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Chapter 1

Introduction

1.1 Popular introduction and summary
A translation of this section into Dutch can be found in Sec. 1.2 on
page 10.

1.1.1 Quantum computation
On the 30th of June 2021, the asteroid ‘2020 AD1’ approaches the
earth with a relative velocity of approximately 17,000 km/h [52, 54].
Fortunately, it will not hit the earth; on the 4th of July, it will fly by
at approximately three lunar distances.

The solar system consist of the sun and the objects orbiting around
it. Known objects include the planets, about a million of asteroids
and dozens of spacecraft. Computers can simulate the solar system
by creating a simplified ‘board game’ version of it that captures the
most important aspects. In case we want to predict if an asteroid is
going to hit the earth, these aspects are the velocity (including the
direction) and position of the known objects in the solar system. We
will henceforth call these positions and velocities, at any given time,
the state of the solar system at that time. The players of the board
game can be thought of as the known objects in the solar system, and
the game is designed in such a way that every state of the board game
corresponds to a state of the solar system. By playing many rounds
of the game, a computer can find future states of the board game,
and hence future states of the solar system. In this way, computers
can calculate future positions of both the earth and the asteroid ‘2020
AD1’, leading to the prediction that these two celestial bodies will not
collide on the 4th of July.1

1(For experts) Classical computers are not known to be able to efficiently simulate
the N -body problem; the only known upper bound on the complexity of this problem
is that it is in PSPACE [122]. Note that BPQ⊆PSPACE [21], also see Sec. 1.5.3.
This comes as no surprise since the N -body problem can show chaotic behaviour.
Nevertheless, the solar system can be simulated with high accuracy for the next
couple of centuries, with error bounds given a posteriori [55, 53, 54].

1
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The players on the board game are bound by the rules of the game.
These rules are completely deterministic; there is only one valid move
per player per round. This is because the rules of the game have been
determined by the laws of classical mechanics, which leave no room for
an element of choice. The laws of classical mechanics are the natural
laws that shape our everyday experiences; if you push a pawn, it starts
moving (‘F = ma’); if you let loose of a apple, it falls (Newton’s law of
gravitation). These same laws apply to the objects in the solar system.

To enter the world of this thesis, let us leave the solar system behind
and zoom in on a tiny patch of the earth, far past the scale of plan-
ets, trees, humans, apples, pawns and microorganisms. We now enter
the realm of molecules, constituting of electrons, protons and neutrons
(Fig. 1.1). Remarkably, different laws of nature reign here; the laws of
quantum mechanics. Humans are not familiar with these laws because
the objects we regularly interact with follow instead the laws of classi-
cal mechanics. Quantum mechanics can therefore be counter-intuitive
and has a name for being difficult to understand [44].

We would also like to simulate protons, neutrons and electrons.
This is because their behaviour determines chemical reactions. Hence,
the simulation of protons, neutrons and electrons can help to improve
industrial chemical production processes. One example is that of fer-
tilizer [123]. Currently, the production of one of the ingredients of
fertilizer consumes about 1% of the world’s total energy supply, all in
the form of fossil fuels [112]. Yet, bacteria exist that produce that same
ingredient without the use of fossil fuels. If we simulated this chemi-
cal process, we could learn from the bacteria and potentially produce
fertilizer more environmentally friendly [123].

To simulate the behaviour of electrons, protons and neutrons, we
need to create a new board game, which we can call the “quantum
game”, that captures the essential parts of a quantum mechanical sys-
tem, and let the computer play this game. The pieces of the game
now represent protons, neutrons and electrons, which brings with it a
change of the rules. The rules are now set by the laws of quantum me-
chanics. Quantum mechanics is not only difficult to humans, but also
to computers; a short calculation2 shows that just to store the board
game version of 37 electrons already requires at least 1 Terabyte of

2A classical description of the state of n spin degrees of freedom requires the
storage of roughly 2n complex numbers. Using two floats per complex number, this
takes up 2n×2×4 byte. Solving 2n×2×4 byte = 1 Terabyte for n gives n ≈ 37. It
is possible to simulate n spin degrees of freedom without storing the complete state.
This requires poly(n) bytes (i.e. BQP⊆PSPACE, see [21] and Sec. 1.5.3.) However,
the time complexity of this method is believed to still be exponential.
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Figure 1.1: The realms of classical and quantum mechanics. The way
in which the world of classical mechanics emerges from the world of
quantum mechanics is one of the biggest open questions in physics. As
far as we can tell there is no sharp delineation between them.
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memory. Moreover, this requirement doubles with every electron that
is added. This makes it intractable to store the simplified board game
version of even a modest number of quantum mechanical particles. For
example, it would require much more than all of the worlds’ current
data storage capacity [126] just to store the board game version of 100
electrons. So, it seems intractable to simulate 100 electrons.

But what if we create a computer out of quantum mechanical parti-
cles themselves [19, 45]? Such a computer is called a quantum computer.
Because the parts of a quantum computer are themselves quantum
mechanical, a quantum computer can store the board game version
of a quantum mechanical system more naturally than a classical com-
puter. Furthermore, because the parts of a quantum computer follow
the rules of quantum mechanics, quantum computers can apply the
rules of the quantum game more naturally then a classical computer.
Hence, quantum computers have been shown to be able to efficiently
simulate quantum mechanical systems [98]. See Fig. 1.2 for a picture
of a real quantum computer.

Quantum computers can do much more than playing the quantum
game. The extra ‘quantum power’ of quantum computers can also
be used to solve mathematical problems, such as the factorization of
whole numbers, as it was shown by Shor [132, 130]. The factorization
of a whole number is the task of writing that number as a product of
prime numbers. Prime numbers are numbers larger than 1 that can
only be divided by 1 and themselves. For example, the factorization of
15 is 3 × 5. Every whole number can be factored into a unique set of
prime numbers. As also noted by Shor, it is widely believed that it is
impossible for classical computers to efficiently factor whole numbers;
small numbers (such as 15) are still doable, but classical computers
quickly reach their limits. Shor was able to prove theoretically that
quantum computers, on the other hand, can factorize whole numbers
efficiently [132, 130], and could in theory factor numbers with thou-
sands of digits.

The potential of quantum computers to factor large numbers forms
a potential threat to online security; if you can factor large numbers
(e.g. with a quantum computer), you can decrypt most of the commu-
nication over the internet [4]. The ability of a single nation state to
factor large numbers before any other could have major (geo)political
consequences [144]. The search for security methods that are even
unbreakable to quantum computers is an active field of research [4].

Despite their potential in quantum simulation and factorization,
quantum computers are still in their infancy. The current state of
the art is that a quantum advantage has been demonstrated on real
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Figure 1.2: (Top) A real quantum computer. We are gazing through
the window of a container all air was pumped out of (a vacuum cham-
ber). The white contraption in the centre is used to levitate an array of
14 calcium ions (40Ca+) in its middle. Each calcium ion is a naturally
occurring quantum mechanical system consisting out of 20 protons,
20 neutrons, and 19 electrons. Computations are performed by illu-
minating the ions with lasers whose rays pass through the windows.
The program of the quantum computer determines where and when
the lasers shine exactly. The output of the program is obtained by
measuring which ions fluoresce and which do not. Image: C. Lackner,
University of Innsbruck. (Bottom) An array of calcium ions. In real-
ity the width of the array is less than half a millimetre; the whole would
fit on the period at the end of this sentence. Nevertheless, the ions are
far apart compared to their size (∼ 2Å); if the atoms were the size of
a person, they would all be roughly 100Km apart. More information
about this specific quantum computer can be found in Ref. [104] and
references therein. Image: University of Innsbruck.
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quantum computers [11, 153]. This means that there have been quan-
tum computers that performed computational tasks that are believed
to be intractable on any classical computer. However, all of these
computations were just ‘for sports’; the task given to those quantum
computers was specifically designed with the goal of showing a quan-
tum advantage, and have no known other applications. There has not
been a quantum computer that has shown a useful quantum advan-
tage; the ability to perform a useful computation that is believed to be
intractable on classical computers.

The reason that quantum computers have not yet achieved a use-
ful quantum advantage is that it is really hard to build good quantum
computers. This is because, as it turns out, it is much harder to protect
quantum computers from unwanted influences from the environment
than it is to protect classical computers. These influences could, for
example, be magnetic fields or temperature fluctuations. In the quan-
tum game, you can imagine the effect of these influences as a crook
that comes in from outside (the environment), making a random ille-
gal move now and then without you noticing. Then, after many rounds,
the state of the board game does not faithfully represent the state of
the quantum mechanical system being simulated. We call these un-
wanted influences noise even though they may have nothing to do with
sound. To reach a useful quantum advantage in the near future, it is
indispensable that we gain a thorough understanding of this noise, that
we learn how to mitigate it, and that we learn how to deal with any
remaining noise.

1.1.2 This thesis
In Chapter 2, we propose a task that is designed to be useful, hard
for classical computers, but at the same time well-suited for quantum
computers that become available in the near term. The execution of
this task could have the potential of showing a useful quantum advan-
tage on a near term quantum computer, which is an important next
milestone in the development of quantum computers. The task we pro-
pose is the quantum simulation of the kagome lattice (Fig. 1.3). It is
a special type of simulation, where we are not so much interested in
predicting future states of the kagome lattice, but rather in the task of
predicting the state at temperatures close to absolute zero.

Quantum simulation of the kagome lattice can teach us new things
about nature. There are materials, such as the mineral Herbertsmithite
(discovered in 1972 by - you guessed it - Herbert Smith), of which
the magnetic properties are described by electrons on the kagome lat-
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Figure 1.3: (Left) The kagome lattice. One electron is situated at
every intersection. A line between two intersections depicts a mag-
netic interaction between the electrons it connects. It is not yet known
what the state of this system is at temperatures close to absolute zero.
(Right) Herbertsmithite, whose magnetic properties are described by
electrons on the kagome lattice. Image: Bruce Kelley.

tice [111]. At temperatures close to absolute zero, these properties are
not yet understood. This is because the task of simulating the kagome
lattice has shown to be difficult for classical computers: despite decades
of research effort, the question of the properties of the state of the
kagome lattice at temperatures close to absolute zero remains open to
this day [89].

We propose a method for the quantum simulation of the kagome
lattice that is adapted to the limitations of near term quantum com-
puters. Here, we call that method the kagome quantum game. In this
game, one step of one player takes the quantum computer roughly a
single step of computation. This is important in near term quantum
computers because their computations should take as little time as pos-
sible; the longer a computation, the more time noise has had to spoil
that computation. Furthermore, the general technique of simulation
we use is relatively resilient against noise [102, 117, 113, 125].

To get an idea of how well our method would work on an ideal quan-
tum computer, we run it on a small quantum computer. There is one
catch, however: the quantum computer we run it on is not real. It is it-
self simulated by a classical computer. So there is a double simulation:
we programmed a classical computer to simulate a quantum computer
that simulates the kagome lattice. This extra step of simulation is nec-
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essary because the quantum computer we would need for testing our
method does not exist yet. But, as you may ask, if researchers have not
succeeded to simulate the kagome lattice on classical computers, how is
it possible to simulate a quantum computer that simulates the kagome
lattice, on a classical computer? The caveat is that the quantum com-
puter simulates a tiny patch of the kagome lattice, only containing 20
electrons. The simulation of that quantum computer is still doable
for classical computers. The 20-electron simulation itself would not be
large enough to show a useful quantum advantage. However, if we add
a couple of more electrons to the lattice, it soon becomes impossible to
do the classical simulation. A quantum computer, however, could still
do the simulation.

In Chapter 3, we take a closer look at the noise that hinders quan-
tum computers. Every unit in a quantum computer (called a qubit)
inevitably interacts with the environment, and hence experiences noise
from that environment. We call the amount of noise a unit experi-
ences per second the noise rate of that unit. If you add another unit
to your quantum computer, the quantum computer as a whole expe-
riences more noise. The total noise rate will be the noise rate of one
unit multiplied with the number of units. It was discovered [115, 124,
26] that in some situations, matters might even be worse. There is a
special type of noise, called ‘super noise’ (or rather superdecoherence),
with the property that every new unit you add increases the noise rate
on every other single unit already in the quantum register. (This means
the total noise rate of the total quantum computer now scales as the
noise rate per unit times the square of the number of units.) This type
of noise could pose a large threat to the feasibility of large scale quan-
tum computers. Therefore, it is important to understand this type of
noise thoroughly, and determine exactly when it occurs, and when it
does not.

That is exactly what we do in Chapter 3 of this thesis. We give a
physical interpretation of the origins of this ‘super noise’ in the setting
of Refs. [115, 124]. Namely, we show that in this setting, an array of
units can effectively behave as an antenna. This is undesirable because
an antenna is susceptible to electromagnetic radiation, such as radio or
Wi-Fi signals. The more units your quantum computer has, the larger
this antenna becomes, and hence the more sensitive it becomes. It is
this increased sensitivity that leads to ‘super noise’. We also show that
this type of noise can be easily avoided: the larger the effective antenna
becomes, the more its sensitivity concentrates on a single frequency.
Thus, a quantum computer with many units only experiences super
noise if there is noise on exactly the frequency the antenna tunes in to,
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which is something that can be avoided in practical situations. Hence,
‘super noise’ does not pose a real threat to quantum computers.

In Chapter 4 we study more closely a well-known method for re-
ducing the amount of noise (including regular and super noise). As you
might have experienced yourself, in solving a mathematical problem,
there are multiple ways of arriving at the same, correct answer. Simi-
larly, a quantum computer may arrive at the same answer to a problem
in different ways. Some of these ways might be quicker than others. It
was shown that, in theory, there exists ‘noiseless ways’; these are ways
where the outcome of the computation is as if no noise acted on the
quantum computer (that is, the outcome is the correct outcome), even
though noise did affect the individual units [83]. A noiseless way might
involve a ‘detour’, and hence may not be the fastest way.

In the theoretical proof of the existence of these noiseless ways [83],
perfect knowledge of how the quantum computer reacts to the noise is
assumed. In practical situations, however, perfect knowledge of how the
quantum computer reacts to noise is arguably impossible. In Chapter 4,
we derive a formula with which one can determine how large the effects
of the imperfectness of one’s knowledge are. Using this formula, one
can easily determine how well a noiseless way will work in practice,
aiding the design of quantum computers and quantum computational
methods.

1.1.3 Conclusion and outlook
Many-body physics is the study of physical systems that are comprised
out of many smaller units, or ‘bodies’. The solar system is an example
of a classical many-body system, and the kagome lattice is an example
of a quantum many-body system. The central theme in this thesis is
the interplay between many-body physics and quantum computation
(hence its title). This interplay knows two directions:

1. We can use quantum computation to better understand many-
body quantum physics, such as in Chapter 2.

2. As quantum computers are scaled up, they themselves become
many-body quantum systems. Hence, we can use quantum many-
body physics to better understand quantum computation, such
as in Chapter 3 and Chapter 4.

There is sill a long way to go before quantum computers mature, but
once they do, it has the potential to cause a revolution in physics that
can match the revolution that was caused by classical computers.
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1.2 Introductie en samenvatting in het Neder-
lands

This is a translation of the previous section into Dutch, omitting foot-
notes and figure captions. We switch back to English on page 16.

1.2.1 Quantumcomputers
Op 30 juni 2021 komt de planetoïde ‘2020 AD1’ met een relatieve snel-
heid van ongeveer 17.000 km/h op de aarde af [52, 54]. Gelukkig zal
hij de aarde niet raken; op 4 juli schiet de planetoïde voorbij op een
afstand van drie keer de afstand tussen de aarde en de maan.

Het zonnestelsel bestaat uit de zon en de objecten in een baan daar-
omheen. De ons bekende objecten omvatten de planeten, ongeveer een
miljoen planetoïden en tientallen ruimteschepen. Met behulp van com-
puters is het mogelijk het zonnestelsel te simuleren. Daartoe wordt
er eerst een digitale ‘bordspelversie’ van het zonnestelsel gemaakt dat
enkel de essentiële eigenschappen van het zonnestelsel bevat. In het
geval dat we willen voorspellen of een planetoïde de aarde gaat ra-
ken, zijn deze eigenschappen de massa, richting, snelheid en positie
van de ons bekende objecten in het zonnestelsel. Deze verzameling in-
formatie noemen we vanaf nu de toestand van het zonnestelsel. (De
toestand verandert met de tijd.) De spelers op het bordspel stellen de
ons bekende objecten in het zonnestelsel voor. Het spel is zo ontwor-
pen dat elke toestand van het spel correspondeert met een toestand
van het zonnestelsel. Door vele spelronden te spelen kan een computer
de toekomstige speltoestanden uitrekenen en daarmee de toekomstige
toestanden van het zonnestelsel. Op deze manier heeft een computer
onder andere de toekomstige posities van zowel de aarde als de plane-
toïde ‘2020 AD1’ uitgerekend. Uit deze berekening blijkt dat deze twee
hemellichamen elkaar niet zullen raken in de nabije toekomst.

De spelers op het bordspel volgen de spelregels. Deze zijn volkomen
deterministisch; voor elke speler is er per beurt één geldige zet. Dit
is omdat de spelregels zijn bepaald door de wetten van de klassieke
mechanica, en die wetten bieden geen keuzevrijheid. De wetten van
de klassieke mechanica zijn ook de natuurwetten die onze alledaagse
ervaringen bepalen; als je tegen een pion duwt komt er beweging in
(‘F = ma’), en als je een appel loslaat dan valt hij.

Om de wereld van dit proefschrift te betreden laten we het zonne-
stelsel achter en zoomen we in op een minuscuul stukje aarde. Ver voor-
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bij de planeten, bomen, mensen, appels, pionnen en micro-organismen
betreden we het rijk van de moleculen. Moleculen bestaan uit pro-
tonen, neutronen en elektronen (Fig. 1.1). Verrassend genoeg gelden
er op deze schaal andere natuurwetten: die van de quantummecha-
nica. Mensen zijn niet gewend aan deze wetten omdat de objecten
in ons dagelijks leven de wetten van de klassieke mechanica volgen.
Quantummechanica kan daarom tegenintuïtief zijn en staat bekend als
ondoorgrondelijk [44].

Het gedrag van protonen, neutronen en elektronen bepaalt het ver-
loop van chemische reacties. Zou het daarom niet mooi zijn als we ook
het gedrag van deze deeltjes kunnen simuleren? We zouden dan be-
ter in staat zijn ingewikkelde chemische reacties te begrijpen, wat weer
kan leiden tot de verbetering van bepaalde industriële productieproces-
sen. De productie van kunstmest is daar een voorbeeld van [123]. De
productie van een van de ingrediënten van kunstmest is verantwoor-
delijk voor ongeveer 1% van het wereldwijde energieverbruik, en dat
allemaal in de vorm van fossiele brandstoffen [112]. Er bestaan echter
bacteriën die datzelfde ingrediënt produceren zonder het gebruik van
fossiele brandstoffen. De simulatie van het chemische proces dat deze
bacteriën gebruiken zou ons mogelijk in staat stellen van de bacteriën
te leren en daarmee kunstmest milieuvriendelijker te produceren [123].

De simulatie van elektronen, protonen en neutronen vraagt om een
ander bordspel (het ‘quantumspel’) dan de simulatie van het zonne-
stelsel. De spelstukken zijn nu de protonen, neutronen en elektronen.
Ook de regels van het nieuwe spel zijn anders. Deze worden nu bepaald
door de wetten van de quantummechanica. Quantummechanica is niet
alleen ingewikkeld voor mensen, maar ook voor computers. Een korte
berekening (voetnoot op pagina 2) laat zien dat er meer dan 1Terabyte
aan geheugen nodig is om de bordspelversie van 37 elektronen op te
slaan. Belangrijker nog is dat dit geheugengebruik verdubbelt met elk
elektron dat wordt toegevoegd. Het geheugengebruik groeit daarmee
exponentieel in het aantal elektronen. Hierdoor is het onmogelijk om
van meer dan een klein aantal elektronen de bordspelversie op te slaan.
Om bijvoorbeeld de bordspelversie van meer dan 100 elektronen op te
slaan is zelfs de huidige wereldwijde data-opslagcapaciteit niet toerei-
kend. Het lijkt dus praktisch onmogelijk om meer dan 100 elektronen
te simuleren.

Maar wat nu als we een computer maken die zelf bestaat uit quan-
tummechanische deeltjes [19, 45], zoals elektronen, protonen en neu-
tronen? Dat is precies het idee achter de quantumcomputer. Omdat de
onderdelen van een quantumcomputer zelf quantummechanische deel-
tjes zijn, is het voor zo’n computer heel natuurlijk om de bordspelversie
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van quantummechanische deeltjes op te slaan. Omdat de onderdelen
van een quantumcomputer zelf de wetten van de quantummechanica
volgen, is het bovendien voor een quantumcomputer heel natuurlijk
om de spelregels van het quantumspel toe te passen. Quantumcompu-
ters kunnen daardoor efficiënt quantummechanische systemen simule-
ren [98]. Zie Fig. 1.2 voor een afbeelding van een echte quantumcom-
puter.

Quantumcomputers kunnen zelfs meer dan dat; de extra ‘quan-
tumkracht’ van quantumcomputers kan ook worden aangewend voor
het oplossen van puur wiskundige problemen. Een priemgetal is een
getal groter dan 1 dat slechts door zichzelf en 1 gedeeld kan worden
(zonder rest). De priemgetallen zijn dus 3, 5, 7, 11, . . .. Het ontbinden
in priemfactoren is de taak een gegeven geheel getal te schrijven als
product van priemfactoren. Elk getal kan zo ontbonden worden, en
deze ontbinding is uniek. Een voorbeeld is 15 → 3 × 5. Voor zover
bekend is het voor een gewone, klassieke computer onmogelijk effici-
ënt getallen te ontbinden. Kleine getallen zoals 15 lukken nog, maar
klassieke computers bereiken al snel hun limiet. (Dit is omdat de re-
kentijd exponentieel groeit in het aantal cijfers van het te ontbinden
gehele getal.) Daardoor is het onmogelijk getallen te ontbinden met
honderden cijfers. Het blijkt echter [130, 132], dat quantumcomputers
in theorie wel efficiënt getallen kunnen ontbinden. (Voor een quantum-
computer groeit de rekentijd niet exponentieel maar als een polynoom
in de lengte van het te ontbinden getal.) Ze zouden dus in principe wel
in staat kunnen zijn getallen met honderden cijfers te ontbinden.

De veiligheid van de methode die wordt gebruikt voor het versleu-
telen van berichten die over het internet worden verstuurd, zoals bij-
voorbeeld berichten tussen jou en de website van je bank, is gebaseerd
op de aanname dat het onmogelijk is getallen met honderden cijfers te
ontbinden. Met een quantumcomputer zou je die beveiliging dus kun-
nen breken. Als slechts enkele landen grote getallen kunnen ontbinden,
zou dit onder andere vanwege de spionagepotentie grote gevolgen kun-
nen hebben voor de wereldwijde machtsbalans [144]. Het onderzoek
naar versleutelingsmethoden die zelfs door quantumcomputers niet te
breken zijn is daarom ook in volle gang [4].

Ondanks hun potentie staat de ontwikkeling van quantumcompu-
ters nog in de kinderschoenen. De huidige stand van zaken is dat
quantumsuperioriteit of een quantumvoordeel (Engels: ‘quantum su-
premacy’ of ‘a quantum advantage’) is aangetoond op echte quantum-
computers. Dit betekent dat deze quantumcomputers een rekentaak
hebben verricht die, voor zover we weten, praktisch onmogelijk is voor
klassieke computers. Dit klinkt alsof quantumcomputers nu al volledig
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de klassieke computers verslagen hebben, maar dat is niet helemaal
zo; de rekentaken waarvoor er een quantumvoordeel is aangetoond op
echte quantumcomputers zijn artificieel en hebben geen toepassingen
(anders dan het aantonen van een quantumvoordeel). Er is tot op he-
den geen echte quantumcomputer geweest die een nuttige rekentaak
heeft uitgevoerd die niet net zo goed op een klassieke computer uitge-
voerd had kunnen worden. De mijlpaal van een nuttig quantumvoordeel
is dus nog niet bereikt.

Quantumcomputers hebben nog geen nuttig quantumvoordeel be-
reikt omdat het heel moeilijk is om goede quantumcomputers te bou-
wen. Het blijkt dat quantumcomputers veel moeilijker dan klassieke
computers te beschermen zijn tegen ongewilde invloeden uit hun omge-
ving. Deze invloeden of ‘stoorzenders’ bestaan bijvoorbeeld uit magne-
tische velden of temperatuurschommelingen. In termen van het quan-
tumspel (gebruikt voor het simuleren van quantummechanische syste-
men op een quantumcomputer) kun je de effecten van deze stoorzen-
ders voorstellen als een onverlaat die op onregelmatige tijden stiekem
de quantumcomputer binnendringt en een ongeldige zet doet. Na vele
spelronden zal de speltoestand van het bordspel niet langer getrouw de
toestand van het gesimuleerde quantummechanische systeem represen-
teren. Het effect van de stoorzenders noemen we ruis, ook al heeft de
ruis, net als bijvoorbeeld witte beeldruis op een ouderwetse beeldbuis,
misschien niets met geluid te maken. Om in de nabije toekomst een
nuttig quantumvoordeel te bereiken is het essentieel dat we de oorza-
ken en gevolgen van deze ruis goed begrijpen, dat we begrijpen hoe
de ruis verminderd kan worden, en dat we begrijpen hoe er met de
overgebleven ruis omgegaan kan worden.

1.2.2 Dit proefschrift
In Hoofdstuk 2 van dit proefschrift stellen we een rekentaak voor die
tegelijk nuttig, moeilijk voor klassieke computers, en geschikt voor de
quantumcomputers van de nabije toekomst is. Het uitvoeren van deze
taak heeft dus de potentie om een nuttig quantumvoordeel aan te
tonen. De taak die we voorstellen is de simulatie van het kagome-
rooster (Fig. 1.3). Het is een speciaal type simulatie waar het niet gaat
om het voorspellen van toekomstige toestanden maar om het voor-
spellen van de toestand bij temperaturen rond het absolute nulpunt
(−273, 15 ◦C = 0K).

De simulatie van het kagome-rooster kan ons nieuwe inzichten geven
over de natuur. Er zijn materialen, zoals het mineraal Herbertsmithiet
(Engels: Herbertsmithite), ontdekt door - u raadt het al - Herbert
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Smith, waarvan de magnetische eigenschappen worden beschreven door
elektronen op het kagome-rooster [111]. Bij temperaturen rond het
absolute nulpunt worden deze eigenschappen nog niet goed begrepen,
ondanks decennia aan onderzoek met klassieke computers [89].

In dit proefschrift ontwerpen we een specifieke simulatiemethode
speciaal bedoeld voor de kleine, aan ruis onderhevige quantumcompu-
ters van de nabije toekomst. Deze simulatiemethode noemen we hier
het kagome-spel. Het spel is zo gekozen dat het zetten van een en-
kele zet een quantumcomputer slechts een enkele rekenstap kost. Deze
eigenschap is belangrijk voor de quantumcomputers van de nabije toe-
komst omdat hun berekeningen zo kort mogelijk moeten duren; hoe
langer een berekening duurt, hoe meer tijd de stoorzenders hebben om
de berekening in de war te gooien. Bovendien is de algemene simula-
tiemethode die we gebruiken relatief goed bestand tegen ruis [102, 117,
113, 125].

Om een idee te krijgen van hoe goed onze specifieke simulatieme-
thode werkt, voeren we deze uit op een kleine quantumcomputer. De
quantumcomputer waar we de methode op uitvoeren is echter niet echt;
deze wordt zelf gesimuleerd door een klassieke computer. Er is dus
sprake van een dubbele simulatie: een klassieke computer simuleert
een quantumcomputer die het kagome-rooster simuleert. Deze extra
laag simulatie is nodig omdat de quantumcomputer die we nodig heb-
ben om het kagome-spel te testen nog niet bestaat.

Als het onmogelijk is om met klassieke computers het kagome-
rooster te simuleren, hoe kan een klassieke computer dan een quan-
tumcomputer simuleren die het kagome-rooster simuleert? Simuleert
de klassieke computer dan niet uiteindelijk het kagome-rooster? De
kanttekening die hier geplaatst moet worden is dat de quantumcompu-
ter slechts een kleine uitsnede van het kagome-rooster simuleert, met
daarop 20 elektronen. De simulatie van die quantumcomputer lukt nog
net op een klassieke computer. De simulatie van deze uitsnede op een
quantumcomputer is dus niet genoeg voor het aantonen van een quan-
tumvoordeel. Als we echter een wat grotere uitsnede zouden nemen
wordt de simulatie al snel onmogelijk voor klassieke computers, terwijl
diezelfde simulatie op een echte quantumcomputer in theorie mogelijk
blijft.

In Hoofdstuk 3 bestuderen we de ruis die quantumberekeningen
stoort. Elke fundamentele eenheid van een quantumcomputer, ge-
naamd qubit, interacteert onvermijdelijk met zijn omgeving. Daarom
ondervindt elke eenheid apart ruis. Als je een eenheid aan een quan-
tumcomputer toevoegt, ondervindt de quantumcomputer dus als geheel
meer ruis. (De totale ruis-intensiteit die een quantumcomputer onder-
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vindt is gewoonlijk gelijk aan de ruis-intensiteit die een enkele eenheid
ondervindt vermenigvuldigd met het aantal eenheden.)

Er werd echter ontdekt dat deze situatie te rooskleurig zou kunnen
zijn. Er is een speciaal type ruis, genaamd super-ruis (Engels: ‘super
noise’ of eigenlijk ‘superdecoherence’), met de eigenschap dat elke een-
heid die je toevoegt de ruis-intensiteit op alle reeds bestaande eenheden
doet toenemen [115, 124, 26]. Oftewel, hoe meer eenheden, hoe hoger
de ruis-intensiteit van elk van deze eenheden afzonderlijk. (Dit bete-
kent dat de totale ruis-intensiteit die de quantumcomputer ondervindt
nu schaalt met het kwadraat van het aantal eenheden.)

Super-ruis zou een grote bedreiging kunnen vormen voor schaal-
baarheid van quantumcomputers. Daarom is het essentieel dit type
ruis goed te begrijpen en te bepalen wanneer het wel, en wanneer
het niet optreedt. Dit doen we in Hoofdstuk 3 van dit proefschrift.
Ten eerste geven we een natuurkundige interpretatie van de oorzaak
van super-ruis (in de specifieke situatie zoals beschreven in Refs. [115,
124]). We laten zien dat een rij eenheden van een quantumcomputer
zich effectief kan gaan gedragen als een antenne. Antennes zijn ge-
voelig voor elektromagnetische straling, veroorzaakt door bijvoorbeeld
wifi- of radiozenders. Hoe meer eenheden een quantumcomputer heeft,
hoe gevoeliger deze antenne wordt. In Hoofdstuk 3 laten we zien dat de
gevoeligheid dusdanig toeneemt dat er in speciale situaties super-ruis
kan ontstaan.

De antenne-analogie laat echter ook zien hoe deze super-ruis in de
praktijk gewoonlijk niet voorkomt. We laten namelijk ook zien dat,
hoe groter de antenne wordt, hoe meer zijn gevoeligheid zich beperkt
tot een enkele frequentie. Het netto-effect van de toenemende gevoe-
ligheid, met tegelijk een afnemende bandbreedte van die gevoeligheid,
is dat er gewoonlijk geen super-ruis meer optreedt. We concluderen
daarom dat super-ruis geen bedreiging vormt voor de schaalbaarheid
van quantumcomputers.

In Hoofdstuk 4 bestuderen we een vorm van ruisreductie. Zoals u
wellicht zelf ervaren hebt, zijn er voor een gegeven rekenprobleem meer-
dere manieren om bij hetzelfde, correcte antwoord uit te komen. Ook
een quantumcomputer kan op verschillende manieren tot het juiste ant-
woord op een gegeven rekenprobleem komen. Sommige van deze manie-
ren zijn sneller dan andere. Voor sommige van deze manieren kunnen
de effecten van ruis ook minder erg zijn dan voor andere. De snelste
manier is misschien niet de manier die het minste last ondervindt van
ruis. Onder bepaalde omstandigheden kunnen er zelfs rekenmanieren
zijn waarop ruis geen enkel effect heeft, terwijl elk van de eenheden van
de quantumcomputer waarop die berekening wordt uitgevoerd wel ruis
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ondervindt [83]. Zo’n rekenmanier noemen we ruisloos.
In het theoretische bewijs van het bestaan van ruisloze rekenmanie-

ren [83] op quantumcomputers wordt er aangenomen dat het mogelijk
is perfecte kennis te hebben over de interactie tussen een quantum-
computer en zijn omgeving. In de praktijk zal deze kennis echter altijd
imperfect zijn. In Hoofdstuk 4 leiden we een formule af waarmee men
gemakkelijk de effecten van deze imperfectie kan kwantificeren. Met
deze formule kan men dus inschatten hoe goed een ruisloze rekenmanier
zich in de praktijk zal gedragen zonder deze rekenmanier daadwerkelijk
uit te voeren. Dit kan bijdragen aan het verbeteren van quantumcom-
puters en methoden die gebruikmaken van ruisloze rekenmanieren.

1.2.3 Conclusie en vooruitblik
De veeldeeltjesfysica is de studie naar het collectieve gedrag van syste-
men die bestaan uit vele deeltjes. Het kagome-rooster vormt een voor-
beeld van zo’n veeldeeltjessysteem. Een centraal thema in dit proef-
schrift is de interactie tussen veeldeeltjesfysica en quantumcomputers.
Deze interactie kent twee richtingen:

1. Door het simuleren van quantummechanische systemen kunnen
quantumcomputers ons nieuwe inzichten bieden in de veeldeel-
tjesfysica, zoals in Hoofdstuk 2.

2. Hoe meer eenheden een quantumcomputer heeft, hoe meer deze
quantumcomputer zelf een veeldeeltjessysteem wordt. Daarom
kunnen we technieken uit de veeldeeltjesfysica gebruiken om
quantumcomputers met vele eenheden te beschrijven, zoals in
Hoofdstuk 3 en 4.

Er is nog een lange weg te gaan voordat quantumcomputers tot was-
dom zijn gekomen. Zodra ze echter zover zijn, zal dit mogelijk een
revolutie teweeg brengen in de veeldeeltjesfysica die zich kan meten
met de revolutie die klassieke computers teweeg hebben gebracht in de
veeldeeltjesfysica.

1.3 Quantum computing
In this section, I give a more technical, yet pedagogical, introduction
to quantum computing. All topics covered here can also be found in
standard textbooks on algorithms and quantum computation, such as
Refs. [32, 108, 34].
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1.3.1 Computers
The fundamental unit of information in classical computers is the bit;
any physical system that, at some level, can be in one of two discrete
states. That is, the state space of a bit is Z2 = {0, 1}. Physically, a
bit may be implemented as a wire through which there is a current
above some threshold (x = 1) or below that threshold (x = 0). We can
visualize the space of possible states of a bit by placing a dot for every
state,

• (0)

• (1)
. (1.1)

Going from one bit to two bits, there are now four possible states:
00, 01, 10 and 11. In general, n bits can be in 2n different states. We
denote this state space as {0, 1}n. It is customary to denote the value
of the jth bit, where we count from right to left, starting with 0, by xj .
That is, we write the state of n bits as the bitstring x = xn−1 . . . x1x0.
The bitstrings can be used to represent integers in the following way,

. . . 000 (0)

. . . 001 (1)

. . . 010 (2)

. . . 011 (3)

. . . 100 (4)

...

This is called the binary representation of the integers. In this represen-
tation, a bitstring with a ‘1’ only at place j represents the number 2j .
This can be used to translate between the decimal representation and
the binary representation. For example, 15 = 23+22+21+20 7→ 1111.
This representation is used throughout this thesis. For example, we
may write sums of the form

∑
x f(x). If we have n bits, this means∑

xn−1,...,x0
f(xn−1, . . . , x0).

Similarly to the mapping between integers, mappings can be made
between integers and characters (including spaces, end of line charac-
ters, etc.) A well-known mapping is ASCII. Under such a map, a piece
of text, such as the source code of a computer program, is essentially
a large bitstring.

Computers are machines that implement functions from bitstrings
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to bitstrings,

f : {0, 1}n → {0, 1}m.

They take a bitstring as input, and provide a (generally) different bit-
string as output. For example, the input could be the binary represen-
tation of a large integer, and the output could be the binary represen-
tation of its smallest prime factor.

Now any such implementation of a function can be divided into
‘little functions’ that only take one or two bits as input. These are like
the atoms of the computation of that function. These little functions
are called gates. A set of gates that can be used to implement an
arbitrary computable function, is called a universal gate set. A classical
computer is a computer that uses classical gates. An example is the
NAND gate, where NAND(x1, x2) evaluates to 0 if x = 11 and to 1 in
all other cases. The NAND gate on itself forms a universal gate set for
classical computation.

1.3.2 Quantum computers
A quantum computer is also a computer, in the sense that it maps bit-
strings to bitstrings. The difference with classical computers is in how
this map is implemented. During the computation, a quantum com-
puter has access to quantum mechanical bits, or qubits, and quantum
mechanical gates that act thereon, called quantum gates.

1.3.2.1 One qubit

Let us start with a single qubit. This is any quantum system whose
state space is the Hilbert space H1 ≡ C2. The vectors in the computa-
tional or classical basis are denoted as |0〉 and |1〉. These vectors are
taken to be orthonormal. An arbitrary state can thus be written as

|ψ〉 = α |0〉+ β |1〉 , (1.2)

where the amplitudes α and β are complex numbers. An example of a
physical system with this state space is a spin-1/2 particle. We may
refer to |0〉 as ‘spin up’, and to |1〉 as ‘spin down’.

According to the laws of quantum mechanics, when a qubit is mea-
sured in the computational basis, the probability of getting the outcome
|0〉 is |α|2, and the probability of outcome |1〉 is |β|2. Since we get an
outcome with unit probability, we must require that |α|2 + |β|2 = 1.
This is the normalization condition on quantum states. Additionally,
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in quantum mechanics, states that differ by an overall complex phase
cannot be distinguished experimentally. Hence, two states that differ
by an overall complex phase are said to be equivalent. It is common to
refer to the equivalence classes that can thus be defined as the states
themselves.3 A more detailed account of measurement and the redun-
dancy of overall phases is given in Sec. 1.4.1.

Let us incorporate the normalization condition and the phase re-
dundancy in the descriptions of a general qubit state |ψ〉. Let α =
eiϕαrα and β = eiϕβrβ. Then, |ψ〉 = eiϕα [rα + ei(ϕβ−ϕα)rβ]. Disregard-
ing the overall phase, and using the parametrization ϕβ−ϕα = ϕ, with
ϕ ∈ [0, 2π), we may write a general state as |ψ〉 = rα |0〉 + eiϕrβ |1〉.
In the current parametrization, the normalization condition reads
r2α+r

2
β = 1. The rα ≥ 0 and rβ ≥ 0 that satisfy this condition form the

upper right quadrant of a circle. Hence, we may use the parametriza-
tion rα = cos(θ/2), rβ = sin(θ/2), with θ ∈ [0, π]. We can thus write a
general qubit state as

|ψ(θ, ϕ)〉 = cos
(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 . (1.3)

Using this parametrization, any state can be depicted as a point (θ, ϕ)
on the unit sphere, called the Bloch sphere Fig. 1.4. This sphere is
embedded in R3 by choosing n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ)T . Both
(θ, ϕ) and n̂ can be referred to as (representations of) a Bloch vector.
In Fig. 1.4, also the states |0〉, |1〉, and

|+〉 = 1√
2
(|0〉+ |1〉) , |−〉 = 1√

2
(|0〉 − |1〉)

are depicted.
Note the difference with the state space of a bit; the qubit has a con-

tinuous state space (a sphere), whereas that of the bit is discrete (two
points). However, a spherical state space is itself not a quantum me-
chanical property. For example, the state space of the positional part
of a rigid pendulum that can move in two directions is also a sphere.
A difference between the qubit and the bi-directional pendulum does
arise when we consider measurement; as opposed to the direction of
the bi-directional pendulum, it is impossible to measure the direction
of the Bloch-vector with a single measurement. Given an axis along
which you measure, there are only two possible outcomes of the mea-
surement; ‘spin up’ in your direction of measurement, or ‘spin down’
in your direction of measurement. For example, if you measure along

3So, formally, the state space of a qubit is CP1 = S2.
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Figure 1.4: The Bloch sphere. The state space of a qubit is a sphere,
whereas the state space of a bit consists of just two points [Eq. (1.1)].

the vertical axis, the possible outcomes are |0〉 and |1〉. If you measure
in the out-of-plane direction, the possible outcomes are |+〉 and |−〉.
(Also see Sec. 1.4.1.)

1.3.2.2 Single-qubit gates

A quantum gate U is a linear operation that generally acts non-trivially
only on a couple of qubits. Since quantum states are normalized to
unity, such an operation is not allowed to change the norm of state
vectors. Therefore, these linear operations must be unitary, U †U = 1.

Let us start with the single-qubit gates. In quantum circuit nota-
tion, a single qubit is represented by a single horizontal line. When a
gate acts on that qubit, we write that operator in a box that is attached
to the line, very much like in classical circuits,

|ψ〉 U U |ψ〉 .

Here time runs from left to right. In another convention, that is espe-
cially used by physicists because of its kinship to space-time diagrams,
time runs from bottom to top. This convention is used in Sec. 2 of this
thesis.

If we make the identification |0〉 =̂(1, 0)T and |1〉 =̂(0, 1)T , any
single-qubit gate can be written as a 2×2matrix. Common single-qubit
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gates include the Pauli-operators

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, (1.4)

the Hadamard gate,

H =
1√
2

(
1 1
1 −1

)
, (1.5)

and the RZ(θ) gate,

RZ(θ) = e−iθZ/2eiθ/2 =

(
1 0
0 eiθ

)
. (1.6)

The RZ gate is a parametrized gate, and can be implemented for any
given θ on many quantum computing platforms. Note how the Z gate is
a special case of the RZ gate. Here are some first examples of quantum
circuits,

|0〉 X |1〉 , |1〉 X |0〉 , (‘bit flip’),
|0〉 Z |0〉 , |1〉 Z − |1〉 , (‘phase flip’),
|0〉 H |+〉 , |1〉 H |−〉 .

Since ZX = Y , the Y gate can be seen as a bit flip followed by a phase
flip. Note that by linearity, the above circuits in itself also define the
action of those gates on general states.

We can gain an insightful form of general single-qubit gates U by
removing redundancies in its description and introducing an adequate
parametrization. This is similar in spirit to the process of obtaining
the Bloch-vector. An arbitrary complex 2 × 2 matrix has 8 real coef-
ficients. The condition that states must remain normalized under U ,
that is, U †U = 1, provides 4 independent conditions, allowing for the
elimination of 4 coefficients. The redundancy of the overall phase of
state vectors can be used to eliminate a further coefficient. In this way,
it can be shown that a general single-qubit gate can be written as

U(α, θ̃, ϕ̃) = e−iαm̂·σ/2, (1.7)

with α a real coefficient, m̂ a unit vector in R3, m̂ =
(sin θ̃ cos ϕ̃, sin θ̃ sin ϕ̃, cos θ̃)T with angles θ̃ ∈ [0, π], ϕ ∈ [0, 2π), and
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σ = (X,Y, Z)T . Writing out the exponent, and resumming the terms,
one can show a formula akin to Euler’s formula eiα = cosα+ i sinα,

U(α, θ̃, ϕ̃) = cos(α/2)1− i sin(α/2) m̂ · σ.

Applying this operator to an arbitrary single-qubit state [Eq. (1.3)], it
can be given the following interpretation: the unitary U(α, θ̃, ϕ̃) rotates
the Bloch vector n̂ around m̂ by an angle α. From this viewpoint,
the gates X = e−iπX/2, Z = e−iπZ/2, and H = e−iπ(1/

√
2,0,1/

√
2)/2 are

rotations with angle π about the Bloch vectors (π/2, 0), (0, 0) and
(π/4, 0), respectively.

The final single-qubit operation we consider is measurement, de-
noted in circuit notation as

 . (1.8)

This measurement is by convention in the computational basis. The
classical outcome of the measurement, that is a single classical bit hold-
ing the value 0 or 1, is depicted by the two lines on the right of the
meter. As opposed to the other gates in this section, measurement is
not a unitary operation.

1.3.2.3 Multiple qubits

The state space of n qubits, Hn, is given by the tensor product space
of n single-qubit spaces, Hn = (H1)

⊗n. We denote the computational
basis vectors of this space by using the binary representation of x,
|x〉 ≡ |xn−1〉 ⊗ |xn−2〉 ⊗ . . .⊗ |x0〉. Note that there thus is a one-to-one
mapping between the state of n classical bits and a computational basis
vector of n qubits. Therefore, the computational basis is sometimes
referred to as the classical basis. A general state of n qubits can be
expanded over this basis as [cf. Eq. (1.2)]

|ψ〉 =
∑
x

cx |x〉 .

Note that, again, the cx are not all independent, for we have the con-
ditions

∑
x |cx|2 = 1 and the equivalence of |ψ〉 and eiφ |ψ〉. Hence, the

description of the state of n qubits requires 2× 2n− 2 real parameters.
We can check that, for n = 1, we have C = 2, e.g. the parameters
(θ, ϕ) of the Bloch vector.

Not only is the state space of n qubits much larger than the state
space of n bits, it is also much larger than the state space of n static
bi-directional pendulums. A state in the latter space is described by
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(θn−1, ϕn−1, θn−2, ϕn−2, . . . , θ0, ϕ0). That is, the description of the po-
sition of n static bi-directional pendulums requires 2n � 2 × 2n − 2
real parameters.

1.3.2.4 Multiple-qubit gates

For any non-trivial quantum computation, it is essential that the qubits
of a quantum computer interact with one another. This is done via
multiple-qubit gates. Often, the only multiple-qubit gates a quantum
computer can directly implement are 2-qubit gates.

In quantum circuit notation, the state space of two qubits is rep-
resented by two parallel horizontal lines. Here we do not assume the
qubits are in a product state. When the two qubits are acted upon by
a two-qubit operator U , we write that operator in a box like so,

U
.

A common two-qubit gate is the CNOT gate, defined by

CNOT |00〉 = |00〉 ,
CNOT |01〉 = |01〉 ,
CNOT |10〉 = |11〉 ,
CNOT |11〉 = |10〉 .

(1.9)

The CNOT applies a bit flip to the second qubit (the ‘target bit’) if
and only if the first qubit (the ‘control bit’) is in the state |1〉. We can,
of course, figure out what the CNOT does on arbitrary states by using
linearity. The CNOT gate is so common it has its own symbol,

•
,

where ‘•’ is on the control bit, and ‘⊕’ is on the target bit.
As an example that combines single- and two-qubit gates, consider

the circuit that generates a singlet state |s〉 = (|01〉− |10〉)/
√
2 from an

initial state |00〉,

|0〉 X H •

|0〉 X

 |s〉 = (|01〉 − |10〉)/
√
2. (1.10)

When the state on the right of the circuit is measured, we get the
classical outcomes 01 or 10 with equal probability.
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1.3.2.5 Quantum computers

It can be shown that the gate set {U(α, θ̃, ϕ̃),CNOT}, with U imple-
mentable for all parameter values, is universal. That is, every unitary
on n qubits can be decomposed into a circuit of single qubit gates and
CNOT gates only. Up to a constant factor, the total number of gates
needed is at most proportional to n24n [108]. The depth of a quan-
tum circuit is the total number of layers of gates in that circuit. For
example, the depth of the circuit in Eq. (1.10) is 3.

Like a classical computer, a quantum computer maps bitstrings to
bitstrings. It does so as follows. First, the bitstring x is translated to a
classical description of a circuit; a list of gates that are to be executed
sequentially. For every gate it is specified on which qubit(s) it acts. A
quantum computer generally starts with all qubits initialized to some
product state, denoted in the computational basis as |00 . . . 0〉 (see the
circuit below). After the quantum computer applies all of these gates,
some or all of the qubits are measured in the computational basis. This
yields a bitstring y, which forms the output of the computation.

|0〉

U(x)



|0〉 
...

...
|0〉 

 y. (1.11)

Because of the inherent unpredictability of quantum measurement,
the map from bitstrings to bitstring a quantum computer implements is
probabilistic, even if the quantum computer is noiseless. This property
itself is not unique to quantum computation. There are also classical
methods of computation that include the use of a (quasi) random num-
ber generator, which are hence (quasi) probabilistic. Even though the
output of a quantum computation may be unpredictable, the compu-
tation can still be useful. For example, if the input of the computation
is an integer x, and the output y is a prime factor of x only with prob-
ability 2/3, the computation can be repeated a couple of times until a
prime factor is found. Checking if y is a prime factor of x can be done
efficiently on a classical computer. Furthermore, the probability of not
finding a prime factor after m tries is exponentially small in m.
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1.3.3 Asymptotic notation
The field of complexity theory is occupied with determining the re-
sources required for computing functions. In this field, statements such
as ‘on a quantum computer, it takes 1000 hours to factor a 1000-bit
integer’ (numbers chosen arbitrarily) are not so useful, for it does not
tell us anything about the time required for factoring a 1001-bit inte-
ger. Also, the statement is highly hardware-dependent. More useful
statements are of the form: ‘the time required for factoring an n-bit
integer scales at most as f(n)’ (for some given function f).

These kind of statements are made more precise by using asymptotic
notation. One instance of this kind of notation is the ‘big-O’ notation
f(n) = O[g(n)].

Definition 1.3.1. If f(n) = O[g(n)], then there exists an n0 and a
c > 0 such that

|f(n)| ≤ cg(n) (1.12)

for all n > n0.

For example, 1000/n2 = O(1/n).
There are many closely related instances of asymptotic notation. If,

in the above definition, we demand Eq. (1.12) to hold for all c > 0, and
substitute O → o, we obtain the definition of the ‘little-o’ notation. If
we change the inequality ‘≤’→‘≥’, and O → Ω, we obtain the definition
of ‘big-Ω’ notation. If we change ‘≤’→‘≥’, demand the inequality to
hold for all c > 0, and change Ω → ω, we obtain the definition of ‘little-
ω’ notation. Additionally, if f(n) = Θ[g(n)], then both f(n) = O[g(n)]
and f(n) = Ω[g(n)].

Occasionally one encounters statements as ‘f(n) = O[g(ε)] as ε
goes to zero’. This means |f(ε)| is upper bounded by g(ε) for ε small
enough (rather than large enough). Similar statements are encountered
for the other forms of asymptotic notation. Additionally, some times
the notation f(n) ∈ O[g(n)] is used instead of f(n) = O[g(n)] (similarly
for the other forms of asymptotic notation). This notation is formally
more correct.

For some purposes even asymptotic notation is too explicit. For
example, we may just be interested in whether or not f(n) is a poly-
nomial in n. In that case we write f(n) = polyn, which, to make
the connection to big-O notation, means there is a m > 0 such that
f(n) = O(nm). Other variants include f(n) = polylogn ≡ poly (logn).

Statements such as

e−iθZ/2 = 1− iθZ/2 +O(θ2) (1.13)
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are encountered. This expression technically incorrect because there
should be an operator on the place of ‘O(θ2)’. It is to be understood
that Eq. (1.13) means ‖e−iθZ/2 − (1− iθZ/2)‖2 = O(θ2), with ‖·‖ the
operator norm.

1.4 Quantum mechanics
We now switch gears, and take a more formal look at quantum mechan-
ics in general. All topics covered fall under those of standard textbook
quantum mechanics, such as in [36, 119, 127, 26]. The purpose of this
section is to provide definitions, conceptual and technical background
for the subsequent chapters. This section may be skipped at first read-
ing.

1.4.1 Measurement
Naively, we might imagine a measurement performed on a quantum
mechanical system as follows: there is some quantum mechanical sys-
tem, possibly in a superposition, that goes into some large, classical
measurement device. Upon measurement, the pointer of the device
points at some definite outcome ν. Indeed, this is the motivation for
the notation of measurement in quantum circuits [Eq. (1.8)]. For exam-
ple, such a pointer would point at ‘spin up’ or ‘spin down’ if the system
is a spin-1/2 particle and the device is a Stern-Gerlach apparatus.

In the end, all the atoms of the device follow the laws of quantum
mechanics. So, if the quantum state was in a superposition of states,
and the measurement device has interacted with the quantum system,
why would the pointer not be in a superposition as well? But then
again, why do we not see pointers in a superposition in daily life? Ac-
tually, nobody knows the answers to these questions, and the problem
of unifying quantum mechanics with how we intuitively think mea-
surement devices ought to behave is called the measurement problem
of quantum mechanics. The problem is closely related to the quantum-
classical crossover depicted in Fig. 1.1. Zooming in from the solar sys-
tem onto a single electron, where does the world of classical pointers
stop, and where does that of quantum mechanics begin?

Nevertheless, given that a measurement has occurred with outcome
ν, the mathematical description of the effects of that measurement are
clear cut. A measurement4 is described by a set of distinct measure-

4More precisely: a projective measurement. There are more general mathematical
descriptions of measurement in quantum mechanics, but for the current exposition
the projective measurement suffices.
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ment outcomes νi together with set of associated orthogonal projectors,
{Pi}mi=1. We do not assume m = dimH. By definition, the projec-
tors satisfy P 2

i = Pi. We furthermore require them to be orthogonal,
PiPj = δij1, and complete,

∑
i Pi = 1. Given these outcomes and

projectors, a measurement performed on a state |ψ〉 yields the outcome
νi with probability pi = ‖Pi |ψ〉‖2. After the measurement the state
collapses onto the state that will give the measurement outcome νi with
certainty. This is the state |ψ′〉 = Pi |ψ〉 /

√
pi. The sets {νi} and {Pi}

can be combined into a single linear operator in a meaningful way. Map
the outcomes νi to distinct real numbers. Then, this linear operator is
given by the observable O =

∑
i νiPi. This coincides with the spectral

decomposition of the Hermitian operator O. Thus, a measurement may
also be specified by a single Hermitian operator.

Note that multiplying any |ψ〉 by an overall complex phase does
not change the probability pi, no matter the observable. Hence, over-
all phases of vectors in the Hilbert space of any quantum system are
unphysical, and can be disregarded. This, together with the normal-
ization condition

∑
i pi =

∑
i‖Pi |ψ〉‖2 = 〈ψ|

∑
i Pi |ψ〉 = ‖|ψ〉‖2 = 1,

allowed us to obtain the Bloch sphere (Fig. 1.4).
As opposed to measurements in classical physics, the uncertainty in

the outcome νi is fundamental. This uncertainty does not stem from a
lack of knowledge about the state. For example, if an electron is in the
|+〉 state, we know all about the (spin degree of freedom) of the electron
there is to know. Nevertheless, it is impossible to predict the outcome
of a measurement of the observable Z. So, we cannot say what the
‘value’ of spin in the z-direction is. Given an observable O =

∑
i νiPi

and a state |ψ〉, we can, however, say a priori what the expectation
value of the measurement outcome is. Consider ν as a random variable
(a function from the outcome indexes i to the real numbers νi). Then,
the expectation value of that random variable, given the state |φ〉, is

E|φ⟩(ν) =
∑
i

νipi

=
∑
i

νi‖Pi |φ〉‖2

=
∑
i

νi 〈φ|Pi |φ〉

= 〈φ|O |φ〉 .

Given an observable, and a source that repeatedly outputs the same
state, the expectation value of an operator can be estimated by re-
peatedly performing the measurement specified by O and taking the
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average of the outcomes. The error in the estimate depends on the
number of measurements performed and goes to zero as the number of
measurements goes to infinity.

The unpredictability of measurement outcomes relates to the im-
possibility of of measuring a quantum state in a single measurement.
Namely, given a quantum system in an unknown state, any one mea-
surement outcome of any observable O is consistent with many states.
For example, if a measurement of the observable Z of a qubit yields
the outcome 0, the pre-measurement state of the qubit could have been
any point of the Bloch sphere except the point belonging to |1〉. Hence,
is impossible to determine the state of a system with a single measure-
ment.

Given many copies of an unknown state, however, it is possible to
measure the expectation value of an operator. Measuring the expecta-
tion values of multiple observables allows one to reconstruct the state
from the outcomes. Such a process is called quantum state tomography.
As an example, consider an unknown qubit state |φ〉 with associated
Bloch vector n̂. It is straightforward to verify that

n̂ = (〈X〉, 〈Y 〉, 〈Z〉)T .

Thus, using a source that repeatedly outputs |φ〉, measuring 〈X〉 and
〈Y 〉, and using |n̂| = 1 ⇒ 〈Z〉2 = 1 − 〈X〉2 − 〈Y 〉2, yields the Bloch
vector n̂ and hence a classical description of the state |φ〉.

1.4.2 Density operators
When we flip a coin, and it lands behind our back, we do not know
whether it landed heads or tails. Before we look at the coin, our
knowledge about the state is captured by the probability distribution
pheads = ptails = 1/2. The formalism of density operators allows us to
incorporate this kind of classical uncertainty into quantum states, on
top of the already existing fundamental quantum uncertainty.

Assume again there is some source that repeatedly outputs the
same quantum state, but that we are not told which state. We are
promised that the source outputs the same state every time, and that
in advance this state was chosen from the set {|φi〉} according to a
specified probability distribution p̃i. We write |φi〉 =

∑
j cij |j〉. It is

not assumed the states are orthogonal.
When we perform many measurements specified by the observable

O, each time using a fresh copy of the state, and take the average of the
outcomes, we eventually learn E|φi⟩(ν). But what is the expected ex-
pectation value? To calculate this, we see E|φi⟩(ν) as a random variable
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over state indices, and calculate its expectation value,

E[E|φi⟩(ν)] =
∑
i

p̃i 〈φi|O |φi〉

=
∑
ijk

p̃ic
∗
ijcik 〈j|O |k〉

=
∑
ijk

p̃ic
∗
ijciktr(|k〉 〈j|O)

= tr (ρO) , (1.14)

where we have defined the density operator

ρ =
∑
i

p̃i |φi〉〈φi| .

We will henceforth use the notation

〈O〉ρ = tr(ρO),

which is manifestly basis independent. Note that, because
∑

i p̃i = 1,
we have the normalization condition for density operators, tr(ρ) = 1.

The expected expectation value 〈O〉ρ does not change when the
source outputs just a single state. Hence, ρ completely captures our
knowledge about the output of the source. It is in this way that the
density operator forms a generalization of the concept of a quantum
state. We will use the term state both for vectors |ψ〉 and density
operators ρ.

Pure classical uncertainty and pure quantum uncertainty are both
limiting cases in the density operator formalism. The density op-
erator that describes a purely classical probability distribution over
classical product states |i〉, called a classical mixture, is of the form
ρ =

∑
j p̃i |i〉〈i|. Any density operator that is not a purely classical

mixture has non-zero off-diagonal matrix elements in the classical ba-
sis, called the coherences of the density operator. The diagonal matrix
elements in the classical basis, on the other hand, are called the popu-
lations. If we have a source that outputs |φ〉 with certainty, we say the
state that the source outputs is a pure state, described by ρ = |φ〉〈φ|
(or just |φ〉 if we omit the density operator formalism). We call any
state that is not a pure state a mixed state.

Because ρ =
∑

i p̃i |φi〉〈φi|,
∑
p̃i = 1, and the fact that the |φi〉〈φi|

are pure states, ρ is a convex combination of pure states. Therefore,
the decomposition of a density operator into pure states is generally
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not unique. As an example, consider a qubit that, with equal prob-
ability, is in the state |+〉 or |−〉. Then ρ = (|+〉〈+|+ |−〉〈−|) /2 =
(|0〉〈0|+ |1〉〈1|) /2. Thus, we might just as well say that the qubit is in
the states |0〉 and |1〉 with equal probability.

By applying the definitions of the measurement of pure states, and
the interpretation of ρ given in Eq. (1.14), we can generalize the de-
scription of measurement to measurement of mixed states ρ. Now, the
outcome νi is obtained with probability pi = tr(PiρPi). The post-
measurement state ρ′ is given by ρ′ = PiρPi/pi.

1.4.3 Open quantum systems
Assume we have a quantum system SB that can be divided into a
system S and a bath B. The overall Hilbert space is H = HS ⊗ HB,
with HS the Hilbert space of the system and HB that of the bath.
Expanded over a basis {|i〉}dimHS

i for S and {|j〉}dimHB
j=1 for B, a general

pure state is of the form |Ψ〉 =
∑

ij ψij |i〉 ⊗ |j〉. Even though we use
the same notation for the bases of S and B, these bases need not be
physically equal. Operators on HSB take the form O =

∑
αOijSi⊗Bj ,

with {Si} and {Bj} operator bases for S and B respectively.
Consider a general SB density operator ρ =

∑
abcd ρabcd |a〉〈b|⊗|c〉〈d|

and an observable that acts non-trivially on the system only, O =
OS⊗1. Again, we cannot predict the outcome of a single measurement
of O, but we can compute the expectation value of that measurement
outcome,

〈O〉ρ = tr(ρO)

=
∑
ij

〈i| ⊗ 〈j|

(∑
abcd

ρabcd |a〉〈b| ⊗ |c〉〈d|

)
Os ⊗ 1 |i〉 ⊗ |j〉

=
∑
ib

∑
j

ρibjj

 〈b|OS |i〉

= tr(ρSOS).

Here, we have introduced the reduced density operator (ρS)ib =∑
j ρibjj . Equivalently, this definition can be written as

ρS = trB(ρ), (1.15)

with trB(·) =
∑

m 〈m|B · |m〉B the partial trace over the bath. Here, we
define the operation 〈m|B OS ⊗ OB |m〉B ≡ OS 〈m|OB |m〉 for general
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system and bath operators OS and OB. Note that the latter definition
of ρS , Eq. (1.15) is manifestly basis independent.

Imagine SB is in a pure state, ρSB = |Ψ〉〈Ψ|, that you are near
the location of S and that I am near the location of B, which is light
years away from S. Now suppose I measure B in the basis {|j〉B}j
on an exact moment that was agreed upon in advance. Suppose I get
outcome j. Then, the overall post-measurement state has collapsed to
ρ′SB = (〈j|B ρSB |j〉B)⊗ |j〉〈j| /pj with pj such that tr(ρ′SB) = 1. Since
this is a product state, we can say that the post-measurement state at
S, given the outcome j, is ρ(j)S = (〈j|B ρSB |j〉B)/pj . The effect that
the state of S has changed at the instant of measurement, even though
S and B are separated by light years and the outcome j could not be
predetermined even with complete knowledge of the overall pure state,
is called non-locality.

However, directly after the measurement, there is no way for you
to have learned the outcome. Hence, your knowledge of the state just
following my measurement, denoted by ρ̃S , is

ρ̃S =
∑
j

pjρ
(j)
S

=
∑
j

(〈j|B ρSB |j〉B)

= ρS .

So, to the local description of S, and to the outcome of any experiment
on S, it does not matter whether B has been measured (without you
knowing the outcome) or B has not been measured at all. Hence, the
local description of S does not contain all there is to know about part
S of SB. We say the local description of S is not complete.

1.4.4 Pauli words
The bounded linear operators on a 2n-dimensional Hilbert space H,
B(H), can be added, and multiplied by complex scalars in the usual
sense. Hence, B(H) forms a complex vector space of dimension 24. We
may emphasize the vector character of O ∈ B(H), by writing |O〉〉. On
B(H), the Hilbert-Schmidt (not to be confused with Herbert Smith)
inner product 〈〈O|O′〉〉 ≡ tr(O†O′) can be defined. Define the Pauli
words

Pi = σi1 ⊗ σi2 ⊗ . . .⊗ σin−1 ⊗ σin , (1.16)
where σ0 = 12×2, σ1 = X, σ2 = Y , σ3 = Z Pauli-operators [Eq. (1.4)].
The Pauli words have many convenient properties: they are traceless,
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except for P0...0, for which tr(P0...0) = 2n, they square to the identity,
they are Hermitian (and hence unitary), two Pauli words either com-
mute or anti-commute, they have eigenvalues ±1 (and hence |Pi| = 1
for all i), and they form a group, called the Pauli group. The basis
of Pauli words can be normalized by introducing the normalized Pauli
words P̃i = Pi/

√
2n.

The property we are most interested in here is that the Pauli words
form an orthogonal basis of B(H). To show this, note that, from the
properties of the Pauli operators, it follows directly that 〈〈Pi|Pj〉〉 =
2nδij . Also note there are 4n = dimB(H) independent Pauli words.
Hence any O ∈ B(H) may be written as

O =
∑
i

ciPi, (1.17)

with ci = 〈〈Pi|O〉〉 /2n. Hence, we could even represent |O〉〉 as a column
vector of length 24 with entries ci.

If we restrict O to be Hermitian, the ci must be real. So, we may
write any Hamiltonian on n spins as

H =
∑
i

hiPi (1.18)

with hi ∈ R. If we, furthermore, require that H is traceless, which
physically we can always do without loss of generality, we have h0 = 0.

The weight of a Pauli word is defined as the number of non-trivial
single-qubit tensor factors in that word. (The Pauli operator σ0 is
considered trivial.) A Hamiltonian is called k-local if all of its terms
act non-trivially on at most k qubits. If the Hamiltonian is of the
form of Eq. (1.18), this means the weight of any Pi for which hi 6= 0
is at most k. We stress that k-locality is a weaker requirement than
spatial locality of a Hamiltonian. For example, the Hamiltonian H =∑n

i,j=1 ZiZj with spins placed randomly in the universe is still called
2-local even though every spin interacts with every other spin and the
spins are arbitrarily far apart. Instead of a single Hamiltonian, one
often inexplicitly considers a family of Hamiltonians {H(n)}, where
each member H(n) is a Hamiltonian acting on n qubits. This family is
called k-local if all H(n) are k-local, with k independent of n. Note that

by Eq. (1.18) any k-local Hamiltonian has at most 4k
(
n
k

)
linearly

independent terms.
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1.4.5 Time evolution
The world is dynamic. An example in classical physics is that of the
solar system; the state of the solar system at time t = 0 differs from
states at t 6= 0. Likewise, quantum systems are generally dynamic, and
the initial state of a quantum system, |ψ(0)〉, will differ from the state
at earlier or later times, |ψ(t)〉 (t 6= 0). By the linearity of quantum
mechanics, |ψ(t)〉 must be related to |ψ(0)〉 by some linear operator
U(t),

|ψ(t)〉 = U(t) |ψ(0)〉 . (1.19)

This U(t) is determined by the Schrödinger equation. In units where
h̄ = 1, it reads

∂tU(t) = −iH(t)U(t), (1.20)

where H is the Hamiltonian. By the conservation of probabilities
(Sec. 1.4.1), U(t) is unitary, U(t)U †(t) = 1, and hence H is Hermi-
tian, H(t) = H†(t). By the equivalence of states that differ by a phase,
H may be chosen to be traceless, trH = 0.

If the Hamiltonian is time-independent, H(t) = H, the solu-
tion of the Schrödinger equation is U(t) = e−itH . On the level of
states, this means |ψ(t)〉 = e−itH |ψ(0)〉, or, for density operators,
ρ(t) = e−itHρ(0)e+itH . Writing out the exponents, commuting all H to
the left of ρ(0), and resuming into an exponent, this can be rewritten
as

ρ(t) = e−it[H,·]ρ(0), (1.21)

with −it[H, ·]ρ = −it[H, ρ].

1.4.5.1 Dyson series

For time-dependent Hamiltonians we have, by the Schrödinger equa-
tion,

U(t) = 1+

∫ t

0
dt′ ∂t′U(t′) = 1− i

∫ t

0
dt′H(t′)U(t′).

This equation is recursive; we can substitute U(t) appearing on the
right hand side using the equation itself. Repeating this process, we
obtain

U(t) = 1− i
∫ t

0
dt′H(t′)(1−i

∫ t′
0 dt′′H(t′′)(1−i

∫ t′′
0 dt′′′H(t′′′)...))

= 1− i
∫ t

0
dt′H(t′) + (−i)2

∫ t

0
dt′H(t′)

∫ t′

0
dt′′H(t′′) + . . . .

(1.22)
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This is called the Dyson series. It can be written more compactly as

U(t) = T e−i
∫ t
0 dt′H(t′), (1.23)

with T is the time ordering operator.

1.4.5.2 Schrödinger v.s. Heisenberg picture

Given a state, only the expectation value of an operator is measurable
(Sec. 1.4.1). As we shall see, this introduces an ambiguity: are the
states evolving in time, or rather the observables themselves? Depend-
ing on where one puts the time evolution we obtain different pictures
of quantum mechanics. Let us assume time-independent Hamiltonians
for clarity.

We take the Schrödinger picture as the starting point. This is the
picture of the last section, where the states evolve in time, but the
observables are fixed. In this picture, expectation values are computed
as

〈O〉(t) = tr[e−itHρ(0)eitH︸ ︷︷ ︸
ρS(t)

O︸︷︷︸
OS

],

where for later reference we have introduced the Schrödinger picture
state ρS(t) and the Schrödinger picture observable O.

In the Heisenberg picture, on the other hand, the time evolution is
absorbed into the observables. Using the cyclic property of the trace,
the expectation value may be rewritten as

〈O〉(t) = tr[ρ(0)︸︷︷︸
ρH

eitHOe−itH︸ ︷︷ ︸
OH(t)

],

where we have defined the time-independent Heisenberg picture state
ρH and the time-dependent Heisenberg picture observable OH(t).

1.4.5.3 Interaction picture

The interaction picture sits between the Schrödinger and Heisenberg
picture; one part of time evolution is absorbed into the states, another
part is absorbed into the operators. To obtain this subdivision, we
write the Schrödinger Hamiltonian as a sum of two terms,

H = H0 + V.
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In the interaction picture, we write the expectation value of O as

〈O〉(t) = tr[eitH0e−itHρ(0)eitHe−itH0︸ ︷︷ ︸
ρI(t)

eitH0Oe−itH0︸ ︷︷ ︸
OI(t)

], (1.24)

where we have defined the time-dependent interaction picture state
ρI(t) and time-dependent interaction picture observable OI(t).

The interaction picture is especially useful when time evolution of
states underH0 is well-understood and the operator norm of V is small,
because in that case the Dyson series is a series in the operator norm
of V . Define the operators

U I(t) = eitH0e−itH , HI(t) = eitH0V e−itH0 . (1.25)

By taking the derivative of U I(t), we have

∂tU
I(t) = −iHI(t)UI(t).

This is exactly the Schrödinger equation [Eq. (1.20)] if we substitute
U I → U in and HI → H. Hence, the Dyson series Eq. (1.22) in the
interaction picture, and its solution (Eq. (1.23)), are simply obtained
by substituting U I → U and HI → H,

U I(t) = T e−i
∫ t
0 dt′HI(t′). (1.26)

The Dyson series now becomes a perturbative series in the operator
norm of V . Taking into account the first couple of terms of the Dyson
series, it can thus be used to treat time evolution perturbatively.

1.4.6 Time evolution of open quantum systems
Consider a system S and a bath B as in Sec. 1.4.3, under the influence
of a time evolution operator on SB. The time evolution of the whole
induces time evolution on the reduced density operator of S. Assuming
for simplicity the initial state of SB is (ρS(0)⊗ |φ〉〈φ|), this is

ρS(t) = trB[U(t)(ρS(0)⊗ |φ〉〈φ|)U †(t)]. (1.27)

In this section, we study this reduced time evolution.

1.4.6.1 Interaction picture in open quantum systems

For open quantum systems, H0 is usually taken to be the sum of a term
that only acts on the system, the system Hamiltonian HS ⊗ 1, and a
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term that acts only on the bath, the bath Hamiltonian 1 ⊗HB. The
interactions between the system and the bath are captured by V .

Let OS be a system operator. Then,

〈OS〉(t) = trS
[
ρSS(t)O

S
S

]
= trS

{
trB[e−itH0ρI(t)eitH0 ]OSS

}
.

If we assume that V is the only system-bath coupling, then H0 =
HS +HB, and we obtain

〈OS〉t = trS{trB[e−itHBρI(t)eitHB ]eitHSOSSe
−itHS}

= trS{trB[ρI(t)]︸ ︷︷ ︸
ρIS(t)

eitHSOSSe
−itHS︸ ︷︷ ︸

OI
S(t)

}.

In words, the reduced density operator in the interaction picture is
the interaction picture density operator with the bath traced out. The
system operators transform to the interaction picture system operators
as if there were no bath.

1.4.6.2 Quantum channels

The evolution of the reduced system density operator of Eq. (1.27) may
be rewritten as

ρS(t) =
∑
j

〈j|B U(t)(ρS(0)⊗ |φ〉〈φ|)U †(t) |j〉B

=
∑
j

Aj(t)ρS(0)A
†
j(t)

= A(t)[ρS(0)].

Here, we have defined the operators

Aj(t) = 〈j|B U(t) |φ〉B , (1.28)

and a map from density operators to density operators,

A(t)[·] =
∑
j

Aj(t)(·)A†
j(t). (1.29)

Note the operators in Eq. (1.28) are system operators. The notation
used there is similar to that used in Eq. (1.15). Also note that, by
Eq. (1.28), ∑

j

A†
j(t)Aj(t) = 1,
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as it should, for otherwise tr[ρS(t)] 6= 1.
We have taken a physics-inspired approach in arriving at Eq. (1.29).

There is, however, another way of arriving at a similar equation. In
an axiomatic approach to quantum mechanics, density operators are,
by definition, Hermitian Positive Semi-Definite (psd) operators with
unit trace. A quantum channel A is defined as map that satisfies the
following three axioms. 1) Trace preservation, tr(A[ρ]) = 1 whenever
tr(ρ) = 1. 2) Complete positivity, which means that we not only require
A to be positive, we also require positivity after we add a bath (of any
dimension) on whichA acts trivially, that is, we requireA⊗1 ≥ 0 for an
identity operator 1 of any dimension. 3) Convex linearity, which means
A[
∑

i piρ
(i)] =

∑
i piA[ρ(i)] for any set of density operators {ρ(i)}i.

It can be shown that any map satisfying the axioms above can be
written in the Operator Sum Representation (OSR) A[·] =

∑
iAi(·)A

†
i ,

with
∑

j A
†
jAj = 1, where the Ai are called Kraus operators (see

e.g. [108]). For fixed t, Eq. (1.29) gives the OSR of the channel on
density operators on S that is induced by unitary time evolution on
SB with time t. If we let t vary, Eq. (1.29) defines a family of quan-
tum channels. Its members are characterized by different t.

In the construction outlined in the subsection on Pauli words,
Sec. 1.4.4, elements of B(H) may be represented by column vectors of
length N2, with N = dimH. By the OSR, it is easy to see that quan-
tum channels extend naturally to linear operators from all of B(H) to
B(H) (instead of only from density operators to density operators). The
linear operators on linear operators are also called super-operators. Any
super-operator S (including quantum channels) may hence be seen as a
N2×N2 matrix with elements 〈〈P̃i|S[P̃j ]〉〉, here the P̃i are normalized
Pauli words.

Any unitary on SB gives rise to a quantum channel defined on S.
The converse is also true: it can be shown that, given any quantum
channel A, it is possible to cook up a bath B, a state |φ〉, and a unitary
U on SB such that A[ρ] = trB(Uρ⊗|φ〉〈φ|U †) for any ρ. This ‘reverse’
construction is known as the Stinespring dilation (named after W. F.
Stinespring).

1.4.6.3 The Lindblad equation

The family of quantum channels arising from reversible, unitary time
evolution of a closed system along a given Hamiltonian H, can be
written as {U(t)[·] = U(t)(·)U †(t)}t = {etL̃[·]}t, with

L̃[ρ] ≡ −i[H, ρ] (1.30)
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the generator of that family. (The super-operator L̃ can in principle
be represented as a N2 ×N2 matrix, with N = dimH (see Sec. 1.4.4).
Using the standard matrix exponential, also etL̃ can be thought of as
a matrix in the same way.) This family forms a group; U(0) acts is the
identity element, and both closure under composition as the existence
of inverses follows from the property

U(t2) ◦ U(t1) = U(t1 + t2) (1.31)

for all t1, t2 ∈ R.
The theory of quantum channels allows us to generalize the above

theory of unitary (and hence reversible) time evolution of quantum
systems to a theory that also incorporates irreversible ‘non-quantum’
dynamics. This theory is commonly referred to as irreversible quantum
dynamics. We start from the axiomatic approach of quantum channels,
and consider a family of quantum channels that satisfies the property

A(t2) ◦ A(t1) = A(t1 + t2) (1.32)

for all t1, t2 ≥ 0. Such a family is called a quantum dynamical semi-
group. Note how this requirement is weaker than that of Eq. (1.31).
Families satisfying the latter requirement are called a semigroup be-
cause the inverse of A(t) is not required to exist, reflecting the ir-
reversible nature of the dynamical maps. In analogy with reversible
dynamics, suppose the a quantum dynamical semigroup is generated
by a super-operator L. That is, suppose A(t) = etL. It follows that

∂tA(t) = L[A(t)] (1.33)

[cf. the Schrödinger equation, Eq. (1.20)]. Defining ρ(t) = A(t)[ρ(0)],
we have, on the level of states,

∂tρ(t) = L[ρ(t)]. (1.34)

Such a super-operator L is called a Lindbladian.
We may ask the question: what is the most general form of a Lind-

bladian? (I.e, what is the most general super-operator L such that
the super-operator A(t) = etL is trace preserving and completely posi-
tive?) To answer this, remember we can ensure A(t) is a trace preserv-
ing and complete positive super-operator by using the OSR of A(t),
ρ(t) =

∑
iAi(t)ρ(0)A

†
i (t), which is guaranteed to exist. Expand the

Kraus operators Ai(t) over a basis Fi that is orthonormal with re-
spect to the Hilbert-Schmidt inner product, with F0 proportional to
the identity. An example of such a basis is formed by the normalized
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Pauli words P̃i (Sec. 1.4.4). Then, the fixed-basis OSR of that channel
becomes

ρ(t) =

N2−1∑
i,j=0

cij(t)Fiρ(0)F
†
j ,

with cij(t) =
∑

k〈〈Fi|Ak〉〉〈〈Ak|Fj〉〉. Note that time evolution is now
absorbed into the coefficients; the operators Fi are static. Then, by
computing

∂tρ(t) = lim
δt→0

∑
i,j cij(δt)Fiρ(t)F

†
j − ρ(t)

δt
, (1.35)

and comparing to Eq. (1.34), it is straightforward, yet too elaborate
for this introduction, to show the Lindblad equation

L[ρ(t)] = −i[H, ρ(t)] +D[ρ(t)], (1.36)

D[ρ(t)] =

N2−1∑
k=1

γk

(
Lkρ(t)L

†
k −

1

2
{L†

kLk, ρ(t)}
)
,

with {·, ·} the anti-commutator. Comparing this equation to Eq. (1.30),
the way in which the Lindblad equation forms a generalization of uni-
tary time evolution is manifest.

In the Lindblad equation, the Hermitian operator H ∈ B(H), the
general Lindblad operators Lk ∈ B(H), and the γk ≥ 0 for all k, can
all be expressed explicitly in terms of the cij(t) and Fi. For details,
see Ref. [26]. However, the whole point of the current introduction
to the Lindblad equation is not to show how the H, Lk and γk are
obtained, but rather to to give the most general form of the generator of
a quantum dynamical semigroup. In some physical considerations the
Lindblad equation is even used as a starting point rather than a result.
As long as H is Hermitian and γk ≥ 0 [there are no restrictions on Lk
other than Lk ∈ B(H)], the family that is generated by the Lindbladian
is automatically a semigroup with convex linear, trace preserving and
completely positive elements.

How should we think about semigroup dynamics in the context of a
system and a bath and unitary time evolution? The family of quantum
channels A(t) arising from Eq. (1.27) can be obtained by the following
procedure. 1) Append a bath in a state |φ〉 to the current system state,
2) evolve the whole with a time evolution operator U(t), 3) trace out
the bath. This map does not satisfy the semigroup property. This is
because A(t1)A(t2) introduces a reset of the bath to the state |φ〉 just
after t1, but A(t1 + t2) does not.
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By Eq. (1.35), approximate Lindblad evolution can be seen as the
following procedure. 1) Append a bath in the state |φ〉 to the current
system state, 2) evolve the whole with a time evolution operator U(δt),
3) trace out the bath and reset it to |φ〉, 4) repeat steps 1-3 T/δt times.
Exact Lindblad evolution is recovered by sending δt to zero in the
above procedure. Note that this procedure does satisfy the semigroup
property for all t1, t2 > 0.

Hence, the physical conditions that lead to Lindblad-like time evo-
lution may be realized in physical systems if the dynamics of the bath
are much faster than those of the system, quickly carrying away any
excitations that occur near the system, and if furthermore these exci-
tations never return to the system. This is only possible if the bath is
infinitely large, for otherwise excitations are carried back to the system
before or at some finite recurrence time.

1.4.7 Decoherence: a simple example
Decoherence is the loss of information about a quantum state due to its
interaction with the environment. In this subsection, we consider, as a
simple example, a single qubit of which we successively lose more and
more information about the relative phase between the states |0〉 and
|1〉. The situation where there is only loss of phase information is also
described as pure decoherence because, as we will see in this subsection,
it solely affects the coherences of the density operators (see Sec. 1.4.2).

Consider a qubit initially in the state |+〉. Assume that after every
time step it gets a phase kick ϕ with probability 1/2, or it does not
get a phase kick at all (with the same probability). A phase kick of
|+〉 with angle ϕ means that we rotate |+〉 around the z-axis with
angle ϕ. After k phase kicks, the state |+〉 has changed in to |ψk〉 =
(|0〉 + eiϕk |1〉)/

√
2. After m time steps, the probability of k phase

kicks is pk(m) = (1/2)k(1/2)m−k
(
m
k

)
. So, if we do not have any

information about k, after m time steps the state of the qubit is given
by

ρ(m) =
m∑
k=0

pk(m) |ψk〉〈ψk|

=
1

2

∑
k

pk(m)
(
|0〉〈0|+ |1〉〈1|+ e−iϕk |0〉〈1|+ eiϕk |1〉〈0|

)
=

1

2

(
1 s∗(m)

s(m) 1

)
, (1.37)
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with s(m) =
∑

k pk(m)eiϕk.
As an aside, note that, for general states, a single time step can be

described as the quantum channel A with Kraus operators

E0 = 1/
√
2, E1 = RZ(ϕ)/

√
2,

[See Sec. 1.4.6.2 and Eq. (1.6)]. Hence, it is possible to come up with
a bath B, a system S, and a unitary on SB such that A is obtained
by unitary evolution of SB and a partial trace over B. The quantum
channel for m time steps is just A applied m times, Am. Note that Am

approaches a quantum dynamical semigroup for large m and small ϕ,
and can hence, in the appropriate limit, be described by a Lindbladian
(see Sec. 1.4.6.3).

Let us here, however, stay with the discrete description of
Eq. (1.37). We see the populations are static, but that the two co-
herences are time-dependent. The moduli of the latter are equal, and
are computed as

|s(m)| =

∣∣∣∣∣∑
k

(
1

2

)m(
m
k

)
eiϕk

∣∣∣∣∣
=

∣∣∣∣(1

2
+

eiϕ

2

)m∣∣∣∣
=

[
cos2

(
ϕ

2

)]m/2

.

Therefore, the qubit suffers exponential loss of coherence on a time
scale set by 1/ log[cos2(ϕ/2)].

As m goes to infinity, ρ(m) goes to 1. This latter state is indis-
tinguishable from a classical mixture of the classical states |0〉 and |1〉.
Remarkably, however, if we were now to learn that the qubit has suf-
fered k0 phase kicks, there is a classical ‘collapse’ of ρ(m) to |ψk0〉.

1.5 Selected topics in quantum computing
In this section, we use concepts from Sec. 1.4 to extend upon the picture
of quantum computation as given in Sec. 1.3. Again, the topics covered
here are similar to those in standard textbooks [108, 119, 34]. This
section provides additional conceptual background that complements
the rest of this thesis, and may be skipped at first reading.
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1.5.1 Gate implementation
Quantum gates are performed by turning on a certain Hamiltonian for
a certain time. For example, one way of acting with an RZ(θ) = e−iθZ/2

gate on qubit i, is to turn on a Hamiltonian V = Zi/2, where Zi acts
only on qubit i, for a time t = θ. In turn, a Zi Hamiltonian can be
turned on by creating an energy difference between the states |0〉 and
|1〉 of qubit i.

For two-qubit gates, a Hamiltonian is turned on that couples the
two qubits. Consider, for example, a quantum dot quantum computer,
where the spin degree of electrons is used to implement qubits. Two
spins in different dots interact according to the Heisenberg Hamiltonian

H = J S0 · S1,

with Si = (Xi, Yi, Zi)
T /2, and where J > 0 depends on the overlap of

the spatial part of the wave function of the two spins. Thus, by tem-
porarily lowering a high potential energy barrier between two dots, each
hosting one electron, a two-qubit gate of the form e−iθ(X0X1+Y0Y1+Z0Z1)

with θ ∈ R can be realized.
In many physical implementation of qubits, there is a constant

‘background’ time evolution of all qubits. For example, in a super-
conducting qubit, the states |0〉 and |1〉 generally differ in energy by
some value ∆. This causes them to continuously evolve along the
background Hamiltonian Hb = ∆

2 (|0〉〈0| − |1〉〈1|) = ∆
2 Z, leading to

|ψ(t)〉 = e−it∆Z/2 |ψ(0)〉, even when no gate is being applied.
This redundant time evolution can be removed from our description

of the state by going to the rotating frame. This is a specific version
of the interaction picture, where H0 is the background Hamiltonian
Hb, and V = 0 for as long as no gate is being applied. This leads to
|ψ(t)〉I = |ψ(0)〉I = |ψ(0)〉 by the definition of ρI(t) [Eq. (1.24)].

1.5.2 Quantum simulation

1.5.2.1 Dynamic quantum simulation

Here we show how quantum computers can efficiently simulate the dy-
namics of a quantum mechanical system with Hamiltonian H. We may
assume that H is k-local (see Sec. 1.4.4). This is because all common
Hamiltonians are k-local. These include those of quantum electrody-
namics, and the Coulomb, electronic structure, Ising, Heisenberg, Ryd-
berg, James-Cummings, and Hubbard Hamiltonians. Furthermore, for
simplicity, here we assume H is a Hamiltonian on n spin-1/2 degrees
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of freedom. Quantum computers can also efficiently simulate other
types of systems, such as fermionic systems. This, however, requires a
mapping from the physical Hamiltonian in question to an Hamiltonian
on qubits, which is something we want to omit here for the sake of
brevity. Under the above assumptions, we may write H =

∑m
i=1Hm

with m = polyn.
The ultimate goal of dynamical quantum simulation is to learn clas-

sical data about future states of a system given an efficient classical
description of an initial state of that system. On a quantum computer,
we may do so by evolving an initial state by U(t). This yields the
state |ψ(t)〉, from which classical data may be extracted by repeated
preparation and measurement. For example, one may be interested in
how the spin-spin correlation function 〈ψ(t)|ZiZj |ψ(t)〉 evolves as a
function of the parameter t, with |ψ(0)〉 = |↑↑ . . . ↑〉 = |00 . . . 0〉.

In this section we focus on a method for implementing U(t) using
only two-body gates, and assuming all-to-all connectivity. It is called
Trotterization. Even though H is k-local, the time evolution operator
e−itH is not. Therefore, it is not clear a priori how to implement it
using only two-qubit gates. Evolution along any single term in the
Hamiltonian, e−itHi , however, is k-local. Thus, given the universal gate
set {U(α, θ̃, ϕ̃),CNOT} (Sec. 1.3.2.5) any e−itHi can be implemented
using O(k24k) gates, which is independent of n, t and Hi. The idea of
Trotterization is that e−itH ≈ Πie−itHi for t small. To obtain |ψ(t)〉 on
a quantum computer, we could thus divide the time interval t up into
r smaller pieces of length t/r and apply the unitary Πie−i t

r
Hi to |ψ(0)〉

a total of r times.
All r steps introduce some error (even on a perfect quantum com-

puter), and the question is how this error accumulates. It can be shown
that, in every step, there is an error∥∥∥e−i t

r
H −Πie−i t

r
Hi

∥∥∥ = O
[
(
∑

i‖Hi‖)2 (t/r)2
]

as the argument of O goes to zero [30]. Since errors in a product of
unitaries add up at most linearly [119], we have, after r steps, a total
error of O

[
(
∑

i‖Hi‖)2 t2/r
]
. Thus, if we demand the error is at most

ε, a number of steps r = O[(
∑

i‖Hi‖)2 t2/ε] suffices. Every step costs
O(m)O(k24k) gates. So, the total cost of implementing e−itH on a
quantum computer up to error ε is n qubits and

O(m)O(k24k)O
[
(
∑

i‖Hi‖)2t2/ε
]

gates.
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1.5.2.2 Static quantum simulation

Next to the dynamic quantum simulation discussed above, there is an-
other type of quantum simulation, which could be called static quantum
simulation. The goal of the latter is to find (the properties of) the low-
est energy eigenstate of a given Hamiltonian. The dynamic and static
types of quantum simulation can be related via a routine that is called
quantum phase estimation.

Consider a unitary U on the space of n qubits. Since U is unitary,
we may write its eigenvalue equation as U |ψi〉 = ei2πφi |ψi〉 with φi ∈
[0, 1). Consider a quantum computer with an m-qubit data register,
initialized to |00 . . . 0〉, and a second register holding an eigenstate |ψi〉.
Assume for simplicity that all φi can be represented exactly by a binary
fraction with m bits of precision, and define the bitstring φ̃i by the
binary representation of φi, φi = 0.φ̃i(m−1)φ̃i1φ̃i0.56 Quantum phase
estimation is a quantum algorithm that maps

|00 . . . 0〉 |ψi〉 7→ |φ̃i〉 |ψi〉 ,

A precise description of the steps that are involved in the implemen-
tation of the phase estimation algorithm are outside the scope of this
introduction. Nevertheless, it is worth noting that one of the essential
requirements for the implementation of the phase estimation algorithm
is the ability to implement the unitary U .

When we apply phase estimation using an initial state that con-
tains a superposition of eigenstates, that is, on |00 . . . 0〉 |Ψ〉 =∑

i ci |00 . . . 0〉 |ψi〉, we obtain the state
∑

i ci |φ̃i〉 |ψi〉. If we now mea-
sure the data register, the total state collapses to |φ̃i〉 |ψi〉 with proba-
bility |ci|2 (also see Sec. 1.4.1). In this way, we can use phase estimation
as a routine for sampling phases according to a distribution that is de-
termined by the amplitudes of the initial state of the second register.

To see how this can be used to translate from dynamic simulation
to static simulation of physical systems, the first step is to find a good
candidate ground state |Ψ〉. This could, for example, be obtained by
mean-field theory. Take U = eiH̃2π, with H̃ some Hamiltonian on n
spins, obtained by normalizing and shifting a spin Hamiltonian H such

5It is straightforward to generalize the binary representation of
the integers (Sec. 1.3.1) to fractions; the (M + m)-bit bitstring
x = xM−1 . . . x1x0 . x−1 . . . x−m+1x−m with a ‘1’ only at position i ∈
{M − 1, . . . ,−m + 1,−m} represents the number 2i. For example, 0.1 (bi-
nary representation) equals 0.5 (decimal representation).

6If the φi are arbitrary real numbers, we can still perform phase estimation. A
measurement of the data register will collapse the output state to |φ̃i⟩ |ψi⟩, where
0.φ̃i is the closest m-bit binary fraction to φi, with high probability.
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a way that the minimum and maximum eigenvalues of H̃ lay between
0 and 1, respectively. (A priori, we do not know the minimum and
maximum eigenvalues of H, but a respective lower and upper bound
suffice.) This unitary U can be implemented efficiently using dynamic
quantum simulation. Note that if |ψi〉 is an eigenvector of H̃ with
eigenvalue φi, then |ψi〉 is an eigenvector of U with eigenvalue ei2πφi .
Then, using the phase estimation routine, we can sample from the
spectrum of H̃ according to the amplitudes squared of |Ψ〉.

There is no guarantee that |Ψ〉 has large overlap with the true
ground state of H̃. Additionally, phase estimation does not give you
any guarantee that, out of m runs of phase estimation, the lowest φ̃i
out of those runs is the ground state energy of H̃. So, actually, static
quantum simulation seems to be much harder than dynamic quantum
simulation. (In terms of complexity classes, dynamic quantum simula-
tion is in BQP, whereas the static problem is QMA complete.)

So, we have shown how to go from dynamic to static quantum
simulation. In Chapter 4 of this thesis, we consider a method that is
initially intended for approximate static quantum simulation. In that
chapter we show how this method can be used for dynamical simulation
as well.

1.5.3 Feynman path integral and quantum circuits
The Feynman path integral, which finds its origin in theoretical physics,
offers an interesting perspective on quantum circuits. Vice versa, quan-
tum circuits, and especially those for dynamic quantum simulation, of-
fer an interesting perspective on the path integral in theoretical physics.
Consider n qubits initially in the computational basis state |i0〉 and a
depth-T quantum circuit C = UTUT−1 . . . U1. The amplitude that
is on a computational basis state |iT 〉 after the circuit C is given by
〈iT |C |i0〉. By inserting a resolution of the identity after every layer of
the circuit, this can be rewritten as

〈iT |C |i0〉 = 〈iT |

 ∑
i′T ,iT−1,...,i1

∣∣i′T 〉 〈i′T ∣∣UT |iT−1〉 . . . 〈i2|U2 |i1〉 〈i1|U1

 |i0〉

=
∑

iT−1,...,i1

〈iT |UT |iT−1〉 . . . 〈i2|U2 |i1〉 〈i1|U1 |i0〉 . (1.38)

Even though we have trivially inserted some identities, the equation
above offers a whole new perspective on quantum circuits.

To see this, imagine a directed, weighted graph G = (V,E,w) with
vertices V = {0, 1, . . . , 2n − 1}×(T+1). The vertex Vti represents |it〉 in
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Eq. (1.38), and these two ways of notation will be used interchangeably.
Put a directed edge (Vti, Vt+1,j) for all possible t, i and j, and assign
it the complex weight w[(Vti, Vt+1,j)] = 〈it+1|Ut+1 |it〉. Denote the
product of all weights along a given path through G as c(path). Then,
Eq. (1.38) reads

〈iT |C |i0〉 =
∑

paths from |i0⟩ to |iT ⟩

c(path). (1.39)

This is the Feynman path integral form of 〈iT |C |ψ〉. For a general
initial state |ψ〉 =

∑
i0
ψi0 |i0〉,

〈iT |C |ψ〉 =
∑
i0

ψi0
∑

paths from |i0⟩ to |iT ⟩

c(path). (1.40)

These equations do not contain an integral over paths, but rather a
sum. The term ‘integral’ originates from the path integral’s origi-
nal context of continuous time evolution, where the sum over paths
becomes an integral over paths. The technically more correct term
‘Feynman path sum’ is also encountered.

Equation (1.40) contains a sum of all the amplitudes that flow from
the initial state onto the basis vector |iT 〉. If this sum vanishes even
though its terms do not, it is said that destructive interference occurs
at |iT 〉. If, on the other hand, all terms have the same complex phase
and hence add up, it is said that constructive interference occurs at
|iT 〉. This is analogous to interference in a double-slit experiment.

As an example of interference in quantum circuits, consider the
simple circuit

|0〉 H RZ(θ) H C |0〉 . (1.41)

It is straightforward to show that C |0〉 = 1+eiθ

2 |0〉 + 1−eiθ

2 |1〉. A sub-
graph of the graph G that corresponds to the circuit C is displayed
in Fig. 1.5. The subgraph contains only paths from |0〉 to |0〉. The
amplitudes in the initial and final state are given on the left and right
part of the figure, respectively. We see there are two non-trivial paths
that end up at |0〉 in the final state. One carries the amplitude 1/2, the
other an amplitude of eiθ. At the final state, the two paths interfere
in a way that depends on the phase shift θ that was induced by the
RZ(θ) gate.

The design of new quantum algorithms can be seen as the art of
creating (approximate) constructive interference at basis states corre-
sponding to the correct output of some computational problem instance
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Figure 1.5: The flow of amplitudes from |i0〉 = |0〉 to |iT 〉 = |0〉 as
caused by Circuit (1.41).

(e.g. a prime factor of some large input integer), and (approximate)
destructive interference at other basis states. Then, measurement of
the final quantum state of the computation will yield a correct output
with high probability.

To store the state of n qubits on a classical computer requires O(2n)
classical memory bits. Remarkably, the Feynman path integral makes it
manifest that quantum computations on n qubits can be simulated by a
classical computer using only polyn bits if memory. To be more precise,
let me first introduce decision problems. These are problems that have a
yes/no answer. Many problems that initially are not decision problems
can be cast into one. For example, instead of asking: ‘what are the
prime factors ofN?’, one could ask: ‘is there a prime factor ofN smaller
than m?’. It is easy to show that if one can efficiently solve the latter
decision problem, one can efficiently solve the former problem as well.
The model of quantum computations as introduced in Circuit (1.11)
can also be used to describe quantum computers that solve decision
problems. In the model, one can choose to only measure the first qubit
and take the outcome as the answer to the decision problem. We could
say the outcome ‘1’ means ‘yes’ and ‘0’ means ‘no’. It is for this type of
problem that we are going to show the memory requirement of classical
computers simulating a quantum computer.

If a quantum computer runs a circuit C on the input state |0n〉 ≡
|0〉⊗n, the probability of ‘yes’ after measurement of the first qubit equals

pyes =
∑

i′∈{0,1}n−1

|
〈
1, i′
∣∣C |0n〉|2. (1.42)

Every amplitude 〈1, i′|C |0n〉 can be written as a path integral
[Eq. (1.38)]. Note that since C can be assumed to consist of one-
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and two-qubit gates only, every weight 〈it+1|Ut+1 |it〉 can be computed
using polyn bits. Hence c(path) can be computed classically using
polyn bits. Therefore, using an additional classical register that holds
partial sums, pyes can be computed classically using polyn bits.7

Note, however, that we did not escape an exponential overhead
in simulating quantum computers using classical computers. This is
because, even though c(path) can be computed for every path using
only polyn bits, there are exponentially many paths. Hence, we have
not shown that also the time complexity of simulating an n-qubits is
polyn. It is generally believed this is impossible.8

***

7This shows BQP⊆PSPACE.
8That is, it is believed that BPP̸=BQP.



Chapter 2

Variational
quantum
eigensolver
for the
kagome lattice

Abstract
The Heisenberg anti-ferromagnet (HAFM) on the kagome lattice forms
a model for the magnetic properties of real-world materials. The phase
of the ground state of the HAFM on the kagome lattice is notoriously
hard to find using classical computers. Quantum computers have al-
ready been shown to outperform classical computers in practice, but
thus far not for real-world problems. We give a detailed proposal for
a Variational Quantum Eigensolver (VQE) that solves for the ground
state properties of the HAFM on the kagome lattice on a quantum
computer. This VQE is well-suited for Near-term Intermediate Scale
Quantum (NISQ) technology because the structure of the problem is
intimately related to the structure of NISQ hardware itself and because
of the known inherent noise-resilience of VQEs. We classically emulate
a noiseless quantum computer with the connectivity of a 2D square lat-
tice and show that the ground state energy of a 20-site patch, as found
by the VQE, approaches the true ground sate energy exponentially as
a function of the circuit depth of the VQE. Our simulations can be
used to benchmark the performance of real quantum devices running
this VQE for small patches.

49
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2.1 Introduction
Despite decades of developments in numerical methods, the ground
state phase of the Heisenberg anti-ferromagnet (HAFM) on the kagome
lattice remains elusive. Approaches towards solving this problem in-
clude diagonalization of finite-size patches [89] and the density ma-
trix renormalization group (DMRG) method [145]. Proposals for the
ground state phase include a Valence Bond Crystal (VBC) [100, 109,
133, 134, 42] and a quantum spin liquid [69, 145, 9]. (See Ref. [89]
and references therein for a more complete overview.) All classical
methods for finding the ground state phase of the kagome HAFM are
ultimately limited, for example by the inability to treat large patches
(exact diagonalization), or the inability to describe highly entangled
states (DMRG).

Quantum computation is a new player in this field that brings with
it entirely novel possibilities. One method for finding ground states on
a quantum computer is the Variational Quantum Eigensolver (VQE)
[102, 117]. VQEs are especially suited for Near-term Intermediate Scale
Quantum (NISQ) [120] devices because of their relatively mild circuit
depth requirements and inherent noise-resilience [102, 117, 113, 125].
As any variational method, a VQE uses parametrized states. To every
setting of the parameters, the corresponding energy of the correspond-
ing state can be calculated, creating an ‘energy landscape’. A classical
minimization algorithm tries to find the global minimum of that land-
scape, but generally no guarantees exists that the global minimum is
indeed obtained. Properties of the optimal state found by the opti-
mization routine can be extracted by calculating expectation values of
observables.

What sets the VQE apart from classical variational methods is that
the parametrized state is obtained by applying a parametrized quan-
tum circuit to some easy to prepare reference state of the quantum
computer’s register. The energy of the resulting state is obtained by
performing measurements on many copies of that state. Note that the
task of state preparation and measurement is intractable on classical
computers.1 Information can be extracted from the terminal state of
the VQE by measuring the value of desired observables on that state.
Parameter variation an optimization is still performed by a classical
routine. So, a VQE can be seen as a classical variational method that
uses a quantum computer as a subroutine for its function calls to the

1This is true, unless, in terms of complexity classes, BPP=BQP. It is generally
believed that BPP ̸= BQP, for otherwise classical computers could solve factoring
efficiently [130].
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energy landscape.
Quantum computers can already perform tasks that are intractable

on classical computers [11, 153], and have hence obtained what is called
‘quantum supremacy’ or a ‘quantum advantage’. However, the tasks
for which quantum computers can currently outperform classical com-
puters have no known application; these tasks were designed purely
for showing a quantum advantage. The milestone of a useful quantum
advantage, where a quantum computer performs a useful task that can
not be performed on any classical computer, is still ahead.

In this chapter, we design a VQE for the HAFM on the kagome
lattice as an explicit proposal for showing a useful quantum advantage
on NISQ devices. Henceforth, we refer to this VQE as KVQE for short.
The experimental realization of this proposal would impact the fields
of condensed matter and quantum computing alike.

KVQE uses the Hamiltonian Variational Ansatz (HVA), which was
introduced in Ref. [142]. In the HVA, to find the ground state of a
Hamiltonian H1, the ansatz state is obtained by first preparing some
known, easy-to-prepare ground state of a Hamiltonian Hinit. There-
after, this state is evolved sequentially by terms in the Hamiltonian.
(Commuting terms may be evolved by simultaneously.) Every gate
corresponds to time evolution according to a term in the Hamiltonian,
where the parameter of that gate is set by the time duration of that
evolution. The HVA itself does not specify Hinit nor the sequence of
terms in the Hamiltonian that the initial state is evolved by.

In our ansatz, Hinit is formed by pairing up all vertices of the
Kagome lattice (where two vertices are only paired if they are adja-
cent on the kagome lattice), and defining the Heisenberg interaction
on every pair. The ground state of the HAFM on two spins is a singlet
state. Thus, our initial state is a dimer covering of the kagome lattice,
where every dimer is a singlet state. The parametrized circuit that is
applied to the initial state consists of a cycle of gates c that is repeated
p times. We define the gate HEIS(α) as time evolution along a sin-
gle term in the Heisenberg Hamiltonian for a time α. (Sometimes we
omit the explicit dependence on α for brevity.) In one cycle, all terms
in the Hamiltonian are evolved by exactly once. Every HEIS gate in
the circuit has its own parameter. See Fig. 2.1 for details. References
[100, 109, 133, 134, 42] propose a Valence Bond Crystal (VBC) with
a 36-site unit cell as the ground state of the HAFM on the kagome
lattice. For patches with more than 36 sites, we propose to use this
VBC as the initial state. For this initial state, also the gate sequence
detailed in Fig. 2.1 can be used. Due to the large unit cell classical
emulations using this initial state are outside the capabilities of our
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classical emulator.
For NISQ VQE algorithms to give an advantage over purely clas-

sical methods, it is essential that the structure of the problem is close
to the quantum hardware the VQE is run on [49]. KVQE is close to
NISQ hardware for three reasons. Firstly, because the Hamiltonian of
the kagome HAFM is a spin Hamiltonian, it is directly a Hamiltonian
defined on qubits. In contrast, many Hamiltonians for which VQEs are
proposed are Fermionic. Examples include those in quantum chemistry
[117, 113, 60], and the Fermi-Hubbard model [142, 28, 125, 12]. In order
for a VQE using the HVA to solve for the ground state of a Fermionic
Hamiltonian, the Hamiltonian first needs to be mapped to a spin Hamil-
tonian, for example by the Jordan-Wigner [107], Bravyi-Kitaev [25] or
ternary tree [70] transformations. Fermion to spin maps either increase
the non-locality of terms in the Hamiltonian or they introduce addi-
tional qubits, in any case leading to an overhead in quantum resources.

A second reason that KVQE is close to NISQ hardware is that
its gates are essentially native on multiple NISQ architectures. The
HVA requires time evolution generated by terms in the Hamiltonian.
For the HAFM, this amounts to turning on an exchange interaction
between qubits, which is native on quantum dot architectures [35, 15,
99, 63]. In Sec. 2.5, we show this interaction can also be realized on the
superconducting hardware by Google AI quantum [48] using a single
native two-qubit gate and at most four single-qubit gates. (If a two-
qubit gate is equal to a single native gate up to single-qubit rotations,
we call the former gate ‘essentially native’.)

Next to the HVA, a well-known type of ansatz is the Hardware-
Efficient Ansatz (HEA). The HEA is hardware-inspired; the circuit
generating the ansatz state consists, by definition, of gates native to
the hardware, avoiding the need to compile the ansatz into native gates.
However, the HEA suffers from the ‘barren plateau’ problem: the gra-
dient of the energy cost function is exponentially small in the number
of parameters [101]. The HVA, on the other hand, is problem-inspired,
and there is some evidence that it does not suffer from the barren
plateau problem [143]. However, for execution on a quantum com-
puter, gates in the HVA generally need to be compiled to gates native
to that quantum computer. This increases the circuit depth, which
is undesirable for NISQ devices. For KVQE, such compilation is not
required on quantum dot architectures, and only minimal compila-
tion that does not increase the number of two-qubit gates is needed on
Google’s hardware. So, to summarize, KVQE quantum dot or Google’s
superconducting hardware has the unique property that the HVA is es-
sentially equal to the Hardware Efficient Ansatz (HEA) [74, 117].
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KVQE: ansatz

Figure 2.1: (Top left) The 20-site open patch simulated by KVQE,
with spin-1/2 particles on the vertices and the Heisenberg interaction
defined along the edges. (Top right) The initial state |ψinit〉. Black
dots represent qubits and solid blue lines represent singlets. A sheered
kagome lattice is added in grey as a guide to the eye. The bold solid
lines form one unit cell of the dimer covering that can be used to extend
the current ansatz to systems of arbitrary size. For open systems some
patching of the regular dimer covering is needed. In the present case
this consists of the two singlets at the far right. (Bottom) The cycle
c, with numbers indicating the order of the layers. Solid coloured lines
represent HEIS gates, and two-headed arrows indicate SWAP gates.
Dashed, coloured lines are added as guide to the eye and indicate along
which bond of the kagome lattice the HEIS gates of that layer are acting
effectively. The unit cell of the cycle as a whole is equal to the unit
cell of the Kagome lattice itself, and can hence be straightforwardly
extended to larger system sizes. No patching is needed at the edges.
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Lastly, KVQE is close to NISQ hardware because it runs on hard-
ware with the connectivity of a 2D square lattice (henceforth referred to
as grid connectivity) with minimal overhead. This is the connectivity
that is also required for the surface code [47]. Therefore, much effort is
put in designing platforms with grid connectivity [64, 8, 139, 11, 63]. In
Sec. 2.4, we show by an explicit construction how the limitation from
all-to-all connectivity to grid connectivity increases the overall circuit
depth of KVQE only by a factor of approximately 3/2.

We test KVQE by using it to simulate a 20-site open patch of
the kagome lattice. We assume a noiseless 24-qubit quantum com-
puter with grid connectivity and the ability to natively implement the
exchange interaction,

√
Z and X gates. We emulate this quantum

computer classically, as is detailed in Sec. 2.2.4. The optimal state ob-
tained by KVQE is compared to the exact ground state of the 20-site
patch, the latter of which is obtained by exact diagonalization. We
find that the optimal energy obtained by KVQE approaches the true
ground state energy exponentially as a function of the number of cy-
cles p. Also, the fidelity (overlap squared) between the optimal state
and the true ground state approaches unity exponentially fast in p. A
fidelity of >99.9% is reached at p = 16, corresponding to a circuit of
depth 99.

As an intermediate goal towards finding the ground sate of the
kagome HAFM, we propose to use a similar method for finding the
ground state of the HAFM on a periodic chain, see Fig. 2.2. Henceforth
we refer to this VQE as CVQE for short. CVQE is a suitable benchmark
problem for quantum hardware because, in contrast to the kagome
lattice, the ground state of the HAFM on the chain can be computed
efficiently classically by means of the Bethe ansatz [22, 50, 29]. This
opens the possibility to compare the optimal energy found by the VQE
running on a quantum computer against the exact ground state energy
even for chains with hundreds of sites.

CVQE is similar to the VQE of the HAFM on the chain of Ref. [65].
Differences are that we simulate a periodic chain instead of an open
chain and that we use one parameter per gate instead of one parame-
ter per layer, and that we go to larger system sizes and circuit depth.
Under the same hardware assumptions of the previous paragraph, we
classically emulate CVQE for a 20-site periodic chain. The fidelity and
energy of the optimal state found by the VQE again improve exponen-
tially as a function of circuit depth. The optimal state found by the
VQE reaches an overlap of >99.9% after p = 8 cycles, corresponding
to a circuit of depth 19.
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CVQE: ansatz

Figure 2.2: Part of the ansatz for CVQE, with time running from
bottom to top. The initial state |ψinit〉 consists of n/2 contiguous sin-
glet states, displayed in blue. The circuit C that is applied sequentially
consists of p repetitions of a cycle c, each time with new parameters,
and with one parameter per gate. The HEIS gate is evolution according
to the Heisenberg exchange interaction for a time given by its param-
eter. For one of the qubits the past light cone that is due to a single
cycle c (excluding the singlet generation) is displayed in red. (Further
information on the past light cone in Sec. 2.3).
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2.2 Methods

2.2.1 VQE
The problem of finding the ground state energy of k-local Hamiltonians
(Sec. 1.4.4) is believed to be intractable on classical computers [84, 118,
3]. Because quantum computers are themselves quantum mechanical,
one could hope that this problem is in fact tractable for quantum com-
puters. In general, however, the problem is believed to be intractable
even for quantum computers. (That is, the local Hamiltonian problem
is QMA-complete [84, 118, 3]). Nevertheless, there may be problem
instance classes for which quantum computers could in fact solve for
the ground state efficiently.

A proposed method for finding ground states on quantum com-
puters is the Variational Quantum Eigensolver (VQE). A VQE is a
variational method, and hence relies on the variational principle. Con-
sider a quantum mechanical system with Hilbert space H of dimen-
sion N , Hamiltonian H with ground state energy E0, and a subset of
parametrized states {|θ〉} ⊆ H, with θ ∈ Rm. To describe all of H, it
is necessary that m = O(N). The variational principle states that

E(θ) = 〈θ|H |θ〉 ≥ E0 (2.1)

for all |θ〉 ∈ H. For reasons of scalability, in variational methods, one
generally takes m = polylogN . Variational methods, like the VQE,
seek to minimize E(θ) to hence establish a upper bound for the ground
state energy.

A VQE is fed an efficient classical description of a Hamiltonian on
n spin-1/2 particles,

H =
l∑

i=1

hiHi,

with the hi real coefficients and Hi Hermitian operators. For k-local
Hamiltonians, l = polyn [see Sec. 1.4.4]. Often, the Hamiltonian is not
of the above form [117, 113, 60, 142, 28, 125, 12], in which case it first
needs to be cast into that form using classical preprocessing.

A VQE proceeds as follows. First, an initial set of parameters θ
is chosen. These initial parameters may be chosen at random, or may
be inspired by a classical approximate solution to the ground state, for
example by the Hartree-Fock ground state [136] in quantum chemistry
problems. Then, a criterion is chosen, for example that a maximum
number of iterations has not been reached, or that E(θ) has not reached
a value below a given threshold. The VQE proceeds as follows.
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1. While the criterion is true, repeat:

(a) Prepare the ansatz |θ〉.
Prepare some easy-to-prepare initial state |ψinit〉. Apply
a parametrized circuit C(θ) to obtain the state |θ〉 =
C(θ)|ψinit〉. The circuit C(θ) usually consists out of gates
on fixed positions, where every or some of the gates are
parametrized.

(b) Measure and store E(θ).
By linearity, E(θ) =

∑
i ci〈θ|Hi|θ〉. Each expectation value

〈θ|Hi|θ〉 can be estimated by measuring the operator Hi

repeatedly (each measurement requires a new preparation
of |θ〉) and taking the statistical average. See Ref. [102] for
the expected number of measurements using this method, or
Ref. [66], and references therein, for more efficient methods.

(c) Update θ.
Based on E(θ) and previous outcomes of E(θ), update θ
according to some classical optimization algorithm.

2. Return the θ∗ that achieved the smallest energy.

Physically relevant information, such as correlation functions, can now
be extracted from |θ∗〉 by repeatedly preparing and performing mea-
surements on |θ∗〉. Different VQEs differ in the way circuits are
parametrized, how (an estimate for) E(θ) is obtained, and what specific
optimization routine is used. These will be detailed in the subsequent
sections of this chapter for KVQE and CVQE.

2.2.2 Ansatz
In the Hamiltonian Variational Ansatz (HVA) [142], the initial state
|ψinit〉 is the ground state of a HamiltonianHinit. The HamiltonianHinit
is chosen so that its ground state is known and easy to prepare. The
ansatz state |θ〉 is obtained by sequentially evolving along terms in the
Hamiltonian to be simulated, H, according to some fixed sequence i,

|θ〉 = exp(−iθMHiM ) . . . exp(−iθ2Hi2) exp(−iθ1Hi1).

The M parameters are formed by the time duration of the M evo-
lutions. Often (not limited to Refs. [65, 142, 143, 28]), C consists
out of p cycles of a smaller circuit c, each time defined by the same
sequence i of terms in the Hamiltonian. Every cycle gets its own set



2.2. Methods 58

of m parameters. It is convenient to write θ as θ = (θ1, . . . , θp), with
θj = (θj1 , . . . , θjm). Then, a single cycle reads

c(θj) = exp(−i θjmHim) . . . exp(−i θj2Hi2) exp(−i θj1Hi1), (2.2)

and so
|θ〉 = c(θp) . . . c(θ1) |ψinit〉 . (2.3)

We call this commonly used type of HVA the cyclic HVA. The cyclic
HVA shows a close relation between static quantum simulation and
dynamic quantum simulation (Sec. 1.5.2); choosing i = (1, . . . , l) (or
a permutation thereof) and θj = (t/p, . . . , t/p), the cyclic HVA imple-
ments quantum time evolution for a target time t with p Trotter steps.
In a similar way, the cyclic HVA can mimic (but is more general than)
adiabatic time evolution. Given that no gap closes between Hinit and
H, the HVA thus ensures that the ground state of H can in fact be
prepared with the ansatz. This formed the initial motivation for the
HVA in VQEs [142].

The Heisenberg anti-ferromagnetic Hamiltonian (HAFM) reads

H =
∑
⟨ij⟩

Si · Sj , (2.4)

where Si = (Xi, Yi, Zi)
T /2 with X,Y, Z the Pauli matrices, and where

the sum is over the edges 〈i, j〉 of some graph G. In this work, G is
either kagome lattice (Fig. 1.3) or a periodic chain. Then, according to
the HVA, we need to be able to evolve by what we call the HEIS gate.
In the computational basis of two qubits (with e.g. 〈00|HEIS(α) |00〉
the top left entry), it reads

HEIS(α) ≡ e−iα/4e−iαS0·S1

=


e−iα/2 0 0 0

0 cos(α/2) −i sin(α/2) 0
0 −i sin(α/2) cos(α/2) 0

0 0 0 e−iα/2

 .

In a parametrized circuit [Eq. (2.3), Figs. 2.1 and 2.2], every instance
of the HEIS gate gets its own parameter α = θjk .

In this work, we will always assume that every Heisenberg gate in
the ansatz gets its own parameter; we have One parameter Per Gate
(OPG). Another possibility would be to have multiple HEIS gates per
cycle share the same parameter. We call this One parameter Per Slice
(OPS). We say the qubits sharing the same parameter are in the same
‘slice’.
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A possible advantage of OPS is that is possible to encode some
of the symmetries we may believe the ground state to have directly
into the circuit; by choosing proper slices, we can assure that the state
produced by the circuit has the desired lattice symmetries. At the same
time, this would make the search space smaller by only restricting to
states with the desired lattice symmetry.

Nevertheless, OPG has advantages over OPS. With OPS ground
states we may overlook symmetry broken ground states. For example,
it is not known whether the ground state of the kagome lattice is sym-
metry broken [89]. Secondly, even if the ground state does not break
the symmetry of the Hamiltonian, the depth of the OPG circuit for
that state may be lower than the depth of the OPS circuit that pro-
duces the same state. (For any state, the optimal OPG circuit depth is
a lower bound for the optimal OPS circuit depth obtaining that same
state.) For NISQ devices it is imperative to keep circuit depths as low
as possible. Finally, the inherent noise-resilience of VQEs may be com-
promised by choosing OPS over OPG. As an illustration, say we are
given a noiseless quantum computer, a Hamiltonian and a minimal-
depth OPS circuit that produces the ground state of that Hamiltonian.
Suppose that now a static but random over-rotation is added to every
HEIS gate. Then it is very unlikely that the OPS circuit can still pro-
duce the correct ground state, no matter its parameters. When we lift
the restriction that the qubits in every slice share the same parameter,
and hence go to a OPG circuit, the over-rotations can be absorbed
into the parameters, and hence the ground state can in principle still
be produced with the same depth.

2.2.3 Analysis
We assess the effectiveness of KVQE an CVQE by running them for
fixed system sizes but a varying number of cycles p. For every p, we
plot the relative energy error E between the true ground state energy,
E0, and the optimal energy found by the VQE, E(θ∗),

E =

∣∣∣∣E(θ∗)− E0

E0

∣∣∣∣ . (2.5)

Additionally, we plot the infidelity I between the true ground state
|E0〉 and the optimal state obtained by the VQE, |θ∗〉,

I = 1−F ≡ 1− |〈E0|θ∗〉|2,

with F the fidelity between |E0〉 and |θ∗〉. Even in plots showing the
infidelity, the corresponding VQE uses a routine that optimizes the
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energy, not the infidelity. The infidelity is a useful figure of merit
because it upper bounds the relative error in expectation value of any
observable [16],

|〈E0|O |E0〉 − 〈θ∗|O |θ∗〉|
‖O‖

≤ 4
√
I, (2.6)

with ‖·‖ the operator norm.
We obtain E0 and |E0〉, and thus E and I, by exact diagonalization.

For large system sizes, such as those needed for quantum advantage
experiments, this is no longer possible.

2.2.4 Classical implementation
We emulate the quantum circuits in this chapter using the home-
grown, optionally GPU-accelerated, classical quantum emulator
HeisenbergVQE. Documentation, source code and all generated data
are freely available online [76]. HeisenbergVQE is tailored to running
VQEs for the Heisenberg model on any graph. It is written in Python
[46], with performance critical code delegated to C via NumPy [62] if
GPU acceleration is off, and CUDA via CuPy [110] if GPU acceleration
is on.

We exploit the full access to the wave function, granted by classical
emulation, in the computation of the energy of ansatz states. Further-
more, we assume a noiseless quantum computer. This allows us to use
gradient-based optimization methods. A gradient-based method, in
turn, allows us to use backward-mode automatic differentiation, which
is a standard technique in the context of neural networks, and is much
faster than finite-difference methods [106]. We use an implementation
from Chainer [137].

For optimization of the cost function E(θ), we first choose initial
parameters uniformly at random in the interval [−10−3, 10−3). (I.e.
θjk ∈R [−10−3, 10−3) for every integer 1 ≤ j ≤ p and 1 ≤ k ≤ m, where
parameters are distributed according to the descriptions in Figs. 2.1
and 2.2.) There is some evidence that suggests that for the HVA, points
close to the origin in parameter space are good starting points for local
optimization [143]. We then use the BFGS algorithm, as implemented
in SciPy [140], to find a local minimum. At every step of the BFGS
routine the energy and the gradient of the energy are calculated. Here,
we call these two steps together one function call. The steps of random
parameter generation and local optimization (one ‘round’) are repeated
a variable number of times. The parameters that achieve the lowest
energy out of all local minimization rounds, θ∗ is outputted together
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with E(θ∗). Starting many rounds of local optimization from unrelated
starting points has the benefit that they can be run in parallel, even
without the need of communication between the processes. (Such a
parallelization is called ‘embarrassingly parallel’.)

HeisenbergVQE computes exact ground states using SciPy’s wrap-
per of ARPACK, which implements the Implicitly Restarted Lanczos
Method [91]. Operator-vector multiplication is optionally GPU acceler-
ated. The energy of the exact ground state and the exact ground state
vector itself are used as a reference of the performance of the VQEs
in this chapter. We note that such reference is not possible for system
sizes for which a quantum computer might obtain a useful quantum
advantage.

HeisenbergVQE’s online resource [76] also includes data and plots
for systems and ansätze not reported in this chapter, including
other system sizes, simulations that use one parameter per slice (see
Sec. 2.2.2), periodic patches, ansätze that assume all-to-all connectiv-
ity, and runs where we use the infidelity as the cost function. Using
the infidelity as a cost function is impractical on quantum computers
(or even impossible if the ground state is not known), but may be used
by classical computers to obtain further data on the theoretically at-
tainable performance of an ansatz. For all systems, data was stored
in human-readable format. Fields include: the number of calls to the
cost function by the BFGS routine, the wall-clock time of the classi-
cal emulation, the initial parameters, and the parameters, energy, and
infidelity of the local minima.

2.3 Chain
Here, we detail our ansatz for the VQE for the HAFM [Eq. (2.4)] on a
periodic chain (CVQE) and show its results for a chain of 20 sites.

A Quantum Processing Unit (QPU) with grid-connectivity natu-
rally embeds subsets of qubits with (at least) the connectivity of a
periodic chain. In contrast to the HAFM on the kagome lattice, it is
known how to efficiently classically compute the ground state energy
and correlation functions of the HAFM on the periodic chain. This is
done via the Bethe ansatz [22, 50], as implemented in, for example,
the ABACUS library [29]. Because of the classical tractability of the
HAFM on the chain we can use it as a benchmark problem for real
hardware. It is only for systems up to ∼ 50 qubits [89] that similar
benchmarks can be made for the HAFM on the kagome lattice.

The ansatz is depicted in Fig. 2.2. We assume n an even number
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of qubits, and take Hinit =
∑

i even Si · Si+1 (the first qubit is at i = 0),
resulting in a ground state |ψinit〉 = |s〉⊗n/2, with |s〉 ≡ (|01〉−|10〉)/

√
2

a singlet state. The cycle c is build up out of two layers. In the
first layer, we place HEIS gates between qubits i and (i + 1)modn,
with i odd. In the second, we place HEIS gates between qubits i and
(i+ 1)modn with i even. Because every gate gets its own parameter,
the total number of parameters is M = np. The energy landscape is
optimized by running 32 local optimization routines, starting from 32
random initial points (see Sec. 2.2.4).

Results are displayed in Fig. 2.3. Both the relative energy error
E and the infidelity I (Sec. 2.2.3) initially decrease exponentially as a
function of p, reaching an energy that is below the first exited state for
p ≥ 2. Both functions show a sudden improvement after pcrit = 5. From
pcrit to pcrit +1, E drops by an order of magnitude, and I drops by two
orders of magnitude. For p > 5, both functions again decrease roughly
exponentially with a slope that is greater in magnitude than before. At
the same time, the number of function calls (as defined in Sec. 2.2.4,
data not shown in the plot but available at [76]) grows polynomially
with p. A fidelity of >99.9% is reached for p ≥ 8. Assuming HEIS gates
are native and that singlets can be created with a circuit of depth 3
(Sec. 2.5), p = 8 amounts to a circuit with 20/2× 3 = 30 gates for the
preparation of singlets and 20× 8 = 160 HEIS gates, giving a total of
190 gates and 160 parameters. The depth of the circuit is 3+8×2 = 19.
The optimization routine for finding the 32 local minima at p = 8 used
104,890 function calls. A fidelity of >99,99% is reached at p = 11
cycles, using a total of 197,685 function calls.

We observe a sudden improvement of the performance of CVQE
after pcrit = 5 cycles. A plausible explanation is in terms of the past
light cone. The past light cone of a qubit q after a circuit C consists
of all qubits q′ for which there exists a past-directed path through C
that connects q to q′. It is only when q′ is in the past light cone of q
that C can build up entanglement between q and q′.

The ground state of the HAFM on the chain shows long-range en-
tanglement [88]. The sudden improvement of performance is a clear
sign of a ground state with long-range entanglement. After pcirt, for
the first time the past light cone of every qubit at the end of C (as
defined in Sec. 2.2.2 and Fig. 2.2) covers the entire chain. However, at
pcrit, the past light cone of every qubit already covers the entire chain
if we continue the light cone through the gates that generate the sin-
glet states. It so seems that the first three unparametrized layers that
generate the singlets cannot create the right type of entanglement.
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CVQE: results
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Figure 2.3: (Left) Semi-log plot of the relative energy error [Eq. (2.5)]
obtained by CVQE (Fig. 2.2) for 20 sites as a function of the number of
cycles p. Every translucent point represents one of the 32 local minima
that were found per value of p. The solid line connects the lowest
local minima E(θ∗). An orange horizontal line is drawn at the value
of the first exited state. (Right) Semi-log plot of the infidelities of the
states corresponding to the local minima in the left plot. The solid line
connects the points that, for a given p, are lowest in energy. Although
it occurs regularly, these points need not have the lowest infidelity. One
such exception is visible at p = 5. In both the left and the right plot
we see a sudden improvement of performance at pcrit = 5.
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2.4 Kagome
Here, we detail our ansatz for the VQE of the HAFM on the Kagome
lattice (KVQE), and show its performance in simulating a 20-site open
patch. It uses 20 data qubits to represent the 20 sites of the patch, and
an additional 4 qubits as ‘swapping stations’, used to realize kagome
connectivity on a grid architecture. The restriction of grid connectivity
increases the circuit depth per cycle (assuming HEIS gates are native)
from 4 to 6, and (in the limit of large system sizes) introduces one
ancilla qubit per three qubits.

Results are displayed in Fig. 2.4. The relative energy error E de-
creases roughly exponentially for all considered p. Again, the number
of function calls scales polynomially with p (data available at [76]).
KVQE finds an energy lower than the energy of the first exited state
for p ≥ 5. There is no clear critical p after which E and/or I improve
drastically. Nevertheless, I transitions to an improved exponential de-
cay rate somewhere between p = 3 and p = 5, reaching a fidelity of
>99,9% at p ≥ 16. Under the assumptions of the previous section
(Sec. 2.3) and the additional assumption that the SWAP gate is na-
tive, p = 16 amounts to 3 × 10 = 30 gates for the generation of the
singlets, 16 × 30 = 480 HEIS gates, and 16 × 16 = 256 SWAP gates,
giving a total of 766 gates and 480 parameters. The total depth equals
3 + 16 × 6 = 99. To obtain the 10 local minima at p = 16 a total of
82,466 function calls were made.

In contrast to the chain, there is no clear critical p after which
there is a sudden improvement of performance for the current kagome
patch. The past light cone effect can explain this difference: not all
qubits’ past light cones cover the entire system for the first time at the
same number of cycles. Let us lay out a coordinate system over the
24 qubits used in Fig. 2.1 (top right). We put the origin (0,0) at the
bottom left qubit, the the qubit directly above at (0,1), and the qubit
directly to the right of the origin at (1,0). At p = 2, there is no qubit
whose past light cone in C covers the entire system. At p = 3, there are
qubits, such as the bottom right (4,0), bottom left (0,0), top left (0,4)
and middle (2,2) qubit, whose past light cone in C covers the entire
system. There are, however, still some qubits for which this is not the
case, such as the qubits at (3,4), (4,3) and the top middle (2,0). At
p = 4, the past light cone of the latter qubits covers the entire system,
except for the qubit at (3,4). It is only after p = 5 cycles that its past
light cone covers the entire system.
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KVQE: results
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Figure 2.4: (Left) Semi-log plot of the relative energy error [Eq. (2.5)]
obtained by KVQE for 20 sites (Fig. 2.1), as a function of the number
of cycles p. Translucent points represent the 10 local minima that were
found by KVQE per p. Every cycle is a circuit of depth 6 and uses
30 parameters. The orange horizontal line is at the value of the first
exited state. (Right) Semi-log plot of the corresponding infidelities.
The solid line connects the points that are lowest in energy.
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2.5 Hardware implementation
The HEIS gate is directly native on quantum dot architectures. This
also allows native implementation of the SWAP gate on these devices
since SWAP = i HEIS(π). The native, parametrized two-body gate of
Google AI Quantum equals [48]

fSim(θ, ϕ) =


1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 e−iϕ

 .

Here, we show how this gate can be used to implement HEIS(α) for
any α.

The HEIS gate is periodic, up to an overall phase, with period 2π.
For −π ≤ α < π, the fSim gate is related to the HEIS gate by

HEIS(α) = RZ0(α/2)RZ1(α/2)fSim(α/2, α), (2.7)
with RZ0(θ) = RZ(θ) ⊗ 1 and RZ1(θ) = 1 ⊗ RZ(θ), where RZ(θ) =
e−iθZ/2, and Z is the Pauli-Z operator. According to Eq. (2.7), for
0 ≤ α/2 ≤ π/2, a HEIS(α) gate can be directly implemented using two
single-qubit RZ gates and one fSim gate. For parameter values that fall
outside that range, the following identity can be used in conjunction
with Eq. (2.7),

fSim(θ, ϕ) =


Z0Z1 fSim(θ − π, ϕ) : −π ≤ θ < −π/2
Z0 fSim(−θ, ϕ)Z0 : −π/2 ≤ θ < 0
fSim(θ, ϕ) : 0 ≤ θ < π/2
Z0 fSim(−θ + π, ϕ)Z1 : π/2 ≤ θ < π

.

Here, Z0 = Z ⊗ 1 and Z1 = 1⊗ Z.
The SWAP is related to the fSim gate by

SWAP =
√
Z0

√
Z1fSim(π/2, π).

The fSim gate in this equation can be implemented directly. Hence, a
SWAP gate can be implemented by using one layer of RZ rotations and
a single fSim gate. Assuming single qubit rotations are native, and a
Heisenberg or fSim gate is native, singlets can be created between two
adjacent qubits with a circuit of depth 3 (see Fig. 2.6).

So, to conclude, by adding up the angles of subsequent RZ rotations,
ℓ layers of HEIS and/or SWAP gates can be implemented by at most
ℓ layers of single-qubit RZ rotations and ℓ + 1 layers of fSim gates.
Depending on the specific circuit, further reductions may be possible
by using that RZ0(β)RZ1(β) commutes with fSim(θ, ϕ) and addition
of RZ rotation angles. For an example, see Fig. 2.5.
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HEIS compilation

Figure 2.5: Example for compiling HEIS gates into fSim gates and
single-qubit RZ rotations for 0 ≤ α/2 ≤ π.

Singlet preparation

Figure 2.6: Circuits for preparing the singlet state up to a global phase
(left), using gates native to quantum dots (middle) and gmons (right).
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2.6 Discussion and outlook
Current hardware does not yet simultaneously have grid connectivity
and the ability to implement the exchange interaction for all parame-
ter values essentially natively. Quantum dot architectures can natively
implement the exchange interaction, but are not yet available with grid
connectivity. However, this connectivity may become available in the
future [15, 35, 63, 92]. Google AI Quantum is able to implement the
exchange interaction essentially natively for all parameter values (see
Ref. [48] and Sec. 2.5), and is also able to demonstrate grid connectiv-
ity [11], but is not yet able to combine these two features in a single
processor. They have, however, expressed this as a future goal (see Sec.
C. of the supplementary material of Ref. [11]). Some of the current
hardware can in principle already efficiently perform CVQE for small
problem sizes of open [48] or closed chains [63]. In such experiments,
the observation of a critical circuit depth forms an early goal.

For showing a quantum advantage with KVQE on a quantum com-
puter, it is a prerequisite that it is first able run KVQE for a 20-site
patch of the kagome lattice. In this work, we have set a performance
baseline for this patch; we do not expect a quantum computer to per-
form as well as the noiseless emulations in this work. The extent to
which a given quantum computer can approach this baseline forms an
interesting assessment of its capabilities and prospects. Possible per-
formance characteristics include the presence of exponential decay of
the relative energy error as a function of the number of cycles, and the
value of the relative energy error at which the experimental VQE satu-
rates. (We see no such saturation in the noiseless classical emulation.)

Another baseline we have set in this work is the performance of a
VQE for the HAFM on the periodic chain of 20 sites. Here, an addi-
tional performance characteristic is formed by the kink that the relative
energy shows at the critical number of cycles pcrit = 5. Observation of
this kink would indicate the ability to generate and find ground states
with system-wide entanglement. We expect KVQE for larger patches
(of both the kagome lattice and the chain) to also show an exponential
decay of the relative energy error as a function of the number of cycles.
Due to the inherent limitations of classical emulation, a fully fledged
system-size scaling study of the rate of this exponential decay is out-
side the scope of the current work. Further investigation, possibly on
real quantum devices, is needed to show how rate of exponential decay
changes with system size and noise levels.

***



Chapter 3

Conditions for
superdecoherence

Abstract
In quantum computation, the decoherence rate per qubit is typically
assumed to be constant. It is known, however, that quantum regis-
ters coupling to a single reservoir can show a decoherence rate per
qubit that increases linearly with the number of qubits. This effect
has been referred to as superdecoherence, and has been suggested to
pose a threat to the scalability of quantum computation. Here, we
show that a sufficient condition for the absence of superdecoherence
is that the spectrum of the reservoir is a bounded function on mo-
mentum space. The reason of this absence, is that, as the number of
qubits is increased, a quantum register inevitably becomes susceptible
to an ever narrower bandwidth of frequencies in the reservoir. Further-
more, we show that for superdecoherence to occur in a reservoir with
an unbounded spectrum, containing, for example, delta functions, one
of the frequencies at which the spectrum diverges has to coincide ex-
actly with the frequency the quantum register is most susceptible to.
We thus fully resolve the conditions that determine the presence or
absence of superdecoherence. We conclude that superdecoherence is
easily avoidable in practical realizations of quantum computers.

69
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3.1 Introduction
As we inch towards full-scale quantum computing, where we are al-
ready facing systems with on the order of a hundred qubits [120, 11,
152], the system size dependence of decoherence becomes of increasing
importance. (See Sec. 1.4.7 for an elementary and intuitive introduc-
tion to decoherence.) A common simplified theoretical model for de-
coherence is the spin-boson model, where only the dephasing effects of
the bosonic bath are taken into account [138, 115, 124, 26, 90, 147, 41,
17, 10, 1]. Henceforth, we will refer to this model as simply ‘the de-
phasing model’. This model is exactly solvable, and at the same time
broadly relevant because dephasing times are typically much shorter
than relaxation times [124, 114, 17]. It should be noted, however, that
there are situations where it does not accurately describe the decoher-
ence process because of non-perturbative effects [114, 17]. If, in the
dephasing model, each qubit is assumed to couple to its own, indepen-
dent reservoir, the decoherence rate per qubit is constant. If, on the
other hand, the qubits couple to single reservoir, the decoherence rate
per qubit scales linearly with the number of qubits for certain states
[115, 135, 20, 124, 26, 51, 31]. This effect has been referred to as
superdecoherence, in analogy with superradiance.

Superdecoherence has been observed experimentally in an ion-trap
quantum computer [104]. Although some states suffer superdecoher-
ence, the probability of running into such a state during the course of
an actual algorithm may be extremely small [20]. Additionally, if the
decoherence is dominated by relaxation, rather than dephasing, is has
been shown that superdecoherence does not occur for the Greenberger-
Horne-Zeilinger (GHZ) and the Hadamard state [33]. Also the partic-
ular model of solid-state qubits coupling to a single phonon reservoir
has been shown not to give rise to superdecoherence [68]. The latter
approach focuses on a specific setting of the dephasing model: the ge-
ometry of the quantum register is assumed to be a linear array, and the
phonon reservoir is assumed to be three-dimensional and thermal, with
a continuous spectrum and a linear dispersion relation. Therefore, it
is unable to reveal the general underlying physical reasons for the ab-
sence of superdecoherence. The reason why superdecoherence emerges
in other settings of the single-reservoir dephasing model remained un-
known.

Here, we fully resolve the physical conditions that determine the
presence or absence of superdecoherence in the dephasing model, with
all qubits coupling to a single bath. We do not make any assumptions
about the geometry of the quantum register, the spatial dimension
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d, the reservoir dispersion relation, or the directional dependence of
the spin-boson interaction. For the reservoir state, we assume a very
general initial condition that applies to practically relevant situations.
In determining the conditions that prevent or allow superdecoherence,
we find that the boundedness of the spectral density and the occupation
density of the reservoir are essential directives.

The spectral density of the reservoir is the density of modes at a
given frequency. If the reservoir admits only a discrete set of frequen-
cies, such as the electromagnetic field in an ideal cavity, the spectral
density is given by a sum of delta functions, and is hence unbounded.
If, on the other hand, the reservoir admits a continuum of frequencies,
such as the electromagnetic field in an imperfect cavity or free space,
the reservoir spectral density is a bounded function of frequency.

The occupation density, on the other hand, tells us to what ex-
tent a given mode in the reservoir is exited. It is typically a bounded
function of the mode frequency. However, if only a single frequency
is excited, the occupation density is described by a delta function cen-
tred at that frequency. This is the case when the bosonic field is the
electromagnetic field, and a mode is excited by a laser with vanishing
spectral bandwidth. In contrast, if this laser has a non-zero spectral
bandwidth, also the occupation density remains bounded.

We prove that boundedness of the reservoir spectral density and the
reservoir occupation density is a sufficient condition for the absence of
superdecoherence. Henceforth, we refer to reservoirs with a bounded
spectral and occupation density as a bounded reservoirs for short (the
dimension of the Hilbert space of the reservoir may still be infinite). An
important physical quantity in the proof is the dephasing susceptibility,
which we define as the only part of the decoherence rate that depends
on the system. It is closely related to, but different from, the so-called
array factor, which arises in classical antenna arrays [14], quantum
antenna arrays [93], and interdigital transducers that couple to surface
acoustic waves [105]. The dephasing susceptibility captures the extent
to which a reservoir frequency contributes to the dephasing process if
this frequency is present in the reservoir.

Superdecoherence may be exhibited when either the spectral den-
sity or the occupation density is unbounded. Depending on the state of
the quantum register, there may be frequencies for which the dephas-
ing susceptibility scales quadratically with the number of qubits. If
one of these frequencies coincides with a frequency for which either the
reservoir spectral density or the reservoir occupation density diverges,
superdecoherence is exhibited. This is because, in this specific case,
the decoherence rate scales with the system size in the same way as the
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peak of the dephasing susceptibility.
The reason for the absence of superdecoherence in bounded reser-

voirs is that peaks in the dephasing susceptibility inevitably become
narrower as the system size is increased. Specifically, we show that,
if the dephasing susceptibility has a peak whose height scales as the
square of the number of qubits, the width of this peak must scale in-
versely with the number of qubits. That is to say, the quantum register
may be increasingly susceptible to a given reservoir frequency as the
system size grows, but the bandwidth of this susceptibility must at the
same time decrease. This effect mitigates the total decoherence rate,
and the net effect is that superdecoherence is absent.

A subtle case occurs when the reservoir is in a thermal state. This is
because, in that case, the occupation density of the reservoir diverges,
but only algebraically. We show that, even though in this case the
occupation density diverges, superdecoherence cannot occur. The only
exception to this rule occurs when the reservoir is a so-called subohmic
reservoir. In that case, the decoherence rate scales with the system
size at a rate that is somewhere between regular decoherence (linear
scaling) and superdecoherence (quadratic scaling).

In this chapter, we let L denote the number of spins, as opposed to
n in other chapters. In the literature on dephasing [115, 135, 20, 124,
26, 51, 31], L is the more common notation.

3.1.1 A classical analogue
The cause of the inverse scaling of the bandwidth of the susceptibility,
which is responsible for the absence of superdecoherence in bounded
reservoirs, can be sketched with a classical analogue. We leave the
treatment of the quantum dephasing susceptibility for Sec. 3.3. Con-
sider L identical, classical, non-interacting electric dipoles in a linear
array with spacing a, as depicted in Fig. 3.1 (top). (This geometry is
chosen for explanatory reasons. Our results concerning the quantum
dephasing susceptibility hold for general register geometries.) In the
initial state of the array, all dipoles point upwards. For simplicity,
consider only the electromagnetic modes whose momentum is collinear
with the array and are polarized in the direction of the dipole mo-
ments. The dipoles couple to the electromagnetic field, giving an ini-
tial potential energy V = C1

∑L
ℓ=1Eℓ, where C1 is some constant, Eℓ

is the electric field at the ℓth dipole, and k the wave number. In terms
of the Fourier transform E(k) :=

∑L
ℓ=1 e

ikrℓEℓ, where rℓ = a(ℓ − 1)
is the position of the ℓth qubit, the initial potential energy equals
V = aC1

2π

∫ π/a
−π/a dk f(k)E(k), with f(k) =

∑L
ℓ=1 e

−ikrℓ the coupling
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Figure 3.1: (Top) A classical analogue, where a linear array of clas-
sical dipoles, with lattice spacing a, is placed in the electromagnetic
field. As a whole, the array couples strongly to the mode with wave
number k = 0 (not shown). The array does not couple at all to modes
with wave number k = ±2π/(aL) (shown in blue). This is because, for
these modes, all potential energies arising from the dipole-field inter-
action cancel exactly. (Bottom) The modulus squared of the coupling
strength in the classical analogue, for L = 10, as a function of the
wave number k. Two wave numbers of modes that do not couple to
the array in displayed in blue. The array mainly couples to modes in
a bandwidth less than ∆k = 4π/(aL).
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strength between the array and the mode with wave number k. See
Fig. 3.1 (bottom) for a plot of |f(k)|2. From the previous expression
for f(k), and from the plot, we can see the array couples most strongly
to the electromagnetic field mode with wave number k = 0. We can
also see that the array does not couple at all to modes with wave num-
ber ±2π/(aL). In real space, this is because, for this wave number,
all potential energies cancel exactly [also see Fig. 3.1 (top)]. Thus, the
bandwidth of modes to which the array couples strongly is at most
∆k = 4π/(aL), which scales inversely with the length of the array.

3.2 Spin-boson dephasing
In this section, we introduce the model of spin-boson dephasing, follow-
ing references [115, 124, 26]. First, we consider the case of a single qubit
coupling to a bosonic reservoir, and extend this to multiple qubits, each
of which couples to its own, independent, bosonic reservoir. In both
of these cases, superdecoherence cannot occur under any circumstance.
Subsequently, this situation is contrasted with the scenario where all
qubits couple to a single bosonic reservoir, in which case superdecoher-
ence may in fact occur. Compared to aforementioned references, we
make some generalizations concerning the initial reservoir state. The
details of this generalization can be found in Sec. 3.A. We use units
where c = h̄ = kB = 1.

3.2.1 Single qubit
Consider a single qubit (the system S), with an internal Hamiltonian
HS = ∆Jz, that is placed in a bosonic reservoir (the bath B, also see
Sec. 1.4.3 for more background on open quantum systems). Here ∆
is the level spacing and Jz the spin-z operator Z/2. We work in the
computational basis, where this operator is diagonal, and has eigen-
states |1/2〉 and |−1/2〉. The internal Hamiltonian of the reservoir is
given by HB =

∑
k ωkNk, with Nk = a†kak the number operator of a

bosonic mode with wave vector k. Here ak (a†k) is the bosonic annihi-
lation (creation) operator of the mode with wave vector k. The sum
is over all k that are admitted by the reservoir. The set of ks that
are admitted by the reservoir depends on the physical details of the
reservoir. The reservoir couples to the qubit via the interaction term
HSB =

∑
k J

z(g∗kak + gka
†
k), with gk the coupling strength between the

qubit and the mode with wave vector k. There are many explicit phys-
ical settings that may lead to this interaction term [37], but here, we
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do not assume such a specific setting. Since the only system operator
in the interaction term is Jz, HSB causes dephasing only. Putting all
terms together, the dephasing model of a single qubit reads

H1 := ∆Jz +
∑

k
ωkNk +

∑
k
Jz(g∗kak + gka

†
k).

In this and the following sections, we assume that the overall
system-reservoir state is a product state, ρ(0) ⊗ ρB(0). Here ρ(0) (no
subscript) is a general initial system state, and ρB(0) is the initial reser-
voir state. The latter is assumed to be a product state of single-mode
states, ρB(0) =

⊗
k ρB,k(0), with ρB,k(0) the initial state of the mode

with wave vector k. The state ρB,k(0) is assumed to be a displaced
thermal state, that is, ρB,k(0) = D(αk)e

−ωkNk/TkD†(αk)/Z, where αk
is the displacement (which can be any complex number), Nk the num-
ber operator, Tk the (k-dependent) temperature, Z the normalization,
and D the displacement operator. (In Sec. 3.A we show displacement is
irrelevant in the dephasing process, so we do not give an expression for
D here.) Possible ρB,k(0) admitted by this parametrization include the
regular single-mode thermal states (Tk ≥ 0 and αk = 0), the coherent
states (Tk = 0, |αk| ≥ 0), and the vacuum state (Tk = 0, αk = 0). We
call a reservoir completely thermal if the overall initial reservoir state
ρB(0) equals the regular thermal density matrix with temperature T ,
that is, if ρB(0) = e−ωkNk/T /Z ′. In our parametrization of initial reser-
voir states, this is the specific case where αk = 0 and Tk = T for all k.
Our form of the initial reservoir state is a generalization of that used in
references [138, 115, 124, 26, 41, 1, 20], where the assumption is that
the initial reservoir state is completely thermal.

It can be shown that the absolute value of the i, jth entry (with
i, j ∈ {−1/2, 1/2}) of the system density matrix, after time t, is given
by

|ρij(t)| = e−Γi−j(t)|ρij(0)|, (3.1)
where Γi−j(t) is the decoherence function (See Refs. [115, 124, 26],1
and Sec. 3.A). In the current model, dephasing is the only decoherence
mechanism. Therefore the decoherence rate can be defined as 1/T2,
were T2 is the dephasing time, here defined as the smallest time t for
which Γi−j(t) = 1.

1These references give a derivation for the density operator in the interaction pic-
ture, |ρIij(t)| = e−Γi−j |ρIij(0)|. In the dephasing model, |ρSij(t)| = |ρIij(t)|. Therefore,
we drop the superscript indicating the picture in Eq. (3.1), keeping in mind that the
equation holds in both pictures. The same applies to the system density operators
in Sec. 3.2.2 and 3.2.3. See Sec. 1.4.5.3 and Sec. 1.4.6.1 for more background on
the interaction picture in open quantum systems.
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In general, the decoherence function only depends on the difference
d = i− j.2 It is given by

Γd(t) = γd
∑

k
|gk|2τ(t, ωk)(1 + 2N̄k). (3.2)

Here γd = |d| and
τ(t, ωk) =

1− cos(ωkt)

ω2
k

. (3.3)

Under the current assumptions on the initial reservoir state, the occu-
pation number N̄k of the mode k is given by the Bose-Einstein distri-
bution with (k-dependent) temperature Tk.3 That is,

N̄k =
1

eωk/Tk − 1
. (3.4)

This need not be an isotropic function on k-space. For the specific case
of the completely thermal reservoir (i.e. Tk = T and αk = 0 for all k),
the occupation number is in fact isotropic, and depends on the mode
energy only,

N̄ th
ω := 1

eω/T − 1
. (3.5)

We do not assume any particular dispersion relation, nor the reservoir
to be completely thermal, unless stated otherwise.

3.2.2 Independent reservoirs
Now consider L copies of the system-reservoir combination described in
the previous subsection. This setting is known as independent dephas-
ing. The overall Hamiltonian reads H ind

L = (H1)
⊗L. This is depicted

schematically in Fig. 3.2 (left).
We denote states in the computational basis of the L-qubit quantum

register by |i〉 ≡ |i1, . . . , iL〉. It can be shown that, under the evolution
by H ind

L , the absolute value of the (i, j)th entry of the system density
matrix equals |ρij(t)| = e−Γd(t)|ρij(0)|, with d the difference vector d =
i − j and

Γd(t) = γd
∑

k
|gk|2τ(t, ωk)(1 + 2N̄k)

2We use the italic d for dimension, and the straight d for the differences d = i− j
and (for multiple qubits) d = i − j.

3The initial state of the reservoir may still be a general thermal displaced state.
Displacement of a mode does affect the expectation value of its number operator,
but only the thermal part contributes to Γd(t). See Sec. 3.A for details.
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Figure 3.2: (Left) Qubits coupling to independent reservoirs.
(Right) Qubits coupling to a single reservoir

the decoherence function. Here, we have singled out the factor γd =∑L
ℓ=1 |dℓ| for later reference. This factor is the only part of the deco-

herence function that depends on L, and it is at most proportional to
L. Thus, for independent dephasing, the decoherence function scales
at worst linearly with the system size,

Γd ∝ L.

That is, the decoherence rate per qubit is at most constant in the
system size.

3.2.3 A single reservoir
Now consider the situation where all qubits couple to a single reservoir,

H =∆
L∑
ℓ=1

Jzℓ +
∑

k
ωkNk +

L∑
ℓ=1

∑
k
Jzℓ (g

∗
kℓak + gkℓa

†
k), (3.6)

as is depicted schematically in Fig. 3.2 (right). Again, k runs over all
wave vectors that are supported by the reservoir. Now, the coupling
constant gkℓ depends on both the wave vector and the qubit location.
If the reservoir consist of plane-wave modes, gkℓ = gke

ik·rℓ . For single-
reservoir dephasing, it can be shown that (Refs. [115, 124, 26], Sec. 3.A)
the density matrix equals

|ρij(t)| = e−Γi−j(t)|ρij(0)|,

as before, but now

Γd(t) =
∑

k
γd(k)|gk|2τ(t, ωk)(1 + 2N̄k), (3.7)
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with
γd(k) =

∑
ℓm

dℓdm cos(k · rℓm), (3.8)

where rℓm := rℓ − rm is the vector pointing from the location of qubit
ℓ to that of qubit m. In contrast to the situation of independent de-
phasing, γd(k) now depends on k and contains a double sum over the
qubit indices. The summand of γd(k) can at most equal unity, which
is attained, for example, if dℓ = 1 for all ℓ, and k = 0. Thus, if indeed
k = 0 is admitted by the reservoir,

Γd ∝ L2

at worst. The possibility of quadratic, rather than linear scaling of
the decoherence function with L is called superdecoherence. The de-
coherence rate per qubit can thus scale with the system size, which is
problematic for error correction [59, 119].

3.2.4 The continuum limit
We may write Eq. (3.7) in a more meaningful form, starting by in-
troducing D =

∑
k′ δ(k − k′), so that we may replace the sum by an

integral, ∑
k
. . .→

∫
Rd

dkD(k) . . . ,

where d is the dimension of the reservoir. Here D(k) is a density of
states on k-space, currently describing a discrete set of modes. Note
that D is unbounded at those modes, and vanishes elsewhere. In the
continuum limit, the peaks merge into a bounded and continuous den-
sity of states on k-space. We then have

Γd(t) =

∫
Rd

dkD(k)|gk|2 γd(k) τ(t, ωk) (1 + 2N̄k), (3.9)

where D is unbounded for discrete reservoirs, and bounded in the con-
tinuum limit. In the continuum limit, N̄k becomes an occupation den-
sity rather than an occupation number. Note D(k) is different from
the usual density of states, because the latter is a function of frequency
only. For the electromagnetic field in free space, without boundary
conditions, D is proportional to a constant with length dimension d.
Equation (3.9) is the most general form of the decoherence function in
the dephasing model because it can describe both discrete and contin-
uous reservoirs. We will work with this form from now on.
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One feature of Eq. (3.9) (and the preceding, less general forms) is
that we can easily separate the vacuum contributions from those that
are due to reservoir excitations. That is, we may write

Γd(t) =: Γ
(vac)
d (t) + Γ

(ex)
d (t), (3.10)

with
Γ
(vac/ex)
d (t) :=

∫
Rd

dk γd(k)ξ(vac/ex)(t, k), (3.11)

where

ξ(vac)(t, k) := D(k)|gk|2τ(t, ωk), (3.12)
ξ(ex)(t, k) := D(k)|gk|2τ(t, ωk) 2N̄k. (3.13)

For the dephasing susceptibility to be well-defined, the integral in
Eq. (3.9) has to converge. This is guaranteed by a high frequency cut-
off. Physically, this arises because, as a function of ωk, either D goes
to zero, or the coupling strength gk goes to zero, or a combination of
both. Here, we assume that after some cutoff frequency ωc, the product
D(k)|gk|2 is suppressed at least exponentially,

D(k)|gk|2 = O(e−ωk/ωc) (3.14)

as e−ωk/ωc goes to zero. At this point, this cutoff does not impose
any restriction on the physical systems described because ωc can be
arbitrarily large.

Even in continuous reservoirs, it is possible in theory that a single
mode k′ is excited, but no modes in its neighbourhood (in k-space).
Then, the occupation density is unbounded at that mode, N̄k ∝ δ(k −
k′). We call a reservoir continuous if, in contrast, both D(k)|gk|2 and
N̄k are bounded functions of k.

A common assumption [115, 124, 26], that we will only make occa-
sionally, is that D(k)|gk|2 and N̄k are isotropic, and that the reservoir
dispersion relation is linear. For a linear dispersion relation, ωk = v|k|
for some constant v. Working in units where v = 1 for notational
convenience, we may then transform to spherical coordinates and write

Γd(t) =

∫ ∞

0
dω J(ω)γ̃d(ω)τ(t, ω)(1 + 2N̄ω), (3.15)

with
γ̃d(ω) :=

∫
dΩ γd(ω, θ).
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Here, Ω is the d−1 dimensional solid angle, and θ the d−1 dimensional
angle of k. The function J(ω) = ωd−1D(ω)|gω|2 is called the spectral
density of the reservoir. A common form is [138, 115, 124, 26, 90, 18,
27, 141, 7, 82, 1]

J(ω) = αdω
de−ω/ωc , (3.16)

with αd a constant with length dimension d − 1, and ωc the cutoff
frequency. This expression is often extended to include even non-integer
d, which may be encountered in reservoirs with fractal properties [90].
Depending on the dimension, these reservoirs are called subohmic (d <
1), Ohmic (d = 1), or superohmic (d > 1). In this chapter, we do not
assume isotropy, unless stated otherwise, and we will mainly work with
the general form of the decoherence function [Eq. (3.9)].

In the following sections, we study the qualitative system-size scal-
ing of the decoherence function. For completeness, however, in Sec. 3.C
we show explicit solutions for Γ(vac)

L , and derive simplified approximate
solutions in the regimes t� 1 and t→ ∞.

3.3 Dephasing susceptibility
In this section, we identify γd(k) as an important physical quantity
and derive some of its properties, especially regarding its system size
dependence. Namely, γd(k) is determined solely by the system, and
at the same time it is the only part of the decoherence function that
depends on the system. So it fully captures the influence of the system
on the decoherence function. The function γd(k) weighs the severity
of the influence of the mode k if this mode was to be ‘offered’ by the
reservoir, and depends on the system geometry and the index (i, j). We
call it the dephasing susceptibility of the reservoir.

To illustrate the qualitative behaviour of the dephasing suscep-
tibility, we first consider the array model, the classical analogue of
which was treated in Sec. 3.1.1. It consists of a linear array of L non-
interacting qubits with spacing a that couple to a single reservoir with
dimension d = 1. Two system states we consider are

|GHZ〉 = 1√
2

∣∣1
2 ,

1
2

〉⊗L/2
+ 1√

2

∣∣−1
2 ,−

1
2

〉⊗L/2
,∣∣GHZ′〉 = 1√

2

∣∣1
2 ,−

1
2

〉⊗L/2
+ 1√

2

∣∣−1
2 ,

1
2

〉⊗L/2
.

(3.17)

Both states are of the form (|i〉+ |j〉)/
√
2, and thus have only a single

non-zero matrix element in the upper right triangle of their density
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matrix. That is, in the computational basis,

ρGHZ =
1

2


1 0 . . . 0 1
0 0 . . . 0 0
...

... . . . ...
...

0 0 . . . 0 0
1 0 . . . 0 1

 , (3.18)

and similarly for the density matrix associated with
∣∣GHZ′〉.

The difference vectors d = i − j belonging to these off-diagonal
matrix elements are

dGHZ = (1, 1, 1, 1, . . .), (3.19)
dGHZ′ = (1,−1, 1,−1, . . .). (3.20)

Thus, with Eq. (3.8), we find4

γGHZ(k) =
sin2(akL/2)
sin2(ak/2)

, (3.21)

γGHZ′ (k) =
sin2(akL/2)
cos2(ak/2) , (3.22)

for L even. Here, we write γGHZ instead of γdGHZ for conciseness, and
similarly for γGHZ′ . Plots of γGHZ′ (k) for various L can be found in
Fig. 3.3.

Note there are values of k for which γGHZ′ (k) = 0. This occurs when
sin2(akL/2) = 0 but cos2(ak/2) 6= 0. That is, when ak = π + n 2π/L
for integer values of n, excluding n that are multiples of L/2. (I.e.
n ∈ Z\{m ∈ Z |m = ℓL/2∧ℓ ∈ Z}.) If the reservoir only supports these
modes, the off-diagonal matrix element of

∣∣GHZ′〉 does not diminish
as a function of time at all. In this situation the two basis states that
compose

∣∣GHZ′〉 [Eq. (3.17)] are in the same decoherence-free subspace
[115, 40, 41, 151, 147, 95, 97, 83].

The dephasing susceptibility γGHZ′ is dominated by the peak at
ak = π, whose height is L2. Depending on the reservoir, this may re-
sult in superdecoherence. From Eq. (3.7), we see that if the reservoir is
discrete and supports the mode ak = π, the decoherence function scales
as L2, even in the vacuum. We stress that, as shown by this simple ex-
ample, superdecoherence is possible even when the coupling constants

4These closed form formulas are ill-defined when the denominator vanishes. The
original form [Eq. (3.8)] does not have this anomaly. It is to be understood that at
these points, the closed form formulas are determined by their limit values. Then
the resulting functions are smooth.
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Figure 3.3: The dephasing susceptibility of the off-diagonal matrix
element of

∣∣GHZ′〉, for system sizes L = 2, 4, 6, 8. The peaks have
height L2 and width ∼ 1/(aL). For the off-diagonal matrix element of
the state |GHZ〉, the entire graph is translated in such a way that the
peaks lie above k = 0.
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gkℓ depend on the the qubit location. Hence permutation symmetry of
the Hamiltonian is not a prerequisite for superdecoherence.

Consider the two points around the peak where γGHZ′ = 0. The
previous equations about the minima show that the distance between
these points equals ∆k = 4π/(aL). Thus, the bandwidth of modes
the off-diagonal matrix element of

∣∣GHZ′〉 is most susceptible to scales
inversely with the system size.

This decreasing bandwidth is shown by the dephasing susceptibil-
ity in general. This is because, mathematically, γd(k) is the spectral
density of the difference vector d. That is,

γd(k) =
∑
ℓm

dℓdm{cos(k · rℓm) + i sin(k · rℓm)}

=
∑
ℓm

dℓdmeik·rℓm

= |d̃(k)|2, (3.23)

with d̃(k) :=
∑L

ℓ=1 e
−ik·rℓdℓ the Fourier transform of d. Here the sine

vanishes because it is antisymmetric under exchange of ℓ and m. If the
qubits are placed on a lattice, the dephasing susceptibility is periodic
in k.

The summand in the original definition of γd(k) [Eq. (3.8)] is at
most unity. This is achieved, for example, when dn = 1 for all n ∈
{1, . . . , L} and k = 0. Thus,

0 ≤ γd(k) ≤ L2. (3.24)

Nevertheless, the integral of the dephasing susceptibility over one re-
ciprocal unit cell C is bounded by 2πL/V , where V is the volume one
real-space unit cell. This follows directly from the fact that the dephas-
ing susceptibility is the spectral density function of d, and Parseval’s
theorem, ∫

C
dk γL(k) =

∫
C
dk |d̃(k)|2

=
2π

V

L∑
m=1

|dm|2,

with |dm| = |im − jm| ≤ 1. Therefore∫
C
dk γL(k) ≤

2πL

V
. (3.25)
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This shows that if the dephasing susceptibility has a peak of height
L2, the width of that peak must scale as 1/L. As we show in the
following section, this relation causes a mitigation of the dephasing
process, causing the absence of superdecoherence in bounded reservoirs.

A related question about the dephasing susceptibility is how large
γi−j(k) is typically if we fix k and L and vary (i, j). In Sec. 3.B, we
show that the distribution of γi−j(k) over (i, j) is approximated by a
Gaussian, with a standard deviation that is at most L/(2π). This
means γi−j(k) is typically on the order of L and that there are few i− j
such that γi−j(k) ≈ L2.

3.4 Asymptotic system size scaling
In this section, we derive our main results, which are upper bounds
on the system size scaling of the decoherence function. An important
quantity herein is the dephasing susceptibility, because this is the only
factor in the integrand of the decoherence function that depends on
the system size. In turn, the dephasing susceptibility depends on L
because L is the length of the vector d. The exact scaling of Γd with
L depends on how entries are added to d as the L is increased. In
principle, this can be done according to any prescription.

For example, we could consider the dephasing associated with d,
where d increases in length by adding a random number for every qubit
we add. A more physically relevant situation, is for example to consider
the coherence of the state |GHZ〉 or

∣∣GHZ′〉, as a function of the system
size. The results in this section hold for any description, unless stated
otherwise, but some descriptions may arise more naturally than others.

To tidy up notation, and to highlight L dependence, we will now
write γL(k) instead of γd(k) and likewise ΓL(t) instead of Γd(t). At
the same time, we use γGHZ(ω) and γGHZ′ (ω) for the dephasing sus-
ceptibilities of the off-diagonal matrix elements of |GHZ〉 and

∣∣GHZ′〉,
respectively. Likewise, we write ΓGHZ and ΓGHZ′ .

The starting point of our derivation is the most general form of the
decoherence function, in which the vacuum contributions are separated
from the excitation contributions [Eq. (3.10)]. Both contributions are
of the form of Eq. (3.11). Assume t = t0 is fixed. The mathematical
property that the integral of γL over one reciprocal unit cell scales lin-
early with the number of qubits [Eq. (3.25)] ensures that also Γ

(vac/ex)
L

scales linearly with the number of qubits, provided that ξ(vac/ex) is
bounded.

This is shown as follows. Assume ξ(vac/ex)(t0, k) is bounded. The
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integral Γ(vac/ex)
L equals a sum of integrals, where each domain of inte-

gration is one reciprocal unit cell C,

Γ
(vac/ex)
L (t0) =

∑
C

∫
C
dk γL(k)ξ(vac/ex)(t0, k).

Each term is upper bounded by the integral of γL(k) over a single
reciprocal unit cell after the integral is rescaled by the maximum of
ξ(vac/ex)(t0, k) on that unit cell,

Γ
(vac/ex)
L (t0) ≤

∑
C

max
k∈C

[
ξ(vac/ex)(t0, k)

] ∫
C
dk γL(k).

By Eq. (3.25),

Γ
(vac/ex)
L (t0) ≤

2πL

V

∑
C

max
k∈C

[
ξ(vac/ex)(t0, k)

]
.

The high-frequency cutoff [Eq. (3.14)] ensures the sum converges, no
matter the value of the cutoff ωc. Thus, we obtain the main mathe-
matical result of this chapter: if ξ(vac/ex)(t0, k) is bounded, then

Γ
(vac/ex)
L = O(L). (3.26)

The relevant physical question then, is when ξ(vac/ex)(t0, k) is
bounded. First, consider the vacuum contribution ξ(vac)(t0, k) =
D(k)|gk|2τ(t0, ωk) [Eq. (3.12)]. The temporal factor τ(t0, ωk) is a
bounded function of ωk for every t0. The remaining factor D(k)|gk|2 is
bounded for bounded reservoirs (see Sec. 3.2). Therefore, in bounded
reservoirs,

Γ
(vac)
L = O(L). (3.27)

This says that in bounded reservoirs, vacuum fluctuations cannot cause
superdecoherence.

Now consider the excitation contribution ξ(ex)(t0, k) =
D(k)|gk|2τ(t0, ωk) 2N̄k [Eq. (3.13)]. It is bounded if both D(k)|gk|2 and
N̄k are bounded. By Eq. (3.26) we have, in that case,

Γ
(ex)
L = O(L).

Together with Eq. (3.27), this says there is no superdecoherence in
bounded reservoirs.

Conversely, we can consider the situations in which ξ(vac/ex) is un-
bounded. First, consider ξ(vac). It is unbounded if the reservoir is
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discrete, that is, if D(k) =
∑

k′∈D δ(k − k′). Even though, in this
case, the conditions of Eq. (3.26) are not satisfied, this does not lead
to superdecoherence per se. It is clear that Γ

(vac)
L scales superlinearly

with L only if one of the modes in D coincides exactly with a mode
to which the matrix element is superlinearly susceptible. This is also
illustrated by Fig. 3.3 and Eq. (3.7): there is superdecoherence in the
array model when the state is

∣∣GHZ′〉, and π/a ∈ D. If, in the array
model, π/a /∈ D, but instead π/a + δ ∈ D, with 0 < |δ| � 1, there
is no superdecoherence. Note this in an asymptotic statement, and
that, in the latter situation (π/a /∈ D, π/a + δ ∈ D), and for finite
L, linear scaling of ΓL with L only occurs after 1/L is approximately
smaller than |δ|. Further discussion on finite-size effects can be found
in Sec. 3.5.

Secondly, consider ξ(ex). It is unbounded if the reservoir is discrete,
like in the previous paragraph. It may additionally be unbounded if N̄k
is unbounded. This happens when a mode k is excited but no modes
in its neighbourhood are excited. Again, this does not need to lead
to superdecoherence per se. It is only when k coincides exactly with
a mode the matrix element is highly susceptible to that superlinear
scaling of Γ(ex)

i−j is possible.

3.4.1 Completely thermal reservoirs
If the reservoir has a continuous spectrum, and the initial reservoir state
is completely thermal, ξ(ex)(t0, k) [Eq. (3.13)] is possibly unbounded
because N̄ th

ω [Eq. (3.5)] has an algebraic divergence at the origin. In this
subsection, we show this nevertheless does not lead to superdecoherence
(i.e. it does not lead to quadratic scaling of the decoherence function
with the system size). However, superlinear scaling may be obtained,
but only in subohmic reservoirs at non-zero temperature.

The at most linear scaling of the decoherence function for Ohmic
(d = 1) and superohmic (d > 1) continuous thermal reservoirs is shown
as follows. Consider ξ(ex) with N̄k = N̄ th

ω . Note that τ [Eq. (3.3)] is
constant to first order at the origin, so that it cannot contribute to the
divergence. Thus, ξ(ex) is bounded near the origin if D(k)|gk|2 goes to
zero fast enough near the origin. In the remainder of this subsection,
we will assume the isotropic setting of Eq. (3.15), with J(ω) as in
Eq. (3.16). Then the condition for bounded ξ(ex) becomes d ≥ 1. This
means there is no superlinear scaling of the decoherence function for
Ohmic and superohmic continuous thermal reservoirs.
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3.4.1.1 Subohmic thermal reservoirs

For subohmic reservoirs (d < 1), ξ(ex) in fact diverges at the origin.
Here, we show how this can only lead to superlinear scaling of Γ(ex)

L

with L when γL scales superlinearly with L near the origin. Even if γL
scales superlinearly with L near the origin, quadratic scaling may be
approached, but not attained.

Let us first single out the divergence near the origin by defining
Γ
(ex)
L = IL + JL, with

IL =

∫ ε

0
dω γL(ω) ξ(ex)(t0, ω), (3.28)

ξ(ex)(t0, k) = J(ω)τ(t0, ωk) 2N̄
th
ω , (3.29)

and JL the remainder of the integral. Note ξ(ex)(t0, ω) now contains
the thermal occupation density explicitly.

The integral JL is O(L) because, on the domain of integration, ξ(ex)
is bounded [also see Eq. (3.26)]. We now turn to IL. Given an ε, there
exists a constant C2 such that ξ(ex) ≤ C2ω

d−1 on (0, ε]. Thus,

IL ≤ C2

∫ ε

0
dω γL(ω)ωd−1.

Since ωd−1 is monotonically decreasing, the largest possible value of
IL occurs when γL(ω) is peaked at low ω. Herein it is constrained by
γL(ω) ≤ L2 [see Eq. (3.24)] and

∫ 2π/V
0 dω γL(ω) ≤ 2πL/V [Eq. (3.25)].

Under these constraints IL is largest when γL(ω) is a bump function,
where the bump height is L2, the left of the bump coincides with the
origin, and the width of the bump is 2π/(V L). Therefore,

IL ≤ C2L
2

∫ 2π/(V L)

0
dω ωd−1

= C2L
2 1

d

(
2π

V L

)d
= O

(
L2−d

)
. (3.30)

Thus, quadratic scaling of Γ(ex)
L (t0), and thereby quadratic scaling of

ΓL(t0), cannot be obtained in subohmic continuous thermal reservoirs.
To approach superlinear scaling, it is essential that a superlinear

peak of γL(ω) must be able to approach the origin arbitrarily closely
as a function of L. In fact, if, on the contrary, there is a δ > 0 such
that γL(ω) = O(L) for all 0 ≤ x ≤ δ, then IL = O(L). This is shown as
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follows. Assume there is a δ > 0 such that 0 < δ < ε and γL(ω) = O(L)
for all 0 ≤ ω ≤ δ. Then because ωd−1 is finite on [δ, ε], and because
there is a constant C3 such that γL(ω) ≤ C3L for all [0, δ), we have

IL ≤ C2

∫ δ

0
dω γL(ω)ωd−1 + C2

∫ ε

δ
dω γL(ω)ωd−1

≤ C2C3L

∫ δ

0
dω ωd−1 +O(L)

= O(L).

An example in which this occurs is the array model, in the specific
case that the dephasing susceptibility is given by γGHZ′ (ω) [Eq. (3.21)].
To show this, let δ = π/(2a). Then cos2(aω/2) ≥ cos2(π/4) ≥ 1/2 for
all 0 ≤ ω ≤ δ, and thus γGHZ′ ≤ 2 sin2(aωL/2) ≤ 2 for all 0 ≤ ω ≤ δ.
This means that the off-diagonal matrix element of

∣∣GHZ′〉 does not
suffer from superdecoherence in subohmic thermal reservoirs, despite
the fact that ξ(ex) is unbounded at the origin.

The result Eq. (3.30) is an upper bound, so the question remains
if it may be attained. This is not clear a priori because a dephasing
susceptibility cannot attain the form of a bump function as in the
proof. This is because it is the spectral density of a vector with a finite
number of elements [Eq. (3.23)]. We now show by explicit construction
that the upper bound may also be attained. This construction is in
the subohmic version of the array model (Sec. 3.3), with dephasing
susceptibility γGHZ [Eq. (3.21)]. Roughly speaking, our strategy is
to show that γGHZ(ω) is a close enough approximation of the bump
function. There are two main steps. The first is to show that for all
0 ≤ ω ≤ 1/(2aL2), we have γGHZ(ω) ≥ L2 − 1, or equivalently,

γ′GHZ(ω) := 1− γGHZ(ω)

L2
≤ 1

L2
. (3.31)

Consider the expansion of γ′GHZ(ω) in aω around aω = 0. Using the
original definition of the dephasing susceptibility [Eq. (3.8)], we have
γ′GHZ(ω) =

∑
j=2,4,... cj(aω)

j , with

|cj | =
1

j!L2

∑
mn

(m− n)j <
Lj

j!
.

The radius of convergence of the expansion is infinite. Using the coef-
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ficients, we have

γ′GHZ(ω) <
∑

j=2,4,...

Lj

j!
(aω)j

=
∑

j=1,2,...

1

(2j)!
(aωL)2j

≤ e(aωL)
2 − 1

≤ 4(aωL)2. (0 ≤ aωL ≤ 1)

The last step can be checked most easily by plotting both functions.
The last inequality holds specifically for aω ≤ 1/(2L2). After substitu-
tion, we have, therefore, that γ′GHZ(ω) ≤ 1/L2 for all 0 ≤ ω ≤ 1/(2aL2).

The second step is to show that Eq. (3.31) enables us to approach
quadratic scaling of IL with L arbitrary closely. First, note that, from
Eq. (3.28),

IL >
∫ 1/(2aL2)

0
dω γGHZ(ω)ξ

(ex),

for 1/(2aL2) < ε. There exists an L0 and a constant C4 such that for
all L > L0, ξ(ex)(t0, ω) ≥ C4ω

d−1 on the entire domain of integration.
Informally, this means that there is a C4 such that, close enough to the
origin, ξ(ex)(t0, ω) ≥ C4ω

d−1. Thus, for this C4,

IL ≥ C4

∫ 1/(2aL2)

0
dω γGHZ(ω)ω

d−1.

Now using Eq. (3.31), this leads to

IL ≥ C4(L
2 − 1)

1

d

(
1

2aL2

)d
= Ω

[
L2(1−d)

]
.

Here, the meaning of Ω(x) is similar to that of O(x), but Ω(x) refers
to a lower instead of an upper bound (see Sec. 1.3.3).

Thus, in the array model with a subohmic continuous thermal reser-
voirs, quadratic scaling of Γ(ex)

L , and thereby ΓL, may be approached
arbitrarily closely by the off-diagonal matrix element of |GHZ〉.

3.4.2 Infinite time limit
In our discussion of the system size scaling until now, we assumed the
time t to be fixed. Here we consider the infinite time limit of the
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isotropic case [Eq. (3.15)], with J(ω) as given in Eq. (3.16). In the
following, we no longer assume d < 1 and N̄ω = N̄ th

ω as in the previous
subsection. With ∂tτ(t, ω) = sin(ωt)/ω [cf. Eq. (3.3)],

lim
t→∞

∂tΓL(t) =
π

2
lim
ω↓0

J(ω)γ̃(ω)(1 + 2N̄ω). (3.32)

Thus, the infinite time behaviour of ΓL(t) depends only on the inte-
grand at the origin, which is always non-negative. If the limit on the
right hand side of Eq. (3.32) is positive, ΓL(t) keeps growing indefi-
nitely as a function of t. If, on the other hand, this limit is zero, ΓL(t)
increases at most sublinearly with t as t goes to infinity. We call this a
quasi-plateau, which naturally includes proper plateaus. These proper
plateaus are also referred to as incomplete dephasing [38] or coherence
trapping [1]. In Sec. 3.C.3 we compute the height of the proper plateaus
of Γ(vac)

L explicitly in the array model.
As an example, we can read off that for γGHZ′ , which is O(ω2)

as ω goes to zero [see Eq. (3.21)], in a completely thermal reservoir
[Eq. (3.5)], a (quasi-)plateau is reached for all T ≥ 0 and d ≥ 0.
From Eq. (3.32) alone we cannot infer anything about the height of
the (quasi-)plateau.

3.5 Finite-size effects
In the previous section, we focused on the asymptotic system size
scaling of the decoherence function. We saw that, in that case, a
sharp delineation could be placed between cases of superlinear and
linear scaling. For finite system sizes, the situation becomes less clear.
This is because the decoherence function may scale quadratically up to
some potentially large system size L0, and show linear scaling only for
L > L0. Even though the main goal of this chapter is to investigate the
asymptotic scaling of the decoherence function with the system size,
we discuss some finite-size effects in this section.

3.5.1 Role of time in finite-size effects
Assume, for simplicity, a linear, isotropic dispersion relation, ωk = ω =
|k|, in units where the proportionality constant equals unity. Consider
the temporal factor τ(t, ωk) [Eq. (3.3)] as a function of k. The function
is peaked at the origin, with height t2/2. Away from the origin, it drops
to zero at |k| = 2π/t and remains small afterwards [O(1/|k|2)]. Thus,
for large t, τ gives large weight to wave vectors with a length below
2π/t, and ever smaller weight to wave vectors with a length above 2π/t.
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In Sec. 3.3, we showed that, if γL(k), as a function of k, has a
peak of height L2, the support of that peak must scale as 1/L. This
effect causes the absence of superdecoherence in bounded reservoirs.
However, if this peak is located at the origin, but t is such that the
peak of τ(t, ωk) is much narrower than that of γL(k), we have that
γL(k) is approximately constant on the interval where τ(t, ωk) is non-
negligible. Thus, the reducing bandwidth of γL(k) is only guaranteed
to have an effect if

aL ≳ t. (3.33)
Therefore, the actual scaling of ΓL as a function of L may approach
its asymptotic scaling only at times small compared to the system size.
In Sec. 3.C, we derive explicit closed-form expressions for the vacuum
contribution to the dephasing function. This gives possibilities for the
study of the explicit interplay between time and system size.

Equation (3.33) seems to form an important caveat to our asymp-
totic results. However, it only applies in special cases. Firstly,
γL(ω) needs to scale superlinearly as a function of L near the ori-
gin, which is rarely the case (Sec. 3.B). Secondly, even if γL(ω) scales
superlinearly, the remaining factors ξ(ex) and ξ(vac) may kill the en-
tire integrand around the origin [see Eq. (3.11)], for example when
ξ(vac)(t, ω) = O(ωd) and ξ(ex) = O(ωd) as ω → 0, with d ≥ 1. Then
for every γL(ω) that scales superlinearly at the origin and fixed L0,
there is a continuous crossover from superlinear to linear behaviour in
L around L0 as a function of d. See Fig. 3.4 for two concrete examples.

3.5.2 Peaked occupation density
A similar finite-size effect occurs if the occupation density has a peak
that coincides with a superlinear peak of the dephasing susceptibility.
To separate this effect from the one in the previous subsection, consider
as an example the state

∣∣GHZ′〉, in the array model, with a Gaussian
occupation density N̄ω = N̄totexp[−(ω − π/a)2/(2σ2)]/(

√
2πσ), with

mean π/a, variance σ, and an integrated number of bosons N̄tot :=∫∞
−∞ dω N̄ω. Similar to in the previous subsection, the mitigating effect
of the 1/L bandwidth of the dephasing susceptibility has an effect only
after the peak of the dephasing susceptibility becomes narrower than
that of the occupation density. That is, we only expect linear scaling
of the decoherence function for

2π

aL
< σ.

See Fig. 3.5 for plots of the leading order in time of the decoherence
function ΓGHZ′ that is obtained in the current case.
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Figure 3.4: The decoherence function in the array model (Sec. 3.3), as
a function of L, for the off-diagonal matrix element of |GHZ〉 (left) and∣∣GHZ′〉 (right). In both plots, we use units where a = 1, and set t = 20,
J(ω) = αdω

de−ω/ωc , with αd = 1 (for both d = 1 and d = 2), ωc = 20,
and N̄ω = 0. For these plots, we have used the analytical expressions
for the decoherence function derived in Sec. 3.C. (Left) For d = 1
the decoherence function increases quadratically initially, after which
it scales (sub)linearly. For d = 2 there is no quadratic scaling, even for
aL � t. (Right) No superlinear scaling for any t, L and d (including
d other than d = 1, 2, which are not shown). The lines for d = 2 in the
left and right plot are similar, but not exactly equal.
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Figure 3.5: The leading order in time of the decoherence function of
the off-diagonal matrix element of

∣∣GHZ′〉, as a function of the system
size L. The setting is that of the array model (Sec. 3.3), with d = 1. In
units where a = 1, the occupation density N̄ω is taken to be a Gaussian,
with mean ω0 = π, standard deviation σ and integrated occupation
N̄tot = 10. We see linear scaling with L is obtained for 1/L ≲ σ.
In the limit σ → 0, the occupation density becomes unbounded, and
consequently, it is only in the limit that the decoherence function scales
as L2 for all L. The plot uses an analytic solution of Eq. (3.15), with
J(ω) = α1

2 ω[1 − Θ(ω − 2π)], where Θ is the step function. This form
of the spectral density is chosen to accentuate the finite-size effects;
the function γGHZ′ (ω) has peaks at ω = π, π + 2π, . . ., whereas, in this
example, N̄ω only has a peak at ω0 = π. Finite-size effects only occur
at places where the two peaks overlap, and including frequencies higher
than 2π into J(ω)means including more effects that scale with L rather
than L2.
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Again, in many situations, the effect discussed in this subsection
does not have significant effects. Firstly, note that the integral in
Eq. (3.15) is over infinitely many periods of the dephasing susceptibil-
ity. In the example above, the peak of the occupation density occurs
only at a single frequency. In this case, the effect described in this
subsection will thus only occur at one of the periods of γGHZ′ (ω). Sec-
ondly, the centre of the peak of the occupation density has to coincide
exactly with the peak of the dephasing susceptibility.

The latter situation, where there is a single peak in the occupation
density that overlaps exactly with the peak in the dephasing suscepti-
bility, occurred in the ion-trap experiment by Monz et al., where the
model of single-reservoir dephasing is applicable [104]. The state |GHZ〉
was prepared in a semi-static, semi-uniform magnetic field, which was
produced with a Helmholtz coil. Fluctuations of the field, caused by
current fluctuations in the coil, excited long-wavelength modes (with
k ≈ 0). The dephasing susceptibility of the off-diagonal matrix element
of |GHZ〉 scales as L2 at k = 0 (see Fig. 3.3), and exactly the modes
k ≈ 0 where heavily excited in the experiment. If modes were excited
away from the origin, there would not have been superdecoherence.
This follows from the explicit form of the dephasing susceptibility of
the off-diagonal matrix element of |GHZ〉 (also see Fig. 3.3). Further-
more, even if modes near the origin were excited, almost any matrix
element other than the off-diagonal element of |GHZ〉 would not have
suffered superdecoherence (also see Sec. 3.B).

3.6 Conclusion and outlook
In this chapter, we studied superdecoherence in the model of single-
reservoir spin-boson dephasing for asymptotic system sizes. We have
shown that if the reservoir density of modes in k-space, D(k), and
the reservoir occupation density N̄k are bounded, superdecoherence is
not possible. This is because if there is a k such that the dephasing
susceptibility scales quadratically with the system size, γL(k) ∝ L2, the
support of this peak in the dephasing susceptibility necessarily scales
inversely with L.

Superdecoherence may thus only be obtained if D(k) or N̄k is un-
bounded. The former happens if the reservoir supports only a discrete
set of modes. The latter happens if the reservoir supports a continuum
of modes, but only perfectly isolated modes are excited. In both cases,
for superdecoherence to occur, the unbounded point must coincide ex-
actly with the mode for which the dephasing susceptibility γL(k) scales
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quadratically.
For completely continuous, thermal reservoirs, the occupation den-

sity N̄ th
ω diverges algebraically at the origin. Nevertheless, it does not

diverge fast enough to cause superdecoherence. There is one subtle
situation. This is the subohmic continuous thermal reservoir with
non-zero temperature, where, furthermore, the dephasing susceptibil-
ity must scale superlinearly (which includes quadratic scaling) at low
frequencies. In this case, the decoherence function may approach, but
not attain, quadratic scaling with the system size. Hence, only in this
sub-case of thermal reservoirs, superdecoherence can be approached.

All effects discussed in this chapter can be observed experimentally.
One could compare the effects of narrow-band versus broadband noise
at a frequency to which the system is highly susceptible. Or, the system
could be placed in a high-Q cavity in the vacuum state, that supports
exactly the mode the system is highly susceptible to. This is to be
compared to a situation where the cavity is slightly off-resonant.

Other applications lie in quantum metrology, in which superde-
coherence can be used as a means of enhancing sensitivity. In this
context, it is well-known that the GHZ state is highly susceptible to
long-wavelength modes [56, 57]. The dephasing susceptibility, as de-
fined in this chapter, offers an effective way to extend metrology to
other states and wavelengths; any state for which there is a ω0 such
that γL(ω0) ∝ L2 is suitable for quantum metrology of the mode with
wavelength ω0. An example is a linear array of qubits, with spacing a,
in the state

∣∣GHZ′〉 [Eq. (3.17)]. This system is highly susceptible to
the staggered mode ω0 = π/a. The dephasing susceptibility shows the
added benefit that with increasing system size, the array becomes less
sensitive to frequencies other than ω0.

Appendix

3.A Spin-boson dephasing for arbitrary reser-
voir states

In this section, we generalize the decoherence function of single-
reservoir dephasing, as derived in Refs. [115, 124, 26], to more general
reservoir states. We pay specific attention to Gaussian states, Gaussian
product states, and a product of displaced thermal states. The latter
solution is included in the main text as Eqs. (3.2) and (3.7).

For a completely general reservoir state, it can be shown that [115,
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124, 26]
|ρij(t)| = |χ̃ (λ)| |ρij(0)|, (3.34)

where χ̃ is the characteristic function of the reservoir state,

χ̃ (λ) :=
〈
e
∑

k∈D(λka†−λ∗kak)
〉
ρB(0)

. (3.35)

Equations (3.34) and (3.35) hold for the interaction as well as the
Schrödinger picture density operators. The set D contains all wave
vectors that are supported by the reservoir.

The argument of the characteristic function, λ ∈ C|D|, depends on
the matrix index (i, j) and the time t, but the notation of this depen-
dence is suppressed. The kth entry of λ is given by [115, 124, 26]

λk = gk d̃∗(k)
1− eiωkt

ωk
, (3.36)

with d̃ the Fourier transform of d = i− j [see Eq. (3.16)]. The exponent
in Eq. (3.36) stems from the internal time evolution of the reservoir.
Equations (3.34) and (3.35) give the most general form of the absolute
value of the time evolved reduced density matrix in the single-reservoir
dephasing model.

For the class of Gaussian states [43, 2], the absolute value of the
characteristic function is given by

|χ̃(λ)| = e−Γ(λ),

with
Γ(λ) =

1

2
ΛTσΛ. (3.37)

This is the most general form of the decoherence function. Here, writing
λki as λi for short,

ΛT =
√
2
(
Reλ1, Imλ1, . . . ,Reλ|D|, Imλ|D|

)
.

The 2|D| × 2|D| matrix σ is the covariance matrix,

σmn = 1
2〈{R̂m, R̂n}〉 − 〈R̂m〉〈R̂n〉. (3.38)

The expectation value is with respect to the Gaussian initial reservoir
state ρB(0). The vector R̂ is defined by

R̂T = (q̂1, p̂1, . . . q̂|D|, p̂|D|),
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with {·, ·} the anti-commutator. To avoid confusion about operators
versus numbers, in this section we write operators (and vectors con-
taining operators) with hats, as opposed to in the main text. The
quadrature operators q̂m and p̂m, in turn, are defined by

q̂m =
1√
2
(âm + a†m), p̂m =

1

i
√
2
(âm − â†m).

To obtain the decoherence function as a function of time and the density
matrix index (i, j), the expression for λ [Eq. (3.36)] has to be inserted
into Eq. (3.37).

We may consider various simplifications of the decoherence function
as it is given in Eq. (3.37). If the reservoir modes are unentangled,
that is, ρB(0) =

⊗
k ρB,k(0) with all ρB,k(0) Gaussian, the covariance

matrix is block-diagonal. Each block corresponds to a 2×2 single-mode
covariance matrix, which we denote by σk. In this case, we may write

Γ(λ) =
∑

k
(Reλk, Imλk)σk

(
Reλk
Imλk

)
, (3.39)

where, by Eq. (3.38), the entries of the single-mode covariance matrix
read

(σk)11 = 〈q̂2k〉 − 〈q̂k〉2

(σk)22 = 〈p̂2k〉 − 〈p̂k〉2

(σk)12 =
1

2
〈{q̂k, p̂k}〉 − 〈q̂k〉〈p̂k〉

(σk)21 = (σk)12.

If the mode k is initially in the thermal state, with temperature
Tk, its density matrix reads ρB,k(0) ∝ e−ωkâ

†
k âk/Tk . In this case, the

single-mode covariance matrix is diagonal,

σk = diag
(
N̄k +

1
2 , N̄k +

1
2

)
, (3.40)

with N̄k the occupation number [Eq. (3.4)]. A special thermal state is
the vacuum, where N̄k = 0.

If the reservoir modes are unentangled, and every mode is thermally
excited with its own temperature, we have from combining Eqs. (3.39)
and (3.40) that

Γ(λ) =
∑

k
|λk|2(N̄k +

1
2). (3.41)

Inserting the equation for λk [Eq. (3.36)], we obtain Eq. (3.7).
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In general, a single-mode Gaussian state can also be represented as
a squeezed and displaced thermal state [43],

(σk)11 = (N̄k +
1
2)[cosh(2r) + sinh(2r) cos(φ)]

(σk)22 = (N̄k +
1
2)[cosh(2r)− sinh(2r) cos(φ)]

(σk)12 = −(N̄k +
1
2) sinh(2r) sin(φ)

(σk)21 = (σk)12.

Here r is the squeezing magnitude, and φ the squeezing angle. Note
these expressions are invariant under displacement. Therefore, the de-
coherence function of a displaced thermal state is equal to Eq. (3.41),
with N̄ the regular Bose-Einstein distribution. Squeezing, on the other
hand, does affect the covariance matrix, and would alter Eq. (3.41)
straightforwardly. In the main text, we assume for simplicity that the
reservoir modes are not squeezed.

Displaced vacuum states are precisely the coherent states. Thus,
even if a reservoir mode is in a highly excited coherent state, this mode
does not contribute more to the dephasing process than the same mode
in the vacuum state would have done. A mixture of coherent states
does lead to extra dephasing. However, the only mixture that can be
described in the Gaussian state formalism is the thermal state.

To summarize, in single-reservoir dephasing, the decoherence pro-
cess of the system is completely determined by the reservoir character-
istic function; |χ̃ (λ)| = |ρij(t)|/|ρij(0)|. The argument of the character-
istic function, λ, is a complex vector which depends on the matrix index
(i, j) and time [Eq. (3.36)]. For completely general reservoir states, the
characteristic function is given by Eq. (3.35). For general Gaussian
reservoir states, |χ̃(λ)| = e−Γ(λ), with Γ(λ) = 1

2Λ
TσΛ the decoherence

function.. In case the reservoir modes are unentangled, Γ(λ) may be
written using a single sum over k [Eq. (3.39)]. If, furthermore, each
of these modes is a (possibly) displaced thermal state, the decoherence
function simplifies to Eq. (3.41). It is this form of the decoherence
function that we use in the main text. Surprisingly, displacing a reser-
voir state has no effect on the dephasing process. For example, this
means that it does not matter for the dephasing process if a mode is
in a highly excited coherent state or the vacuum state.



3.B. Typical values of the dephasing susceptibility 99

3.B Typical values of the dephasing suscepti-
bility

Here, we ask the question if there many i − j such that γi−j(k) ≈ L2,
given fixed values for L and k. We show this is not the case: as we
go over all (i, j), the values of γi−j(k) are distributed according to a
Gaussian that has a standard deviation that is at most L/(2π). This
means that, for a random (i, j), γi−j(k) is typically on the order of
L/(2π), or less.

To show this, fix L and k, and consider the function Dij :=√
γi−j(k) = ‖

∑
ℓ(iℓ − jℓ)eik·rℓ‖. Consider the frequency distribution

of this function. This is a table that, per possible value D0 of Dij,
shows the number of inputs (i, j) such that Dij = D0. To obtain this
distribution, we see D as the distance from the origin of a random
walker on the complex plane. The walker takes L steps, where the ℓth
step is given by dℓeik·rℓ , with d = i − j. For the ℓth step, the walker
has a probability 1/2 to make no step at all, a probability of 1/4 to
take the step +eik·rℓ , and a probability of 1/4 to take the step −eik·rℓ .
After L steps, the walker is a distance Dij away from the origin of the
complex plane.

Naturally, the variance in the distances from the origin is largest
if the walker is restricted to move on a single line, which happens if
k = 0. Let us therefore put k = 0, keeping in mind that, at worst,
we are overestimating the variance of Dij for other values of k. For
a 1D random walker that can take the steps +1 and −1 with equal
probability, it is well-known that, after L steps, the distribution of
distances from the origin is well approximated by a Gaussian with
standard deviation

√
2L/π. In our situation, half of the time the 1D

walker does not take a step at all. Therefore, the distribution of D
will be approximated by a Gaussian with variance

√
L/(2π). Since

γi−j = (Dij)2, the distribution of γi−j over (i, j) is approximated by a
Gaussian with standard deviation L/(2π). This means that for fixed L
and k, and given a random (i, j), the decoherence function is, at most,
typically on the order of L/(2π). Additionally, it means that, if we are
given a random (i, j), where also the dimension L of i and j is random
but equal, the probability that γi−j ≥ κL2 goes to zero as L goes to
infinity, for all k and κ > 0.
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3.C Explicit expressions for the vacuum con-
tribution

Here, we derive, for the first time, the explicit solution of the vac-
uum part of the decoherence function, Γ(vac)

d (t), in the array model of
Sec. 3.3. This gives a better understanding between the interplay of
time and system-size dependence. For simplicity we assume that the
qubits form a linear array with spacing a and that they couple to a
one-dimensional reservoir via the single-reservoir dephasing Hamilto-
nian. The spectral density of the reservoir is assumed to be given by
Eq. (3.16).

In principle, in the array model, d = 1, but we will analytically
extend our solutions to arbitrary d. After absorbing the integral over
the solid angle, which in d = 1 dimensions gives a factor of 2, into αd,
the vacuum decoherence function reads

Γ
(vac)
d (t) =

∫ ∞

0
dω J(ω)γd(ω)τ(t, ω), (3.42)

with

J(ω) = αdω
de−ω/ωc ,

γd(ω) =
∑
ℓm

dℓdm cos[ωa(ℓ−m)],

τ(t, ω) =
1− cos(ωt)

ω2
.

In this section, we derive the full solution of Eq. (3.42). Addi-
tionally, we derive simplified approximate solutions for the limits of
infinitesimal and infinite time. For infinitesimal times, we find

Γ
(vac)
d (t) ≈ 1

2
αd‖d‖2Γ̃(1 + d)ωd−1

c (tωc)
2,

where Γ̃ is the regular gamma function Γ̃(j + 1) = j!, not to be con-
fused with the decoherence function. In the infinite time limit, Γ(vac)

d (t)
reaches a plateau for all d > 1. For d ≥ 2, we show that the height this
plateau equals

lim
t→∞

Γ
(vac)
d (t) ≈ αd‖d‖2Γ̃(d− 1)ωd−1

c .

This result extends that of Sec. 3.4.2 for the current, specific setting.
Note that, because ‖d‖2 ≤ (

√
12 + 12 + . . .+ 12)2 ≤ L, the decoherence

function scales at most linearly with L in the limits of infinitesimal and
infinite time, in accordance with the results in the main text.
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3.C.1 General solution
We start by rewriting γd(ω) as

γd(ω) =
L−1∑
r=0

fdr cos(aωr), (3.43)

where

fdr = (2− δ0r)

L−r∑
m=1

dmdm+r. (3.44)

Written this way, γd(ω) is the cosine transform of fdr. For later refer-
ence, we note that for the states |GHZ〉 and

∣∣GHZ′〉,
fdr =

{
L : r = 0

2(L− r)ζr : r > 0
,

where ζ = 1 for |GHZ〉 and ζ = −1 for
∣∣GHZ′〉.

Going back to the general case, we have from Eqs. (3.42) and (3.43),
and fd0 = ‖d‖2, that

Γ
(vac)
d (t) = αd‖d‖2I0 + αd

L−1∑
r=1

fdrIr, (3.45)

with
Ir(t) =

∫ ∞

0
dω ωdτ(t, ω) e−ω/ωc cos(aωr). (3.46)

This integral is solved using standard identities for Gaussian integrals.
For d > 0, d 6= 1,

Ir(t) =
a1−d

4
Γ̃(d− 1)

×
[
2(Qr0)

1−d − (Qr,−1)
1−d − (Qr1)

1−d
]

+ c.c, (3.47)

Here c.c. stands for the complex conjugate of the preceding term, and

Qrj := i(jt/a− r) +
1

aωc
, (3.48)

with i the imaginary unit. For d = 1,

Ir(t) =
1

4
[−2 log (Qr0) + log(Qr,−1) + log(Qr1)]

+ c.c. (3.49)
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Figure 3.6: The decoherence function of the off-diagonal matrix ele-
ment of the density matrix of |GHZ〉 (left) and

∣∣GHZ′〉 (right) in d = 2
dimensions, with ωc = 10/a and T = 0. We observe L1 pronounced
extrema, at t/a = 0, 1, 2, . . . , L − 1. The time interval between these
extrema is equal to the time required by the mode to travel a distance
a. There are no extrema after the mode has had the time to travel the
distance aL, which is the total length of the array. For

∣∣GHZ′〉, the ex-
trema are alternating local maxima and minima. For |GHZ〉, there are
only local minima at these points. After the series of extrema, ΓGHZ
and ΓGHZ′ reach the same plateaus, the height of which is given by
Eq. (3.58). Plots for higher L, and odd L, show the same behaviour.

We now have Γ
(vac)
d (t) in closed form, except for the sum over a single

index in Eq. (3.45). Using this analytic solution, ΓGHZ and ΓGHZ′ are
plotted in Fig. 3.6.

3.C.2 Infinitesimal time limit
The leading, second order in time of the integral in Eq. (3.46) equals

1

2
t2
∫ ∞

0
dω e−ω/ωcωd cos(aωr).

Solving this integral, we obtain, for r = 0,

I0(t) = ωd−1
c

{
1

2
Γ̃(1 + d)(tωc)

2 +O
[
(tωc)

4
]}

. (3.50)
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For r > 0, we find

Ir>0(t) = a1−d
1

4
Γ̃(1 + d)(t/a)2[(Qr0)

−(d+1) + c.c.]

+ a1−dO
[
(t/a)4

]
.

These two solutions hold for all d > 0. Up to a factor αd‖d‖2, the first
term of the decoherence function in Eq. (3.45) is given by Eq. (3.50).
For the remaining terms, with r > 0, note that |fdr| ≤ 2fd0 = 2‖d‖2.
Thus,

αd

∣∣∣∣∣
L−1∑
r=1

fdrIr(t)

∣∣∣∣∣ ≤ 2αd‖d‖2
L−1∑
r=1

|Ir(t)|. (3.51)

Note |Ir(t)| is proportional to∣∣∣(Qr0)−(d+1) + c.c.
∣∣∣ < 2|Qr0|−(d+1)

= 2

(
r2 +

1

(aωc)2

)−(d+1)

< 2 r−2(d+1).

Therefore,

L−1∑
r=1

∣∣∣(Qr0)−(d+1) + c.c.
∣∣∣ < 2

L−1∑
r=1

r−2(d+1)

< 4.

Thus, we obtain

αd

∣∣∣∣∣
L−1∑
r=1

fdrIr

∣∣∣∣∣ < 2αd‖d‖2a1−dΓ̃(1 + d)(t/a)2

+ αd‖d‖2a1−dO(t/a)4. (3.52)

There are extra factors of L hiding in the O(t/a)4 term. We can disre-
gard this L dependence because, in this subsection, we are interested
in the limit of infinitesimal time. Then for any L there is a t/a � 1
such that the second term in Eq. (3.52) is negligible.

Thus, for small times and d > 0, the final result is

Γ
(vac)
d (t) =

1

2
αd‖d‖2Γ̃(1 + d)ωd−1

c (tωc)
2 + E , (3.53)
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where E contains both the error from the α‖d‖2I0 term, and all of the
remaining terms in Eq. (3.45),

E = αd‖d‖2ωd−1
c O(tωc)

4

+ 2αd‖d‖2a1−dΓ̃(1 + d)(t/a)2

+ αd‖d‖2a1−dO(t/a)4.

Given an L and ωca� 1, the relative error

Ẽ := E
1
2αd‖d‖2Γ̃(1 + d)ωd−1

c (tωc)2

< O(tωc)
2 +

4

(aωc)d+1
+

1

aωc(tωc)2
O(t/a)4,

is negligible for t small compared to 1/ωc and a.

3.C.3 Infinite time limit

If d > 1 and j 6= 0, the function (Qrj)
1−d vanishes in the limit that

t goes to infinity. For j = 0, on the other hand, (Qrj)
1−d is time-

independent and non-zero. Thus, from Eq. (3.42),

lim
t→∞

Ir(t) =
1

2
a1−dΓ̃(d− 1)(Qr0)

1−d + c.c, (3.54)

for d > 1. Therefore, limt→∞ Γ
(vac)
d (t) exists for d > 1, and its value

can be found by substituting Eq. (3.54) into Eq. (3.45). The existence
of this limit means the vacuum decoherence function always reaches a
proper plateau for d > 1 (cf. Sec. 3.4.2).

We now show the height of this plateau scales linearly with L for
d ≥ 2, and, for these d, simplify the exact expression for the height
of the plateau. (This result need not imply superlinear scaling of the
height of the plateau for d < 2.) Firstly,

lim
t→∞

Γd(t) = αd

L−1∑
r=0

fdr lim
t→∞

Ir. (3.55)

With fd0=‖d‖2, Eq. (3.54), and Q00 = 1/(aωc), the first term (r = 0)
equals

αd‖d‖2 lim
t→∞

I0=αd‖d‖2Γ̃(d− 1)ωd−1
c .
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The remaining terms in Eq. (3.55) can be neglected. This is because
they are upper bounded by

E := αd

∣∣∣∣∣
L−1∑
r=1

fdr lim
t→∞

Ir

∣∣∣∣∣ < 2αd‖d‖2
L−1∑
r=1

∣∣∣ lim
t→∞

Ir

∣∣∣
≤ 2αd‖d‖2 1

2
a1−dΓ̃(d− 1)

×
L−1∑
r=1

∣∣∣(Qr0)1−d + c.c.
∣∣∣ . (3.56)

For r ≥ 1, |Qr0|>1, and d ≥ 2, we have∣∣∣(Qr0)1−d + c.c.
∣∣∣ ≤ ∣∣(Qr0)−1 + c.c.

∣∣ (3.57)

=
1

aωc

1

r2 + 1
(aωc)2

<
1

aωc

1

r2
.

Thus, with
∑L−1

r=1 1/r2 < 2, we have for the sum in Eq. (3.56) that
L−1∑
r=1

∣∣∣(Qr0)1−d + c.c.
∣∣∣ < 2

aωc
.

Therefore
E < 2αd‖d‖2a1−dΓ̃(d− 1)

1

aωc
.

In conclusion, we have for d ≥ 2,

lim
t→∞

Γ
(vac)
d (t) = αd‖d‖2Γ̃(d− 1)ωd−1

c + E , (3.58)

with relative error

Ẽ := E
αd‖d‖2Γ̃(d− 1)ωd−1

c

<
2

(aωc)d

<
2

aωc
.

The latter is negligible for aωc � 1. Note that Γ
(vac)
d (t) = O(L) even

if this condition does not hold.

***
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Chapter 4

Dynamical
fidelity
susceptibility of
decoherence-free
subspaces

Abstract
In idealized models of a quantum register and its environment, quan-
tum information can be stored indefinitely by encoding it into a
decoherence-free subspace (DFS). Nevertheless, perturbations to the
idealized register-environment coupling will cause decoherence in any
realistic setting. Expanding a measure for state preservation, the dy-
namical fidelity, in powers of the strength of the perturbations, we
prove stability to linear order is a generic property of quantum state
evolution. The effect of noise perturbations is quantified by a con-
cise expression for the strength of the quadratic, leading order, which
we define as the dynamical fidelity susceptibility of DFSs. Under the
physical restriction that noise acts on the register k-locally, this sus-
ceptibility is bounded from above by a polynomial in the system size.
These general results are illustrated by three physically relevant exam-
ples. Knowledge of the susceptibility can be used to increase coherence
times of future quantum computers.

107
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4.1 Introduction
The biggest roadblock on the way to scalable quantum computation is
decoherence [108, 138, 115]. Quantum error correction offers solutions
to this problem [131, 96]. In active quantum error correction, errors
have to be detected and corrected, whereas in passive error correction,
the strategy is to avoid the errors by encoding. The two forms of error
correction can be used in conjunction [94, 83], and can be described in
the same mathematical framework [87].

An important player in the passive category is the decoherence-free
subspace (DFS) [115, 40, 151, 147, 148, 95, 97, 83]. Although DFSs
have been superseded theoretically by more general notions of passive
error correction [24], they remain of interest both in theory and in
practice [85, 23, 154]. In this technique, symmetries of the register-
environment coupling are exploited to store quantum information in
a register subspace whose reduced time evolution is purely unitary.
In contrast to states outside of a DFS, those in it do not suffer from
decoherence. Only register-environment models with enough symmetry
allow for DFSs.

In real systems, there are small deviations from the idealized model
of the interaction between the quantum register (the ‘system’) and the
environment (the ‘bath’). In particular, these may lead to superdeco-
herence (Chapter 3) even for states in a DFS. The quantification of the
sensitivity of DFSs to perturbations has lead to the definition of the
dynamical fidelity [95, 13].

The dynamical fidelity is a measure for the closeness of two states:
(i) a state, possibly in a DFS, evolving in time under the original
model, and (ii) the same initial state, evolving under the presence of
an additional system-bath interaction whose strength is proportional
to ε. At the initial time, the dynamical fidelity equals unity, but as
time evolves the two states will start to diverge, decreasing the fidelity.
The dynamical fidelity can be seen as a generalization of the Loschmidt
echo [58] to open quantum systems, and is related the fidelity in the
context of phase transitions [150, 146, 61]. In the latter, the fidelity
measures the closeness between the ground states of Hamiltonians with
different parameter values.

In an initial qualitative study [13], it was shown that the dynam-
ical fidelity can only depend linearly on ε whenever the unperturbed
system evolves unitarily on its own in a non-trivial way. This is so
for non-degenerate logical states, or whenever the quantum register is
used in a quantum computation. Conversely, they showed there is no
term linear in ε whenever the quantum register does not evolve on
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its own. This led to the conclusion that DFSs are ‘robust’ or ‘stable’
against perturbations when used as quantum memory, but not when
used during a quantum computation [95, 13, 97, 6, 58, 39, 129, 128].

Here, we prove there never is a linear dependence on ε. In the
parlance of the previous work, this means DFSs are also stable when
used during a quantum computation. However, we show the result even
holds for initial states outside of a DFS. In retrospect, the absence of a
linear term in the expansion of the dynamical fidelity is a consequence
of its definition, and not a property of DFSs. This can be considered
positive for DFSs, because it shows states in a DFS do not react more
strongly to perturbations than regular states. For the fidelity in the
context of phase transitions the absence of a linear term was already
known [150, 146, 61].

We go on to introduce the dynamical fidelity susceptibility of DFSs
χ, ‘susceptibility’ for short (not to be confused with the characteristic
function of Sec. 3.A), defined as the strength of the term in the dy-
namical fidelity proportional to ε2t2.1 As the first non-trivial term, the
susceptibility quantifies the leading order sensitivity to perturbations
of states in a DFS. Surprisingly, it does not depend on the unperturbed
Hamiltonian, so the leading order behaviour of DFSs is as if there were
no unperturbed system-bath interaction. Furthermore, it means our
result can be used to study the behaviour of any state under pertur-
bations, outside of the context of DFSs, as long as the unperturbed
system-bath interaction vanishes because in that case the DFS of a
quantum register is its entire Hilbert space. Even though physically
the leading order in time is the most interesting, we later generalize to
include all orders in time for completeness.

For general perturbations, we show the susceptibility is bounded
from above by an exponential in the system size, χ = O(24n), with
n the number of qubits. A DFS for which the susceptibility increases
exponentially should be considered non-scalable in any practical sense.
However, noise can typically be described by a k-local Hamiltonian
(Sec. 1.4.4), which enforces a more favourable scaling with n. The most
commonly considered case is k = 1, which describes completely local
noise [108]. For general k-local perturbing noise, the susceptibility is
shown to be bounded from above by a polynomial, χ = O(n2k). This
can be compared to the related result on active error correction by
Preskill [121], and impacts the scalability of quantum computation [72,

1A quantity called the ‘dynamical fidelity susceptibility’ was also introduced in
[103]. Despite the name, this refers to something different; it refers to the fidelity
between a thermal state (under some Hamiltonian) and the same state after being
time evolved by a perturbed Hamiltonian.
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73] using DFSs.
To illustrate these results, we compute the susceptibility of a highly

non-classical state, the GHZ state, in two types of DFS. The first pro-
tects against pure collective dephasing, the second additionally against
collective emission and absorption. We find χ = n2/4 and χ = n/3,
respectively. Similar scaling laws were found before [115, 26, 104] for
non-DFS states, and, in fact, DFSs were designed to prevent such scal-
ing laws. Our work shows that these scaling laws are still present in
practice. To connect to Chapter 3, we also compute the dynamical
fidelity susceptibility caused by a general spin boson dephasing model.
The result shows the relation between the dephasing susceptibility of
Chapter 3 and the dynamical fidelity susceptibility of the current chap-
ter.

4.2 The dynamical fidelity
Consider a system S in a bath B, as in Sec. 1.4.3. In the context
of quantum computation, S is the collection of qubits, the quantum
register, and B is the environment, such as the electromagnetic field.
In general, the Hamiltonian on these systems can be written in the
form

H0 = HS ⊗ 1+ 1⊗HB +HSB, (4.1)

where HS (HB) acts only on S (B) and HSB is a system-bath inter-
action term. In an ongoing quantum computation, HS includes the
generators of the gates (also see Sec. 1.5.1).

Assume that at t = 0 we have a product state ρSB,init = |Ψ〉 〈Ψ|,
with |Ψ〉 = |ψ〉 ⊗ |φ0〉. The reduced time evolution that is induced by
the Hamiltonian (4.1) is detailed in Sec. 1.4.6. The essential aspects
will be summarized here. For a non-trivial HSB the Hamiltonian (4.1)
will induce entanglement between S and B. Tracing out B, the pure
system state |ψ〉〈ψ| at time t = 0 will generally be mapped to a mixed
system state at t > 0 by time evolution. We denote this map, or
quantum channel, by A(t) = A. For every t ≥ 0 we have a quantum
channel. The system state after time t equals ρS(t) ≡ A[|ψ〉〈ψ|] =
trB(e−itH |Ψ〉 〈Ψ| eitH) in units where h̄ = 1. This can be rewritten by
introducing the Kraus operators Ai(t) ≡ 〈φi| e−itH |φ0〉, where {|φi〉}
forms an orthonormal basis for HB, with |φ0〉 the initial bath state.
Since H0 acts on both HS and HB, and the {|φi〉} are bath states, Ai(t)
acts non-trivially on HS only. Thus the operator sum representation
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(OSR) of A is obtained,

A[|ψ〉〈ψ|] =
∑
i

Ai(t) |ψ〉〈ψ|A†
i (t). (4.2)

Because A is trace-preserving, we have the normalization condition∑
iA

†
i (t)Ai (t) = 1.

In general, A may map pure states to mixed states. A DFS, on the
other hand, is defined as a subspaceD ⊂ HS for which, despite coupling
to the bath viaH, A[|ψ〉〈ψ|] = e−itHS |ψ〉〈ψ| eitHS for all |ψ〉 ∈ D, where
e−itHS |ψ〉 has to remain in D [151, 95]. Thus, pure states in a DFS are
mapped to pure states in the same DFS by A. In terms of the OSR, a
necessary and sufficient condition for |ψ〉 ∈ D is Aj |ψ〉 = gje

−itHS |ψ〉
for all j, where

∑
j |gj |2 = 1 [97, 13]. We do not assume |ψ〉 ∈ D unless

stated otherwise.
Consider the perturbation V to the Hamiltonian H0,

H = H0 + εV, (4.3)

where ε is a real parameter. (The ε-dependence of H is suppressed
in the notation.) The system state after time t now also depends on
ε, and the OSR of the map induced by H is ρS(ε, t) ≡ Aε[|ψ〉〈ψ|] =∑

iAi (ε, t) |ψ〉〈ψ|A
†
i (ε, t) with Ai(ε, t) = 〈φi| e−itH |φ0〉. Since the ex-

ponential map is analytic, the Kraus operators of the perturbed map
may be expanded around ε = 0 as

Ai(ε, t) = A
(0)
i (t) + εA

(1)
i (t) + ε2A

(2)
i (t) +O(ε3). (4.4)

Here, A(1)
i (t) = 〈φi|− itV −t2(H0V +V H0)/2+O(t3) |φ0〉. The explicit

form of A(2)
i (t) is of no interest because it will be eliminated. We do

not allow qubits to leave the system, so even the perturbed quantum
channel needs to be trace-preserving. Thus,

∑
iA

†
i (ε, t)Ai (ε, t) = 1 for

all real ε and t. After the expansion (4.4) is substituted this imposes∑
i

(
A

(0)†
i (t)A

(1)
i (t) +A

(1)†
i (t)A

(0)
i (t)

)
= 0, (4.5)∑

i

(
A

(0)†
i (t)A

(2)
i (t) +A

(1)†
i (t)A

(1)
i (t) +A

(2)†
i (t)A

(0)
i (t)

)
= 0. (4.6)

Conditions involving higher orders of the expansion can be obtained
similarly. The above relations are general, since they put constraints
on perturbations to general quantum channels, applicable outside the
present context. There are no separate conditions that follow from
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the complete positivity of Aε; any map that has OSR is automatically
completely positive. If one is interested in the effects of a perturbation
of the Kraus operators rather than a perturbation of the Hamiltonian,
Eq. (4.4) is the starting point.

In general, the fidelity between two states is defined as F (σ, η) =[
tr
√√

ση
√
σ
]2

[71]. The effect of a perturbation on the dynamics may
be quantified by the dynamical fidelity F , that is, the fidelity between
the state as obtained after the unperturbed time evolution and the state
after the perturbed time evolution, F ≡ F [ρS(0, t), ρS(ε, t)]. Often
it is impractical to compute the fidelity because of the square roots.
However, if ρS,init = |ψ〉〈ψ|, and |ψ〉 in in a DFS such that the state
remains pure for all t > 0, the dynamical fidelity simplifies to

F = 〈ψ(t)| ρS(ε, t) |ψ(t)〉 , (4.7)

with |ψ(t)〉 = U(t) |ψ〉 ≡ e−itHS |ψ〉.

4.3 Expansion of the dynamical fidelity
The dynamical fidelity F is analytic in ε at ε = 0 because it is a
composition of analytical functions of ε. A careful, elementary proof
of this statement is given Sec. 4.A. Now, F may be expanded for small
ε if the perturbation is weak,

F = 1 + εF (1) + ε2F (2) + . . . . (4.8)

It has previously been shown that F (1) = 0 whenever HS = 0 and |ψ〉
in a DFS, which leaves open the possibility that F (1) 6= 0 when HS 6= 0,
even though |ψ〉 is in a DFS [13].

However, F (1) = 0 in all cases and at all times, even without as-
suming |ψ〉 to be in a DFS [as opposed to in Eq. (4.7)]. This is a
direct consequence of the following theorem, together with the fact
that ρS(ε, t) is analytic in ε at ε = 0 for all t, as is clear from Eq. (4.4).

Theorem 4.3.1. Let {σ(ε)} be a family of finite-dimensional density
matrices that is analytic at ε = 0, and let F [σ(0), σ(ε)] denote the
fidelity between σ(0) and σ(ε). Then F (1) ≡ d

dεF [σ(0), σ(ε)]|ε=0 = 0.

Proof. F [σ(0), σ(ε)] is analytic in ε at ε = 0. Because 0 ≤ F ≤ 1
for any real ε, and F [σ(0), σ(0)] = 1, it follows that F (1) must always
vanish.
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The theorem also follows from the connection of the fidelity to the
Bures metric tensor [67, 116]. We elaborate more on this relation in
Sec. 4.C. This relation of the theorem to the robustness of DFSs, which
we make clear by the elementary considerations above, was not noticed
before. In fact, it is opposite to previous suggestions that continue to
proliferate in the literature [95, 13, 97, 6, 58, 39, 129, 128].

The theorem also applies when time evolution is generated by a
Lindbladian L, again even if the initial state is not in a DFS. See
Sec. 1.4.6.3 for a detailed background on Lindbladians. We perturb
the Lindbladian, as it is also done in [149, 5], by

H → H + εV,

Lk → Lk + εL′
k,

with H the Hamiltonian and Lk the Lindblad operators [Eq. (1.36)].
The effect on the Lindbladian is L → L + εL′ + ε2L′′ for some fi-
nite, constant linear superoperators L′ and L′′. The exponential map
of an analytical matrix is analytical. When we see L, L′ and L′′ as
matrices (see Secs. 1.4.6.2 and 1.4.6.3), it is evident that ρS(ε, t) =
et(L+εL

′+ε2L′′)ρS,init is analytical in ε at ε = 0 for all t ≥ 0. It is
then a direct consequence of Theorem 4.3.1 that F (1) = 0 also in the
Lindblad-setting.

We now return to the OSR [Eq. (4.2)], and consider
F (2). We stress that now we do assume |ψ〉 to be in
a DFS. Combining Eqs. (4.2), (4.4), and (4.7), we find
F (1) =

∑
i 〈ψ|A

(0)†
i (t)A

(1)
i (t) + A

(1)†
i (t)A

(0)
i (t) |ψ〉 and F (2) =∑

i 〈ψ|A
(0)†
i (t)A

(2)
i (t) +A

(2)†
i (t)A

(0)
i (t) |ψ〉+ | 〈ψ| eitHSA

(1)
i (t) |ψ〉 |2. At

this point it seems that F (1) 6= 0. By the normalization condition on
perturbed Kraus operators [Eq. (4.5)], however, it follows that F (1) = 0.
The second condition [Eq. (4.6)] is crucial in obtaining a concise ex-
pression for F (2), as it can be used to eliminate A(0)

i (t) and A
(2)
i (t).

This yields
F (2) = −

∑
i

σ2ψ[U
†(t)A

(1)
i (t)], (4.9)

with U(t) = e−itHS , and σ2ψ[O] ≡ 〈ψ|O†O |ψ〉 − | 〈ψ|O |ψ〉 |2. Equation
(4.9) describes the effect of a perturbation to the Kraus operators on
the dynamics of states in a DFS. The entire procedure above can be
straightforwardly extended to higher orders in ε.
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4.4 Susceptibility

We now consider the short-time expansion of F (2). The first non-
vanishing term is proportional to t2. We define the proportionality
constant χ (with an extra minus sign) as the dynamical fidelity suscep-
tibility of DFSs. That is, χ = −1

4
∂2

∂ε2
∂2F
∂t2

|ε,t=0, so that

F = 1− χ ε2t2 +O(ε2t4). (4.10)

This is not yet a computation but only a definition. To obtain an
expression for χ involving H, note that, in general, the perturbing
Hamiltonian can be written as V =

∑
α Sα ⊗ Bα.2 We substitute

A
(1)
i (t) = 〈φi| − itV |φ0〉 + O(t2) into Eq. (4.9) and collect terms pro-

portional to ε2t2. Using the (connected) system correlation function
S with matrix elements Sαβ = 〈ψ|S†

αSβ |ψ〉 − 〈ψ|S†
α |ψ〉 〈ψ|Sβ |ψ〉 and

the bath correlation function Bαβ = 〈φ0|B†
αBβ |φ0〉, the result can be

written as
χ = tr(BST ). (4.11)

Here, the trace is not over HS or HB but over the indices of the corre-
lation functions. When V is a simple tensor product, V = S ⊗B, this
reduces to χ = 〈φ0|B2 |φ0〉σ2ψ[S].

Equation (4.11) assumes the initial system state to be in a DFS,
but does not depend directly on HSB. So in particular, it holds for
HSB = 0, in which case the DFS is all of HS . Thus Eq. (4.11) can be
used outside of the context of DFSs to study the effects of perturbative
system-bath coupling as long as there is no initial system-bath coupling.

Mathematically, the only restriction on V is its Hermiticity. For S a
qubit register with n qubits, any V may be written as V =

∑
α cαPα⊗

Bα, with cα real, Pα elements of the Pauli group {1, σx, σy, σz}⊗n
(see Sec. 1.4.4), and Bα bath operators. In this form there are at
most 4n = 22n linearly independent terms. Under the assumption that
adding a qubit does not change how the former qubits couple to the
bath, we have that cα and Bα do not depend on n. It then follows from
Eq. (4.11) that χ = O(24n). Now consider the physical restriction that
V acts k-locally on the system, which means that every Sα acts on no

2Any operator on HSB can be written as V =
∑

ij vijFi ⊗ Gj , with Fi and Gj

operator bases for HS and HB , respectively. If we write out the sum in an arbitrary
but specific order, we can label these terms with integers α. Absorbing vij into the
system operator in every term (we may as well absorb it into the bath operator),
writing the system operator in that same term α as Sα, the bath operator in term
Bα, we may write V =

∑
α Sα ⊗Bα.



4.5. Three examples 115

more than k qubits, with k independent of n. Then V contains O(nk)
terms. By Eq. (4.11) it thus follows that χ = O(n2k).

4.5 Three examples
Here we calculate χ explicitly in three examples. Although χ does not
depend on the unperturbed Hamiltonian, we describe possible unper-
turbed Hamiltonians to give physical context.

4.5.1 Long wavelength dephasing
For the first example, consider the DFS that is currently used in ion-
trap quantum computers [86, 85]. The register-environment model is
that of collinear single-reservoir collective dephasing (Chapter 3) in
the long wavelength limit, which is the main source of decoherence
for unencoded quantum states in this setup [104]. The system-bath
interaction term of the model is given by [cf. Eq. (3.6)]

HSB = Jztot ⊗
∑
k

(gkak + g∗ka
†
k),

with Jztot =
∑n

i=1 σ
z
i /2 the z-component of the total spin operator,

where σzi is the the Pauli z-operator that only acts on qubit i, gk the
register-environment coupling strength, ak (a†k) the annihilation (cre-
ation) operator of a collinear an electromagnetic mode with wavenum-
ber k and polarization along the z-axis, and n the number of physical
qubits.

Using two physical qubits (n = 2), one logical qubit is protected
from the decohering influence of HSB by encoding it in the DFS
spanned by the logical states |0̄〉 = |01〉 and |1̄〉 = |10〉. For n > 2
even, the qubits are paired, and each pair encodes one logical qubit.
The GHZ state is highly non-classical and known to be highly sensi-
tive to the environment, which is why it is used in quantum metrology
[57] and as a probe for the preservation of coherence [104]. It can be
protected by encoding it as |ψ〉 = (|0̄〉n/2 + |1̄〉n/2)/

√
2.

We perturb the model by adding a bosonic mode that couples to
the staggered magnetic moment of the system. This corresponds to
an electromagnetic mode with wavelength π/d (in units where c = 1)
coupling locally to the individual spin operators,

εV = εJzstag ⊗ (aπ/d + a†π/d), (4.12)
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where Jzstag =
∑n

i=1(−1)iσzi /2. We take the state of the perturbing
mode to be the vacuum, that is, the state |φ0〉 such that aπ/d |φ0〉 = 0.
[The state of the other modes is irrelevant, see Eq. (4.11).] This state
is chosen because it forms a best-case scenario; the thermal bath can
at best be at zero temperature. The computation is not more involved
when the thermal or number state is assumed. With all definitions in
place, we can directly apply Eq. (4.11), to find

χ =
1

4
n2.

This example saturates the bound on the system size scaling for a
completely local noise model.

4.5.2 Long wavelength dephasing, absorption and emis-
sion

For our second example, we consider a DFS that, next to dephasing,
includes protection against collective absorption and emission of radia-
tion [147, 97]. To the best of our knowledge, at the moment this DFS is
not used in quantum computers. The coupling term in the unperturbed
Hamiltonian reads

HSB =
∑
k

[fkJ
+ak + gkJ

−a†k + Jztot(hkak + h∗ka
†
k)]

(with tensor products omitted). Here, J± =
∑n

i=1 σ
±
i /2 excites (re-

laxes) the system collectively, with σ±i = σxi ± iσyi a combination of
Pauli operators, and with coupling constants fk, gk and hk. Other
symbols are defined as before. For four qubits, two logical states that
span a DFS that protects against HSB are

|0̄〉 = |s〉 ⊗ |s〉 ,
|1̄〉 = (|t1t−1〉+ |t−1t1〉 − |t0t0〉)/

√
3,

with |s〉 and |ti〉 the singlet and the triplet,

|s〉 = (|01〉 − |10〉)/
√
2,


|t−1〉 = |11〉
|t0〉 = (|01〉+ |10〉)/

√
2

|t1〉 = |00〉 .

The system state we consider here is similar to that in the first example,
|ψ〉 = (|0̄〉n/4+ |1̄〉n/4)/

√
2. It is in the DFS of HSB for n ≥ 4 a multiple

of 4. It is an encoded GHZ state when the larger DFS is constructed by
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simple concatenation of single logical qubit DFSs, like in the previous
example, but other methods exist [147, 97].

As the perturbation, we again consider a staggered field, with εV as
in the previous example [Eq. (4.12)]. Also, we assume the perturbing
mode to be in the vacuum state. Using Eq. (4.11), a computation
shows that

χ =
1

3
n,

for n > 4 a multiple of 4. (For n = 4 the prefactor is different.)

4.5.3 Discussion
In both of the examples discussed so far, V acts on the system 1-locally,
but only in the first example the bound on χ for 1-local perturbations
is saturated. Even though χ scales polynomially with n in both exam-
ples, the different powers can be an important distinction in practice.
The difference can be traced back to the fact that, in the first example,
both branches of the superposition that make up the encoded GHZ
state are eigenstates of σzi . That is, σzi |0̄〉

n/2 = ± |0̄〉n/2 and simi-
larly for |1̄〉n/2. This results in non-zero ‘inter-block cross terms’ such
as 〈0̄|n/2 σzi σzj |0̄〉

n/2, for i, j belonging to a different pair of qubits.
There are ∼ n2 of those terms, and thus χ scales with n2. In con-
trast, in the second example, the states |0̄〉n/4 and |1̄〉n/4 are not eigen-
states of σzi . This leads to vanishing ‘inter-block cross terms’, such as
〈0̄|n/4 σzi σzj |0̄〉

n/4 where i, j belong to different groups of four qubits.
When i = j, σzi σzj = 1. There are ∼ n of such terms, and hence χ
scales as n.

4.5.4 Full dephasing
For our third example, we take the HSB = 0. In that case, the DFS
spans the entire system Hilbert space. As the perturbation, we consider
the interaction term of the complete single-reservoir dephasing model
of the previous chapter [Eq. (3.6)]. We assume the reservoir is in some
product state of number states. We consider any system state that
is of the form |ψ〉 = (|i〉 + |j〉)/

√
2. After substituting gk → εgk, the

Hamiltonian of the single-reservoir dephasing model [Eq. (3.6)] is of
the form of Eq. (4.3), with HSB = 0, εV = ε

∑
ℓ Sℓ ⊗Bℓ, where

Sℓ = Jzℓ , Bℓ =
∑

k
(g∗kℓak + gkℓa

†
k).
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For system states of the form |ψ〉 = (|i〉+ |j〉)/
√
2, we find

χ =
1

4

∑
ℓmkk′

dℓdm
[
gkℓg

∗
k′m(δkk′ + 2〈a†kak′〉φ) + gkℓgk′m〈a

†
ka

†
k′〉φ + c.c.

]
,

with d = i − j, and where c.c. stands for the complex conjugate of the
preceding term only. Using that |φ〉 is a product of number states, we
have

χ =
1

4

∑
ℓmk

dℓdmgkℓg
∗
km(1 + 2〈Nk〉φ).

Using plane waves, gkℓ = gk, e
ik·rℓ and introducing the dephasing sus-

ceptibility γd(k) as the spectral density of d (see Sec. 3.3), we obtain

χ =
1

4

∑
k
|gk|2γd(k)(1 + 2〈Nk〉φ). (4.13)

This says that, per momentum k, the leading order effect of turning on a
system-bath coupling between a quantum register and a single dephas-
ing reservoir is essentially the dephasing susceptibility γd(k) multiplied
by the occupation of that mode, (1 + 2〈Nk〉φ), where the addition of
unity accounts for the vacuum effects. This supports our interpreta-
tion of the dephasing susceptibility as an important physical quantity
in the study of the dephasing of quantum registers.

Note that here we have obtained χ without ever solving for the
reduced time evolution of the system state, showing the potential of
Eq. (4.11). In fact, with Eq. (4.13) we have already obtained a re-
sult that could not be obtained by using the solution of the full time
evolution of the spin-boson single-reservoir dephasing model, because
the latter relies on the assumption that the initial reservoir state is a
displaced thermal state. Equation (4.13) holds for a product of num-
ber states, some of which cannot be described as a displaced thermal
state. We can take the continuum limit of Eq. (4.13), just as we have
done Chapter 3, and show, in exactly the same way, that χ = O(L) in
bounded reservoirs. This extends the results of Chapter 3 to include
reservoir states that are products of number states, albeit only for the
leading order in time.

4.6 Generalization to all orders in time

Here, we derive an expression for F (2) [Eq. (4.9)] that includes all
orders in time, as opposed to Eq. (4.11). To do so, we go to the
interaction picture, denoted by the superscript I. (If there is no
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superscript denoting the picture the Schrödinger picture is assumed
here.) See Secs. 1.4.5.3 and 1.4.6.1 for a detailed introduction to
the interaction picture in open quantum systems. To summarize,
in the interaction picture, the initial SB state at t = 0, which is
equal in any picture, evolves as ρISB(ε, t) = U I(t)ρSB,initU

I†(t), with
U I(t) = eitH0e−itH = Te−iε

∫ t
0 dt′HI(t′). The operator U I(t) depends

also on ε but this notation is suppressed in U I(t) and its dependencies.
Here, T is the time-ordering operator and HI(t) is the interaction pic-
ture Hamiltonian εHI(t) = eitH0εV e−itH0 . As before, the Schrödinger
picture operator H0 contains the system and bath Hamiltonians, and
the original coupling HSB, against which the system state is protected
by the DFS. The perturbed Hamiltonian H contains an extra pertur-
bation εV which causes the system state to decohere.

Assuming, as before, that ρSB,init = |ψ〉〈ψ|⊗ |φ0〉〈φ0|, and that |ψ〉
is in a DFS, we find the dynamical fidelity equals

F = 〈ψ| ρIS(ε, t) |ψ〉 , (4.14)

with ρIS(ε, t) ≡ trB[ρIS(ε, t)] the interaction picture system state. Note
that, like the expectation value of operators, the fidelity is invariant
under change of picture even though states and operators are not.

The state ρIS(ε, t) can be expressed as

ρIS(ε, t) =
∑
i

AIi (ε, t) |ψ〉〈ψ|A
I†
i (ε, t),

where we define the interaction picture Kraus operators,

AIi (ε, t) = 〈φi|U I(t) |φ0〉 .

Using the Dyson series (Sec. 1.4.5.1), we can expand the interaction
picture Kraus operators as

AIi (ε, t) = A
I(0)
i (t) + εA

I(1)
i (t) + ε2A

I(2)
i (t) + . . . ,

where now A
I(0)
i (t) = A

I(0)
i = 〈φi|φ0〉, and

A
I(1)
i (t) = −i

∫ t

0
dt′ 〈φi|HI(t′) |φ0〉 . (4.15)

A similar expression holds for AI(2)i (t), but it is of no interest here
because it is eliminated by using the normalization conditions in Eqs.
(4.5) and (4.6) in their interaction form, which amounts to putting a
superscript I everywhere.
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Comparing the expression for F in the Schrödinger picture [Eq.
(4.7)] to that in the interaction picture [Eq. (4.14)], we see they are
essentially equal. The difference is that, in the interaction picture,
the extra factor U(t) is absent, and that the state is not ρS(ε, t) but
ρIS(ε, t). Since we have similar expressions for these states in terms of
the (interaction picture) Kraus operators, it is straightforward to show
that

F (2) = −
∑
i

σ2ψ[A
I(1)
i (t)], (4.16)

with σ2ψ defined as before. Of course F (2) itself is invariant under change
of picture, it is just the expression that changes form. Also note the
absence of AI(2)i (t) and thus any time ordering. This absence is due to
the normalization conditions Eqs. (4.5) and (4.6) in their interaction
form. Equation (4.16) says that the change of fidelity in a DFS, due
to an extra system-bath coupling εV , is proportional to the sum of the
auto-correlation functions of the interaction picture Kraus operators.

We can gain further insight into the change of fidelity by studying
how the AI(1)i (t) depend on the specific system and bath operators
appearing in V =

∑
α Sα⊗Bα. To do so we define SIα(t) and BI

α(t) by

HI(t) =
∑
α

SIα(t)⊗BI
α(t). (4.17)

Given any HI(t) (or equivalently any V ), such SIα(t) and BI
α(t) can

always be found. Note that only in the case HSB = 0, from which it
follows that eitH0 = eitHSeitHB , we may choose SIα(t) = eitHSSαe

−itHS

and BI
α(t) = eitHBBαe

−itHB .
Plugging Eq. (4.17) into Eq. (4.15), and the result into Eq. (4.16),

we find the generalization of Eqs. (4.10) and (4.11),

F = 1− ε2
∫ t

0
dt′dt′′ tr[B(t′, t′′)ST (t′, t′′)] +O(ε3), (4.18)

with correlation functions

Bαβ(t
′, t′′) = 〈φ0|BI†

α (t′)BI
β(t

′′) |φ0〉 ,
Sαβ(t′, t′′) = 〈ψ|SI†α (t′)SIβ(t

′′) |ψ〉 − 〈ψ|SI†α (t′) |ψ〉 〈ψ|SIβ(t′′) |ψ〉 .

4.7 Conclusion
Using the dynamical fidelity, we quantified the behaviour of DFSs un-
der perturbations of the system-bath interaction. The response to per-
turbations is of second order. We defined the strength of this second
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order as the dynamical fidelity susceptibility. It does not depend on
the unperturbed system-bath interaction, so to leading order, states
in a DFS respond to perturbations as if there were no unperturbed
coupling. Our expressions are applicable outside the context of DFSs
whenever the perturbation is the only system-bath interaction.

Instead of the robustness or stability of DFSs, we put forward the
scaling of the susceptibility with the system size to assess the value of
DFSs. For general perturbations, the susceptibility is upper bounded
by an exponential in the system size. However, under the restriction
of k-locality of the system operators appearing in the perturbation,
the upper bound is polynomial. Therefore, DFSs can be considered
scalable in theory. It remains to be shown that perturbations can be
made sufficiently weak and uncorrelated to allow practical use of DFSs
in large-scale quantum computers.

By identifying the ‘good’ DFSs, the susceptibility is a tool to in-
crease coherence times. Our quantitative results could be generalized
to arbitrary system states, and to more general forms of passive error
correcting, such as noiseless subsystems. They could also be adjusted
to yield the average-case susceptibility or the worst-case susceptibility.

Appendix

4.A Analyticity of the Fidelity
Here we prove a lemma concerning the fidelity

F (ρ, σ) =

[
tr
√√

ρσ
√
ρ

]2
.

Note that in the following, we do not assume ρ or σ to be in a DFS.

Lemma 4.A.1. Let {σ(ε)} be a family of finite-dimensional density
matrices that is analytic at ε = 0. Then the fidelity F [σ(0), σ(ε)] is
analytic at ε = 0.

Proof. Since σ(ε) is analytic we may expand it as a power series, σ(ε) =
σ(0)+εσ(1)+ε2σ(2)+. . ., where the σ(i) are constant and finite. Suppose
σ(0) is given as an N×N matrix, and let {p1, . . . pm}, with 1 ≤ m ≤ N ,
be its (not necessarily distinct) non-zero eigenvalues. There exists a
basis in which σ(0) = diag(p1, . . . , pm, 0, . . . , 0). Naturally, in this basis,√
σ(0) = diag(√p1, . . . ,

√
pm, 0, . . . , 0). Note that this is a projector
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onto the non-zero eigenspace of σ(0). Thus

F [σ(0), σ(ε)] =

[
tr
√

(σ(0))2 + ε
√
σ(0)σ(1)

√
σ(0) + . . .

]2
≡
[
tr
√
M(ε)

]2
,

where M(ε) =M (0) + εM (1) + . . ., with M (0) = diag[(p1)2, . . . , (pm)2].
Here we have used the fact that all matrices in the expansion of σ(ε)
are projected onto the zero-eigenspace of σ(0) so that we can reduce
the dimension of the matrix under the square root. Thus, the M (i)

are constant matrices of dimension m × m (as opposed to N × N),
and M(ε) is Hermitian and analytic. Denote the set of eigenvalues of
M(ε) by {ai(ε)}mi=1. It follows from Theorem 6.1 in Kato (1966) [75]
that the ai(ε) are analytic. Since, furthermore, ai(0) > 0, there exist a
δ > 0 such that ai(ε) > 0 for all ε in the domain D = (−δ, δ). In other
words, M(ε) is positive definite and analytic on the domain D. Thus
the eigenvalues of

√
M(ε) are given by {

√
ai(ε)}mi=1, which are again

all analytic on D. Therefore

F [σ(0), σ(ε)] =

[
m∑
i=1

√
ai(ε)

]2
(4.19)

is analytic around ε = 0.

4.B Alternative derivation of F (1) = 0

Here, we give an alternative proof to the theorem in the main text in
the case that the analytic family under consideration is obtained by
a perturbation. Strictly speaking this proof is redundant because a
proof was already given in the main text. Nevertheless, the proof here
is much more instructive. This is because it shows explicitly how the
normalization conditions play a crucial role. Furthermore, it may act
as a stepping stone for a more general result; in order to calculate F (2)

for general |ψ〉 ∈ HS , thus obtaining a generalization valid also for
states outside a DFS, essentially the same steps need to be followed as
in the following derivation.

To calculate F (1) explicitly, we adopt the notation from the proof
of Lemma 4.A.1 and continue from Eq. (4.19). We consider the time
t ≥ 0 here as fixed, and will drop the notation of t. The first order
correction to the eigenvalues ai(0) can be found using standard per-
turbation theory. Note, however, that in the standard setting one is
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interested in the corrections to the eigenvalues of a Hamiltonian. Here
we are interested in corrections to the eigenvalues of M (0), which is,
like a Hamiltonian, a Hermitian linear operator. Note that, in connec-
tion to the notation in the proof of Lemma 4.A.1, we are now using
the explicit states σ(0) = ρS(0, t) = ρS(0) and σ(ε) = ρS(ε, t) = ρS(ε).
Thus, by standard perturbation theory,

ai(ε) = ai(0) + ε 〈i|
√
ρ
(0)
S ρ

(1)
S

√
ρ
(0)
S |i〉+ . . .

= ai(0) + ε pi 〈i| ρ(1)S |i〉+ . . . ,

where
ρ
(1)
S =

∑
j

(
A

(0)
j ρS,initA

(1)†
j +A

(1)
j ρS,initA

(0)†
j

)
,

with ρS,init the initial system state and, as before [but now using the
specific density operator ρS(ε)], ρS(ε) = ρ

(0)
S + ερ(1) + . . .. The system

states {|i〉} are the non-zero eigenvectors of ρS(0) and are thus all
eigenvectors of M (0). From the equations above, it follows that

F [ρS(0), ρS(ε)] =

[
m∑
i=1

√
ai(0) + ε pi 〈i| ρ(1)S |i〉+ . . .

]2

=

[
m∑
i=1

(
pi +

ε

2
〈i| ρ(1)S |i〉+ . . .

)]2
. (4.20)

Again, it seems that F (1) 6= 0. Now either ρS(0) is full rank or it is not
full rank. Let us first assume it is full rank, that is, assumem = N with
N = dim(HS). Then by the normalization conditions in the main text,∑m

i=1 〈i| ρ
(1)
S |i〉 = tr ρ(1)S = 0. Therefore, in this case, F (1) = 0. Now

assume that ρS(0) =
∑

j A
(0)
j ρS,initA

(0)†
j is not full rank. We may write

ρS(0) =
∑m

k=1 pk |k〉〈k|, where m < N . We can expand the basis {|i〉}
to span all of HS (in practice this could be done by a Gram-Schmidt
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process), and write

m∑
i=1

〈i| ρ(1)S |i〉 =
N∑
i=1

〈i| ρ(1)S |i〉 −
N∑

i=m+1

〈i| ρ(1)S |i〉

= −
N∑

i=m+1

〈i| ρ(1)S |i〉

= −
N∑

i=m+1

∑
j

(〈i|A(0)
j ρS(0)A

(1)†
j |i〉+ c.c.)

= −
N∑

i=m+1

∑
j,k

pk(〈i|A
(0)
j |k〉〈k|A(1)†

j |i〉+ c.c.).

Here c.c. stands for the complex conjugate of the preceding term. For
all m + 1 ≤ i ≤ N , we have by definition that 〈i| ρ(0)S |i〉 = 0. Hence,
for these i,

〈i|
∑
j

A
(0)
j ρS(0)A

(0)†
j |i〉 =

∑
j,k

pk 〈i|A
(0)
j |k〉〈k|A(0)†

j |i〉

=
∑
j,k

pk | 〈i|A
(0)
j |k〉 |2 = 0.

It follows that

〈i|A(0)
j |k〉 = 0

for all m + 1 ≤ i < N and all 1 ≤ k ≤ m. Thus, combining the two
cases (i.e. ρS(0) full rank, ρS(0) not full rank), we have

m∑
i=1

〈i| ρ(1)S |i〉 = 0

for all 1 ≤ m ≤ N . Therefore, by Eq. (4.20), F (1) = 0 for any t and
any perturbation to a quantum channel as defined in the main text, in-
cluding perturbations obtained by perturbing the overall Hamiltonian.

4.C Relation between χ and the Bures metric
The fidelity can be used to define a distance on the space of N × N
density operators. This is the Bures distance [67, 116]

d2B(ρ, σ) = 2(1−
√
F (ρ, σ)).
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In the main text of this chapter we have expanded F =
F [ρS(0, t), ρS(ε, t)], which gives

d2B[ρS(0, t), ρS(ε, t)] = F (2)(t) ε2 +O(ε3)

= [χt2 +O(t3)]ε2 +O(ε3).

Thus F (2)(t) can be interpreted as (the only entry of) the pullback of
the Bures metric tensor on the submanifold {ρ(ε, t)}ε at ε = 0,

d2B(ρS(ϵ, t), ρ(ϵ+ dϵ, t))|ϵ=0 = F2(t)dϵ2 = (χt2 + . . .)dϵ2.

Here, we have identified ε as dϵ. (We use ‘d’ for infinitesimals and ‘d’
for one-forms. Denoting the metric tensor by d2B[ρ(ϵ), ρ(ϵ+ dϵ)], which
is not the square of a one-form, is a common abuse of notation.) Note
that the expression above defines a family of metric tensors, one for
every t.

In this geometrical picture, t itself is not a coordinate, like ϵ, be-
cause we are never comparing ρ(0, t) and ρ(ε, t) at different times. The
Bures metric tensor being a metric tensor, it may seem obvious that
there is no first order dependence of F on ε = dϵ. This is ultimately
a consequence of the fact that the set of all N ×N density matrices is
a Riemannian manifold. However, such an argument requires the ma-
chinery of differentiable manifolds. Theorem 4.3.1 gives a elementary
proof that can be understood without the need of introducing differen-
tiable manifolds. To the best of our knowledge, the connection between
the pullback of the Bures metric and the ‘robustness’ (i.e. the absence
of a term proportional to ε in F ) of DFSs, which is the important issue
here, had in any case not been noticed before.

***
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