented in two ways. One
can construct a basis of kernels, each of which has shape
(Rout, Rin, 3, 3) and has value 1 at all pixels of a certain
color/shade, and 0 elsewhere. Then one can construct the
full kernel by linearly combining these basis filters using
learned weights (one for eachCin·Cout input/output channels
and basis kernel) (Cohen & Welling, 2017; Weiler et al.,
2018a). Alternatively, for scalar and regular features, one
can use a set of precomputed indices to expand the kernel
as shown in Fig. 6, using a single indexing operation.

4.6.3. COMPLETE ALGORITHM

The complete algorithm can be summarized as

GConv(f, w) = conv2d(GPad(f), expand(w)). (7)

Where f and GPad(f) both have shape (B,CinRin, 5H,W ),
the weights w have shape (Cout, CinRin, 7), and expand(w)
has shape (CoutRout, CinRin, 3, 3). The output of GConv has
shape (B,CoutRout, 5H,W ).

On the flat faces, being described by one of the charts,
this algorithm coincides exactly with the hexagonal regular
convolution introduced in (Hoogeboom et al., 2018). The
non-zero curvature of the icosahedron requires us to do the
additional step of padding between different charts.

5. Experiments
5.1. IcoMNIST

In order to validate our implementation, highlight the poten-
tial benefits of our method, and determine the necessity of
each part of the algorithm, we perform a number of experi-
ments with the MNIST dataset, projected to the icosahedron.

We generate three different versions of the training and test
sets, differing in the transformations applied to the data.
In the N condition, No rotations are applied to the data.
In the I condition, we apply all 60 Icosahedral symmetries
(rotations) to each digit. Finally, in the R condition, we apply
60 random continuous rotations g ∈ SO(3) to each digit
before projecting. All signals are represented as explained
in Sec. 4.5 / Fig. 4 (right), using resolution r = 4, i.e. as an
array of shape (1, 5 · (16 + 2), 32 + 2).

Our main model consists of one gauge equivariant scalar-
to-regular (S2R) convolution layer, followed by 6 regular-
to-regular (R2R) layers and 3 FC layers (see Supp. Mat.
for architectural details). We also evaluate a model that
uses only S2R convolution layers, followed by orientation
pooling (a max over the 6 orientation channels of each
regular feature, thus mapping a regular feature to a scalar),
as in (Masci et al., 2015). Finally, we consider a model that
uses only rotation-invariant filters, i.e. scalar-to-scalar (S2S)
convolutions, similar to standard graph CNNs (Boscaini
et al., 2015; Kipf & Welling, 2017). We also compare
to the fully SO(3)-equivariant but computationally costly
Spherical CNN (S2CNN). See supp. mat. for architectural
details and computational complexity analysis.

In addition, we perform an ablation study where we disable
each part of the algorithm. The first baseline is obtained
from the full R2R network by disabling gauge padding
(Sec. 4.6.1), and is called the No Pad (NP) network. In
the second baseline, we disable the kernel Expansion (Sec.
4.6.2), yielding the NE condition. The third baseline, called
NP+NE uses neither gauge padding nor kernel expansion,
and amounts to a standard CNN applied to the same input
representation. We adapt the number of channels so that all
networks have roughly the same number of parameters.

Arch. N/N N/I N/R I/ I I / R R / R
S2CNN 99.38 99.38 99.38 99.12 99.13 99.12

NP+NE 99.29 25.50 16.20 98.52 47.77 94.19

NE 99.42 25.41 17.85 98.67 60.74 96.83

NP 99.27 36.76 21.4 98.99 61.62 97.87

S2S 97.81 97.81 55.64 97.72 58.37 89.92

S2R 98.99 98.99 59.76 98.62 55.57 98.74

R2R 99.43 99.43 69.99 99.38 66.26 99.31

Table 1. IcoMNIST test accuracy (%) for different architectures
and train / test conditions (averaged over 3 runs). See text for
explanation of labels.
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As shown in Table 1, icosahedral CNNs achieve excellent
performance with a test accuracy of up to 99.43%, which is
a strong result even on planar MNIST, for non-augmented
and non-ensembled models. The full R2R model performs
best in all conditions (though not significantly in the N/N
condition), showing that both gauge padding and kernel
expansion are necessary, and that our general (R2R) for-
mulation works better in practice than using scalar fields
(S2S or S2R). We notice also that non-equivariant models
(NP+NE, NP, NE) do not generalize well to transformed
data, a problem that is only partly solved by data augmen-
tation. On the other hand, the models S2S, S2R, and R2R
are exactly equivariant to symmetries g ∈ I, and so gener-
alize perfectly to I-transformed test data, even when these
were not seen during training. None of the models auto-
matically generalize to continuously rotated inputs (R), but
the equivariant models are closer, and can get even closer
(> 99%) when using SO(3) data augmentation during train-
ing. The fully SO(3)-equivariant S2CNN scores slightly
worse than R2R, except in N/R and I/R, as expected. The
slight decrease in performance of S2CNN for rotated train-
ing conditions is likely due to the fact that it has lower grid
resolution near the equator. We note that the S2CNN is
slower and less scalable than Ico CNNs (see supp. mat.).

5.2. Climate Pattern Segmentation

We evaluate our method on the climate pattern segmentation
task proposed by Mudigonda et al. (2017). The goal is to
segment extreme weather events (Atmospheric Rivers (AR)
and Tropical Cyclones (TC)) in climate simulation data.

We use the exact same data and evaluation methodology as
(Jiang et al., 2018). The preprocessed data as released by
(Jiang et al., 2018) consists of 16-channel spherical images
at resolution r = 5, which we reinterpret as icosahedral
signals (introducing slight distortion). See (Mudigonda
et al., 2017) for a detailed description of the data.

We compare an R2R and S2R model (details in Supp. Mat.).
As shown in Table 2, our models outperform both competing
methods in terms of per-class and mean accuracy. The
difference between our R2R and S2R model seems small
in terms of accuracy, but when evaluated in terms of mean
average precision (a more appropriate evaluation metric for
segmentation tasks), the R2R model clearly outperforms.

Model BG TC AR Mean mAP

Mudigonda et al. 97 74 65 78.67 -
Jiang et al. 97 94 93 94.67 -
Ours (S2R) 97.3 97.8 97.3 97.5 0.686
Ours (R2R) 97.4 97.9 97.8 97.7 0.759

Table 2. Climate pattern segmentation accuracy (%) for BG, TC
and AR classes plus mean accuracy and average precision (mAP).

5.3. Stanford 2D-3D-S

For our final experiment, we evaluate icosahedral CNNs on
the 2D-3D-S dataset (Armeni et al., 2017), which consists
of 1413 omnidirectional RGB+D images with pixelwise
semantic labels in 13 classes. Following Jiang et al. (2018),
we sample the data on a grid of resolution r = 5 using
bilinear interpolation, while using nearest-neighbour inter-
polation for the labels. Evaluation is performed by mean
intersection over union (mIoU) and pixel accuracy (mAcc).

The network architecture is a residual U-Net (Ronneberger
et al., 2015; He et al., 2016) with R2R convolutions. The
network consists of a downsampling and upsampling net-
work. The downsampling network takes as input a signal
at resolution r = 5 and outputs feature maps at resolutions
r = 4, . . . , 1, with 8, 16, 32 and 64 channels. The upsam-
pling network is the reverse of this. We pool over orientation
channels right before applying softmax.

As shown in table 3, our method outperforms the method
of (Jiang et al., 2018), which in turn greatly outperforms
standard planar methods such as U-Net on this dataset.

mAcc mIoU

(Jiang et al., 2018) 0.547 0.383
Ours (R2R-U-Net) 0.559 0.394

Table 3. Mean accuracy and intersection over union for 2D-3D-S
omnidirectional segmentation task.

6. Conclusion
In this paper we have presented the general theory of
gauge equivariant convolutional networks on manifolds,
and demonstrated their utility in a special case: learning
with spherical signals using the icosahedral CNN. We have
demonstrated that this method performs well on a range of
different problems and is highly scalable.

Although we have only touched on the connections to
physics and geometry, there are indeed interesting connec-
tions, which we plan to elaborate on in the future. From
the perspective of the mathematical theory of principal fiber
bundles, our definition of manifold convolution is entirely
natural. Indeed it is clear that gauge invariance is not just
nice to have, but necessary in order for the convolution to
be geometrically well-defined.

In future work, we plan to implement gauge CNNs on gen-
eral manifolds and work on further scaling of spherical
CNNs. Our chart-based approach to manifold convolution
should in principle scale to very large problems, thus open-
ing the door to learning from high-resolution planetary scale
spherical signals that arise in the earth and climate sciences.
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