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1 Introduction

This thesis focuses on low dimensional dualities as tractable models to explore
two-dimensional de Sitter space and black holes. The first two chapters review,
discuss and explore the framework for a novel attempt to create a connection
between de Sitter space and the conjectured duality between matrix models and
two-dimensional quantum gravity. The hope is that this could pave a path toward
understanding the so far unknown microscopic picture of our Universe. In the
last chapter we address fundamental problems about the microscopic picture of
black holes through a low dimensional duality dubbed the near-AdS2/near-CFT1
correspondence.

1.1 Motivation
We are living in an era in which highly sensitive astronomical tools are granting
more and more accurate access to the spacetime we live in. Observations of the
cosmic microwave background and the explosions of distant white dwarfs (type Ia
supernova) indicate that our Universe is entering a regime of accelerated expansion
driven by an incredibly small, yet non-vanishing positive cosmological constant.
Over the past couple of years, the LIGO and Virgo detectors observed the gravi-
tational waves emitted by multiple binary black holes, providing new evidence of
the existence of black holes [1–3].

A maximally symmetric spacetime with positive cosmological constant is known
as a de Sitter space [4]. Because of the accelerated expansion, an observer in a
de Sitter spacetime can only see a finite distance and is surrounded by an event
horizon. An event horizon also marks the boundary of a black hole where the
velocity needed to escape exceeds the speed of light. Both the de Sitter, as well
as the black hole horizon, have a finite area, and a finite entropy is conjecturally
assigned to both of them [5–7].

Motivated by the finiteness of these entropies my approach to understand the
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1. Introduction

microscopic picture of a de Sitter spacetime and black holes uses models which
are inherently tied to only a finite number of degrees of freedom. These models
come in form of low dimensional dualities. A duality is a setup which maps two
theories to each other. For every quantity in one theory there is a dual quantity
in the other theory. Depending on the problem we are addressing we can choose
the formalism which is more appropriate for us. In a low dimensional duality, the
theories furthermore live in less than four spacetime dimensions.

In the following two paragraphs we provide a glimpse into the two dualities we
focus on in this thesis. The subsequent sections 1.2 and 1.3 provide further details.

Matrix models & two-dimensional quantum gravity. To approach the mi-
croscopic picture of our expanding Universe we attempt to create a link between
a de Sitter spacetime and matrix models. Whereas very little is known about
de Sitter space at the quantum level, matrix models are a widely explored theo-
retical tool. Under certain conditions such as a very large matrix, properties of
the matrix model are conjectured to be dual to observables of a specific theory
of two-dimensional quantum gravity coupled to a theory of matter. This theory
of quantum gravity is known as Liouville theory [8]. Crucially, upon placing the
continuum theory (Liouville theory + matter) on a two-sphere topology, and im-
posing additional conditions such as a large negative central charge of the matter
sector and restrictions on the area, the continuum theory admits a semiclassi-
cal Euclidean two-dimensional de Sitter saddle. This two-dimensional de Sitter
spacetime resembles and moreover shares important features and properties of
the higher dimensional theory describing our own Universe. Matrix models could
therefore allow for a UV completion of a de Sitter quantum gravity theory and
could shed light on the microscopic nature of our own Universe.

Black holes. Black holes are solutions of Einstein’s equations of general relativity
which have a curvature singularity at the center and an event horizon. Somewhat
surprisingly black holes also satisfy thermodynamic properties similar to statisti-
cal systems. Even though many features of black holes are well understood, the
AdS2 factor appearing in the near-horizon region of near-extremal black holes still
remains a puzzling ingredient. In particular, while the temperature of an extremal
black hole vanishes, the entropy assigned to the black hole horizon is finite also
in the extremal case. The approach to explore the microscopic origin of this en-
tropy uses what is known as the (near)-AdS2/(near)-CFT1 correspondence [9–12].
It relates a theory of two-dimensional gravity with negative curvature (AdS2) to
a one-dimensional conformal quantum mechanics (CFT1) living at the boundary
of the AdS2 spacetime. The “near” prefix indicates a region close to the pure
AdS2/CFT1 regime. As explained in the next section, a pure AdS2 background
only allows for ground state configurations [13,14]. Near-AdS2 is a small deviation

2



1.2. Matrix models & two-dimensional quantum gravity

away from AdS2, and while allowing finite energy excitations is still connected to
the AdS2 background. Finally, since in the near-AdS2/near-CFT1 correspondence
the boundary theory is a conformal quantum mechanics and not a quantum field
theory, this duality also involves a finite number of degrees of freedom.

1.2 Matrix models & two-dimensional quantum
gravity

In this section we give a brief overview of matrix models and Liouville theory.
We review some of the history and discuss the dictionary between matrix model
quantities and quantities of the continuum theory. This section is meant to high-
light the main results of chapter 2 and chapter 3 and to connect them to a novel
attempt toward obtaining a microscopic picture of de Sitter space.

Matrix models have a long and outstanding history. Two major breakthroughs
tied also to my own research are Wigner’s energy spectra [21–23] and ’t Hooft’s
diagrams [24].

Wigner’s energy spectra. After solving the energy level distribution of the
hydrogen atom at the beginning of the last century it took almost 50 years to
understand the energy distribution of heavier nuclei. The groundbreaking ansatz
was due to Wigner [21–23]. He chose a matrix with entries drawn from a random
ensemble as the Hamiltonian (energy) of the system. In an astonishing way, in
the limit where the size of this matrix tends to infinity, the system simplifies. The
eigenvalue distribution of the random matrix agrees with the energy distribution
obtained through experiments. This result is known as Wigner’s surmise.

Figure 1.1: Polygonisation: the black lines are the ribbon diagrams, whereas the ma-
genta lines correspond to the dual lattice.

3



1. Introduction

’t Hooft’s diagrams. In the 1970s ’t Hooft [24] realised that the Feynman di-
agrams of matrix integrals triangulate a surface. Building a dual lattice to the
Feynman diagrams of matrix integrals, as shown in figure 1.1, resembles this tri-
angulation of Riemann surfaces of arbitrary genus. Pictorially this introduced the
conjectured duality between matrix models and two-dimensional quantum gravity.
Through ’t Hooft’s key observations matrix models turned into an arena describ-
ing theories of two-dimensional quantum gravity. Even though realistic theories of
gravity are four-dimensional, these lower dimensional versions can guide physicists
toward understanding features of realistic theories of quantum gravity.

Two-dimensional quantum gravity differs from higher dimensional theories of grav-
ity. In two dimensions the Einstein-Hilbert action is topological. The theory
is over-constraint and has no locally propagating degrees of freedom. In fact
the Einstein-Hilbert action is proportional to the Euler characteristic of the two-
dimensional manifold it is integrated over. The path integral first sums over all
geometries of a fixed genus and is then summing over all genera. In two dimensions
we can furthermore exploit the two diffeomorphisms to write the metric in terms
of a fixed fiducial part g̃ij and a single degree of freedom appearing in the form of
the Weyl factor ϕ(x). It has been postulated that in the Weyl gauge a theory of
two-dimensional quantum gravity is given by a path integral over the Weyl factor
weighted by the Liouville action [8]

SL[ϕ, g̃ij ] = 1
4π

∫
d2x
√
g̃

(
g̃ij∂iϕ∂jϕ+

√
cL − 1

6 R̃ϕ+ 4πΛ e2bϕ

)
. (1.2.1)

Here R̃ is the Ricci scalar of the fixed fiducial metric, Λ ≥ 0 is the cosmological
constant. Liouville theory is a two-dimensional CFT [33–37] and the parameter b
is related to the Liouville central cL by

b =
√
cL − 1−

√
cL − 25

2
√

6
. (1.2.2)

In addition to a theory of pure two-dimensional quantum gravity one can also
consider the addition of matter fields. In this thesis we focus on a specific mat-
ter theory given by the series M2,2m−1 of minimal models, forming themselves a
conformal field theory with known central charge cm and operator content. Fur-
thermore we fix the fiducial metric to be the round metric on the unit two-sphere.
After turning on one of the (m− 1) primaries Or of the minimal model we find

Z[λr] =
∫ [Dϕ]

vol PSL(2,C) [DΦ][Dbc] e−SL[ϕ,Λ=0]−SCFT[Φ]−Sgh[b,c]−λr
∫

d2x
√
g̃Or e2σrϕ ,

(1.2.3)

4



1.2. Matrix models & two-dimensional quantum gravity

where λr is a coupling which for the case where Or is the identity operator is
equal to the cosmological constant; σr replaces b (1.2.2) in such a way to render
the dressed operator Or e2σrϕ a marginal operator and (b, c) are the Weyl gauge
fixing ghosts. Finally PSL(2,C) denotes the residual symmetry group of the two-
sphere.

In the next two section we discuss the dictionary between matrix integrals and
two-dimensional quantum gravity.

1.2.1 Matrix integral dictionary

A Hermitian matrix integral is given by [15,25]

MN (α) =
∫

[DM ] e−N
2TrN×N( 1

2M
2+ 1

4α2M
4+...+ 1

2mαmM
2m) , (1.2.4)

where M is a Hermitian N × N matrix. Furthermore α ≡ (α2, . . . , αm) are real
couplings and [DM ] denotes the measure in the space of Hermitian matrices.
Exploiting the U(N) invariance to rewrite the Hermitian matrix in terms of its
N real eigenvalues, in the large N limit we can solve this matrix integral in the
leading planar limit using a saddle point approximation [25] and to subleading
order using for example orthogonal polynomials [26].

A priori the above integral (1.2.4) only converges for positive couplings, however
as an artefact of the large N limit we can push the integral also to negative
values of the couplings until at a critical point — known as the multicritical point
(α2,c, . . . , αm,c) — we encounter a branch cut ambiguity in the large N matrix
integral. In particular close to the multicritical point the free energy, FN (α) ≡
− logMN (α)/MN (0), cannot be expressed in terms of an ordinary power series
in the couplings anymore but shows non-analytic behaviour. The matrix integral
(1.2.4) experiences (m−1) distinct non-analyticities in FN (α), reflecting the (m−
1) couplings. In the planar limit we find

lim
α→αc+εs

F (0)
N (α) ∼ const × ε∆̂r , r = 1, . . . ,m , ε� 1 . (1.2.5)

In the above expression s ≡ (s2, . . . , sm) parametrise the (m− 1) distinct paths in
couplings space to approach the multicritical point. More details are provided in
chapter 3.

In the large N limit and upon tuning the couplings close to the multicritical point,
the matrix integral (1.2.4) leads to the emergence of a two-dimensional theory
of quantum gravity. This is conjectured to be Liouville theory coupled to the
seriesM2,2m−1 of non-unitary minimal models [27,28]. Using original insights by

5



1. Introduction

Distler-Kawai [29] and David [30] , the path integral (1.2.3) with either one of the
(m− 1) primary operators turned on leads to

Z[λr] ∼ const × λ∆r
r , r = 1, . . . ,m . (1.2.6)

The critical exponents ∆r can be matched to the non-analyticities ∆̂r of F (0)
N (α).

In the table below (tab. 1.1) we summarise this dictionary

Matrix integrals + Vm(M,α) Liouville + M2,2m−1

(m− 1) distinct non-analyticities ∆̂r (m− 1) distinct critical exponents ∆r

...
...

Table 1.1: The dictionary between the matrix integral (1.2.4) and Liouville theory
coupled to M2,2m−1.

The natural question at hand is now: Why did we care so much about identify-
ing the primaries of the minimal model with the paths in coupling space of the
multicritical matrix integral?

Upon restricting the area of the physical metric υ =
∫
S2
√
g and turning on the

identity operator O1 the partition function (1.2.3) admits the round two-sphere
as a semiclassicle saddle [20]. In other words we do not only have the topology
but also the geometry of the two-sphere. The two-sphere however is the Euclidean
realisation of two-dimensional de Sitter space. If the conjectured duality between
the multicritical matrix integral (1.2.4) and Liouville theory coupled to M2,2m−1
is true, this sphere should also reveal itself in the matrix integral. Our discussion
in chapter 3 lead to the identification of the identity operator in the matrix picture.
Understanding large m observables as presented in the discussion 5 of this thesis
along the identity path could fill the space in tab. 1.1 and might lead to a “Matrix-
dS2” correspondence.

1.2.2 Matrix quantum mechanics dictionary
In addition to integrals over matrices one can also consider quantum mechanical
matrices. The model studied is then given by the action

SN [M(t)] = NTrN×N
∫

dt
(

1
2Ṁ(t)2 − V (M(t))

)
, (1.2.7)

6



1.2. Matrix models & two-dimensional quantum gravity

where V (M(t)) is a polynomial potential, which, as motivated in chapter 2, we
assume to be an inverted harmonic oscillator potential. Using as well the U(N) in-
variance, Hermitian time dependent matrix models can also be expressed in terms
of the real eigenvalues of M(t). Promoting the Hamiltonian associated to the La-
grangian of (1.2.7) to its quantum version we can study the wave-functions of this
matrix quantum mechanics. In particular the ground state wave-function viewed
as a function of the N eigenvalues needs to obey the Pauli exclusion principle. The
eigenvalues itself now lead to the emergence of an extra spatial dimension whose
ground state configuration in the inverse harmonic oscillator potential (1.2.7) is a
filled Fermi sea [25]. The matrix quantum mechanical S-matrix [31, 32] accounts
for fluctuations/excitations on top of the filled Fermi sea. In figure 1.2 we depict
the setup, whereas in chapter 2 we explicitly calculate the S-matrix for various
configuration.

Iν

Rν
Tν

νF

Figure 1.2: We consider an incoming wave from negative infinity (orange), part of which
is reflected (teal), and part of which is transmitted (magenta) from the inverted harmonic
oscillator potential. The ground state configuration fills the Fermi sea up to the Fermi
level νF .

Remarkably, this S-matrix connects the matrix quantum mechanics via the DOZZ
formula [34–37] to Liouville theory coupled to a timelike free boson [31,32,38].

Matrix quantum mechanics Liouville + cm = 1 boson

excitations on top of the filled Fermi sea correlation functions

Table 1.2: The dictionary between the matrix quantum mechanics (1.2.7) and Liouville
theory coupled to a timelike free boson.

7



1. Introduction

1.3 Black holes

The goal of this section is to introduce the basic concepts discussed in more detail
in chapter 4 of this thesis. Although the subsequent discussion generalises to other
black holes for concreteness we restrict to the BTZ black hole [39]. We review the
near-extremal BTZ black hole and its thermodynamic properties and explain the
connection between the near-horizon, near-extremal BTZ black hole and the near-
AdS2/near-CFT1 correspondence.

BTZ black hole. The rotating BTZ black hole with metric

ds2
3 = −f(ρ)dt2 + dρ2

f(ρ) + ρ2
(

dϕ− ρ+ρ−
`ρ2 dt

)2
,

f(ρ) ≡
(ρ2 − ρ2

+)(ρ2 − ρ2
−)

`2ρ2 . (1.3.1)

is a solution of the three-dimensional Einstein-Hilbert action with negative cosmo-
logical constant Λ = −2/`2. In this metric, ρ± are the position of the outer/inner
horizon; without loss of generality, we will pick ρ+ > ρ− > 0. Further to this
t ∈ (−∞,∞), and ϕ ∼ ϕ + 2π is an angular coordinate. Associated to the black
hole we have its mass and angular momemtum

m =
ρ2

+ + ρ2
−

8G3`2
, j = ρ+ρ−

4G3`
. (1.3.2)

Black hole thermodynamics then relates the change in mass to an entropy

dm = TdSBH + Ωdj , (1.3.3)

where the Hawking temperature and angular velocity are given by

T =
ρ2

+ − ρ2
−

2π`2ρ+
, Ω = − ρ−

`ρ+
. (1.3.4)

Additionally we have the black hole entropy given by the Bekenstein-Hawking
formula [6, 7]

SBH = A

4G3
= πρ+

2G3
. (1.3.5)

Depending on the radial coordinate the near-extremal BTZ black hole reaches
two different regimes (fig.1.3). For large ρ→∞ we reach the UV. In this region
the metric of the BTZ black hole (1.3.1) reaches an asymptotically AdS3 form
and we can adopt the language common to the AdS/CFT correspondence. In the
AdS3/CFT2 dictionary the BTZ black hole is a thermal state and we can use the

8



1.3. Black holes

Cardy formula to determine the entropy of the CFT2 conjecturally dual to AdS3

SCFT = 2π
(√

cLhL
6 +

√
cRhR

6

)
, hL/R = 1

2(m`± j) , cL/R = 3`
2G3

. (1.3.6)

The Cardy formula (1.3.6) matches the Bekenstein-Hawking entropy (1.3.5).

A
dS

2

A
dS

3

ρ→∞

ρ→ ρ+ = ρ−

Figure 1.3: Depending on the radial coordinate the BTZ black hole reaches either
asymptotically AdS3 or an AdS2 geometry.

For ρ→ ρ+ = ρ− we reach the IR. The metric of the BTZ black hole turns into
an S1 fibration over AdS2 and we talk about the near-horizon geometry of an
extremal BTZ black hole. Its mass and angular momentum (1.3.2) coincide and
its temperature (1.3.4) vanishes. On the other side the entropy (1.3.5) still attains
a huge value. Now we move a tiny little bit away from extremality and observe
the reaction of these thermodynamic quantities upon taking the near-horizon limit
of the near-extremal BTZ black hole. Near-extremality is a regime close to ρ± =
ρ0± `2πT/2, T � 1 and ρ+ = ρ− ≡ ρ0, which we obtain by slightly increasing the
temperature while keeping the angular momentum fixed. Both the mass as well as
the entropy respond under this deviation quadratically and linearly in temperature
respectively [40]

E ≡ m−mext = 1
mgap

T 2 + . . . , S = Sext + 2
mgap

T + . . . . (1.3.7)

The coefficient mgap ≡ 8G3/(π`2) is known as the mass gap. Below mgap the ther-
modynamic description of the black hole breaks down as the energy of a Hawking
quantum, which is of order EHQ ∼ T , emitted in a non-extremal black hole dur-
ing Hawking radiation has more energy than the black hole itself. This gap is
believed to be the gap between the ground state and excited states in the black
hole microstates picture [9].

9



1. Introduction

near-AdS2/near-CFT1 correspondence. For many years, states above the
ground state were not accessible because the AdS2 factor contained in the geom-
etry of the extremal black hole. In a pure AdS2/CFT1 correspondence imposing
conformal invariance the trace of the stress tensor needs to vanish. As in a one
dimensional CFT the stress tensor only has one component, tracelessness implies
the vanishing of the stress tensor itself. Consequently all states have the same
vanishing energy and the only states allowed in a pure AdS2 geometry are the
ground states [13,14].

The near-AdS2/near-CFT1 correspondence overcomes this obstacle by breaking
the full reparametrization symmetry of AdS2 not just spontaneously but also ex-
plicitly [10]. Choosing an AdS2 vacuum spontaneously breaks this symmetry down
to SL(2,R). This spontaneous breaking is nothing new; in the AdS3/CFT2 cor-
respondence the asymptotic symmetry group of the CFT2 — the Virasoro group
— is spontaneously broken down to two copies of SL(2,R) by choosing an AdS3
vacuum [41]. The new ingredient of the near-AdS2/near-CFT1 correspondence is
the explicit breaking coupled to the spontaneous symmetry breaking. We now
illustrate this on the example of the BTZ black hole.

Einstein-Maxwell-Dilaton theory. One way to capture the near-extremal dy-
namics of the BTZ black hole is to dimensionally reduce the three-dimensional
Einstein-Hilbert action along a circle. Using the Kaluza-Klein ansatz

ds2
3 = gµνdxµdxν + e−2φ (dz +Aµdxµ)2

, z ∼ z + 2πL , (1.3.8)

where Greek indices run along the two-dimensional directions, we obtain the two-
dimensional Einstein-Maxwell-Dilaton theory [42,43]

IEMD = L

8G3

∫
d2x
√
−g e−φ

(
R+ 2

`2
− 1

4e
−2φ FµνF

µν

)
, (1.3.9)

where Fµν = ∂[µAν]. From a two-dimensional perspective Aµ can be interpreted
as a gauge field and φ will be interpreted as the Dilaton field.

The equations of motion of this theory allow for two distinct cases, distinguished
by the behaviour of the Dilaton φ. Whereas in one case we encounter a radial
dependent (running) Dilaton φ which will asymptote back the AdS3 region, the
Einsten-Maxwell-Dilaton theory is also compatible with a constant Dilaton solu-
tion e2φ = e2φ0 , reflecting the IR in figure 1.3. In chapter 4 of this thesis we
discuss both solutions; to relate to the near-extremal behaviour of black holes we
will for now only focus on this IR solution. This solution describes a locally AdS2

10



1.3. Black holes

background. In Fefferman-Graham gauge we find

ds2 = dr2 + γttdt2 , γtt = −
(
αir(t) e2r/` + βir(t) e−2r/`

)2
, (1.3.10)

where αir(t) can be seen as the source and βir(t) as the vev of the metric. In
particular βir(t) reflects the large diffeomorphisms in AdS2. To understand the
near-horizon region we add a deformation to the Dilaton e−2φ = e−2φ0 +Y. Adding
Y we explicitly break AdS2. Importantly the equations of motion of Y imply that
it is an irrelevant deformation and so it indeed has the effect of slightly moving us
away from the IR fixed point. We obtain from the equations of motion of Y

Y = λir(t) e2r/` + σir(t) e−2r/` , (1.3.11)

where again λir(t) and σir(t) are source and vev respectively. A priori it seems
that adding this irrelevant deformation changes the problem, however the source
of this irrelevant deformation pushing us away from AdS2 still talks with the vev
βir(t) of the background metric (1.3.10). Denoting by t→ f(t) reparametrizations
of the boundary time which preserve the AdS2 geometry (1.3.10) we obtain

`2λir(t)′′′ + 8λir(t)βir(t)′ + 16βir(t)λir(t)′ = 0 , βir(t) = `2

8 {f(t), t} , (1.3.12)

where {f(t), t} denotes the Schwarzian derivative of f(t)

{f(t), t} ≡
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
. (1.3.13)

The details leading to (1.3.12) are explained in chapter 4. Evaluating the renor-
malised on-shell Einstein-Maxwell-Dilaton action (4.3.3) we obtain a boundary
effective action

Ibdy = mgap

∫
dt eφ0 λir(t) {f(t), t} , (1.3.14)

where the prefactor governing the boundary theory, the near-CFT1 regime, is
nothing else than the mass gap (1.3.7) of the BTZ black hole.

In chapter 4 of this thesis we illuminate the near-AdS2/near-CFT1 correspondence
after embedding the BTZ black hole into a three-dimensional theory violating
parity. This theory is known as topologically massive gravity [44–46] and the dual
CFT2 has distinguishable left and right movers. Consequently we are able to infer
where inside the CFT2 the near-CFT1 resides.

.
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2 Matrix Musings

2.1 Introduction

The Universe is replete with spacetime. Although there is no known complete
theory of spacetime at the quantum level, various ideas in modern theoretical
physics suggest the radical notion that the classical description of spacetime must
somehow be replaced by a microscopic theory whose basic variables are no longer
built from a metric field. For general spacetimes, particularly those dominated by a
vanishing or positive cosmological constant, little is known about this microscopic
theory. Nevertheless, there are important hints that this theory must contain a
large number N of building blocks which are strongly interacting amongst each
other. In these notes we explore several systems composed of a large number N of
constituents and discuss a variety of computational techniques used to solve them
in the large N limit. A significant focus will be placed on large N systems whose
components are organised in a matrix-like fashion. We will focus on both ordinary
integrals over matrices as well as quantum mechanical models whose degrees of
freedom and interactions are organised in a matrix-like structure.

The theory of random matrices has a rich history in physics and mathematics.
It is not our aim to review this history, but we would like to mention a few
examples. Perhaps the earliest application, dating back to the 1950s, was Wigner’s
proposal [21,22,48] that the distribution of adjacent energy level spacings for the
spectra of heavy nuclei is well approximated by those of a random real symmetric
matrix drawn from a Gaussian ensemble. This remarkable hypothesis constitutes
a conceptual leap – a single theory is approximated by an ensemble of theories.
This is different to performing averages over an ensemble of configurations within
a single theory.1 Wigner surmised that the distribution of level spacings s of a

1A method that is conceptually similar to Wigner’s hypothesis is the quenched disorder ap-
proximation used in certain condensed matter and statistical systems such as spin glasses [58].
In this context, certain couplings in the theory, rather than the entire Hamiltonian, are chosen
to be random.
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2. Matrix Musings

random N × N real symmetric matrix whose elements are independently drawn
from a Gaussian distribution obeys the following universal form in the large N
limit

p(s) = πs

2 e−πs
2/4 .

The above formula has been successfully compared to numerous spectra of heavy
nuclei such as 238U and 166Er. The precise form of p(s) was obtained by Mehta
and Gaudin [49], and is indeed described to good approximation by the above ex-
pression. The class of ensembles was broadened to random Hermitian and random
symplectic matrices by Dyson [23]. The choice of ensemble is tied to what global
symmetries are present in the underlying system. An important characteristic fea-
ture of the above distribution is the suppression of p(s) at small values of s. More
generally, level repulsion in the eigenvalue spacing is a common litmus of complex
systems.

Wigner’s hypothesis is that certain properties of systems governed by sufficiently
‘complex’ Hamiltonians may be well approximated by a random ensemble. There
is no reason this hypothesis should be restricted to the spectra of heavy nuclei.
Indeed, another context where the ideas of random matrices have been applied
is the theory of quantum chaos. At the classical level, a dynamical system can
be said to be non-integrable if the number of conserved quantities is less than
half the dimension of its phase space. A characteristic feature is exponential
sensitivity to variations in the initial conditions, encoded in quantities such as the
Lyapunov coefficients, the Kolmogorov-Sinai entropy, and the study of Poincaré
sections. Any analogous framework for quantum systems, whose wavefunction
obeys a linear equation, is significantly more involved. Nevertheless, it has been
observed in numerous systems that the spectra of quantum Hamiltonians stemming
from the quantisation of classically chaotic theories also exhibit a level spacing of
the type in p(s). This has been postulated by Bohigas-Giannoni-Schmit [52] as a
general principle. Although exceptions to the rule have been observed, the BGS
postulate is an intriguing tenet.

Matrix integrals, and hence the theory of random matrices, are connected to an-
other class of physical systems. Consider a quantum theory whose degrees of
freedom transform in the adjoint representation of an SU(N) symmetry. Such
theories include, but are in no sense limited to, Yang-Mills theory with an SU(N)
gauge group. If the theories admit a perturbative diagrammatic expansion, we
can calculate terms using a path integral over the matrix degrees of freedom. The
crucial observation due to ‘t Hooft [24] is that at large N the Feynman diagrams
of such theories can be organised in terms of a genus expansion of triangulated
Riemann surfaces Σh. The lattice points of Σh are the interaction vertices in the
Feynman graph. This perturbative expansion resembles the perturbative expan-
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sion of a string theory. If it so happens that for certain values of the coupling the
number of vertices in Σh diverges, one might imagine associating a string theory
to the large N limit of a quantum mechanical theory of matrices. Upon quantisa-
tion, the spectrum of a string often includes a massless spin-two particle. In such
circumstances, the low energy description of the string theory is given by general
relativity coupled to matter [53]. As such, assuming the hypothesis that large N
matrix models are associated to string theories is indeed valid, one encounters a
powerful avenue to explore theories of quantum gravity from an entirely differ-
ent perspective. There is overwhelming evidence that this hypothesis is indeed
correct for certain matrix models. Perhaps the most well known example [47] is
maximally supersymmetric SU(N) Yang-Mills theory in four-dimensions which is
captured by the type IIB superstring on AdS5×S5 – an instance of the AdS/CFT
correspondence.

Finally, we note that the relation between the diagrammatic expansion of large
N matrices and triangulated Riemann surfaces also finds interesting roots in the
realm of two-dimensional geometry and quantum gravity. Early and remarkable
numerical work on random triangulation motivated by Polyakov’s path integral
formulation of string theory [8] as well as the ideas of Regge-calculus [50] has been
performed in [54–56]. From a more mathematical perspective, Kontsevich has
shown that Witten’s conjecture [59] on the intersection theory of Riemann surfaces
is captured by a particular matrix integral resembling the Airy integral [60]. The
beautiful results obtained by Maryam Mirzakhani for volumes of certain hyperbolic
moduli spaces (Weil-Petersson volumes) [61] fit nicely into the topological recursion
of Eynard and Orantin [62], itself having connections to matrix integrals.

It is natural to suspect that the theory of large N random matrices as well as the
scope of Wigner’s hypothesis – particularly in the context of string theory and the
theory of black holes – will continue to surprise. This is an important motivation
for our choice of content. There are many excellent and detailed reviews [64–77] on
the subjects we discuss, many of which we have drawn enormous inspiration from.
Nevertheless, it seems appropriate to bring together several of the subjects that
are often presented in a somewhat disjoint fashion, and to provide a discussion on
the relation to more recent developments. We develop our presentation in order of
simplicity starting with integrals over vector-like variables, followed by integrals
over a single as well as multiple matrices, quantum mechanical matrix theories,
and finally the relation to two-dimensional quantum gravity and Liouville theory.
We provide a brief overview of the broader scope of the ideas explored and end
with a speculative overview. Details of some calculations and further results can
be found in the various appendices. Finally, the bibliography is partitioned in
terms of the various themes and ideas discussed.
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2.2 Large N vector integrals
In this section we provide a brief discussion of the saddle point approximation in
its simplest form. We subsequently apply it to a class of integrals over a large
number N of variables organised in a vector-like structure.

2.2.1 Saddle point approximation

We begin by considering the following family of integrals

IN =
∫
R

dx e−Nf(x) , (2.2.1)

where N is a positive integer which will eventually be taken to be large, and f(x)
is a real valued function. In the limit where N becomes large, the exponential
causes the integrand to peak sharply at the minima of the function f(x), while
all other values are suppressed. Of all extrema, the integral IN will be dominated
by the one which minimises f(x) as N becomes large, and we denote this by xe.
Expanding f(x) in a Taylor series around xe

f(x) = f(xe) + f ′′(xe)
2! δx2 + . . . , δx ≡ x− xe , (2.2.2)

one can approximate IN as

IN ≈ e−Nf(xe)
∫
R

dδx e−N2 f
′′(xe)δx2

(
1− N

3! f
(3)(xe) δx3 + ...

)
. (2.2.3)

Upon redefining δx = δξ/
√
N , we see that all higher powers of δξ are suppressed

at large N , and we can compute the sub-leading correction to IN in the large N
expansion:

IN ≈

√
2π

Nf ′′(xe)
e−Nf(xe) (1 +O(1/N)) . (2.2.4)

If our function f(x) has multiple minima, we must scan for the global one since
the others will give contributions that are exponentially suppressed. If there are
degenerate minima, on which f(x) takes the same value, we must include them all
to get a good approximation. Finally, if there are an infinite number of minima
care must be exercised in our approximation scheme.

Example. As a simple example we consider the integral

JN =
∫ ∞

0
dxxN e−Nx =

∫ ∞
0

dx e−N(x−log x) . (2.2.5)
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This integral can be solved exactly by performing N partial integrations yielding
(N − 1)!/NN . Moreover, we note that taking f(x) = x − log x the integral is
of the form (2.2.1). The extremum of f(x) is given by xe = 1, with f(xe) = 1.
Expanding f(x) around xe in a Taylor series up to second order and inserting it
into (2.2.1) we get

lim
N→∞

JN ≈
√

2π
N
e−N (1 +O(1/N)) . (2.2.6)

The same expression can be obtained by expanding the exact result JN = (N −
1)!/NN using the Stirling approximation for the factorial.

Complex saddles & contour deformations

The above discussion captures the basic gist of the saddle point approximation in
its simplest form. This dates back to Laplace’s work in the eighteenth century. It
is worth emphasising, however, that in general it may be the case that some of
the extrema do not lie on the original contour of integration. As a very simple
example, we might consider fc(x) = x2 + log

(
x2 + 1

)
with x ∈ R. Though this

gives rise to a perfectly well defined integral (2.2.1), the extrema lie at x± = ±i
√

2
and x0 = 0. It is straightforward to check that only one of the three saddles, in
this case the one lying on the original contour of integration, contributes. More
generally, for a complex function g(z) with z ∈ C integrated along some contour C
in the complex plane, the saddle point approximation is implemented by identifying
a novel contour C̃ that crosses through some subset of the critical points of g(z)
in such a way that the imaginary part of g(z) remains constant along C̃. Though
we will generally not require such a treatment in what follows, it is important to
keep it in mind.

2.2.2 Vector integrals

As a next step we consider the saddle point approximation for integrals with N

variables xI ∈ R containing a vector index I = 1, 2, . . . , N . Consider the family of
integrals

VN =
∫
RN

N∏
I=1

dxI e−Nf(xIxI/N) , (2.2.7)

where we use the double index notation xIxI ≡
∑N
I=1 xIxI here and throughout.

The integrals VN are invariant under O(N) rotations of the xI . By changing to
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spherical coordinates

xI =
√
NRΩI ,

N∑
I=1

Ω2
I = 1 , (2.2.8)

we reduce the integral to the one-dimensional case we already worked out in the
previous section. Importantly, this change of variables produces a nontrivial Ja-
cobian leading to the following expression

VN = volSN−1NN/2
∫ ∞

0
dRe(N−1) logR−Nf(R2) . (2.2.9)

Happily, in the large N limit the Jacobian of the coordinate change competes at
the same order with the original integrand in (2.2.7). Thus, we can employ the
saddle point approximation in its simplest form to estimate VN at large N .

Example. As a straightforward example we can approximate the volume of the
N -sphere SN . To this end, we take f(xIxI) = xIxI in (2.2.7) and compute the
integral

VN =
∫
RN

N∏
I=1

dxI e−xIxI (2.2.10)

in two different ways. An explicit calculation using Gaussian integrals tells us
that the value of (2.2.10) gives VN = πN/2. On the other hand, we can change to
spherical coordinates and perform a saddle point approximation. Taking care of
the Jacobian we rewrite (2.2.10) as

VN = volSN−1NN/2
∫ ∞

0
dRe−NF (R) , (2.2.11)

with F (R) ≡ R2 − (1 − 1/N) logR which at large N can be approximated as
F (R) ≈ R2− logR. The dominant extremum of F (R) is given by Re = 1/

√
2 and

so we obtain for the leading term of the integral

lim
N→∞

VN = volSN−1
√

π

8N

(
N

2

)N/2
e−N/2 . (2.2.12)

Setting this equal to (2.2.10) we find an expression for the volume of SN in the
limit N � 1

volSN ≈
√
N

(
2πe
N

)N/2
. (2.2.13)

This agrees with the large N limit of the volume of an N -sphere with known exact
expression volSN−1 = NπN/2/Γ(N/2 + 1).
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2.2.3 A perturbative expansion: the Cactus diagrams

We would now like to consider the vector-like integrals (2.2.7) from a slightly
different perspective that is motivated by perturbative expansions often employed
in the context of quantum field theory. We will do so by studying a specific example
given by

ZN (α) =
∫
RN

N∏
I=1

dxI e−N(xIxI/N+α(xIxI/N)2) , (2.2.14)

where α ∈ R will be taken to be a small parameter. For ZN (α) to be well-defined
we should further take α to be positive, but we shall see shortly that in the large N
limit, it may be sensible to allow α to also take small negative values. We will first
consider the integral (2.2.14) in the small α limit, for which we can Taylor expand
the exponential and calculate the correction terms using Wick contractions. To
this end, it is convenient to introduce the ‘propagator’ 〈xIxJ〉 given by

〈xIxJ〉 = Z−1
N (0)

∫
RN

N∏
K=1

dxK xIxJ e−xIxI = 1
2 δIJ . (2.2.15)

The corresponding graphical representation for the propagator and the quartic
vertex in the integrand of (2.2.15) are dispayed in the figure below

xI xJ ∼ αN−1 .

xI

xJ

xI xJ ∼ 1 ,

Figure 2.1: Propagator and quartic vertex.

Using the propagator and the quartic vertex we can form closed ‘bubble’ diagrams
which compute perturbative contributions to ZN (α). The set of connected bubble
diagrams is generated by FN (α) ≡ − log (ZN (α)/ZN (0)). To leading order, we
can approximate ZN (α) by

ZN (α) =
∫
RN

N∏
K=1

dxK e−xIxI
(

1− αN
(xIxI
N

)2
+ · · ·

)
. (2.2.16)

One can evaluate the perturbative terms in the above integral by standard Gaus-
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sian integration. The first order correction in the small α expansion yields

αN

∫
RN

N∏
K=1

dxK e−xIxI
(xIxI
N

)2
= α

4N
∑
I,J

(δIIδJJ + 2δIJδIJ) = α

4 (N + 2) .

(2.2.17)
Diagrammatically, the above integral corresponds to a bubble diagram where we
have closed the propagators emanating from the quartic vertex. Thus, to linear
order in α we have

lim
α→0
FN (α) = α

4 (N + 2) +O(α2) . (2.2.18)

As we proceed with higher order corrections, we encounter a variety of diagrams.
For any given power of α a certain class of diagrams, known as cactus diagram,
will dominate at large N . In the figure below, we demonstrate several diagrams
of which the first three belong to the cactus family

∼ αN ∼ α2N
∼ α8N

∼ α2

Figure 2.2: Some bubble diagrams. The first three are cactus diagrams.

2.2.4 Diagrams resummed

The fact that at large N only a subclass of diagrams survives leads to a dramatic
simplification of the theory, and to the hope that a resummation can be performed.
This resummation is precisely the saddle-point approximation of ZN (α). Let us
perform the saddle point analysis to confirm the O(α) correction we calculated
perturbatively. To do so, let us go to spherical coordinates and perform the same
steps as in (2.2.9). We find

ZN (α) = volSN−1NN/2
∫ ∞

0
dRe−NFα(R) , (2.2.19)
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where we have defined Fα(R) ≡
(
R2 + αR4 − (1− 1/N) logR

)
. To leading order

in the large N limit, the extrema of Fα(R) are given by

R2
± = 1

4α
(
−1±

√
1 + 4α

)
. (2.2.20)

Of the two saddles, only R2
+ lies on the original contour of integration and has a

well-defined limit as α tends to zero. The other saddle R2
− goes to infinity in the

limit of vanishing α and hence cannot be relevant to compare to the perturbative
analysis. Using the saddle point approximation, we are thus led to the leading N
approximation of FN (α):

lim
N→∞

FN (α)

= N

8α

(
−1 +

√
1 + 4α− α(2− 4 log 2)− 4α log

(
−1 +

√
1 + 4α
α

))
+O(1) .

(2.2.21)

The above result is valid to all orders in the small α expansion. Expanding (2.2.21)
to leading order in α one can readily recover our perturbative correction (2.2.17). It
is remarkable that the resummation of all the diagrams was encoded in the solution
of the simple algebraic equation ∂RFN (R) = 0. Moreover (2.2.21) reveals that
the expression gives a sensible result for Reα ≥ −1/4 which includes a negative
interval. To continue beyond the critical value αc = −1/4 one has to specify a
branch cut due to the non-analytic behaviour. That negative values of α might
be sensible in the large N limit, even though the finite N integral is ill-defined for
negative α, comes about precisely because at large N most of the contribution to
the integral is localised near the critical value of R+. Fortuitously, the integral
(2.2.19) can be evaluated exactly for any value of N . One finds

exp (−FN (α)) =
(
N

4α

)N
4

U

(
N

4 ,
1
2 ,
N

4α

)
, (2.2.22)

where U(a, b, z) is Tricomi’s confluent hypergeometric function. We have

lim
N→∞

lim
α→0

(
N

4α

)N
4

U

(
N

4 ,
1
2 ,
N

4α

)
= 1− α

4 (N + 2) +O
(
α2) . (2.2.23)

This agrees again with the exponential of (2.2.18). In relation to the critical value
R+, it is worth mentioning a quantity that will become of increasing relevance
throughout our discussion. Recall that the generating function of connected bubble

21



2. Matrix Musings

diagrams admits a large N expansion of the form

FN (α) = NF (0)(α) + F (1)(α) + 1
N
F (2)(α) + . . . . (2.2.24)

Moreover, each of the functions F (k)(α) themselves admits a Taylor expansion
near α = 0. For instance

F (0)(α) =
∞∑
n=0

f (0)
n αn . (2.2.25)

The power of α counts the number of bubbles in a given cactus diagram. Conse-
quently, we can define the moments of the ‘bubble number’ as

〈nL〉 = ∂
(L)
logα logF (0)(α) . (2.2.26)

Near the critical value αc, and for L ≥ 2, the above moments will diverge. For
instance 〈n2〉 ∼ (α − αc)−1/2. This suggests that in the limit α → αc the con-
tribution of cacti with arbitrarily large numbers of bubbles becomes increasingly
important. Moreover, the behaviour near αc is somewhat reminiscent of critical
phenomena.

Order of limits & analytic continuation

Expanding (2.2.22) at large N gives us expressions for all the F (n)(α). We can
moreover study (2.2.22) for finite values of N . For positive integers N , the function
(2.2.22) can be expressed either in terms of Bessel functions (for N odd) or the
complementary error function (for N even). At finite N the integral (2.2.19) is
defined for Reα > 0, though it can be analytically continued to certain regions of
complex α-plane depending on whether N is even or odd. On the other hand, the
infinite N approximation (2.2.21) can be extended to Reα > −1/4, after which
we encounter a branch cut. We see that the analytic structure of FN (α) across
the complex α-plane can depend on whether we first take the N → ∞ limit and
then analytically continue α or vice versa. In other words, the infinite N limit
can qualitatively affect the analytic structure of a family of functions labelled by
N ∈ Z. We will not explore this aspect of the large N limit and the accompanying
theoretical tools in any detail. We felt it important, nevertheless, to give a flavour
of what they entail.

2.3 Large N integrals over a single matrix I
Having introduced the saddle point approximation and its application to vector
integrals, we will now proceed to discuss matrix integrals, whose variables are
organised in the form of an N ×N Hermitian matrix MIJ with I, J = 1, 2, . . . , N .
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2.3. Large N integrals over a single matrix I

As briefly mentioned in the introduction, such integrals play a role in a remarkably
rich set of physical systems ranging from nuclear theory to quantum chaos and
string theory. The class of integrals we will study is of the following form

MN =
∫
RN2

[dM ] e−N TrV (M) , (2.3.1)

where V (M) is a matrix valued function of M , and the trace is only taken at the
end. The measure factor is given by

[dM ] ≡
∏
J

dMJJ

∏
I<J

dReMIJ dImMIJ . (2.3.2)

The integrals are invariant under a conjugation of M by an N ×N unitary matrix
U ∈ U(N).

2.3.1 Eigenvalue distribution

Every Hermitian matrix can be diagonalised using a unitary matrix U as M =
UDMU† with DM ≡ diag(λ1, λ2, . . . , λN ) a real diagonal matrix. Consequently,
the exponent of the integrand in (2.3.1) depends purely on the N eigenvalues
λI ∈ R of M . Thus, it is natural to consider the problem using a new set of
variables given by an N×N unitary matrix U ∈ U(N)/U(1)N , and N real variables
λI , such that M = UDMU†. Notice that U resides in the coset space U(N)/U(1)N ,
rather than the full U(N), because those unitary matrices where each diagonal
entry is multiplied by a pure phase are redundant. One must also compute the
Jacobian associated to the change of variables M = UDMU†. To this end, it is
useful to write U = eiL, with L an N ×N Hermitian generator of U(N)/U(1)N .
The infinitesimal line element on the space of Hermitian matrices M is

ds2 = Tr dMdM† =
∑
I

dλ2
I + 2

∑
I<J

(λI − λJ)2|dLIJ |2 . (2.3.3)

The Jabobian is the determinant of the above line element. It follows that

[dM ] = 1
vol SN

∏
I

dλI
∏
I 6=J
|λI − λJ |[dL] , (2.3.4)

where [dL] is the volume element of the coset space U(N)/U(1)N and we have
further divided by the volume of the permutation group SN to avoid multiple
counting of eigenvalue matrices DM with permuted elements.

Example. As an example, let us consider the case N = 2. We can parametrise
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the unitary matrix U as

U =
(

sin θ
2 eiϕ cos θ2

−e−iϕ cos θ2 sin θ
2

)
, (2.3.5)

where θ ∈ [0, π) and ϕ ∈ (0, 2π] are coordinates on the coset space U(2)/U(1)2,
whose geometry is the round two-sphere. Using that the relation U = eiL implies

dL = −i U−1dU . (2.3.6)

The line element (2.3.3) can be written out explicitly:

ds2 = dλ2
1 + dλ2

2 + (λ1 − λ2)2

2
(
dθ2 + sin2 θdϕ2) . (2.3.7)

Defining r = (λ1 − λ2)/
√

2 and z = (λ1 + λ2)/
√

2 the above becomes

ds2 = dz2 + dr2 + r2 (dθ2 + sin2 θdϕ2) . (2.3.8)

We observe that the above metric is indeed the flat metric on R4 in cylindrical
coordinates up to the fact that r ∈ R as opposed to r ≥ 0. However, the map
r → −r is in fact a permutation of the eigenvalues λ1 ↔ λ2. This is a double
counting in our configuration space, since conjugation with respect to U in (2.3.5)
with θ = 0 exchanges λ1 and λ2. Thus, after dividing by the volume of the
two-dimensional permutation group the volume element becomes

[dM ] = r2dr dz dΩ2 , r > 0 , (2.3.9)

where dΩ2 is the standard volume element on the unit sphere S2. The right hand
side is indeed the flat metric on R4 expressed in cylindrical coordinates.

The Vandermonde contribution

The product appearing in the volume element (2.3.4) is the determinant of the
Vandermonde matrix

VN ≡


1 λ1 λ2

1 · · · λN−1
1

1 λ2 λ2
2 . . . . . .

...
...

... . . .
1 λN λ2

N . . . λN−1
N

 . (2.3.10)

Since it will appear several times throughout our discussion, we introduce the
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2.3. Large N integrals over a single matrix I

following notation for the determinant of the Vandermonde matrix

∆N (λ) ≡
∏
I<J

(λI − λJ) . (2.3.11)

We can bring our original integral (2.3.1) to the following form

MN = vol U(N)
U(1)N × SN

∫
RN

N∏
I=1

dλI e−N
2S[λ] , (2.3.12)

where we have defined the multivariable function

S[λ] ≡ 1
N

N∑
I=1

V (λI)−
1
N2

∑
J 6=I

log |λI − λJ | . (2.3.13)

As for the vector integral case, the change of coordinates adds a nontrivial Jacobian
that will compete with the original integrand. Moreover, the Jacobian causes an
effective ‘repulsive’ pressure against the eigenvalues all lying on top of each other.
The repulsive effect is the matrix analogue of the logarithmic term encountered in
(2.2.9) for the vector integrals.

Before proceeding to solve (2.3.1) in the large N limit, let us summarise what we
have achieved so far. By a unitary transformation of the Hermitian matrix M we
reduced the matrix integral from a theory with N2 independent degrees of freedom
to a theory described by the N real eigenvalues of the Hemitian matrix M . The
Jacobian arising from this change of coordinates gives rise to the square of the
Vandermonde determinant ∆N (λ)2. This contribution competes with V (λ) such
that the eigenvalues are distributed around the mininum of V (λ).

2.3.2 Saddle point approximation & the resolvent

In order to solve the matrix integrals at large N , we will once again employ the
saddle point approximation. The saddle point equations for S[λ] in (2.3.13) are
given by

V ′(λI) = 2
N

∑
J 6=I

(λI − λJ)−1
. (2.3.14)

To solve these equations, it is convenient to introduce the following normalised
eigenvalue distribution

ρ(λ) = 1
N

N∑
I=1

δ(λ− λI) ,
∫ a

−a
dλ ρ(λ) = 1 . (2.3.15)
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In the large N limit, and under the assumption that the range [−a, a] is compact
and does not grow with N , we can approximate ρ(λ) by a continuous, non-negative
function. For simplicity, we further assume that the range of ρ(λ) is symmetric
about the origin. This is not at great cost since we can always shift all the λ by
a constant to accommodate this. We can then rewrite (2.3.14) as the following
integral equation

V ′(λ) = 2−
∫ a

−a
dµ ρ(µ)

λ− µ
, (2.3.16)

where it is understood that we are taking the principal value for the integral. Our
goal is to find the eigenvalue distribution ρ(λ) which solves the above equation.
To do so, it is instructive to introduce the resolvent [25]

RN (z) ≡ 1
N

Tr (z IN −M)−1 = 1
N

N∑
I=1

1
z − λI

, z ∈ C/{λI} . (2.3.17)

Sending N →∞ the sum can be replaced by an integral where each eigenvalue is
weighted by its average density

lim
N→∞

RN (z) ≡ R(z) =
∫ a

−a
dµ ρ(µ)

z − µ
. (2.3.18)

By evaluating the resolvent close to the real axis z = x± iε we find

R(x+ iε) =
∫ a

−a
dµ ρ(µ)

x− µ+ iε
=
∫ a

−a
dµ ρ(µ)(x− µ)

(x− µ)2 + ε2
− i
∫ a

−a
dµ ρ(µ)ε

(x− µ)2 + ε2
,

(2.3.19)
where in the limit ε → 0 the first integral is a principal value integral, while we
evaluate the second integral using delta function identities. Finally, we arrive at

R(x± iε) = −
∫ a

−a
dµ ρ(µ)

(x− µ) ∓ iπρ(x) , (2.3.20)

where we have employed the Sokhotski-Plemelj theorem. Using (2.3.14) and
(2.3.15)

R(x± iε) = 1
2 V
′(x)∓ iπρ(x) . (2.3.21)
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2.3. Large N integrals over a single matrix I

Using (3.2.7) and the above expressions we obtain the following properties the
resolvent must satisfy:

resa : lim
z→∞

R(z) = 1
z
, (2.3.22)

resb : ρ(x) = 1
2πi (R(x− iε)− R(x+ iε)) , x ∈ supp(ρ) , (2.3.23)

resc : V ′(x) = R(x+ iε) + R(x− iε) , x ∈ supp(ρ) . (2.3.24)

The condition resb specifies the jump of the resolvent across the branch cut x ∈
[−a, a]. Elsewhere, the resolvent is analytic. Finally, resc fixes the real part of the
resolvent to the derivative of the potential. Thus, the class of problems we are
trying to solve is a Riemann-Hilbert type problem.

In the large N limit the exponent of our original integral (2.3.12) takes the form

S[ρ(λ)] =
∫ a

−a
dλ ρ(λ)V (λ)−

∫ a

−a
dλ ρ(λ)

∫ a

−a
dµρ(µ) log |λ− µ| . (2.3.25)

Using the saddle point equations, we can further simplify

S[ρext(λ)] = 1
2

∫ a

−a
dλ ρext(λ)V (λ)−

∫ a

−a
dλ ρext(λ) log |λ| , (2.3.26)

where, for simplicity, we have further assumed that V (0) = 0 and ρext(λ) is that
solution of (2.3.16) which minimises S[ρ(λ)] in (2.3.25). Thus, our original integral
(2.3.12) is approximated by the expression

MN ≈ volU(N) e−N
2S[ρext(λ)] , (2.3.27)

where we have dropped the volume of U(1)N ×SN since it does not compete with
terms that grow exponentially in N2.

Gaussian example. We now consider the simplest concrete example. Let us
take V (M) = 1

2M
2 such that

MN =
∫
RN2

[dM ] e−N2 TrM2
=
(

2π
N

)N2/2
, (2.3.28)

where we obtained the exact result using Gaussian integrals. We will now approxi-
mate (2.3.28) using the saddle point approximation. As was already outlined, this
involves finding the resolvent R(z). Let us consider the following ansatz

R(z) = 1
2V
′(z)− P (z)

√
z2 − a2 , (2.3.29)
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where P (z) is a polynomial in z. The degree of P (z) must be chosen such that
it cancels all positive powers of R(z) to guarantee resa. For V (z) = z2/2 we find
that P (z) must be constant. Moreover, imposing the remaining conditions resb,c
on the resolvent one obtains

R(z) = 1
2z −

1
2
√
z2 − 4 and ρext(x) = 1

2π
√

4− x2 , x ∈ [−2, 2] .
(2.3.30)

The eigenvalue distribution (2.3.30) is known as Wigner’s semicircle law and ap-
pears in a wide range of physical and mathematical examples. Notice that it is
connected and has compact support. Using the eigenvalue distribution we obtain
the large N approximation

MN ≈ volU(N) e− 3
4N

2
. (2.3.31)

Setting this expression equal to the exact result in (2.3.28), we can provide an
approximation for the volume of the unitary group in the limit of large rank

lim
N→∞

log volU(N) ≈ N2

2

(
log 2π

N
+ 3

2

)
+O(N) . (2.3.32)

We can readily verify that the above expression agrees with the large N approxi-
mation of the exact expression

volU(N) = (2π)N(N+1)/2

G(N + 1) , (2.3.33)

where G(N + 1) is Barnes G-function and we recall that at large N

logG(N + 1) = −3N2

4 + N2

2 logN + N

2 log 2π − 1
12 logN + . . . . (2.3.34)

Quartic example. Having done the Gaussian case, we now move on to a slightly
more involved example. We will consider the integral

ZN (α) =
∫
RN2

[dM ] e−N TrVα(M) , Vα(M) = 1
2M

2 + αM4 . (2.3.35)

Using the ansatz (2.3.29) and following the approach delineated for the Gaussian
case, we can write down the resolvent with P (z) a quadratic polynomial

R(z) = 1
2z + 2αz3 − (p1 + p2z + p3z

2)
√
z2 − a2 . (2.3.36)
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The parameters p1, p2 and p3 are fixed by resa.

p1 = 1
2 + αa2 , p2 = 0 , p3 = 2α . (2.3.37)

The parameter a solves the equation

3αa4 + a2 − 4 = 0 ⇒ a2
± = − 1

6α ±
1

6α
√

1 + 48α . (2.3.38)

We are interested in the solution that is continuously connected to the Gaussian
solution as α→ 0, which is a+. Notice that the saddle point solution (2.3.38) ex-
hibits non-analytic behaviour as α approaches αc = −1/48, somewhat reminiscent
of what we saw in our vector integral example (2.2.20). If we wish to continue
past α = αc, the argument of the square root becomes negative and we have to
specify a branch cut. Our expression for the resolvent and eigenvalue density are
given by

R(z) = 1
2z + 2αz3 −

(
1
2 + αa2

+ + 2αz2
)√

z2 − a2
+ , (2.3.39)

ρext(λ) = 1
π

(
1
2 + αa2

+ + 2αλ2
)√

a2
+ − λ2 , (2.3.40)

with a+ given by (2.3.38).
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Figure 2.3: Quartic polynomial Vα(λ) (magenta) and corresponding eigenvalue distri-
bution ρext(λ) (orange, dashed) for α = 1 (left), α = 0 (center), and α = αc (right).

29



2. Matrix Musings

To approximate our original integral (2.3.35) at large N , we must evaluate

S[ρext(λ)] =
∫ a+

0
dλ ρext(λ)

(
1
2λ

2 + αλ4
)
− 2

∫ a+

0
dλ ρext(λ) log |λ| (2.3.41)

on the saddle point solution ρext(λ). In the above expression we also used that
our integrands are symmetric around the origin to adjust the boundaries of the
integrals. Evaluating this integral at the saddle ρext(λ) we find

S[ρext(λ)]− S[ρext(λ)]α=0 = −3
8 −

1
384

(
a2

+ − 40
)
a2

+ + log 2
a+

, (2.3.42)

where we used (2.3.38) to write the above as a function of a+. Substituting a+, a
small α expansion reveals the following [25,79,80]

lim
N→∞

FN (α)
N2 = 2α− 18α2 + 288α3 − 6048α4 + 746496

5 α5 +O
(
α6) , (2.3.43)

where we have defined FN (α) ≡ − logZN (α)/ZN (0), analogously to the vector
integral case. More generally, and somewhat similar to the vector integral case
(2.2.24), the matrix integrals allow for an expansion in large N2

FN (α) = N2F (0)(α) + F (1)(α) + 1
N2F

(2)(α) + · · · , (2.3.44)

where each of the F (n)(α) itself admits a power series expansion around α = 0. A
careful examination of (2.3.42) and (2.3.43) reveals [25]

F (0)(α) = −
∞∑
n=1

(−12α)n (2n− 1)!
n!(n+ 2)! = 2α 3F2

(
1, 1, 3

2 ; 2, 4;−48α
)
. (2.3.45)

We can expand the above near the critical value αc = −1/48 to find the leading
non-analytic behaviour (which we denote with a subscript n.a.)

lim
α→αc

∂(3)
α F (0)

n.a.(α) = 4608
√

3 (α− αc)−1/2 + . . . . (2.3.46)

We will analyse the terms F (h)(α) in (2.3.44) in the next section. In particular
we will provide detailed evidence that near the critical value αc the leading non-
analytic behaviour goes as

lim
α→αc

F (h)
n.a.(α) ∼ (α− αc)5χh/4 , h ∈ N , (2.3.47)

where a logarithmic behaviour is understood for h = 1 and χh = 2− 2h.
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2.3.3 General polynomial & multicritical models

The planar solution for the eigenvalue distribution stemming from a general V (λ)
can be written down rather concisely. We discuss here the case for which the
eigenvalue distribution is connected and has compact support on a single real
interval λ ∈ [b, a]. In that case the resolvent is given by [85]

R(z) = 1
2

∮
C

du
2πi

V ′(u)
z − u

√
(z − a)(z − b)
(u− a)(u− b) , (2.3.48)

where the contour C goes around the branch cut z ∈ [b, a]. The end points a and b
follow from the conditions (2.3.22) and (2.3.24) imposed on the resolvent. Given
R(z), we can extract the eigenvalue density from (2.3.23).

It is interesting to note that there exist a variety of polynomials which upon tuning
the coefficients give rise to non-analytic behaviour different from (2.3.47). These
matrix integrals are known as multicritical matrix integrals and were originally
introduced in [15]. For Vm(M,α) an even polynomial of degree 2m we denote the
matrix integral

Vm(M,α) =
m∑
n=1

1
2nαnM

2n (2.3.49)

as an mth multicritical model. For (α2, . . . , αm) close to the multicritical point

α(m)
n,c ≡ (−1)n+1

(
m

n

)
2n

(4m)nB(n, 1/2) , 2 ≤ n ≤ m . (2.3.50)

this matrix integral experiences (m− 1) distinct non-analyticties as we will show
in chapter 3. For instance, using the above techniques, the following polynomial
[15,82]

V3(M,α2, α3) = 1
2M

2 + 1
4α2M

4 + 1
6α3M

6 . (2.3.51)

with the eigenvalues of M distributed in the range [−a, a] has Resolvent and
eigenvalue distribution given by

R3(z, α2, α3)

= 1
2V
′
3(z, α2, α3)− 1

16
(
8 + 4uα2 + 3u2α3 + z2(8α2 + 4uα3) + 8α3z

4)√z2 − u ,

ρ
(3)
ext(z, α2, α3) = 1

16π
(
8 + 4uα2 + 3u2α3 + z2(8α2 + 4uα3) + 8α3z

4)√u− z2 .

(2.3.52)
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2.3.4 Large N factorisation & loop equations

A natural set of integrals living in the same class as (2.3.1) are the following

M(k1,k2,...,kn)
N ≡ 1

MN

∫
RN2

[dM ]e−NTrV (M)
n∏
i=1

1
N

TrMki = 1
Nn

〈 n∏
i=1

TrMki
〉
.

(2.3.53)
These integrals also preserve the U(N) symmetry. To leading order in the large N
limit we can use the eigenvalue density to estimate theM(k1,k2,...,kn)

N . For example

M(k1,k2,...,kn)
N =

n∏
i=1

∫ a

−a
dλ ρext(λ)λki +O(1/N2) . (2.3.54)

So long as neither n nor ki scale with N we see that to leading order in the
large N limit we cannot distinguishM(k1,...,kn)

N fromM(k1)
N M(k2)

N . . .M(kn)
N . This

is a characteristic property of large N systems known as large N factorisation
[81]. From this perspective, TrMk/N can be viewed as a collection of weakly
correlated quantities, the correlation strength going as some inverse power of N .
The phenomenon of large N factorisation thus provides us with a novel type of
perturbative expansion for a certain class of matrix functions.

As an example, let us use large N factorisation to recover the equations governing
the resolvent at large N . The starting point is the observation that the integral
MN should be left unchanged under a change in variables M → F (M) where
F is a matrix-valued function. For instance, we can consider the family of func-
tions F`(M) = M + g e`M where g is taken to be parametrically small and ` is
a real number. Invariance of MN under these transformations imposes a set of
interesting constraints [85]. For parametrically small g one finds

`

N2

∞∑
k=0

`k

k!

k∑
j=0

〈
TrM jTrMk−j〉 = Ĝ

(V )
`

1
N

〈
Tr e`M

〉
. (2.3.55)

The left hand side stems from the variation of the measure, whereas the right
hand side stems from the variation of the exponent. Ĝ(V )

` is a differential operator
acting on functions of `. If V (M) admits a power series, V (M) =

∑∞
n=0 αnM

n,
we have

Ĝ
(V )
` =

∞∑
n=1

nαn ∂
(n−1)
` . (2.3.56)

To leading order in the large N expansion, we can use large N factorisation to
break the left hand side of (2.3.55) into a sum over a product of traces. The leading
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large N expression is then given by∫ `

0
du 〈Wu〉 〈W`−u〉 = Ĝ

(V )
` 〈W`〉 . (2.3.57)

The above equation is a type of equation known as a loop equation [83–86], and
the object

W` ≡
1
N

Tr e`M (2.3.58)

is known as a macroscopic loop operator. The resolvent RN (z) defined in (3.2.6)
can be obtained from the loop operator by the following Laplace transform

RN (z) =
∫ ∞

0
d` e−`zW` =⇒ R(z) = lim

N→∞

∫ ∞
0

d` e−`z 〈W`〉 .

(2.3.59)
We can take the Laplace transform of (2.3.57) with respect to ` and find

R(z)2 = V ′(z)R(z)− P(z) , P(z) = −
∫ ∞

0
d` Ĝ(V )

`

〈
W` e

−`z〉 . (2.3.60)

Solving the quadratic equation leads to

R(z) = 1
2 V
′(z)− 1

2
√
V ′(z)2 − 4P(z) , (2.3.61)

where we choose the negative root to satisfy resa (2.3.22). Equation (2.3.61) con-
stitutes a derivation of (2.3.48).

Examples. We present the loop operators for the three polynomials discussed
in the beginning of this section. For the Gaussian case we can use the density in
(2.3.30) to calculate the loop operator

lim
N→∞

〈W`〉 = 1
`
I1(2`) , (2.3.62)

where In(z) is the modified Bessel function of the first kind. The differential
operator is Ĝ(V )

` = ∂` and it confirms (2.3.57). In the large z limit we obtain

P(z) = −
∫ ∞

0
d` ∂`

(
1
`
I1(2`) e−`z

)
= 1 , (2.3.63)

such that (2.3.61) agrees perfectly with the resolvent in (2.3.30). For the quartic
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polynomial we find Ĝ(Vα)
` = ∂` + 4α∂3

` and using the density in (2.3.39) we obtain

lim
N→∞

〈W`〉 =
a+(1 + 6 a2

+α)
2` I1(a+ `)−

6 a2
+α

`2
I2(a+ `) , (2.3.64)

where a+ has been defined in (2.3.38). Combining W` with Ĝ(Vα)
` we easily confirm

(2.3.57) and combining it with (2.3.61) we confirm the polynomial in (2.3.39).

2.3.5 A perturbative expansion: the Riemann surfaces

We now proceed to study how the perturbative expansion of a matrix type inte-
gral is organised in the large N limit. We will uncover a remarkable connection,
originally observed by ’t Hooft [24], to Riemann surfaces.

Let us focus on matrix integrals with the following structure

MN =
∫
RN2

[dM ] e−N TrV (M) , (2.3.65)

where V (M) is an arbitrary polynomial in M containing parameters α which
will be taken to be small. Though the lessons will be general, for the sake of
concreteness we will consider again a purely quartic example Vα(M) (2.3.35). Since
we will be interested in a perturbative expansion in small α, it is convenient to
write down the propagator

〈MIKMJL〉 = Z−1
N (0)

∫
RN2

[dM ] e−N2 TrM2
MIJMKL = 1

N
δILδKJ . (2.3.66)

For small coupling α we expand the exponential (2.3.35) leading to

ZN (α) =
∫
RN2

[dM ] e−N2 TrM2 ∑
k∈N

(−1)k (Nα)k

k! (TrM4)k . (2.3.67)

The graphical representation of the propagator and the quartic vertex is given in
the figure below:

L
K

J K

J
I

LI

II ∼ αN .
JJ
∼ N−1 ,

Figure 2.4: Propagator and quartic vertex.
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Using standard Gaussian integration, we can compute the various terms in the
small α expansion. For example, to linear order in α the large N integral (2.3.35)
becomes

FN (α) ≡ − log ZN (α)
ZN (0) = (2N2 + 1)α+O(α2) . (2.3.68)

Each of the terms in the α expansion has a diagrammatic representation. We give
some examples in the figure below. Due to their double line representation, these
diagrams are often called ribbon diagrams.

Figure 2.5: Figure of a planar (left) and a non-planar (right) diagram.

From the small α expansion it is clear that the diagrams contributing to the
perturbative expansion of a matrix integral can scale with different powers of
N . In (3.3.7) we observed that the propagator scales with inverse power of N .
Moreover, each loop contributes a factor of N , and each vertex adds a factor αN .
This implies that a diagram with L loops, V vertices, and P propagators scales as
αVNV+L−P . Making the identification [24]

loops L =̂ faces F , propagators P =̂ edges E , vertices V =̂ vertices V ,

(2.3.69)
one can identify the power of N associated to a particular ribbon diagram with
the Euler characteristic χh of the two-dimensional compact surface Σh of genus
h it can be drawn on. Since χh = 2 − 2h, at least pictorially, there seems to be
a natural genus expansion in the large N limit for the perturbative expansion of
our matrix integral ZN (α). We leave it to the reader to verify that this conclusion
will not be affected by allowing Vα(M) to be an arbitrary polynomial, so long as
the couplings are scaled appropriately as we take N large.

To recapitulate: the large N organisation of our perturbative expansion can be
expressed as

FN (α) =
∞∑
h=0

eχh logN F (h)(α) , (2.3.70)

where h labels the genus of the Riemann surface Σh, χh its Euler characteristic,
and each Fh(α) is a sum of connected diagrams that can be drawn on a surface of
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genus h

F (h)(α) =
∞∑
V=0

f
(h)
V αV . (2.3.71)

The leading contribution in the large N expansion is known as the planar con-
tribution, and sub-leading contributions in the large N expansion are known as
non-planar contributions. We argued that there exists a natural map between fat
graphs and the polygonisation of Σh. For the quartic theory, the surfaces of the
graph dual to the polygonisation of Σh are squares.

Figure 2.6: Polygonisation: the black lines are the ribbon diagrams, whereas the ma-
genta lines correspond to the dual lattice.

Riemann surfaces with boundaries

In addition to ribbon diagrams corresponding to discretised Riemann surfaces
without boundary, we can also examine diagrams living on Riemann surfaces with
boundaries. We start by coupling N dimensional complex Grassmann valued vec-
tors ξ̄(s) and ξ(s) to the matrix integral (2.3.1)

KN (α; z) ≡ 1
MN (α)

∫
RN2

[dM ]
∫ Nf∏

s=1

N∏
I=1

dξ̄(s)
I dξ(s)

I e−NTrVα(M)−ξ̄(s)(z IN−M)ξ(s)
,

(2.3.72)

where z ∈ C. The index s can be viewed as a flavour index ranging over Nf
‘flavours’. For concreteness, although not necessary, we choose the quartic poly-
nomial (2.3.35). The ribbon diagrams in figure 3.3 get enhanced by graphs with a
single line.

36



2.3. Large N integrals over a single matrix I

(I, s)(I, s) ∼ z , ∼ 1 .
I
J

(J, s)

(I, s)

Figure 2.7: Propagator and vertex.

Integrating out ξ̄(s) and ξ(s) in (2.3.72) we obtain

KN (α; z) = 1
MN (α)

∫
RN2

[dM ] e−N TrVα(M)+Nf W(z)

= 1 +
〈
Nf W(z)

〉
+ 1

2!
〈
N2
f W(z)2〉 + · · · , (2.3.73)

where we defined
W(z) ≡ Tr log(z IN −M) . (2.3.74)

It is worth noting that ∂zW(z) is equal to the resolvent introduced in (3.2.6).
Further defining BN (α; z) ≡ logKN (α; z) we obtain the large N expansion

BN (α; z) =
∞∑
h=0

∞∑
b=1

eχh,b logNN b
f B(h,b)(α; z) , χh,b ≡ 2− 2h− b . (2.3.75)

Here, BN (α; z) encodes the sum of connected diagrams corresponding to discretised
Riemann surfaces with h holes and b boundaries. In the figure below we display
an example of a ribbon diagram and its dual lattice for h = 0 and b = 1.

Figure 2.8: Polygonisation with boundary: the black lines are the ribbon diagrams,
whereas the magenta lines correspond to the dual lattice.
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Each term B(h,b)(α; z) in (2.3.75) is itself a sum of connected diagrams with fixed
h and b:

B(h,b)(α; z) =
∞∑
V=0

∞∑
B=1

f
(h,b)
V,B αV zB . (2.3.76)

The parameter z is the boundary analog of α, while Nf is the boundary analog
of N . Keeping track of the powers of Nf in (2.3.75) allows one to distinguish
Riemann surfaces which would be indistinguishable purely from their power of N .

∼ Nf N−1 , ∼ N3
f N

−1 .

Figure 2.9: The parameter Nf allows one to distinguish otherwise indistinguishable
surfaces.

Continuum limit and double scaling

In analogy to the bubble number we defined in (2.2.26) for cactus diagrams, we
can define the ‘vertex number’ for the polygonisation of Σh as

〈nh〉 = ∂logα logF (h)(α) . (2.3.77)

For instance, given (2.3.45) we can compute 〈n0〉 near αc to find 〈n0〉 ∼ (α −
αc)−1. More generally, granting (2.3.47), we find 〈nh〉 ∼ (α − αc)−1 for all h.
Consequently, as α approaches αc the number of vertices diverges suggesting the
possibility for a continuum limit of the discretised surfaces Σh.

There is another limit of interest we can consider, known as the double scaling
limit. The limit consists of simultaneously taking N large as well as α to it’s
critical value αc, while keeping a particular combination α and N fixed. Recall
(2.3.47), namely that the non-analytic part of F (h)(α) near αc scales as

lim
α→αc

F (h)
n.a.(α) = fh(α− αc)5χh/4 , h ∈ N , (2.3.78)

with fh being some proportionality constant and h = 1 is understood to be loga-
rithmic. It follows that the large N expansion near α = αc is approximately

FN (α) ≈ N2F (0)(αc) +
∞∑
h=0

fh e
χh logN (α− αc)5χh/4 . (2.3.79)

38



2.4. Large N integrals over a single matrix II

The above expression suggests the introduction of a new parameter

κ−1 ≡ N(α− αc)5/4 . (2.3.80)

The double scaling limit takes N →∞ and α→ αc while keeping κ fixed. In this
way, we see how the continuum limit and the large N limit work harmoniously in
producing a new function of potential interest

F(κ) ≡ lim
N→∞, κ fixed

(
FN (α)−N2F (0)(α)

)
=
∞∑
h=0

fh κ
−χh . (2.3.81)

In the next subsection, by introducing a new method for dealing with the matrix
integrals, we will produce a non-linear differential equation whose solution encodes
F(κ).

***

An interesting system which naturally exhibits a genus expansion is the pertur-
bative expansion of worldsheet string theory. At this stage there is no immediate
reason for the two systems to be related, but one may speculate so. We shall see
in section 2.8 that such speculations are materialised in a concrete and elegant
sense.

2.4 Large N integrals over a single matrix II
In this section we introduce a different technique to solve matrix integrals. This
technique will allow us to calculate contributions of the matrix integral beyond
the planar approximation [80].

2.4.1 Orthogonal polynomials

Two polynomials are said to be orthogonal with respect to a weight function w(x)
if they satisfy

orthoa :
∫

dxw(x) pn(x)pm(x) = hnδm,n (2.4.1)

for some hn. A familiar example is given by the Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn e
−x2

, n = 1, 2, . . . (2.4.2)

which satisfy ∫
R

dx e−x
2
Hn(x)Hm(x) = 2n

√
π n! δmn . (2.4.3)
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In addition to (6.0.28), orthogonal polynomials satisfy the three-term recurrence
relation

orthob : x pn(x) = An pn(x) + Sn pn+1(x) +Rn pn−1(x) for n > 0 ,
x p0(x) = A0 p0(x) + S0 p1(x) , (2.4.4)

where An, Sn, and Rn are some real constants. The Hermite polynomials (2.4.2)
satisfy

xHn = 1
2 Hn+1 + nHn−1 , (2.4.5)

and thus for n ≥ 0 we have An = 0, Sn = 1/2, and Rn = n. Other examples of
orthogonal polynomials include the Legendre polynomials, Laguerre polynomials,
and Chebychev polynomials.

In what follows we will focus on monic polynomials

Pn(λ) ≡ λn +
n−1∑
j=0

ajλ
j , n = 0, . . . , N − 1 . (2.4.6)

It is worth mentioning that when the measure in (6.0.28) is even under λ → −λ,
the monic polynomials Pn(λ) transform as Pn(−λ) = (−1)nPn(λ). This implies
that only even powers of λ appear in P2n(λ) whereas only odd powers of λ appear
in P2n−1(λ). Moreover, invariance under λ → −λ implies that the coefficient An
in the three-term recurrence relation vanishes, while being monic implies Sn = 1.

Orthogonal polynomials for matrix integrals

We will now use the properties of monic orthogonal polynomials to solve matrix
integrals. In order to do so, we observe that the Vandermonde matrix can be
expressed in the following way

VN =


P0(λ1) P1(λ1) . . . PN−1(λ1)
P0(λ2) . . . . . . . . .

... . . . . . . . . .

P0(λN ) P1(λN ) . . . PN−1(λN )

 . (2.4.7)

The above expression is related to (2.3.10) by a similarity transformation. The
determinant ∆N (λ) depends only on the leading degree of each polynomial. Using
the Leibniz formula for determinants, we can recast ∆N (λ) as

∆N (λ) =
∑
σ∈SN

sgn(σ)
N∏
I=1

Pσ(I)−1(λI) . (2.4.8)
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2.4. Large N integrals over a single matrix II

Consequently, we can re-express the matrix integral (2.3.1) as

vol U(1)N × SN
U(N) MN =

∑
σ,τ∈SN

sgn(σ) sgn(τ)
N∏
I=1

∫
R

dµ(λI)Pσ(I)−1(λI)Pτ(I)−1(λI)

= N !
N−1∏
I=0

hI , (2.4.9)

where for notational convenience we have defined dµ(λ) ≡ dλ e−NV (λ). Using the
three-term recurrence relation we can relate hn to Rn in (6.0.29) and rewrite (2.4.9)
entirely in terms of Rn, which are themselves determined by the weight function
w(λ) = e−NV (λ). It will also prove convenient to express hn in the following way

hn =
∫
R

dµ(λ)λPn−1(λ)Pn(λ) . (2.4.10)

An additional relation that will be useful is

nhn =
∫
R

dµ(λ)P ′n(λ)λPn(λ) = NRn

∫
R

dµ(λ)V ′(λ)Pn(λ)Pn−1(λ) . (2.4.11)

For example, when combined with (2.4.10) the above relation informs us that for a
Gaussian potential V (λ) = λ2/2 we have h0 =

√
2π/N and Rn = n/N . Hence the

orthogonal polynomials are the Hermite polynomials for V (λ) = λ2/2. From the
above expressions, we can recursively calculate the sub-leading coefficients aJ in
(6.0.30). Applying orthob to (2.4.10) leads to the recursion hn = Rn hn−1, which
implies that (2.4.9) can be rewritten as

MN = vol U(N)
U(1)N × SN

×N !hN0 RN−1
1 RN−2

2 · · ·RN−1 . (2.4.12)

As a simple check of the above expression we note that for α = 0

MN = vol U(N)
U(1)N × SN

×N !
(

2π
N

)N/2 N−1∏
n=1

( n
N

)N−n
=
(

2π
N

)N2/2
, (2.4.13)

where we have used (2.3.33), volSN = N !, and volU(1) = 2π.

Finally, we obtain a relation between the quantities defined and FN (α):

1
N2FN (α) = − 1

N
log h0(α)

h0(0) −
1
N

N−1∑
n=1

(
1− n

N

)
log Rn(α)

Rn(0) . (2.4.14)

The argument of hn and Rn indicates their dependence on the coefficient α
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parametrising a non-Gaussian piece of V (λ). We now delve into a detailed ex-
ample.

2.4.2 Non-planar contributions

We are now ready to see how the orthogonal polynomials can be used to go beyond
the planar approximation of the large N expansion of FN (α). For concreteness
we take Vα(λ) = λ2/2 + αλ4. From (2.4.11) we find

n

N
= Rn(α)

(
1 + 4α (Rn+1(α) +Rn(α) +Rn−1(α))

)
, (2.4.15)

where the term multiplying 4α follows from the quartic interaction term in the
potential and the relation∫

R
dµ(λ)λ3Pn−1(λ)Pn(λ) =

(
Rn+1(α) +Rn(α) +Rn−1(α)

)
hn(α) , (2.4.16)

which is obtained using the three-term-recurrence relation (6.0.29). In appendix
6 we provide a graphical procedure to obtain relations similar to (2.4.16) also for
higher order potentials. We can use equation (6.0.32) to study the large N limit.
Let us define the variables ε ≡ 1/N and x ≡ nε. In the large N limit, x is well
approximated by a continuous parameter. In view of this, it is convenient to set
r(x, α) ≡ Rn(α). We note that r(x, α) is also a function of N , but we suppress
this dependence for notational simplicity. We can rewrite (6.0.32) as

x = r(x, α) + 4αr(x, α) [r(x+ ε, α) + r(x, α) + r(x− ε, α)] . (2.4.17)

It follows from (6.0.33) that r(x, α) is symmetric under ε↔ −ε and we can expand
it in even powers of ε

r(x, α) = r0(x, α) + ε2 r2(x, α) + ε4 r4(x, α) + · · · . (2.4.18)

Collecting terms with equal powers of ε we obtain the expression:

r(x+ ε, α) + r(x− ε, α) = 2
∞∑
n=0

ε2n
∑

k+p=n

1
(2p)!

d2p

dx2p r2k(x, α) . (2.4.19)

Re-inserting this into (6.0.33) and comparing powers of ε we conclude

x δs,0 = r2s(x, α)+4α
∑

m+n=s
r2m(x, α)

r2n(x, α) + 2
∑

k+p=n

1
(2p)!

d2p

dx2p r2k(x, α)

 .

(2.4.20)
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For the cases s = 0 and s = 1 we readily find

r0(x, α) = −1 +
√

1 + 48αx
24α and r2(x, α) = 96α2r0(x, α)

(1 + 48αx)2 .(2.4.21)

Our final ingredient will be the Euler-Maclaurin formula

1
N

N∑
n=1

f
( n
N

)
=
∫ 1

0
dxf(x) + 1

2N f(x)
∣∣1
0 +

p−1∑
n=1

B2n

(2n)!
1

N2n f(x)(2n−1)∣∣1
0 +RN .

(2.4.22)
In the above, f(x) is a 2p times continuously differentiable function, RN is a
remainder term scaling as O(1/N2p+1), and the B2n denote the Bernoulli numbers.
Applying the Euler-Maclaurin formula to

f (x) = (1− x) log r(x, α)
x

, (2.4.23)

and expanding (6.0.31) in inverse powers of N , we find

1
N2FN (α) =−

∫ 1

0
dx(1− x) log r(x, α)

x
− 1
N

log h0(α)
h0(0) + 1

2N lim
x→0

log r(x, α)
x

− 1
12N2

(
(1− x) log r(x, α)

x

)(1)
∣∣∣∣∣
1

0
(2.4.24)

up to order O(1/N4) corrections. To obtain h0(α) we simply evaluate

h0(α) =
∫
R

dµ(λ) = e
N

32α

2
√

2

√
1
α
K 1

4

(
N

32α

)
=
√

2π
N

(
1− 3

N
α+ 105

2N2 α
2 + . . .

)
,

(2.4.25)
where Kn(x) is the modified Bessel function of the second kind. Expanding all
three terms in (6.0.34) up to powers of order O(1/N2) we find [80]

1
N2FN (α) =−

∫ 1

0
dx (1− x) log r0(x, α)

x

− 1
N2

∫ 1

0
dx (1− x) r2(x, α)

r0(x, α) + 1
12

[
(1− x) log r0(x, α)

x

](1)
∣∣∣∣∣
1

0

− 3α

 .

(2.4.26)

Using (2.4.21) both integrals in (6.0.38) can be evaluated analytically. The expres-
sion obtained for F (0)(α) agrees with the re-summed expression in (2.3.45) and
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near αc = −1/48 we recover

lim
α→αc

∂(3)
α F (0)

n.a.(α) ∼ (α− αc)−1/2 + . . . . (2.4.27)

For F (1)(α) we obtain

F (1)(α) = 1
24
(
log 4 + log(1 + 48α)− 2 log

(
1 +
√

1 + 48α
))

. (2.4.28)

Interestingly, in the case of F (1)(α), the non-analyticity near αc comes in the form
of a logarithm. Finally, a small α expansion leads to

F (0)(α) = 2α− 18α2 + 288α3 − 6048α4 + 746496
5 α5 − 4105728α6 +O

(
α7) ,

(2.4.29)

F (1)(α) = α− 30α2 + 1056α3 − 40176α4 + 8004096
5 α5 − 65774592α6 +O

(
α7) .

(2.4.30)

In addition to F (0)(α) and F (1)(α), we present F (h)(α) for h = 2, 3, and 4 in
appendix 6. Their non-analytic behaviour near αc agrees with the general form
(2.3.78).

2.4.3 Full genus expansion & non-perturbative effects

The orthogonal polynomial method allows us to systematically compute non-
planar contributions. Near the critical coupling, however, one might expect that
only a small piece of the detailed functions F (h)(α) should matter. To this end,
let us revisit equation (6.0.33). Recall that ε is parameterically small at large N ,
admitting an expansion of the type (6.0.34). We also note from our expressions
(2.4.21) and (6.0.1) that if we also take α → αc, expressions are dominated by
the region near x = 1. To render the expressions finite near x = 1 we must keep
κ−1 = (α− αc)5/4N fixed as we take N →∞. This is the double scaling limit we
encountered earlier. Thus, we are prompted to study the full equation (6.0.33) in
the double scaling limit. If we take

x = 1 + (α− αc)z , r(x, α) = r0(1, αc) + (α− αc)1/2δr(z) , ε = (α− αc)5/4κ ,

(2.4.31)
we can readily show that in the limit α → αc, and recalling that αc = −1/48,
equation (6.0.33) implies

1
4δr(z)

2 + κ2

6 δr
′′(z) + z = 0 . (2.4.32)
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Thus, at least in the double scaling limit, the full genus expansion (2.3.81) is
reduced to solving the above Painlevé I equation [102–105]. This is a remarkable
simplification of the original problem.

It is worth mentioning some features of the Painlevé I equation. For instance, the
Painlevé I equation remains unchanged under the rescaling

z → λz , δr(z)→ λ1/2δr(z) , κ→ λ5/4κ . (2.4.33)

Given the above scaling symmetry, it only makes sense to build perturbative ex-
pansions out of a scale invariant quantity such as κ(−z)−5/4 rather than, say, small
κ. The first few terms of this expansion are given by

δr±(z) = (−z)1/2

(
±2 + 1

12
κ2

(−z)5/2 ∓
49
576

κ4

(−z)5 + 1225
3456

κ6

(−z)15/2 +
∞∑
n=4

a(±)
n

κ2n

(−z)5n/2

)
.

(2.4.34)
Expanding further, one observes that the coefficients of the negative branch δr−(z)
are all positive while those of the positive branch δr+(z) alternate. To specify a
solution of the Painlevé I equation, we must pick a set of initial conditions for
δr(z) and δr′(z) at some value of z. Upon fixing half of the initial data, most
choices for the remaining data lead to the oscillatory branch δr+(z) [108].

-10 -8 -6 -4 -2

-5

5

-10 -8 -6 -4 -2

-5

5

Figure 2.10: Solutions of the Painlevé equation with κ = 1. We take the initial con-
ditions {δr(0), δr′(0)}= {0,−5} (left) and {δr(0), δr′(0)}={2, 0} (right). The orange
dashed lines are ±2

√
−z.
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-10
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Figure 2.11: Solutions of the Painlevé equation with κ = 1. We take the initial con-
ditions {δr(0), δr′(0)}= {0,−9.44761388485} (left) and {δr(0), δr′(0)}={3.482113278, 0}
(right). The orange dashed lines are ±2

√
−z.
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Of the two branches (2.4.34), only the negative branch δr−(z) connects to the
double scaling limit stemming from the matrix integral. From now on we focus on
this branch. The coefficients for δr−(z) satisfy the recursion relation

an+1 = 25n2 − 1
24 an + 1

4

n∑
m=1

aman+1−m , a0 = −2 , n ≥ 0 . (2.4.35)

For large n the coefficients above grow as ∼ 5/(4
√

6) Γ(2n − 1/2) [100]. This
implies that the branch reproducing the perturbative expansion (2.4.34) is not
Borel summable [103]. In fact, there is a family of solutions to (2.4.32) containing
non-perturbative terms [97,100] of the type

ε(z) = c

(
−z
κ4/5

)−1/8
× e− 4

5κ
√

6 (−z)5/4
. (2.4.36)

This family admits the same perturbative expansion (2.4.34) at large (−z)5/4/κ.
The parameter c is an undetermined integration constant. The form (2.4.36) is
obtained by considering a small deviation δr(z) = δr0(z) + ε(z) and solving for
ε(z) in a WKB approximation. To linear order in ε(z) we have

1
4δr0(z)2 + κ2

6 δr
′′
0 (z) + z = 0 , κ2

6 ε
′′(z) + 1

2δr0(z)ε(z) = 0 . (2.4.37)

For completeness, we mention that one can also construct a perturbative expansion
for solutions near a double pole at z = z0

δr(z) = − 4
(z − z0)2 + 3z0

5 (z− z0)2 + (z− z0)3 + a4(z− z0)4− 3z2
0

100(z− z0)6 + . . . ,

(2.4.38)
where we have set κ = 1. Both the location of the pole, z0, as well as the value of
a4 are free parameters.

We now relate δr−(z) to the double scaling limit expression F(κ) introduced in
(2.3.81). To do so, we note that in the double scaling limit, the expression (6.0.37)
is dominated by

FN (α) ≈ −N2
∫ 1

0
dx(1− x) log r(x, α)

x
+ · · · . (2.4.39)
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Combining the above expression with (2.4.31) we obtain

F(κ) ≡ lim
d.s.l.

(
FN (α)−N2F (0)(α)

)
= 12288

√
3

5κ2 + 1
2κ2 lim

ε→0+

∫ 0

−(κ/ε)4/5
dzz

(
δr−(z) + 2(−z)1/2

)
. (2.4.40)

It follows from (2.3.45) that F (0)(αc) = (7/24 − log 2/2). We now recall the
perturbative expansion (2.4.34) which is reliable for (κ/ε)4/5 ≥ −z � κ4/5. Since
the first term in the expansion (2.4.34) is κ independent and grows at large z it is
convenient to subtract it from δr−(z), as we have done in (2.4.40). It is of interest
to see how the perturbative expansion (2.4.34) is encoded in F(κ). We must
recall that there is in fact no actual small κ expansion since the scaling symmetry
(2.4.33) always allows us to rescale κ. Instead, it is convenient to consider a slightly
generalised integral given by

F(κ; η) ≡ 1
2κ2 lim

ε→0+

∫ −η
−(κ/ε)4/5

dz (z + η)
(
δr−(z) + 2(−z)1/2

)
. (2.4.41)

We have introduced a cutoff at some small value −η & κ4/5 to avoid entering
a region where the perturbative expansion (2.4.34) is invalidated. We note that
∂2
ηF(κ; η) = −

(
δr−(−η) + 2η1/2) /2κ2. Evaluating F(κ; η) in a small κ/η5/4 ex-

pansion we find

F(κ; η) = 1
24

(
log
(
η
( ε
κ

)4/5
)

+ 1
)
− 7κ2

1440 η5/2 −
245κ4

41472 η5 + . . . . (2.4.42)

We recognise the coefficient of the logarithm from our previous expression (2.4.28).

Double scaling limit for multicritical models

One can perform a similar analysis for the multicritical model introduced in
(2.3.51). Using the methods discussed in appendix 6 it is straightforward to derive
the equation

r0(x,α) + 3α2r0(x,α)2 + 10α3r0(x,α)3 = x . (2.4.43)

Crucially however, compared to the quartic matrix integral with a single coupling
the double scaling limit for a multicritical matrix integral is far more ambiguous as
there are multiple different ways to approach the multicritical point (−1/9, 1/270).
As explained more in chapter 3 and in the outlook of this thesis the mth multicrit-
ical matrix integral has at least (m−1) distinct ways to approach the multicritical
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point. One particularly easy path is parametrised by the path in coupling space

γ(t) =
(
−1/9t

1/270t2
)
, t ∈ [0, 1] . (2.4.44)

The equation governing δr(z) in the double scaling limit reads

δr(z)3 − 1
2δr
′(z)2 − δr(z)δr′′(z) + 1

10δr
(4)(z)− z = 0 . (2.4.45)

We can solve the above equation in a large z expansion

δr(z) = z1/3

(
1 +

∞∑
n=1

bkz
−7n/3

)
, (2.4.46)

with the first few terms given by

δr(z) = z1/3
(

1− 1
18z

−7/3 − 7
108z

−14/3 − 4199
17496z

−21/3 − 409297
262440z

−28/3

− 101108329
9447840 z−35/3 + 25947984239

191318760 z−42/3 + . . .
)
. (2.4.47)

Expanding further the coefficients of the above expansion are found to be alternat-
ing. Contrary to the coefficients (2.4.35) of the Painlevé I equation, the coefficients
(2.4.46) of the perturbative expansion of (2.4.45) are Borel summable [100]. Re-
lated to this,MN (2.3.1) for the polynomial V (M) (2.3.51) is well defined at finite
N for all positive γ. Furthermore choosing a different path the coefficients of this
expansion change.

It is also interesting to assess whether the above series can admit non-perturbative
corrections. Expanding about the δr(z) solution given by the large z expansion
(2.4.47), we find that to linear order the small deviation ε(z) must satisfy

1
10ε

(4)(z)− z1/3ε′′(z)− 1
3z
−2/3ε′(z) + 3z2/3ε(z) = 0 . (2.4.48)

Performing a WKB analysis we obtain ε(z) ≈ c± z
−1/4 e−

6
7

√
5±i
√

5 z7/6 . It is in-
teresting to note that the exponent is now complex. Interestingly, the polynomial
governing the eigenvalues, V (λ) given in (2.3.51), has no maxima. Rather it has
critical points at the complex values λ2

± = 1
4 (5± i

√
5).

2.4.4 Eigenvalues & instantons
As a final note, we discuss a connection between the non-perturbative corrections
of the Painlevé I equation and the original matrix integral (2.3.1). To do so, we
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consider configurations for which one (or multiple) of the eigenvalues is sitting
outside of the densely filled eigenvalue distribution. Such a configuration will give
a subdominant contribution to the matrix integral whose size we will now compute.

For simplicity, we focus on the case where a single eigenvalue λ ≡ λN is separated
from the remaining N − 1 eigenvalues. The matrix integralMN can be written in
the following form

vol U(1)N × SN
U(N) MN =

∫
R

dλe−NV (λ)
∫
RN−1

N−1∏
I=1

dµI∆N−1(µ)2 e−N
∑N−1

I=1
V (µI)

×
N−1∏
I=1

(λ− µI)2 , (2.4.49)

where the expectation value is defined in (2.3.53). We define the effective polyno-
mial

Veff(λ) ≡ V (λ)− 1
N

〈
Tr log (λ IN−1 −MN−1)2

〉
, (2.4.50)

which is the leading order correction of the polynomial V (λ) in the large N limit.
Explicitly, assuming that MN admits a single cut eigenvalue density ρ(λ) sym-
metric about the origin, we find

Veff(λ) = V (λ)−
∫ a

−a
dµρ(µ) log(λ− µ)2 , (2.4.51)

to leading order in the large N limit. It follows from (2.3.16) that within the range
λ ∈ (−a, a), Veff(λ) must be a constant V0 given by

V0 ≡ V (0)−
∫ a

−a
dµρ(µ) logµ2 . (2.4.52)

The effective polynomial ceases to be constant for λ2 > a2. To leading order in
the large N limit, the piece of the integral pertinent to the separated eigenvalue
is given by

IN ≡
∫
R

dλ e−NVeff(λ) = 2a e−NV0

(
1 + 1

2a

∫
λ/∈[−a,a]

dλ e−N(Veff(λ)−V0)

)
.

(2.4.53)
The critical points of Veff(λ) for λ2 > a2 can be found by solving

V ′eff(λ) = signλRe
√
V ′(λ)2 − 4P(λ) = 0 , (2.4.54)

where P(λ) is defined in (2.3.61).
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At large N we can apply the saddle point approximation to the integral in (2.4.53),
which requires evaluating its exponent at its critical points. We are interested in
contributions that stem from a single eigenvalue sitting at a critical point out-
side the interval containing the dense set of remaining N − 1 eigenvalues. These
contributions can lead to corrections which are exponentially suppressed in N .
Consequently they do not contribute to the perturbative 1/N expansion – they
are non-perturbative. In certain contexts, such suppressed configurations bear the
name instantons.

Example. As a concrete example, we consider the quartic polynomial (2.3.35).
Taking α ∈ (αc, 0), we find the following two maxima for the effective polynomial:

λ± = ±

√
− 1

6α −
√

1 + 48α
12α . (2.4.55)

For λ ∈ (−a+, a+), with a+ given in (2.3.38) and the eigenvalue density in (2.3.39),
we find

V0 = − 1
48α +

√
1 + 48α+ 24α

(
1 + log 576− 2 log

√
1+48α−1

α

)
48α . (2.4.56)

Evaluating Veff(λ) at λ = λ± one finds

Veff(λ±)− V0 =
√

3
√

2 +√y
(1− y) y1/4 − 2 Re

(
arctanh

√
2 +√y
√

3y1/4

)
, (2.4.57)

where we have defined y ≡ 1− α/αc. A small y expansion reveals

Veff(λ±)− V0 = 4
5
√

6 y5/4 + 2
7

√
3
2 y

7/4 + . . . . (2.4.58)

Interestingly, in the double scaling limit, where N is taken to infinity while keep-
ing Ny5/4 fixed, the leading term in the above expansion gives a contribution
to (2.4.53) that remains finite [100]. The correction is reminiscent of the non-
perturbative correction (2.4.36) found in our discussion of the Painlevé I equation.
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2.5 Large N integrals over two matrices

In this section we will generalize the one matrix integral (2.3.1) to an integral
involving two N ×N Hermitian matrices A and B

TN (c) =
∫
R2N2

[dA] [dB] e−N Tr (V (A)+V (B)−2 cAB) . (2.5.1)

V (A) and V (B) are two polynomials and c ∈ R . The measures [dA] and [dB]
are as in (2.3.2). Part of the motivation for studying such models is that they will
form an interesting bridge between the quantum mechanical models explored in
later sections and the matrix integrals explored so far. We note that the integral
is invariant under a single U(N) transformation that rotates both A and B con-
currently. Given that we have two matrices and only a single U(N) symmetry, the
eigenvalue decomposition is slightly more involved.

2.5.1 Eigenvalue decomposition

Following an approach inspired by that pursued in section 2.3, we parameterise A
and B in terms of their eigenvalues

A = UADA U†A , DA = diag(a1, . . . , aN ) , (2.5.2)

and similarly for B. Recalling the discussion in subsection 2.3.1, the matrices
UA and UB are general elements of U(N)/U(1)N . Integrating over the angular
variables in (2.5.1) leads to

TN (c) = vol U(N)
U(1)N × SN

∫
R2N

N∏
I=1

daI dbI ∆N (a)2∆N (b)2 e−N
∑N

I=1
(V (aI)+V (bI))I(a, b, c) ,

(2.5.3)
where I(a, b, c) is known as the Harish-Chandra-Itzykson-Zuber (HCIZ) integral

I(a, b, c) ≡ 1
volSN

∫
[dL] e2cN TrDAUDBU† , U ≡ U†AUB . (2.5.4)

The integral I(a, b, c) evaluates to [122]

I(a, b, c) = vol U(N)
U(1)N × SN

G(N + 1)
(2cN)N(N−1)/2

det
(
e2cNaIbJ

)
1≤I,J≤N

∆N (a)∆N (b) , (2.5.5)

where G(N+1) =
∏N−1
K=1K! denotes Barnes G-function. Finally, using the Leibniz

formula for the determinant we obtain for a measure dµ̃(a, b) completely anti-

51



2. Matrix Musings

symmetric under aI ↔ aJ and bI ↔ bJ∫
dµ̃(a, b) det

(
e2cNaIbJ

)
1≤I,J≤N = volSN

∫
dµ̃(a, b) e2cN

∑N

I=1
aIbI . (2.5.6)

We can thus write (2.5.3) as

TN (c)

=
(

vol U(N)
U(1)N

)2
G(N + 1)

volSN

∫ N∏
I=1

daIdbI
∆N (a)∆N (b)

(2cN)N(N−1)/2 e
−N
∑

I
(V (aI)+V (bI)−2 c aIbI) ,

(2.5.7)

The above expression resembles the single matrix expression (2.3.12). However, it
has some differences such as the Vandermonde determinant for each collection of
eigenvalues appearing with a single power.

HCIZ integral for N = 2. As a simple example, we consider the case N = 2.
We note that [dL] is the line element on the sphere

ds2 = 1
2(dθ2 + sin θ2dφ2) . (2.5.8)

The HCIZ integral for N = 2 is thus equal to

I(a, b, c) = 1
4

∫ 2π

0
dφ
∫ π

0
dθ sin θ e4c (sin2 θ

2 (a1b1+a2b2)+cos2 θ
2 (a1b2+a2b1))

= π

4c
1

∆2(a)∆2(b) det
(
e4c a1b1 e4c a1b2

e4c a2b1 e4c a2b2

)
, (2.5.9)

confirming (2.5.5) for N = 2.

2.5.2 Orthogonal polynomials & the quartic polynomial
Having reached the expression (2.5.7), we can proceed to use the techniques devel-
oped in the previous to solve the integral at large N . One approach is to introduce
an eigenvalue density for the aI and bI eigenvalues and study a generalisation of
the loop equations introduced in section 2.3.4 for multi-matrix models [92, 93].
Here, we will consider the orthogonal polynomial approach. We take V (a) and
V (b) to be the quartic polynomial previously considered in the single matrix case
(2.3.35). Thus, we would like to solve

TN (α, c) = CN
∫
R2N

N∏
I=1

daI dbI ∆N (a)∆N (b) e−N
∑N

I=1
W (aI ,bI) , (2.5.10)
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with

W (a, b) = 1
2(a2 + b2) + α(a4 + b4)− 2c a b , c2 ∈ (0, 1/4) . (2.5.11)

We have absorbed the volume pre-factors into an N -dependent constant CN . It is
worth reiterating that the Vandermonde for each set of eigenvalues only appears
linearly in (2.5.10).

At this stage we introduce a set of monic polynomials Qn(x), with x ∈ R, subject
to the condition Qn(−x) = (−1)nQn(x). A priori we should have introduced two
different sets of monic polynomials for the eigenvalues of A and B respectively.
However due to the symmetry of W (a, b) under interchanging these eigenvalues
we can choose the same set of monic polynomials. Orthogonality of the Qn(x) is
expressed as∫

R2
dµ(a, b)Qn(a)Qm(b) = kn(α, c)δmn , dµ(a, b) ≡ dadb e−NW (a,b) ,

(2.5.12)
and the three-term recurrence relation is given by

xQn(x) = Qn+1(x) +RnQn−1(x) + SnQn−3(x) . (2.5.13)

Notice that for the two-matrix model we have to introduce an additional variable
Sn. We can only choose a polynomial that has the same parity as xQn(x) under
x ↔ −x since we have an even measure. Thus, we exclude Qn(x) and Qn−2(x).
Following the same steps leading to (2.4.12) we rewrite (2.5.10) as

TN (α, c) = CNN !
N−1∏
n=0

kn(α, c) . (2.5.14)

Combining orthogonality and the three-term recurrence relation we obtain, using
an integration by parts, three independent equations for the three unknowns kn,
Rn and Sn ∫

R2
dµ(a, b)Qn−1(a)Qn(b)∂aW (a, b) = 0 , (2.5.15)∫

R2
dµ(a, b)Qn(a)Qn−1(b)∂aW (a, b) = n

N
kn−1(α, c) , (2.5.16)∫

R2
dµ(a, b)Qn−3(a)Qn(b)∂aW (a, b) = 0 . (2.5.17)

Solving the three integrals on the left hand side is straightforward. The only
slightly more difficult one is the second integral where we have to apply the three-
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term recurrence relation multiple times. It is now convenient to define zn(α, c) ≡
2αkn(α, c)/(ckn−1(α, c)) for α 6= 0 and zn(0, c) ≡ 2kn(0, c)/(ckn−1(0, c)) for α = 0.
For α 6= 0, the above three equations then imply

zn(α, c) = 4αRn(α, c)
(

1 + 4α
(
Rn+1(α, c) +Rn(α, c) +Rn−1(α, c)

))−1
,

(2.5.18)

zn(α, c) = α

c2
Rn(α, c)

(
1 + 4α

(
Rn+1(α, c) +Rn(α, c) +Rn−1(α, c)

))
+ 4α2

c2

(
Sn+2(α, c) + Sn+1(α, c) + Sn(α, c)

)
− α

c2
n

N
, (2.5.19)

and
zn(α, c)zn−1(α, c)zn−2(α, c) = 4α2

c2
Sn(α, c) . (2.5.20)

For α = 0 the three equations become

zn(0, c) = 4Rn(0, c) , c2zn(0, c) = Rn(0, c)− n

N
, Sn(0, c) = 0 . (2.5.21)

Upon introducing ε = 1/N and x = nε, at large N we can express zn(α, c),
Rn(α, c), and Sn(α, c) in terms of continuous functions

zn(α, c) ≡ z(x, α, c), Rn(α, c) ≡ r(x, α, c), Sn+1(α, c) ≡ s(x, α, c) .
(2.5.22)

To leading order in a small ε-expansion the expressions (2.5.18), (2.5.19), and
(2.5.20) are given by

z(x, α, c) = 4α r(x, α, c) (1 + 12α r(x, α, c))−1
, (2.5.23)

z(x, α, c) = α

c2
r(x, α, c)

(
1 + 12α r(x, α, c)

)
+ 12α2

c2
s(x, α, c)− αx

c2
,(2.5.24)

z(x, α, c)3 = 4α2

c2
s(x, α, c) . (2.5.25)

Eliminating r(x, α, c) and s(x, α, c) in the above equations we find the following
expressions

ω(z(x, α, c))
(1− 3z(x, α, c))2 = 0 and z(x, 0, c) = 4x

(1− 4c2) , (2.5.26)

where we have defined

ω(z) ≡ −108c2z5 + 72c2z4 + 24c2z3 + 3(12αx− 8c2)z2− (24αx− 4c2 + 1)z+ 4αx .
(2.5.27)
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We have thus boiled down the large N approximation of our problem to solving a
quintic polynomial. Generally speaking, quintic polynomials do not admit simple
solutions. Nevertheless, for certain special values of α and c the quintic of inter-
est (2.5.27) admits simple solutions. These turn out to encode a certain critical
behaviour in the planar approximation. For instance, when

α1x = 1
9

(√
2c+ 3c− 2c2

)
, α2x = −1

9

(√
2c− 3c+ 2c2

)
, α3x = − 1

48

(
1− 32c2

3

)
,

α4x = 1
9
(√
−2c− 3c− 2c2

)
, α5x = −1

9
(√
−2c+ 3c+ 2c2

)
. (2.5.28)

the discriminant of the quintic (2.5.27) vanishes. Consequently, ω(z) shares a zero
with its derivative ω′(z). For α2x and α4x the discriminant of ω′(z), which now
is a polynomial in c, vanishes provided c = ±1/8. A quartic polynomial with
a vanishing discriminant contains a multiple root, which for the specific case of
ω′(z) lies at z = −1/3. It can be easily checked that (2.5.27) at c = ±1/8 and
αx = −5/288 can be written as

ω(z) = − 3
16

(
z + 1

3

)3
(9z2 − 15z + 10) . (2.5.29)

To identify the non-analytic structure of interest, it is enough to solve (2.5.26) with
c = ±1/8, in a small δ = (αx+ 5/288) expansion about the z = −1/3 solution.
To leading order we find

z(x, α,±1/8) = −1
3 + 1

3
3

√
5
6

3

√
1 + 288

5 αx+ . . . . (2.5.30)

The above expansion exhibits the leading non-analyticity we were after. Away
from c = ±1/8 the quintic (2.5.27) has at most a second order zero leading to a
different non-analytic structure more akin to that of the single matrix case.

Planar contribution. As for the study of single matrix integrals, we can apply
the orthogonal polynomial technique to evaluate GN (α, c) ≡ − log TN (α, c)/TN (0, c)
in a systematic large N expansion. Here TN (α, c) is obtained from (2.5.14) in the
same way that (2.4.12) was obtained for the single matrix integral:

TN (α, c) = CNN !
( c

2α

)N(N−1)/2
kN0 zN−1

1 zN−2
2 · · · zN−1 . (2.5.31)

Performing steps analogous to those leading to (6.0.31) and combining the resulting
expression for GN (α, c) with the Euler-Maclaurin formula (6.0.35) results in the
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expression

1
N2 GN (α, c) = −

∫ 1

0
dx (1− x) log z(x, α, c)

z(x, 0, c) + 1
2 logα+O

(
N−2) . (2.5.32)

Evaluating (2.5.32) for c = ±1/8 by using the expansion (2.5.30), we conclude
that the non-analytic behaviour is given by

lim
α→αc

∂(3)
α G(0)

n.a.(α,±1/8) ∼ (α− αc)−2/3
, (2.5.33)

where we recall the critical value αc = −5/288.

Non-planar contributions. One can continue along these lines and calculate
non-planar contributions. As for the single matrix case, one can argue that the
non-analytic structure of the non-planar contributions takes the form

lim
α→αc

G(h)
n.a. = gh (α− αc)7χh/6 , h ∈ N , (2.5.34)

where the h = 1 case is understood to be logarithmic. Near criticality, the essen-
tial difference [16, 56, 118] from the single matrix case (2.3.78) is that the critical
exponent is now 7/6 instead of 5/4.

Double scaling limit. As for the single matrix mode, one can consider a double
scaling limit in which the combination κ−1 = N (α− αc)7/6 is kept fixed as N
tends to infinity. Though we do not provide the details, it is worth mentioning
that the Painlevé I equation (2.4.32) uncovered in the double scaling limit of the
single matrix model has an avatar for the two-matrix case under consideration.
For the curious reader, we state that the analogous equation can be put in the
following form [109,110,112]

δr(z)3 − δr(z)δr′′(z)− 1
2δr
′(z)2 + 2

27 δr
(4)(z)− z = 0 . (2.5.35)

The assymptotic expansion is given by [100]

δr(z) = z1/3

(
1 +

∞∑
n=1

akz
−7n/3

)
, (2.5.36)

where the first few coefficients are given by

δr(z) = z1/3
(

1− 1
18 z

−7/3 − 1925
26244 z

−14/3 − 509575
1417176 z

−21/3 − 445712575
114791256 z

−28/3 + . . .
)
.

(2.5.37)
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As for the single-matrix case, the above expansion admits non-perturbative cor-
rections of the type

ε(z) = c1 z
−1/4 e−

18
7 z7/6

+ c2 z
−1/4 e−

9
√

2
7 z7/6

. (2.5.38)

We note that the integration constants can not be fixed by the WKB analysis.
The appearance of multiple solutions has been discussed in [101].

2.5.3 A diagrammatic expansion: decorated Riemann sur-
faces

As a final note, we consider how the perturbative expansion in the ’t Hooft limit
is modified due to the appearance of a second matrix. Taking into account that
the quadratic part of the exponent in the integral (2.5.1) contains a mixed term,
we have the following set of propagators

〈AIKBJL〉 = 2c
N(1− 4c2) δILδJK , 〈AIKAJL〉 = 〈BIKBJL〉 = 1

N(1− 4c2) δILδJK .

(2.5.39)
Thus, we have additional structure at each face indicating whether it has edges
built from AA, BB or AB type propagators

A B , A A , B B .

∼ 2c
N(1−4c2) ∼ 1

N(1−4c2) ∼ 1
N(1−4c2)

Figure 2.12: Various propagators in the two-matrix model.

We might envision a continuum limit in which the vertices densely fill the discre-
tised Riemann surface. In such a situation, the additional structure at the vertices
may be viewed as an additional field taking two values living on each vertex of the
continuous surface. More generally, we could have added an additional coupling
weighting the two quartic vertices differently. This would generalise (2.5.11) to

W (a, b) = 1
2(a2 + b2) + α(g a4 + g−1 b4)− 2c a b , (2.5.40)

where g > 0 parametrises the relative weight of the A and B vertices.
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A

B

A

A

B

A

B
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B

A

B

A

A

B

A

A B A

A B A

Figure 2.13: Piece of a planar diagram in the two-matrix model.

At this stage, we have no immediate reason to suspect that such a two-dimensional
field theory is itself local. Nevertheless, and somewhat remarkably, we will discuss
evidence for this in section 2.8 where we will also provide an interpretation for the
three couplings in (2.5.40), namely α, c, and g.

***

Adding more matrices further decorates the Feynman diagrams. One might imag-
ine a limit where we have an infinite chain of matrices such that they effectively
carry a continuous label t. We will now consider precisely such a situation.

2.6 Quantum mechanical matrices
In the previous sections, we considered certain classes of integrals in the limit of a
large number of variables. In this section we will consider the quantum mechanical
generalisation of those integrals over a single matrix. The original C-number
elements of our N ×N Hermitian matrices will be promoted to operators acting
on a Hilbert space, and the matrix integral will be naturally replaced by a matrix
path integral. Our most important goal in this section will be to characterise the
ground state for such systems.

2.6.1 Action and Hamiltonian
We begin by introducing the following class of classical actions

SN [M(t)] = N Tr
∫

dt
(

1
2Ṁ(t)2 − V (M(t))

)
. (2.6.1)
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Here, V (M(t)) is a polynomial potential governing the N ×N Hermitian matrix
valued path M(t), and the dot denotes a derivative with respect to time. We
can view the above as a class of classical theories comprising N2 degrees of free-
dom whose dynamical features are governed by the potential V (M(t)). Quantum
mechanical transition amplitudes are given by the Feynman path integral

AN (Mf ,Mi) =
∫
DM(t) e i~SN [M(t)] , (2.6.2)

with boundary conditions M(ti) = Mi and M(tf ) = Mf , and our measure is now
given by

DM(t) ≡
∏
t∈R

[dM(t)] . (2.6.3)

The path integral (2.6.2) serves as the quantum mechanical generalisation of the
matrix integrals previously explored.

As for the ordinary matrix integrals, we can exploit the global U(N) symmetry of
(2.6.1) by parametrising M(t) as

M(t)→ U(t)DM (t)U(t)† , DM (t) = diag(λ1(t), λ2(t), ..., λN (t)) . (2.6.4)

Here, U(t) is a time dependent element of U(N)/U(1)N , and the λI(t) are the real
valued time dependent eigenvalues of M(t). Under (2.6.4) the kinetic term in the
action (2.6.1) is expressed as

Tr Ṁ(t)2 = Tr ḊM (t)2 + Tr[DM (t), U̇(t)U(t)†]2 . (2.6.5)

We note that U̇(t)U(t)† is again a Hermitian matrix which can be expressed as

U̇(t)U(t)† = i√
2

N(N−1)/2∑
a=1

(
TSa β̇a(t) + TAa γ̇a(t)

)
, (2.6.6)

where TSa and TAa are a basis of real symmetric, and pure imaginary antisymmetric
N × N generators of U(N)/U(1)N , with normalisation TrT εaT ε

′

b = δab δ
εε′ with

ε, ε′ ∈ {S,A}. Thus,

Tr Ṁ2 = Tr Ḋ2
M + 1

2
∑
I<J

(λI − λJ)2(β̇2
IJ + γ̇2

IJ) , (2.6.7)

where for notational convenience we suppressed the explicit time dependence, βIJ
are the matrix elements of

∑
a T

S
a β̇a and analogously γIJ the matrix elements of∑

a T
A
a γ̇a.
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Turning to the Hamiltonian formalism, we calculate the canonical momenta for λ,
βIJ and γIJ respectively:

πI = Nλ̇I , πIJ = N

2 (λI − λJ)2 β̇IJ , π̃IJ = N

2 (λI − λJ)2 γ̇IJ . (2.6.8)

From these, we can construct the classical Hamiltonian

H =
N∑
I=1

(
1

2N π2
I +NV (λI)

)
+ 1
N

∑
I<J

π2
IJ + π̃2

IJ

(λI − λJ)2 . (2.6.9)

At the classical level, the lowest energy configuration lies at the minimum of V (λI)
with all classical momenta vanishing. As we shall soon see, the quantum mechan-
ical ground state differs considerably from its classical counterpart.

2.6.2 Quantisation & free fermions

It is straightforward to promote (2.6.9) to a quantum Hamiltonian. Recall that
in the eigenvalue basis (2.6.4), the N2 degrees of freedom are living on a curved
space. Moreover, this curved space is merely a coordinate transformation of the
flat metric on RN2 . Consequently, the quantum kinetic term is nothing other than
the Laplace-Beltrami differential operator associated to our curved space. The
quantum version of the Hamiltonian in (2.6.9) is consequently given by

Ĥ =
N∑
I=1

(
− 1

2N
1

∆N (λ)
∂2

∂λ2
I

∆N (λ) +NV (λI)
)

+ 1
N

∑
I<J

π̂2
IJ + ˆ̃π2

IJ

(λI − λJ)2 , (2.6.10)

where we have explicitly written the eigenvalue dependence for the Laplacian,
we are working in units for which ~ = 1 and ∆N (λ) is the determinant of the
Vandermonde matrix introduced in (2.3.11). The angular part in (2.6.10) describes
the motion on the compact coset space U(N)/U(1)N .2 Due to the compactness of
the coset space, the eigenfunctions of H can be annihilated by π̂IJ and ˆ̃πIJ whilst
retaining normalisability. Thus, it is natural to study wavefunctions Ψ(λI) that
are functions only of the eigenvalues, but not the coordinates on the compact coset
space U(N)/U(1)N . Acting on such wavefunctions, the Hamiltonian is reduced to

Ĥ =
N∑
I=1

(
− 1

2N
1

∆N (λ)
∂2

∂λ2
I

∆N (λ) +NV (λI)
)
. (2.6.11)

2It is worth mentioning that for certain values of π̂IJ and ˆ̃πIJ the above Hamiltonian is of
the form of a Calogero model [139,140].
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A subsequent redefinition of the wavefunctions

Ψ(λ1, . . . , λN ) = ψ(λ1, . . . , λN )
∆N (λ) , (2.6.12)

leads to a Hamiltonian with standard kinetic term. Thus, we have reduced our
eigenvalue problem to the following single particle problem(

− 1
2N

∂2

∂λ2 +NV (λ)
)
ψεn(λ) = Nεnψεn(λ) , n = 1, 2, . . . , N . (2.6.13)

Recall that ∆N (λ) is antisymmetric under exchange of any two eigenvalues λI .
It then follows from (2.6.12) that a general state Ψ invariant under the permu-
tation subgroup SN ⊂ U(N) enforces the rescaled wavefunction ψ to be an anti-
symmetric function of the λI . In particular, the problem has been reduced to
solving a system of N free particles subject to the Pauli exclusion principle [25].
It is already clear at this stage that the quantum mechanical state, particularly
at large N , differs substantially from its classical counterpart. In other words,
quantum effects play a dominant role in the description of the system.

The ground state of the matrix quantum mechanical systems is described by N

free fermions, each governed by the potential V (λ). The fermions fill up the first
N energy levels, all the way up to the Fermi level εF ≡ εN . We will be interested
in small energy excitations or ripples above the filled Fermi sea. Rather generally,
in the large N limit, the low energy physics near a filled Fermi sea has a linear
dispersion relation in two-dimensions [133].

2.6.3 Non-analyticity & the inverted harmonic oscillator

We now assume that the potential has a maximum at some value of λ. Recall that
in our study of ordinary matrix integrals, we uncovered non-analytic behaviour for
particular choices of the polynomial V (λ). For instance, for Vα(λ) = λ2/2 + αλ4

we uncovered non-analytic behaviour for a negative value of α = αc < 0. For
negative values of α, Vα(λ) contains a maximum. Thus, in tuning the value of α
beyond αc, the confining effect of the quadratic term in the Lagrangian will no
longer be strong enough to compete with the repulsion of eigenvalues from both
the Vandermonde and the quartic contribution to Vα(λ). Recall further that for
the matrix integrals the non-analyticities were important in obtaining a continuum
limit with a divergent number of vertices in the discretised Riemann surface.

It is natural, then, to ask what kind of non-analyticities might we expect from
the free fermions stemming from quantum mechanical matrices? As a simple test
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observable, we can consider the Fermi energy for a potential given by

V (λ) = 1
2γ

2λ2 − αλ4 . (2.6.14)

We have maxima at λ± = ±γ (2
√
α)−1, such that V (λ±) = γ4(16α)−1. Given a

fixed number, N , of fermions we can consider how the Fermi energy εF behaves
as a function of the dimensionless parameter α̃ ≡ αγ−3. As we vary α̃, the Fermi
level will begin to approach the maximum of the potential. In the large N limit
we can resort to a semi-classical approximation. This approximation can be cast
in the form of a Bohr-Sommerfeld condition∫ λ+

0
dλ
√
εF − V (λ) = π

2
√

2

(
1 + 1

2N

)
. (2.6.15)

Examining the above integral reveals that upon tuning εF to the maximum value
of the potential gives rise to non-analytic behaviour. This stems from the part
of the integral near the maxima. The same non-analyticity is captured by the
following, simpler, integral which we evaluate in a small δεF -expansion [124–127]:∫ λ+

0
dλ
√
δεF − V ′′(λ+)(λ− λ+)2/2 = −δεF4γ log α̃ δεF

γ
+ analytic . (2.6.16)

We should view −δεF as the difference between the Fermi level and the maximum
value of the potential. So long as the Fermi level is close to the top of the potential
the detailed features of the potential will not affect the preceding analysis.

For the sake of generality, it is perhaps worth pointing out that tuning the potential
to have a non-quadratic maximum would affect the non-analytic behaviour. For
instance∫ λ+

0
dλ
√
δεF + (λ− λ+)m =

√
δεF λ+ × 2F1

(
−1

2 ; 1
m

; 1 + 1
m

;− (−λ+)m
δεF

)
,

(2.6.17)
from which we extract a non-analytic behaviour of the type ∼ δε1/2+1/m

F for m 6= 2
[125,127]. In what follows we focus on the m = 2 case.

2.6.4 A scattering problem

A final (albeit somewhat a posteriori) motivation for assuming a local maximum is
that we will eventually compare calculations for the matrix quantum mechanical
theory to a certain worldsheet string theory. The natural observable from the
worldsheet perspective is an S-matrix. In the presence of a local maximum, the
low energy excitations naturally encode an S-matrix. This is most evident, if we
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consider the physics localised near the maximum, where the model reduces to N
fermions in an inverse harmonic well. Let us introduce the following dimensionless
quantities

x = 23/4N1/2 (λ− λ+) γ1/2 , ν = N

21/2

(
εF + δε− V (λ+)

γ

)
, (2.6.18)

and consider excitations with energy near ε such that at large N we have δε/εF �
1. The single particle Schrödinger equation (2.6.13) near the maximum of the
potential now becomes (

−∂2
x −

x2

4

)
ψν,p = ν ψν,p . (2.6.19)

Note further that the rescaling (2.6.18) involves N in such a way that the range
of x and ν becomes effectively infinite as N tends to infinity. The parity index
in ψν,p, p ∈ {±}, reflects the behaviour of the wavefunction under the discrete
symmetry x→ −x, namely ψν,p(−x) = pψν,p(x).

When considering the scattering problem, we take the Fermi level νF of our new
Schrödinger problem (2.6.19) to be negative, such that we can send in an incoming
wave from negative x, let it bounce against the wall, and compute the reflected
wavefunction. The Schrödinger equation (2.6.19) admits solutions whose explicit
form is given by the parabolic cylinder functions Da(z). Explicitly,

Ψν,±(x) = e−iπ(1/2−iν)/4
(
Di(ν+i/2)

(
e

3πi
4 x
)
±Di(ν+i/2)

(
e−

πi
4 x
))

. (2.6.20)

It will also prove convenient to express the above wavefunctions in a basis of incom-
ing/outgoing waves near large and negative values of x. These can be expressed
as follows

ψ(out)
ν (x) = 1

2 (Ψν,+(x) + Ψν,−(x)) , ψ(in)
ν (x) =

(
ψ(out)
ν (x)

)∗
. (2.6.21)

The outgoing wavefunctions admit an asymptotic expansion of the following form

lim
x→−∞

ψ(out)
ν (x) = eix

2/4(−x)−1/2+iν + . . . . (2.6.22)

Notice that in addition to the energy, ν parameterises the wavelength of the spatial
oscillations. It is easiest to see this by considering a coordinate transformation to
the spatial coordinate x = −e−u. The Wronskian for the above wavefunctions is
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given by

W (ν) = ψ(out)
ν (x)∂xψ(out)

ν (−x)− ψ(out)
ν (−x)∂xψ(out)

ν (x) = i

√
2π

Γ (1/2− iν) e
−πν/2 .

(2.6.23)
As expected, W (ν) is independent of x. We can also express the parity eigenstates
in terms of ψ(out)(x) as follows

ψν,+(x) ≡ 1√
2
ψ

(out)
ν (x) + ψ

(out)
ν (−x)

W (ν) , ψν,−(x) ≡ 1√
2
ψ

(out)
ν (x)− ψ(out)

ν (−x)
W (ν)∗ ,

(2.6.24)
where we have rescaled (2.6.20) with respect to the Wronskian.

By virtue of the discrete symmetry x↔ −x, ψ(out)
ν (−x) and its complex conjugate

also describe solutions to (2.6.19). These are waves that are purely incoming or
outgoing on the other side of the potential barrier.

2.6.5 Releasing the particle number

So far we kept the particle number N fixed. It will be convenient to also allow
the particle number to vary, thus constructing a second quantised picture of the
quantum mechanical theory. To do so, we introduce lowering and raising operators,
âν,p and â†ν,p satisfying the standard anti-commutation relations

{âν,p, âν′,p′} = 0 , {âν,p, â†ν′,p′} = 2π δν,ν′δp,p′ . (2.6.25)

The ground state is filled until the Fermi level and we introduce the state |Fermi〉
corresponding to a filled Fermi sea by

âν,p |Fermi〉 = 0 , ν > νF & p ∈ {±} ,
â†ν,p |Fermi〉 = 0 , ν < νF & p ∈ {±} , (2.6.26)

where we recall that νF < 0. The above Fermi sea is filled on both sides of the
potential.3 We can create multi-particle energy eigenstates on top of |Fermi〉 by
acting with â†ν,p with ν > νF , and hole type excitations by acting with âν,p with
ν < νF .

We can thus introduce field operators for the creation and annihilation of wave-

3One can also consider filling one of the two sides, or perhaps filling the two sides with Fermi
seas with different levels. The case where both sides are filled equally was considered in [134,135].
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functions at x:

Ψ̂p(t, x) =
∫
R

dν
2π e

−iνt âν,p ψ
∗
ν,p(x) , Ψ̂†p(t, x) =

∫
R

dν
2π e

iνt â†ν,p ψν,p(x) ,
(2.6.27)

where the integration is over the continuous energy levels ν and ψ∗ν,p(x) and ψν,p(x)
are the parity eigenstates introduced in (2.6.24). In the expression above ∗ denotes
the complex conjugation of C-numbers, while † denotes the complex conjugation of
quantum operators. Given the above fermionic operators, we can define a number
density operator

n̂(t, x) = Ψ̂†(t, x)Ψ̂(t, x) . (2.6.28)

In the above, we have defined Ψ̂(t, x) ≡ Ψ̂+(t, x) + Ψ̂−(t, x) and its conjugate,
satisfying

{Ψ̂(t, x), Ψ̂†(t, x′)} = 2 δ(x− x′) . (2.6.29)

The operator Ψ̂†(t, x) creates states that can be perceived as single particle states
on top of the filled Fermi sea when viewed near the left boundary at large negative
values of x.

Feynman propagator

Given a second quantised theory we can construct various propagators for the
fermions. For instance, the Feynman propagator is given by

SF (t, x; t′, x′) = −i 〈Fermi|TF Ψ̂(t, x)Ψ̂†(t′, x′)|Fermi〉 , (2.6.30)

where TF denotes Fermionic time-ordering. It satisfies(
−∂2

x −
x2

4 − i∂t
)
SF (t, x; t′, x′) = δ(t− t′)δ(x− x′) . (2.6.31)

More explicitly, we can express SF (t, x; t′, x′) as

i SF (t, x; t′, x′) = Θ(s)
∫ ∞
νF

dν
2π e

−iνs ψ∗ν,p(x)ψν,p(x′)−

Θ(−s)
∫ νF

−∞

dν
2π e

−iνs ψ∗ν,p(x)ψν,p(x′) , (2.6.32)

where we sum over the parity index, and for notational simplicity we have defined
s ≡ t−t′. We can also write down the Fourier transform of the Fermion propagator
with respect to s. For this we use the contour integral representation of the
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Heaviside function

Θ(s) = lim
ε→0+

∫
R

dΩ
2πi

eiΩs

Ω− iε . (2.6.33)

The Fourier transform then reads

S̃F (x, x′;ω) = − lim
ε→0+

∫
R

dν
2π ψ

∗
ν,p(x)ψν,p(x′)

(
Θ(ν − νF )
ν − ω − iε

+ Θ(νF − ν)
ν − ω + iε

)
,

(2.6.34)

and we use the following conventions for the Fourier transform:

f(t) =
∫
R

dω
2π e

−iωtf̃(ω) & f̃(ω) =
∫
R

dt e+iωt f(t) . (2.6.35)

Complex conjugation at the level of the Fourier transform mirrors itself in x↔ x′

and a particle hole exchange. Finally, we note that for large negative values of x
and x′ the parity states behave as

lim
x,x′→−∞

(
ψ∗+,ν(x)ψ+,ν(x′) + ψ∗−,ν(x)ψ−,ν(x′)

)
=

1√
xx′

(
e−i(x

2−x′2)/4−iν log x/x′ +R∗ν e
−i(x2+x′2)/4−iν log xx′

)
+ h.c. , (2.6.36)

where we defined
Rν ≡ −i

Γ(1/2− iν)√
2π

e−πν/2 . (2.6.37)

We will provide a physical interpretation of the definition of Rν in the next section.
For large negative values of x and x′, with x > x′, we then find the asymptotic
form for (2.6.36):

S̃F (x, x′;ω) ≈ − i√
xx′

(
ei(x

2−x′2)/4+iω log x/x′ +Rω e
i(x2+x′2)/4+iω log xx′

)
Θ(ω − νF )

+ i√
xx′

(
e−i(x

2−x′2)/4−iω log x/x′ +R∗ω e
−i(x2+x′2)/4−iω log xx′

)
Θ(νF − ω) .

(2.6.38)

For x′ > x, both large and negative we find

S̃F (x, x′;ω) ≈ − i√
xx′

(
e−i(x

2−x′2)/4−iω log x/x′ +Rω e
i(x2+x′2)/4+iω log xx′

)
Θ(ω − νF )

+ i√
xx′

(
ei(x

2−x′2)/4+iω log x/x′ +R∗ω e
−i(x2+x′2)/4−iω log xx′

)
Θ(νF − ω) .

(2.6.39)
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We will now put all these expressions to good use, as they have provided us
the basic building blocks to construct an S-matrix for our quantum mechanical
matrices.

2.7 Scattering from quantum mechanical matri-
ces

As briefly mentioned in the previous section, one can setup an S-matrix problem
for the fermions propagating near the filled Fermi sea. These excitations reflect off
the region near the maximum of the potential. In this section, we provide some
details for the scattering amplitude introduced in [31, 32] of the number density
operator n̂(t, x) defined in (2.6.28). These are simple observables in our theory.

2.7.1 Reflection coefficient & Green’s function
Recall the Hamiltonian (2.6.19) we obtained at the end of the previous section

Ĥ = −∂2
x −

x2

4 . (2.7.1)

A natural object to consider is given by the reflection coefficient, Rν , of a wave of
frequency ν coming in from the asymptotic region at large and negative values of
x and reflecting back, as depicted in figure 2.14.

Iν

Rν
Tν

νF

Figure 2.14: We consider an incoming wave from negative infinity (orange), part of
which is reflected (teal), and part of which is transmitted (magenta) from the inverted
harmonic oscillator potential. The ground state configuration fills the Fermi sea up to
νF .

As our boundary condition we impose that the incoming flux from large positive
values of x vanishes. In this regard, it is convenient to note that ψ(out)

ν (−x) is a
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wave that is purely outgoing for large positive values of x. Expanding for large
negative values of x we find a superposition of an incoming and reflected wave

ψ
(out)
ν (−x)
W (ν) ≈ e−ix

2/4−iν log(−x)
√
−x

− i Γ(1/2− iν)√
−2πx

e−πν/2eix
2/4+iν log(−x) + . . . ,

(2.7.2)
where we have normalised the wavefunction such that the incoming (first) part has
unit coefficient. To obtain the reflection and transmission coefficient we calculate
the probability current

J (t, x) = −i (ψ∗∂xψ − ψ∂xψ∗) , ∂tρ+ ∂xJ = 0 . (2.7.3)

From the probability current one can readily obtain the reflection and transmission
coefficients

|Rν |2 =
|Jref |
|Jin|

= 1
1 + e2πν , |Tν |2 = |Jtrans|

|Jin|
= 1

1 + e−2πν = 1− |Rν |2 ,

(2.7.4)

where we obtain Jin from (2.7.3) by using the purely incoming part of (2.7.2)
and similarly the purely reflected and transmitted wave for Jref and Jtrans re-
spectively. For negative values of ν, which is the situation we are most interested
in, the transmission coefficient is exponentially suppressed. In fact, the expression
(2.7.2) encodes more information. For instance, it encodes the reflection coefficient

Rν = −i Γ(1/2− iν)√
2π

e−πν/2 , (2.7.5)

which can be viewed as an S-matrix element for the scattering of a single wave
against the potential barrier. Perturbative unitarity of the S-matrix is given by
the fact that Rν is a pure phase up to e−πν/2 corrections. Using the Gamma
function identity

|Γ(1/2− iν)|2 = π

cosh(πν) , (2.7.6)

the absolute value of (2.7.5) reduces to (2.7.4).

The Green’s function is given by evaluating the matrix elements of the resolvent

G(x, x′; z) = 〈x′|
(
Ĥ − z

)−1
|x〉 , (G(x, x′; z))∗ = G(x′, x; z∗) , (2.7.7)

where z takes values across the whole complex plane, modulo the spectrum of Ĥ.
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The Green’s function satisfies the equation(
−∂2

x −
x2

4 − z
)
G(x, x′; z) = δ(x− x′) . (2.7.8)

It is often convenient to express G(x, x′; z) in terms of eigenfunctions of Ĥ with
complex eigenvalue z. Concretely,

G(x, x′; z) = 1
W (z)

(
ψRz (x)ψLz (x′)Θ(x′ − x) + ψRz (x′)ψLz (x)Θ(x− x′)

)
, (2.7.9)

where ψLz (x) decays at x = −∞, and ψRz (x) decays at x = ∞, and W (z) is the
Wronskian (2.6.23). As an example, when z takes values in the upper half of the
complex plane we can express ψL,Rz (x) as

ψLz (x) = ψ(out)
z (x) , ψRz (x) = ψ(out)

z (−x) . (2.7.10)

For large negative and large positive values of x these wave functions scale as

lim
x→−∞

ψLz (x) = 1√
−x

eix
2/4+iz log(−x) and lim

x→∞
ψRz (x) = 1√

x
eix

2/4+iz log x .

(2.7.11)

Using the expressions for the wavefunctions in (2.7.2), we can obtain an asymptotic
expansion of G(x, x′; z) for large and negative values of x and x′. For z in the upper
half plane we obtain

G(x, x′; z) ≈− i√
xx′

(
e−i(x

2−x′2)/4−iz log x/x′ +Rz e
i(x2+x′2)/4+iz log xx′

)
Θ(x′ − x)

− i√
xx′

(
ei(x

2−x′2)/4+iz log x/x′ +Rz e
i(x2+x′2)/4+iz log xx′

)
Θ(x− x′) .

(2.7.12)

A similar expression can be derived for z in the lower half plane. The reflection co-
efficient Rν given in (2.7.5) and the above Green’s function are the basic building
blocks for the scattering problem of interest – namely, the scattering of the prob-
ability density ρ(t, x) = ψ∗(t, x)ψ(t, x) about the filled Fermi sea. We note that
ρ(t, x) is a quantum mechanical analogue of the eigenvalue density ρ(λ) introduced
in (2.3.15).

As a final remark, before embarking on the calculation of various scattering pro-
cesses we would like to relate the Green’s function introduced in (2.7.9) to the
Feynman propagator (2.6.32) discussed in the previous section. These obey the
same equation. Comparing the first line in (2.6.38) with the lower line of the
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Green’s function in (2.7.12), we note that the two expressions take the same form.
The difference lies in the Heaviside function appearing in S̃F (x, x′;ω). This is a
simple manifestation of the fact that G(x, x′; z) stems from a first quantised setup,
whereas S̃F (x, x′;ω) stems from a ‘second quantised’ picture allowing for particle
creation and annihilation.

2.7.2 Multi-particle scattering
To ensure a large range of admissible scattering frequencies we take ν2

F � 1. This
condition will also ensure that the transmitted wave is exponentially suppressed,
such that we can aptly refer to scattering processes leaking across the barrier
as non-perturbative phenomena. The physical problem we are after consists of
sending in an incoming density wave ρω(x) at some incoming frequency ω near the
spatial boundary at large and negative values of x, and measuring the scattered
wave at some outgoing frequency ω′, again at large negative values of x. Since we
are scattering a composite object, the elements of our perturbative S-matrix will
be given by certain convolutions of the reflection coefficients Rν . In what follows,
we will often express results in terms of the spatial coordinate

u = − log(−x) , x < 0 . (2.7.13)

Notice that for large negative values of x, u is also large and negative and u

increases monotonically with x.

To compute scattering processes for multiple incoming and outgoing waves4 it is
convenient to resort to the multi-particle picture described in section 2.6.5. We
begin by considering the n-point function

Q ({tk, xk}) = 〈Fermi|TB
n∏
k=1

n̂(tk, xk)|Fermi〉 , (2.7.14)

where now TB indicates bosonic time ordering and we defined n̂(tk, xk) in (2.6.28).
Given that our theory is non-interacting, we can calculate Q via multiple Wick
contractions using (2.6.32). We note that the above correlation function is invari-
ant under (ti, xi)↔ (tj , xj).

General approach. Before delving into concrete examples, it is worth explain-
ing the general strategy. Starting with the quantum correlation function (2.7.14)
we perform all possible Wick contractions. Keeping the fully connected part we

4The S-matrix in a two-dimensional world is a rather subtle object due to the absence of an
infinitely large celestial sphere at null infinity. This implies we cannot have parametrically sep-
arated asymptotic states. Instead, in two-dimensions the celestial sphere collapses to a celestial
point.
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obtain

Qc ({tk, xk}) = − i
n

n

∑
σ∈Perm(n)

n∏
k=1

SF (tσk , xσk ; tσk+1 , xσk+1) , (2.7.15)

where Perm(n) denotes the set of order n! permuting the elements in {1, 2, . . . , n}.
We also compute indices modulo n (e.g. σn+1 ≡ σ1 and so on). The subscript c is
a reminder that we are considering the fully connected part. Notice that (2.7.15)
is invariant under (ti, xi)↔ (tj , xj). Going to Fourier space the above leads to an
expression manifestly invariant under (ωi, xi)↔ (ωj , xj). From this expression we
extract the fully connected part Q̃c({ωi, xi}) and obtain the one-to-n scattering
amplitude S(ω1, . . . , ωn−1|ωn) defined as the part of the correlation function taking
the form

δ (ω1 + · · ·+ ωn) exp
(
iωnun − i

n−1∑
k=1

ωkuk

)
S(ω1, . . . , ωn−1|ωn) . (2.7.16)

Outgoing frequencies ωk are positive for k = 1, . . . , n− 1 and as a result, the fre-
quency of the incoming wave ωn must be negative. Since the original correlation
function (2.7.14) is invariant under (ti, xi)↔ (tj , xj) we impose a specific ordering
of the spatial coordinates, namely x1 > x2 > . . . > xn, to avoid overcounting. For
m >1 we can similarly define the m-to-n amplitude. We now proceed to study
some concrete examples.

One-to-one scattering. As a warm up exercise, we compute the one-to-one
scattering problem in the second quantised picture. We wish to calculate the
Fourier transform of the connected part of

Q ({ti, xi}) = 〈Fermi|TB n̂(t1, x1) n̂(t2, x2)|Fermi〉 , (2.7.17)

where now TB corresponds to bosonic time ordering. Keeping track of the various
Wick contractions and using the Fermion propagator (2.6.32), we find

Qc(t1, x1; t2, x2) = 1
2

∑
σ∈Perm(2)

2∏
k=1

SF (tσk , xσk ; tσk+1 , xσk+1) . (2.7.18)

In appendix 6 we provide some steps leading to (2.7.18). Going to Fourier space
we obtain

Q̃c(ω1, x1;ω2, x2) =
∫
R2

dt1dt2 e+iω1t1+iω2t2Qc(t1, x1; t2, x2) . (2.7.19)
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Performing the integrals over t1 and t2, we are led to the following expression

Q̃c(ω1, x1;ω2, x2) = 2π
2 δ(ω1 + ω2)×∫

R

dυ
2π
(
S̃F (x1, x2; υ + ω1)S̃F (x2, x1; υ) + S̃F (x2, x1; υ + ω2)S̃F (x1, x2; υ)

)
.

(2.7.20)

We can expand the above expression at large and negative values of x1 and x2.
There are various pieces in this regime. Of these, we would like to keep those terms
corresponding to particles that have been scattered by the barrier, and moreover
do not exhibit large oscillations of the type ∼ e±ix

2/4. Expressing the result in
terms of the spatial coordinate u = − log(−x) we find

Q̃c(ω1, u1;ω2, u2) = 2πδ(ω1 + ω2)
(
ω2

eiω1u1−iω2u2

2π + e−iω1u1+iω2u2

2π S(ω1|ω2)
)
.

(2.7.21)

and S(ω1|ω2) is defined as

S(ω1|ω2) ≡ e−iω2 log(−νF )
∫ ω1

0
dυ R∗νF−υRνF−υ−ω2 . (2.7.22)

The phase e−iω2 log(−νF ) subtracts the phase appearing in the perturbative expan-
sion of the reflection coefficient (6.0.13). (One can also remove this phase by a
redefinition of the u-coordinate.) Notice that the frequency of Rν is always above
the Fermi level since it corresponds to particle scattering, whereas the frequency
of R∗ν is always below the Fermi level since it corresponds to the scattering of a
hole. Performing a large νF expansion, we obtain

S(ω1|ω2) = ω1 + 1
24ν2

F

(
iω2

1 − ω4
1(ω1 − 2i)

)
+O

(
ν−4
F

)
. (2.7.23)

It is worth noting that the leading piece of S(ω1|ω2), including the energy conserv-
ing delta-function, is the one-to-one scattering amplitude we would have obtained
for a theory of massless fields in two-spacetime dimensions in a theory subject
to Poincaré invariance. The terms subleading in 1/νF are corrections which in-
dicate any such Poincaré invariance is ultimately broken. We will comment on
this from the perspective of a continuum description in the next section. Finally
dimensional analysis may raise concerns about the above expression. We must
remember, however, that in going to the Hamiltonian (2.7.1) we have set several
dimensionful parameters to unity. Upon restoring them, we can also restore our
faith in dimensional analysis.
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One-to-two scattering. We now move on to the case of one-to-two scatter-
ing. This scattering amplitude encodes the type of interactions present in the
theory. The correlation function of interest is

Q ({ti, xi}) = 〈Fermi|TB n̂(t1, x1)n̂(t2, x2)n̂(t3, x3)|Fermi〉 , (2.7.24)

The resulting expression for the connected part reads

Qc ({ti, xi}) = i

3
∑

σ∈Perm(3)

3∏
k=1

SF (tσk , xσk ; tσk+1 , xσk+1) . (2.7.25)

Fourier transforming with respect to the time coordinates, we obtain

Q̃c(ω1, x1;ω2, x2;ω3, x3) =
∫
R3

dt1dt2dt3 eiω1t1+iω2t2+iω3t3Qc(t1, x1; t2, x2; t3, x3) .
(2.7.26)

Due to time-translation invariance, we obtain an overall delta function imposing
the conservation of energy. Combining (2.7.16) with (2.7.26) we obtain

S(ω1, ω2|ω3) ≡ e−iω3 log(−νF )
[∫ ω1

0
dυ R∗νF−υRνF−υ−ω3 −

∫ ω1+ω2

ω2

dυ R∗νF−υRνF−υ−ω3

]
.

(2.7.27)

We can express the above expression in a large νF expansion using (6.0.13)

S(ω1, ω2|ω3) = i

νF
ω1ω2ω3 −

i

24ν3
F

ω1ω2ω3 (ω3 + i) (ω3 + 2i)

× (ω1 (ω1 − i) + ω2 (ω2 − i) + 1) +O
(
ν−5
F

)
. (2.7.28)

Note that the alternating signs arise from the alternating signs in (2.6.38) and we
take the frequencies of the scattered waves ω1, ω2 > 0.

One-to-three scattering. In direct analogy to the one-to-one and one-to-two
case, we can work out the one-to-three scattering amplitude. After obtaining the
possible Wick contractions of

Q ({tk, xk}) = 〈Fermi|TB n̂(t1, x1)n̂(t2, x2)n̂(t3, x3)n̂(t4, x4)|Fermi〉 , (2.7.29)
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we can express the connected piece as

Qc ({tk, xk}) = −1
4

∑
σ∈Perm(4)

4∏
k=1

SF (tσk , xσk ; tσk+1 , xσk+1) . (2.7.30)

Fourier transforming, extracting the term without the e±ix
2/4 oscillations, and

using (2.7.16) we end up with

S(ω1, ω2, ω3 |ω4) ≡ e−iω4 log(−νF )

[∫ ω1+ω2+ω3

ω2+ω3

dυ R∗νF−υRνF−υ−ω4

−
∫ ω1+ω2

ω2

dυ R∗νF−υRνF−υ−ω4 −
∫ ω1+ω3

ω3

dυ R∗νF−υRνF−υ−ω4

+
∫ ω1

0
dυ R∗νF−υRνF−υ−ω4

]
. (2.7.31)

Note that there is an overall minus sign arising from our original definition of the
scattering amplitude (2.7.16) and (2.7.30). Expanding the above expression at
large νF by making use of (6.0.13) we find

S(ω1, ω2, ω3 |ω4) = − 1
ν2
F

ω1ω2ω3ω4(ω4+i)+ 1
24ν4

F

ω1ω2ω3ω4 (ω4 + i) (ω4 + 2i) (ω4 + 3i)

×
(
ω1 (ω1 − i) + ω2 (ω2 − i) + ω3 (ω3 − i) + 1

)
+O

(
ν−6
F

)
. (2.7.32)

One-to-(n− 1) scattering. From the above scattering amplitudes we observe

S(ω1, . . . , ωn−1|ωn) =
∞∑
L=0

νn−1+2L
F S(L)(ω1, . . . , ωn−1|ωn) , (2.7.33)

where for the case of one-to-(n-1) scattering the left hand side is given by [32]

S(ω1, . . . , ωn−1|ωn) ≡ e−iωn log(−νF )
∑

Ω⊆{ω1,.., ωn−1}

(−1)|Ω|+1
∫ ω(Ω)

0
dυ R∗νF−υRνF−υ−ωn .

(2.7.34)
where ω(Ω) is the sum of all elements in Ω. Furthermore, for the leading term in
a large νF expansion of the one-to-(n− 1) scattering amplitude, we observe

S(0)(ω1, . . . , ωn−1|ωn) = −in ω1 · · ·ωn−1

n−3∏
k=0

(ωn + ik) , n ≥ 3 . (2.7.35)
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For the the first sub-leading term and n ≥ 3 we find

S(1)(ω1, . . . , ωn−1|ωn) = (i)n 1
24 ω1 · · ·ωn−1

n−1∏
k=0

(ωn + ki)
(
n−1∑
`=1

ω`(ω` − i) + 1
)
,

(2.7.36)
where ωn = −

∑n−1
k=1 ωk. For both expressions we made use of the large νF expan-

sion (6.0.13). In appendix 6 we obtain some higher-point scattering amplitudes
that confirm the above expressions, at least for low enough particle number.

Two-to-two scattering. To obtain the two-to-two amplitude, instead of looking
for terms of the form (2.7.16) we must extract the term proportional to

e−iω1u1−iω2u2+iω3u3+iω4u4 δ(ω1 + ω2 + ω3 + ω4)S(ω1, ω2 |ω3, ω4) (2.7.37)

from the connected part of the four point correlation function (2.7.30). This
defines for us the two-to-two amplitude S(ω1, ω2 |ω3, ω4). In the above expression
we assume that ω1 and ω2 are the positive frequencies of the outgoing waves, while
ω3 and ω4 are the negative frequencies of the two incoming waves. Additionally
we have to order the frequencies. We choose

ω2 > ω1 , ω4 > ω3 , ω2 > −ω3 , ω2 > −ω4 , (2.7.38)

such that ω2 = max{ω1, ω2, |ω3|, |ω4|}. Combining with (2.7.37) and (2.7.30) we
obtain [32,141,142]

S(ω1, ω2|ω3, ω4) ≡ e−i(ω3+ω4) log(−νF )

[∫ ω1+ω3

ω3

dυR∗νF−υ+ω3
RνF−υ−ω4

+
∫ ω1+ω2

ω2

dυR∗νF−υRνF−υ+ω1+ω2 −
∫ ω1+ω3

ω3

dυRνF−υR∗νF−υ+ω3
RνF−υ+ω1+ω3R

∗
νF−υ−ω2

−
∫ ω1+ω4

ω4

dυRνF−υR∗νF−υ+ω4
RνF−υ+ω1+ω4R

∗
νF−υ−ω2

]

= − 1
ν2
F

ω1ω2ω3ω4(ω2 − i) +O(ν−4
F ) , (2.7.39)

as the two-to-two scattering amplitude.

Two-to-three scattering. To obtain the two-to-three amplitude we consider
the connected correlation function (6.0.17). We are then looking for terms in
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proportional to

e−iω1u1−iω2u2−iω3u3+iω4u4+iω5u5δ(ω1 + ω2 + ω3 + ω4 + ω5)S(ω1, ω2, ω3 |ω4, ω5)
(2.7.40)

with ω1, ω2, ω3 outgoing and positive and ω4, ω5 incoming negative. The above
expression defines for us the scattering amplitude for two-to-three scattering. Ad-
ditionally we assume

ω3 > ω2 > ω1 , ω5 > ω4 , ω3 > −ω4 , ω2 < −ω5 , ω1 < −ω5 , (2.7.41)

and x1 > x2 > x3 > x4 > x5. In particular (2.7.41) implies that ω3 = max{ω1, ω2, ω3, |ω4|, |ω5|}.
We then find :

S(ω1, ω2, ω3 |ω4, ω5)

≡ e−i(ω4+ω5) log(−νF )

[∫ ω1

0
dυ RνF−υ−ω2−ω4R

∗
νF−υ+ω1+ω5

RνF−υ+ω1R
∗
νF−υ−ω2

−
∫ ω1+ω4

ω4

dυ RνF−υ−ω3−ω5R
∗
νF−υ+ω4

RνF−υR
∗
νF−υ−ω3

−
∫ ω1+ω2+ω3

ω2+ω3

dυ RνF−υ−ω4−ω5R
∗
νF−υ

−
∫ ω1+ω5

ω5

dυ RνF−υ−ω3−ω4R
∗
νF−υ+ω5

RνF−υR
∗
νF−υ−ω3

+
∫ ω1+ω3

ω3

dυ RνF−υ−ω4−ω5R
∗
νF−υ

+
∫ ω1

0
dυ RνF−υ−ω2−ω5R

∗
νF−υ+ω1+ω4

RνF−υ+ω1R
∗
νF−υ−ω2

+
∫ ω1

0
dυ RνF−υ−ω4−ω5R

∗
νF−υ

−
∫ ω1+ω2

ω2

dυ RνF−υ−ω4−ω5R
∗
νF−υ

]
= i

ν3
F

ω1ω2ω3ω4ω5(ω3 − i)(ω1 + ω2 + ω3 − 2i) +O
(
ν−5
F

)
.

(2.7.42)

We note that any two-to-n amplitude contains factors of either two or four reflec-
tion coefficients.

In such a way we can continue to compute higher amplitudes from our basic build-
ing blocks. We thus observe the emergence of a perturbative S-matrix admitting
a small 1/νF expansion. So far, we obtained the S-matrix directly from the large
N quantum mechanical matrix model. It is natural to ask whether the same
S-matrix can be obtained directly from some weakly coupled system. Before turn-
ing to this we summarise the results of the (n − m)-to-m scattering amplitudes
S(ω1, . . . , ωm |ωm+1, . . . , ωn) calculated in this section and appendix 6.
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∗ S(ω1 |ω2) S(ω1, ω2 |ω3) S(ω1, ω2, ω3 |ω4)

ν0
F ω1 0 0

ν−1
F 0 iω1ω2ω3 0

ν−2
F

1
24
(
iω2

1 − ω4
1(ω1 − 2i)

)
0 −ω1ω2ω3ω4(ω4 + i)

ν−3
F 0

− i
24 ω1ω2

∏2
k=0 (ω3 + ki)

×
(∑2

`=1 ω`(ω` − i) + 1
) 0

ν−4
F x 0

1
24 ω1ω2ω3

∏3
k=0 (ω4 + ki)

×
(∑3

`=1 ω`(ω` − i) + 1
)

0 x 0

x 0 x

Table 2.1: Each box contains the contribution to the scattering amplitude at the inverse
power of νF in the leftmost box. An x indicates a nonzero result easily obtained by
expanding the reflection coefficients to higher order in 1/νF . Within S(ω1, . . . , ωn−1 |ωn),
ωn denotes the incoming (negative) frequency, whereas {ω1, . . . , ωn−1} denote the n− 1
outgoing (positive) frequencies.
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∗ S(ω1, ω2 |ω3, ω4) S(ω1, ω2 |ω3, ω4, ω5) S(ω1, ω2, ω3 |ω4, ω5)

0 0 0

ν−2
F −ω1ω2ω3ω4(ω2 − i) 0 0

ν−3
F 0 −iω1ω2ω3ω4ω5

×(ω2 − i)(ω2 − 2i)
iω1ω2ω3ω4ω5

×(ω3 − i)(ω1 + ω2 + ω3 − 2i)

ν−4
F x 0 0

ν−5
F 0 x x

x 0 0

0 x x

Table 2.2: Summary of the scattering amplitudes calculated in this section and appendix
6. Each box contains the contribution to the scattering amplitude at the inverse power
of νF in the leftmost box. An x indicates a nonzero result easily obtained by expanding
the reflection coefficients to higher order in 1/νF . Within S(ω1, . . . , ωm |ωm+1, . . . , ωn),
{ωm+1, . . . , ωn} denote the n−m incoming (negative) frequencies and {ω1, . . . , ωm} the
m outgoing (positive) frequencies. Note in particular that we choose an ordering of the
frequencies which implies that ω2 is the maximum for the two-to-two and three-to-two
amplitude, whereas ω3 is the maximum for the two-to-three amplitude.

2.8 A glimpse into the continuum

Up until this point, we have focused on the largeN limit of a variety of systems. We
have mentioned on several instances that upon taking the largeN limit, and further
tuning certain coefficients, the systems often exhibit certain critical behaviour. In
the case of large N matrices, one might then imagine the emergence of a continuous
theory residing on a genus h Riemann surface Σh. The goal of this section is to
briefly elaborate on these two-dimensional continuum theories.

2.8.1 Random pure geometry in two-dimensions

We begin our discussion by considering a theory of pure geometry in two-dimensions.
The question of interest is as follows. Let us endow a compact genus h Riemann
surface, Σh, with a metric gij . The most general local, diffeomorphism invariant,

78



2.8. A glimpse into the continuum

two-derivative action is given by

Sgrav[gij ; Σh] = − ϑ

4π

∫
Σh

d2x
√
g R+ Λ

∫
Σh

d2x
√
g , (2.8.1)

where ϑ and Λ are real parameters and R is the Ricci scalar. By the Gauss-Bonnet
theorem, the first term is a topological invariant proportional to the Euler charac-
teristic χh. The second term, which is the cosmological constant term, computes
the area of the surface. Motivated by the continuum limit of the discrete picture
discussed in section 2.3 and the resulting expression (2.3.79), we are prompted to
study the path integral

ZΣh [ϑ; Λ] = eϑχh
∫
Dgij

vol diff exp
(
−Λ

∫
Σh

d2x
√
g

)
. (2.8.2)

At this stage, it is useful to recall that a two-dimensional metric is diffeomorphic,
at least locally, to the following

gij(x) = eϕ(x)g̃ij(x) , (2.8.3)

where g̃ij is a fixed reference metric, often referred to as the fiducial metric, and
ϕ(x) is a local Weyl factor that remains unfixed. The parameterization (2.8.3)
leaves a particular subgroup of diffeomorphisms unfixed. Indeed, if we consider
the set of coordinate transformations that map g̃ij to itself times a local Weyl
factor eσ(x), we can return to the original expression by shifting ϕ(x) → ϕ(x) −
σ(x). That the group of residual diffeomorphisms in the gauge (2.8.3) is the two-
dimensional conformal group will play an important role in what comes. In fact,
the transformation

g̃ij(x)→ eσ̃(x)g̃ij(x) , ϕ(x)→ ϕ(x)− σ̃(x) (2.8.4)

for general σ̃(x) is a redundancy of the parameterization (2.8.3). As such, the
resulting theory governing ϕ(x) and the accompanying Fadeev-Popov ghost fields
should be invariant under the more general Weyl transformations (2.8.4). In the
gauge (2.8.3), the ghost theory is described by a conformal field theory of bc-
ghosts in a fixed background g̃ij whose central charge is cg = −26. The resulting
theory consisting of the bc-ghosts and the ϕ-field should be invariant under the
redundancy (2.8.4). Thus, the theory governing the Weyl mode ϕ(x) must be a
two-dimensional conformal field theory with central charge cL = 26 such that the
net conformal anomaly vanishes. If we further assume the ϕ-sector admits a local
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description, one can postulate an action of the following type [29,30]

SL[ϕ, g̃ij ] = 1
4π

∫
Σh

d2x
√
g̃
(
g̃ij∂iϕ∂jϕ+QR̃ϕ+ 4πΛ e2bϕ) . (2.8.5)

The above action is known as the Liouville action and has been studied extensively
[33,35,73]. In order for the kinetic term to have a standard normalisation, we have
allowed for a constant rescaling of ϕ by 2b, such that the resulting theory should
be invariant under the following redundancy

g̃ij(x)→ eσ̃(x)g̃ij(x) , ϕ(x)→ ϕ(x)− σ̃(x)/2b . (2.8.6)

When Q = b + 1/b, the Liouville action describes a two-dimensional conformal
field theory. It has some unusual features such as a continuous spectrum and
the absence of a normalisable vacuum state. Nevertheless, it admits a consistent
quantisation and many of its properties are known explicitly. For instance, its
central charge is given by cL = 1 + 6Q2, and the theory contains spinless primary
operators O(α) = e2αϕ whose conformal dimensions are

∆α = α (Q− α) , ∆̄α = α (Q− α) . (2.8.7)

These conformal dimensions can be used to fix b in (2.8.5), since conformal invari-
ance requires O(b) = e2bϕ to have conformal dimensions (∆b, ∆̄b) = (1, 1). One
thus finds

b = Q

2 ±
√
Q2

4 − 1 . (2.8.8)

Requiring cL + cg = 0 fixes Q = ±5/
√

6. Given the discrete symmetry Q→ −Q,
b → −b, and ϕ → −ϕ, we can pick Q > 0 without loss of generality. One then
finds the two solutions b = b± with b+ =

√
3/2 and b− =

√
2/3. If one further

requires the existence of a semi-classical limit, i.e. a limit where Q→∞ gives rise
to a sensible saddle-point approximation, one is forced to pick the negative root
in (2.8.8). We will consider the negative root in what follows even in the absence
of a semiclassical limit.

In this way we obtain a description of the path integral for a theory of pure
two-dimensional geometry in terms of Liouville theory. A natural collection of
observables is given by the set of diffeomorphism invariant functionals of gij . In
the Weyl gauge, this is given by the set of conformal primaries built from ϕ with
conformal dimensions

(
∆, ∆̄

)
= (1, 1). A particularly important one is the area

operator
Ah =

∫
Σh

d2x
√
g =

∫
Σh

d2x
√
g̃ e2bϕ , (2.8.9)
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where b is given by (2.8.8). Expectation values of Ah are calculated by taking
derivatives of − logZΣh [ϑ; Λ] with respect of Λ.

2.8.2 Sprinkling matter
Generally speaking a local quantum field theory can be placed on an arbitrary
curved background. If the theory has no diffeomorphism anomaly, we can further
gauge the diffeomorphism group. Thus, it would seem we can couple arbitrary
matter content to two-dimensional gravity. Following this reasoning, and going to
the Weyl gauge (2.8.3), a consistent theory of matter coupled to two-dimensional
gravity is described by the following action

Seff = SL[ϕ, g̃ij ] + Sghost[b, c, g̃ij ] + Smatter[X,ϕ, g̃ij ] . (2.8.10)

Invariance under the redundancy (2.8.4) and the residual diffeomorphisms implies
that the above theory must be a two-dimensional conformal field theory with
vanishing central charge. This statement must be true, curious as it may sound,
even for a massive matter theory. Somehow, the Liouville mode must ‘dress’ the
matter theory in such a way as to make the resulting system conformal. Of course,
given that the original matter theory is not conformal, the resulting conformal
theory obtained upon coupling to the Liouville mode must be strongly interacting
even if the original matter theory is not [147].

In what follows we will consider the simpler situation, namely, a matter theory
which is itself a two-dimensional conformal field theory with central charge cm. In
this case, the matter action Smatter becomes solely a function of the matter fields
and g̃ij . However, the path integration measures for the matter and ghost fields
produce the Liouville action in the Weyl gauge [8].5 Thus, one can postulate that
(2.8.5) continues to govern the ϕ sector, except now we must fix the parameters Q
and b such that cL + cm − 26 = 0. Proceeding along similar lines to the previous
sub-section, we end up with the expressions

Q =
√

25− cm
6 , b =

√
25− cm ±

√
1− cm

2
√

6
. (2.8.11)

For cm = 0, we recover (2.8.8).

The expressions (2.8.11) demonstrate an important point. The resulting theory is
highly sensitive to cm. For cm ≤ 1, we have that b is real and positive. For cm ∈
(1, 25) the parameter b becomes complex with non-vanishing real and imaginary

5More generally, there is no reason to insist on the existence of a matter action. The rel-
evant point is that the conformal anomaly of a two-dimensional conformal field theory on the
background (2.8.3) is governed by the Liouville theory.
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parts, while Q remains real. Finally, for cm ≥ 25, we have that b and Q become
pure imaginary. If we take cm = 25 and tune Λ = 0, we observe that (2.8.5)
reduces to the action of a free scalar, such that our resulting theory is nothing
more than the critical bosonic string. All other cases describe non-critical string
theories.

In the presence of matter, we can extend the space of admissible observables. For
instance, a spinless weight (∆,∆) conformal primary O∆ of the matter theory
can be combined with the Liouville exponential operator to produce a ‘dressed’
operator Õ∆ = e2σϕO∆ with

σ =
√

25− cm ±
√

24∆ + 1− cm
2
√

6
. (2.8.12)

In this way, we can obtain a significant collection of observables. It is worth
noticing that for certain values of cm and ∆, σ may become complex. For such
situations, O(σ) = e2σϕ becomes a complex (rather than Hermitian) operator. To
render it Hermitian we can consider linear combinations of O(σ) with its complex
conjugate.

Small and/or negative central charge. The most understood situation occurs
when cm < 1. For example, we could take the matter conformal field theory to be
one of the minimal models [27,28] with central charge

c(p,q)m = 1− 6(p− q)2

pq
, (p, q) coprime , (2.8.13)

and operators of conformal dimension

∆r,s = (rq − sp)2 − (p− q)2

4pq , r = 1, . . . , p− 1 , s = 1, . . . , q − 1 . (2.8.14)

The limit cm → −∞ leads to a parameterically large Q and, for the negative
branch, a parametrically small b. In this limit, the system is driven to a semi-
classical regime where saddle point techniques may be employed. Though there
are several known minimal models with large and negative cm, they are all non-
unitary.6

Large central charge. For cm > 25, we could imagine a contour rotation ϕ→ iϕ

that yields the action (2.8.5) real. This comes at the price (or perhaps reward)
of changing the sign of the kinetic term of ϕ. In critical string theory, we would

6Nevertheless, upon coupling to gravity many of the states in the original matter theory are
removed from the resulting Hilbert space possibly rendering the non-unitarity less severe.
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interpret a wrong sign scalar as a time-like direction in the target space. Perhaps
the same is true for cm > 25, in which case non-critical string theory might provide
an interesting window into time-dependent backgrounds in string theory. In such
circumstances caution must be exercised, as many of the techniques we understand
require rotating time-like target space coordinates back to their spacelike values,
which for cm > 25 would take us back to a complex action.

Intermediate central charge. For cm ∈ (1, 25) the situation is far less un-
derstood. In this case, the action is intrinsically complex, and new methods are
required to deal with it. Curiously, and perhaps interestingly, this case includes a
matter conformal field theory with cm = 3 and cm = 4.

Matter matters

The regime cm ∈ (1, 25) teaches us an important lesson. The ability to couple a
particular matter theory to gravity at the classical level does not guarantee that
the combined system makes sense at the quantum level. Even if sense can be made
of the path integral for a matter theory with cm ∈ (1, 25), it seems the resulting
theory will not resemble an ordinary theory of two-dimensional geometry. The
difficulties surrounding the cm > 1 regime have been dubbed the cm > 1 barrier
in the literature.

In the next section we will discuss several contexts in which this barrier has
been surpassed. As a general rule, addressing which matter theories can indeed
be consistently coupled to gravity at the quantum level, particularly in higher-
dimensions, seems to require a more complete understanding of the theory in the
deep ultraviolet.

2.8.3 Critical exponents & the area operator

At this stage we have equipped ourselves with the necessary tools to compute the
following quantity

Z̃Σh [υ; Λ] =
∫
Dgij

vol diff DgijX e−Sgrav[gij ]−Smatter[X,gij ] δ

(∫
Σh

d2x
√
g − υ

)
.

(2.8.15)
The δ-function in the above expression fixes the area to the particular value υ.
By fixing the area operator (2.8.9) to take a fixed value, the fixed area partition
function (2.8.15) tames any potential divergences in the original path integral
which can subsequently be analysed in a clearer fashion.

Once again, resorting to the Weyl gauge (2.8.3) and keeping in mind the rescaling
of ϕ, we can make progress in evaluating (2.8.15). We obtain the path integral

83



2. Matrix Musings

expression

Z̃Σh [υ; Λ] = eϑχh
∫
Dϕ

volG e
−SL[ϕ,g̃ij ] δ

(∫
Σh

d2x
√
g̃ e2bϕ − υ

)
. (2.8.16)

Any local ultraviolet divergences arising upon integrating out the matter and ghost
fields are absorbed in the bare couplings of the gravitational theory. The group G is
the residual gauge group upon fixing the Weyl gauge. For instance, when h = 0 we
could fix g̃ij to be the round metric on the two-sphere in which case G = PSL(2,C).
In contrast to the critical string, dividing by the potentially divergent volume of
G does not mean that the partition function vanishes. This is due to the fact that
ϕ transforms non-trivially under the residual gauge transformations.

Given (2.8.16), the approach is to consider a constant shift ϕ → ϕ + log υ1/2b

that allows us to remove υ from the δ-function while only affecting the remaining
Liouville theory in a simple way [29, 30]. Using δ(ζx) = δ(x)/|ζ| and (2.8.5) it is
readily found that

Z̃Σh [υ; Λ] = Nh eϑχh e−Λυ υ−Qχh/2b−1 , (2.8.17)

where Nh is a normalisation constant that may depend on the genus h but is
independent of υ, ϑ, and Λ. We recall that b is given by (2.8.11). The continuum
partition function can be recovered by integrating over υ as follows

ZΣh [ϑ; Λ] = eϑχh
∫ ∞

0
dυ Z̃Σh [υ; Λ] = Nh eϑχh Λ

Qχh
2b Γ (−Qχh/2b) , h 6= 1 ,

(2.8.18)
where we have regularised the integral near υ = 0 by analytic continuation. When
h = 1 the resulting expression is logarithmic in Λ, regardless of the value of Q/2b.

It is tempting to view (2.8.18) from the perspective of critical systems near a
phase transition, with Λ being a tuneable parameter driving the system towards
criticality. To this end, it is customary in the literature to define a critical exponent
Γstr ≡ 2−Q/b, often referred to as the string susceptibility. Combining Q and b in
(2.8.11) and choosing the negative branch for b, we obtain the KPZ relation [143]

Γstr = 1
12

(
cm − 1−

√
(cm − 1)(cm − 25)

)
. (2.8.19)

Some examples are given by [54–56,118,119,123]

(
Γstr, Q/2b

)
=


(−1/2, 5/4) for cm = 0 ,
(−1/3, 7/6) for cm = 1/2 ,
(0, 1) for cm = 1 .

(2.8.20)
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At large negative cm we have

ZΣh [ϑ; Λ] = Ñh eϑχh
(

1√
Λ

) cmχh
6

, (2.8.21)

where Ñh is again independent of Λ. For genus zero (2.8.21) is reminiscent of the
partition function of a CFT of central charge cm on a round two-sphere with Ricci
scalar R̃ = 2Λ [146], and consequently an entanglement entropy [157–159]. For a
genus h Riemann surface (2.8.21) is reminiscent of the partition function obtained
from Euclidean AdS3/CFT2 considerations at large positive central charge (see for
instance [145]).

A gravitational conformal weight

When coupling a conformal field theory to gravity, one is naturally led to the
question of what replaces the conformal weights of a spinless conformal primary
O∆. One way to quantify this is by computing the following quantity

〈O∆〉υ = 1
Z̃Σh [υ; Λ]

× eϑχh
∫
Dϕ

volGDX e−SL[ϕ,g̃ij ]−Smatter[X,g̃ij ]

δ

(∫
Σh

d2x
√
g̃ e2bϕ − υ

)∫
Σh

d2x
√
g̃ e2σϕO∆ , (2.8.22)

where σ was given in (2.8.12) and b in (2.8.11). Once again, using the technique
of [29,30], we can shift ϕ→ ϕ+ log υ1/(2b) to conclude

〈O∆〉υ = Nh υσ/b , (2.8.23)

with a υ-independent normalisation constant Nh. Rescaling the area parameter
υ → k2υ we find 〈O∆〉υ → k2σ/b〈O∆〉υ. In an ordinary two-dimensional conformal
field theory, an integrated spinless conformal operator with weights (∆̃, ∆̃) would
scale as k2(1−∆̃). We are thus prompted to define the quantity ∆grav ≡ 1− σ/b as
the gravitational analogue of the conformal weight. Explicitly

∆grav =
√

24∆ + 1− cm −
√

1− cm√
25− cm −

√
1− cm

, (2.8.24)

which is our second KPZ relation. For the identity operator both ∆ = 0 and
∆grav = 0. We also have that ∆grav = 1 when ∆ = 1. For large and negative cm
we have ∆grav = ∆ +O(1/cm). More generally, the two differ.
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2.8.4 Large N matrices & the continuum

We are now in a position to connect the continuum description developed in this
section to the matrix models we examined throughout the previous ones.

Single matrix integrals. Let us consider first the integrals over single matrices
considered in section 2.3. There, we argued for the existence of a continuum limit
in which the expectation number 〈nh〉 defined in (2.3.77) diverges as we approach
a critical coupling. We presented evidence that near criticality and at large N

FN (α) ≈
∞∑
h=0

fh e
χh logN (α− αc)5χh/4 . (2.8.25)

How should we compare the above to our continuum expressions? We might
expect that the sum (2.3.70) should be viewed as the discrete version of the pure
geometry path integral (2.8.2), with ϑ = logN . In such a case, we should compare
the critical limit (2.3.78) to (2.8.18). Using the cm = 0 result for Q/2b, and
recalling (2.3.78), we conclude that the cosmological constant of the continuum
theory Λ is propotional to the deviation from criticality, i.e. Λ ∝ (α−αc). Notice
that we recover the logarithmic behaviour in (2.4.28) for h = 1.

That the continuum cosmological constant is defined as a deviation from the crit-
ical coupling αc is part of a recurring theme. It is the same theme that led us to
consider physics just above the filled Fermi sea.

Multicritical matrix model. It has been argued [16, 103, 110] that multi-
critical matrix models correspond to two-dimensional gravity coupled to a non-
unitary minimal CFT (2.8.13) with (p, q)= (2, 2m − 1) and string susceptibility
Γstr = −1/m . For instance, the multicritical model discussed in (2.3.51) corre-
sponds to m = 3: i.e. two-dimensional gravity coupled to the Lee-Yang minimal
model with cm = −22/5. For these models, one has to use a slightly modified
version [110] of the KPZ relation due to the presence of negative weight operators
in the spectrum of the matter CFT. It is remarkable that tuning the parameters
of V (M) for a single matrix leads to a continuum description of gravity coupled
to conformal field theories with varying central charges.

Double matrix integrals. Given (2.5.34) and using Λ ∝ (α − αc) one is led
to a theory with Q/(2b) = 7/6. Looking at (2.8.20) we see that this occurs for
cm = 1/2. It is natural to propose [118] that the two matrix model corresponds
to cm = 1/2 matter, and in particular two-dimensional gravity coupled to a free
massless fermion. The free massless fermion in two dimensions is a minimal model
which has three spinless conformal primaries, namely the identify operator with
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∆0 = 0, the σ-operator with ∆σ = 1/16, and the energy operator with ∆ε = 1/2.
These operators are sourced by the cosmological constant Λ, the magnetic field
H and the temperature β. These sources make their appearance in the matrix
model as simple functions of the couplings α, g, and c of the potential (2.5.40).
Using (2.8.24) we infer the gravitational conformal weight of these primaries to be
∆grav,0 = 0, ∆grav,σ = 1/6, and ∆grav,ε = 2/3. These were obtained from consider-
ations of the generalised two-matrix model (2.5.40) in [110] where it was found that
there are certain non-analyticities of the large N two-matrix integral with poten-
tial (2.5.40) upon tuning α, c, and g. The critical coefficients stemming from these
non-analyticities are expressed in terms of the gravitational conformal weights
∆grav,0, ∆grav,ε, and ∆grav,σ via the scaling relations of the two-dimensional Ising
model. Concretely, the critical exponents associated to c and g, which we denote
by α and β respectively, are related to the gravitational conformal weights as

α = 1− 2∆grav,ε

1−∆grav,ε
= −1 , β = ∆grav,σ

1−∆grav,ε
= 1

2 . (2.8.26)

It might be worth recalling that a free massless fermion describes the critical
behaviour of the two-dimensional Ising model. The Ising model has two states
at every point on the lattice. This may remind us, somewhat, of the decorated
Feynman diagrams discussed in section 2.5.3. This bears some truth, but caution
should be exercised before decorating the Feynman diagrams too elaborately. For
instance, the continuum limit of mulitcritical single matrix models corresponds
to non-unitary minimal models with cm < 0 coupled to gravity. It has been
further argued [120, 121] that the whole remaining family of minimal models can
be obtained from particularly selected two-matrix models.

Upon coupling a minimal model to two-dimensional quantum gravity one obtains
a new set of dressed and integrated operators generalising to the area opera-
tor in (2.8.22). In addition to their gravitional conformal weights (2.8.24), one
can also study the correlation functions of these operators and compare them to
quantities obtained from matrix integral calculations. Work in this direction in-
cludes [161,162,166–168].

Non-perturbative features from the continuum. In our discussion of large
N matrices we touched upon the possibility of non-perturbative corrections to the
planar expansion. In the double scaling limit, these manifest themselves in terms
of small WKB type corrections of the series expansion solutions to the various
non-linear differential equations, such as the Painlevé I equation. We are natu-
rally led to the question of whether such non-perturbative terms can be recovered
in the continuum picture.
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In [188] it was shown that Liouville theory can be studied on the disk topology,
which is a manifold with a boundary. In this case, the Liouville field diverges near
the boundary of the disk. Taking the metric g̃ij on the disk to be ds2 = dρ2+ρ2dθ2

with ρ ∈ (0, 1), in the semiclassical b→ 0 limit the solution of ϕ is given by

e2bϕcl = 1
πb2Λ

1
(1− ρ2)2 , (2.8.27)

such that the physical metric gij = e2bϕg̃ij is the Poincaré disk. The authors
of [188] showed the existence of a family of boundary states labelled by two integers
(m,n). These configurations are known as ZZ-branes or instantons. Processes
involving Liouville theory on the disk have been argued [137,190,191] to be related
to non-perturbative features in the matrix models. For instance, [189] recovered
the exponent (2.4.36) and (2.5.38) of the non-perturbative corrections in the double
scaling limit by calculating the Liouville disk partition function. In [160], the ZZ-
instantons were interpreted as single eigenvalues sitting on critical points of the
potential away from the dense eigenvalue distribution.

There is another type of boundary condition that arises in the study of Liouville
theory on a disk topology. Here, one adds a boundary interaction [186,187]

Sbdy =
∫
S1

du
√
h

(
Q

2πKϕ+ ΛBebϕ
)

(2.8.28)

to the Liouville action (2.8.5). The boundary cosmological constant ΛB is a new
continuous parameter labelling the states in this theory. The induced metric at the
S1 boundary of the disk is h and K is the extrinsic curvature at the boundary. ΛB
can be viewed as a chemical potential for the size of the boundary of the physical
metric on a disk topology. For ΛB > 0, the boundary action Sbdy suppresses con-
figurations at large values of ϕ. These configurations are known as FZZT branes
and can be viewed as extended across the weakly coupled region ϕ . −(log ΛB)/b.
From the matrix model perspective, an interpretation of the FZZT brane should
be an object that is parameterised by a continuous variable. Once again, one may
ask whether FZZT branes are related to non-perturbative features of the matrix
integral. In [160], the FZZT branes were argued to be described by the single
trace Tr log (ΛB −M). Indeed, the relation of Tr log (ΛB −M) to triangulated
Riemann surfaces with a boundary was explored in section 2.3.5.

Quantum mechanical matrices. In the case of quantum mechanical matri-
ces, we uncovered a rich structure in the form of a two-dimensional S-matrix. We
now turn to its realisation in the continuum picture.
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2.8.5 Scattering from the continuum

We now discuss how to recover the scattering discussed in the previous section from
the continuum theory, in particular the one-to-one and one-to-two amplitudes. In
order to do so, we must first understand what is being scattered in the continuum
picture. For instance the two-dimensional theory (2.8.10) lives on a Euclidean
compact surface Σh which has no asymptotic regions to scatter to and from. If,
on the other hand, we view the two-dimensional theory as the worldsheet theory
of a string propagating some target space, there may be room for a scattering
amplitude in the assymptotia of the target space. To this end we take the cm = 1
theory to be a free scalar field denoted by X0. In particular for cm = 1 we conclude
using (2.8.11) that b = 1 and Q = 2. Our worldsheet theory is then given by

Sw.s. = − 1
4π

∫
Σh

d2x
√
g̃ g̃ij ∂iX

0∂jX
0+ 1

4π

∫
Σh

d2x
√
g̃
(
g̃ij∂iϕ∂jϕ+ 2R̃ ϕ+ 4πΛ e2ϕ) .

(2.8.29)
The free scalar X0 encodes the time coordinate of the target space, and as such
comes with a kinetic term with the wrong sign. The Liouville mode ϕ is then
associated to the spatial coordinate of the target space, such that the target space
is two-dimensional. Taking the contribution of the ghost conformal field theory
into account, the net theory has vanishing central charge.7 A string propagating in
two-dimensions has no transverse excitations. Consequently, its spectrum is given
by a single scalar field encoding the target space centre of mass position of the
string. The natural asymptotic region in the target space is given by the region
ϕ→ −∞, where the Liouville interaction is switched off.

We can now compute the S-matrix elements as is done for more familiar worldsheet
theories. We calculate the expectation value of several vertex operator insertions.
For a free scalar we can construct conformal operators by exponentiating X0. It
follows from our discussion in section 2.8.2, that we can construct the dressed
integrated vertex operator

V±ω = gs

∫
Σh

d2x
√
g̃ : e±iωX

0
: O(ω) , ω ≥ 0 . (2.8.30)

In the above, O(ω) is taken to be a Hermitian Liouville operator of the form

O(ω) ≡ S(ω)e(2+iω)ϕ + S(ω)∗e(2−iω)ϕ , ω ≥ 0 . (2.8.31)

The phase factors have been chosen such that the two-point function of the Liou-

7Said otherwise, given that the central charge of a worldsheet matter theory consisting of a
free scalar and the Liouville conformal field theory can be tuned to equal 26, we can regard the
system as a bosonic critical string.
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ville operator O(ω; z, z̄) has standard δ-function normalisation

〈O(ω1; z2, z̄2)O(ω2; z2, z̄2)〉 = 2πδ(ω1 − ω2)× 1
|z1 − z2|4+ω2

1
, (2.8.32)

where z and z̄ label points on C, and we adhere to the conventions of [69] with
α′ = 1. The phase factor is given by [33]

S(ω) =

√
Γ(iω)

Γ(1− iω)
Γ(1 + iω)
Γ(−iω) . (2.8.33)

To compute target space S-matrix elements we must calculate expectation values
for the above vertex operators. The parameter ω corresponds to the energy of
the asymptotic state, and the sign determines whether it is incoming (negative)
or outgoing (positive).8

One-to-one from the continuum. We begin by considering the one-to-one
amplitude in the continuum picture. For this, we require the expectation value for
two vertex operator insertions on the two-sphere. Given the two-point function
(2.8.32), and following the discussion in [182], one finds

AS2(ω1|ω2) = 2πω1δ(ω1 − ω2)×
(
g2
scS2

4π

)
, (2.8.34)

where cS2 is a coefficient which we will soon relate to the one-to-two amplitude.
Comparing to (2.7.23) we fix cS2 = 4π/g2

s .

One-to-two from the continuum. Next we consider three insertions on a
genus zero surface

AS2(ω1, ω2 |ω3) ≡ 〈cc̃V+
ω1

cc̃V+
ω2

cc̃V−ω3
〉S2 . (2.8.35)

We follow the presentation in [38]. To evaluate the above expression requires
knowledge of the three-point function for the Liouville operator O(ω; z, z̄)

〈O(ω1; z1, z̄1)O(ω2; z2, z̄2)O(ω3; z3, z̄3)〉

= C(ω1, ω2, ω3)
|z12|2+(ω2

1+ω2
2−ω2

3)/2|z23|2+(ω2
2+ω2

3−ω2
1)/2|z31|2+(ω2

3+ω2
1−ω2

2)/2 . (2.8.36)

This quantity was studied by Dorn-Otto [34] and Zamolodchikov-Zamolodchikov

8This is a different convention from our previous section where ω could take either sign. We
choose it to comply with recent literature on Liouville theory.
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[36] which gives it the name DOZZ formula. The structure constant C(ω1, ω2, ω3)
is given by

C(ω1, ω2, ω3) ≡ (S(ω1)S(ω2)S(ω3))−1
C(ω1, ω2, ω3) , (2.8.37)

with the DOZZ coefficient

C(ω1, ω2, ω3) = Υ′1(0)
Υ1(1 + i(ω3 + ω2 + ω1)/2)

Υ1(2 + iω1)
Υ1(1 + i(ω1 + ω2 − ω3)/2)

× Υ1(2 + iω2)
Υ1(1 + i(ω2 + ω3 − ω1)/2)

Υ1(2 + iω3)
Υ1(1 + i(ω3 + ω1 − ω2)/2) . (2.8.38)

In the literature the three-point function contains an additional phase has been
absorbed in a shift of the Liouville field. The function Υb(z) is a holomorphic
function that admits an integral expression as

log Υb(z) =
∫ ∞

0

dt
t

(Q
2 − z

)2
e−t −

sinh2
[(

Q
2 − z

)
t
2

]
sinh tb

2 sinh t
2b

 , (2.8.39)

where the real part of z is restricted to the interval z ∈ (0, Q) and b + b−1 = Q.
To evaluate Υb(z) at complex values of z we must analytically continue the above
expression. It is useful to note that we can express Υb(z) in terms of the Barnes
double Gamma-function Γ2(z | b1, b2):

Υb(z) = 1
Γb(z)Γb(Q− z)

, Γb(z) ≡
Γ2(z | b, b−1)

Γ2(Q/2 | b, b−1) . (2.8.40)

In particular we have Γ2(z | 1, 1) = (2π)z/2/G(z) with G(z) being the Barnes G-
function. Υb(z) also satisfies

Υb(z + b) = γ(bz) b1−2bz Υb(z) , Υb(z) = Υb−1(z) , Υb(Q− z) = Υb(z) ,
(2.8.41)

with γ(z) ≡ Γ(z)/Γ(1 − z). The phase S(ω) in (2.8.33) can be expressed as
S(ω) = γ(iω)1/2γ(1 + iω)1/2.

Additionally (2.8.30) contains a piece stemming from the operator e±iωX0 . The
structure constants for this piece (as may be familiar from the critical string) will
not produce non-trivial functions of the ωi. Nevertheless, due to the symmetry
X0 → X0 + a, it yields a delta-function imposing the conservation of target space
energy.

At this point we have asembled the tools required to evaluate (2.8.35). Using the

91



2. Matrix Musings

relations (2.8.41) for (Q, b) = (2, 1) we can rewrite Υ1(2 + iωk) as

Υ1(2+iωk) = Υ1(2+iωk)1/2Υ1(2+iωk)1/2 = Υ1(−iωk)1/2Υ1(iωk)1/2γ(iωk)1/2γ(−iωk)−1/2 ,

(2.8.42)
with γ(x) defined below (2.8.41) satisfying in particular γ(1 + iωk) = γ(−iωk)−1.
This way we obtain for (2.8.37)

C(ω1, ω2, ω3) = 1
Υ1(1 + i(ω1 + ω2 + ω3)/2)

(
Υ1(iω1)1/2Υ1(−iω1)1/2

Υ1(1 + i(ω1 + ω2 − ω3)/2) × 2 perm.
)

= 1
Υ1(1 + i(ω1 + ω2 + ω3)/2)

(
ω1Υ1(1 + iω1)

Υ1(1 + i(ω1 + ω2 − ω3)/2) × 2 perm.
)
,

(2.8.43)

where we made use of (2.8.40) to evaluate Υ′1(0) = 1 and in going to the second
line we used

Υ1(−iωk) = Υ1(2 + iωk) = γ(1 + iωk)Υ1(1 + iωk) . (2.8.44)

Putting everything together, and in particular applying the energy conservation
obtained from the delta function as well as Υ1(1) = 1, we have that

AS2(ω1, ω2 |ω3) = i cS2 g3
s δ(ω1+ω2−ω3)C(ω1, ω2, ω3) = i cS2 g3

s δ(ω1+ω2−ω3)ω1ω2ω3 ,

(2.8.45)
where cS2 is a non-vanishing constant. Comparing to (2.7.28), we see that the
amplitude matches the leading term in the large νF expansion [65–67], so long as
we identify 1/|νF | = cS2g3

s = 4πgs.

The terms (2.7.28) which are subleading in 1/νF are predictions about higher genus
contributions to the one-to-two scattering process in the continuum picture. We
note that this identification is consistent with the powers of νF appearing in the
various scattering amplitudes computed in section 2.7.2. A scattering amplitude
on a Riemann surface of genus h and n vertex operator insertions scales as g2h−2+n

s .
A similar picture holds for other perturbative scattering amplitudes.

Further remarkable comparisons between the quantum mechanical matrix model
S-matrix and Liouville theory have been obtained more recently in [38]. It is
interesting to note that the whole structure of the perturbative string amplitudes
is encoded in the reflection coefficient (2.7.5). Though manifest from the quantum
mechanical matrix model, the explicit form of Rν is far from obvious from the
Liouville perspective.

Two-dimensional target space picture
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To end the section, we would like to make some remarks about the target space
picture of the non-critical string theory (2.8.29). For ϕ → −∞ the exponential
interaction of the Liouville mode is switched off, and the theory is approximated by
the combination of a free scalar and a linear dilaton CFT. From this perspective,
at least in the limit of large and negative ϕ, we have a two-dimensional target
space with a running dilaton Φ. The free scalar encodes the time direction of the
target space, whereas ϕ encodes the spatial direction. The target space metric
and dilaton field are given by

ds2

α′
= −(dX0)2 + dϕ2 , Φ(X0, ϕ) = 2ϕ , (2.8.46)

such that the space-dependent string coupling gs = eΦ becomes parameterically
weak as ϕ → −∞ and increasingly strong in the positive ϕ region. We also have
reinstated the string tension α′.

Due to the space-dependence, the vacuum is not Poincaré invariant. As ϕ in-
creases, so does the string coupling, and we moreover enter a regime where the
Liouville interaction becomes significant. This regime is often referred to as the
Liouville wall in the literature. As was mentioned, the spectrum of a string em-
bedded in a two-dimensional target space consists of a single propagating degree
of freedom, which is the ‘tachyon field’ τ . It is the target space field corresponding
to the vertex operator (2.8.30). In two-dimensions, τ is in fact a massless field,
so tachyon is somewhat of a misnomer. From the target space perspective, the
S-matrix is given by sending an incoming tachyon wave from ϕ → −∞, which
reflects off the Liouville wall, finally heading back to ϕ → −∞. Finally, we note
that the background (2.8.46) is intrinsically stringy since the slope of Φ is the
string length.

2.9 Outlook and speculative remarks

We would like to end our discussion with a brief outlook, some questions, and
speculative remarks.

AdS/CFT & criticality. Over the last two-decades there has been tremen-
dous progress in the development of the AdS/CFT correspondence. This has led
to wonderful insights into the nature of quantum gravity and black holes. At the
same time, it is important to keep in mind how the various large N models leading
to gravity and string theories differ in their detailed form. For instance, many of
the large N models considered throughout this work lead to a continuum picture
only upon tuning the parameters to certain critical values. At the critical point
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the Feynman diagrams in the ‘t Hooft expansion become densely filled Riemann
surfaces. This type of criticality seems to be of a different nature than the under-
lying mechanism in the known examples of AdS/CFT. For instance in N = 4 SYM
theory at large N we have a continuum worldsheet picture for all values of the
‘t Hooft coupling λ. In this picture, different values of λ correspond to different
values of the AdS length in string units. It remains possible that upon extending λ
to the complex plane, one may encounter critical behaviour akin to that exhibited
by the matrix models we have studied. Interestingly, complex values of λ would
correspond to complex values of the IIB string coupling.

In the D0-brane picture the string coupling is space dependent and in some re-
gion becomes strongly coupled. This is reminiscent of the running dilaton in the
two-dimensional target space picture of the non-critical string. From the D0-brane
quantum mechanics perspective, this is understood from the fact that the ‘t Hooft
coupling is dimensionful and thus flows. As such it cannot be tuned to some crit-
ical value. It seems less clear for the case of the D0-brane quantum mechanics
theory that there is an analogue for tuning the level of the Fermi sea we saw for
the quantum mechanical matrix model.

Q: Does such critical behaviour of the microscopic model at large N and the
emergence of a continuum picture play a role for more general considerations of
the emergence of spacetime or is it an artefact of the lower dimensional models?

Wigner’s black holes. In the introduction we mentioned Wigner’s hypothe-
sis that complex systems can be treated in statistical fashion. Though heavy
nuclei were Wigner’s main concern, from the perspective of gravity a natural can-
didate seems to be a black hole. Indeed, recent ideas motivated by the chaotic
nature of the SYK system and its randomised couplings, as well as other consid-
erations [149,150] might provide novel avenues to explore the idea of a Wignerian
black hole.

Another place where matrix integrals have recently played an important role in
the context of black hole physics comes from applying ideas of supersymmet-
ric localisation towards calculations of supersymmetric black hole partition func-
tions [151,152]. This context (at least naively [153]) is conceptually different from
the Wignerian case described above. Nevertheless, it is interesting to note yet
again the appearance of random matrices.

Q: Is there a role for Wigner’s hypothesis, namely that complex systems are
well approximated by averaging ensembles of theories, in the theory of black holes?
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Non-perturbative phenomena: Matrix integrals. The matrix models dis-
cussed throughout exhibit interesting non-perturbative features. For instance, the
perturbative expansion of solutions to the non-linear differential equations dis-
cussed in section 2.4 and 2.5 may contain exponentially suppressed terms captur-
ing non-perturbative behaviour. In [101] an equation determining the coefficients
in the non-perturbative exponent for general multicritical matrix models has been
presented. This equation implies, in particular, Borel summablility for some of
the perturbative expansions.

Q: The relation between non-perturbative effects of matrix models and the cor-
responding Liouville theory coupled to unitary minimal models has been explored
in [189]. Can the non-perturbative effects observed for multicritical matrix models
be related to the corresponding Liouville theory coupled to a non-unitary minimal
model, particularly in the limit of large and negative central charge?

Non-perturbative phenomena & the non-singlet sector: MQM. The quan-
tum mechanical matrix model discussed in sections 2.6 and 2.7 also exhibits in-
teresting non-perturbative features. For instance, depending on how we fill the
Fermi sea on the other side of the barrier, the perturbative S-matrix may admit
different non-perturbative completions. At a more practical level, it is interesting
to explore non-perturbative corrections to the perturbative S-matrix from the con-
tinuum string perspective. Although these corrections may disrupt the unitarity of
the perturbative S-matrix, they may do so in a calculable form. For instance, as re-
cently explored in [200–202], ZZ-instantons may capture certain non-perturbative
contributions. Moreover, when the eigenvalue potential is not infinitely deep, the
half-filled Fermi sea will be metastable. Any precise microscopic description of a
‘metastable string vacuum’ might be viewed as encouraging given that many vacua
of interest in more realistic string theories may well be metastable [209, 211] (see
also [197]).

Finally, in 2.6 and 2.7 we have only focused on the singlet sector of the quantum
mechanical matrix model. Much less is known about the non-singlet sector, al-
though it has been argued [138] and recently re-examined [181] that the adjoint
sector in the matrix quantum mechanics is dual to a long string with specific
boundary conditions corresponding to FZZT branes. More generally, one could
study the implications of releasing other non-singlet sectors, particularly with re-
gard to the problem of black holes [183,184,192].

Q: Can the metastability of the quantum mechanical matrix model and the in-
stantons mediating it sharpen our holographic understanding of the decay of D-
branes [193] and more realistic metastable string vacua? Is there a target picture
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of the general non-singlet sector?

Quantum mechanics & worldline holography. Throughout our discussion
we focused on large N matrix integrals and quantum mechanical matrix models
rather than large N quantum field theories. There are several differences between
quantum mechanical and quantum field theoretic models. For instance, a quan-
tum mechanical model has a finite number of (non-locally) interacting degrees of
freedom, and potentially even a finite dimensional Hilbert space. Aside from topo-
logical field theories, continuum quantum field theory has an infinite dimensional
Hilbert space and number of degrees of freedom. In quantum mechanics, gauging
a symmetry is nothing more than imposing a constraint on the space of states,
whereas in quantum field theory one generally introduces additional degrees of
freedom. As has been recently emphasised [221–224], quantum mechanical models
can be coupled to a worldine gravity and the quantisation of the resulting ‘gravita-
tional’ theory remains straightforward. This might still be so in two-dimensional
quantum field theory, but becomes increasingly complicated in higher dimensions.
Finally, quantum mechanical theories are distinguished from quantum field the-
ories in the sense that the degrees of freedom are not required to interact in a
local/nearest neighbor type way. From a Wilsonian perspective, in the absence
of locality we are confronted with the challenge of which degrees of freedom to
integrate out in large N quantum mechanical models to capture the low energy
effective theory.

Q: Are there important differences from the perspective of the emergent world-
sheet theory/ holographic dual when the microscopic theory is quantum mechan-
ical rather than quantum field theoretic?

Finiteness & cosmology? One of our motivations for considering these topics
is related to cosmological spacetimes, and in particular ones with positive cosmo-
logical constant [214]. In cosmology one often considers spacetimes with compact
Cauchy surfaces, and consequently no asymptotic spatial boundary. From this per-
spective, the two-dimensional models of gravity coupled to minimal models seem
to have the desired property of being more ‘finite’ examples of quantum gravity,
albeit in a two-dimensional world. They can be quantised on a compact Cauchy
surface and the constraints of gravity impose severe restrictions on the allowed
space of states, rendering it essentially finite.

Moreover, the two-dimensional quantum gravity path integrals discussed in 2.8
make sense for positive (rather than negative) cosmological constant. From the
large N matrix model perspective, this manifests itself in the appearance of branch
cut ambiguities as we cross from α > αc to α < αc. It is interesting to note
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that from the perspective of the matrix model at fixed N , tuning Λ ∝ (α − αc)
corresponds to tuning the number of vertices of the triangulated Riemann surface.
As Λ increases, the number goes down. This bears some resemblance to the de
Sitter horizon entropy [5] being inversely related to the cosmological constant.
Interestingly, the Euclidean continuation of a two-dimensional de Sitter universe
continues to the Euclidean two-sphere. (It has been suggested that any microscopic
description of de Sitter will involve a finite number of degrees of freedom or,
more extremely, even a finite dimensional Hilbert space [212].) Perhaps, then, the
quantum gravity path integrals studied in section 2.8 on an S2 topology are of some
relevance [191,213,215–217]. We saw that the S2 path integral of gravity coupled
to conformal matter with cm < 1 is dual to a large N matrix integral.9 It would
be interesting to understand the Lorentzian interpretation (if any) of the matrix
integral in terms of a Hilbert space and a collection of operators directly from the
matrix picture. One possible avenue may be to consider inserting a macroscopic
loop operator W` introduced in section 2.3.4. In the continuum limit, this creates
a hole in the Riemann surface leading to a picture similar to that of Hartle and
Hawking’s wavefunction [205].10 A cosmological time emerging from an underlying
statistical/Euclidean model remains an elusive but fascinating idea [210].

As a final remark, connecting to the beginning of our discussion, we return to
Wigner. There seems to be a certain degree of complexity in constructing de
Sitter vacua in string theory. Perhaps this should be taken as a starting point,
in the spirit of Wigner, and we could attempt to build a framework for de Sitter
based on an ensemble of theories [218,219].

9Matrix integrals have also appeared in other considerations of quantum de Sitter. For in-
stance, it was shown in [220] that a matrix integral captures gauge invariant correlation functions
in a four-dimensional de Sitter theory with an infinite tower of interacting massless higher spin
fields. In [225–227] matrix integrals were discussed in relation to a two-dimensional de Sitter
solution of Jackiw-Teitelboim gravity.

10One might even imagine inserting multiple W`’s creating multiple boundaries whose inter-
pretation [206,207] seems less clear.
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3 Matrix integrals & finite
holography

3.1 Introduction

Being 0 + 0 systems, matrix integrals are of a more finite nature than large N
quantum field theories traditionally explored in holography. In this work we ex-
plore in detail a particular class of matrix integrals, known as multicritical matrix
integrals (MMI) [15,16]. These are matrix integrals built out of a single Hermitian
N ×N matrix organised in an even polynomial of order 2m with (m− 1) free pa-
rameters (couplings). Despite being constructed from a single matrix, MMI admit
(m − 1) distinct critical exponents in the leading order planar expansion, which
are encoded in the non-analytic behaviour of the matrix integral as a function
of its couplings. In the large N limit and upon tuning the couplings to a set of
special values, MMI are conjectured to be dual to the series (2m−1, 2) of minimal
models [27, 28] — which we denote by M2m−1,2 — on a fluctuating background.
This can be described by couplingM2m−1,2 to two-dimensional quantum gravity,
where the theory of quantum gravity at hand upon fixing the Weyl gauge is given
by Liouville theory [8].

For m ≥ 2, M2m−1,2 is a non-unitary two-dimensional CFT consisting of (m− 1)
distinct Virasoro primaries, each accompanied with an infinite tower of Virasoro
descendants. The conformal dimensions of the Virasoro primaries are increasingly
negative, with the highest being the vanishing conformal dimension of the identity
operator. While the norm of the Virasoro primaries of M2m−1,2 is positive, the
norm of the Virasoro descendants is negative, leading to the non-unitarity of the
models. We note that the non-unitary minimal models M2m−1,2 are related to
integrable lattice models. The Lee-Yang singularity [175] characterising the zeroes
of the partition function of the Ising model in an imaginary magnetic field in the
thermodynamic limit has been identified withM5,2 [171]. On the other sideM7,2
has been conjectured [176] to correspond to the tricritical phase (the crossing point
of the three lowest energy levels) of a generalisation of the Ising model with three
state classical variables, known as the Blume-Capel model [177].
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As explored extensively throughout this work, an important piece of evidence in
establishing the conjectured duality between MMI and Liouville theory coupled to
M2m−1,2 is the matching of critical exponents between MMI and the continuum
theory. We uncover the relation between the continuum theory on an S2 topology
and the explicit form of the MMI through its (finite) coupling dependence in the
leading order planar expansion, as well as its perturbative multi-vertex expansion.
This approach is orthogonal and complementary to the approach in [163–166]
where the authors compare correlation functions of integrated operators (correla-
tion numbers) to analogous quantities in the matrix integral. In our analysis of
the partition function of the continuum theory we are turning on a single operator
at finite coupling of the minimal model, the calculation of correlation numbers
involves turning on multiple operators with an infinitesimal coupling. MMI have
also made an appearance, initiated by [149], in the context of JT gravity [241].
In that context the continuum theory is studied on manifolds with boundary as
compared to our analysis on S2 and more generally on compact Riemann surfaces.

One of the key motivations of our work is the existence of a semiclassical limit
exhibited by Liouville theory coupled to M2m−1,2. This is the large m limit,
and was first observed in [20]. Specifically, upon fixing the area of the physical
metric, restricting to an S2 topology, and turning on only the identity operator of
M2m−1,2 one finds a round two-sphere geometry as the saddle point solution. This
is the geometry of Euclidean two-dimensional de Sitter space. Two-dimensional de
Sitter space supports finiteness [17–19], and its conjectured entropy is finite [5].

Outline
In section 3.3 and 3.4 we study the diagrammatic expansion of MMI, providing new
combinatorial expressions for Feynman diagrams whose vertices emanate an arbi-
trary even number of edges. As an example there are 2431808210570487155130338
25248570669471308484796973569520429442294243 32116879409838986729881600
000000000000000 diagrams consisting of fifteen distinct vertices emanating an even
number between four and thirty-two edges. We provide a concrete framework iden-
tifying each of the (m−1) distinct planar critical exponents of the MMI in section
3.5. Geometrically these critical exponents are living on distinct fine-tuned “hy-
persurfaces” in coupling space. We match the critical exponents of the MMI to
those of the continuum theory of Liouville theory coupled to M2m−1,2 in section
3.6. This matching comes with an important subtlety. Whereas for unitary min-
imal models the identification of critical exponents in the matrix integral with
critical exponents of the emergent large N continuum theory uses the KPZ re-
lation [29, 30, 143], the minimal models at hand are non-unitary and require a
generalisation of the KPZ formula [16, 110]. In section 3.7 we consider the opera-
tor content ofM2m−1,2 on a fluctuating background. On a fluctuating background
the number of operators of the M2m−1,2 is subject to the Virasoro constraints.
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Gauge fixing to the Weyl gauge further introduces the bc-ghost system. Initi-
ated by work of Lian-Zuckerman (LZ) [230] and subsequent work [231–233] it was
observed that the resulting BRST cohomology admits an infinite number of op-
erators with non-vanishing ghost number and matter and Liouville descendants.
The infinite set of LZ operators is still much smaller than the infinite tower of
Virasoro descendants arising for each primary operator of M2m−1,2 on a fixed
sphere. As a consequence of the Riemann-Roch theorem we do however infer that
LZ operators do not lead to additional critical exponents on an S2 topology. This
may render the non-unitarity of M2m−1,2 on S2 less severe. On the other hand
the LZ operators contribute to the torus partition function [228, 229], which we
match to the leading non-planar result of the MMI. We observe that the partition
function on S2 dominates (in absolute value) over the partition function on T 2

only for a sufficiently large cosmological constant Λ, whereas for small Λ > 0, the
partition function on T 2 dominates. We do not yet have a clear understanding of
this phenomenon but it would be interesting to explore its consequences for the
Hartle-Hawking picture [205]. Some more open questions we present in section
3.8.

3.2 Multicritical matrix integrals

In [16, 103, 110] it has been conjectured that a certain class of matrix integrals
— known as multicritical matrix integrals [15] — in the large N limit and upon
tuning certain couplings are dual to two-dimensional quantum gravity coupled to
M2m−1,2. We explore this conjecture by drawing explicit connections between the
(m− 1) primaries of M2m−1,2 and properties of the multicritical matrix integral.

We consider the matrix integral

M(m)
N (α) =

∫
RN2

[dM ] e−NTrVm(M,α) , m ≥ 2 , (3.2.1)

known as the mth multicritical matrix integral, in the planar large N limit. M is
a Hermitian N ×N matrix and the measure factor is given by

[dM ] ≡
∏
J

dMJJ

∏
I<J

dReMIJ

∏
I<J

dImMIJ . (3.2.2)

For Vm(M,α) we choose the even, order 2m polynomial

Vm(M,α) =
m∑
n=1

1
2nαnM

2n , α1 ≡ 1 , (3.2.3)
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with α ≡ (α2, . . . , αm) ∈ Rm−1. We will denote the set of numbers α as the cou-
plings of the polynomial (3.2.3). We highlight that the number of free parameters
α is equal to the number of primaries of M2m−1,2.

Upon diagonalisation of M , we can analyse the planar contribution of (3.2.1) in
the large N limit using a saddle point approximation. This reduces the exponent
of (3.2.1) to

S[ρ(m)
ext (λ,α)] = 1

2

∫ a

−a
dλρ(m)

ext (λ,α)Vm(λ,α)− 2
∫ a

0
dλρ(m)

ext (λ,α) log(λ) , (3.2.4)

where we assumed that the eigenvalues λ ∈ spec(M) are distributed in the interval
[−a, a] and ρ

(m)
ext (λ,α) is the eigenvalue density obtained as the solution of

V ′m(λ,α) = 2
∫ a

−a
dµρ

(m)(µ,α)
λ− µ

. (3.2.5)

The prime indicates a derivative with respect to λ. For more details we refer
to [63,68]. Another important quantity is the resolvent [25]

RN (z) ≡ 1
N

Tr (z IN −M)−1 = 1
N

N∑
I=1

1
z − λI

, z ∈ C/{λI} . (3.2.6)

Sending N →∞ the sum can be replaced by an integral, where each eigenvalue is
weighted by its average density

lim
N→∞

RN (z) ≡ R(z) =
∫ a

−a
dµ ρ(µ)

z − µ
. (3.2.7)

For a higher order even polynomial it is convenient to express the resolvent as [83]

R(z) =
∫ a

0

dx
π

xV ′(x)
z2 − x2

√
z2 − a2
√
a2 − x2

. (3.2.8)

From the definition of the resolvent (3.2.7) one obtains its large z scaling R(z) ∼
1/z reducing (3.2.8) to the condition1

1 =
∫ a

0

dx
π

xV ′(x)√
a2 − x2

. (3.2.10)

1To evaluate (3.2.10) the following integral identity is useful:∫ y

0

dx
π

x2n

z2 − x2

√
z2 − y2√
y2 − x2

=
1

2B(n, 1/2)

∫ y2

0
dA

An−1
√
z2 −A

. (3.2.9)
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For the polynomial Vm(M,α) (3.2.3), (3.2.10) implies

0 = Nm(α) ≡ 1−
m∑
n=1

αnu
n

2nB(n, 1/2) , u ≡ a2 . (3.2.11)

B(n, 1/2) denotes the beta function. We will call the condition Nm(α) = 0 the
normalisation condition for our matrix integral. For a particular choice of α we
can turn the normalisation condition into

(u− 4m)m = 0 , (3.2.12)

in other words u = 4m is an mth order zero. The values of α leading to this be-
haviour can be easily obtained by recursively solving the discriminant of Nm(α) =
0 [15,82]:

α(m)
n,c ≡ (−1)n+1

(
m

n

)
2n

(4m)nB(n, 1/2) , 2 ≤ n ≤ m . (3.2.13)

Finally we define the expectation value of the loop operator W` [83], which is
related to the resolvent (3.2.7) through a Laplace transform

〈W`〉 ≡
∫ a

−a
dλρext(λ) eλ` , R(z) =

∫ ∞
0

d` 〈W`〉 e−`z . (3.2.14)

We use (3.2.9) to obtain the large z expansion of the resolvent for the multicritical
matrix integrals (3.2.3):

Rm(z,α) =
∑
k≥0

1
4k

(
2k
k

)
z−2k−1

m∑
n=1

αnu
n+k

2(n+ k)B(n, 1/2) . (3.2.15)

Using (3.2.14), we relate the large z expansion of the latter to the small ` expansion
of the loop operator. For small ` we find

〈W (m)
` (α)〉 =

∑
n≥0

`2n

(2n)!4n

(
2n
n

) m∑
k=1

αku
n+k

2(n+ k)B(k, 1/2) =
∑
n≥0

ω(m)
n (α)`2n ,

(3.2.16)
where we defined

ω(m)
n (α) ≡ 1

(n!)24n
m∑
k=1

αku
n+k

2(n+ k)B(k, 1/2) . (3.2.17)

As a final remark we note that evaluating (3.2.7) close to the real axis z = x± iε
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we obtain the important relations

resa : ρ(x) = 1
2πi (R(x− iε)− R(x+ iε)) , resb : V ′(x) = R(x−iε)+R(x+iε) .

(3.2.18)
Combining resa with the definition of the resolvent (3.2.7) and the integral identity
(3.2.9) we obtain the extremal eigenvalue density for Vm(λ,α)

ρ
(m)
ext (z,α) = 1

π

m∑
n=1

αn
B(n, 1/2)z

2n−2
2F1

(
1
2 , 1− n; 3

2 ; 1− u

z2

)√
u− z2

= 1
π

m∑
n=1

αn
B(n, 1/2)z

2n−2
∞∑
k=0

(−1)k
2k + 1

(
n− 1
k

)(
1− u

z2

)k √
u− z2 ,(3.2.19)

where we used that the hypergeometric 2F1(a, b; c; z) can be written as a polyno-
mial as soon as either a or b become non-positive integers. At the multicritical
pointαc ≡ (α(m)

2,c , . . . , α
(m)
m,c) (3.2.13) and close to the boundary of the eigenvalue in-

terval where u = 4m (3.2.12) the density scales as ρ(m)
ext (z,αc) ∝ (4m−z2)(2m−1)/2

generalising the well-known exponent 3/2 [25] in the quartic m = 2 model.

-4 -2 0 2 4

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3.1: Extremal eigenvalue density for α = αc and m = 2, 3 and m = 12 ( purple
dotted, teal, orange dashed). At the edges the eigenvalue distribution scales as 3/2, 5/2
and 23/2 respectively.

Using (3.2.16) we obtain the planar on-shell action (3.2.4) for arbitrary m:

S[ρ(m)
ext (λ,α)] =

m∑
n=1

(2n)!
4n αn ω

(m)
n +

m∑
n=1

αnu
n

4n2B(n, 1/2) −
1
2 log u+ log 2 , (3.2.20)

At the critical point we find

Sc[ρ(m)
ext (λ,αc)] = 1

2H2m −
1
2 log 4m+ log 2 , (3.2.21)

where Hn denotes the nth harmonic number. The subscript c indicates that we
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3.3. Planar diagrams with a single vertex

zoom into criticality (3.2.13). At large m (3.2.21) scales as

lim
m→∞

Sc[ρ(m)
ext (λ,αc)] = 1

2(γ + log 2) + 1
8m −

∞∑
k=1

B2k

4k(2m)2k , (3.2.22)

where γ denotes the Euler-Mascheroni constant and Bk the kth Bernoulli number.

3.3 Planar diagrams with a single vertex

In this section we discuss the diagrammatic expansion of the matrix integral
(3.2.1). We expand the normalisation condition (3.2.11) and the planar on-shell
action (3.2.20) for small couplings α. For the m = 2 model with a single coupling
this was first explored by [25]. To account for the two indices of the matrix M one
uses the ’t Hooft double line notation [78]. We will denote the resulting diagrams
as ribbon diagrams. Whereas for the m = 2 model one only encounters ribbon
diagrams whose vertices emanate four edges, for the multicritical matrix integrals
(3.2.3) we have to deal with vertices emanating an arbitrary even number of edges.

3.3.1 An m = 2 refresher

Before delving into the multi-coupling perturbation theory we quickly review the
m = 2 case. For more details we refer to [63]. For m = 2 we have the polynomial
(3.2.3)

V2(M,α2) = 1
2M

2 + 1
4α2M

4 . (3.3.1)

Normalisation of the eigenvalue density implies the vanishing of N2(α2) in (3.2.11)
with solutions u(2)

± given by

u
(2)
± = − 2

3α2
± 2

3α2

√
1 + 12α2 . (3.3.2)

Of the two solutions, only u
(2)
+ is well-behaved near α2 = 0. The other solution

u
(2)
− exhibits a pole at α2 = 0, and is ordinarily discarded. Nonetheless, it is worth

noting that knowledge of the residue of the pole at α2 is sufficient to reconstruct
u

(2)
+ from u

(2)
− . We also note that (3.3.2) exhibits a non-analytic behaviour close

to α2 = −1/12 which we recognise as the m = 2 multicritical point (3.2.13). For
α2 < α

(2)
2,c the normalisation condition has no real solution.

We now discuss the m = 2 model from a perturbative perspective in small α2. For
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3. Matrix integrals & finite holography

α2 > α
(2)
2,c we obtain the small α2 expansion of u(2)

+

u
(2)
+ = 4

∞∑
k=0

(−1)k (3α2)k

k + 1

(
2k
k

)
= 4 2F1

(
1
2 , 1; 2; α2

α
(2)
2,c

)
. (3.3.3)

Inspecting the above expression, one recognises the Catalan numbers

C(2)
k ≡ 1

k + 1

(
2k
k

)
. (3.3.4)

Further to this, we see that the critical value α(2)
2,c = −1/12 controls the radius

of convergence of the power series. At large k, the summand in (3.3.3) goes as
∼ k−3/2(α2/α

(2)
2,c)k. This behaviour encodes the fact that there is a square root

non-analyticity in the solution u(2)
+ and as we shall soon see, it is intimately related

to the growth of planar diagrams.

Defining F (0)
2 (α2) ≡ − logM(2)

N (α2)/M(2)
N (0) we obtain for small α2 [25]

F (0)
2 (α2) = −

∞∑
k=1

(−1)k(3α2)k (2k − 1)!
k!(k + 2)! = 1

2α2 3F2

(
1, 1, 3

2 ; 2, 4; α2

α
(2)
2,c

)
.

(3.3.5)
F (0)

2 (α2) is the generating function of the connected planar bubble diagrams gener-
ated by the matrix integral with a quartic interaction. From a small α2 expansion
of

M(2)
N (α2) =

∫
RN2

[dM ] e−N2 TrM2
∞∑
k=0

(−1)k
k!

(
α2N

4

)k (
TrM4)k , (3.3.6)

we can read off the propagator and quartic vertex (fig. 3.2)

L
K

J K

J
I

LI

II ∼ 1
4α2N .

JJ
∼ N−1 ,

Figure 3.2: Propagator and quartic vertex.

Explicitly the propagator is given by

〈MIKMJL〉 =M−1
N (0)

∫
RN2

[dM ] e−N2 TrM2
MIJMKL = 1

N
δILδKJ . (3.3.7)
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3.3. Planar diagrams with a single vertex

F (0)
2 (4α2) counts planar diagrams with four edges emanating from each vertex,

with the shift α2 → 4α2 accounting for the 1/4 weighting each vertex. We have

F (0)
2 (4α2) = 2α2 − 18α2

2 + 288α3
2 + . . . . (3.3.8)

The summand in (3.3.5) scales as ∼ k−7/2(α2/α
(2)
2,c)k at large k. This behaviour

encodes the growth of discrete Riemann surfaces with a fixed number of vertices
k [234].

3.3.2 Binomial matrix integrals

We discuss the polynomials

Ṽn(M,αn) ≡ 1
2M

2 + 1
2nαnM

2n . (3.3.9)

For n = 2 the above polynomial is equal to the m = 2 multicritical polynomial
(3.3.1) discussed in the last section. By setting all of the couplings but αn to zero
in (3.2.19) we obtain the normalisation condition

0 = Ñn(αn) ≡ 1− 1
4u−

αn
2nB(n, 1/2)u

n . (3.3.10)

For αn = α̃n,c, where

α̃n,c ≡ −
2n

(4n)n (n− 1)n−1B(n, 1/2) , 2 ≤ n ≤ m , (3.3.11)

(3.3.10) has a second order zero at u = 4n/(n − 1), whereas for any other non-
vanishing value of the coupling α̃n, (3.3.10) has n distinct solutions. We further
note that

|α̃2,c| < |α(m)
2,c | , |α̃n,c| > |α(m)

n,c | , m ≥ 3 . (3.3.12)

For small αn only one of the solutions of (3.3.10) can be uniformly approximated
by a perturbative expansion which is a power series in the coupling αn.

To obtain the leading expression in the perturbative expansion (3.3.10) we set
αn = 0, however this prevents us from obtaining the other n − 1 solutions. So-
lutions which cannot be obtained in a perturbative expansion when setting the
perturbation parameter to zero are discussed within the field of singular pertur-
bation theory.

Singular perturbation theory. To recover the perturbative expansion of the
n − 1 solutions of (3.3.10) singular for αn → 0 we start by rescaling u → α−νn u,
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3. Matrix integrals & finite holography

ν ∈ R+. For the case at hand (3.3.10) we obtain the rescaled equation

0 = ανn −
1
4u−

1
2nB(n, 1/2)α

1−ν(n−1)
n un . (3.3.13)

For small αn and 0 < ν < 1/(n − 1) or ν > 1/(n − 1) (3.3.13) we only obtain
the trivial solution u = 0. We are left with two special points ν ∈ {0, 1/(1− n)},
where we find a non-trivial solution for u. The perturbative solution for ν = 0
is the regular solution u

(n)
? .2 A superscript indicates that u solves (3.3.10). For

ν = 1/(1− n) we obtain

0 = −1
4u−

1
2nB(n, 1/2)u

n , (3.3.14)

solved by the n− 1 roots of unity

u
(n)
1,...,n−1 = ei

π(2`+1)
n−1

(
nB(n, 1/2)

2αn

) 1
n−1

, ` ∈ {0, . . . , n− 2} . (3.3.15)

We then obtain the n distinct perturbative expressions

u
(n)
? = 4− 4

(
2n− 1
n− 1

)
αn +O(α2

n) ,

u
(n)
1,...,n−1 = ei

π(2`+1)
n−1

(
nB(n, 1/2)

2αn

) 1
n−1

− 4
n− 1 +O

(
α1/(n−1)
n

)
, (3.3.16)

where ` ∈ {0, . . . , n− 2}, approximating all n solutions of (3.3.10).

To discuss the perturbative analysis of (3.3.10) we take the regular solution u
(n)
? .

For n ≥ 3 Its small αn expansion reads

u
(n)
? = 4

∞∑
k=0

(−1)kC(n)
k

(
2n− 1
n− 1

)k
αkn = 4 n−1Fn−2

[
1
n

2
n . . . . . . n−1

n
2

n−1 . . . n−2
n−1

n
n−1

; αn
α̃n,c

]
.

(3.3.17)
where we defined α̃n,c in (3.3.11) and

C(n)
k ≡ 1

(n− 1)k + 1

(
nk

k

)
, (3.3.18)

are known as Pfaff-Fuss-Catalan numbers generalising the Catalan numbers (3.3.4)

2Here and hereafter we introduce the subscript ? to indicate the solution regular at the origin
in coupling space.
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3.4. Planar diagrams with multiple vertices

for n = 2. For large k the summand in (3.3.17) scales as

∼ k−3/2e−k(n−1) log(n−1)α̃−kn,c . (3.3.19)

Note that the exponent 3/2 is universal for all binomial matrix integrals. Introduc-
ing F̃ (0)

n (αn) analogously to F (0)
2 (α2) and using (3.3.17) we obtain the perturbative

αn expansion

F̃ (0)
n (αn) = −

∞∑
k=1

(−1)k
((2n−1

n−1
)
αn

)k
k!

(nk − 1)!
((n− 1)k + 2)!

= 1
2n C

(2)
n αn n+1Fn

[
1 1 n+1

n . . . . . . 2n−2
n

2n−1
n

2 n+2
n−1 . . . . . . 2n−1

n−1
2n
n−1

; αn
α̃n,c

]
. (3.3.20)

Since α̃2,c = α
(2)
2,c and using C(2)

2 = 2, (3.3.20) reduces to (3.3.5) for n = 2. For
large k the summand of this expression scales universally as

∼ k−7/2e−k(n−1) log(n−1)α̃−kn,c . (3.3.21)

3.4 Planar diagrams with multiple vertices

In this section we consider the diagrammatic multi-vertex expansion of the mul-
ticritical matrix integrals (3.2.3). We discuss the m = 3 and m = 4 (3.2.3) cases
in some detail since the normalisation condition (3.2.11) for these matrix integrals
is a cubic and a quartic polynomial whose roots admit explicit expressions. For
m ≥ 5 the normalisation condition is a quintic or higher polynomial, and in general
not solvable by radicals.

3.4.1 m = 3 analysis

The normalisation condition N3(α2, α3) = 0 is the cubic equation (3.2.11)

1− 1
4u−

3
16α2u

2 − 5
32α3u

3 = 0 , (3.4.1)

whose general solutions can be expressed as

u
(3)
` = 32

15α3

(
− 3

16α2 + ∆0 ζ
−1
` Γ−1/3 + ζ` Γ1/3

)
, ` = 1, 2, 3 . (3.4.2)
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3. Matrix integrals & finite holography

Here, ζ` = e2πi(`−1)/3 is a third root of unity and we have defined

∆0 ≡ 3
256

(
3α2

2 − 10α3
)
, (3.4.3)

∆1 ≡ − 27
2048

(
α3

2 − 5α2α3 − 50α2
3
)
, (3.4.4)

Γ ≡ 1
2

(
∆1 +

√
∆2

1 − 4∆3
0

)
. (3.4.5)

We further define

D3 ≡ ∆2
1 − 4∆3

0 = 675
4194304α

2
3
(
−9(12α2 + 1)α2

2 + 20(27α2 + 2)α3 + 2700α2
3
)
.

(3.4.6)
Expanding D3 at small α3, we identify α2 = −1/12 as a special value, corre-
sponding to α

(2)
2,c . Expanding D3 at small α2 reveals α3 = −2/135 as a spe-

cial value, corresponding to α̃3,c (3.3.11). Near both (α2, α3) = (−1/12, 0) and
(α2, α3) = (0,−2/135), where D3 = 0, ∆1 remains non-vanishing such that the
non-analytic behaviour of the solutions u(3)

` near these points is that of a square
root. On the other hand, expanding D3 near α2 = −1/9 reveals α3 = 1/270
as a special value, the multicritical point (3.2.13). At α2 = −1/9 we have that
∆1 = (135α3 − 1)(270α3 − 1)/55296, which vanishes for α(3)

3,c . This implies that
the non-analytic behaviour of u(3)

` near the multicritical point is that of a cubic
root.

Single-variable perturbation theory. We start by discussing the normali-
sation condition (3.4.1) along the path γ

(3)
? in coupling space [82]

γ
(3)
? : [0, 1]→ R2 , t 7→

(
α

(3)
2,c t

α
(3)
3,c t

2

)
, (3.4.7)

leading to the rescaled normalisation condition

0 = 1− 1
4u−

3
16α

(3)
2,ctu

2 − 5
32α

(3)
3,ct

2u3 . (3.4.8)

Of all paths, the path γ(3)
? is special in that upon rescaling u→ u/t, t−1 takes the

role of an overall pre-factor for V3(M,α) (3.2.3). The solution of (3.4.8) regular
for t ∈ [0, 1] reads

u
(3)
? = 12

t

(
1− (1− t)1/3

)
= 12

∞∑
k=0

(−1)k
(

1/3
k + 1

)
tk . (3.4.9)
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3.4. Planar diagrams with multiple vertices

At large k the summand scales as ∼ k−4/3, different from the ∼ k−3/2 for m = 2
(3.3.3). Note that (3.4.9) converges for |t| ≤ 1.

Two-variable perturbation theory. The solution of N3(α2, α3) = 0 regular
near the origin in coupling space is

u
(3)
? = 4

∞∑
k1,k2=0

(−1)k1+k2

(1 + k1 + 2k2)

∏k2
s=1(k1 + s)

k2!

(
3k2 + 2k1

2k2 + k1

)
(10α3)k2(3α2)k1 .

(3.4.10)
Performing the substitution k = k1 + 2k2, n = k1 + k2 we find the single sum
expression

u
(3)
? = 4

√
π

∞∑
k=0

(
20α3

3α2

)k 1
Γ(2 + k) 3F̃2

(
1,−k, 1 + k; 1

2 −
k

2 , 1−
k

2 ; 9α2
2

40α3

)
.

(3.4.11)
Along the path γ(3)

? we recover (3.4.9), as shown in appendix 6. Equation (3.4.11)
provides a perturbative expansion regular for small couplings α2 and α3. Depend-
ing on the range of the couplings (3.4.11) arises from a different solution (3.4.2)
of the normalisation condition N3(α2, α3) = 0. Switching for simplicity to polar
coordinates (α2, α3) = (r cosφ, r sinφ), we observe that the function

B3(r, φ) = u1(r, φ)Θ(π − φ) + u3(r, φ)Θ(φ− π) , (3.4.12)

is well behaved and real near the origin.

On-shell action for m = 3. We define

F (0)
3 (α2, α3) ≡ − logM

(3)
N (α2, α3)
M(3)

N (0, 0)
. (3.4.13)

Using (3.2.20) for m = 3 and the regular solution (3.4.10) we obtain the small
α2, α3 expansion

F (0)
3 (α2, α3) = −

∞∑
k2=1

(−1)k2
(10α3)k2

k2!
(3k2 − 1)!
(2k2 + 2)!

−
∞∑
k2=0

∞∑
k1=1

(−1)k1+k2
(10α3)k2

k2!
(3α2)k1

k1!
(3k2 + 2k1 − 1)!
(2k2 + k1 + 2)! . (3.4.14)
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3. Matrix integrals & finite holography

It is convenient to perform again the substitution k = k1 +2k2, n = k1 +k2 leading
to

F (0)
3 (α2, α3) = −

√
π

∞∑
k=1

(
20α3

3α2

)k 1
kΓ(3 + k) 3F̃2

(
1,−k, k; 1

2 −
k

2 , 1−
k

2 ; 9α2
2

40α3

)
.

(3.4.15)
Evaluating (3.4.15) at the multicritical point α(3)

2,c = −1/9, α(3)
3,c = 1/270 (3.2.13)

we recover the value of the on-shell action at criticality (3.2.21). Note that in the
definition of F (0)

3 (α2, α3) in (3.4.13) we subtract the Gaussian term which evaluates
to 3/4. In appendix 6 we show that the summand scales as ∼ k−10/3, which differs
from the ∼ k−7/2 encountered in (3.3.5). F (0)

3 (4α2, 6α3) counts planar diagrams
with four or six edges emanating from each vertex

F (0)
3 (4α2, 6α3) = 2α2 + 5α3 − 18α2

2 − 300α2
3 − 144α2α3 + . . . . (3.4.16)

To see some of these coefficients explicitly we expand the exponential in (3.2.1)

M(3)
N (α2, α3)

=
∫
RN2

[dM ] e−N2 TrM2
∞∑

k1,k2=0

(−1)k1+k2

k1!k2!

(
α2N

4

)k1 (α3N

6

)k2 (
TrM4)k1 (TrM6)k2

,

(3.4.17)

leading to the graphical representation of the propagator, the quartic and the
sextic vertex

L
K

J K

J
I

LI

II ∼ 1
4α2N ,

JJ ∼ N−1 ,

I J

SK

J
L

L
SK

I
R

R

∼ 1
6α3N .

Figure 3.3: Propagator, quartic and sextic vertex.

In fig. 3.4 we show the diagrams contributing to O(α2α3) in (3.4.16)
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3.4. Planar diagrams with multiple vertices

.,,,

48α2α3 24α2α3 24α2α3 48α2α3

Figure 3.4: Diagrams combining vertices with four and six edges emanating. Each line
represents a thick double line. The number below each diagrams counts the number of
diagrams including the symmetry factor.

3.4.2 m = 4 analysis

The normalisation condition N4(α) = 0 is the quartic equation (3.2.11)

0 = 1− 1
4u−

3
16α2u

2 − 5
32α3u

3 − 35
256α4u

4 , (3.4.18)

admitting four solutions u(4)
`,±, ` = 1, 2 whose properties we discuss in appendix 6.

Single-variable perturbation theory. Along the path γ
(4)
?

γ
(4)
? : [0, 1]→ R3 , t 7→

 α
(4)
2,c t

α
(4)
3,c t

2

α
(4)
4,ct

3

 , (3.4.19)

the regular solution of (3.4.18) reads

u
(4)
? = 16

t

(
1− (1− t)1/4

)
= 16

∞∑
k=0

(−1)k
(

1/4
k + 1

)
tk , (3.4.20)

converging for |t| ≤ 1. At large k the summand scales as ∼ k−5/4 as compared to
∼ k−4/3 for m = 3 (3.4.9) and ∼ k−3/2 for m = 2 (3.3.3) and the binomial matrix
integrals (3.3.19).

Three-variable perturbation theory. Solving (3.4.18) and expanding the reg-
ular solution for α2, α3 and α4 close to zero we obtain

u
(4)
? = 4

∞∑
k1,k2,k3=0

(−1)k1+k2+k3

(1 + k1 + 2k2 + 3k3) (35α4)k3(10α3)k2(3α2)k1

×
∏k2+k3
s=1 (k1 + s)
(k2 + k3)!

∏k3
s=1(k2 + s)

k3!

(
4k3 + 3k2 + 2k1

3k3 + 2k2 + k1

)
. (3.4.21)
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Performing the substitution k = k1 + 2k2 + 3k3, n = k1 + k2 + k3, l = k2 + k3

u
(4)
? = 4

√
π

∞∑
k=0

k∑
n=0

(−1)n
(

7α4

α3

)k (3α2α3

7α4

)n Γ(1 + k + n)
Γ(2 + k)Γ(1 + n)Γ(1 + k − n)

× 3F̃2

(
1,−n,−k + n; 1

2 + 1
2(−k + n), 1 + 1

2(−k + n); 5α2
3

21α2α4

)
.

(3.4.22)

We conjecture

k∑
n=0

(−3)n
8k

Γ(1 + k + n)
Γ(2 + k)Γ(1 + n)Γ(1 + k − n)

× 3F̃2

(
1,−n,−k + n; 1

2 + 1
2(−k + n), 1 + 1

2(−k + n); 4
6

)
= 4√

π

(
1/4
k + 1

)
.(3.4.23)

According to this conjecture (3.4.22) reduces to (3.4.20) along γ
(4)
? . Equation

(3.4.22) provides a perturbative expansion regular for small couplings α. Depend-
ing on the range of the couplings it arises from a different solution (6.0.43) of the
normalisation condition N4(α) = 0, as we elucidate further in appendix 6.

On-shell action for m = 4. We define

F (0)
4 (α2, α3, α4) ≡ − logM

(4)
N (α2, α3, α4)
M(4)

N (0, 0, 0)
. (3.4.24)

Using (3.2.20) for m = 4 and (3.4.22) we obtain the small α2, α3, α4 expansion

F (0)
4 (α2, α3, α4) = −

∞∑
k3=1

(−1)k3
(35α4)k3

k3!
(4k3 − 1)!
(3k3 + 2)!

−
∞∑
k3=0

∞∑
k2=1

(−1)k2+k3
(35α4)k3

k3!
(10α3)k2

k2!
(4k3 + 3k2 − 1)!
(3k3 + 2k2 + 2)!

−
∞∑

k3,k2=0

∞∑
k1=1

(−1)k1+k2+k3
(35α4)k3

k3!
(10α3)k2

k2!
(3α2)k1

k1!
(4k3 + 3k2 + 2k1 − 1)!
(3k3 + 2k2 + k1 + 2)! .

(3.4.25)

Along γ(4)
? and using (3.4.20) we obtain

lim
t→1−ε

F (0)
4,n.a.(α)|

γ
(4)
?
∼ ε9/4 . (3.4.26)

114



3.4. Planar diagrams with multiple vertices

F (0)
4 (4α2, 6α3, 8α4) counts planar diagrams with four, six or eight edges emanating

from each vertex

F (0)
4 (4α2, 6α3, 8α4) = 2α2 + 5α3 + 14α4 − 18α2

2 − 300α2
3 − 4900α2

4

− 144α2α3 − 560α2α4 − 2400α3α4 + 201600α2α3α4 + . . . . (3.4.27)

We obtain a graphical representation of the eight-order vertex (fig.3.5) following
the steps in (3.4.17).

I J

SK

J
L

L
P

P
SK

I
Q

R

R
Q

∼ 1
8α4N .

Figure 3.5: Eight-order vertex.

3.4.3 m ≥ 5 analysis

For general m ≥ 5 we cannot solve the normalisation condition (3.2.11) by radicals.
Instead we conjecture generalisations of (3.4.10) and (3.4.21) for the normalisation
condition and the expressions (3.4.14) and (3.4.25) for the on-shell action relying
on numerical results.

Single-variable perturbation theory. We start by parametrising a path con-
necting the origin in coupling space to the multicritical point

γ
(m)
? : [0, 1]→ Rm−1 , t 7→


α

(m)
2,c t
...

α
(m)
m,c tm−1

 . (3.4.28)

This leads to the regular solution of Nm(α) = 0

u
(m)
? = 4m

t

(
1− (1− t)1/m

)
= 4m

∞∑
k=0

(−1)k
(

1/m
k + 1

)
tk , (3.4.29)

convergent for |t| ≤ 1. For large k the summand scales as ∼ Γ(1 + 1/m)k−1− 1
m .

Multi-variable perturbation theory. For general small couplings α the per-
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turbative expansion of the regular solution reads

u
(m)
? = 4

∞∑
k1,...,km−1=0

(−1)k1+...+km−1

(1 + k1 + . . .+ (m− 1)km−1)

m∏
`=2

[(
2`− 1
`− 1

)
α`

]k`−1

×
(

2k1 + . . .+mkm−1

k1 + . . .+ (m− 1)km−1

)
×
∏k2+...+km−1
s=1 (k1 + s)

(k2 + . . .+ km−1)!

∏k3+...+km−1
s=1 (k2 + s)

(k3 + . . .+ km−1)! · · ·
∏km−1
s=1 (km−2 + s)

(km−1)! . (3.4.30)

The above expression accounts for mixing of the couplings. Note that if we set all
but one of the couplings (e.g. α`) to zero (3.4.30) reduces to (3.3.17). We conjec-
ture that this reduces to (3.4.29) along the path γ(m)

? . Similarly to the case m = 3
and m = 4 we believe that also for m ≥ 5 there exists a smooth function which
leads to (3.4.30) when approached from different directions in coupling space.

We note that we can also express (3.4.30) in terms of incomplete exponential Bell
polynomials. Using the Lagrange inversion theorem to solve the normalisation
condition perturbatively (3.2.11) we have

u
(m)
? =

∞∑
k=1

4k
k!

k−1∑
`=0

(−1)`k(`)Yk−1,`

(
f̂1, . . . , f̂k−`

)
, f̂k ≡ 4k! αk+1

2(k + 1)B(k + 1, 1/2) ,

(3.4.31)
where Yk,`(x1, . . . , xn) denote the incomplete exponential Bell-polynomials, de-
fined recursively through

Yk,`(x1, . . . , xn) ≡
∑ n!

j1!j2! . . . jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

(3.4.32)
where the summation is subject to the additional constraints

j1 +j2 + . . .+jn−k+1 = k , j1 +2j2 +3j3 + . . .+(n−k+1)jn−k+1 = n . (3.4.33)

The Bell polynomial encodes information on the partitions of a set. Yk,`(x1, . . . , xn)
tells us how many partitions with block size between 1 and (n− k + 1) a set with
n elements can have when divided into k blocks. As an example

Y4,2(x1, x2, x3) = 3x2
2 + 4x1x3 , (3.4.34)

reflects that the set y ≡ {y1, y2, y3, y4} can be divided into blocks of size 2 in two
different ways. We can have 3 mutually, non-overlapping subsets, each consisting
of a block of size two. Additionally we have 4 different ways to break y into a
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3.4. Planar diagrams with multiple vertices

1-block and a 3-block.

On-shell action for general m. We define

F (0)
m (α) ≡ − logM

(m)
N (α)

M(m)
N (0)

. (3.4.35)

Using (3.2.20) and (3.4.30) we obtain the perturbative expansion

F (0)
m (α) = −

∞∑
km−1=1

(−1)km−1

((2m−1
m−1

)
αm

)km−1

km−1!
(mkm−1 − 1)!

((m− 1)km−1 + 2)!+

−
∞∑

km−1=0

∞∑
km−2=1

(−1)km−1+km−2

m∏
j=m−1

((2j−1
j−1

)
αj

)kj−1

kj−1!
(
∑m−1
j=m−2(j + 1)kj − 1)!
(
∑m−1
j=m−2 jkj + 2)!

+. . .

−
∞∑

k2,...,km−1=0

∞∑
k1=1

(−1)
∑m−1

j=1
kj

m∏
j=2

((2j−1
j−1

)
αj

)kj−1

kj−1!
(
∑m−1
j=1 (j + 1)kj − 1)!

(
∑m−1
j=1 jkj + 2)!

.

(3.4.36)

Assuming that all but one of the couplings is very small the above reduces to
(3.3.20). Along γ(m)

? (3.4.28) and using (3.4.29) we obtain

lim
t→1−ε

F (0)
m,n.a.(α)|

γ
(m)
?
∼ ε2+ 1

m . (3.4.37)

Upon shifting α` → 2`α`, ` = 2, . . . ,m, F (0)
m (α) (3.4.35) counts planar diagrams

with vertices emanating 4, . . . , 2m edges. As an example we infer that F (0)
10 (α)

contains the term

46549055536250157437879915371089100800000000α2α3α4α5α6α7α8α9α10 ,

(3.4.38)
which counts diagrams with nine distinct vertices emanating an even number be-
tween four and twenty edges. After this shift the terms linear in the couplings
have coefficients given by the Catalan numbers C(2)

k with k = 2, . . . ,m. In fig. 3.6
we illustrate diagrams with a single vertex emanating four to twelve edges.
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2α2 5α3 14α4 42α5

132α6

Figure 3.6: Vertices with four to twelve edges emanating. Each line represents a thick
line. The number below each diagram enumerates the number of such diagrams as
counted by F (0)

m (4α2, . . . , 2mαm) for m ≥ 6.

3.5 Non-analytic behaviour of multicritical ma-
trix integrals

In this section, we uncover the non-analytic behaviour of the planar on-shell action
(3.2.20) as a function of its couplings near the multicritical point (3.2.13).

An m = 2 refresher. For m = 2 the polynomial (3.2.3) reduces to the quartic
polynomial

V2(M,α2) = 1
2M

2 + 1
4α2M

4 . (3.5.1)

From (3.2.8) it is straightforward to obtain the resolvent and using resa (3.2.18)
we find the eigenvalue distribution (3.2.5):

R2(z, α2) = 1
2V
′
2(z, α2)− 1

4(2 + α2u+ 2α2z
2)
√
z2 − u ,

ρ
(2)
ext(z, α2) = 1

4π (2 + α2u+ 2α2z
2)
√
u− z2 , u = a2 . (3.5.2)

Combining the above leads to the planar on-shell action (3.2.20)

S[ρ(2)
ext(λ, α2)] =

2∑
n=1

(2n)!
4n αn ω

(2)
n +

2∑
n=1

αnu
n

4n2B(n, 1/2) −
1
2 log u+ log 2 , (3.5.3)

with ω
(2)
n defined in (3.2.17). Using u(2)

+ (3.3.2) this implies

F (0)
2,n.a.(αε2) = 7

24 −
1
2 log 2 + ε− 18ε2 + 384

5
√

3 ε5/2 +O(ε3) , (3.5.4)
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3.5. Non-analytic behaviour of multicritical matrix integrals

where the subscript n.a. indicates the leading non-analyticity. The leading non-
analytic behaviour, encoded in the critical exponent 5/2, characterises the particu-
lar universality class associated to the m = 2 (3.5.1) and binomial matrix integrals
(3.3.9) and is intimately related to the exponent 7/2 we observed in (3.3.5) at
large k.

3.5.1 Critical exponents for m = 3

For m = 3 we have

V3(M,α2, α3) = 1
2M

2 + 1
4α2M

4 + 1
6α3M

6 . (3.5.5)

The resolvent and the eigenvalue density are given by

R3(z, α2, α3)

= 1
2V
′
3(z, α2, α3)− 1

16
(
8 + 4uα2 + 3u2α3 + z2(8α2 + 4uα3) + 8α3z

4)√z2 − u ,

ρ
(3)
ext(z, α2, α3) = 1

16π
(
8 + 4uα2 + 3u2α3 + z2(8α2 + 4uα3) + 8α3z

4)√u− z2 .

(3.5.6)

For the m = 3 multicritical matrix integral, in contradistinction to the m = 2
model (3.5.1), we obtain two different non-analyticities – one along a fine-tuned
path, another one along a generic path in coupling space.

Fine-tuned path. Normalising the above eigenvalue density we obtain the nor-
malisation conditionN3(α2, α3) = 0 (3.4.1) whose solutions we discussed in (3.4.2).
Recall that the discriminant (3.4.6)

D3 = 675
4194304α

2
3
(
−9(12α2 + 1)α2

2 + 20(27α2 + 2)α3 + 2700α2
3
)
, (3.5.7)

vanishes at the multicritical point. More generally D3 vanishes for

α3,± = α
(3)
3,c −

1
10ε±

1
5ε

3/2 , αε2 ≡ α
(2)
2,c + ε . (3.5.8)

and we restrict ε > 0. Solving N3(α(3)
2,c , α3,±) = 0 we find u = 12 + x̃ ε1/2 +O(ε2),

with the three solutions x̃1,2 = ±36 and x̃3 = 72. WLOG we focus on x̃ = ±36.
Expanding the on-shell action leads to a leading non-analyticity of the form

F (0)
3,n.a.(αε2, α3,±) = 19

40 −
1
2 log 3 + 9

10ε±
9
10ε

3/2 − 243
40 ε

2 +O(ε5/2) . (3.5.9)
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The constant term is the action at criticality (3.2.21) for m = 3 with the Gaussian
piece, which is equal to 3/4, subtracted. The critical exponent is given by 3/2,
which differs from the 5/2 critical exponent of the m = 2 model (3.5.4). Note that
had we not kept the solution α3,± to order O(ε3/2) we would have not obtained
the correct leading non-analytic behaviour in (3.5.9).

Generic path. Further to this, one can uncover another critical exponent by
zooming into criticality while adding a linear deformation to one of the couplings.
This leads to the ansatz

(α2, α3) = (α(3)
2,c , α

ε
3) , u = 12− 36 · 101/3ε1/3 + 108 · 102/3ε2/3 − 3240ε+O(ε2) .

(3.5.10)
The solution u is expanded up to order O(ε) to avoid the appearance of spurious
non-analyticities. Expanding the action around (3.5.10) we find

F (0)
3,n.a.(α

(3)
2,c , α

ε
3) = 19

40 −
1
2 log 3 + 9

2ε− 206550ε2 + 11208375
7 101/3ε7/3 +O(ε2) .

(3.5.11)
The critical exponent is given by 7/3, which again differs from the 5/2 critical
exponent of the m = 2 model.

We believe that there are no other critical exponents near the multicritical point
for m = 3 in the leading order planar expansion.

3.5.2 Critical exponents for general m

Since for m ≥ 4 the normalisation condition is a higher order polynomial, we now
outline a perturbative approach for the fine-tuned path.

Fine-tuned path. We would like to deform the couplings near the multicriti-
cal point αc (3.2.13) in the following manner

αε = αc + s ε , u = 4m+ x , (3.5.12)

where x and ε are small parameters, and s ≡ (s2, . . . , sm) ∈ Rm−1. Expanding
the normalisation condition (3.2.11) we find

Nm(α) =
(
− x

4m

)m
− ε

m∑
n=2

(4m)nsn
2nB(n, 1/2)

n∑
`=0

(
n

`

)( x

4m

)`
+O(ε2) . (3.5.13)
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3.5. Non-analytic behaviour of multicritical matrix integrals

For those s satisfying

r′⋃
j=1
H(j)
m = 0 , r′ = 1, . . . ,m− 2 , (3.5.14)

where H(j)
m (hypersurfaces) are defined as

H(j)
m ≡ m−j−1

m∑
n=j+1

(4m)n
2nB(n, 1/2)

(
n− 2
j − 1

)
sn = 0 , (3.5.15)

the coefficients of x` in (3.5.13) with 0 ≤ ` ≤ r′ − 1 vanish. The proof of this can
be found in appendix 6. Consequently on (3.5.14), the solutions of Nm(α) = 0 in
x will scale as ε1/(m−r′). To indicate that the deformations s are living on (3.5.14)
we introduce an additionial superscript to the normalisation condition N (r′)

m (α)
and F (r′)

m,n.a.(α), where r′ ∈ {1, . . . ,m−2}. We are thus led to the following ansatz

αε ≡ αc + s ε , u = 4m+ x̃ ε
1

m−r′ , x̃ ∈ R , (3.5.16)

giving rise to the normalisation condition

N (r′)
m (αε) =

[
(−1)m x̃m

(4m)m −
x̃r
′

4r′m
2H(r′+1)

m

]
ε

m
m−r′ +O

(
ε
m+1
m−r′

)
. (3.5.17)

We refer to appendix 6 for a proof of (3.5.17). Recalling the discussion near
(3.5.9) for m = 3, to ensure that we obtain the correct non-analytic behaviour
for F (0)

m,n.a.(α), we must expand one of the couplings to subleading order. For
p ∈ {2, . . . ,m} arbitrary we take

αεn6=p = α
(m)
c,n 6=p+sn 6=p ε , αβp = α(m)

c,p +sp ε+ s̃ εβ , u = 4m+ x̃ ε
1

m−r′ . (3.5.18)

For β < m/(m − r′) the last term gives additional contributions spoiling the
εm/(m−r

′) non-analyticity. For β > m/(m − r′) the leading non-analyticity is
unaffected. For β = m/(m− r′) we are led to

N (r′)
m (αεn 6=p, αβp ) =

[
(−1)m x̃m

(4m)m −
x̃r
′

4r′m
2H(r′+1)

m − (4m)p
2pB(p, 1/2) s̃

]
ε

m
m−r′ +O

(
ε
m+1
m−r′

)
.

(3.5.19)

It can be checked that adding subleading corrections to more than one of the αn
does not lead to additional non-analyticities.
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α

α

α

αc

Figure 3.7: We zoom into the critical point αc and then start moving into special
directions to recover the different non-analyticities.

We now determine the non-analytic behaviour of F (0)
m,n.a.(α) once we move away

from the critical point (3.5.16). Using β = m/(m− r′) in (3.5.18) we are led to

S(r′)
m [ρ(m)

ext (λ,αε)] = S(r′)
m [s, ε, ε2]

− 1
2Hm

[
(−1)m x̃m

(4m)m −
x̃r
′

4r′m
2H(r′+1)

m − (4m)p
2pB(p, 1/2) s̃

]
ε

m
m−r′

+ (4m)p
2p2B(p, 1/2)

m!p!
(m+ p)! s̃ ε

m
m−r′ +O

(
ε
m+1
m−r′

)
, (3.5.20)

where S(r′)
m [s, ε, ε2] is an x̃-independent expression whose explicit form we present

in appendix 6. Taking x̃ = x̃∗ to be a solution of the normalisation condition
N (r′)
m (αεn 6=p, αβp ) = 0 at order εm/(m−r′) we finally obtain for r′ = 1, 2, . . . ,m− 2

F (0)
m,n.a.(αεn 6=p, αβp )−S(r′)

m [s, ε, ε2]+3
4 = (4m)2

2p2B(p, 1/2)
m!p!

(m+ p)! s̃ ε
m

m−r′+O
(
ε
m+1
m−r′

)
,

(3.5.21)
where 2 ≤ p ≤ m. In summary for the mth multicritical matrix integral (3.2.3)
we have so far obtained (m−2) distinct critical exponents given by m/(m− r′),
r′ = 1, 2, . . . ,m− 2.
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3.5. Non-analytic behaviour of multicritical matrix integrals

Example m = 3. Let us take

(α2, α3) = (αε2, αε3) , u = 12 + x , 0 < ε� 1 . (3.5.22)

The parameter x is itself small and fixed in terms of s2, s3, and ε through N3(α) =
0. For generic values of s2 and s3, expanding the normalisation condition N3(α) =
0 for small ε leads to the following three solutions

x = 36 z ε1/3(s2 + 10s3)1/3 , z3 = −1 . (3.5.23)

We thus recover the non-analytic behaviour observed in (3.5.10).

For the finely tuned combination H(1)
3 = s2 +10s3 = 0 (3.5.15), we find the leading

order behaviour
x = ±36

√
3s2ε , (3.5.24)

recovering the non-analytic behaviour observed in (3.5.19). To obtain the sublead-
ing ε3/2 dependence in (3.5.22), we must add a subleading piece s̃εβ , β > 1 to one
of the couplings. WLOG we take α3. Expanding the normalisation condition we
infer that only β = 3/2 is consistent with the perturbative expansion. Our ansatz
becomes (3.5.18)

αε2 = α
(3)
2,c + s2ε , αβ3 = α

(3)
3,c −

1
10s2ε+ s̃ε3/2 , u = 12 + x̃ ε1/2 . (3.5.25)

Adding further subleading terms will not change the leading non-analytic be-
haviour. Setting s2 = 1 and s̃ = ±1/5 we recover (3.5.8). Expanding N (1)

3 (αε2, α
β
3 )

for small ε, we find (3.5.19)

N (1)
3 (αε2, α

β
3 ) =

(
− 1

1728 x̃
3 + 9

4s2x̃− 270s̃
)
ε3/2 +O(ε2) . (3.5.26)

Evaluating the action in a perturbative expansion along (3.5.25), we obtain (3.5.21)

F (0)
3,n.a.(αε2, α

β
3 )

= 19
40−

1
2 log 3+ 9

10s2ε−
1
2H3

(
− 1

1728 x̃
3 + 9

4s2x̃− 270s̃
)
ε3/2+ 9

2 s̃ ε
3/2+O(ε2) ,

(3.5.27)

recovering (3.5.9) for s2 = 1 and s̃ = ±1/5. From the above expression we infer
that for vanishing s̃ the coefficient multiplying the leading non-analyticity van-
ishes, since its solution in x̃ = x̃? agrees with the solution of the leading order
term in (3.5.26). The non-analytic behaviour in (3.5.27) is robust against other
deformations of the ansatz (3.5.25).
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Generic path for general m. In addition to the (m − 2) critical exponents
in (3.5.21) the matrix integrals (3.2.1) exhibit one more multicritical exponent.

To obtain (3.5.4) for m = 2 we observed the reaction of the action when allowing
α2 to slightly deviate from its critical value α(2)

2,c (3.2.13). We can generalise this for
the polynomials Vm(M,α) for m ≥ 3. Here we observe the reaction of the action
when allowing one arbitrary coupling to deviate away from the multicritical point.
In other words we consider

α2 = α
(m)
2,c , . . . , αm−1 = α

(m)
m−1,c , αm = α(m)

m,c + ε , 0 < ε� 1 , (3.5.28)

where WLOG αm deviates away from its critical value α(m)
m,c . The leading reaction

of the normalisation condition away from its critical value 4m is of the form ε1/m

easily extracted from (3.5.13).3 To avoid spurious critical exponents in F (0)
m,n.a.(α),

we need to expand the solution to the normalisation condition to order O(ε). In
addition to (3.5.28) we take the following ansatz4 for u

u = 4m+ Ãε1/m +
2m∑
`=2

C̃` ε
`/m +O

(
ε(2m+1)/m

)
. (3.5.29)

The coefficients {Ã, C̃`} ∈ C we obtain by comparing coefficients of equal powers
of ε in the normalisation condition. The coefficients Ã are given by

Ã(n) = eiπn/m
(

(4m)2m

2mB(m, 1/2)

)1/m

, n = 1, . . . ,m . (3.5.30)

Upon choosing one Ã(n) the C̃` for 2 ≤ ` ≤ 2m− 1 are fixed uniquely. WLOG we
choose Ã(m) and find

u = 4m
2m∑
`=0

(−1)`m`

(
2m− 1
m− 1

)`/m
ε`/m +O

(
ε(2m+1)/m

)
. (3.5.31)

The leading non-analyticity is thus given by

F (0)
m,n.a.(α

(m)
2,c , . . . , α

(m)
m−1,c, α

ε
m) = Sc[ρ(m)

ext (λ,αc)]−
3
4+β1 ε+β2 ε

2+β3 ε
2+ 1

m +O
(
ε2+ 2

m

)
,

(3.5.32)

3Comparing (3.5.12) to our ansatz (3.5.28) we set sn = 0, n ≤ m− 1 and sm = 1.
4We would obtain the right critical exponent already if we stopped at linear order in ε.

However the coefficient is affected by terms up to order O(ε2)
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with β3 given by

β3 = m2m+3

2(2m+ 1)

(
2m− 1
m− 1

)1+1/m
C(2)
m . (3.5.33)

C(2)
m are the Catalan numbers (3.3.4). On the other side β1 and β2 are ε-independent

expressions in m. From (3.5.32) we infer the leading non-analyticity 2 + 1/m
which is intimately related to the critical exponent (3.4.29) observed for large k in
the perturbative expansion.

Example m = 3. For the multicritical matrix integral with m = 3 we make
the ansatz

α2 = α
(3)
2,c , α3 = α

(3)
3,c + ε , u = 12 + Ãε1/3 +

6∑
`=2

C̃` ε
`/3 +O

(
ε7/3

)
. (3.5.34)

Expanding the normalisation condition N3(α2,c, α
ε
3) = 0 (3.2.11) we obtain to

leading order
Ã(n) = 36 eiπn/3 × 101/3 , n = 1, 2, 3 . (3.5.35)

Choosing Ã(3) and repeating (3.5.34) after including subleading corrections in the
normalisation condition we obtain the ansatz

u = 12
6∑
`=0

(−1)`3`(10)`/mε`/3 +O
(
ε7/3

)
. (3.5.36)

Expanding the action around (3.5.36) we obtain

F (0)
3,n.a.(α

(3)
2,c , α

ε
3) = 19

40 −
1
2 log 3 + 9

2ε− 6075ε2 + 492075
7 × (10)1/3ε7/3 +O

(
ε8/3

)
.

(3.5.37)

We observe the leading critical exponent 7/3.

General remarks. It is worth noting that only ε and ε2 appear at orders lower
than the leading non-analytic behaviour of S(r)

m [ρ(m)
ext (λ,αε)] (3.5.20). This is a

consequence of our particular choice of deformation (3.5.15). For m prime the
full set of critical exponents are elements of Q+/Z. For non-prime m some of the
critical exponents are integers. Whether or not we should refer to these integers
as critical exponents is a subtle matter.5 A point of concern for integer critical

5It can often happen that when a critical exponent is näıvely integer valued there is in fact
a logarithmic dependence on the coupling. Logarithmic behaviour is also present for the critical
exponent of a two-matrix model [119] whose continuum description has been argued to be the
free fermion coupled to two-dimensional gravity. It is relatively straightforward to prove that
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exponents is that they may be sensitive to analytic redefinitions of the couplings.
For m = 4, k = 2 and WLOG taking p = 2 we have

u = 16+x̃ε1/2 , α2 = −1
8+560

3 s4ε+δε2 , α3 = 1
160−28s4ε , α4 = − 1

8960+s4ε

(3.5.38)
and (3.5.21) reduces to

S
(2)
4 [ρ(4)

ext(λ,αε)]− S
(2)
4 [s, ε, ε2] = 8

5 δ ε
2 +O

(
ε5/2

)
, (3.5.39)

where

S(2)
4 [s, ε, ε2] = Sc[ρ(4)

ext(λ,αc)] + 160s4ε− 143360s2
4ε

2 . (3.5.40)

If s4 and δ obey
8
5δ − 143360s2

4 = 0 , (3.5.41)

we can cancel the integer critical exponent 2.

Furthermore we note that the matrix integral (3.2.3) admits (m−1) distinct critical
exponents only upon considering deformations away from the multicritical point.
The only other critical exponent is that of a square root non-analyticity in the
normalisation condition leading to F (0)

m,n.a.(α) ∼ ε5/2 which occurs on surfaces
connecting the mth polynomial Vm(M,α) to a binomial matrix integral Ṽn(M,α),
n ≤ m (3.3.9).

? ? ?

Summary. In summary, the set of (m− 1) critical exponents for the mth multi-
critical matrix integral (3.2.3) are given bym/(m− r′), r′ = 1, . . . ,m−2 (3.5.21)
and 2 + 1/m (3.5.32).

3.6 Critical exponents in the continuum picture

In section 3.5 we uncovered a set of non-analyticities arising from the deforma-
tion of multicritical matrix integrals (3.2.3) slightly away from the multicritical
point (3.2.13). We showed that the mth multicritical matrix integral has (m− 1)
distinct non-analyticities (3.5.21) and (3.5.32). In this section we will uncover
the same non-analyticities within the continuum picture of M2m−1,2 coupled to
two-dimensional quantum gravity.

our integer valued critical exponents are indeed integers exhibiting no logarithmic dependence
on the coupling.
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3.6. Critical exponents in the continuum picture

3.6.1 A minimal model refresher

Minimal models are two-dimensional CFTs characterised by two coprime integers
(p, p′) with p, p′ ≥ 2 and WLOG we assume p > p′.6 We will denote the (p, p′)
minimal model by Mp,p′ . The central charge of Mp,p′ is given by

c(p,p
′) ≡ 1− 6(p− p′)2

pp′
. (3.6.1)

Each Mp,p′ has a finite number of conformal primaries Or,s whose (holomorphic)
conformal dimension is given by

∆r,s = (rp′ − sp)2 − (p− p′)2

4pp′ , r = 1, . . . , p− 1 , s = 1, . . . , p′ − 1 . (3.6.2)

These obey
∆r,s = ∆p−r,p′−s = ∆r+p,s+p′ , (3.6.3)

such that the number of distinct conformal primaries is given by np,p′ ≡ (p−1)(p′−
1)/2. The identity operator I of vanishing conformal dimension is always present
and given by O1,1 = Op−1,p′−1. The anti-holomorphic conformal dimensions are
denoted by ∆̄r,s and take the same values as (3.6.2).

The simplest minimal model isM3,2, which is a two-dimensional CFT with central
charge c(3,2) = 0 and the unique operator I, of vanishing conformal dimension.

(Non)-unitary minimal models. It will prove useful to distinguish between
unitary and non-unitary minimal models. In addition to a positive definite inner
product, unitary minimal models have positive central charge and non-negative
conformal dimensions. As shown in [28], the unitary models are given by the se-
ries Mm+1,m with m > 2. Unitary minimal models have nm+1,m = m(m− 1)/2
primaries.

Non-unitary minimal models have negative central charge. Although the highest
weight states have positive norm, their Virasoro descendants have negative norm.
The simplest example of a non-unitary minimal model is M5,2, the Yang-Lee
model with c(5,2) = −22/5. M5,2 has two conformal primaries of holomorphic
conformal dimension ∆1,1 = 0 and ∆2,1 = −1/5.

In what follows we will focus onM2m−1,2 with m ≥ 2. The general expression for

6In addition to the original work [27], an excellent resource discussing their detailed properties
is given by [172,173].
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their central charge is

c(2m−1,2) = 1− 3(3− 2m)2

2m− 1 . (3.6.4)

The number of conformal primaries is n2m−1,2 = (m− 1), and their holomorphic
dimensions are given by

∆r,1 = (2m− 1− 2r)2 − (2m− 3)2

8(2m− 1) , r = 1, . . . ,m− 1 . (3.6.5)

The conformal dimensions are increasingly negative for increasing r, and the lowest
weight primary Omin ≡ Om−1,1 has holomorphic conformal dimension

∆min = (m− 1)(m− 2)
2(1− 2m) . (3.6.6)

From (3.6.4) and (3.6.6) we infer the large m expansions

c(2m−1,2) = −6m+ 16 + . . . , ∆min = −m4 + 5
8 + . . . . (3.6.7)

Although c(2m−1,2) grows at large m, it has been argued [178, 235] that a better
measure of the number of degrees of freedom is captured by

c
(2m−1,2)
eff ≡ c(2m−1,2) − 24∆min = 1 + 3

1− 2m . (3.6.8)

We note that c(2m−1,2)
eff < 1 goes to one in the large m limit.

3.6.2 Critical exponents

To compute critical exponents associated to a given conformal field theory, we
consider the partition function of the theory deformed by a small amount of a
particular conformal primary O∆. We first discuss critical exponents for CFTs on
a fixed background, and then proceed to a fluctuating background.

2d CFT on a fixed flat background. From the perspective of a path-integral,
we would like to compute

Z[λ∆, `] =
∫

[DΦ]e−SCFT[Φ]−λ∆
∫

d2xO∆ , λ∆ ∈ R , (3.6.9)

where ` denotes the size of the flat square on which the CFT resides. The con-
formal primary O∆ has dimension (∆, ∆̄) and for simplicity we take ∆ = ∆̄.
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3.6. Critical exponents in the continuum picture

The dimensionful scales of the problem are the volume of space `2, the ultraviolet
length scale `uv � `, and the coupling λ∆ whose holomorphic scaling dimension
is ∆λ = ∆ − 1. Following the line of argumentation from the scaling hypothesis
Z[λ∆, `] = Z[q−∆λλ∆, q`], q ∈ R+ [174] we would like the UV independent part of
logZ[λ∆, `] to be extensive in the volume. Given that Z[λ∆, `] is dimensionless,
we must have

logZ[λ∆, `] = N `2(λ∆)ν∆ , ν∆ ≡ 1/(1−∆) . (3.6.10)

N is a normalisation constant independent of λ∆. Notice that the critical expo-
nent associated to the identity operator is simply ν0 = 1. Furthermore, for ∆ > 1,
corresponding to an irrelevant O∆, the critical exponent would be negative.

2d CFT on a fluctuating background. We now consider a two-dimensional
CFT with central charge cm < 1 coupled to two-dimensional gravity. Integrat-
ing over all metrics renders the extensivity condition of the scaling hypothesis
somewhat subtle. In the Weyl gauge the two-dimensional metric is chosen to be
gij = e2bϕg̃ij . The problem then maps to studying the matter CFT with central
charge cm, trivially coupled to a Liouville CFT with central charge cL = 26− cm,
and the bc-ghost system with central charge cg = −26 [8]. The Liouville action is
given by [8]

SL[ϕ,Λ] = 1
4π

∫
d2x
√
g̃
(
g̃ij∂iϕ∂jϕ+QR[g̃ij ]ϕ+ 4πΛ e2bϕ) , (3.6.11)

where g̃ij is taken to be the round metric on S2 such that R[g̃ij ] = 2 and Λ ≥ 0 is
the cosmological constant. Moreover, Q = b+ 1/b with [33,63,66,68]

b =
√

25− cm −
√

1− cm
2
√

6
, Q =

√
25− cm

6 . (3.6.12)

The residual gauge invariance in the Weyl gauge enforces that all operators of the
combined theory are spinless primaries with conformal dimension ∆ = 1. In the
trivial ghost sector this is achieved by dressing the matter primaries of weight ∆m
by a Liouville operator of weight ∆L = 1−∆m.

Unitary 2d CFT on a fluctuating background. We now specify to a unitary
two-dimensional CFT with cm ∈ (0, 1). The simplest critical exponent corresponds
to the matter identity whose coupling is Λ. The partition function of interest is

Z[Λ] =
∫

[Dϕ]e−SL[ϕ,Λ] = ΛQ/b . (3.6.13)
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We indicate the partition function on a fluctuating background by Z. A simple
derivation of the above follows from performing a shift in ϕ [29, 30]. Due to the
Liouville dressing, the critical exponent of the identity is no longer simply given
by ν0 = 1 (3.6.10), but rather [143]

νgrav ≡ Q/b = 1
12
√

(1− cm) (25− cm) + 25− cm
12 . (3.6.14)

The critical exponent for νgrav informs us how to modify the scaling behaviour of
length upon coupling to gravity. On a fixed background the total scaling dimension
of a length scale is minus one, whereas now we must take it to be νgrav/2. νgrav
is also known as the string scusceptibility.

Now, rather than the identity we consider turning on a matter conformal primary
O∆. The partition function of interest, in the Weyl gauge, becomes

Z[λ∆] =
∫

[Dϕ][DΦ]e−SL[ϕ,Λ=0]−SCFT[Φ]−λ∆
∫

d2x
√
g̃ e2σ∆ϕO∆ , (3.6.15)

where we set Λ = 0 since we are interested in turning on O∆ alone. We further
have

σ∆ ≡
√

25− cm −
√

24∆ + 1− cm
2
√

6
, (3.6.16)

which ensures that the matter operator is dressed appropriately. We note that
b = σ∆=0. Upon shifting ϕ→ ϕ− (log λ∆)/2σ∆, [29,30] and noting that the path-
integration measure over ϕ is invariant under such shifts, it is straightforward to
deduce

Z[λ∆] = N (λ∆)Q/σ∆ , (3.6.17)

where N is a λ∆ independent normalisation. For more details we refer to [63].

M2m−1,2 on a fluctuating background. For non-unitary models with cm ≤ 0,
further care must be taken due to the presence of operators with negative confor-
mal dimension. Our main interest is in M2m−1,2, whose most relevant operator
Omin has negative conformal dimension ∆min (3.6.6). The lowest weight opera-
tor replaces the identity in that all other operators are ‘irrelevant’ with respect
to Omin. Thus, in the non-unitary case we might be inclined [16, 110] to replace
(3.6.13) with

Z[Λmin] =
∫

[Dϕ][DΦ]e−SL[ϕ,Λ=0]−SCFT[Φ]−Λmin
∫

d2x
√
g̃ e2σminϕOmin , (3.6.18)

where σmin ≡ σ∆min (3.6.16). Using similar techniques to those discussed previ-
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ously one finds
Z[Λmin] = (Λmin)Q/σmin . (3.6.19)

In effect, one is replacing σ∆=0 with σ∆min (3.6.13). Note that

Q/σmin = 2 + 1/m . (3.6.20)

Turning on other operators Or,1 while setting Λmin = 0 leads to

Z[λ∆r,1 ] = N
(
λ∆r,1

)Q/σ∆r,1 , Q/σ∆r,1 = (1 + 2m)/(r + 1) , (3.6.21)

where r = 1, 2, . . . ,m− 2. Finally we note the useful relation

σmin/σ∆r,1 = m/(1 + r) , r = 1, . . . ,m− 2 . (3.6.22)

Summary. In summary, we obtain (m − 1) critical exponents: Turning on the
operator of lowest conformal dimension we obtain 2+1/m (3.6.20). Turning on
any of the other (m − 2) operators we obtain the critical exponents m/(1+r),
r = 1, . . . ,m− 2 (3.6.22).

A fixed “area” perspective. In order to compare to the perturbative discus-
sion of section 3.4 it proves instructive to consider the gravitational path integrals
with a constraint fixing the total area of space to a fixed value υ. This can be
achieved by inserting a δ-function inside of the gravitational path-integral (3.6.9).
For two-dimensional conformal field theories with cm < 1, we have

Zarea[υ] = N υ−1−Q/b × e−υΛ ,

∫
d2x
√
g̃ e2bϕ = υ . (3.6.23)

where N is independent of υ and Λ. Integrating Zarea[υ] against υ, we recover
Z[Λ] (3.6.13). For cm = 0, we note that 1 + Q/b = 7/2, the value observed in
(3.3.5). For cm = c(2m−1,2) in (3.6.4), we find instead 1 + Q/b = 3/2+m. Let
us now consider those non-unitary minimal models whose lowest weight operator
Omin is different from the identity. We can also consider fixing∫

d2x
√
g̃Omin e

2σminϕ = υ . (3.6.24)

This leads to the following partition function

Zmin[υ] = N υ−1−Q/σmine−υΛmin . (3.6.25)

For the Lee-Yang model M5,2 with c(5,2) = −22/5, we have 1 +Q/σmin = 10/3.
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For general M2m−1,2 we have 1 +Q/σmin = (3 + 1/m).

3.6.3 Comparison to matrix integrals
At this stage it behooves us to compare our results to those of the multicritical
matrix integrals. We take inspiration from ’t Hooft’s diagrammatic picture [78],
whereby the perturbative diagrams of the matrix integrals correspond to discre-
tised Riemann surfaces. Care must be taken in identifying the appropriate quan-
tities between the matrix integrals and the continuum picture.

M3,2 on a fluctuating background. Let us begin by discussing the simplest
case, namely m = 2. In this case the matrix diagrammatics (3.3.5) indicates that
the dependence on the number of vertices k goes as ∼ k−7/2(α2/α

(2)
2,c)−k at large

k. One is motivated to identify the number of vertices, k, with the area of the
surface in the continuum picture. Both are extensive quantities sensitive to the
total number of points on the surface. In doing so, one finds a match between the
behaviour of the fixed area partition function (3.6.23) and the matrix diagrammat-
ics. This suggests that the identification of k in the matrix diagrammatics and υ

in the continuum is indeed sensible.7 Going from the diagrammatics to the critical
exponent is simply a matter of integrating (summing) over υ (k), and identifying
Λ ∝ (α2 − α(2)

2,c).

M2m−1,2 on a fluctuating background. We would like to compare the asymp-
totics at large vertex number from the multicritical matrix diagrammatics to the
continuum picture. Part of the issue is that there are multiple couplings, and con-
sequently multiple paths in coupling space to reach the multicritical point. Along
the path (3.4.28) which simultaneously tunes several couplings, the growth of ver-
tices goes as ∼ k−(3+1/m)tk (3.4.37). Recalling (3.6.25) and noting that for general
m, 1 + Q/σmin = (3 + 1/m), we find evidence that such a tuning corresponds to
fixing the extensive quantity (3.6.24), rather than the area (3.6.23). The remain-
ing task is to identify Λmin, and the additional (m − 2) couplings λ∆r,1 from the
perspective of the multicritical matrix integral. This is precisely the problem of
non-analyticities solved in section 3.5. The non-analyticities found in the mth mul-
ticritical matrix integral correspond to the values Q/σmin (3.6.20) and σmin/σ∆r,1 ,
r = 1, . . . ,m− 2 (3.6.22) arising from M2m−1,2 on a fluctuating background. We
thus identify Λmin = ε in (3.5.32), λ∆r,1 = εσmin/Q and r′ = m− r − 1 in (3.5.21).
We observe that σmin/Q is independent of r. Further to this, our hypersurface

7Although we do not discuss it here, this identification continues to be sensible for those
matrix integrals argued to describe the unitary minimal models coupled to gravity. As an explicit
example, the M4,3 model on a fluctuating background was studied in [119], leading to the fixed
area behaviour ∼ υ−10/3 which agrees with the prediction from the corresponding two-matrix
model.
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equation (3.5.15) provides the detailed relation between the matrix deformation
and the corresponding matter primary.

3.7 Remarks on a Hilbert space
In this section we remark on the Hilbert space of M2m−1,2 coupled to two-
dimensional gravity, and its manifestation from the matrix integral perspective.

3.7.1 S2 considerations
On a fixed background,M2m−1,2 has a finite number of primaries equal to n2m−1,2 =
(m− 1), each accompanied by an infinite tower of descendants. On a fluctuating
background these operators must satisfy constraints arising from the diffeomor-
phism invariance. Additionally we need to consider the contribution from the
Liouville and bc-ghost sector.

Concretely we must identify the set of BRST invariant operators. This was exam-
ined in early work of Lian-Zuckerman (LZ) [230] and subsequent work [231–233].
Under the assumption that the Liouville sector can be treated as a linear dilaton
theory, it was noted that the BRST cohomology comprises of an infinite collection
of operators. In particular LZ operators have a non-trivial ghost number and gen-
erally contain matter and Liouville descendants. Though also infinite, this infinity
is far smaller than the infinite operator content of the matter theory on a fixed
background arising from the Virasoro descendants. The origin of these operators is
intimately connected to the presence of null operators in the Liouville sector [236]8
and the matter sector. In conformal gauge ds2 = e2bϕ(z,z̄)dzdz̄ the LZ operators
are given by

RLZ
r,±(t) ≡ OLZ

r,±(b, c, ϕ,Φ; t)⊗ ŌLZ
r,±(b̃, c̃, ϕ,Φ; t)⊗Or,1 ⊗ e2σLZϕ , (3.7.1)

where t ∈ Z and ± denote the particular LZ operator. The holomorphic conformal
dimensions of these operators are given by

∆LZ
r,±(t) + ∆r,1 + σLZ(Q− σLZ) = 0 , (3.7.2)

where Q = b + b−1 and LZ operators are graded by the ghost number. The LZ
weights for M2m−1,2 are given by

∆LZ
r,±(t) = Ar,±(t)−∆r,1 − 1 , (3.7.3)

8Indeed, one can always find primary operators in Liouville theory with central charge cL =
26− c(2m−1,2) whose conformal dimension lies on one of the values in the Kac table, and hence
admit null states in their Verma module. The null operators are themselves primary.
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where Ar,±(t) are given by [170]

Ar,±(t) ≡ (4(2m− 1)t+ 2r ± (2m− 1))2 − (2m− 3)2

8(2m− 1) . (3.7.4)

The anti-holomorphic conformal dimension has to be equal to the holomorphic
conformal dimension. The argument t is related to the ghost number, whereas the
subscript ± indicates whether the ghost number is even (+) or odd (−).

Example M3,2. For M3,2 the LZ operators with ghost number (nb, nc) = (0, 0)
and (nb, nc) = (0, 2) respecetively associated to the matter primary O1,1 are
[231,233]

RLZ
1,+(0) = I , RLZ

1,+(0) = c(z)∂2c(z)c̃(z̄)∂2c̃(z̄)⊗ e2Qϕ , (3.7.5)

with σLZ = 0 and σLZ = Q respectively. The operators (3.7.5) have non-trivial
ghost number as compared to the vertex-operators considered in section 3.6 whose
BRST invariant form takes OLZ

1,−(b, c, ϕ,Φ; 0) = c and ŌLZ
1,−(b̃, c̃, ϕ,Φ; 0) = c̃ and

σLZ = b. On the other side the LZ operators with lowest ghost number (nb, nc) =
(1, 1) associated to the matter primary O1,1 for M3,2 is

RLZ
1,+(−1) =

(
b(z)c(z)−b−1∂ϕ(z, z̄)

) (
b̃(z̄)c̃(z̄)− b−1∂̄ϕ(z, z̄)

)
⊗e−bϕ(z,z̄) , (3.7.6)

where combining (3.6.12) with c(3,2) (3.6.7) we have b =
√

2/3. Besides the oper-
ator (3.7.6) there exists another operator RLZ

1,+(−1) with σLZ = 2/b. To show the
BRST invariance of these operators, it is useful to recall the (holomorphic) BRST
current [69]

JBRST = cTϕ + 1
2 : cT g : +3

2 ∂
2 c , (3.7.7)

where Tϕ and T g are the Liouville and ghost stress tensor respectively

Tϕ = −(∂ϕ)2 +Q∂2ϕ , T g =: (∂b)c : −2∂ (: bc :) . (3.7.8)

In particular we find [231]

δRLZ
1,+(−1) = c(0)c̃(0)⊗

(
3
2 L

2
−1 + L−2

)(
3
2 L̃

2
−1 + L̃−2

)
e−bϕ(0,0) , (3.7.9)

where Ln, L̃n are the Virasoro generators, satisfying

Ln ≡
∮
C

dz
2πiz z

n+2Tϕ(z) , L̃n ≡
∮
C

dz̄
2πiz̄ z̄

n+2T̃ϕ(z̄) . (3.7.10)
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In other words the BRST variation leads to a null operator.

We note that we consider the stress tensor of the Liouville action arising when
assuming it is a linear dilaton theory. This is justified when calculating the crit-
ical exponents (3.6.18) for which we set the cosmological constant to zero. The
BRST transformation of a LZ operator can produce null operators in the matter
or Liouville sector [231], which must subsequently be set to zero.

One may ask whether the LZ operators contribute additional critical exponents
for the theory on S2. By the Riemann-Roch theorem, non-vanishing bc-correlation
functions on a compact Riemann surface with Euler characteristic χ require [69]

nc − nb = 3
2χ . (3.7.11)

For S2 we have χ = 2. Given that LZ operators have a non-trivial ghost number,
generically different from nc − nb = 3, we expect no new critical exponents from
the LZ operators on an S2 topology.

Assuming that some form of the operator-state correspondence holds for S2 we
are thus led to conclude that the associated Hilbert space is finite-dimensional.
This might be related to observations on de Sitter space [17,18].

Contrarily to S2 the torus T 2 has Euler characteristic χ = 2. As a consequence of
the Riemann-Roch theorem (3.7.11) we thus infer that the LZ operators contribute
to the torus partition function.

3.7.2 T 2 considerations

On the cylinder, the Hilbert space HT 2 lives on spatial S1 constant time slices.
States |Ψ〉 ∈ HT 2 in the trivial ghost sector living on these spatial slices are subject
to the Virasoro constraints(

Ltot
0 + L̃tot

0 − 2
)
|Ψ〉 = 0 ,

(
Ltot

0 − L̃tot
0
)
|Ψ〉 = 0 , (3.7.12)

where Ltot
n and L̃tot

n are the Virasoro generators for the matter and Liouville sec-
tor. The first equation in (3.7.12) is what replaces the Hamiltonian constraint in
canonical quantum gravity [237], while the second replaces the spatial diffeomor-
phism constraint. The above equations are the state analog of the constraint that
vertex operators with trivial ghost contribution must have ∆ ≡ ∆L + ∆r,1 = 1
and ∆ = ∆̄. Other states in HT 2 , as first pointed out by Lian-Zuckerman [230],
may also include non-trivial ghost excitations.

One way to characterise HT 2 is through the torus partition function [228, 229].
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For fixed modular parameter τ = τ1 + iτ2 the states in the BRST cohomology
contribute

Zfixed[τ2] = (qq̄) 1
24 (26−1−c(2m−1,2))

m−1∑
r=1

∑
t∈Z

(
(qq̄)∆LZ

r,+(t)+∆r,1 + (qq̄)∆LZ
r,−(t)+∆r,1

)
,

(3.7.13)
where q = e2πiτ2 and we used (3.7.4). The overall shift encodes the Casimir energy
from the ghost, Liouville and matter sector. The τ1-independence of Zfixed(τ2) is
due to the diffeomorphism constraint (3.7.12).

What remains to be done is integrate over the modular parameter τ2 and the zero
modes of the Liouville sector

T [Λ] = log Λ
∫
F

d2τ

τ
3/2
2

Zfixed(τ2) . (3.7.14)

F is the fundamental domain of the modular group. The power of τ2 is fixed by
modular invariance and stems from the various zero modes in the bc-ghost and
Liouville sector. The logarithm in Λ stems from the volume of the Liouville zero
mode, and essentially encodes the fact that the Liouville interaction imposes a
cutoff in the Liouville field space. Evaluating T [Λ] leads to [228]

T [Λ] = 2m− 2
24(2m− 1) log Λ . (3.7.15)

Comparing to the first non-planar contribution of the matrix integral as presented
in appendix 6 we see that under the identification Λ = ε the results agree (6.0.39).
In this way the LZ states appear in the leading non-planar contribution of the mth

multicritical matrix integral.

3.8 Discussion and open questions

We summarise some open questions and speculative remarks.

The large m limit. In [20] it has been observed that upon coupline M2m−1,2
to gravity whilst fixing the area υ and turning on only the identity operator of
M2m−1,2 exhibits a saddle point solution in the large m limit. This saddle point
solution is the round metric on S2, which is Euclidean dS2. Motivated by this, this
work provides the basis to understand this observation from the matrix integral
point of view. Recalling (3.5.21) for r′ = m− 2 we recover Zamolodchikov’s con-
tinuum critical exponent from a matrix integral perspective. In the large m limit
and upon tuning the couplings to the multicritical point (3.2.13) the polynomial
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Vm(λ,α) (3.2.3) reduces to9 [82]

lim
m→∞

Vm(λ,αc) = 1
2λ

2
2F2

(
1, 1; 3

2 , 2;−λ
2

4

)
. (3.8.1)

Moreover the width of the eigenvalue distribution (3.2.19) scales with m and so
becomes unbounded in the large m limit. We further remark that the most fine-
tuned path where we switch on all the hypersurfaces and s ∈ H(1)

m ∪ . . . ∪H(m−2)
m

(3.5.15) corresponds to the identity operator in the continuum theory.

Non-unitarity & torus Hilbert space. As a consequence of the Riemann-Roch
theorem (3.7.11) the LZ operators contribute on T 2. In particular this implies that
we have to deal with descendants of the Virasoro primaries of M2m−1,2. These
are negative norm operators. The consequences of the non-unitarity from both the
point of view of the MMI and the point of view of the continuum theory remain
to be explored.

Diagrammatics & critical exponents. To evaluate the double sum (3.4.15),
capturing the diagrammatic expansion of the m = 3 model, we introduced the
path γ

(3)
? (3.4.7) in coupling space. This allowed us to explicitly determine the

radius of convergence and for m ≥ 3 using γ
(m)
? (3.4.28) we observed the criti-

cal exponent F (0)
m,n.a.(α)

∣∣
γ

(m)
?
∼ ε2+1/m (3.4.37). However introducing the single

parameter t ∈ [0, 1] connecting the origin in coupling space to the multicritical
point prevents from observing the other (m− 2) critical exponents m/(m− r′),
r′ = 1, . . . ,m − 2, from a diagrammatic perspective. It would be interesting to
uncover these.

Hartle-Hawking & topology. As a final remark, it is interesting to note that
the partition function Z[Λ] on S2 only dominates (in absolute value) over the par-
tition function T [Λ] on T 2 for sufficiently large Λ, while for small enough Λ > 0,
the T 2 partition function dominates. It would be interesting to understand if this
has any consequences for the Hartle-Hawking picture [204, 205]. Further to this,
being matrix integrals rather than matrix path integrals there is no a priori in-
dication for the existence of Hilbert space from the matrix integral perspective.
It would be interesting to uncover a Lorentzian picture directly from the matrix
integral [203].

9We would like to acknowledge Jorge Russo for useful discussions.
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4 Gravitational anomalies in
nAdS2/nCFT1

4.1 Introduction

AdS2 quantum gravity plays an important role in our understanding of black holes.
A prominent example is the construction of the quantum entropy function via
AdS2/CFT1 [11, 12], which encodes classical and quantum properties of extremal
black holes in agreement with our microscopic understanding in string theory
[238–240]. Unfortunately, relative to higher dimensional instances of AdS/CFT,
we face some serious obstructions in building a holographic description of AdS2.
One crucial obstacle is that its symmetry prevents finite energy excitations, so
capturing non-trivial dynamics requires a deformation that destroys the AdS2
background [13,14].

A proposal addressing this obstacle is known as the nAdS2/nCFT1 correspon-
dence [9, 10]. The first insights relied on studies of 2D models of gravity coupled
to a scalar field (i.e., a dilaton), which are colloquially referred to as JT grav-
ity [241, 242]. Some generalisations are those in [243]. In these models the non-
trivial profile of the dilaton breaks explicitly the conformal symmetry of AdS2,
while being at the same time tied to the large diffeomorphisms at the boundary
of AdS2. Moreover, these diffeomorphisms induce an anomaly via a Schwarzian
derivative. This symmetry breaking pattern is important: It governs the grav-
itational backreaction, such as the thermodynamic response and the quantum
chaos characterising black holes. And so the persistent trend in nAdS2 hologra-
phy, coined with a ‘n’ since we are ‘near’ to our original configuration, is that
the deviations away from extremality are controlled by this pattern. For a review
see [245].

The application of this new framework to black hole physics has shown that, while
JT models capture common features [40, 248–250], the additional parameters for
more general black holes display interactions that are not present in JT gravity
[251–256]. This makes clear that there is new phenomena to be explored, that
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4. Gravitational anomalies in nAdS2/nCFT1

simpler models do not take into account.

Our interest therefore is to further explore the properties of nAdS2/nCFT1 with
the goal of building a more refined understanding of the dynamics near the horizon
of (near-)extremal black holes. We will revisit the renown BTZ black hole in AdS3
gravity [39, 257] using the framework of nAdS2 holography. We will treat the
angular direction in BTZ as a compact direction along which we will dimensionally
reduce to two dimensions. The resulting 2D theory of gravity contains, in addition
to the metric, a gauge field and a dilaton as expected in Kaluza-Klein theory.
Our work builds upon the developments in [40, 258], where the 2D holographic
dictionary was studied by dimensionally reducing the 3D Einstein-Hilbert action
with a negative cosmological constant. Other relevant work includes [259], which
focuses on the effects of U(1) Chern-Simons fields in 2D; see also [260–262].

One question we investigate is the relation between the nCFT1, that describes
the near horizon physics of near-extremal BTZ, to the parent CFT2, that is dual
to AdS3. This relation is subtle: The conformal (Weyl) anomaly in AdS3/CFT2
can easily be confused with the anomaly appearing in nAdS2/nCFT1. Both are
controlled by a Schwarzian derivative after all.1 In the present paper we explore
this relation by adding to the Einstein-Hilbert action a gravitational Chern-Simons
term: The resulting theory is topologically massive gravity (TMG). In the context
of AdS3/CFT2, it is known that this theory contains both a conformal and grav-
itational anomaly, reflected in the boundary theory as a violation of parity that
induces cL 6= cR [266]. Here cL/R are the left/right central charges in the CFT2.

Considering the gravitational Chern-Simons term adds a layer of complexity which,
despite making some derivations more cumbersome, has several advantages. First,
having a distinction between left and right movers will be particularly important
when considering the thermodynamic responses in the nCFT1, and its comparison
to thermal properties of the CFT2. Second, one of our main results is that the
anomaly of nAdS2/nCFT1 is due to one chiral sector of the CFT2, and hence it
seems misleading to only discuss it as a Weyl anomaly. The dilaton and gauge
field will play a crucial role in this interpretation: Different choices of boundary
conditions will impact the holographic interpretation we aim to build. Our strategy
therefore will be to divide the analysis of holographic properties into two:

UV perspective: This portion focuses on backgrounds in 2D that naturally up-
lift to asymptotically AdS3 spacetimes. These are the running dilaton back-
grounds in [258]. Our emphasis here is to keep track in the dimension-
ally reduced theory of the conformal and gravitational anomaly present in

1Related work that ties the Schwarzian derivative in the nCFT1 to a Virasoro symmetry in a
CFT2 includes [263–265].
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AdS3/CFT2. In this setup the reduced gravitational Chern-Simon term is
somewhat dull: It modifies the conserved charges, but disappears from the
Ward identities in the lower dimensional theory.

IR perspective: Here the starting point are solutions with a constant dilaton,
leading to locally AdS2 spacetimes. We coin these background IR, since they
uplift to the near horizon physics of nearly extremal black holes. We will
then turn on a deformation for the dilaton that ignites the key features of
nAdS2 holography. The asymptotic behaviour of the fields in this situation
is different relative to the UV, and therefore changes various observables.
In particular, the gravitational Chern-Simons term influences the anomalies
appearing in nAdS2/nCFT1.

Finally, the 2D theory we will consider contains higher derivative interactions, and
hence encapsulates a rich space of solutions. Some related work that studies certain
classes of solutions includes [267–269]. Here we will exclusively focus on solutions of
the 2D theory, that upon an uplift, can be interpreted as locally AdS3 spacetimes;
these are the solutions described in [258]. This subsector is a consistent truncation
of the theory, and it will suffice to explore dynamics related to the BTZ black hole.
There are of course plenty of other interesting configurations, in particular warped
AdS3 black holes [270–272], which would be interesting to study in future work
using the tools of nAdS2 holography.

The paper is organised as follows: In Sec. 4.2 we will introduce the 3D parent
theory, i.e. TMG, alongside with a review of the holographic properties, and
summarise the thermodynamic effects of the gravitational Chern Simons term on
the BTZ black hole. In Sec. 4.3 we perform the dimensional reduction of TMG,
and present its equations of motion in full generality. Sec. 4.4 focuses on holo-
graphic renormalisation of the 2D theory with our UV perspective: After setting
the appropriate boundary conditions in 2D, we evaluate the one-point functions
and derive the renormalised action. In Sec. 4.4.3 we compare the 3D results in
Sec. 4.2.1 to our derivations in Sec. 4.4.2. This comparison illustrates that the 2D
theory washes away some aspects of the gravitational anomaly, which we discuss.
The results relevant to the near horizon physics of the BTZ are in Sec. 4.5. This
is our IR setup, where the starting point are AdS2 backgrounds with a constant
dilaton. We perform holographic renormalisation in nAdS2, and already at early
stages of the computations the differences with the UV become manifest, as we
advertised above. Finally, in Sec. 4.6 we make the symmetry breaking mechanism
and anomalies in the 2D theory manifest. For this we derive the Schwarzian action
for both the UV and IR perspective. We discuss the interpolation between the
UV and IR, and the role these anomalies have in the entropy of 2D black holes.
App. 6 contains useful relations that cast the BTZ black hole as a 2D solution.
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4.2 Topologically massive gravity

The addition of a gravitational Chern-Simons term to the Einstein-Hilbert action
in three dimensions defines topologically massive gravity [44–46]. The action is
given by

I3D = IEH + ICS ,

IEH = 1
16πG3

∫
dx3√−g (R− 2Λ) ,

ICS = 1
32πG3µ

∫
dx3√−gεMNL

(
ΓPMS∂NΓSLP + 2

3ΓPMSΓSNQΓQLP
)
, (4.2.1)

where we have included a cosmological constant Λ, µ is a real coupling with di-
mensions of mass and we are using convention where √−g ε012 = −1. There is also
a gauge theory formulation of this theory, which uses a Chern-Simons description
of 3D gravity plus a constraint [46,273,274].

The equations of motion of TMG read

RMN −
1
2gMNR−

1
`2
gMN = − 1

µ
CMN , (4.2.2)

where CMN is the Cotton tensor,

CMN = ε QP
M ∇Q

(
RPN −

1
4gPNR

)
. (4.2.3)

Note that the equations of motion are covariant, even though the action has explicit
dependence on Christoffel symbols. It is also important to highlight that all locally
AdS3 spacetimes have vanishing Cotton tensor, CMN = 0, which makes them
automatically a solution to (4.2.2).

The novel solutions of TMG are those with CMN 6= 0. An interesting subset of
such solutions, denoted “warped AdS3,” were constructed in [270–272] along with
warped black hole counterparts; see also [275–278]. Viewed holographically, the
main feature of asymptotically warped AdS3 geometries is that they do not obey
Brown-Henneaux boundary conditions [41]. Indeed, the nature and symmetries of
their holographic descriptions is more intricate than those in AdS3 [279–283]. Our
focus here will be on locally AdS3 configurations; we will postpone the study of
warped AdS3 spacetimes for future work.
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4.2. Topologically massive gravity

4.2.1 Holographic renormalisation

Some of the distinctive properties of the gravitational anomaly in TMG are very
manifest in AdS3/CFT2 [266, 284–288]. In this section we will provide a quick
summary of the resulting boundary stress tensor for TMG, which is mainly based
on [266,288]. We will focus only on locally AdS3 solutions.2

The application of Brown-Henneaux boundary conditions for TMG shows that the
classical phase space of asymptotically AdS3 (AAdS3) backgrounds is organised in
two copies of the Virasoro algebra with central charges

cR = 3`
2G3

(
1− 1

µ`

)
, cL = 3`

2G3

(
1 + 1

µ`

)
. (4.2.4)

This result uses the Fefferman-Graham expansion of the 3D metric, which is given
by

ds2
3 = dη2 + gij(η, x)dxidxj , i, j ∈ {0, 1} ,

gij(η, x) = g
(0)
ij (x) e2η/` + g

(2)
ij (x) +O(e−2η/`) , (4.2.5)

where as usual xi denotes the boundary coordinates. In this context, the boundary
stress tensor for the 3D theory is defined as the on-shell variation of the renor-
malised action with respect to the boundary metric

δIren
3D = 1

2

∫
dx2
√
g(0) T ij δg

(0)
ij . (4.2.6)

Here Iren
3D contains, in addition to (4.2.1), the Gibbons-Hawking-York term, and a

boundary cosmological constant, i.e. the standard counterterms in the holographic
renormalisation of the 3D Einstein-Hilbert action with AAdS3 boundary conditions
[292–294]. One very interesting aspect of TMG is that the gravitational Chern-
Simons term does not lead to new divergences: the variation with respect to g(0)

ij

of ICS is finite as η →∞. There are however some ambiguities in the variation of
ICS, due to the choice of renormalisation scheme in theories with a gravitational
anomaly; we will review those choices in the following.

2At µ = 1, i.e. chiral gravity, there are some additional subtleties due to an additional
logarithmic branch in the classical phase space. This introduces solutions that are not locally
AdS, while still being asymptotical AdS for appropriate boundary conditions. We will not dwell
with this special point, and instead refer the reader to [289–291], and references within, for
holographic properties of chiral gravity.
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Consistent stress tensor [288]. The stress tensor that arises from a well de-
fined variational principle is given by

Tij = 1
8πG3`

(
g

(2)
ij − g

(0)
ij g

(2)
kl g

kl
(0)

)
− 1

16πG3µ`2

(
g

(2)
ik εljg

kl
(0) + g

(2)
jk εlig

kl
(0)

)
− 1

16πG3µ
Aij ,

(4.2.7)
where the additional term

Aij = 1
4ε

klDk∂lg
(0)
ij −

1
8ε

k
i ε

l
j ε

mnDl∂mg
(0)
nk −

1
8ε

k
j ε

l
i ε

mnDl∂mg
(0)
nk , (4.2.8)

solely depends on the boundary metric g(0)
ij . Here εij is the epsilon tensor for the

boundary metric, and we set
√
−g(0)ε01 = −1; Di is the covariant derivative with

respect to g(0)
ij .

The trace anomaly and Ward identity for this form of the stress tensor read

T ii = c

24πR
(0) + c̄

12πA
i
i ,

DiT
ij = − c̄

24πg
ij
(0)ε

kl∂m∂kΓmil , (4.2.9)

where R(0) denotes the Ricci scalar for g(0)
ij and we also used (4.2.4) and introduced

c = (cL + cR)/2 and c̄ = (cL − cR)/2. Casting the diffeomorphism anomaly as in
(4.2.9) is in accordance with the Wess-Zumino consistency conditions, albeit the
expressions are not covariant. The lack of covariance is reflected on the failure of
Aij to be a tensor.

Covariant stress tensor [266,295]. The term Aij in the stress tensor (4.2.7)
does not carry information that depends on the “state”, i.e. it does not depend
on g

(2)
ij . If one removes Aij , the resulting holographic stress tensor reads

tij = 1
8πG3`

(
g

(2)
ij − g

(0)
ij g

(2)
kl g

kl
(0)

)
− 1

16πG3µ`2

(
g

(2)
ik εljg

kl
(0) + g

(2)
jk εlig

kl
(0)

)
.

(4.2.10)

The trace anomaly and Ward identity now are

tii = c

24πR
(0) , Djt

ij = c̄

24π ε
ij∂jR

(0) . (4.2.11)

In contrast to (4.2.9), these expressions are covariant with respect to the boundary
metric, which makes this stress tensor receive the name ‘covariant’. The sacrifice
here is that it does not satisfies the Wess-Zumino conditions.
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Conserved and Lorentz violating stress tensor [295]. Finally, one can also
insist that the stress tensor is conserved. From (4.2.11) we see that this is easily
achieved by defining

t̂ij = tij + `

16πG3µ
εijR

(0) . (4.2.12)

However, now we have an object that is not symmetric, which is a significant
sacrifice in this definition. From here it is natural to cast t̂âi = e âj t

j
i, where t̂âi is

the response of the action to variations of the vielbeins e âi . Note that t̂âi is also
not invariant under local Lorentz transformations. At the price of loosing Lorentz
invariance, the relevant identities for (4.2.12) are

ε iâ t̂
â
i = c

12πR
(0) , Dj t̂âj = 0 . (4.2.13)

4.2.2 BTZ black hole

In this section we introduce the BTZ black hole in TMG and review some of its
thermodynamic properties. The metric of the rotating BTZ solution is [257]

ds2
3 = −

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
`2ρ2 dt2 + `2ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)dρ2 + ρ2
(

dϕ− ρ+ρ−
`ρ2 dt

)2
,

(4.2.14)

where ρ± are the position of the outer/inner horizon; without loss of generality,
we will pick ρ+ > ρ− > 0. In the absence of the gravitational Chern-Simons term,
mass and angular momentum are given by

m =
ρ2

+ + ρ2
−

8G3`2
, j = ρ+ρ−

4G3`
. (4.2.15)

The additional Chern Simons term contributes to the conserved charges in TMG.
In particular the gravitational mass and angular momentum read

M = 1
24`3

(
cR (ρ+ + ρ−)2 + cL (ρ+ − ρ−)2) ,

J = 1
24`2

(
cR (ρ+ + ρ−)2 − cL (ρ+ − ρ−)2) . (4.2.16)

It is worth noting that all variants of the boundary stress tensor presented above
–i.e. (4.2.7), (4.2.10) and (4.2.12)– report the same answer for M and J . It is also
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instructive to relate the charges in TMG to those in (4.2.15)

M`− J =
(

1 + 1
µ`

)
(m`− j) ,

M`+ J =
(

1− 1
µ`

)
(m`+ j) . (4.2.17)

Thermodynamics near Extremality
An important component of our holographic analysis of nAdS2 encompasses the
thermodynamic response in the presence of an irrelevant deformation. In the
context of the 3D BTZ black hole this would correspond to the entropy near-
extremality, which we review here. More details on this limit are presented in
App. 6.

The Wald entropy of the BTZ black hole in TMG receives a non-trivial contribution
which has been well documented and studied in [42, 285, 296–299]. The resulting
expression is

S = π

6` (cL (ρ+ − ρ−) + cR (ρ+ + ρ−)) . (4.2.18)

Using the expression for mass and angular momentum in (4.2.16), it is straight
forward to verify the first law

dM = TdS − Ω dJ , (4.2.19)

where the temperature and angular velocity are

T =
ρ2

+ − ρ2
−

2π`2ρ+
, Ω = − ρ−

`ρ+
. (4.2.20)

Note that these potentials are independent of the gravitational couplings, G3 and
µ, as expected since they are completely determined by the Euclidean regularity
of the line element (4.2.14).

At extremality we have ρ+ = ρ− ≡ ρ0. In this limit it follows from (4.2.20) that
the temperature is zero, while the mass and entropy are

Mext = cR
6`3 ρ

2
0 , Sext = 2π

√
cR
6 Mext` . (4.2.21)

Near extremality is a small deviation of ρ+ away from its extremal value ρ0,
i.e. ρ+ = ρ0 + δ with δ a small parameter. In particular, we will deviate from
extremality such that we increase the temperature T slightly away from zero, which

146



4.3. 2D Theory

increases the mass M of the black hole while keeping the angular momentum J

fixed. The implementation of this limit gives a mass increase by

∆E = M −Mext = 1
Mgap

T 2 + . . . , (4.2.22)

where the dots indicate that this is an expansion around small values of T . The
response of the mass in this limit is quadratic with T as expected [40], where the
coefficient that relates them is the mass gap

Mgap = 8G3

π2`2
1(

1 + 1
µ`

) = 12
π2`cL

. (4.2.23)

It follows that the response of the entropy (4.2.18) near extremality is linear in
the temperature

S = Sext + 2
Mgap

T + . . . . (4.2.24)

It is useful to cast these expressions in the language of the dual CFT2. In this
context the entropy (4.2.18) can be identified with the density of states distinctive
of the Cardy regime,

S = SL + SR , (4.2.25)

where the contribution to the entropy splits into a left and right moving part given
by

SL/R = 2π
√
cL/R

6 hL/R , hL/R = 1
2(M`∓ J) . (4.2.26)

At extremality, we have SL = 0 and SR = Sext. The first deviation away from
extremality in (4.2.24) is due to the response of SL, while SR remains dormant.
The addition of the gravitational Chern-Simons term gives a way to disentangle
the role of right versus left degrees of freedom in the CFT2. And the interpre-
tation is rather clear: The right movers control the ground state degeneracy at
zero temperature, while the excitations near extremality are governed by the left
moving excitations.

4.3 2D Theory
In this section we describe the 2D theory obtained via a dimensional reduction of
(4.2.1). The ansatz for the 3D metric is

ds2
3 = gMNdxMdxN = gµνdxµdxν + e−2φ (dz +Aµdxµ)2

. (4.3.1)
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Here z is a compact direction with period 2πL; the Greek indices run along the
two dimensional directions, µ, ν = 0, 1. From the two dimensional perspective, gµν
is the metric, Aµ is a gauge field and φ will be interpreted as the dilaton field.

The Kaluza-Klein reduction of I3D, while tedious, is straight forward. The resulting
action is [42,43]

I2D = IEMD + IrCS , (4.3.2)

where the first term, coming from the Einstein-Hilbert piece in (4.2.1), reads

IEMD = L

8G3

∫
d2x
√
−g e−φ

(
R+ 2

`2
− 1

4e
−2φ FµνF

µν

)
, (4.3.3)

and the piece related to the gravitational Chern-Simons theory is

IrCS = L

32G3µ

∫
d2x e−2φεµν

(
FµνR+ FµρF

ρσFσν e
−2φ − 2FµνD2φ

)
. (4.3.4)

Here εµν is the epsilon symbol, where ε01 = 1, and Dµ is the covariant derivative
with respect to the two dimensional metric gµν .

In the following, we will refer to (4.3.3) as the Einstein-Maxwell-Dilation theory
(EMD), which captures the two derivative dynamics of the dimensional reduction.
The action (4.3.4) will be denoted as a reduced-Chern-Simons term (rCS), which
contains the dynamics due to the 3D gravitational anomaly. As observed in [42],
it is interesting to note that (4.3.4) is gauge and diffeomorphism invariant; this
is related to the fact that the 3D equations of motion (4.2.2) are diffeomorphism
invariant.

The equations of motion are

εαβ∂β

(
e−3φf + 1

2µ e
−2φ (R+ 3 e−2φf2 − 2D2φ

))
= 0 ,

e−φ
(
R+ 2

`2
+ 3

2 e
−2φf2

)
+ 1
µ
e−2φf

(
R+ 2 e−2φf2 − 2D2φ

)
+ 1
µ
D2 (e−2φf

)
= 0 ,

(4.3.5)

which are the Maxwell and dilaton equations respectively. The variation with
respect to the metric gives

gαβ

(
D2e−φ − 1

`2
e−φ + 1

4 e
−3φf2

)
−DαDβe

−φ
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+ 1
2µ

(
(Dαe

−2φf)Dβφ+ (Dβe
−2φf)Dαφ−DαDβ(e−2φf)

)
+ 1

2µgαβ
(1

2 e
−2φfR− e−2φfD2φ−Dµ(e−2φf)Dµφ+D2(e−2φf) + e−4φf3

)
= 0 .

(4.3.6)

It is also useful to record the trace of Einstein’s equation, which reads

D2e−φ − 2
`2
e−φ + 1

2 e
−3φf2 + 1

2µ e
−2φf

(
R+ 2 e−2φf2 − 2D2φ

)
+ 1

2µD
2 (e−2φf

)
= 0 .

(4.3.7)

In the above equations we introduced3

f ≡ 1
2√−g ε

αβFαβ , (4.3.8)

which transforms as a scalar under diffeomorphisms. It is important to emphasise
that (4.3.2) is a consistent truncation of TMG: All solutions to the equations of
motion (4.3.5)-(4.3.6), when uplifted via (4.3.1), are solutions to (4.2.2).

4.4 Holographic renormalisation: UV perspec-
tive

One of our goals is to capture holographic properties of the 2D theory (4.3.2).
We will start by considering backgrounds that have a running dilaton profile. In
particular we will impose boundary conditions on the 2D fields that, upon an uplift
to 3D, are interpreted as asymptotically AdS3 backgrounds. For this reason, we
coin this section a UV perspective to holographic renormalisation.

4.4.1 Background solution
To characterise the space of solutions, we will use throughout the gauge

ds2 = dr2 + γtt dt2 , Ar = 0 . (4.4.1)

Our interest here will be restricted to a very specific class of solutions: backgrounds
that solve the equations of motion of IEMD. As in the three dimensional parent

3In terms of the epsilon tensor, εαβ =
√
−g εαβ , we have

f = −
1
2
εαβFαβ , Fαβ = εαβf ,

where εαβεαβ = −2.
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theory, any solution to IEMD will be a solution to IrCS. The most general solutions
to EMD where constructed in [258], which we briefly summarise here. In EMD
the gauge field is fixed to

Frt = −2Qe3φ√−γ . (4.4.2)

Solutions with a non-constant dilaton profile satisfy

√
−γ = α(t)

λ′(t) ∂te
−φ , (4.4.3)

where the dilaton is

e−2φ = λ(t)2 e2r/`
(

1 + `2

2λ(t)2 m(t) e−2r/` + `2

16λ(t)4

(
`2 m(t)2 − 4Q2) e−4r/`

)
,

(4.4.4)

and we introduced
m(t) ≡ m0 −

(
λ′(t)
α(t)

)2
. (4.4.5)

Here α(t) and λ(t) are arbitrary functions of time that will be identified with the
sources for the metric and dilaton, respectively; m0 and Q are constants. For the
subsequent analysis it will be useful to record the asymptotic behaviour of the
solutions, which reads

e−2φ = λ2e2r/` + `2

2 m +O(e−2r/`) ,

γtt = −α2e2r/` + `2α2

2λ

(
m

λ
− m′

λ′

)
+O(e−2r/`) ,

At = ν + `α

λ3 Qe
−2r/` +O(e−4r/`) . (4.4.6)

The radial dependence of the gauge field At is fixed by (4.4.2); its source is ν(t),
which is locally pure gauge. To be concise we have omitted the explicit time
dependence of α(t), λ(t), m(t) and ν(t), and denoted time derivatives with a prime.
The important feature here, to be contrasted with the asymptotic behaviour in
Sec. 4.5, is that the gauge field has a sub-leading behaviour relative to the dilaton
and 2D metric.

4.4.2 Renormalised observables
An important portion of performing holographic renormalisation is to obtain finite
variations of the action provided a set of boundary conditions.4 In this section we

4We are presenting here a very concise view on holographic renormalisation. For a current
overview of the subject we refer to [300,301].
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will impose boundary conditions compatible with the leading behaviour in (4.4.6),
and require that the renormalised on-shell variation of the action

δIUV
2D =

∫
dt
(
Πtt δγtt + Πφ δφ+ Πt δAt

)
, (4.4.7)

remains finite and integrable. More explicitly, starting from the bulk action (4.3.2),
we will add boundary terms leading to a functional IUV

2D whose variations are finite
when

δγtt = −2α e2r/` δα , δe−φ = er/`δλ , δAt = δν , (4.4.8)

as we take r → ∞. These are our UV boundary conditions. In terms of these
sources, we have

δIUV
2D =

∫
dt
(
TUV δα+ α

λ
OUV δλ− αJ tUV δν

)
, (4.4.9)

where we have introduced the one-point functions conjugate to each source. The
relation to the momenta variables in (4.4.7) is given by

TUV ≡
2
α

lim
r→∞

Π t
t , OUV ≡ −

1
α

lim
r→∞

Πφ , J tUV ≡ −
1
α

lim
r→∞

Πt . (4.4.10)

Recall that our action has a contribution from the EMD action (4.3.3) and the
rCS action in (4.3.4). Holographic renormalisation for EMD, with the boundary
conditions (4.4.8), was done in detail in [258], and we will just highlight the main
results. Varying the action (4.3.3) by itself leads to well known pathologies. These
are cured by addition of the Gibbons-Hawking term

IGH = L

4G3

∫
dt
√
−γ e−φK , (4.4.11)

which leads to Dirichlet boundary conditions on the metric, and the counterterm5

Ic1 = − L

4G3`

∫
dt
√
−γ e−φ , (4.4.12)

that renders the variation of the action finite for (4.4.8). In (4.4.11) K is the
trace of the extrinsic curvature, which for our choice of gauge in (4.4.1) reads
K = ∂r log√−γ. The renormalised action is then

Iren
EMD = IEMD + IGH + Ic1 . (4.4.13)

5As observed in [258], in (4.4.12) there is an additional term due to the conformal anomaly.
It is a total derivative so it won’t contribute to (4.4.10) and it will be ignored in the following.
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The variation of Iren
EMD results in the renormalised canonical momenta

δIren
EMD = L

8G3

∫
dt
√
−γ
(
∂re
−φ − 1

`
e−φ

)
γttδγtt

+ L

4G3

∫
dt
√
−γ
(
K − 1

`

)
e−φδφ− L

4G3

∫
dtQ δAt . (4.4.14)

The contribution of the rCS action to (4.4.7) is rather interesting. The on- shell
variation of IrCS leads to

δIrCS =− L

16G3µ

∫
dt e−2φ (R+ 12Q2 e4φ − 2D2φ

)
δAt

− L

4G3µ

∫
dtQ eφδ

(√
−γK

)
+ L

4G3µ

∫
dt
√
−γ Q

(
(∂reφ)δφ− eφ δ (∂rφ)

)
,

(4.4.15)

where we used (4.4.2) to simplify this expression. This variation does not lead to
divergences for (4.4.8) and falls off in (4.4.6), in accordance with the variation of the
graviational Chern-Simons term in AAdS3 spacetimes. Also, not surprisingly, we
find variations of derivatives of the metric and dilaton. In order to restore Dirichlet
boundary conditions for these fields, we add two extrinsic boundary terms:

Ic2 = L

4G3µ

∫
dt
√
−γ QeφK + L

4G3µ

∫
dt
√
−γ Q∂reφ . (4.4.16)

With this we obtain

δ (IrCS + Ic2) =− L

16G3µ

∫
dt e−2φ (R+ 12Q2e4φ − 2D2φ

)
δAt

+ L

8G3µ

∫
dt
√
−γ Q (∂reφ) γttδγtt

+ L

4G3µ

∫
dt
√
−γ Q

(
2 ∂reφ +Keφ

)
δφ . (4.4.17)

Gathering our contributions from (4.4.14) and (4.4.17) and using (4.4.6) the renor-
malised one-point functions are

TUV = − L`

8G3

m

λ
− L

4G3µ`

Q

λ
,

OUV = L`

8G3

(
m

λ
− m′

λ′

)
+ L

4G3µ`

Q

λ
,

J tUV = L

4G3

Q

α
+ L

8G3µ

m0

α
(4.4.18)
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and the renormalised on-shell boundary action is

IUV
2D = Iren

EMD + IrCS + Ic2

= − L

8G3
`

∫
dt
(
α

λ

[
m0 + 2 Q

µ`2

]
+ λ′2

αλ
+ 2ν

`

[
Q+ m0

2µ

])
. (4.4.19)

The above boundary action clearly satisfies

TUV = δI2D

δα
, OUV = λ

α

δI2D

δλ
, J tUV = − 1

α

δI2D

δν
. (4.4.20)

At this stage, the effect of adding rCS to EMD is to shift m0 → m0 + 2 Q
µ`2 and

Q→ Q+ m0
2µ . Additionally we observe that (4.4.18) obeys

TUV +OUV = L`

4G3

1
α
∂t

(
λ′

α

)
, (4.4.21)

and

∂tJ tUV + J tUV ∂t logα = 0 , ∂tTUV −OUV ∂t log λ = 0 . (4.4.22)

4.4.3 KK reduction of AdS3/CFT2

In this last portion we will dimensionally reduce the different boundary stress ten-
sors in 3D of Sec. 4.2.1, and contrast them against the 2D quantitites in Sec. 4.4.2.
To do so, we will first relate the 3D quantities to our 2D variables. From (4.3.1)
we have

gtt = γtt + e−2φA2
t , gtz = e−2φAt , gzz = e−2φ , (4.4.23)

which in turn implies that the boundary metric of the Fefferman-Graham expan-
sion in (4.2.5) reads

g
(0)
ij =

(
λ2ν2 − α2 λ2ν

λ2ν λ2

)
, (4.4.24)

where we used (4.4.6). In a similar fashion we can read off g
(2)
ij :

g
(2)
tt = `2

2 m

(
ν2 + α2

λ2

)
+ 2 `Q α ν

λ
− `2

2
α2

λλ′
m′ ,

g(2)
zz = `2

2 m , g
(2)
tz = `Q

α

λ
+ `2

2 ν m . (4.4.25)
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With these we will relate variations of the action with respect to g(0)
ij to variations

with respect to α, λ and ν. This leads to

1
2

∫
dx2
√
g(0) T ij δg

(0)
ij = πL

∫
dt α

(
1
α
T3D δα+ 1

λ
O3D δλ− J t3D δν

)
, (4.4.26)

where the relations among each side of this equation are

T3D = −2πL λ

α2 (Ttt + ν2Tzz − 2νTtz) ,

O3D = 2πL
λ

Tzz ,

J t3D = 2πL λ

α2 (Ttz − νTzz) . (4.4.27)

In the 3D theory, the consistent stress tensor (4.2.7) arises from a well defined
variational principle, for which it is meaningful to apply (4.4.27). Using (4.4.23)
and (4.4.6) we obtain

T3D = − L`

8G3

m

λ
− L

4G3µ`

(
Q

λ
+ `

λλ′ν′

2α3

)
,

O3D = L`

8G3

(
m

λ
− m′

λ′

)
+ L

4G3µ`

(
Q

λ
+ `

2

(
α′λ2ν′

α4 − λ2ν′′

2α3

))
,

J t3D = L

4G3

Q

α
+ L

8G3µ

(
m0

α
− α′λλ′

α4 + λ′2

2α3 + λλ′′

2α3

)
. (4.4.28)

In terms of these variables, the trace anomaly and Ward identity (4.2.9) take the
form6

T3D +O3D = L`

4G3

1
α

(
∂t

(
λ′

α

)
− 1

4µ`∂t
(
λ2ν′

α2

))
, (4.4.29)

and

∂tJ t3D + J t3D ∂t logα = L

16G3µα
∂2
t

(
λλ′

α2

)
,

∂tT3D −O3D ∂t log λ = − L

16G3µ

[
α

λλ′
∂t

(
ν′
(
λλ′

α2

)2
)]

. (4.4.30)

The renormalised boundary action Ĩren, which can be inferred by integrating

6Using (4.4.24) and (4.4.27), the divergence appearing in (4.2.9) translates to

DiT
it = −

1
α2λ

(∂tT − O ∂t log λ) , DiT iz =
ν

α2λ
(∂tT − O ∂t log λ)−

1
λ3

(
∂tJ t + J t∂t logα

)
,

and the trace is T ii = 1
λ

(T +O).
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(4.4.26), reads

Ĩren = − L`

8G3

∫
dt
(
α

λ

[
m0 + 2 Q

µ`2

]
+ λ′2

αλ
+ 2ν

`

[
Q+ m0

2µ

])
+ L

16G3µ

∫
dt λλ

′ν′

α2 .

(4.4.31)

Clearly the covariant stress tensor, dimensionally reduced to 2D, does not coincide
with the one-point functions in (4.4.18). Albeit the EMD contributions are in
perfect agreement, as reported in [258], and the Q dependent pieces also agree,
there is an additional term coming from the gravitational Chern-Simons term. The
reason of this mismatch is not surprising: The last term in Ĩren can be rewritten
as

L

16G3µ

∫
dt λλ

′ν′

α2 = − L

32G3µ

∫
dt γtt∂t(e−2φ) ∂tAt , (4.4.32)

which is clearly not gauge invariant. It is as well finite, and methods for holographic
renormalisation are not capable to fix finite counterterms unless another principle
(or symmetry) is advocated for. From the 2D point of view, IrCS is a gauge
invariant action which makes the introduction of (4.4.32) somewhat awkward.
The only meaningful observation we can make at this stage is that (4.4.32) can
be achieved by integrating by parts either the first or second term in (4.3.4) and
arranging time derivatives appropriately. This all illustrates that important parts
of the anomalies are lost in the 2D theory (4.3.2), in particular if we don’t make
reference to the parent theory. Notably our one-point functions (4.4.18) lead to
conserved currents (4.4.22), while in (4.4.30) we still encounter the effects of the
gravitational anomaly.

It is instructive to compare our results with the dimensional reduction of the
covariant stress tensor (4.2.10). Even though this choice of stress tensor does
not comply with a variational principle, we simply inquire what the map (4.4.23)
predicts in 2D. The result is

t3D = − L`

8G3

m

λ
− L

4G3µ`

Q

λ
, o3D = L`

8G3

(
m

λ
− m′

λ′

)
+ L

4G3µ`

Q

λ
,

|t3D = L

4G3

Q

α
+ L

8G3µ

(
m

α
− λ

2λ′α m′
)
. (4.4.33)

The trace anomaly and Ward identity (4.2.11) in this case reduce to

t3D + o3D = L`

4G3

1
α
∂t

(
λ′

α

)
, (4.4.34)
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and

∂t|t3D + |t3D ∂t logα = λ2

2α ∂t
(

2
αλ

∂t

(
λ′

α

))
, ∂tt3D − o3D ∂t log λ = 0 . (4.4.35)

It is curious to report that in this case t3D = TUV and o3D = OUV, while the
currents |t3D and J tUV do not agree. Recall that the covariant stress tensor does
not conform with the Wess-Zumino consistency conditions, so it is not surprising
to find a disagreement between (4.4.18) and (4.4.33).

Finally, we have the 3D conserved stress tensor in (4.2.12). Because this object is
not Lorentz invariant it is not clear how to treat it in the dimensionally reduced
theory. One obstruction is that we cannot use the map (4.4.27): It assumes the
3D tensor is symmetric, and therefore contradicts the relations in (4.2.13).

4.5 Holographic renormalisation: IR perspective

In addition to the backgrounds considered in Sec. 4.4.1, the equations of motion
(4.3.5)-(4.3.7) also admit a branch of solutions specified by a constant value of the
dilaton. We will denote this branch IR fixed points, due to their role in describing
the AdS2 geometry of near extremal black holes.

In this section we will start with a derivation of the IR fixed point solutions, and
then turn on an irrelevant deformation for the dilaton. This deformation drives
also the metric away from its locally AdS2 form attained at the fixed point. On
this deformed background we will evaluate the appropriate one-point functions
using holographic renormalisation.

4.5.1 Background solution

To construct the IR fixed point solution, we start by setting

e2φ = e2φ0 , (4.5.1)

with φ0 a constant. We will use the subscript ‘0’ to refer to the values of the fields
at the IR fixed point. Subtracting two times (4.3.7) from (4.3.5) we infer

R = − 6
`2
− 1

2 e
−2φ0f2 , (4.5.2)

which after plugging it back into the gauge field equation of motion (4.3.5) implies
that the field strength f is constant as well. The values of f and R are then
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determined by

R0 + 6
`2

+ 1
2 e
−2φ0f2

0 = 0 ,(
− 4
`2

+ e−2φ0f2
0

)(
1 + 3

2µ e
−φ0f0

)
= 0 . (4.5.3)

There are two classes of solutions to (4.5.3). The first is

R0 = − 8
`2

, e−2φ0f2
0 = 4

`2
, (4.5.4)

which is the constant dilaton solution to EMD. The second branch is

R0 = − 6
`2
− 2µ2

9 , e−φ0f0 = −2µ
3 . (4.5.5)

This configuration would uplift to warped AdS3 solutions in TMG, such as those
in [272,275,302]. Since the Ricci scalar is negative for real values of the variables,
all fixed point solutions are locally AdS2.

The focus for the reminder of this section will be on (4.5.4). Working in the same
gauge as in (4.4.1), the background AdS2 metric and gauge field are given by

√
−γ0 = αir(t) e2r/` + βir(t) e−2r/`,

At = νir(t)− `Q e3φ0
(
αir(t) e2r/` − βir(t) e−2r/`

)
. (4.5.6)

The subscript “ir” here is to distinguish the functions appearing in our IR analysis
to those in (4.4.6) which are relevant for the UV. Here Q is defined as in (4.4.2)
and from (4.5.4) we have

Q2 = 1
`2
e−4φ0 . (4.5.7)

The functions αir, and νir act as sources for the AdS2 metric and gauge field,
respectively. βir parametrizes nearly-AdS2 spacetimes: It is induced by large
diffeomorphisms that preserve the boundary metric, as we shall see in Sec. 4.6.1.

Small perturbations around the IR background, will be ignited by a deviation of
the dilaton away from its constant value:7

e−2φ = e−2φ0 + Y , (4.5.8)

with Y small. As the equations of motion will demand, this perturbation will

7We are adapting the same notation as in [254], and our subsequent derivations follow closely
to those there. This is expected since 2D theories of gravity coupled to a dilaton follow universal
trends that are present here too [9, 40,244].
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generate a backreaction of the metric which we parametrise as
√
−γ =

√
−γ0 +

√
−γ1 . (4.5.9)

The response of the gauge field follows automatically from (4.4.2). Here all fields
depend explicitly on time and the radial coordinate, but we suppress it for nota-
tional convenience. We will determine the expressions of the perturbations √−γ1
and Y by solving the perturbed EMD equations of motion, which we know leads
to a solution of the full 2D theory (4.3.2). These linearised equations around the
IR fixed point are (

∂2
r −

4
`2

)
Y = 0 , (4.5.10)(

K0 ∂r +D2
t,0 −

4
`2

)
Y = 0 , (4.5.11)

∂r

(
∂tY√
−γ0

)
= 0 , (4.5.12)(

∂2
r −

4
`2

)√
−γ1 + 6

`2
e2φ0
√
−γ0Y = 0 . (4.5.13)

The subscript ‘0’ for the trace of the extrinsic curvature K0 and the Laplace
Beltrami operator D2

t,0 indicate again that they are evaluated in the IR geometry
with metric γ0

K0 ≡ ∂r log
√
−γ0 , D2

t,0 ≡
1√
−γ0

∂t
(√
−γ0 γ

tt
0 ∂t

)
. (4.5.14)

Equation (4.5.10) implies

Y = λir(t) e2r/` + σir(t) e−2r/` , (4.5.15)

with λir(t) the source for our deformation, and σir(t) its vev. Also we can infer
from this equation that Y has conformal dimension ∆ = 2 and is, as already
anticipated, an irrelevant deformation moving us slightly away from the IR fixed
point. The constraint in (4.5.12) relates Y to γ0 by imposing

βir(t) = αir(t)
σ′ir(t)
λ′ir(t)

. (4.5.16)

This relation is a universal feature of nAdS2 holography: It implies that the per-
turbation moving us away from the IR fixed point is related to the large diffeo-
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morphisms in AdS2. Finally combining (4.5.16) with (4.5.11) we obtain

βir(t) = − `2

16λ′ir(t)
αir(t) ∂t

(
q(t)
λir(t)

)
,

σir(t) = − `2

16λir(t)
q(t) , (4.5.17)

where we defined

q(t) ≡ c0 +
(
λ′ir(t)
αir(t)

)2
, (4.5.18)

and c0 is an integration constant, independent of the spacetime coordinates.

Now we examine the dilaton equation of motion (4.5.13). Its solution determines
the form of the metric perturbation. The homogeneous solution is a locally AdS2
metric, equal to the background solution √−γ0. The inhomogeneous equation on
the other side is solved by

(√
−γ1

)
inh = −e

2φ0

2

(
Y
√
−γ0 + `2

2 ∂t

(
λ′ir(t)
αir(t)

))
. (4.5.19)

4.5.2 Renormalised observables

We will now perform holographic renormalisation around the perturbed IR back-
ground. Our starting point is familiar: As in Sec. 4.4.2 we will build a 2D action,
such that for the deformed IR background, the variation

δI IR
2D =

∫
dt
(
πtt δγtt + πφ δφ+ πt δAt

)
, (4.5.20)

leads to a well defined variational principle. Here the lower case, relative to the
upper case in (4.4.9), is to emphasis that the values of the canonical momenta will
depend on our boundary conditions, and this affects the renormalisation of the
action.

The boundary conditions on the metric and dilaton follow from (4.5.6) and (4.5.15),

δγtt = −2αir e
4r/`δαir , δe−2φ = e2r/`δλir , (4.5.21)

that is, their leading divergences are interpreted as sources, and as r →∞ we seek
for finite responses under those variations. The deviations of e−2φ away from its
constant value are large in r, still we want to treat them as small perturbation
around the IR fixed point. As we study the response of the action we will therefore
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take

e2φ0 |λir| e2r/` � 1 , (4.5.22)

which implies that we will keep only the first order effect of the deformation.

We have not mentioned the boundary conditions of the gauge field in (4.5.21)
because the gauge field exhibits a crucial difference in the IR compared to the UV.
This requires a separate discussion on how to treat its boundary conditions. The
issue arises because in the AdS2 region At is no longer dominated by the source
νir, but by the volume of AdS2. From (4.5.6) we have

At = −`Q e3φ0αir e
2r/` + νir +O(e−2r/`) , (4.5.23)

and for the canonical momenta on the AdS2 background8

πt = δI2D

δ(∂rAt)
= − L

4G3

(
1∓ 1

µ`

)
Q , (4.5.24)

which reflects that At ∼
√
−γ0 π

t as r →∞, and the source is being washed away.
The problem therefore is the following: We have a space of asymptotic solutions
characterised by a charge Q and source νir, which we want to relate to the space of
fields; and it is clear that the asymptotic behaviour of At and πt does not capture
this information. The solution to the dilemma is explained in [12, 254, 258]. Here
we will provide a brief summary.

To fix this issue, it is convenient to first do a canonical transformation

Iren[γtt, φ, πt] = I IR
2D −

∫
dt πtAt , (4.5.25)

which is a Legendre transform for the gauge field, and start from the variational
problem

δIren =
∫

dt
(
πtt δγtt + πφ δφ−Aren

t δπt
)
, (4.5.26)

Here Aren
t is identified as the conjugate variable to πt and obeys

Aren
t = At −

I IR
2D

δπt
. (4.5.27)

8The “±′′ in (4.5.24) is due to selecting a sign as one uses (4.5.7) to evaluate the contribution
to πt from the rCS. The minus sign corresponds to Q < 0, while the plus sign corresponds to
Q > 0.
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Now, as one constructs the renormalised action I IR
2D, one should assure that from

(4.5.27) we obtain Aren
t = νir+O(e−2r/`). Finally, since we want to have a Dirichlet

valued problem for all fields, the last step is to do another Legendre transform

Îren = Iren −
∫

dt πtAren
t , (4.5.28)

and look for finite responses of the effective action, i.e.

δÎren =
∫

dt
(
πtt δγtt + πφ δφ+ πt δAren

t

)
, (4.5.29)

where now our boundary conditions for all fields are

δγtt = −2αir e
4r/`δαir , δe−2φ = e2r/`δλir , δAren

t = δνir . (4.5.30)

In the following we will start our construction of counterterms immediately from
(4.5.29), and not build Iren or I IR

2D explicitly; we refer to [254] for those intermediate
steps which are easily adapted to the discussion here.

One-point functions

We now turn to building the boundary terms needed to make (4.5.29) a well
defined variational problem. It is easier to first focus on the contributions from
EMD, which resembles the analysis in [254] adopted to our setup. As in the UV
analysis, the Gibbons-Hawking term guarantees a Dirichlet boundary problem

I IR
GH = L

4G3

∫
dt
√
−γ e−φK , (4.5.31)

and the counterterm that renders the variation finite is

Id1 = − L

4G3`

∫
dt
√
−γ eφ0 Y + L

8G3`

∫
dt
√
−γ e3φ0 Y2 . (4.5.32)

The on- shell variation of the EMD action combined with these terms gives

δ
(
IEMD + I IR

GH + Id1
)

= L

8G3

∫
dt
√
−γ
(
∂re
−φ − 1

`
eφ0 Y

)
γttδγtt

− L

4G3

∫
dt
√
−γ
(
Ke−φ − 2

`
e−φ0

)
δφ− L

4G3

∫
dtQ δAren

t .

(4.5.33)

For the rCS action, we can start from (4.4.17): The combination IrCS + Ic2 fixes
Dirichlet boundary conditions. Replacing (4.5.8), (4.5.9), and (4.5.19) in (4.4.17),
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and keeping terms consistent with (4.5.22), gives

δγtt (IrCS + Ic2) = − L

16G3µ

∫
dt
√
−γ0 e

3φ0 Q∂rY γtt0 δγtt , (4.5.34)

and

δφ (IrCS + Ic2) = L

4G3µ

∫
dt e3φ0 Q

(
e−2φ0∂r

√
−γ0 − Y ∂r

√
−γ0 −

3
2
√
−γ0 ∂rY

)
δφ .

(4.5.35)

Contrarily to the on-shell values for the UV, where (4.4.17) led to finite contri-
butions, the above terms are divergent as r → ∞ for the IR values (4.5.6) and
(4.5.15). Removing these IR divergences will lead to quantitative differences in our
one-point functions as will be evident shortly. To cure the remaining divergences
in (4.5.34)-(4.5.35) we will add the following counterterms

Ic3 = L

4G3µ`

∫
dt
√
−γ e3φ0 QY − 3L

8G3µ`

∫
dt
√
−γ e5φ0 QY2 . (4.5.36)

It is worth noting that these counterterms are very similar to those in (4.5.32) used
for EMD. The reason for their similarity is due to the fact that we are working at
first order in the perturbations, and these are the allowed combinations of Y that
could cancel divergences induced by the irrelevant deformation.

Combining the contributions from (4.5.34)-(4.5.36), plus the contribution from
Aren
t , we finally have

δ (IrCS + Ic2 + Ic3) =− L

16G3µ

∫
dt e3φ0 Q

√
−γ0

(
∂rY −

2
`
Y
)
γtt0 δγtt

− L

4G3µ

∫
dt e3φ0 Q

(
Y ∂r
√
−γ0 + 3

2
√
−γ0 ∂rY − 4

√
−γ0 Y

)
δφ

+ L

4G3µ

∫
dt eφ0 Q

(
∂r
√
−γ0 −

2
`

√
−γ0 −

2
`

√
−γ1

)
δφ

− L

4G3µ

∫
dt e2φ0 Q2 δAren

t . (4.5.37)

The renormalised one-point functions in the IR are given by9

TIR ≡
2
αir

lim
r→∞

π t
t , OIR ≡ −

1
αir

lim
r→∞

e2r/`πφ , J tIR ≡ −
1
αir

lim
r→∞

πt . (4.5.38)

9Note that there is a small difference in the definition of O in the UV relative to the IR. This
is simply because of the nature of our boundary fall-offs: in the UV we have δφ = λ−1δλ, while
in the IR δφ = − 1

2 e
2φ0e2r/`δλir.
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Explicitly, using (4.5.6) and (4.5.15) we obtain

TIR = − L

2G3`
eφ0

(
1− Q

µ
e2φ0

)
σir = L`

32G3
eφ0

(
1± 1

µ`

)
q(t)
λir

,

OIR = − L

G3`
e−φ0

(
1− Q

µ
e2φ0

)
βir
αir

= L`

16G3
e−φ0

(
1± 1

µ`

)
1
λ′ir

∂t

(
q(t)
λir

)
,

J tIR = L

4G3
Q

(
1 + Q

µ
e2φ0

)
1
αir

= L

4G3
Q

(
1∓ 1

µ`

)
1
αir

. (4.5.39)

In the second equality we used (4.5.17) which gives the on-shell values of the one-
point functions. We also used (4.5.7) which relates Q to e−2φ0 up to a choice of
sign for Q. From here we can deduced that the renormalised on-shell boundary
action is

Îren = L`

32G3

(
1± 1

µ`

)∫
dt eφ0

αir
λir

[
c0 −

(
λ′ir
αir

)2
]

+ L

4G3

(
1∓ 1

µ`

) ∫
dtQ νir ,

(4.5.40)

satisfying

TIR = δI IR
2D

δαir
, OIR = 2

αir
e−2φ0

δI IR
2D

δλir
, J tIR = 1

αir

δI IR
2D

δνir
. (4.5.41)

From (4.5.39), our one-point functions obey

∂tTIR −
1
2 e

2φ0 λ′irOIR = 0 , ∂tJ tIR + J tIR ∂t logαir = 0 , (4.5.42)

and

TIR + 1
2 e

2φ0λirOIR = L`

16G3
eφ0

(
1± 1

µ`

)
1
αir

∂t

(
λ′ir
αir

)
. (4.5.43)

4.6 Schwarzian effective action

In this last section we will provide an interpretation of the holographic renormali-
sation in the UV and IR in terms of the Schwarzian effective action. We will discuss
the interpolation between these two fixed points and their role in describing the
entropy of the near extremal BTZ black hole.
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4.6.1 Effective action: IR

We will start by interpreting the results in Sec. 4.5, that are relevant for nAdS2
holography. The renormalised on-shell boundary action found in (4.5.40) takes
the form

Îren = L`

32G3

(
1 + 1

µ`

)∫
dt eφ0

αir
λir

[
c0 −

(
λ′ir
αir

)2
]

+ L

4G3

(
1− 1

µ`

) ∫
dtQ νir ,

(4.6.1)

where we selectedQ < 0; this is the correct choice as we compare to the conventions
used for the BTZ black hole in Sec. 4.2.2.

To interpret the various pieces in this action, we will first venture into the asymp-
totic symmetries relevant to nAdS2 holography. For simplicity we will set αir = 1,
and start by considering the empty AdS2 background

ds2 = dr2 − e4r/`dt2 , A = −Qe3φ0 e2r/`dt . (4.6.2)

The set of diffeomorphisms that preserve the boundary metric and radial gauge
are

t→ f(t) + `2

8
f ′′(t)

e4r/` − `2

16
f ′′(t)2

f ′(t)2

,

e2r/` → e−2r/`

f ′(t)

(
e4r/` − `2

16
f ′′(t)2

f ′(t)2

)
, (4.6.3)

where f(t) labels reparametrizations of the boundary time. The gauge field trans-
forms as well under this diffeomorphism, and to compensate for this, the diffeo-
morphism needs to be complemented by a gauge transformation [303,304],

Aµ → Aµ + ∂µΛ , Λ = −Q`2 e3φ0 log
(

4e2r/`f ′(t)− `f ′′(t)
4e2r/`f ′(t) + `f ′′(t)

)
, (4.6.4)

designed to preserve Ar = 0 and the asymptotic behaviour of the field. The
resulting background is

ds2 = dr2 −
(
e2r/` + `2

8 {f(t), t}e−2r/`
)2

dt2 ,

A = −Qe3φ0

(
e2r/` − `2

8 {f(t), t}e−2r/`
)

dt , (4.6.5)
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which clearly fits (4.5.6) with

βir = `2

8 {f(t), t} , {f(t), t} =
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
. (4.6.6)

This makes explicit that βir is induced by a large diffeomorphism, and its value
is the given by the Schwarzian derivative of f(t). It is also instructive to revisit
(4.5.17): Taking a derivative to remove c0 from the first equation implies

`2λ′′′ir + 8λirβ
′
ir + 16βirλ

′
ir = 0 , (4.6.7)

which via (4.6.6) becomes (
1
f ′

(
(f ′λir)′
f ′

)′)′
= 0 . (4.6.8)

As expected from all other instances of nAdS2 holography, the dynamics of the ir-
relevant deformation ignited by Y is related to the reparametrizations of boundary
time.

The dynamics in (4.6.8) is elegantly encoded in Îren, which can be seen as follows.
From (4.5.17) can solve for c0 substitute it in (4.6.9); this gives

Îren = L`

32G3

(
1 + 1

µ`

)∫
dt eφ0

(
c0
λir
−
λ′2ir
λir

)
= L`

32G3

(
1 + 1

µ`

)∫
dt eφ0

(
16
`2
λirβir + 2λ′′ir − 2λ

′2
ir
λir

)
= L`

16G3

(
1 + 1

µ`

)∫
dt eφ0

(
λir {f(t), t} − λ′2ir

λir

)
. (4.6.9)

Recall that we have αir = 1, and we have also ignored νir since it is not important
for this portion. In the second line we used (4.5.17), and in the last equality we
ignored total derivatives and used (4.6.6). The variation of this last term with
respect to f(t) leads to (4.6.8): This is one of the renown features of nAdS2
holography –the Schwarzian action captures the bulk dynamics of the irrelevant
deformation [10].

Finally, it is useful to cast the coupling in (4.6.9) in terms of the CFT2 central
charges in Sec. 4.2.1; this gives

`

16G3

(
1 + 1

µ`

)
= cL

24 , (4.6.10)
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a clear indication that the left moving sector of the CFT2 is controlling the nCFT1.

4.6.2 Effective action: UV

In (4.4.19) we obtained the renormalised on-shell boundary action:

IUV
2D = − L

8G3
`

∫
dt
(
α

λ

[
m0 + 2 Q

µ`2

]
+ λ′2

αλ
+ 2ν

`

[
Q+ m0

2µ

])
. (4.6.11)

To make the Schwarzian action manifest in the UV we will take a slightly different
route relative to the IR. In our derivations in the prior subsection we started by
considering the set of diffeomorphisms (plus gauge transformations) that preserve
the AdS2 background; this allowed us to relate the irrelevant deformation λir
to the Schwarzian derivative. For the UV background in (4.4.6) we will instead
inquire how the asymptotic background responds to Weyl transformations of the
boundary fields, which is the strategy in [258].

A Weyl rescaling of the boundary parameters (4.4.6) corresponds to bulk diffeor-
morphisms that preserve the Fefferman-Graham gauge, i.e. a PBH transformation
in the nomenclature of [258]. The response of the sources under this transformation
is the expected one: We would have

α → α eσ(t) , λ → λ eσ(t) , ν → ν , (4.6.12)

where σ(t) is an arbitrary function that rescales the boundary metric. In order
to make explicit how to interpret this transformation as reparametrizations of the
boundary time, we choose

σ(t) = log ∂tf(t) , (4.6.13)

along the lines of the transformation in (4.6.3). For the choice α = λ = eσ(t) =
f ′(t) the on-shell action, up to a total derivative, is

IUV
2D = − L

8G3
`

∫
dt
(
f ′′

f ′

)2

= L

4G3
`

∫
dt {f(t), t} . (4.6.14)

Here we ignored the terms proportional to Q and m0 in (4.6.11), since they are
unaffected by the Weyl rescaling. Therefore the manifestation of the Schwarzian
derivative in this derivation comes as a responses of the system under Weyl trans-
formations of the boundary metric. This is compatible with the CFT2 interpreta-
tion of this term, where the coupling of (4.6.14) in terms of CFT2 central charges
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in Sec. 4.2.1 is
`

4G3
= cL + cR

12 = c

6 . (4.6.15)

It is important to highlight that the overall coefficient of (4.6.14) is distinct from
(4.6.9). This is already an indication that the origin of the Schwarzian term in the
UV and IR is different. We will elaborate more on this point in the following.

4.6.3 Interpolation between UV and IR
Having done an independent analysis of the UV and IR backgrounds, we now
proceed to compare them. In particular, we will illustrate how to obtain the
deformed IR backgrounds as a decoupling limit of configurations in the UV.

To start let us consider static (time independent) configurations. In this case the
UV backgrounds (4.4.4) and (4.4.3) become

e−2φ = λ2e2r/`
(

1 + `2

2λ2m0e
−2r/` + `2

16λ4

(
`2m2

0 − 4Q2) e−4r/`
)
,

√
−γ = αλ

(
e2r/` − `2

16λ4

(
`2m2

0 − 4Q2) e−2r/`
)
eφ ,

At = ` α

λ
Qe2φ + ν . (4.6.16)

To obtain the deformed AdS2 background as a limit of this background, we redefine

`2m2
0 = 4Q2 + ε2 , e2r/` → ε

4 e
2r/` , t→ 4

ε
t , (4.6.17)

and take the limit ε→ 0 while holding Q, λ and α fixed. The resulting background
is the IR solution in Sec. 4.5.1, where we identify

αir = eφ0αλ , λir = ε

4 λ
2 , νir = 4

ε

(
ν − α

λ

)
. (4.6.18)

where `|Q| = e−2φ0 . If we restore time dependence in the UV background, the
limit is still given by (4.6.17), and the relation between IR and UV quantities is
unchanged. It is instructive to rewrite the relation for ν; we have

ν = ε

4

(
νir + αir

λir
e−φ0

)
. (4.6.19)

This relation indicates that gauge transformations in the UV affect time reparametriza-
tions in the IR. The effect is that the gauge anomaly in the UV contributes to the
conformal anomaly in the IR. In particular, for the dimensionally reduced 3D stress
tensor in (4.4.28), replacing (4.6.17)-(4.6.18) in the renormalised action (4.4.31)
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the Schwarzian effective action in (4.6.9). This illustrates that the conformal piece
contained in (4.6.14) is modified as we flow to the IR.

4.6.4 Entropy of 2D black holes

In this last portion we will discuss the ties of the Wald entropy of 2D black holes,
and its relation to the Schwarzian action. Comparisons with the entropy of BTZ
follow as well.

For our purposes, a 2D black hole is a static solution with a zero in the metric com-
ponent γtt. Let us start with the UV configurations, where all functions appearing
in (4.4.2)-(4.4.5) will be considered to be constant, i.e., the solution in (4.6.16).
The existence of a horizon in (4.6.16) requires `|m0| ≥ 2|Q|, and its location is

γtt(r = rh) = 0 ⇒ e4rh/` = `2

16λ4 (`2m2
0 − 4Q2) . (4.6.20)

The temperature we will assign to the black hole is

TUV
2D = ∂r

√
−γ|rh = 4

`
αλ e2rh/` eφh , (4.6.21)

where the value of the dilaton at the horizon is given by

e−2φh ≡ e−2φ(r=rh) = `

2

(
`m0 +

√
`2m2

0 − 4Q2
)
. (4.6.22)

The Wald entropy SWald, which for the 2D action (4.3.2) was derived in [42], in
our notation takes the form

SWald = πL

2G3

(
e−φh + Q

µ
eφh
)
. (4.6.23)

Note that by substituting (6.0.106) in (4.6.22) and (4.6.23) reproduces the entropy
of the BTZ black hole in (4.2.18).

For the IR background, the logic is very similar, the values are just different.
We will consider backgrounds (4.5.6)-(4.5.18) where all functions are constant. A
black hole in this case requires βir < 0; the location of the horizon is at

e4rh/` = −βir , (4.6.24)

which is the zero of γtt in (4.5.6) for static configurations. Note that we are
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adopting αir = 1 to more easily compare with Sec. 4.6.1. The temperature is

T IR
2D = ∂r

√
−γ0|rh = 4

`

√
|βir| , (4.6.25)

From (4.6.23), the entropy for this background is

SWald = πL

2G3

(
e−φ0

(
1− 1

µ`

)
+ 1

2 Yh e
φ0

(
1 + 1

µ`

))
+O(Y2

h) , (4.6.26)

where we used (4.5.8) and only kept the first correction due to the irrelevant
deformation. The value of Y at the horizon is

Yh = 2λir
√
|βir| =

`

2λirT
IR
2D , (4.6.27)

and so we can write

SWald = πL

2G3

(
e−φ0

(
1− 1

µ`

)
+ `

4λir e
φ0

(
1 + 1

µ`

)
T IR

2D

)
+ . . . , (4.6.28)

where the dots indicate that this is an expansion around small values of T IR
2D.

From here it is clear that the linear response in the temperature is captured by
the IR effective action (4.6.9). In contrast the UV action (4.6.14), while it also
contains a Schwarzian derivative, does not capture the corrections to the entropy
away from extremality. And finally, using the relations in (6.0.113)-(6.0.114), we
find perfect agreement with the near-extremal entropy of BTZ given by (4.2.24).
This is all to reinforce that the Schwarzian effective action appearing in nAdS2
holography of the BTZ should be interpreted as follows: It is the response of the
left-moving sector of the CFT2 as one deviates away from the zero temperature
configuration [305–309].
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5 Discussion

We can now summarise and discuss some future directions and more speculative
remarks.

5.1 Toward a microscopic description of de Sitter
space using matrix models

In chapter 2 we set up the various techniques to address matrix models and two-
dimensional quantum gravity. We explained the conjectured duality along the
particular cases of Hermitian matrix integrals and Hermitian matrix quantum
mechanics. Former being conjecturally dual to Liouville theory coupled to the
seriesM2,2m−1, m ≥ 2 of minimal models, whereas the latter in the large N limit
is conjectured to be dual to Liouville theory coupled to a timelike free boson.
In chapter 3 we addressed a particular matrix integral known as multicritical
matrix integrals. Multicritical matrix integrals are Hermitian matrix integrals
with (m− 1), m ≥ 3 real couplings. Upon tuning them to the multicritical point
and taking the large N limit we recover Liouville theory coupled to M2,2m−1,
m ≥ 3. We explain this conjectured duality providing a one to one map between
the couplings of the matrix integral and the primaries of the minimal model.

Genus one. In chapter 2 and 3 we have been discussing the relation between
Hermitian matrix integrals and two-dimensional quantum gravity coupled to the
non-unitary minimal modelM2,2m−1. Our analysis thereby relied on the study of
non-analytic behaviour of matrix integrals on the one hand and the structure of
the partition function of two-dimensional quantum gravity coupled to one of the
primary operators of M2,2m−1 on the other side. The natural question at hand
is whether there are other observables which might give further evidence of the
conjectured duality. As mentioned in the introduction to 3 one such approach uses
correlation numbers. A different approach might be to understand the pre-factor
of the non-analyticities in F (0)

N (α) (3.5.19). To overcome the redundancy in our
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choice of deformation one further needs to build an ε independent quantity. One
such expression could be the ratio of the free energy at genus zero and genus one.
Using the technique of orthogonal polynomials in work in progress we obtained

F (1)
N (α) ∼ 2m− 2

24m
m

1 + r
log ε , r = 1, . . . , (m− 1) . (5.1.1)

As further mentioned at the end of 3 of particular importance is the identity
operator, corresponding to the most fine tuned path in the matrix picture or
equivalently r = (m − 1) in (5.1.1). Restricting to the identity operator for both
genus zero as well as genus one a natural, ε independent, pure number can then
be expressed as the ratio

F (0)
N (α)

∂εF (1)
N (α)

. (5.1.2)

Understanding this number from a matrix perspective and matching it to the
continuum picture would lead to remarkable new evidence. A limit in which this
number might reveal some structure and most importantly allow a connection to
de Sitter space is the large m limit.

Large m limit. Following [20] we couple the identity operator of the minimal
model to the Euclidean path integral on the topology of S2 and fix the area

Z[Λ, υ] =
∫ [Dϕ]

vol PSL(2,C) [DΦ] [Dbc] e−SL[ϕ,Λ=0]−SCFT[Φ]−Sgh[b,c]−Λ
∫

d2x
√
g̃ e2bϕ

× δ
(∫

d2x
√
g̃ e2bϕ − 4πυ

)
, (5.1.3)

where υ is the area of the two-sphere and

SL[ϕ,Λ] = 1
4π

∫
dx2√g̃ (∂µϕ∂νϕ+QϕR+ 4πΛ e2bϕ) , (5.1.4)

is the Liouville action. Finally the fiducial metric is fixed to be the Fubini-Study
metric

ds̃2 = g̃z,z̄dzdz̄ = υ
4

(1 + zz̄)2 dzdz̄ . (5.1.5)

The large m limit is now equivalent to the limit of large negative central charge
cm or equivalently large positive Q. Whereas the υ and Λ dependency of this
object has been studied in the literature the perturbative expansion of the above
expression for large Q has not been discussed so far. The strategy is now threefold.
i) Rewriting the delta function in its integral representation the partition function
(5.1.3) can be expressed as
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Z[Λ, υ] = ZCFT[Φ, υ]Zgh[b, c, υ]υ−1e−4πυΛ

×
∫
R

dα
2π

∫ [Dϕ]
vol PSL(2,C) e

− υ
4π

∫
dΩ (−ϕ∆ϕ+ 2

υQϕ) × eiα
∫

dΩ (2bϕ+...) , (5.1.6)

where we furthermore evaluated the ghost and matter partition function on the
round two-sphere of area υ. At the large Q saddle we find ϕ∗ = 0 and α∗ =
−iQ/(4πb) and consequently the geometry and not only the topology of S2. It
now behooves to add fluctuations to both ϕ∗ and α∗ and to explore the large Q
perturbative expansion of (5.1.6).

ii) Also primaries close to the identity primary allow a large m saddle point. It
would be interesting to explore this saddle point in more detail in particular since
in these cases the matter CFT and gravity theory no longer are independent of
each other but interact and would therefore need a more refined treatment.

iii) Whereas in (5.1.3) we fix the topology to the round two-sphere also a genus
zero surface should be sensitive to a large m saddle point solution. Understanding
the saddle point expression on a torus would lead to the final ingredient to explore
(5.1.2) from a continuum perspective.

Timelike Liouville. Timelike Liouville theory [148] switches the sign of the
kinetic term

StL[g̃, ϕ] = 1
4π

∫
d2x
√
g̃
(
−g̃ij∂iϕ∂jϕ− qR[g̃]ϕ+ 4πΛe2βϕ) , (5.1.7)

where g̃ is the fiducial metric and Λ denotes the cosmological constant. The spin-
less primary operators of timelike Liouville Vβ ≡ e2βϕ have conformal dimension

∆β = β(q + β) . (5.1.8)

Since to guarantee conformal invariance we need (∆β , ∆̄β) = (1, 1) this implies

q = β−1 − β . (5.1.9)

Whereas spacelike Liouville (5.1.4) only allows for a semiclassical saddle upon
restricting to a fixed area picture, timelike Liouville allows for a semiclassical S2

saddle for large and positive cm. The drawback of timelike Liouville theory of
course is that no microscopic picture is known, it is completely unclear whether
there exists a matrix model dual to this theory. Still it would be interesting to
explore and compare the perturbative expansions around the semiclassical saddle
in spacelike and timelike Liouville theory.

Lian-Zuckerman operators and non-unitary. The appearance of non-trivial
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5. Discussion

bc-ghost operators in the continuum theory remains underexplored from a matrix
integral perspective. As the examples in chapter 2 show these operators are already
present in theM3,2 model. This theory is conjecturally dual to the quartic matrix
integral with only a single coupling. Both in chapter 2 and 3 we however seemed
to have revealed all the non-analyticties this matrix integral has. Additionally
since we only have one coupling we can only move along the real line and it
remains an open question how to identify Lian-Zuckerman operators from a matrix
perspective. One approach might be to complexify the couplings.

Since Lian-Zuckerman operators are build out of descendants of M2,2m−1 they
could have negative norm. It would be interesting to understand the effect of this
possible non-unitarity from both a continuum and a matrix integral perspective.

Fermionic matrix models. A different matrix model are fermionic quantum
mechanical matrices (FMM). Instead of bosonic valued entries the entries of these
matrix models are Grassmann valued [203]. For bosonic matrix models, the S-
matrix introduced by Moore–Plesser–Ramgoolam is a natural observable which
connects them — via the DOZZ formula — to c = 1 non-critical string theory.
A similar observable for FMM is not known. Consequently, the gravity dual of
FMM remains undiscovered. However, due to their fermionic structure FMM have
a finite-dimensional Hilbert space. This finite-dimensional Hilbert space might also
be realised in the worldsheet dual and FMM would therefore be another candidate
theory to study de Sitter space.

5.2 Matrix integrals & black holes

The matrix integrals studied in chapter 3 of this paper naturally connect the two
dualities studied in this thesis. The goal of this section is to explain this connection
and propose some future directions.

Disk topology. In [33,186,188] Liouville theory was studied on the disk topology.
Upon taking the semiclassical limit b→ 0 the Liouville action admits a saddle point
solution for ϕ. From the perspective of the physical metric gij = e2bϕg̃ij this can
be interpreted as the hyperbolic metric on the Poincaré disk (the Euclidean AdS2
black hole)

ds2 = 1
πb2Λ

1
(1− ρ2)2

(
dρ2 + ρ2dθ2) , ρ ∈ [0, 1) . (5.2.1)
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5.2. Matrix integrals & black holes

Figure 5.1: Instead of studying Liouville theory on a sphere topology we can also study
Liouville theory on a disk. The semiclassical saddle point is the hyperbolic metric.

Since coupling M2m−1,2 to gravity implies b =
√

2/(2m− 1) (3.6.12) this semi-
classical limit corresponds to a large m limit. It would be interesting to explore
relations between this saddle and recent discussions on JT gravity and matrix
integrals [149].

For Dirichlet boundary conditions ϕ diverges at the boundary of the disk and
the relation to matrix integrals was studied in [189]. It would be interesting to
generalise this to the multicritical case. For Neumann boundary conditions one
needs to further add the boundary term

Sbdy =
∫
S1

du
√
h

(
Q

2πKϕ+ ΛBebϕ
)
, (5.2.2)

to the bulk action, where h is the induced metric on S1 and K is the extrinsic
curvature at the boundary. The comparison to the matrix integral uses either the
resolvent R(z) or the loop operator W` [83]. The boundary cosmological constant
ΛB is connected to z. For multicritical matrix integrals R(z) is given by (3.2.15),
W` is given by (3.2.16).

Double scaling limit in multicritical matrix integrals. In recent discussions
on JT gravity the multicritical matrix integrals are considered in a full genus
double scaling limit. This double scaling limit is captured by the string equation
which, as we have seen in chapter 2, in case of multicritical matrix integrals can
be expressed in terms of the Gelfand-Dikkii polynomials. In [149,156] the double
scaling limit has been taken along the generic path discussed in chapter 3. This
path corresponds to turning on the minimal operator of M2,2m−1. It would be
interesting to understand the effect of choosing a path leading to any of the other
primaries of the minimal model.
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5. Discussion

5.3 Black holes & near-CFT1

In chapter 4 we discussed the BTZ black hole embedded in TMG. This allowed
us to discuss and contrast from a gravity perspective the role of the left and right
moving central charge of the CFT2 within the near-AdS2/near-CFT1 correspon-
dence. In particular we observed that the near-CFT1 resides in the left moving
sector of the CFT2.

near-CFT1 ⊂ CFT2. It would be interesting to explore the role of the right
moving central charge as well as to infer this behaviour from a CFT perspective.
Maybe a possible approach to this could use the c−theorem [155].

Warped solutions. While all locally AdS3 configurations are solutions of TMG,
we can also find a different subset of solutions, known as warped solutions [272].
Warped solutions break the SL(2,R)L× SL(2,R)R isometry group of AdS3 down
to SL(2,R)L × U(1) and appear in the near-horizon limit of a variety of black
holes, including also the Kerr-black hole and hence these solutions bear relations
to black holes observed in our own universe. It would be interesting to apply in-
sights obtained from the nAdS2/nCFT1 duality to understand properties of warped
solutions.
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6 Appendices

Rn staircase

In this appendix we discuss a method to relate the Rn coefficients for the orthog-
onal polynomial problem to the hn coefficients. Explicitly we demonstrate how to
obtain the integral on the right hand side of (2.4.11) in a graphical way.

Obtaining all possible Rn leading to an expression proportional to hn as outlined
for the quartic potential in 2.4.2 can be tedious. For the case of an even degree
polynomial there exists a graphical way of computing the Rn. Starting with a
potential of degree 2p+ 2 we have to combine powers of λ of degree less or equal
to 2p + 1 with polynomials Pn and Pn−1 in all possible ways to get two degree
n polynomials. As a first step one identifies a certain level as the level n − 1
(corresponding to the degree of Pn−1). Now we can perform exactly p + 1 steps
in an appropriate unit upwards – conveniently chosen along 45 degrees – followed
by p steps downwards in a right angle with respect to the highest point. The final
level corresponds to level n. Going downwards mimics the three term recurrence
relation and for each step downwards from a level n to a level n−1 we get a factor
Rn. In total there are

(2p+1
p

)
different possibilities to start at level n− 1 and end

up at level n. Each combination is a product of p Rn.

Non-planar contributions

In this appendix we will outline the calculations leading to non-planar contribu-
tions of the free energy.

More concretely we will calculate F (h)(α) (2.3.70) for h = 2, 3, and 4. Solving
(2.4.20) for s = 2, 3, and s = 4 we find

r4(x, α) = α4r0(x, α) (p1(αx) + αr0(x, α))
(1 + 48αx)5 , (6.0.1)
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r6(x, α) = α6r0(x, α) (p1(αx) + αp1(αx)r0(x, α))
(1 + 48αx)15/2 , (6.0.2)

r8(x, α) = α8r0(x, α) (p2(αx) + αp1(αx)r0(x, α))
(1 + 48αx)10 , (6.0.3)

where pn(αx) is a polynomial of degree n in αx. IntroducingRn(x, α) ≡ rn(α, x)/r0(x, α)
we find for h = 2 and h = 3

F (2)(α) = −
∫ 1

0
dx(1− x)

[
R4(x, α)− 1

2R2(x, α)2
]
− 1

12

(
(1− x)R2(x, α)

)(1)
∣∣∣∣∣
1

0
(6.0.4)

+ 1
720

(
(1− x) log r0(x, α)

x

)(3)
∣∣∣∣∣
1

0

+ 1584α3

=
α
(
84α+

(
3936α2 − 96α− 1

)
r0(1, α) + 1

)
20(48α+ 1)5/2

and

F (3)(α) = −
∫ 1

0
(1− x)

[
1
3R2(x, α)3 −R2(x, α)R4(x, α) +R6(x, α)

]
(6.0.5)

− 1
12

(
(1− x)

(
R4(x, α)− 1

2R2(x, α)2
))(1)

∣∣∣∣∣
1

0

+ 1
720

(
(1− x)R2(x, α)

)(3)
∣∣∣∣∣
1

0

− 1
30240

(
(1− x) log r0(x, α)

x

)(5)
∣∣∣∣∣
1

0

+ 25671168
5 α5

=
α r0(1, α)

(
−954408960α5 − 61871616α4 + 1105920α3 + 23040α2 + 240α+ 1

)
84(48α+ 1)11/2

+
α
(
110932992α4 − 889920α3 − 20448α2 − 228α− 1

)
84(48α+ 1)11/2 .

F (4)(α) follows similarly. Near αc = −1/48 we therefore obtain h = 2, 3, and 4
the following non-analytic behaviour

lim
α→αc

F (h)
n.a.(α) = fh(α− αc)5χh/4 , h ∈ N , (6.0.6)

providing further evidence for (2.3.78). The coefficients are given by

f2 = − 7
13271040

√
3
, f3 = − 245

10567230160896 , f4 = − 259553
9953280 . (6.0.7)
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Additionally we have the small α expansion:

F (2)(α) = 240α3 − 32112α4 + 14501376
5 α5 − 220174848α6 + 15138938880α7 +O(α8) ,

F (3)(α) = 483840α5 − 128130048α6 + 139272044544
7 α7 − 2366845194240α8 +O(α9) ,

F (4)(α) = 2767564800α7 + 257831155924992α9 − 1137924495360α8 +O(α9) .
(6.0.8)

Wick contractions

In this appendix we provide a simple example for the type of Wick contractions
used to get various results. We are interested in the following

〈Fermi|TB n̂(t1, x1)n̂(t2, x2)|Fermi〉 = Θ(t1− t2)〈Fermi|n̂(t1, x1)n̂(t2, x2)|Fermi〉
+ Θ(t2 − t1)〈Fermi|n̂(t2, x2)n̂(t1, x1)|Fermi〉 . (6.0.9)

Using (2.6.27) and the number density operator (2.6.28) this can be expressed in
Fourier space as

〈Fermi|TB n̂(t1, x1)n̂(t2, x2)|Fermi〉

=
(

Θ(t1 − t2)
∫
R4

dν1dν2dν3dν4

(2π)4 eiν1t1−iν2t1+iν3t2−iν4t2ψν1(x1)ψ∗ν2
(x1)ψν3(x2)ψ∗ν4

(x2)

+ Θ(t2 − t1)
∫
R4

dν1dν2dν3dν4

(2π)4 eiν1t2−iν2t2+iν3t1−iν4t1ψν1(x2)ψ∗ν2
(x2)ψν3(x1)ψ∗ν4

(x1)
)

× 〈Fermi|a†ν1
aν2a

†
ν3
aν4 |Fermi〉 (6.0.10)

where for notational convenience we suppress the parity index. When anti-commuting
these operators we will use (2.6.25) and (2.6.26). We then obtain

〈Fermi|a†ν1
aν2a

†
ν3
aν4 |Fermi〉 = (2π)2δν1ν2δν3ν4Θ(νF − ν4)Θ(νF − ν2)

+ (2π)2δν1ν4δν3ν2Θ(νF − ν4)Θ(ν3 − νF ) , (6.0.11)

where we normalised the ground state such that 〈Fermi|Fermi〉 = 1. The first term
on the right hand side of the above expression corresponds to the contraction
of Ψ†(ti, xi) with Ψ(ti, xi) and therefore does not contribute to the connected
correlation function Qc({ti, xi}). Dropping this term and combining (6.0.10) with
(6.0.11) we obtain for the connected correlation function

〈Fermi|TB n̂(t1, x1)n̂(t2, x2)|Fermi〉c =
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Θ(t1 − t2)
∫ ∞
νF

dν
2π e

−iν(t1−t2)ψ∗ν(x1)ψν(x2)
∫ νF

−∞

dυ
2π e

−iυ(t2−t1)ψ∗υ(x2)ψυ(x1)

+ Θ(t2 − t1)
∫ ∞
νF

dν
2π e

−iν(t2−t1)ψ∗ν(x2)ψν(x1)
∫ νF

−∞

dυ
2π e

−iυ(t1−t2)ψ∗υ(x1)ψυ(x2)

= SF (t1, x1; t2, x2)SF (t2, x2; t1, x1) , (6.0.12)

where in the last line we used the definition of the Feynman propagator in (2.6.32).

Perturbative expansion of the reflection coefficient

To evaluate the S-matrix in section 2.7 we need the perturbative expansion of the
reflection coefficient (2.7.5). More concretely we need the perturbative expansion
of the combination RνF+aR

∗
νF+b. For the one-to-n scattering the parameters a

and b are fixed by demanding one incoming and n ≥ 1 outgoing waves. To obtain
the perturbative expansion of the scattering amplitudes we will quotient out the
phase e−i(a−b) log(−νF ) in the expansion of RνF+aR

∗
νF+b. In other words we will

evaluate the S-matrix elements using the expansion below on the right:

ei(a−b) log(−νF )RνF+aR
∗
νF+b = 1− i

2νF
(a2 − b2)

− 1
24ν2

F

(
3(a2 − b2)2 − i(a(1 + 4a2)− b(1 + 4b2))

)
+O

(
ν−3
F

)
, (6.0.13)

with a and b fixed appropriately. We note that (6.0.13) can be expressed as follows

ei(a−b) log(−νF )RνF+aR
∗
νF+b = 1 + i

2νF
(B2(1/2− ia)−B2(1/2 + ib))

+ 1
6ν2
F

(
(B3(1/2− ia) +B3(1/2 + ib))− 3

4 (B2(1/2− ia)−B2(1/2 + ib))2
)

+O
(
ν−3
F

)
,

(6.0.14)

where Bk(x) are the Bernoulli polynomials and we used the expansion of the
Gamma function in terms of the reflection coefficient which implies

RνF+a e
iνF (−1+log(−νF )) = e

∑
n≥1

(−i)n+2
n(n+1)

Bn+1(1/2−ia)
νn
F . (6.0.15)

We note that in (6.0.14) the power n of 1/νF a particular Bernoulli polynomial
is multiplied with is related to its degree by deg(Bk(x)) ≥ n. Since now the kth
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Bernoulli polynomial is a polynomial of degree k we can use∑
Ω∈{ω1,..,ωn−1}

(−1)|Ω|ω(Ω)k = 0 , k < n− 1 , (6.0.16)

which in combination with (6.0.14) implies the leading order power of νF in the
perturbative expansion of the S-matrix.

Further examples of scattering amplitudes

In this appendix we give some additional examples of scattering amplitudes.

One-to-four scattering. To obtain the one-to-four amplitude we start with

Q ({ti, xi}) = 〈Fermi|TB n̂(t1, x1)n̂(t2, x2)n̂(t3, x3)n̂(t4, x4)n̂(t5, x5) |Fermi〉 .
(6.0.17)

After performing Wick contractions we go to Fourier space and extract the scat-
tering amplitude defined in (2.7.16) as in the previous examples. This leads to

S(ω1, ω2, ω3, ω4 |ω5) ≡ e−iω5 log(−νF )
∑

Ω⊆{ω1,.., ω4}

(−1)|Ω|+1
∫ ω(Ω)

0
dυ R∗νF−υRνF−υ−ω5 ,

(6.0.18)

where the sum ranges over all subsets Ω of {ω1, .., ω4}, |Ω| is the number of ele-
ments in Ω, and ω(Ω) =

∑
ω∈Ω ω. We note again that the additional minus sign

arises because of the initial definition in (2.7.16). Inserting the expressions of the
reflection coefficient (2.7.5) and its perturbative expansion (6.0.13) we obtain

S(ω1, ω2, ω3, ω4 |ω5) =− i

ν3
F

ω1ω2ω3ω4ω5(ω5 + i)(ω5 + 2i) + i

24ν5
F

ω1ω2ω3ω4ω5

×(ω5 + i)(ω5 + 2i)(ω5 + 3i)(ω5 + 4i)
(
ω1 (ω1 − i) + ω2 (ω2 − i)

+ ω3 (ω3 − i) + ω4 (ω4 − i) + 1
)

+O
(
ν−7
F

)
.

(6.0.19)

One-to-five scattering. To obtain the one-to-five amplitude we start with

Q ({ti, xi}) = 〈Fermi|T n̂(t1, x1)n̂(t2, x2)n̂(t3, x3)n̂(t4, x4)n̂(t5, x5)n̂(t6, x6) |Fermi〉 .
(6.0.20)

After performing Wick contractions we go to Fourier space and extract the scat-
tering amplitude defined in (2.7.16) along the lines explained in the last examples.
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This leads to

S(ω1, ω2, ω3, ω4, ω5 |ω6) ≡ e−iω6 log(−νF )
∑

Ω⊆{ω1,.., ω5}

(−1)|Ω|+1
∫ ω(Ω)

0
dυ R∗νF−υRνF−υ−ω6 .

(6.0.21)

Inserting the expressions of the reflection coefficient we obtain

S(ω1, ω2, ω3, ω4, ω5 |ω6) = 1
ν4
F

ω1ω2ω3ω4ω5ω6(ω6 + i)(ω6 + 2i)(ω6 + 3i)

− 1
24ν6

F

ω1ω2ω3ω4ω5ω6(ω6 + i)(ω6 + 2i)(ω6 + 3i)(ω6 + 4i)(ω6 + 5i)

×
(
ω1 (ω1 − i) + ω2 (ω2 − i) + ω3 (ω3 − i) + ω4 (ω4 − i)

+ ω5 (ω5 − i) + 1
)

+O
(
ν−8
F

)
. (6.0.22)

One-to-six scattering. After performing Wick contractions we go to Fourier
space and extract the scattering amplitude defined in (2.7.16) along the lines ex-
plained in the last examples. This leads to

S(ω1, ω2, ω3, ω4, ω5, ω6 |ω7) ≡ e−iω7 log(−νF )
∑

Ω⊆{ω1,.., ω6}

(−1)|Ω|+1
∫ ω(Ω)

0
dυ R∗νF−υRνF−υ−ω7 .

(6.0.23)

Inserting the expressions of the reflection coefficient we obtain

S(ω1, . . . , ω6 |ω7) = i

ν5
F

ω1ω2ω3ω4ω5ω6ω7(ω7 + i)(ω7 + 2i)(ω7 + 3i)(ω7 + 4i)+

− i

24ν7
F

ω1ω2ω3ω4ω5ω6ω7(ω7 + i)(ω7 + 2i)(ω7 + 3i)(ω7 + 4i)(ω7 + 5i)(ω7 + 6i)

×
(
ω1 (ω1 − i) + ω2 (ω2 − i) + ω3 (ω3 − i) + ω4 (ω4 − i) + ω5 (ω5 − i)

+ ω6 (ω6 − i) + 1
)

+O
(
ν−9
F

)
. (6.0.24)

Three-to-two scattering. We are looking for the term proportional to

e−iω1u1−iω2u2+iω3u3+iω4u4+iω5u5δ(ω1 + ω2 + ω3 + ω4 + ω5)S(ω1, ω2 |ω3, ω4, ω5) ,
(6.0.25)

with ω1, ω2 outgoing and positive and ω3, ω4, ω5 incoming negative. Further we
assume

ω2 > ω1 , ω5 > ω4 > ω3 , ω2 > −ω3 − ω4 , ω1 < −ω4 − ω5 , (6.0.26)
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which implies ω2= max{ω1, ω2, |ω3|, |ω4|, |ω5|}. We find

S(ω1, ω2 |ω3, ω4, ω5)

≡ e−i(ω3+ω4+ω5) log(−νF )

[∫ ω1+ω4

ω4

dυ R∗νF−υ+ω4
RνF−υR

∗
νF−υ−ω2

RνF−υ+ω1+ω4

+
∫ ω1+ω3

ω3

dυ R∗νF−υ+ω3
RνF−υR

∗
νF−υ−ω2

RνF−υ+ω1+ω3 −
∫ ω1

0
dυ RνF−υ+ω1R

∗
νF−υ−ω2

+
∫ ω1+ω5

ω5

dυ R∗νF−υ+ω5
RνF−υR

∗
νF−υ−ω2

RνF−υ+ω1+ω5 +
∫ ω1

0
dυ RνF−υ+ω1+ω2R

∗
νF−υ

−
∫ ω1+ω4

ω4

dυ R∗νF−υ−ω2−ω5
RνF−υ+ω1+ω4R

∗
νF−υ+ω4

RνF−υ−ω5

−
∫ ω1+ω3

ω3

dυ R∗νF−υ−ω2−ω4
RνF−υ+ω1+ω3R

∗
νF−υ+ω3

RνF−υ−ω4

−
∫ ω1+ω5

ω5

dυ R∗νF−υ−ω2−ω3
RνF−υ+ω1+ω5R

∗
νF−υ+ω5

RνF−υ−ω3

]

= − i

ν3
F

ω1ω2ω3ω4ω5(ω2 − i)(ω2 − 2i) +O(ν−5
F ) . (6.0.27)

Non-planar contribution

To compare to the log-divergence in (3.7.15) we need to go beyond the planar
approximation of the large N limit of Fm(α) (3.4.35). Whereas the planar contri-
bution is obtained from a large N saddle point approximation, to find non-planar
contributions one needs to make use of other techniques. We will use the method
of orthogonal polynomials [80]. We will only provide minimalistic details, for a
more detailed explanation of this method we refer for example to [63]. Two poly-
nomials are said to be orthogonal with respect to a weight function w(x) if they
satisfy

orthoa :
∫

dxw(x) pn(x)pm(x) = hnδm,n (6.0.28)

In addition to (6.0.28), orthogonal polynomials satisfy the three-term recurrence
relation

orthob : x pn(x) = An pn(x) + Sn pn+1(x) +Rn pn−1(x) for n > 0 ,
x p0(x) = A0 p0(x) + S0 p1(x) , (6.0.29)
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where An, Sn, and Rn are some real constants. Focusing on monic polynomials

Pn(λ) ≡ λn +
n−1∑
j=0

ajλ
j , n = 0, . . . , N − 1 , (6.0.30)

we obtain [80]

1
N2Fm(α) = − 1

N
log h0(α)

h0(0) −
1
N

N−1∑
n=1

(
1− n

N

)
log Rn(α)

Rn(0) , (6.0.31)

where we highlight the coupling dependency of hn (6.0.28) and Rn (6.0.29) explic-
itly.

Example m = 3. Using (6.0.28) and (6.0.29) for ω(x) = e−NV3(x,α) we obtain [63]

n

N
= Rn(α)

[
1 + α2 (Rn+1(α) +Rn(α) +Rn−1(α))

+ α3
(
2Rn+1(α) + 2Rn(α)Rn−1(α) +Rn+1(α)Rn−1(α) +Rn−1(α)Rn−2(α)

+R2
n(α) +R2

n+1(α) +R2
n−1(α) +Rn+1(α)Rn+2(α)

)]
. (6.0.32)

Let us now define the variables ε ≡ 1/N and x ≡ nε. In the large N limit, x is well
approximated by a continuous parameter. In view of this, it is convenient to set
r(x,α) ≡ Rn(α). We note that r(x,α) is also a function of N , but we suppress
this dependence for notational simplicity. We can rewrite (6.0.32) as

x = r(x,α)+α2r(x,α) [r(x+ ε,α) + r(x,α) + r(x− ε,α)]+α3

[
2r(x,α)r(x+ε,α)

+ 2r(x,α)r(x− ε,α) + r(x+ ε,α)r(x− ε,α) + r(x− ε,α)r(x− 2ε,α) + r(x,α)2

+ r(x− ε,α)2 + r(x+ ε,α)2 + r(x+ ε,α)r(x+ 2ε,α)
]
. (6.0.33)

It follows from (6.0.33) that r(x,α) is symmetric under ε↔ −ε and we can expand
it in even powers of ε

r(x,α) = r0(x,α) + ε2 r2(x,α) + ε4 r4(x,α) + · · · . (6.0.34)

To obtain the first non-planar contribution we only need r0(x,α) and r2(x,α)
which we easily infer from (6.0.33) by comparing powers of ε.

An equation similar to (6.0.33) can be obtained for m ≥ 3 upon choosing ω(x) =
e−NVm(x,α), m ≥ 4 (6.0.28). Our final ingredient will be the Euler-Maclaurin
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formula

1
N

N∑
n=1

f
( n
N

)
=
∫ 1

0
dxf(x) + 1

2N f(x)
∣∣1
0 +

p−1∑
n=1

B2n

(2n)!
1

N2n f(x)(2n−1)∣∣1
0 +RN .

(6.0.35)
In the above, f(x) is a 2p times continuously differentiable function, RN is a
remainder term scaling as O(1/N2p+1), and the B2n denote the Bernoulli numbers.
Applying the Euler-Maclaurin formula to

f (x) = (1− x) log r(x,α)
x

, (6.0.36)

and expanding (6.0.31) in inverse powers of N , we find

1
N2Fm(α) =−

∫ 1

0
dx(1− x) log r(x,α)

x
− 1
N

log h0(α)
h0(0) + 1

2N lim
x→0

log r(x,α)
x

− 1
12N2

(
(1− x) log r(x,α)

x

)(1)
∣∣∣∣∣
1

0
(6.0.37)

up to order O(1/N4) corrections. Expanding all three terms in (6.0.34) and eval-
uating h0(α) for small α we find up to powers of order O(1/N2)

1
N2Fm(α) =−

∫ 1

0
dx (1− x) log r0(x,α)

x

− 1
N2

∫ 1

0
dx (1− x) r2(x,α)

r0(x,α) + 1
12

[
(1− x) log r0(x,α)

x

](1)
∣∣∣∣∣
1

0

− 3
4α2

 .

(6.0.38)

Note that we encounter an ambiguity in choosing r0(x,α) since it is the solution
of an mth order polynomial. We pick the solution yielding the on-shell value
(3.2.21) when evaluating the O(N0) integral along γ

(m)
? . Evaluating the second

line in the above expression is in general difficult however to get the coefficient
of the log-divergence we only care about the first integral. To further simplify
our analysis we zoom into the multicritical point αc (3.2.13). The non-analytic
behaviour of (6.0.38) occurring for α = αc close to the upper boundary, equals
the non-analyticity observed upon considering small deformations away from the
multicritical point only after evaluating the integral. We obtain for m = 3 and
m = 4

F (1)
3,n.a.(αc) = 1

18 log ε , F (1)
4,n.a.(αc) = 1

16 log ε , ε� 1 , (6.0.39)
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where the subscript indicates the leading non-analyticity. For general m ≥ 3 we
conjecture

F (1)
m,n.a.(αc) = 2m− 2

24(2m− 1) log ε , ε� 1 , (6.0.40)

and the coefficient of the log agrees with the coefficient of the log of the torus parti-
tion function (3.7.15) of the continuum theory. For m = 2 and the generalisations
thereof discussed in section 3.3.1 on the other side we obtain

F̃ (1)
m,n.a.(αc) = 1

24 log ε , ε� 1 . (6.0.41)

As a final remark we note that F (1)
m (4α2, . . . , 2mαm) counts leading non-planar

diagrams. More explicitly it counts diagrams whose vertices are emanating four
or 2m edges and which can fit on a surface of genus one. As an example, a
perturbative analysis of (6.0.38) using r0(x,α) and r2(x,α) for m = 3 easily
reveals

F (1)
3 (4α2, 6α3) = α2 + 10α3 − 30α2

2 − 2400α2
3 − 600α2α3 + . . . . (6.0.42)

Solutions of N4(α) = 0

In this section, we discuss the solutions of the normalisation condition (3.4.18) for
the m = 4 case:

u
(4)
1,± = −2α3

7α4
−S± 1

2

√
−4S2 − 2p+ q

S
, u

(4)
2,± = −2α3

7α4
+S± 1

2

√
−4S2 − 2p− q

S
,

(6.0.43)
where

p ≡ 24(14α2α4 − 5α2
3)

245α2
4

, q ≡ 64(5α3
3 − 21α2α3α4 + 49α2

4)
1715α3

4
. (6.0.44)

In the above, we have defined

S ≡ 1
2

√
−2

3p−
256

105α4

(
Q+ ∆0

Q

)
, (6.0.45)

Q ≡
3

√
∆1 +

√
∆2

1 − 4∆3
0

2 , (6.0.46)

∆0 ≡ 3
256(3α2

2 − 10(α3 + 14α4)) , (6.0.47)

∆1 ≡ − 27
4096

(
2(α3

2 − 5α2α3 − 50α2
3) + 35α4(1 + 8α2)

)
, (6.0.48)
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D4 ≡ − 1
27
(
∆2

1 − 4∆3
0
)
. (6.0.49)

Much of our interest lies in a solution of N4(α) = 0 that is regular in a small
neighbourhood ℵ0 around the origin of coupling space α = 0. To analyse the
problem, we can consider approaching α = 0 uniformly in all directions, and
exploring the behaviour of the various solutions throughout ℵ0. An exhaustive
analysis reveals that one must keep track of the various signs of α and the special
combination (α3 + 14α4). The term (α3 + 14α4) is already revealed in the form of
∆0 and can be seen to carry through into the more involved building blocks such
as Q and S. For instance, near ℵ0 we have

Q =

 52/3

8×71/3

(
α3+14α4

α4

)1/3
+O(α4/3) , α4 ≥ 0 ,

3×351/3

16 (−α4)1/3 +O(α4/3) , α4 < 0 .
(6.0.50)

We find the following combination of solutions to be smooth near ℵ0

B4(α) = u
(4)
1,+
(
Θ+++ + Θ−++ + Θ+

−−+ + Θ+
+−+

)
+

u
(4)
2,−
(
Θ−−− + Θ++− + Θ−+− + Θ+−− + Θ−−−+ + Θ−+−+

)
, (6.0.51)

where we have introduced the notation

Θρ2ρ3ρ4 ≡ Θ(ρ2α2)Θ(ρ3α3)Θ(ρ4α4) , (6.0.52)
Θρ
ρ2ρ3ρ4

≡ Θ(ρ2α2)Θ(ρ3α3)Θ(ρ4α4)Θ(ρ(α3 + 14α4)) . (6.0.53)

Further properties of N4(α) = 0
The solutions (6.0.43) also reveal additional information. For instance, expanding
the discriminant D4 (6.0.49) at small α2 and α3, we identify α4 = −27/8960 as
the special value α̃4,c in (3.3.11). Similarly, expanding the discriminant D4 at
small α3 and α4, we identify α2 = −1/12 as the special value α(2)

2,c in (3.2.13).
Finally expanding for small α2 and α4 reveals α3 = −2/135 as the special value
α̃3,c (3.3.11). Near (α2, α3, α4) = (0, 0,−27/8960), (α2, α3, α4) = (0,−2/135, 0)
as well as (α2, α3, α4) = (−1/12, 0, 0), ∆1 remains non-vanishing such that the
non-analytic behaviour of the solutions u(4) is that of a square root. Expanding
the discriminant D4 near α2 = −1/8, reveals α3 = 1/160 as a special value, which
we recognise as α(4)

3,c , one of the multicritical couplings (3.2.13). At (α2, α3) =
(−1/8, 1/160) we further have that ∆1 = 0, while D4 goes as (1+8960α4)3 reveal-
ing the third multicritical value α4 = −1/8960. Also, at (α2, α3) = (−1/8, 1/160)
we observe that Q in (6.0.46) goes as (1 + 8960α4)1/2, and p in (6.0.44) goes as
(1 + 8960α4). Expanding away from the multicritical point reveals distinct non-
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analytic behaviour in the solutions of N4(α) = 0. For instance, fixing (α2, α3) =
(−1/8, 1/160) and deviating slightly away from α4 = −1/8960, we uncover a
fourth root non-analyticity.

Non-analyticities: normalisation condition

In this appendix we prove the following.

Claim. For
αε ≡ αc + s ε , u = 4m+ x̃ ε

1
m−r′ , x̃ ∈ R , (6.0.54)

with s living on H(1)
m ∪H(2)

m . . . ∪H(r′)
m = 0, r′ = 1, . . .m− 2, (3.5.15) the normal-

isation condition (3.2.11) reduces to (3.5.17)

N (r′)
m (αε) =

[
(−1)m x̃m

(4m)m −
x̃r
′

4r′m
2H(r′+1)

m

]
ε

m
m−r′ +O

(
ε
m+1
m−r′

)
. (6.0.55)

Proof. Plugging (3.5.16) with s constraint to live on the hypersurface H(1)
m ∪

H(2)
m . . . ∪ H(r′)

m = 0 into the normalisation condition (3.2.11) and expanding for
small ε we obtain

N (r′)
m (αε) = (−1)m x̃m

(4m)m ε
m

m−r′−
m∑
n=2

(
4n

2nB(n, 1/2)

n∑
`=0

(
n

`

)(
x̃

4m

)`
ε

`
m−r′+1

)
mn sn .

(6.0.56)
We apply a recursive argument by showing that the sum multiplying the term
x̃k−1, k ≥ 3, vanishes for s constraint to

H(k−2)
m ∪H(k−1)

m ∪H(k)
m = 0 . (6.0.57)

For ` = k − 1 we have (6.0.55)

m∑
n=k−1

4n
2nB(n, 1/2)

(
n

k − 1

)
mnsn = (4m)k−1

2(k − 1)B(k − 1, 1/2)sk−1

+
m∑
n=k

4n
2nB(n, 1/2)

(
n

k − 1

)
mnsn

H(k−2)
m=

m∑
n=k

4n
2nB(n, 1/2)

((
n

k − 1

)
−
(
n− 2
k − 3

))
mnsn = (4m)k

kB(k, 1/2)sk+

+
m∑

n=k+1

4n
2nB(n, 1/2)

((
n

k − 1

)
−
(
n− 2
k − 3

))
mnsn
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H(k−1)
m=

m∑
n=k+1

4n
2nB(n, 1/2)

((
n

k − 1

)
−
(
n− 2
k − 3

)
− 2
(
n− 2
k − 2

))
mnsn

=
m∑

n=k+1

4n
2nB(n, 1/2)

(
n− 2
k − 1

)
mnsn = H(k)

m . (6.0.58)

A superscript over an equality sign means that we are using the condition s ∈ H(j)
m .

For ` = 1 the sum already vanishes on H(1)
m ∪ H(2)

m = 0. For ` = 0 it vanishes on
H(1)
m = 0. If the directions s now lives on

r′⋃
j=1
H(j)
m = 0 , (6.0.59)

in (6.0.56) all terms of order O(x̃k), k < r′ vanish and we obtain (6.0.55).

Non-analyticities: action
In this appendix we prove the following.

Claim. Along

αεn 6=p = α
(m)
c,n6=p + sn 6=p ε , αβp = α(m)

c,p + sp ε+ s̃ ε
m

m−r′ , u = 4m+ x̃ ε
1

m−r′ .

(6.0.60)
and using (3.5.19) we obtain

S(r′)
m [ρ(m)

ext (λ,αε)] = S(r′)
m [s, ε, ε2]

− 1
2Hm

[
(−1)m x̃m

(4m)m −
x̃r
′

4r′m
2H(r′+1)

m − (4m)p
2pB(p, 1/2) s̃

]
ε

m
m−r′

+ (4m)p
2p2B(p, 1/2)

m!p!
(m+ p)! s̃ ε

m
m−r′ +O

(
ε
m+1
m−r′

)
, (6.0.61)

where

S(r′)
m [s, ε, ε2] ≡ Sc[ρ(m)

ext (λ,αc)]

+ ε

( m∑
n=2

(4m)n
4n2B(n, 1/2)sn +

m∑
n=1
k≥2

(−1)n+1

4n(n+ k)

(
m

n

)
(4m)k

B(k, 1/2)sk

+
m∑
k=1
n≥2

(−1)k+1 k

4n2(n+ k)

(
m

k

)
(4m)n

B(n, 1/2)sn
)
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+ ε2
m∑

n,k=2

sn
4n2B(n, 1/2)

sk
2(n+ k)

(4m)n+k

B(k, 1/2) (6.0.62)

evaluated on (3.5.14). The action Sc[ρ(m)
ext (λ,αc)] at criticality was defined in

(3.2.21).

Proof. To proof (6.0.61) we split the on-shell action (3.2.20) into pieces and
write out the series expansion of the logarithm. This leads to

S(k)
m [ρext(λ)]

=
m∑
n=1

(2n)!
4n αn ω

(m)
n +

m∑
n=1

αn,cu
n

4n2B(n, 1/2)+ε
m∑
n=2

snu
n

4n2B(n, 1/2)−
∞∑
`=1

(−1)`+1

2`
x̃`

(4m)` ε
`

m−k ,

(6.0.63)

where (3.2.17)

ω(m)
n (α) ≡ 1

(n!)24n
m∑
k=1

αku
n+k

2(n+ k)B(k, 1/2) . (6.0.64)

and B(n, 1/2) is the beta function

B(n, 1/2) = 4n(n!)2

n(2n)! . (6.0.65)

1st term. For the first term in the action (6.0.63) we find

m∑
n=1

(2n)!
4n αn ω

(m)
n = 1

2(H2m −Hm) + (−1)m+1

2
x̃m

(4m)mHm ε
m

m−r′ + 1
2Hm

m2

4r′ H
(r′+1)
m

+
m∑

n,k=1

n+k∑
`>m

(−1)n+kk

2n(n+ k)

(
m

n

)(
m

k

)(
n+ k

`

)
x̃`

(4m)` ε
`

m−r′

+
m∑

n,k=2

sn
4n2B(n, 1/2)

sk
2(n+ k)

(4m)n+k

B(k, 1/2) ε
2 +O

(
ε

2m−r′−1
m−r′

)
.

(6.0.66)

where we used i1), i2), i3) (6.0.73) and c2) (6.0.74) and Hm is the mth harmonic
number. Additionally (6.0.66) contains a coupling and x̃ dependent part. Using
(6.0.64) we obtain along (6.0.60)

m∑
n,k=1

n+k∑
`=0

αn
4n2B(n, 1/2)

αk
2(n+ k)

(4m)n+k

B(k, 1/2)

(
n+ k

`

)
x̃`

(4m)` ε
`

m−r′
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=
m∑

n,k=1

αn
4n2B(n, 1/2)

αk
2(n+ k)

(4m)n+k

B(k, 1/2)

+
m∑

n,k=1

n+k∑
`=1

αn
4n2B(n, 1/2)

αk
2(n+ k)

(4m)n+k

B(k, 1/2)

(
n+ k

`

)
x̃`

(4m)` ε
`

m−r′ ,(6.0.67)

where the case of the α’s in both sums equal to their critical value we already
treated in obtaining (6.0.66). For the other case using (3.2.13) we have

m∑
n,k=1

n+k∑
`=1

1
4n(n+ k)

[
(−1)n+1

(
m

n

)
(4m)k

B(k, 1/2)sk + (−1)k+1 k

n

(
m

k

)
(4m)n

B(n, 1/2)sn
]

×
(
n+ k

`

)
x̃`

(4m)` ε
`

m−r′+1

+
m∑

n,k=1

1
4n(n+ k)

[
(−1)n+1

(
m

n

)
(4m)k

B(k, 1/2)sk + (−1)k+1 k

n

(
m

k

)
(4m)n

B(n, 1/2)sn
]
ε

+
m∑

n,k=2

sn
4n2B(n, 1/2)

sk
2(n+ k)

(4m)n+k

B(k, 1/2) ε
2

+
m∑

n,k=2

n+k∑
`=1

(
n+ k

`

)
sn

4n2B(n, 1/2)
sk

2(n+ k)
(4m)n+k

B(k, 1/2)
x̃`

(4m)` ε
`

m−r′+2
.

(6.0.68)

Only the sums in the first line of (6.0.68) and the last sum could contribute to
the leading non-analyticity in (6.0.61). We treat the sums independently. For the
second sum in the second line we use that (6.0.74) vanishes for ` < m and the
first non-vanishing term arises for ` = m proportional to ε(2m−r

′)/(m−r′). Since
our leading non-analyticity grows us O(εm/(m−r′)), r′ = 1, . . . ,m − 2 the former
is subleading with respect to the non-analyticity we are after. For the first sum of
the second line we show that for s ∈ H(1)

m ∪H(2)
m . . . ∪H(`)

m = 0 we have
m∑
n=1

m∑
k=2

(−1)n+1

4n(n+ k)

(
m

n

)
(4m)k

B(k, 1/2)sk
(
n+ k

`

)
x̃`

(4m)` = 1
2Hm

m2

4` H
(`+1)
m . (6.0.69)

We show (6.0.69) for ` = 1 and ` = 2, for general ` > 2 the logic stays the same.
For ` = r′ it leads to the claimed result (6.0.61). For ` = 1 we have

1
4m

m∑
n=1

m∑
k=2

1
4n

[
(−1)n+1

(
m

n

)
(4m)k

B(k, 1/2)sk
]

= 1
4m

∑
k>2

m∑
n=1

1
4n (−1)n+1

(
m

n

)
(4m)k

B(k, 1/2)sk
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+ 1
4m

(4m)2

B(2, 1/2)s2

m∑
n=1

(−1)n+1

4n

(
m

n

)
H(1)
m= 1

2Hm
m2

4 H
(2)
m .

(6.0.70)

For ` = 2 we have

1
(4m)2

m∑
k=2

m∑
n=1

(−1)n+1

4n(n+ k)

(
m

n

)
(4m)k

B(k, 1/2)

(
n+ k

2

)
sk

H(1)
m= 1

(4m)2

m∑
n=1
k≥3

(−1)n+1

4n

(
m

n

)
(4m)k

B(k, 1/2)

[
1

n+ k

(
n+ k

2

)
− 2
k(n+ 2)

(
n+ 2

2

)]
sk

H(2)
m= 1

(4m)2

m∑
n=1
k≥3

(−1)n+1

4n

(
m

n

)
(4m)k

B(k, 1/2)

[
1

n+ k

(
n+ k

2

)
− 2
k(n+ 2)

(
n+ 2

2

)

− 6(k − 2)
2k

(
1

n+ 3

(
n+ 3

2

)
− 2

3(n+ 2)

(
n+ 2

2

))]
sk

= 1
(4m)2

m∑
n=1
k≥3

(−1)n+1

4n

(
m

n

)
(4m)k

B(k, 1/2)
1
k

(
k − 2

2

)
sk

= 1
(4m)2

m∑
n=1

(−1)n+1

2n

(
m

n

)∑
k≥4

(4m)k
2kB(k, 1/2)

(
k − 2

2

)
sk = 1

2Hm
m2

42 H
(3)
m .(6.0.71)

Finally the last sum in (6.0.68). For any fixed ` it vanishes on H(1)
m ∪ . . .∪H(`+1)

m =
0. We start by showing this for ` = 1:

m∑
n,k=2

sn
4n2B(n, 1/2)

sk
2(n+ k)

(4m)n+k

B(k, 1/2)

(
n+ k

1

)
= (4m)2

B(2, 1/2)s2

m∑
n=2

(4m)nsn
4n2B(n, 1/2)

+
∑
k>2

m∑
n=2

(4m)nsn
4n2B(n, 1/2)

(4m)k
2B(k, 1/2)sg =

∑
k>2

m∑
n=2

(4m)nsn
4n2B(n, 1/2)

(4m)k
B(k, 1/2)

(
1
2 −

1
k

)

=
m∑
n=2

(4m)nsn
4n2B(n, 1/2)

m∑
k=3

(4m)k
2kB(k, 1/2)

(
k − 2

1

)
sk ∝ H(2)

m .

(6.0.72)

Now for s ∈ H(1)
m ∪H(2)

m we obtain non-analyticity O
(
εm/(m−2)), i.e. k = 2. How-

ever from (6.0.68) we infer a leading contribution of order O
(
ε(2m−3)/(m−2)). For

m > 3 which is the only case in which k = 2 is allowed the exponent is therefore
bigger than m/(m−2) and so we do not get a contribution violating O

(
εm/(m−2))

as a leading non-analyticity. For ` > 1 the logic is the same.
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Identities for harmonic numbers Hm.

i1)
m∑

n,k=1

(−1)n+kk

2n(n+ k)

(
m

n

)(
m

k

)(
n+ k

m

)
= (−1)m+1

2 Hm ,

i2)
m∑
n=1

(−1)n+1

2n

(
m

n

)
= 1

2Hm ,

i3)
m∑

n,k=1

(−1)n+kk

2n(n+ k)

(
m

n

)(
m

k

)
= 1

2(H2m −Hm) , (6.0.73)

Conjectures.

c1) 0 =
m∑

n,k=1

m−1∑
`=1

(−1)n+kk

2n(n+ k)

(
m

n

)(
m

k

)(
n+ k

`

)
1

(4m)` ,

c2) 0 =
m∑
k=1

m∑
n=2

(−1)k+1

4n(n+ k)
k

n

(
m

k

)
(4m)n

B(n, 1/2)sn
(
n+ k

`

)
1

(4m)`

∣∣∣∣
`=1,...m−1

.(6.0.74)

2nd term. For the second term in (6.0.63) we start by rewriting the normalisation
condition (3.2.11)

1−
m∑
n=1

αn,cu
n

2nB(n, 1/2) = (−1)m(4m)−m(u− 4m)m . (6.0.75)

Dividing both sides by 2u and integrating with respect to u and η > 0 we have∫ u′

η

du
(

1
2u −

m∑
n=1

αn,cu
n−1

4nB(n, 1/2)

)
= (−1)m(4m)−m

∫ u′

η

du (u− 4m)m
2u .

(6.0.76)
We then get

1
2 log(u′/η)−

m∑
n=1

αn,cu
′n

4n2B(n, 1/2) = 1
2

∫ u′

ε

du 1
u

(
1− u

4m

)m
= 1

2

∫ u′

ε

du
m∑
`=0

(−1)`
(
m

`

)
u`−1

(4m)`

=
m∑
`=1

(−1)`
2`

(
m

`

)
u′`

(4m)` + 1
2 log(u′/η) .

(6.0.77)
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From this we conclude
m∑
n=1

αn,cu
n

4n2B(n, 1/2) =
m∑
`=1

(−1)`+1

2`

(
m

`

)
u`

(4m)` =
m∑
n=1

(−1)n+1

2n
x̃n

(4m)n ε
n

m−k + 1
2Hm .

(6.0.78)

The x̃ dependent term therefore exactly cancels the 4th term in (6.0.63).

3rd term. For the third term in the on-shell action (6.0.63) we find for s ∈
H(1)
m ∪ . . .H(r′)

m , following the same reasoning as in appendix 6

ε

m∑
n=2

snu
n

4n2B(n, 1/2) = ε

m∑
n=2

(4m)n
4n2B(n, 1/2)sn + x̃r

′+1

(4m)r′+1 ε
m+1
m−r′

mr′+2

2(k + 1)H
(r′+1)
m .

(6.0.79)

Fine-tuning

We get the fine-tuning by realising that in the on-shell action (3.2.20) only the first
and second term are affected to order O(εm/(m−r′)) when fine-tuning αβp (6.0.60).
Clearly the only contribution of the second term scaling as s̃ εm/(m−r′) is

m∑
n=1

αnu
n

4n2B(n, 1/2) = s̃
(4m)p

4p2B(p, 1/2) ε
m

m−r′ +O
(
ε

m
m−r′+1

)
. (6.0.80)

From the first term of the on-shell action (3.2.20) on the other side we get the
contribution(

(2p)!
4p

s̃

(p!)24p
m∑
n=1

αn,c
2(n+ p)

(4m)n+p

B(n, 1/2) + s̃
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4n(n!)2
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+ (4m)p
B(p, 1/2) s̃
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(
m
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)
1

4n(n+ p)B(n, 1/2)

)
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m
m−r′
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s̃ ε

m
m−r′

=
(

(4m)p
2p2B(p, 1/2)
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(m+ p)! −
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4p2B(p, 1/2)
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m
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(4m)p
4pB(p, 1/2) s̃ ε
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(6.0.81)
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Hypergeometric functions

We collect some useful properties about (regularised, generalised) hypergeometric
functions. For |z| < 1, a1, a2, b1 ∈ C the hypergeometric function is defined by the
power series

2F1 (a1, a2; b1; z) ≡
∞∑
n=0

(a1)n(a2)n
(b1)n

zn

n! , (x)n ≡ x(x+1) · · · (x+n−1) = Γ(x+ n)
Γ(x) .

(6.0.82)
In particular for a1 = a2 = b1 = 1 we obtain the geometric series

2F1 (1, 1; 1;x) =
∞∑
n=0

xn . (6.0.83)

For a1, . . . ap, b1, . . . bq ∈ C and |z| < 1, (6.0.82) generalises to the generalised
hypergeometric function

pFq

[
a1 a2 · · · ap
b1 b2 · · · bq

; z
]
≡
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n! . (6.0.84)

Finally we define the regularised hypergeometric

pF̃q ≡
1

Γ(b1) · · ·Γ(bq) p
Fq

[
a1 a2 · · · ap
b1 b2 · · · bq

; z
]
. (6.0.85)

Normalisation condition m = 3. To prove the conjecture (3.4.11) we study

u
(3)
? (α2, α3) = 4

√
π

∞∑
k=0

(
20α3

3α2

)k 1
Γ(2 + k) 3F̃2

(
1,−k, 1 + k; 1

2 −
k

2 , 1−
k

2 ; 9α2
2

40α3

)
,

(6.0.86)
along the path γ

(3)
? (3.4.7). We start on the right hand side.

3F̃2

(
1, 1− k, k; 1− k

2 ,
3
2 −

k

2 ; 3
4

)
= lim

(ρ1,ρ2)→1
3F̃2

(
1, 1− k, k; ρ2 −

k

2 ,
3ρ1

2 − k

2 ; 3
4

)
.

(6.0.87)
Using the definition of the regularised hypergeometric function (6.0.85) we obtain

3F̃2

(
1, 1− k, k; ρ2 −

k

2 ,
3ρ1

2 − k

2 ; 3
4

)
= 1

Γ
(
ρ2 − k

2
)

Γ
( 3ρ1

2 −
k
2
)

×

(
1 +
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`=1

(−1)`
(

3
4

)` (k)`(k − 1)`∏`−1
n=0

(
k
2 − n−

3ρ1
2
) (

k
2 − n− ρ2

)) , (6.0.88)
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where (k)` is the factorial

(k)` ≡
Γ(k + 1)

Γ(k − `+ 1) , (6.0.89)

leading to

u
(3)
? (α2, α3)

∣∣
γ

(3)
?

= 12
∞∑
k=1

(−t)k−1

Γ(k + 1)

k−1∑
`=0

(−3)`
32k−1

Γ(k + `)
Γ(k − `)Γ(2 + 2`− k) (6.0.90)

We are left to show for k ≥ 1

−12 (−1)k
Γ(k + 1)

k−1∑
`=0

(−3)` Γ(k + `)
32k−1Γ(k − `)Γ(2 + 2`− k) = −12(−1)k

(
1/3
k

)
. (6.0.91)

By writing out the fractional binomial coefficient we obtain

−12(−1)k
(

1/3
k

)
= −12(−1)k Γ(4/3)

Γ(k + 1)Γ(4/3− k) = −12 (−1)k
3kΓ(k + 1)

k−1∏
n=0

(1− 3n) .

(6.0.92)

The last product we write in terms of stirling numbers s1(n, k) for the first kind.
The Stirling numbers s1(n, k) enumerate (−1)n−k times the number of partitions
of the symmetric group Sn with exactly k cycles. By definition, they are also the
coefficients of the falling factorial

(x)n ≡ x(x− 1)(x− 2) · · · (x− n+ 1) =
n∑
k=0

s1(n, k)xk . (6.0.93)

Applying this to the product in (6.0.92) with x = 1/3 we find

k−1∏
n=0

(1− 3n) = (1− 3)(1− 3× 2)(1− 3× 3) · · · (1− 3(k − 1)) =
k+1∑
n=0

3k−n−1 s1(k + 1, n)

=
k+1∑
n=0

3n s1(k + 1, k + 1− n) ,

(6.0.94)
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where in going to the last line we substituted n→ k − n+ 1. We now define

Lk ≡
k∑

n=0
3ns1(k + 1, k + 1− n) , Rk ≡ k!

k∑
n=0

3n (−1)n
3k

(
n+ k

n

)(
n

k − n

)
.

(6.0.95)

We show that both expressions satisfy

Lk = (1− 3k)Lk−1 , Rk = (1− 3k)Rk−1 , k ≥ 1 . (6.0.96)

We start with Lk. Using the recursion relation for the Stirling numbers

s1(k + 1, n+ 1) = s1(k, n)− ks1(k, n+ 1) , (6.0.97)

and s1(k, 0) = 0 we find

Lk ≡
k∑

n=0
3ns1(k + 1, k + 1− n) =

k∑
n=0

3ns1(k, k − n)− k
k∑

n=0
3ns1(k, k + 1− n)

=
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n=0

3ns1(k, k − n) + 3ks1(k, 0)− k
k∑

n=0
3ns1(k, k + 1− n) = (1− 3k)Lk−1 .

(6.0.98)

We now show the same recursion equation for Rk. We have

Rk ≡ k!
k∑

n=0
3n (−1)n

3k

(
n+ k

n

)(
n

k − n

)
= (−3)k

(−1/3)!

(
−1

3 + k

)
! = (−3)k

(−1/3)!Γ
(
k + 2

3

)
(6.0.99)

which implies

Rk−1 = −1
3

(−3)k
(−1/3)!

(
−4

3 + k

)
! = −1

3
(−3)k

(−1/3)!Γ
(
−1

3 + k

)
= 1

(1− 3k)Rk .

(6.0.100)

Since L0 = R0 and L1 = R1 so (6.0.96) completes the proof.

On-shell action m = 3. We now also rewrite the regularised hypergeometric
appearing in (3.4.15). Following the same logic as for the normalisation condition

197



6. Appendices

we have

3F̃2

(
1,−k, k; 1

2 −
k

2 , 1−
k

2 ; 3
4

)
=

k∑
n=1

(−1)n 3n
2k
√
π

kΓ(k + n)
Γ(1 + 2n− k)Γ(1− n+ k) ,

(6.0.101)

and consequently we can write F (3)(α2, α3) along γ(3)
? as

F (3) (α2, α3)
∣∣
γ

(3)
?

= −
∞∑
k=1

(−1)k
32kΓ(k + 3)

k−1∑
`=0

(−3)`+1Γ(k + `)
Γ(k − `)Γ(3 + 2`− k) (k + `) tk .

(6.0.102)

Comparing to the normalisation condition (6.0.91) we thus indeed obtain the scal-
ing ∼ k−10/3.

BTZ as a 2D black hole

Here we briefly review how to view the BTZ black hole in terms of the 2D variables
used in the main portions of the draft. First it is useful to cast the black hole in
the Fefferman-Graham gauge (4.2.5): Using

ρ2 = ρ2
+ cosh2(η/`− η0/`)− ρ2

− sinh2(η/`− η0/`) , e2η0/` ≡
ρ2

+ − ρ2
−

4`2 ,

(6.0.103)
in (4.2.14) gives

ds2
3 = dη2 + e2η/`(−dt2 + `2dϕ2) + (ρ+ − ρ−)2

4`2 (dt+ `dϕ)2

+ (ρ+ + ρ−)2

4`2 (dt− `dϕ)2 +
(
ρ2

+ − ρ2
−
)2

16`4 e−2η/`(−dt2 + `2dϕ2) , (6.0.104)

From here we can relate the values of the 2D variables used in Sec. 4.4.1 that lead
to the BTZ solution. In relation to (4.3.1) and (4.4.1), we have η = r, ϕ = z/`,
and L = `. From (4.2.5) and (4.4.24) we have

α = 1 , λ = 1 , ν = 0 , (6.0.105)

since g(0)
ij = ηij , and using (4.4.25) gives

`2m0 =
ρ2

+ + ρ2
−

`2
= 8G3m ,
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`2Q = −ρ+ρ−
`

= −4G3 j , (6.0.106)

where m and j are defined in (4.2.15). For ρ− > 0, as we chose in Sec. 4.2.2, then
Q < 0.

It is also instructive to map the near horizon geometry of near-extremal BTZ
in terms of the variables used in Sec. 4.5.1 for the IR deformations. Using the
coordinate system in (6.0.104), the decoupling limit to capture the near horizon is
as follows. We first define the near-extremal black hole as

ρ± = ρ0 ± δ +O(δ2) . (6.0.107)

Extremality is at δ = 0, and near extremality corresponds to small values of δ.
This deviation away from extremality will increase the mass and temperature as
described in Sec. 4.2.2. In particular from (4.2.20) we have

T = 2δ
π`2

+O(δ2) . (6.0.108)

The dependence on δ of ρ± is determined by requiring that the angular momentum
is fixed for small values of δ. In the coordinate system used here, the horizon is at

e2ηh/` = e2η0/` = ρ0

`2
δ +O(δ2) (6.0.109)

and hence at extremality corresponds to η → −∞. The near horizon region is
therefore reached via rescaling our coordinates as

η → η + η0 , t→ `t

δ
, ϕ→ ϕ+ t

δ
(6.0.110)

and take the limit δ → 0 in (6.0.104). The resulting geometry is

ds2
3 −→
δ→0

dη2 − γnhtt dt2 + r2
0
(
dϕ+Anht dt

)2 +O(δ) , (6.0.111)

where

γnhtt = −(e2ρ/` − e−2ρ/`)2 , Anht = − 1
r0

(e2ρ/` + e−2ρ/`) . (6.0.112)

This solution perfectly agrees with the IR fixed point (4.5.6), where we can identify

αir = −βir = 1 , e−2φ0 = r2
0
`2

, Q = −r
2
0
`3

. (6.0.113)

The first correction in δ can also be matched with the irrelevant deformation
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(4.5.8). We find
Ynh = r0δ (e2ρ/` + e−2ρ/`) . (6.0.114)

And from here we identify λir = σir = r0δ.
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Science+ Business Media, LLC, 1997

[174] L. P. Kadanoff, “Scaling laws for Ising models near T(c),” Physics Physique
Fizika 2, 263-272 (1966) doi:10.1103/PhysicsPhysiqueFizika.2.263

[175] Yang, C. N. , Lee, T. D. “Statistical Theory of Equations of State and Phase
Transitions. I. Theory of Condensation,” Phys. Rev.,87, ssue = 3, 404–409pg,
1952, doi = 10.1103/PhysRev.87.404

[176] G. von Gehlen, “NonHermitian tricriticality in the Blume-Capel model with
imaginary field,” [arXiv:hep-th/9402143 [hep-th]].

[177] M. Blume, “Theory of the First-Order Magnetic Phase Change in UO2,”
Phys. Rev. 141, issue 2, pages: 517-524, 1966 doi = 10.1103/PhysRev.141.517;
H.W. Capel, “On the possibility of first-order phase transitions in Ising sys-
tems of triplet ions with zero-field splitting”, Physica 32, number 5, pages:
966-988, 1966 doi = 10.1016/0031-8914(66)90027-9

[178] C. Itzykson, H. Saleur and J. B. Zuber, “Conformal Invariance of Nonunitary
Two-dimensional Models,” Europhys. Lett. 2, 91 (1986) doi:10.1209/0295-
5075/2/2/004

215



6. Bibliography

iv) Scattering from the continuum
[179] D. J. Gross and I. R. Klebanov, “S = 1 for c = 1,” Nucl. Phys. B 359, 3

(1991). doi:10.1016/0550-3213(91)90291-5

[180] J. de Boer, A. Sinkovics, E. P. Verlinde and J. T. Yee, “String interac-
tions in c = 1 matrix model,” JHEP 0403, 023 (2004) doi:10.1088/1126-
6708/2004/03/023 [hep-th/0312135].

[181] B. Balthazar, V. A. Rodriguez and X. Yin, “Long String Scattering in c
= 1 String Theory,” JHEP 1901, 173 (2019) doi:10.1007/JHEP01(2019)173
[arXiv:1810.07233 [hep-th]].

[182] H. Erbin, J. Maldacena and D. Skliros, “Two-Point String Amplitudes,”
JHEP 1907, 139 (2019) doi:10.1007/JHEP07(2019)139 [arXiv:1906.06051
[hep-th]].

H. Non-perturbative effects in Liouville
[183] E. Witten, “On string theory and black holes,” Phys. Rev. D 44, 314 (1991).

doi:10.1103/PhysRevD.44.314

[184] G. Mandal, A. M. Sengupta and S. R. Wadia, “Classical solutions
of two-dimensional string theory,” Mod. Phys. Lett. A 6, 1685 (1991).
doi:10.1142/S0217732391001822

[185] M. Fukuma and S. Yahikozawa, “Comments on D instantons in c < 1
strings,” Phys. Lett. B 460, 71 (1999) doi:10.1016/S0370-2693(99)00744-3
[hep-th/9902169].

[186] V. Fateev, A. B. Zamolodchikov and A. B. Zamolodchikov, “Boundary Liou-
ville field theory. 1. Boundary state and boundary two point function,” 2000,
hep-th/0001012.

[187] J. Teschner, “Remarks on Liouville theory with boundary,” PoS tmr 2000,
041 (2000) doi:10.22323/1.006.0041 [hep-th/0009138].

[188] A. B. Zamolodchikov and A. B. Zamolodchikov, (2001) , “Liouville field
theory on a pseudosphere,” hep-th/0101152.

[189] S. Y. Alexandrov, V. A. Kazakov and D. Kutasov, “Nonperturbative effects
in matrix models and D-branes,” JHEP 0309, 057 (2003) doi:10.1088/1126-
6708/2003/09/057 [hep-th/0306177].

[190] I. R. Klebanov, J. M. Maldacena and N. Seiberg, “D-brane decay in
two-dimensional string theory,” JHEP 0307, 045 (2003) doi:10.1088/1126-
6708/2003/07/045 [hep-th/0305159].

216



[191] E. J. Martinec, “The Annular report on noncritical string theory,” 2003,
hep-th/0305148.

[192] V. Kazakov, I. K. Kostov and D. Kutasov, “A Matrix model for the two-
dimensional black hole,” Nucl. Phys. B 622, 141 (2002) doi:10.1016/S0550-
3213(01)00606-X [hep-th/0101011].

[193] A. Sen, “Rolling tachyon,” JHEP 04, 048 (2002) doi:10.1088/1126-
6708/2002/04/048 [arXiv:hep-th/0203211 [hep-th]].

[194] N. Seiberg and D. Shih, “Branes, rings and matrix models in min-
imal (super)string theory,” JHEP 0402, 021 (2004) doi:10.1088/1126-
6708/2004/02/021 [hep-th/0312170].

[195] D. Kutasov, K. Okuyama, J. w. Park, N. Seiberg and D. Shih, “Annulus
amplitudes and ZZ branes in minimal string theory,” JHEP 0408, 026 (2004)
doi:10.1088/1126-6708/2004/08/026 [hep-th/0406030].

[196] A. Sato and A. Tsuchiya, “ZZ brane amplitudes from matrix models,” JHEP
0502, 032 (2005) doi:10.1088/1126-6708/2005/02/032 [hep-th/0412201].

[197] A. B. Zamolodchikov and A. B. Zamolodchikov, “Decay of Metastable
Vacuum in Liouville Gravity,” Conf. Proc. C 060726, 1223 (2006) [hep-
th/0608196].

[198] D. Gaiotto, “Long strings condensation and FZZT branes,” hep-th/0503215.

[199] P. Betzios and O. Papadoulaki, “FZZT branes and non-singlets of Matrix
Quantum Mechanics,” arXiv:1711.04369 [hep-th].

[200] B. Balthazar, V. A. Rodriguez and X. Yin, “ZZ Instantons and the Non-
Perturbative Dual of c = 1 String Theory,” arXiv:1907.07688 [hep-th].

[201] B. Balthazar, V. A. Rodriguez and X. Yin, “Multi-Instanton Calculus in c
= 1 String Theory,” arXiv:1912.07170 [hep-th].

[202] A. Sen, “Divergent to Complex Amplitudes in Two Dimensional String The-
ory,” arXiv:2003.12076 [hep-th].

N. Finiteness, a Hilbert space & Cosmology?

[203] D. Anninos and G. A. Silva, “Solvable Quantum Grassmann Matrices,”
J. Stat. Mech. 1704, no.4, 043102 (2017) doi:10.1088/1742-5468/aa668f
[arXiv:1612.03795 [hep-th]].

[204] Y. Chen, V. Gorbenko and J. Maldacena, “Bra-ket wormholes in gravita-
tionally prepared states,” [arXiv:2007.16091 [hep-th]].

217



6. Bibliography

[205] J. B. Hartle and S. W. Hawking, “Wave Function of the Universe,” Phys.
Rev. D 28, 2960 (1983) [Adv. Ser. Astrophys. Cosmol. 3, 174 (1987)].
doi:10.1103/PhysRevD.28.2960

[206] S. R. Coleman, “Why There Is Nothing Rather Than Something: A
Theory of the Cosmological Constant,” Nucl. Phys. B 310, 643 (1988).
doi:10.1016/0550-3213(88)90097-1

[207] S. B. Giddings and A. Strominger, “Baby Universes, Third Quantiza-
tion and the Cosmological Constant,” Nucl. Phys. B 321, 481 (1989).
doi:10.1016/0550-3213(89)90353-2

[208] M. Li, “Matrix model for de Sitter,” JHEP 0204, 005 (2002) [AIP
Conf. Proc. 607, no. 1, 146 (2002)] doi:10.1063/1.1454368, 10.1088/1126-
6708/2002/04/005 [hep-th/0106184].

[209] E. Silverstein, “(A)dS backgrounds from asymmetric orientifolds,” Clay Mat.
Proc. 1, 179 (2002) [hep-th/0106209].

[210] A. Strominger, “Inflation and the dS / CFT correspondence,” JHEP 0111,
049 (2001) doi:10.1088/1126-6708/2001/11/049 [hep-th/0110087].

[211] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, “De
Sitter vacua in string theory,” Phys. Rev. D 68, 046005 (2003)
doi:10.1103/PhysRevD.68.046005 [hep-th/0301240].

[212] N. Goheer, M. Kleban and L. Susskind, “The Trouble with de Sitter
space,” JHEP 07, 056 (2003) doi:10.1088/1126-6708/2003/07/056 [arXiv:hep-
th/0212209 [hep-th]]; M. K. Parikh and E. P. Verlinde, “De Sitter holography
with a finite number of states,” JHEP 0501 (2005) 054 doi:10.1088/1126-
6708/2005/01/054 [hep-th/0410227]; T. Banks, B. Fiol and A. Morisse,
“Towards a quantum theory of de Sitter space,” JHEP 0612 (2006) 004
doi:10.1088/1126-6708/2006/12/004 [hep-th/0609062]; X. Dong, B. Horn,
E. Silverstein and G. Torroba, “Micromanaging de Sitter holography,”
Class. Quant. Grav. 27 (2010) 245020 doi:10.1088/0264-9381/27/24/245020
[arXiv:1005.5403 [hep-th]]; D. Anninos, S. A. Hartnoll and D. M. Hofman,
“Static Patch Solipsism: Conformal Symmetry of the de Sitter Worldline,”
Class. Quant. Grav. 29, 075002 (2012) doi:10.1088/0264-9381/29/7/075002
[arXiv:1109.4942 [hep-th]]; S. Leuven, E. Verlinde and M. Visser, “Towards
non-AdS Holography via the Long String Phenomenon,” JHEP 06, 097
(2018) doi:10.1007/JHEP06(2018)097 [arXiv:1801.02589 [hep-th]]; H. Geng,
S. Grieninger and A. Karch, “Entropy, Entanglement and Swampland
Bounds in DS/dS,” JHEP 06, 105 (2019) doi:10.1007/JHEP06(2019)105
[arXiv:1904.02170 [hep-th]]; A. Lewkowycz, J. Liu, E. Silverstein and G. Tor-

218



roba, “T T̄ and EE, with implications for (A)dS subregion encodings,”
[arXiv:1909.13808 [hep-th]].

[213] A. M. Polyakov, “De Sitter space and eternity,” Nucl. Phys. B 797, 199
(2008) doi:10.1016/j.nuclphysb.2008.01.002 [arXiv:0709.2899 [hep-th]].

[214] M. Spradlin, A. Strominger and A. Volovich, “Les Houches lectures
on de Sitter space,” hep-th/0110007; D. Anninos, “De Sitter Musings,”
Int. J. Mod. Phys. A 27, 1230013 (2012) doi:10.1142/S0217751X1230013X
[arXiv:1205.3855 [hep-th]].

[215] T. Bautista and A. Dabholkar, “Quantum Cosmology Near
Two Dimensions,” Phys. Rev. D 94, no. 4, 044017 (2016)
doi:10.1103/PhysRevD.94.044017 [arXiv:1511.07450 [hep-th]].

[216] P. Betzios, U. Gürsoy and O. Papadoulaki, “Matrix Quantum Mechanics on
S1/Z2,” Nucl. Phys. B 928, 356 (2018) doi:10.1016/j.nuclphysb.2018.01.019
[arXiv:1612.04792 [hep-th]].

[217] P. Betzios and O. Papadoulaki, “Liouville theory and Matrix models A
Wheeler DeWitt perspective,” [arXiv:2004.00002 [hep-th]].

[218] F. Denef, “TASI lectures on complex structures,”
doi:10.1142/9789814350525 0007 arXiv:1104.0254 [hep-th].

[219] D. Anninos and F. Denef, “Cosmic Clustering,” JHEP 1606, 181 (2016)
doi:10.1007/JHEP06(2016)181 [arXiv:1111.6061 [hep-th]].

[220] D. Anninos, F. Denef, R. Monten and Z. Sun, “Higher Spin de Sit-
ter Hilbert Space,” JHEP 1910, 071 (2019) doi:10.1007/JHEP10(2019)071
[arXiv:1711.10037 [hep-th]].

[221] D. Anninos and D. M. Hofman, “Infrared Realization of dS2 in AdS2,”
Class. Quant. Grav. 35, no. 8, 085003 (2018) doi:10.1088/1361-6382/aab143
[arXiv:1703.04622 [hep-th]].

[222] D. Anninos, D. A. Galante and D. M. Hofman, “De Sitter Horizons &
Holographic Liquids,” JHEP 1907, 038 (2019) doi:10.1007/JHEP07(2019)038
[arXiv:1811.08153 [hep-th]].

[223] D. J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, “TT in AdS2 and
Quantum Mechanics,” arXiv:1907.04873 [hep-th].

[224] D. J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, “Hamiltonian defor-
mations in quantum mechanics, T T̄ , and SYK,” arXiv:1912.06132 [hep-th].

[225] J. Maldacena, G. J. Turiaci and Z. Yang, “Two dimensional Nearly de Sitter

219



6. Bibliography

gravity,” arXiv:1904.01911 [hep-th].

[226] J. Cotler, K. Jensen and A. Maloney, “Low-dimensional de Sitter quantum
gravity,” arXiv:1905.03780 [hep-th].

[227] J. Cotler and K. Jensen, “Emergent unitarity in de Sitter from matrix inte-
grals,” arXiv:1911.12358 [hep-th].

[228] M. Bershadsky and I. R. Klebanov, “Genus one path integral in two-
dimensional quantum gravity,” Phys. Rev. Lett. 65, 3088-3091 (1990)
doi:10.1103/PhysRevLett.65.3088; M. Bershadsky and I. R. Klebanov, “Par-
tition functions and physical states in two-dimensional quantum gravity
and supergravity,” Nucl. Phys. B 360, 559-585 (1991) doi:10.1016/0550-
3213(91)90416-U

[229] D. Kutasov and N. Seiberg, “Number of degrees of freedom, density of states
and tachyons in string theory and CFT,” Nucl. Phys. B 358, 600-618 (1991)
doi:10.1016/0550-3213(91)90426-X

[230] B. H. Lian and G. J. Zuckerman, “New selection rules and physical states
in 2-D gravity: Conformal gauge,” Phys. Lett. B 254, 417-423 (1991)
doi:10.1016/0370-2693(91)91177-W

[231] C. Imbimbo, S. Mahapatra and S. Mukhi, “Construction of physical states of
nontrivial ghost number in c < 1 string theory,” Nucl. Phys. B 375, 399-420
(1992) doi:10.1016/0550-3213(92)90038-D

[232] P. Bouwknegt, J. G. McCarthy and K. Pilch, “Fock space resolutions of the
Virasoro highest weight modules with c <= 1,” Lett. Math. Phys. 23, 193-204
(1991) doi:10.1007/BF01885497 [arXiv:hep-th/9108023 [hep-th]].

[233] D. Kutasov, E. J. Martinec and N. Seiberg, “Ground rings and their modules
in 2-D gravity with c <= 1 matter,” Phys. Lett. B 276, 437-444 (1992)
doi:10.1016/0370-2693(92)91664-U [arXiv:hep-th/9111048 [hep-th]].

[234] T. Eguchi and H. Kawai, “Number of Random Surfaces on the Lat-
tice and the Large N Gauge Theory,” Phys. Lett. B 110, 143-147 (1982)
doi:10.1016/0370-2693(82)91023-1

[235] C. Itzykson and J. B. Zuber, “Two-Dimensional Conformal Invariant The-
ories on a Torus,” Nucl. Phys. B 275, 580-616 (1986) doi:10.1016/0550-
3213(86)90576-6

[236] J. Teschner, “On the Liouville three point function,” Phys. Lett. B 363,
65-70 (1995) doi:10.1016/0370-2693(95)01200-A [arXiv:hep-th/9507109 [hep-
th]].

220



[237] B. S. DeWitt, “Quantum Theory of Gravity. 1. The Canonical Theory,”
Phys. Rev. 160, 1113-1148 (1967) doi:10.1103/PhysRev.160.1113; B. S. De-
Witt, “Quantum Theory of Gravity. 2. The Manifestly Covariant Theory,”
Phys. Rev. 162, 1195-1239 (1967) doi:10.1103/PhysRev.162.1195

Black hole holography

[238] A. Sen, “Black Hole Entropy Function, Attractors and Precision Counting
of Microstates,” Gen. Rel. Grav. 40, 2249-2431 (2008) doi:10.1007/s10714-
008-0626-4 [arXiv:0708.1270 [hep-th]].

[239] I. Mandal and A. Sen, “Black Hole Microstate Counting and its Macro-
scopic Counterpart,” Nucl. Phys. B Proc. Suppl. 216, 147-168 (2011)
doi:10.1088/0264-9381/27/21/214003 [arXiv:1008.3801 [hep-th]].

[240] A. Sen, “Microscopic and Macroscopic Entropy of Extremal Black Holes
in String Theory,” Gen. Rel. Grav. 46, 1711 (2014) doi:10.1007/s10714-014-
1711-5 [arXiv:1402.0109 [hep-th]].

[241] R. Jackiw, “Lower Dimensional Gravity,” Nucl. Phys. B 252, 343-356 (1985)
doi:10.1016/0550-3213(85)90448-1

[242] C. Teitelboim, “Gravitation and Hamiltonian Structure in Two Space-
Time Dimensions,” Phys. Lett. B 126, 41-45 (1983) doi:10.1016/0370-
2693(83)90012-6

[243]

[243] D. Grumiller, J. Salzer and D. Vassilevich, “AdS2 holography
is (non-)trivial for (non-)constant dilaton,” JHEP 12, 015 (2015)
doi:10.1007/JHEP12(2015)015 [arXiv:1509.08486 [hep-th]].

[244] D. Grumiller, R. McNees, J. Salzer, C. Valcárcel and D. Vassile-
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Samenvatting

Dit proefschrift behandelt laagdimensionale dualiteiten, beschouwd als werkbare
modellen waarmee men tweedimensionale De Sitter-ruimte en zwarte gaten kan
bestuderen. De eerste twee hoofdstukken geven een samenvatting van een nieuwe
constructie die een brug kan slaan van De Sitter-ruimte naar de vermoedelijke
dualiteit tussen matrixmodellen en tweedimensionale kwantumzwaartekracht. Dit
zou een volgende stap vormen richting een beter begrip van het universum op
microscopische schaal. In het laatste hoofdstuk behandelen we fundamentele
vraagstukken over de microscopische beschrijving van zwarte gaten, door middel
van een laagdimensionale dualiteit die bekend staat als de “vlakbij-AdS2/vlakbij-
CFT1 correspondentie”.

We leven in een tijdperk waarin nauwkeurige astronomische instrumenten ons in
staat stellen om meer te weten te komen over het universum waarin wij ons bevin-
den. Observaties van de kosmische achtergrondstraling en de explosies van vergele-
gen witte dwergsterren (type Ia supernova’s) wijzen erop dat ons universum zich
naar een stadium beweegt van versnelde uitdijing, aangedreven door een zeer kleine
positieve kosmologische constante. In de afgelopen jaren heeft men met behulp
van de LIGO- en Virgo-detectoren de zwaartekrachtsgolven kunnen waarnemen
die uitgezonden zijn door verscheidene binaire zwarte gaten, wat aanvullend be-
wijs heeft geleverd voor het het bestaan van deze zwarte gaten.

Een maximaal symmetrische ruimtetijd met positieve kosmologische constante
wordt ook een De Sitter-ruimte genoemd. Door toedoen van de versnelde uitdijing
kan een waarnemer in een De Sitter-ruimte slechts tot op een eindige afstand zien
en wordt deze omgeven door een waarnemingshorizon. De waarnemingshorizon
markeert ook de grens van het zwarte gat, waar de ontsnappingssnelheid groter
wordt dan de lichtsnelheid. Zowel de horizon van De Sitter-ruimte als de horizon
van een zwart gat hebben een eindige oppervlakte, en vermoedelijk is er tevens
een eindige entropie geassocieerd met deze horizons.

De eindigheid van deze entropieën hebben mij ertoe geleid om modellen met een
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eindig aantal vrijheidsgraden te gebruiken om een microscopische beschrijving van
De Sitter-ruimte en zwarte gaten te geven. Deze modellen worden gerealiseerd als
laagdimensionale dualiteiten. Een dualiteit is een vertaalslag tussen twee theo-
rieën, die de ene theorie op de ander afbeeldt en vice versa. Afhankelijk van het
exacte probleem wat we willen bestuderen, kunnen we besluiten welke van de twee
formalismen het meest bruikbaar is. In een laagdimensionale dualiteit bevinden
de twee duale theorieën zich in een ruimtetijddimensie lager dan vier.

In de komende twee alinea’s geven we een inkijk in de twee dualiteiten waar we
ons in dit proefschrift voornamelijk op richten.

Matrixmodellen en tweedimensionale kwantumzwaartekracht. Om een
microscopische beschrijving te geven van ons uitdijende universum proberen we
een verband te leggen tussen De Sitter-ruimte en matrixmodellen. Hoewel er zeer
weinig bekend is over De Sitter-ruimte op kwantumniveau, vormen matrixmod-
ellen nauwkeurig uitgewerkte instrumenten binnen de theoretische natuurkunde.
Er bestaan vermoedens dat onder bepaalde omstandigheden — zoals wanneer de
afmetingen van de matrix zeer groot worden — enkele eigenschappen van een
matrixmodel duaal zijn aan observabelen van een specifiek model van tweed-
imensionale kwantumzwaartekracht, gekoppeld aan materievelden. Dit model
staat bekend als de Liouville-theorie. Een cruciaal aspect van de Liouville-theorie
geplaatst op de topologie van een twee-bol (met aanvullende voorwaarden, zoals
een grote negatieve centrale lading en een beperking op de totale oppervlakte), is
dat deze een semi-klassieke De Sitter-benadering toelaat. Deze tweedimensionale
De Sitter-ruimte lijkt op de hogerdimensionale De Sitter-theorie die onze ruimtetijd
beschrijft, en beide modellen delen bepaalde belangrijke eigenschappen. Matrix-
modellen zouden daarom een ultraviolet-voltooiing kunnen vormen van een De
Sitter-kwantumzwaartekrachttheorie, en mogelijk meer inzicht kunnen bieden in
een microscopische beschrijving van ons universum.

Zwarte gaten. Zwarte gaten zijn oplossingen van de Einsteinvergelijkingen uit
de algemene relativiteitstheorie, met een krommingssingulariteit in het centrum
en een waarnemingshorizon daarbuiten. Een verrassend aspect van zwarte gaten
is dat ze bepaalde thermodynamische eigenschappen hebben, gelijkend op statis-
tische systemen. Hoewel er een uitgebreide theorie over zwarte gaten bestaat,
blijven er voorlopig vele vraagstukken bestaan over de AdS2-geometrie in de bu-
urt van de horizon van een vlakbij-extremaal zwart gat. Een voorbeeld van
dergelijke vraagstukken is het feit dat de temperatuur van een extremaal zwart
gat gelijk is aan nul, terwijl de entropie van de horizon eindig (en groter dan
nul) is, zelfs in het extremale geval. De aanpak die men gebruikt om een mi-
croscopische beschrijving van deze entropie te geven, maakt gebruik van de zo-
genaamde (vlakbij-)AdS2/(vlakbij)-CFT1-correspondentie. Deze corresponden-
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tie koppelt een theorie van tweedimensionale zwaartekracht met negatieve krom-
ming (AdS2) aan een eendimensionale hoekgetrouwe kwantummechanische theo-
rie (CFT1) die gesitueerd is op de rand van de AdS2-ruimtetijd. Het voorvoegsel
“vlakbij” verwijst naar een gebied in de buurt van het zuivere AdS2/CFT1-regime.
Zoals uitgelegd in het eerstvolgende hoofdstuk, laat een zuivere AdS2-achtergrond
slechts configuraties in de grondtoestand toe. Vlakbij-AdS2 is een kleine afwijk-
ing hiervan, die nog steeds in verbinding staat met AdS2, maar toch excitaties
toelaat met eindige energie groter dan nul. Een belangrijke toelichting hierbij is
dat de theorie op de rand in de vlakbij-AdS2/vlakbij-CFT1-correspondentie een
hoekgetrouwe kwantummechanische theorie is in plaats van een kwantumvelden-
theorie, en dat de dualiteit daardoor slechts een eindig aantal vrijheidsgraden
bevat.
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