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In this dissertation it is argued that rival scientific models should
be compared by treating them as competing forecasters and
assessing their relative predictive adequacy using the Bayes factor.
The first part of the dissertation is concerned with bridge sampling,
a computational procedure for estimating the marginal likelihood
- the key quantity for computing Bayes factors. The second part
of the dissertation is concerned with Bayesian methods for meta-
analyzing a set of studies. One central concept of this part is the

idea to combine several forecasters using Bayesian model averaging
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(BMA). The third part of the dissertation introduces Bayesian
approaches to a number of standard statistical tests. A central idea
of this partis the incorporation of prior knowledge into the analyses

to make the models’ forecasts more precise.
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Chapter 1

Introduction

1.1 A Competition Between Forecasters

Suppose you are interested in determining which of four weather forecasters, A,
B, C, and D, is the most accurate. To this end, you consider their forecasts for
three consecutive days. For simplicity, the forecasters predict only three different
types of weather: rain, clouds, or sun. The predictions of each of the four fore-
casters are displayed in Table 1.1. With these probabilistic predictions in hand, it
is straightforward to assess the accuracy of the four forecasters: we check how well
the forecasters have predicted the weather on the three days of interest. Specif-
ically, we consider how likely the actually observed weather is according to their
forecasts. Naturally, the forecaster that has predicted the observed weather best
is the most accurate.

On Day 1 there are clouds. Forecaster A has assigned 60% to this outcome,
forecaster B 35%, forecaster C 55%, and forecaster D 33.3%. Since forecaster A
has assigned the highest probability to the observed weather they are the most
accurate for Day 1. On Day 2 it rains. Forecaster A has assigned 40% to this out-
come, forecaster B 50%, forecaster C 40%, and forecaster D 33.3%. Based on this
information we can update our knowledge about the accuracy of the four forecast-
ers. Specifically, we can consider the probability that each forecaster has assigned
to the observed data sequence “clouds” — “rain”. Forecaster A has assigned
60% x 40% = 24% to this sequence, forecaster B 35% x 50% = 17.5%, forecaster C
55% x 40% = 22%, and forecaster D 33.3% x 33.3% = 11.1%. Therefore, although
forecaster B has predicted the weather on Day 2 best, when taking into account all
available data (i.e., the weather on Day 1 and Day 2), forecaster A is still the most
accurate, followed by C, B, and D. On Day 3 the sun is shining. Forecaster A has
assigned 70% to this outcome, forecaster B 40%, forecaster C 20%, and forecaster
D 33.3%. Again, we can update our knowledge based on the new observation.
Forecaster A had assigned 24% to the observed weather sequence on the first two
days. Updating this probability with the information from Day 3 reveals that
forecaster A has assigned 24% x 70% = 16.8% to the observed weather sequence
“clouds” — “rain” — “sun”. Forecaster B has assigned 17.5% x 40% = 7% to
this sequence, forecaster C 22% x 20% = 4.4%, and forecaster D has assigned
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Table 1.1: Predictions of four weather forecasters, A, B, C and D, for three consec-
utive days. The bold numbers correspond to the weather that actually occurred
on that day.

o7 > $o8

Weather on Day 1: &

Predictions of forecaster A 25% 60% 15%
Predictions of forecaster B 55% 35% 10%
Predictions of forecaster C 25% 55% 20%
Predictions of forecaster D 33.3% 33.3%  33.3%

Weather on Day 2: 7

Predictions of forecaster A  40% 50% 10%
Predictions of forecaster B 50% 35% 15%
Predictions of forecaster C ~ 40% 35% 25%
Predictions of forecaster D 33.3% 33.3%  33.3%

Weather on Day 3: 3t

Predictions of forecaster A 10% 20% 70%
Predictions of forecaster B 5% 55% 40%
Predictions of forecaster C 5% 5% 20%
Predictions of forecaster D 33.3%  33.3% 33.3%

11.1% x 33.3% = 3.7% to this weather sequence. Therefore, based on these three
days, we conclude that forecaster A is the most accurate, followed by forecaster
B, forecaster C, and forecaster D. Note that we could naturally keep updating
our knowledge about the accuracy of the forecasters. Specifically, we could obtain
their predictions for future days and then check how likely the observed weather
is given their forecasts.

We can not only assess who is the best forecaster for these three days, but we
can also gauge how much better, say, forecaster A is compared to forecaster B.
Specifically, the observed weather sequence is predicted 16.8% /7% = 2.4 times bet-
ter by forecaster A than by forecaster B. Similarly, the observed weather sequence
is predicted 16.8%/4.4% = 3.8 times better by forecaster A than by forecaster C.
Finally, the observed weather sequence is predicted 16.8%/3.7% = 4.5 times better
by forecaster A than by forecaster D. By transitivity, it follows that the observed
weather sequence is predicted 1.6 times better by forecaster B than by forecaster
C, 1.9 times better by forecaster B than by forecaster D, and 1.2 times better by
forecaster C than by forecaster D. The factor by which one forecaster outpredicts
another one is known in statistics as the Bayes factor (Etz & Wagenmakers, 2017;
Jeffreys, 1961; Kass & Raftery, 1995), and it is a central part of this dissertation.

Another observation is that the predictions of forecaster D are trivial: on every
day, D assigns equal probability to each of the three possible outcomes. Naively,
one might think that this is a good strategy for performing reasonably well, since
every possible outcome receives a decent probability. However, since the only
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predictions that matter for assessing the quality of the forecasters are the ones
for the observed weather, the vague predictions of forecaster D suffer a penalty
compared to the more risky, precise predictions of the other forecasters. For
instance, forecaster A has assigned 70% to sunshine on Day 3 and is rewarded for
this precise prediction since it turns out to be true. Note, however, that this is only
the case when these predictions are correct. For instance, forecaster C also made a
relatively precise prediction for Day 3 (i.e., 75% chance of clouds). However, this
precise prediction is not rewarded since the observed weather is sunshine. In fact,
this precise but incorrect prediction results in forecaster C loosing his second place
to forecaster B. In sum, more risky, precise predictions are rewarded compared to
vague predictions, but only in case they turn out to be true.

1.2 Treating Scientific Models as Forecasters

In science, researchers often aim to compare different accounts (i.e., models) of
the world. As showcased in the previous section, when assessing who is the most
accurate weather forecaster one just needs predictions and data for checking these
predictions — nothing more. In science we can treat models as forecasters. Based
on the forecasts of a number of competing models of interest, we can assess their
relative predictive adequacy for observed data. This approach to comparing com-
peting scientific accounts of the world is naturally implemented using Bayesian
statistics (e.g., Dawid, 1984). Specifically, Bayesian statistics allows one to update
one’s beliefs about the adequacy of competing accounts of the world by means of
observed data. In Bayesian statistics predictive performance is the tool by which
we learn, but prediction does not necessarily need to be the ultimate goal. Typ-
ically scientists are interested not only in predicting data but also in explaining
phenomena. Nevertheless, to explain phenomena one typically compares different
accounts of the world and using Bayesian statistics this is naturally accomplished
by means of comparing predictions.

When forecasts are provided directly as in the weather forecast example, assess-
ing their predictive adequacy based on observed data is straightforward. However,
for scientific models we often need to work to see what the models actually pre-
dict. Specifically, when comparing models it can be challenging to find out how
much probability exactly a model has assigned to the observed data. The reason is
that scientific models typically feature parameters, often denoted by 6, adjustable
quantities that affect what data patterns a model can predict.

As a concrete example, we consider a simplified version of the exponential decay
model for describing the relationship between memory retention and time (Lee &
Wagenmakers, 2013; Shiffrin, Lee, Kim, & Wagenmakers, 2008). In a typical
memory retention experiment participants are presented with a list of items and
subsequently their ability to remember items from the list is tested after different
periods of time have elapsed. The simplified exponential decay model features
two parameters: (1) « which corresponds to the rate of decay of information,
and (2) 8 which corresponds to a baseline level of remembering. Specifically,
the model stipulates that the probability of remembering an item after time ¢ is
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Figure 1.1: Transitioning from the #-world to the data-world to obtain the
model’s predictions for the memory retention example. In the #-world, all pos-
sible combinations of « and [ are deemed equally plausible a priori. This re-
sults in very vague predictions for the data-world. The probabilities that are
assigned to the different retention counts for each time lag are represented by
the size of the corresponding squares. The superimposed black symbols that
are connected by a line display the data of fictitious Participant 2 from Shiffrin
et al. (2008). Available at https://tinyurl.com/yyn7e209 under CC license
https://creativecommons.org/licenses/by/2.0/.

exp (—at)+ .1

To assess the accuracy of the model as a forecaster, we need to find out what
data the model predicts. Based on observed data we can then check, just as
in the weather forecast example, how much probability the model has assigned to
these observed data. For concreteness, suppose we are interested in an experiment
that presents participants with 18 items and tests their ability to remember these
items after 1, 2, 4, 7, 12, 21, 35, 59, and 99 seconds. Note that for different values
of the parameters o and 8 the model specifies a different exponential function
of memory retention and hence also predicts different data. To determine what
data the model predicts as a whole we need to consider the predictions for all
possible combinations of o and  and weight them by how plausible these specific
combinations of « and § are deemed a priori.

Figure 1.1 illustrates this process. The left part of the figure displays what
can be called the parameter-world or 6-world. Here we assume that o and
can take values between 0 and 1 and each possible combination of a and f is
equally plausible a priori. To obtain the model’s predictions we need to transition
from the 6-world to what can be called the data-world. Specifically, for each
possible combination of o and 3 we need to determine the resulting predictions
and then take a weighted average of all of these predictions. The averaging weights
correspond to how plausible each specific combination of a and 3 is deemed a

1To make sure that this yields a probability, the restriction is imposed that the resulting
value cannot be smaller than 0 or larger than 1.
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Figure 1.2: Transitioning from the #-world to the data-world to obtain the
model’s predictions for the memory retention example. In the #-world, certain
combinations of a and § are deemed more plausible than others based on the
data of the three fictitious participants from Shiffrin et al. (2008). This re-
sults in more precise predictions for the data-world. The probabilities that are
assigned to the different retention counts for each time lag are represented by
the size of the corresponding squares. The superimposed black symbols that
are connected by a line display the data of fictitious Participant 2 from Shiffrin
et al. (2008). Available at https://tinyurl.com/y402q4d7 under CC license
https://creativecommons.org/licenses/by/2.0/.

priori. The resulting predictions are displayed in the right part of Figure 1.1.
It is apparent that these predictions are very vague. Specifically, for many time
lags the different possible numbers of remembered items (i.e., retention count)
are all assigned a similar probability. Only for the first time lags, the model
makes more precise predictions which are that a higher retention count is more
likely than a lower retention count. To determine the accuracy of the model’s
predictions one needs observed data. As an example, the superimposed black
symbols that are connected by a line in the right part of Figure 1.1 display the
data of fictitious Participant 2 from Shiffrin et al. (2008). It is apparent that the
model has assigned a decent probability to the observed retention curve, however,
the model has clearly also assigned a similar probability to a number of (very)
different possible retention curves.

To make the model predictions more precise we can incorporate prior knowl-
edge about plausible values for o and 3, for instance, by considering previous
experimental data. To demonstrate how the incorporation of prior knowledge can
result in more precise predictions, we use the data of the three fictitious partic-
ipants from Shiffrin et al. (2008). The left part of Figure 1.2 displays again the
f-world. However, this time certain combinations of a and S are assigned more
plausibility than others based on what we have learned about these parameters
from the data of the three fictitious participants. The right part of Figure 1.2
displays the resulting predictions. Clearly, the predictions are much more precise
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than before. When assessing the accuracy of the model as a forecaster, these more
precise predictions will be advantageous in case the observed data indeed corre-
spond to the retention counts that are assigned more probability than others. For
instance, the superimposed black symbols that are connected by a line again cor-
respond to the data of fictitious Participant 2. It is apparent that the model has
predicted this observed retention curve very well. However, the refined knowledge
about what values of the parameters are more plausible than others is partially
based on exactly these data of Participant 2, so it is not valid to use these data a
second time for assessing the accuracy of the resulting predictions. Instead, these
predictions must be tested based on new data.

In practice there are typically several participants which complicates transi-
tioning from the #-world to the data-world and determining how much probabil-
ity a model has assigned to the observed data of all participants simultaneously.
Furthermore, transitioning from the #-world to the data-world is also more chal-
lenging for complex models that feature many parameters. A substantial part of
this dissertation is concerned with computational procedures that make it easier
to transition from the #-world to the data-world to obtain a model’s predictions.
Specifically, these procedures provide an estimate of the marginal likelihood, the
probability of the data given a model, which allows researchers to assess how well
a model has predicted observed data. Based on this quantity researchers can
compare different accounts of the world, just as we compared different weather
forecasters in the introductory example, using the Bayes factor. For instance, in
the memory retention example, one could obtain the predictions for a competing
model of memory retention (e.g., a model that specifies a power function) and
then compare the predictive adequacy of the two models for observed data using
the Bayes factor.

The weather forecast example and also the memory retention example illus-
trated that it may be advantageous to make more precise predictions since they
are rewarded in case they are accurate. A few chapters of this dissertation are
concerned with providing statistical procedures to researchers that allow them to
make their hypotheses more precise by incorporating prior information about the
quantities of interest.

Sometimes when comparing different scientific accounts of the world, there may
not be a model that is clearly favored by the data. For instance, in the weather
forecast example, the observed weather sequence was predicted only about 2.4
times better by forecaster A than by forecaster B. Suppose you are interested
in obtaining an accurate weather forecast for a new day. In this case, it may
be prudent to take into account not only the predictions of forecaster A, but to
consider the predictions of all forecasters. Specifically, we can obtain a combined,
averaged prediction for the new day by weighting each forecaster’s predictions
by how well they have done so far. Concretely, we want to take into account
predictions from A, B, C, and D, but we want to trust the predictions of A more
than the ones of B, C, and D since they have performed better so far. This
approach is naturally implemented using Bayesian model averaging (e.g., Hoeting,
Madigan, Raftery, & Volinsky, 1999). A few chapters of this dissertation provide
concrete applications of this procedure for taking into account model uncertainty
to prevent overconfident conclusions that one could obtain by trusting a single
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forecaster.

1.3 Chapter Outline

1.3.1 Part I: Bridge Sampling

The first part of the dissertation is concerned with bridge sampling, a computa-
tional procedure that facilitates the transition from the 8-world to the data-world
to obtain a model’s predictions for observed data. Specifically, bridge sampling
yields an estimate of a model’s marginal likelihood, the probability of the data
given a model.

Chapter 2 is a tutorial on bridge sampling. The method is introduced by
comparing it with three other Monte Carlo sampling procedures for estimating
the marginal likelihood in a simple beta-binomial example. The feasibility of the
approach in practice is demonstrated using single-participant and hierarchical ver-
sions of a reinforcement learning model. It is argued that bridge sampling is an
attractive method for comparing models in mathematical psychology where re-
searchers are often interested in comparing a limited set of possibly non-nested
models that are implemented in a hierarchical fashion and may have many param-
eters.

Chapter 3 applies an advanced version of bridge sampling called Warp-III for
comparing hierarchical multinomial processing tree (MPT) models. This version
of bridge sampling accounts for potential skewness in the posterior distribution
and can thereby provide more precise estimates of the marginal likelihood of the
models. The first example demonstrates how this procedure can be used to assess
which model parameters differ across trials. Specifically, similar to the idea of com-
bining the predictions of several weather forecasters, Bayesian model averaging is
used to assess which parameters vary across trials. The second example reanalyzes
data that have been used to compare two non-nested MPT models concerning the
illusory truth effect.

Chapter 4 applies Warp-11I bridge sampling for computing the marginal like-
lihood of evidence-accumulation models. Specifically, using the Linear Ballistic
Accumulator (LBA) model it is demonstrated that the combination of differential
evolution Markov chain Monte Carlo (DE-MCMC) and Warp-III bridge sampling
provides precise estimates of the marginal likelihood for both single-participant
and hierarchical versions of the LBA. An easy-to-use software implementation
is provided that allows researchers to estimate the marginal likelihood for many
evidence-accumulation models in a straightforward manner. The chapter con-
cludes with a series of recommendations for applying Warp-III bridge sampling in
practical applications.

Chapter 5 applies Bayesian methods to multidimensional scaling (MDS) models
for inferring the appropriate number of dimensions and the metric structure of
the space used to measure distance. Specifically, priors are defined for making the
model identifiable under metrics corresponding to psychologically separable and
psychologically integral stimulus domains. DE-MCMC is used in combination
with Warp-III bridge sampling to make inference about the model parameters,
to identify the appropriate number of dimensions, and to infer the appropriate
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metric of the latent space. Using five existing data sets, it is demonstrated that
the procedure provides sensible results. The chapter also discusses a number of
remaining technical challenges that need to be addressed before the method can
be applied generally in a straightforward fashion.

Chapter 6 introduces bridgesampling, an R package for estimating the marginal
likelihood (or, more generally, normalizing constants) using bridge sampling in a
generic and easy-to-use fashion. In combination with the Bayesian sampling soft-
ware Stan (Carpenter et al., 2017), the R package can provide automatic estimates
of the marginal likelihood. The package functionality is demonstrated using three
examples.

1.3.2 Part II: Multi-Model Meta-Analysis

The second part of the dissertation is concerned with methods for meta-analyzing
a set of studies. The idea of combining several forecasters using Bayesian model
averaging is applied in a few chapters of this part.

Chapter 7 proposes a Bayesian mixture model for meta-analyzing the distri-
bution of significant p values of a set of studies. Specifically, the mixture model
estimates the proportion of significant results that originate from the null hypothe-
sis of no effect, and it also provides an estimate of the probability that each specific
p value originates from the null hypothesis. The procedure is demonstrated using
two examples. A web application is provided to enable researchers to apply the
method in a straightforward manner to any set of significant p values.

Chapter 8 is a primer on Bayesian model-averaged meta-analysis. This pro-
cedure applies the idea of combining several forecasters to avoid an all-or-none
decision between a fixed-effect and a random-effects meta-analysis model. Specif-
ically, this approach combines four Bayesian meta-analysis models according to
their plausibility in light of the observed data: (1) fixed-effect null hypothesis,
(2) fixed-effect alternative hypothesis, (3) random-effects null hypothesis, and (4)
random-effects alternative hypothesis. This procedure allows researchers to ad-
dress, in a principled manner, the two key questions “Is the overall effect non-
zero?” and “Is there between-study variability in effect size?”. The method is
illustrated with an example concerning the self-concept maintenance theory.

Chapter 9 applies the Bayesian model-averaged meta-analysis introduced in
Chapter 8 to a set of six preregistered studies concerning the effect of power posing.
Specifically, the analysis focuses on the effect of power posing on felt power. The
meta-analysis yields very strong evidence for an effect of power posing on felt
power. However, the evidence is only moderate when one takes into account only
participants that were unfamiliar with the effect.

1.3.3 Part III: Hypothesis Testing

The third part of the dissertation is concerned with hypothesis testing. Specifically,
Bayesian approaches to a number of standard statistical tests are presented and
it is demonstrated how these can be used to address questions of interest. A
recurring theme is the ability to incorporate prior knowledge into the analyses
which helps make the hypotheses more precise and can thus yield tests that are
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more diagnostic and correspond closer to what researchers actually want to test.
Just as in the weather forecast example, these more precise predictions will be
rewarded when comparing different models in case they turn out to be true.

Chapter 10 illustrates how Bayesian inference can be used to quantify the
evidence in favor of a general law based on finite data. Concretely, the chapter
focuses on quantifying evidence in favor of the hypothesis that certain fundamental
constants (i.e., 7, e, v/2, and In2) are normal. Specifically, Bayesian inference is
used to test the more restricted hypothesis that each digit in the constants’ decimal
expansions occurs equally often. For all four constants the evidence in favor of the
general law is overwhelming.

Chapter 11 proposes the use of a flexible ¢-prior for effect size in the Bayesian
t-test. This prior allows researchers to incorporate advance knowledge into the
analysis to make their predictions more precise. Furthermore, this prior specifica-
tion contains previous subjective, but also objective Bayesian ¢-test versions. Two
measures for informed prior distributions are proposed that quantify the departure
from the objective Bayes factor desiderata of predictive matching and information
consistency. The approach is illustrated using an example concerning the facial
feedback hypothesis that features an expert prior elicitation effort.

Chapter 12 introduces abtest, an R package for conducting Bayesian A/B
tests. The implemented approach is based on work by Kass and Vaidyanathan
(1992) and allows researchers to monitor the evidence for the hypotheses that the
treatment has either a positive effect, a negative effect, or, crucially, no effect.
This method also enables one to incorporate expert knowledge about the relative
prior plausibility of the rival hypotheses as well as about the expected size of the
effect.

Chapter 13 discusses Bayesian leave-one-out cross-validation (LOO), an al-
ternative method for comparing competing models. Several limitations of this
approach are demonstrated using concrete examples and it is concluded that LOO
is not a panacea for model selection.

Chapter 14 is a rejoinder to three commentaries on Chapter 13. Each of the
commentaries is addressed and additional limitations of methods that are based
on LOO (such as Bayesian stacking) are identified. These methods are contrasted
with approaches that consistently use Bayes’ rule for both parameter estimation
and model comparison. It is concluded that LOO-based methods do not align
satisfactorily with the epistemic goal of mathematical psychology.
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Chapter 2

A Tutorial on Bridge Sampling

Abstract

The marginal likelihood plays an important role in many areas of Bayesian
statistics such as parameter estimation, model comparison, and model aver-
aging. In most applications, however, the marginal likelihood is not analyt-
ically tractable and must be approximated using numerical methods. Here
we provide a tutorial on bridge sampling (Bennett, 1976; Meng & Wong,
1996), a reliable and relatively straightforward sampling method that allows
researchers to obtain the marginal likelihood for models of varying complex-
ity. First, we introduce bridge sampling and three related sampling methods
using the beta-binomial model as a running example. We then apply bridge
sampling to estimate the marginal likelihood for the Expectancy Valence
(EV) model — a popular model for reinforcement learning. Our results in-
dicate that bridge sampling provides accurate estimates for both a single
participant and a hierarchical version of the EV model. We conclude that
bridge sampling is an attractive method for mathematical psychologists who
typically aim to approximate the marginal likelihood for a limited set of pos-
sibly high-dimensional models.

2.1 Introduction

Bayesian statistics has become increasingly popular in mathematical psychology
(Andrews & Baguley, 2013; Bayarri, Benjamin, Berger, & Sellke, 2016; Poirier,
2006; Vanpaemel, 2016; Verhagen, Levy, Millsap, & Fox, 2015; Wetzels et al.,
2016). The Bayesian approach is conceptually simple, theoretically coherent, and

This chapter is published as Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm,
U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.—J., & Steingroever, H. (2017).
A tutorial on bridge sampling. Journal of Mathematical Psychology, 81, 80-97. doi: https://
doi.org/10.1016/j.jmp.2017.09.005. Also available as arXiv preprint: https://arxiv.org/
abs/1703.05984
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easily applied to relatively complex problems. These problems include, for in-
stance, hierarchical modeling (Matzke, Dolan, Batchelder, & Wagenmakers, 2015;
Matzke & Wagenmakers, 2009; Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun,
& Jiang, 2005; Rouder et al., 2007) or the comparison of non-nested models (Lee,
2008; Pitt, Myung, & Zhang, 2002; Shiffrin et al., 2008). Three major applica-
tions of Bayesian statistics concern parameter estimation, model comparison, and
Bayesian model averaging. In all three areas, the marginal likelihood — that is,
the probability of the observed data given the model of interest — plays a central
role (see also Gelman & Meng, 1998).

First, in parameter estimation, we consider a single model and aim to quantify
the uncertainty for a parameter of interest 6 after having observed the data y.
This is realized by means of a posterior distribution that can be obtained using
Bayes’ theorem:

likelihood prior

(v 1 6) p(0) w16 76
_ plylO)p _ pylo) p
N VT A 21)

marginal likelihood

Here, the marginal likelihood of the data p(y) ensures that the posterior distribu-
tion is a proper probability density function (PDF) in the sense that it integrates to
1. This illustrates why in parameter estimation the marginal likelihood is referred
to as a normalizing constant.

Second, in model comparison, we consider m (m € N) competing models,
and are interested in the relative plausibility of a particular model M; (i €
{1,2,...,m}) given the prior model probability and the evidence from the data y
(see three special issues on this topic in the Journal of Mathematical Psychology:
J. Mulder & Wagenmakers, 2016; Myung, Forster, & Browne, 2000a; Wagenmak-
ers & Waldorp, 2006a). This relative plausibility is quantified by the so-called
posterior model probability p(M; | y) of model M; given the data y (Berger &
Molina, 2005):

p(y | Mi) p(M)
i1 p(y | M) p(M;)’

where the denominator is the sum of the marginal likelihood times the prior model
probability of all m models. In model comparison, the marginal likelihood for a
specific model is also referred to as the model evidence (Didelot, Everitt, Johansen,
& Lawson, 2011), the integrated likelihood (Kass & Raftery, 1995), the predictive
likelihood of the model (Gamerman & Lopes, 2006, Chapter 7), the predictive
probability of the data (Kass & Raftery, 1995), or the prior predictive density
(Ntzoufras, 2009). Note that conceptually the marginal likelihood of Equation 2.2
is the same as the marginal likelihood of Equation 2.1. However, for the latter
equation we dropped the model index because in parameter estimation we consider
only one model.

If only two models M; and Ms are considered, Equation 2.2 can be used to
quantify the relative posterior model plausibility of model M; compared to model
M. This relative plausibility is given by the ratio of the posterior probabilities

pMi | y) = (2.2)
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of both models, and is referred to as the posterior model odds:

pMily)  pMi) ply| M)

= X . (2.3)
p(Mz|y)  pM2)  ply | M2)
—_——— —— —/—
posterior prior Bayes
odds odds factor

Equation 2.3 illustrates that the posterior model odds are the product of two
factors: The first factor is the ratio of the prior probabilities of both models —
the prior model odds. The second factor is the ratio of the marginal likelihoods of
both models — the so-called Bayes factor (Etz & Wagenmakers, 2017; Jeffreys, 1961;
Ly, Verhagen, & Wagenmakers, 2016a, 2016b; Robert, 2016). The Bayes factor
plays an important role in model comparison and is referred to as the “standard
Bayesian solution to the hypothesis testing and model selection problems” (Lewis
& Raftery, 1997, p. 648) and “the primary tool used in Bayesian inference for
hypothesis testing and model selection” (Berger, 2006, p. 378).

Third, the marginal likelihood plays an important role in Bayesian model av-
eraging (BMA; Hoeting et al., 1999) where aspects of parameter estimation and
model comparison are combined. As in model comparison, BMA considers sev-
eral models; however, it does not aim to identify a single best model. Instead it
fully acknowledges model uncertainty. Model-averaged parameter inference can be
obtained by combining, across all models, the posterior distribution of the param-
eter of interest weighted by each model’s posterior model probability, and as such
depends on the marginal likelihood of the models. This procedure assumes that
the parameter of interest has identical interpretation across the different models.
Model-averaged predictions can be obtained in a similar manner.

A problem that arises in all three areas — parameter estimation, model com-
parison, and BMA - is that an analytical expression of the marginal likelihood
can be obtained only for certain restricted examples. This is a pressing problem
in Bayesian modeling, and in particular in mathematical psychology where mod-
els can be non-linear and equipped with a large number of parameters, especially
when the models are implemented in a hierarchical framework. Such a frame-
work incorporates both commonalities and differences between participants of one
group by assuming that the model parameters of each participant are drawn from
a group-level distribution (for advantages of the Bayesian hierarchical framework
see Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011; Navarro, Griffiths, Steyvers,
& Lee, 2006; Rouder & Lu, 2005; Rouder, Lu, Morey, Sun, & Speckman, 2008;
Rouder et al., 2005; Scheibehenne & Pachur, 2015; Shiffrin et al., 2008; Wet-
zels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010). For instance, consider
a four-parameter Bayesian hierarchical model with four group-level distributions
each characterized by two parameters and a group size of 30 participants; this then
results in 30 x 4 individual-level parameters and 2 x 4 group-level parameters for
a total of 128 parameters. In sum, even simple models quickly become complex
once hierarchical aspects are introduced and this frustrates the derivation of the
marginal likelihood.

To overcome this problem, several Monte Carlo sampling methods have been
proposed to approximate the marginal likelihood. In this tutorial we focus on four

15



2. A TUTORIAL ON BRIDGE SAMPLING

such methods: the bridge sampling estimator (Bennett, 1976; Chapter 5 of M.-
H. Chen, Shao, & Ibrahim, 2002; Meng & Wong, 1996), and its three commonly
used special cases — the naive Monte Carlo estimator, the importance sampling
estimator, and the generalized harmonic mean estimator (for alternative meth-
ods see Gamerman & Lopes, 2006, Chapter 7; and for alternative approximation
methods relevant to model comparison and BMA see Carlin & Chib, 1995; Green,
1995).1 As we will illustrate throughout this tutorial, the bridge sampler is accu-
rate, efficient, and relatively straightforward to implement (e.g., DiCiccio, Kass,
Raftery, & Wasserman, 1997; Frithwirth—Schnatter, 2004; Meng & Wong, 1996).
The goal of this tutorial is to bring the bridge sampling estimator to the atten-
tion of mathematical psychologists. We aim to explain this estimator and facilitate
its application by suggesting a step-by-step implementation scheme. To this end,
we first show how bridge sampling and the three special cases can be used to
approximate the marginal likelihood in a simple beta-binomial model. We begin
with the naive Monte Carlo estimator and progressively work our way up — via
the importance sampling estimator and the generalized harmonic mean estima-
tor — to the most general case considered: the bridge sampling estimator. This
order was chosen such that key concepts are introduced gradually and estima-
tors are of increasing complexity and sophistication. The first three estimators
are included in this tutorial with the sole purpose of facilitating the reader’s un-
derstanding of bridge sampling. In the second part of this tutorial, we outline
how the bridge sampling estimator can be used to derive the marginal likelihood
for the Expectancy Valence (EV; Busemeyer & Stout, 2002) model — a popular,
yet relatively complex reinforcement-learning model for the Iowa gambling task
(Bechara, Damasio, Damasio, & Anderson, 1994). We apply bridge sampling to
both an individual-level and a hierarchical implementation of the EV model.
Throughout the chapter, we use the software package R (R Core Team, 2019)
to implement the bridge sampling estimator for the various models. The interested
reader is invited to reproduce our results by downloading the code and all relevant
materials from our Open Science Framework folder at https://osf.io/f9cq4/.

2.2 Four Sampling Methods to Approximate the Marginal
Likelihood

In this section we outline four standard methods to approximate the marginal like-
lihood. For more detailed explanations and derivations, we recommend Ntzoufras
(2009, Chapter 11) and Gamerman and Lopes (2006, Chapter 7); a comparative
review of the different sampling methods is presented in DiCiccio et al. (1997).
The marginal likelihood is the probability of the observed data y given a specific
model of interest M, and is defined as the integral of the likelihood over the prior:

ply | M) = /p(y |0, M) p(0 | M) db, (2.4)
—— ——— ——

marginal likelihood prior

likelihood

1The appendix provides a derivation showing that the first three estimators are indeed special
cases of the bridge sampler.
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with 6 a vector containing the model parameters. Equation 2.4 illustrates that
the marginal likelihood can be interpreted as a weighted average of the likelihood
of the data given a specific value for § where the weight is the a priori plausibility
of that specific value. Equation 2.4 can therefore be written as an expected value:

p(y | M) = Eprior [p(y | 6, M)],

where the expectation is taken with respect to the prior distribution. This idea is
central to the four sampling methods that we discuss in this tutorial.

2.2.1 Introduction of the Running Example: The
Beta-Binomial Model

Our running example focuses on estimating the marginal likelihood for a binomial
model assuming a uniform prior on the rate parameter 6 (i.e., the beta-binomial
model). Consider a single participant who answered k = 2 out of n = 10 true/false
questions correctly. Assume that the number of correct answers follows a binomial
distribution, that is, & ~ Binomial(n, ) with 8 € (0,1), where 6 represents the
latent probability for answering any one question correctly. The probability mass
function (PMF) of the binomial distribution is given by:

Binomial(k | n, ) = (Z) 0k (1 — 0)"*, (2.5)
where k,n € Z>o, and k < n. The PMF of the binomial distribution serves as the
likelihood function in our running example.

In the Bayesian framework, we also have to specify the prior distribution of
the model parameters; the prior distribution expresses our knowledge about the
parameters before the data have been observed. In our running example, we
assume that all values of 8 are equally likely a priori. This prior belief is captured
by a uniform distribution across the range of 6, that is, 8 ~ Uniform(0, 1) which
can equivalently be written in terms of a beta distribution 6 ~ Beta(1,1). This
prior distribution is represented by the dotted line in Figure 2.1. It is evident that
the density of the prior distribution equals 1 for all values of §. One advantage of
expressing the prior distribution by a beta distribution is that its two parameters
(i.e., in its general form the shape parameters o and () can be thought of as
counts of “prior successes” and “prior failures”, respectively. In its general form,
the PDF of a Beta(a, 8) distribution («, 8 > 0) is given by:

go-1(1—9)s-1
B(a,B)
where B(cq, ) is the beta function that is defined as: B(a, ) = fl

0
t)f=1dt = FF(&)E_%), and I'(n) = (n — 1)! for n € N.

Beta(0; o, 3) =

tafl(l _

2.2.1.1 Analytical Derivation of the Marginal Likelihood

As we will see in this section, the beta-binomial model constitutes one of the rare
examples where the marginal likelihood is analytic. Assuming a general k and n,
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Figure 2.1: Prior and posterior distribution for the rate parameter 6 from the beta-
binomial model. The Beta(1, 1) prior on the rate parameter 6 is represented by the
dotted line; the Beta(3,9) posterior distribution is represented by the solid line and
was obtained after having observed 2 correct responses out of 10 trials. Available at
https://tinyurl.com/yc8bw98v under CC license https://creativecommons
.org/licenses/by/2.0/.

we obtain the marginal likelihood as:

p(k | n) P=>? /olp(k | n,0) p(6)do = /01 (Z) 05 (1—6)" % 1 do

- <n>B(k+1,n—k+1):

) (2.6)

n+1’
where we suppress the “model” in the conditioning part of the probability state-
ments because we focus on a single model in this running example. Using k = 2
and n = 10 of our example, we obtain: p(k = 2 | n = 10) = 1/11 ~ 0.0909.
This value will be estimated in the remainder of the running example using the
naive Monte Carlo estimator, the importance sampling estimator, the generalized
harmonic mean estimator, and finally the bridge sampling estimator.

As we will see below, the importance sampling estimator, generalized harmonic
mean estimator, and bridge sampling estimator require samples from the posterior
distribution. These samples can be obtained using computer software such as
WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), JAGS (Plummer, 2003),
or Stan (Stan Development Team, 2016), even when the marginal likelihood that
functions here as a normalizing constant is not known (Equation 2.1). However,
in our running example MCMC samples are not required because we can derive
an analytical expression of the posterior distribution for 6 after having observed
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the data. Using the analytic expression of the marginal likelihood (Equation 2.6)
and Bayes’ theorem, we obtain:

plk|n.0)p(®)  (po*a—o)*1 oa-0)""

PO kn) = — = (MB(k+1,n—k+1) Blk+lLn—k+1)’

which we recognize as the PDF of the Beta(k + 1,n — k + 1) distribution. Thus,
if we assume a uniform prior on 6 and observe k = 2 correct responses out of
n = 10 trials, we obtain a Beta(3,9) distribution as posterior distribution. This

distribution is represented by the solid line in Figure 2.1. In general, if k | n,0 ~
Binomial(n, ) and 6 ~ Beta(1,1), then 6 | n,k ~ Beta(k +1,n — k4 1).

2.2.2 Method 1: The Naive Monte Carlo Estimator of the
Marginal Likelihood

The simplest method to approximate the marginal likelihood is provided by the
naive Monte Carlo estimator (Hammersley & Handscomb, 1964; Raftery & Ban-
field, 1991). This method uses the standard definition of the marginal likelihood
(Equation 2.4), and relies on the central idea that the marginal likelihood can
be written as an expected value with respect to the prior distribution, that is,
P(y) = Eprior [p(y | 8)]. This expected value of the likelihood of the data with re-
spect to the prior can be approximated by evaluating the likelihood in N samples
from the prior distribution for € and averaging the resulting values. This yields
the naive Monte Carlo estimator p; (y):

N
) =Pl 8) Gple) 1)

samples from the

average likelihood prior distribution

2.2.2.1 Running Example

To obtain the naive Monte Carlo estimate of the marginal likelihood in our running
example, we need N samples from the Beta(1,1) prior distribution for 6. For
illustrative purposes, we limit the number of samples to 12 whereas in practice
one should take N to be very large. We obtain the following samples:

{61,05,...,6015} ={0.58,0.76,0.03,0.93,0.27,0.97, 0.45, 0.46, 0.18, 0.64, 0.06, 0.15},

where we use the tilde symbol to emphasize that we refer to a sampled value. All
sampled values are represented by the gray dots in Figure 2.2.

Following Equation 2.7, the next step is to calculate the likelihood (Equa-
tion 2.5) for each 6;, and then to average all obtained likelihood values. This
yields the naive Monte Carlo estimate of the marginal likelihood:

112 112 n\ sk _—
pr(k=2|n=10)= 122pk*2\nf100) 122(0(91-)(191-)
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Figure 2.2: Illustration of the naive Monte Carlo estimator for the beta-
binomial example. The dotted line represents the prior distribution and the
solid line represents the posterior distribution that was obtained after having
observed 2 correct responses out of 10 trials. The gray dots represent the
12 samples {01,0,,...,6012} randomly drawn from the Beta(1,1) prior distribu-
tion. Available at https://tinyurl.com/y8uf6t8f under CC license https://
creativecommons.org/licenses/by/2.0/.

1 /10
12( ) ) (0.58%(1 — 0.58)% + ...+ 0.15*(1 — 0.15)®)

= 0.0945.

2.2.3 Method 2: The Importance Sampling Estimator of the
Marginal Likelihood

The naive Monte Carlo estimator introduced in the last section performs well if the
prior and posterior distribution have a similar shape and strong overlap. However,
the estimator is unstable if the posterior distribution is peaked relative to the prior
(e.g., Gamerman & Lopes, 2006; Ntzoufras, 2009). In such a situation, most of the
sampled values for # result in likelihood values close to zero and contribute only
minimally to the estimate. This means that those few samples that result in high
likelihood values dominate estimates of the marginal likelihood. Consequently, the
variance of the estimator is increased (Newton & Raftery, 1994; Pajor, 2017).2

2The interested reader is referred to Pajor (2017) for a recent improvement on the calcu-
lation of the naive Monte Carlo estimator. The proposed improvement involves trimming the
prior distribution in such a way that regions with low likelihood values are eliminated, thereby
increasing the accuracy and efficiency of the estimator.
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The importance sampling estimator, on the other hand, overcomes this short-
coming by boosting sampled values in regions of the parameter space where the
integrand of Equation 2.4 is large. This is realized by using samples from a so-
called importance density grs(6) instead of the prior distribution. The advantage
of sampling from an importance density is that values for 6 that result in high like-
lihood values are sampled most frequently, whereas values for 6 with low likelihood
values are sampled only rarely.

To derive the importance sampling estimator, Equation 2.4 is used as starting
point which is then extended by the importance density grs(6):

1s(0
b = [ oty 10)0) a0 = [ ot10)p0) 255 a0 = [PLIDEO , 9) g
_r ply [ 6) p(6)
O O )
This yields the importance sampling estimator po(y):
p2(y) = NZ yg':; @ %) . 0~ g1s(0). (2.8)

samples from the
importance density

average adjusted likelihood

A suitable importance density should (1) be easy to evaluate; (2) have the

same domain as the posterior distribution; (3) closely resemble the posterior dis-

tribution; and (4) have fatter tails than the posterior distribution (Neal, 2001;

Vandekerckhove, Matzke, & Wagenmakers, 2015). The latter criterion ensures

that values in the tails of the distribution cannot misleadingly dominate the esti-
mate (Neal, 2001).3

2.2.3.1 Running Example

To obtain the importance sampling estimate of the marginal likelihood in our
running example, we first need to choose an importance density grs(f). An im-
portance density that fulfills the four above mentioned desiderata is a mixture
between a beta density that provides the best fit to the posterior distribution
and a uniform density across the range of § (Vandekerckhove et al., 2015). The
relative impact of the uniform density is quantified by a mixture weight v that
ranges between 0 and 1. The larger «y, the higher the influence of the uniform
density resulting in a less peaked distribution with thick tails. If v = 1, the beta

3To illustrate the need for an importance density with fatter tails than the posterior dis-
tribution, imagine you sample from the tail region of an importance density with thinner tails.
In this case, the numerator in Equation 2.8 would be substantially larger than the denomina-
tor resulting in a very large ratio. Since this specific ratio is only one component of the sum
displayed in Equation 2.8, this component would dominate the importance sampling estimate.
Hence, thinner tails of the importance density run the risk of producing unstable estimates across
repeated computations. In fact, the estimator may have infinite variance (e.g., Ionides, 2008;
Owen & Zhou, 2000).
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mixture density simplifies to the uniform distribution on [0,1];* and if 4 = 0, the
beta mixture density simplifies to the beta density that provides the best fit to
the posterior distribution.

In our specific example, we already know that the Beta(3,9) density is the
beta density that provides the best fit to the posterior distribution because this is
the analytic expression of the posterior distribution. However, to demonstrate the
general case, we show how we can find the beta distribution with the best fit to
the posterior distribution using the method of moments. This particular method
works as follows. First, we draw samples from our Beta(3,9) posterior distribution
and obtain:®

{05,605, ...,6%,) ={0.22,0.16,0.09, 0.35,0.06, 0.27, 0.26, 0.41, 0.20, 0.43, 0.21, 0.12}.

Note that here we use 6} to refer to the i*" sample from the posterior distribution
to distinguish it from the previously used 6; — the " sample from a distribution
other than the posterior distribution, such as a prior distribution or an importance
density. Second, we compute the mean and variance of these posterior samples.
We obtain a mean of §* = 0.232 and a variance of s3, = 0.014.

Third, knowing that, if X ~ Beta(a, §), then E(X) = a/(a+ 8) and V(X) =
afB/[(a+ B)*(a+ B+ 1)], we obtain the following method of moment estimates
for a and f:

o (01— 0.232(1 — 0.232)
a=0" ———>-1]=0232 —— 1| =2.721,

s2. 0.014

. 1_ g 0% (1 — 6%) . |~ 093 0.232(1 — 0.232) 1 6.006
f=( ) S2. =(1-0232) 0.014 S
Using a mixture weight on the uniform component of v = 0.30 — a choice that was
made to ensure that, visually, the tails of the importance density are clearly thicker
than the tails of the posterior distribution — we obtain the following importance
density: v x Beta(0; 1,1) + (1 —~) x Beta(0; &, 8) = .3+ .7 Beta(6; 2.721,9.006).
This importance density is represented by the dashed line in Figure 2.3. The figure
also shows the posterior distribution (solid line). As is evident from the figure,
the beta mixture importance density resembles the posterior distribution, but has
fatter tails.

In general, it is advised to choose the mixture weight on the uniform component
~ small enough to make the estimator efficient, yet large enough to produce fat
tails to stabilize the estimator. A suitable mixture weight can be realized by
gradually minimizing the mixture weight and investigating whether stability is
still guaranteed (i.e., robustness analysis).

4In our running example, the importance sampling estimator then reduces to the naive Monte
Carlo estimator.

5Note that, when the analytical expression of the posterior distribution is not known, pos-
terior samples can be obtained using computer software such as WinBUGS, JAGS, or Stan,
even when the marginal likelihood that functions here as a normalizing constant is not known
(Equation 2.1).
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Figure 2.3: Illustration of the importance sampling estimator for the beta-binomial
model. The dashed line represents our beta mixture importance density and
the solid gray line represents the posterior distribution that was obtained after
having observed 2 correct responses out of 10 trials. The gray dots represent
the 12 samples {51,527 - ,512} randomly drawn from our beta mixture impor-
tance density. Available at https://tinyurl.com/yc7ho7hr under CC license
https://creativecommons.org/licenses/by/2.0/.

Drawing N = 12 samples for 6 from our beta mixture importance density
results in:

{01,05,...,015} ={0.11,0.07,0.32,0.25,0.41,0.39,0.25,0.13,0.64, 0.26, 0.74, 0.92}.

These samples are represented by the gray dots in Figure 2.3.

The final step is to compute the average adjusted likelihood for the 12 samples
using Equation 2.8. This yields the importance sampling estimate of the marginal
likelihood as:

R 1A plk=2]|n=10,60;) p(b;
pg(k:2|n:10):—z ( | ) p(6:)

124~ 3 4 .7 Beta(f;; 2.721,9.006)
1 (}))0.112(1 - 0.11)% x 1 N (1))0.922(1 — 0.92)% x 1
© 12\ .3+ .7 Beta(0.11; 2.721,9.006) " .3 +.7 Beta(0.92; 2.721,9.006)

1 /10
= 0021 +...+7.3x107°
12<2>(000 +...+73x1077)

= 0.0827.
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2.2.4 Method 3: The Generalized Harmonic Mean Estimator
of the Marginal Likelihood

Just as the importance sampling estimator, the generalized harmonic mean estima-
tor focuses on regions of the parameter space where the integrand of Equation 2.4
is large by using an importance density grs(6) (Gelfand & Dey, 1994).5 How-
ever, in contrast to the importance sampling estimator, the generalized harmonic
mean estimator requires an importance density with thinner tails for an analogous
reason as in importance sampling.

To derive the generalized harmonic mean estimator, also known as reciprocal
importance sampling estimator (Frithwirth—Schnatter, 2004), we use the following
identity:

Lo L _ [ 01y _ [ _s0)
v~ w00 = [ i s 0= [ o1 a0
g s )
P\ ply [ 6) p(0)

Rewriting results in:
-1
g15(0)
=E os YN Y y
p() ( ’ t<p<y|0>p<0>>>

which is used to define the generalized harmonic mean estimator ps(y) (Gelfand
& Dey, 1994) as follows:

importance density\ 1

N
Zgls—) ;05 ~p(0]y). (2.9)

py [ 07) p(65)
R/—/ R/-/ samples from the

likelihood  prior posterior distribution

1

J:1

Note that the generalized harmonic mean estimator — in contrast to the im-
portance sampling estimator — evaluates samples from the posterior distribution.
In addition, note that the ratio in Equation 2.9 is the reciprocal of the ratio in
Equation 2.8; this explains why the importance density for the generalized har-
monic mean estimator should have thinner tails than the posterior distribution in
order to avoid inflation of the ratios that are part of the summation displayed in
Equation 2.9. Thus, in the case of the generalized harmonic mean estimator, a
suitable importance density should (1) have thinner tails than the posterior dis-
tribution (DiCiccio et al., 1997; Newton & Raftery, 1994), and as in importance
sampling, it should (2) be easy to evaluate; (3) have the same domain as the
posterior distribution; and (4) closely resemble the posterior distribution.

6Note that the generalized harmonic mean estimator is a more stable version of the harmonic
mean estimator (Newton & Raftery, 1994). A problem of the harmonic mean estimator is that
it is dominated by the samples that have small likelihood values.
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2.2. Four Sampling Methods to Approximate the Marginal Likelihood

2.2.4.1 Running Example

To obtain the generalized harmonic mean estimate of the marginal likelihood in our
running example, we need to choose a suitable importance density. In our running
example, an importance density that fulfills the four above mentioned desiderata
can be obtained by following four steps: First, we draw N = 12 samples from the
posterior distribution. Reusing the samples from the last section, we obtain:

{05,605, ....6%,) ={0.22,0.16,0.09, 0.35,0.06, 0.27, 0.26, 0.41, 0.20, 0.43, 0.21, 0.12}.

Second, we probit-transform all posterior samples (i.e., &= @‘1(0;), with j €
{1,2,...,12}).”7 The result of this transformation is that the samples range across
the entire real line instead of the (0, 1) interval only. We obtain:

(&8,65, ..., €.} ={=0.77,-0.99, —1.34, —0.39, —1.55, —0.61, —0.64, —0.23, —0.84,
—0.18,—0.81,—1.17}.

These probit-transformed samples are represented by the gray dots in Figure 2.4.

Third, we search for the normal distribution that provides the best fit to the
probit-transformed posterior samples £;. Using the method of moments, we ob-
tain as estimates 4 = —0.793 and ¢ = 0.423. Note that the choice of a normal
importance density justifies step 2; the probit transformation (or an equivalent
transformation) was required to match the range of the posterior distribution to
the one of the normal distribution.

Finally, as importance density we choose a normal distribution with mean
[ = —0.793 and standard deviation & = 0.423/1.5. This additional division by 1.5
is to ensure thinner tails of the importance density than of the probit-transformed
posterior distribution (for a discussion of alternative importance densities see Di-
Ciccio et al., 1997). We decided to divide 6 by 1.5 for illustrative purposes only.
Our importance density is displayed in Figure 2.4 (dashed line) together with the
probit-transformed posterior distribution (solid line).

The generalized harmonic mean estimate can now be obtained using either the
original posterior samples 07 or the probit-transformed samples 7. Here we use
the latter ones (see also Overstall & Forster, 2010). Incorporating our specific
importance density and a correction for having used the probit-transformation,
Equation 2.9 becomes:®

importance density

v Lo (S0
o B

P3(y) = | + - - & =271(05) and 6 ~ p(6 | y) -
Neplyle () o(§) | 1 L ——
Il e probit-transformed samples
likelihood prior from the posterior distribution
(2.10)

7Other transformation are conceivable (e.g., logit transformation).
8A detailed explanation is provided in the appendix. Note that using the original posterior
samples 9;-‘ would involve transforming the importance density (e.g., the normal density on &) to

the (0,1) interval.
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Figure 2.4: Illustration of the generalized harmonic mean estimator for the beta-
binomial model. The solid line represents the probit-transformed Beta(3,9)
posterior distribution that was obtained after having observed 2 correct re-
sponses out of 10 trials, and the dashed line represents the importance den-
sity N (& p=—0.793,0 = 0.423/1.5). The gray dots represent the 12 probit-
transformed samples {£5,€5,...,&5} randomly drawn from the Beta(3,9) poste-
rior distribution. Available at https://tinyurl.com/yazgk8kj under CC license
https://creativecommons.org/licenses/by/2.0/.

For our beta-binomial model, we now obtain the generalized harmonic mean
estimate of the marginal likelihood as:

—1

12 1 é (f;+0.793)
R 0.423/15 P\ 0.423/15
p3(k=2|n=10)= | — - "
(k=210 =100= | 52 =20 =10,9(6) 5E)
1 —0.7740.793 1 —1.1740.793
1 0.423/15 ¢ ( 0.423/1.5 ) 0.423/15 ¢ ( 0.423/1.5 )

12| ()0.222(1 — 0.22)8 ¢(—0.77) et (1))0.122(1 — 0.12)8 ¢(—1.17)

-1
11
- ( o (71689 + ... + 555.50))
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2.2.5 Method 4: The Bridge Sampling Estimator of the
Marginal Likelihood

As became evident in the last two sections, both the importance sampling esti-
mator and the generalized harmonic mean estimator impose strong constraints on
the tail behavior of the importance density relative to the posterior distribution
to guarantee a stable estimator. Such requirements can make it difficult to find a
suitable importance density, especially when a high-dimensional posterior is con-
sidered. The bridge sampler, on the other hand, alleviates such requirements (e.g.,
Frithwirth-Schnatter, 2004).

Originally, bridge sampling was developed to directly estimate the Bayes factor,
that is, the ratio of the marginal likelihoods of two models M; and My (e.g.,
Jeffreys, 1961; Kass & Raftery, 1995). However, in this tutorial, we use a version
of bridge sampling that allows us to approximate the marginal likelihood of a single
model (for an earlier application see for example Overstall & Forster, 2010). This
version is based on the following identity:

[ p(y | 0) p(6) h(6) g(0) df

Y= Ty 16) p(0) 1(0) g(6) a0

(2.11)

where ¢(f) is the so-called proposal distribution and h(6) the so-called bridge
function. Multiplying both sides of Equation 2.11 by the marginal likelihood p(y)
results in:

diIS)ELOiE)Eai‘(I)n
o(y) = Jp(y |0) p(0) 1h(0) 9(0) 40 ['p(y | 0) p(0) h(0) ¢(0) d9
[R50 0y TOHO 0L

——
p(y) posterior

distribution

_ By [p(y 1 0) p(6) 1(6)]
IEpost [h(@) 9(9)]

The marginal likelihood can now be approximated using:

= S ply | 6:) p(6:) h(6;) _

~ No *
py) = ~ , 0i ~g(0) , 07 ~p@]y).
SN hE) 967) — L
samples from the samples from the
proposal distribution  posterior distribution
(2.12)

Equation 2.12 illustrates that we need samples from both the proposal dis-
tribution and the posterior distribution to obtain the bridge sampling estimate
for the marginal likelihood. However, before we can apply Equation 2.12 to our
running example, we have to discuss how we can obtain a suitable proposal dis-
tribution and bridge function. Conceptually, the proposal distribution is similar
to an importance density, should resemble the posterior distribution, and should
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2. A TUTORIAL ON BRIDGE SAMPLING

have sufficient overlap with the posterior distribution. According to Overstall and
Forster (2010), a convenient proposal distribution is often a normal distribution
with its first two moments chosen to match those of the posterior distribution. In
our experience, this choice for the proposal distribution works well for a wide range
of scenarios. However, this proposal distribution might produce unstable estimates
in case of high-dimensional posterior distributions that clearly do not follow a mul-
tivariate normal distribution. In such a situation, it might be advisable to consider
more sophisticated versions of bridge sampling (e.g., Frithwirth-Schnatter, 2004;
Meng & Schilling, 2002; L. Wang & Meng, 2016).

2.2.5.1 Choosing the Optimal Bridge Function
In this tutorial we use the bridge function defined as (Meng & Wong, 1996):

C- !
s1p(y | 0)p(0) + s2p(y)g(0)

where s1 = N;il oo S2 = N2N , and C' a constant; its particular value is not
required because h(é)) is part ‘of both the numerator and the denominator of Equa-
tion 2.12, and therefore the constant C cancels. This particular bridge function
is referred to as the “optimal bridge function” because Meng and Wong (1996,
p. 837) proved that it minimizes the relative mean-squared error (Equation 2.16).

Equation 2.13 shows that the optimal bridge function depends on the marginal
likelihood p(y) which is the very entity we want to approximate. We can resolve
this issue by applying an iterative scheme that updates an initial guess of the
marginal likelihood until the estimate of the marginal likelihood has converged
according to a predefined tolerance level. To do so, we insert the expression for
the optimal bridge function (Equation 2.13) in Equation 2.12 (Meng & Wong,
1996). The formula to approximate the marginal likelihood on iteration ¢t 4 1 is
then specified as follows:

h(0) = , (2.13)

1 p(y | 0:)p(0;)
NQZ s1p(y | 0:)p(0:) + s2p(y) D g(6;)

i=1
ply)+D N )
> o
Nii=sip(y | 07)p(05) + s26(y) O 9(65) (2.14)
0i~g0) , O ~p@ly
—— ——
samples from the samples from the

proposal distribution  posterior distribution

where p(y)® denotes the estimate of the marginal likelihood on iteration t of
the iterative scheme. Note that Equation 2.14 illustrates why bridge sampling is
robust to the tail behavior of the proposal distribution relative to the posterior
distribution; the difference to the importance sampling and generalized harmonic
mean estimator is that, in the case of the bridge sampling estimator, samples from
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2.2. Four Sampling Methods to Approximate the Marginal Likelihood

the tail region cannot inflate individual summation terms and thus dominate the
estimate. To illustrate this, we consider what happens to the bridge sampling es-
timator, the importance sampling estimator, and the generalized harmonic mean
estimator in case (1) the proposal/importance distribution has fatter tails than the
posterior distribution, and (2) the proposal/importance distribution has thinner
tails than the posterior distribution (see also Frithwirth—Schnatter, 2004). Specif-
ically, we look at a single term in the respective sums and consider the limit of
that term as we move further and further out in the tails. This is insightful since
a single term can have a lasting effect on the estimator (e.g., in case a single term
in a sum is very large or even infinite).

In case (1) (i.e., the proposal/importance distribution has fatter tails than the
posterior), the ratio in the importance sampling estimator (i.e., Equation 2.8)
goes to zero as we move further out in the tails. Since samples in the tails may
only be obtained occasionally and a zero term in the sum does not inflate the
estimate this is not a reason for concern. In contrast, when we consider the ratio
in the generalized harmonic mean estimator (i.e., Equation 2.9), we see that the
ratio goes to infinity as we move further out in the tails. Even if this occurs only
very rarely, this is an issue since the resulting value will dominate the estimate.
Consequently, the resulting estimator may have a large variance since samples from
the tail regions may be obtained only occasionally across repeated applications.
For the bridge sampling estimator (i.e., Equation 2.14), we need to consider the
ratio in the numerator and denominator. The ratio in the numerator will go to
zero and the ratio in the denominator will go to W. Hence, both of these
ratios are bounded and will not inflate the two sums, hence also not the resulting
estimate.

In case (2) (i.e., the proposal/importance distribution has thinner tails than
the posterior), the ratio in the importance sampling estimator (i.e., Equation 2.8)
goes to infinity as we move further out in the tails, inflating the estimate. In
contrast, when we consider the ratio in the generalized harmonic mean estimator
(i.e., Equation 2.9), we see that the ratio goes to zero. As explained above, this
is not a reason for concern. These considerations explain why in importance
sampling, the importance distribution should have fatter tails than the posterior
whereas for the generalized harmonic mean estimator, it should have thinner tails.
For the bridge sampling estimator (i.e., Equation 2.14), the ratio in the numerator
will go to 1/s1 and the ratio in the denominator will go to zero. Again, both of
these ratios are bounded making the bridge sampling estimator more robust to
the tail behavior than the other two estimators. This of course assumes that not
all terms in the denominator (for case (2)) and the numerator (for case (1)) will
be zero, that is, the proposal and the posterior distribution have sufficient overlap.
In the extreme scenario of no overlap the bridge sampling estimate is not defined
because both sums of Equation 2.14 would be zero.

Extending the numerator of the right side of Equation 2.14 with %Ziggf;, and
the denominator with 53752”:;, and subsequently defining I, ; := % and
J J

ly; = %, we obtain the formula for the iterative scheme of the bridge
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sampling estimator p4(y)¢+1) at iteration ¢ + 1 (Meng & Wong, 1996, p. 837):

155 o1 8p@) /9
ey e sip(y | 80p(0:) + s2pa(y)g(B:) 1/9(0:)
pa(y) = N

LZ 9(6;) 1/9(67)
N = s1p(y | 07)p(0%) + s2paly) D g(07) 1/9(07)

1 lg’i
N2Z s1la,; + sapa(y)®

=1 n
= L hima) . 8 ~p0]w)
1 1 ; )
samples from the samples from the

Ny s1ly j + 52P4 (y)(t) proposal distribution  posterior distribution
Jj=1 '
(2.15)

Equation 2.15 suggests that, in order to obtain the bridge sampling estimate
of the marginal likelihood, a number of requirements need to be fulfilled. First,
we need N samples from the proposal distribution g(f) and N; samples from
the posterior distribution p(# | y). Second, for all Ny samples from the proposal
distribution, we have to evaluate l3;. This involves obtaining the value of the
unnormalized posterior (i.e., the product of the likelihood times the prior) and of
the proposal distribution for all samples. Third, we evaluate I, ; for all Ny samples
from the posterior distribution. This is analogous to evaluating l5 ;. Fourth, we
have to determine the constants s; and se that only depend on Ny and N,. Fifth,
we need an initial guess of the marginal likelihood ps(y). Since some of these
five requirements can be obtained easier than others, we will point out possible
challenges.

A first challenge is that using a suitable proposal distribution may involve
transforming the posterior samples. Consequently, we have to determine how
the transformation affects the definition of the bridge sampling estimator for the
marginal likelihood (Equation 2.15).

A second challenge is how to use the Ny samples from the posterior distribution.
One option is to use all N7 samples for both fitting the proposal distribution and for
computing the bridge sampling estimate. However, Overstall and Forster (2010)
showed that such a procedure may result in an underestimation of the marginal
likelihood. To obtain more reliable estimates they propose to divide the posterior
samples in two parts; the first part is used to obtain the best-fitting proposal
distribution, and the second part is used to compute the bridge sampling estimate.
Throughout this tutorial, we use two equally large parts. In the remainder we
therefore state that we draw 2N; samples from the posterior distribution. The
first V7 of the total of 2V; samples are used for fitting the proposal distribution and
the remaining N; samples are used in the iterative scheme (i.e., Equation 2.15).%

91n case the posterior samples are obtained via MCMC sampling using multiple chains, we
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Figure 2.5: Schematic illustration of the steps involved in obtaining the bridge sam-
pling estimate of the marginal likelihood. Available at https://tinyurl.com/
y7b2kze7 under CC license https://creativecommons.org/licenses/by/2.0/.

To summarize, the discussion of the requirements and challenges encountered
in bridge sampling illustrated that the bridge sampling estimator imposes less
strict requirements on the proposal distribution than the importance sampling
and generalized harmonic mean estimator and allows for an almost automatic
application due to the default choice of the bridge function.!©

2.2.5.2 Running Example

To obtain the bridge sampling estimate of the marginal likelihood in the beta-
binomial example, we follow the eight steps illustrated in Figure 2.5:

1. We draw 2N, = 24 samples from the Beta(3,9) posterior distribution for 0.
We obtain the following sample of 24 values:

{67,65,...,05,} ={0.22,0.16,0.09, 0.35, 0.06, 0.27,0.26,0.41,0.20, 0.43, 0.21,
0.12,0.15,0.21,0.24,0.18,0.12,0.22,0.15, 0.22,0.23, 0.26,
0.29,0.28}.

Note that the first 12 samples equal the ones used in the last section, whereas

the last 12 samples were obtained from drawing again 12 values from the
Beta(3,9) posterior distribution for 6.

use the first half of the iterations per chain for fitting the proposal distribution and the second
half of the iterations per chain for the iterative scheme.
0For an explanation of where the name “bridge” comes from see https://osf.io/9jzm3/.
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. We choose a proposal distribution.

Here we opt for an approach that can be easily generalized to models with
multiple parameters and select a normal distribution as the proposal distri-
bution g(f).!!

. We transform the first batch of N1 posterior samples.

Since we use a normal proposal distribution, we have to transform the poste-
rior samples from the rate scale to the real line so that the range of the poste-
rior distribution matches the range of the proposal distribution. This can be
achieved by probit-transforming the posterior samples, that is, &= o1 (9;‘)
with j € {1,2,...,12}. We obtain:

{&8,65,..., &, ={=0.77,-0.99, —1.34, —0.39, —1.55, —0.61, —0.64, —0.23,
—0.84,—0.18, —0.81, —1.17}.

. We fit the proposal distribution to the first batch of Ny probit-transformed

posterior samples.
We use the method of moment estimates i = —0.793 and 6 = 0.423 from the
first batch of Ny probit-transformed posterior samples to obtain our proposal

distribution g(&; p = —0.793,0 = 0.423) = 4= ¢ <§+o.793)'

0.423

. We draw Ny samples from the proposal distribution.

‘We obtain:

{€1,&, ... &2} ={—1.11,-0.63, —1.48, —0.59, —0.48, —0.69, —0.74, —0.51,
—0.82,—1.54,—0.76, —0.96}.

. We calculate lz ; for all No samples from the proposal distribution.

This step involves assessing the value of the unnormalized posterior and
the proposal distribution for all Ny samples from the proposal distribution.
As in the running example for the generalized harmonic mean estimator,

we obtain the unnormalized posterior as: p (k =2|n=10,0 (é,)) 10) (él),

where ¢ (f}) comes from using the change-of-variable method (see running

example for the generalized harmonic mean estimator and the appendix for
details). Thus, as in the case of the generalized harmonic mean estimator,
the uniform prior on 6 translates to a standard normal prior on £. The values
of the proposal distribution can easily be obtained (for example using the R
software).

. We transform the second batch of Ny posterior samples.
As in step 2, we use the probit transformation and obtain:

(€55, 654, ..., €5} ={—1.04,-0.81,—0.71, —0.92, —1.17, —0.77, —1.04, —0.77,
—0.74,-0.64, —0.55, —0.58}.

' There exist several candidates for the proposal distribution. Alternative proposal distri-

butions are, for example, the importance density that we used for the importance sampling
estimator or for the generalized harmonic mean estimator, or the analytically derived Beta(3,9)
posterior distribution.
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8. We calculate ly ; for the second batch of N1 probit-transformed samples from
the posterior distribution.
This is analogous to step 6.

9. We run the iterative scheme (Equation 2.15) until our predefined tolerance
criterion s reached.
As tolerance criterion we choose [ps(k =2 | n = 10)#+Y) —py(k =2 | n =
10)D] /pa(k = 2 | n = 10)H+D < 10719, This requires an initial guess for
the marginal likelihood p4(k = 2 | n = 10)(®) which we set to 0.'2

The simplicity of the beta-binomial model allows us to calculate the bridge
sampling estimate by hand. To determine ]34(@/)(”1) according to Equation 2.15,
we need to calculate the constants s; and so. Since N7 = No = 12, we obtain: s; =
s = No /(N2 + N1) = 0.5. In addition, we need to calculate I3 ; (i € {1,2,...,12})
for all samples from the proposal distribution, and Iy ; (j € {1,2,...,12}) for the
second batch of the probit-transformed samples from the posterior distribution.
Here we show how to calculate I3 1 and [1; using the first sample from the proposal
distribution and the first sample of the second batch of the posterior samples,
respectively:

ok |0, @(E))6(E) ((120)0~132(1 —0.13)- 022) — 0.077,

l2,1 - = 1 —1.1140.793
g(&1) oz @ ( 0.423 )

ok @(E)e(Es) _ ((F)015°(1 —0.15)°-0.28)
1,1 g(ff?,) O.i23 é (—1.%%42%_793) . .

For py(k =2 | n =10)"+tD) we then get:

Ny
1 la

e ; silzi + sapa(k =2 | n=10)®

pa(k =2 |n=10)" =

Ny
a1 1

M = s1l1j + s2pa(k =2 [ n = 10)®

1 0.077 T+ 0.084
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Using p(y)(®) = 0, we obtain as updated estimate of the marginal likelihood
pa(k =2 | n =10)1) =0.0908. This iterative procedure has to be repeated until

12 A better initial guess can be obtained from, for example, the importance sampling estimator
or the generalized harmonic mean estimator explained in the previous sections. In our experience,
however, usually the exact choice of the initial value does not seem to influence the convergence
of the bridge sampler much.
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our predefined tolerance criterion is reached. For our running example, this crite-
rion is reached after five iterations. We now obtain the bridge sampling estimate
of the marginal likelihood as pu(k = 2 | n = 10)®) = 0.0902.

2.2.6 Interim Summary

So far we used the beta-binomial model to illustrate the computation of four differ-
ent estimators of the marginal likelihood. These four estimators were discussed in
order of increasing sophistication, such that the first three estimators provided the
proper context for understanding the fourth, most general estimator — the bridge
sampler. This estimator is the focus in the remainder of this tutorial. The goal of
the next sections is to demonstrate that bridge sampling is particularly suitable
to estimate the marginal likelihood of popular models in mathematical psychol-
ogy. Importantly, bridge sampling may be used to obtain accurate estimates of
the marginal likelihood of hierarchical models (for a detailed comparison of bridge
sampling versus its special cases see Frithwirth—Schnatter, 2004; Sinharay & Stern,
2005).

2.2.7 Assessing the Accuracy of the Bridge Sampling Estimate

In this section we show how to quantify the accuracy of the bridge sampling
estimate. A straightforward approach would be to apply the bridge sampling pro-
cedure multiple times and investigate the variability of the marginal likelihood
estimate. In practice, however, this solution is often impractical due to the sub-
stantial computational burden of obtaining the posterior samples and evaluating
the relevant quantities in the bridge sampling procedure.

Frithwirth-Schnatter (2004) proposed an alternative approach that approxi-
mates the estimator’s expected relative mean-squared error:

(2.16)

The derivation of this approximate relative mean-squared error by Frithwirth—
Schnatter takes into account that the samples from the proposal distribution g(6)
are independent, whereas the MCMC samples from the posterior distribution p(6 |
y) may be autocorrelated. The approximate relative mean-squared error is given
by:

—2 1 Vo (h(0) | p(0) Voost (£2(0))
=N B, (h0) TN B2 (R0)

where f1(0) = m, f2(0) = mv Vo) (f1(0)) =
J(f1(0) —E [£1(0)])% g(0) A8 denotes the variance of fi(0) with respect to the
proposal distribution ¢(#) (the variance Vjost(f2(#)) is defined analogously), and
pf,(0) corresponds to the normalized spectral density of the autocorrelated process
f2(0) at the frequency 0.

In practice, we approximate the unknown variances and expected values by the
corresponding sample variances and means. Hence, for evaluating the variance and

(2.17)
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expected value with respect to g(6), we use the Ny samples for 6, from the proposal
distribution. To evaluate the variance and expected value with respect to the
posterior distribution, we use the second batch of Ny samples 67 from the posterior
distribution which we also use in the iterative scheme for computing the marginal
likelihood. Because the posterior samples are obtained via an MCMC procedure
and are hence autocorrelated, the second term in Equation 2.17 is adjusted by
the normalized spectral density (for details see Frithwirth-Schnatter, 2004).1% To
evaluate the normalized posterior density which appears in the numerator of fi(6)
and the denominator of both f1(6) and f3(6), we use the bridge sampling estimate
as normalizing constant.

Note that, under the assumption that the bridge sampling estimator p4(y)
is an unbiased estimator of the marginal likelihood p(y), the square root of the
relative mean-squared error (Equation 2.16) can be interpreted as the coefficient
of variation (i.e., the ratio of the standard deviation and the mean; C. E. Brown,
1998). In the remainder of this chapter, we report the coefficient of variation to
quantify the accuracy of the bridge sampling estimate.

2.3 Case Study: Bridge Sampling for Reinforcement
Learning Models

In this section, we illustrate the computation of the marginal likelihood using
bridge sampling in the context of a published data set (Busemeyer & Stout, 2002)
featuring the Expectancy Valence (EV) model — a popular reinforcement learning
(RL) model for the Iowa gambling task (IGT; Bechara et al., 1994). We first
introduce the task and the model, and then use bridge sampling to estimate the
marginal likelihood of the EV model implemented in both an individual-level and
a hierarchical Bayesian framework. For the individual-level framework, we com-
pare estimates obtained from bridge sampling to importance sampling estimates
published in Steingroever, Wetzels, and Wagenmakers (2016). For the hierarchical
framework, we compare our results to estimates from the Savage-Dickey density ra-
tio test (Dickey, 1971; Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010; Wetzels, Grasman, & Wagenmakers, 2010).

2.3.1 The Iowa Gambling Task

In this section we describe the IGT (see also Steingroever, Pachur, Smira, &
Lee, 2018; Steingroever, Wetzels, Horstmann, Neumann, & Wagenmakers, 2013;
Steingroever, Wetzels, & Wagenmakers, 2013a, 2013b, 2014; Steingroever et al.,
2016). Originally, Bechara et al. (1994) developed the IGT to distinguish decision-
making strategies of patients with lesions to the ventromedial prefrontal cortex
from the ones of healthy controls (see also Bechara, Damasio, Damasio, & Lee,
1999; Bechara, Damasio, Tranel, & Anderson, 1998; Bechara, Tranel, & Dama-
sio, 2000). During the last decades, the scope of application of the IGT has

13We estimate the spectral density at frequency zero by fitting an autoregressive model using
the spectrum0.ar () function as implemented in the coda R package (Plummer, Best, Cowles, &
Vines, 2006).
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Table 2.1: Summary of the payoff scheme of the traditional IGT as developed by
Bechara et al. (1994).

Deck A Deck B Deck C Deck D

Bad deck Bad deck Good deck Good deck

with fre- with infre- with fre- with infre-

quent losses quent losses quent losses quent losses

Reward /trial 100 100 50 50
Number of losses/10 cards 5 1 5 1
Loss/10 cards —1250 —1250 —250 —250
Net outcome/10 cards —250 —250 250 250

increased tremendously covering clinical populations with, for example, patholog-
ical gambling (Cavedini, Riboldi, Keller, D’Annucci, & Bellodi, 2002), obsessive-
compulsive disorder (Cavedini, Riboldi, D’Annucci, et al., 2002), psychopathic
tendencies (Blair, Colledge, & Mitchell, 2001), and schizophrenia (Bark, Dieck-
mann, Bogerts, & Northoff, 2005; Martino, Bucay, Butman, & Allegri, 2007).

The IGT is a card game that requires participants to choose, over several
rounds, cards from four different decks in order to maximize their long-term net
outcome (Bechara et al., 1994; Bechara, Damasio, Tranel, & Damasio, 1997). The
four decks differ in their payoffs, and two of them result in negative long-term
outcomes (i.e., the bad decks), whereas the remaining two decks result in positive
long-term outcomes (i.e., the good decks). After each choice, participants receive
feedback on the rewards and losses (if any) associated with that card, as well as
their running tally of net outcomes over all trials so far. Unbeknownst to the
participants, the task (typically) contains 100 trials.

A crucial aspect of the IGT is whether and to what extent participants even-
tually learn to prefer the good decks because only choosing from the good decks
maximizes their long-term net outcome. The good decks are typically labeled as
decks C and D, whereas the bad decks are labeled as decks A and B. Table 2.1
presents a summary of the traditional payoff scheme as developed by Bechara et al.
(1994). This table illustrates that decks A and B yield high constant rewards, but
even higher unpredictable losses: hence, the long-term net outcome is negative.
Decks C and D, on the other hand, yield low constant rewards, but even lower
unpredictable losses: hence, the long-term net outcome is positive. In addition
to the different payoff magnitudes, the decks also differ in the frequency of losses:
decks A and C yield frequent losses, while decks B and D yield infrequent losses.

2.3.2 The Expectancy Valence Model

In this section, we describe the EV model (see also Steingroever et al., 2018;
Steingroever, Wetzels, & Wagenmakers, 2013a; Steingroever et al., 2014, 2016).
Originally proposed by Busemeyer and Stout (2002), the EV model is arguably
the most popular model for the IGT (for references see Steingroever, Wetzels, &
Wagenmakers, 2013a, and for alternative IGT models see Ahn, Busemeyer, Wa-
genmakers, & Stout, 2008; Dai, Kerestes, Upton, Busemeyer, & Stout, 2015; Stein-
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groever et al., 2014; Worthy & Maddox, 2014; Worthy, Pang, & Byrne, 2013). The
model formalizes participants’ performance on the IGT through the interaction of
three model parameters that represent distinct psychological processes. The first
model assumption is that after choosing a card from deck k, £ € {1,2,3,4}, on
trial ¢, participants compute a weighted mean of the experienced reward W(t) and
loss L(t) to obtain the utility of deck k on trial ¢, v (¢):

ve(t) = (1 — w)W () + wL(t).

The weight that participants assign to losses relative to rewards is the attention
weight parameter w. A small value of w, that is, w < .5, is characteristic for
decision makers who put more weight on the immediate rewards and can thus
be described as reward-seeking, whereas a large value of w, that is, w > .5, is
characteristic for decision makers who put more weight on the immediate losses
and can thus be described as loss-averse (Ahn et al., 2008; Busemeyer & Stout,
2002).

The EV model further assumes that decision makers use the utility of deck
k on trial ¢, vi(t), to update only the expected utility of deck k, Ewvg(t); the
expected utilities of the unchosen decks are left unchanged. This updating process
is described by the Delta learning rule, also known as the Rescorla-Wagner rule
(Rescorla & Wagner, 1972):

Bvi(t) = Evg(t — 1) + a(vg(t) — Evg(t — 1)).

If the experienced utility vg(¢) is higher than expected, the expected utility of
deck k is adjusted upward. If the experienced utility vy () is lower than expected,
the expected utility of deck & is adjusted downward. This updating process is
influenced by the second model parameter — the updating parameter a. This
parameter quantifies the memory for rewards and losses. A value of a close to
zero indicates slow forgetting and weak recency effects, whereas a value of a close
to one indicates rapid forgetting and strong recency effects. For all models, we
initialized the expectancies of all decks to zero, Ev(0) =0 (k € {1,2,3,4}). This
setting reflects neutral prior knowledge about the payoffs of the decks.

In the next step, the model assumes that the expected utilities of each deck
guide participants’ choices on the next trial ¢ + 1. This assumption is formalized
by the softmax choice rule, also known as the ratio-of-strength choice rule (Luce,
1959):

e0(t)-Evg(t)

PriSi(t+1)] = = oL

Jj=1
The EV model uses this rule to compute the probability of choosing each deck on
each trial. This rule contains a sensitivity parameter 6 that indexes the extent
to which trial-by-trial choices match the expected deck utilities. Values of 6 close
to zero indicate random choice behavior (i.e., strong exploration), whereas large
values of 6 indicate choice behavior that is strongly determined by the expected
utilities (i.e., strong exploitation). The EV model uses a trial-dependent sensi-
tivity parameter 6(t), which also depends on the final model parameter, response
consistency ¢ € [—5,5]:

0(t) = (t/10)°.
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If ¢/ is positive, successive choices become less random and more determined by the
expected deck utilities; if ¢’ is negative, successive choices become more random
and less determined by the expected deck utilities, a pattern that is clearly non-
optimal. We restricted the consistency parameter of the EV model to the range
[—2,2] instead of the proposed range [—5,5] (Busemeyer & Stout, 2002). This
modification improved the estimation of the EV model and prevented the choice
rule from producing numbers that exceed machine precision (see also Steingroever
et al., 2014).

In sum, the EV model has three parameters: (1) the attention weight parame-
ter w € [0, 1], which quantifies the weight of losses over rewards; (2) the updating
parameter a € [0,1], which determines the memory for past expectancies; and
(3) the response consistency parameter ¢’ € [—2,2], which determines the balance
between exploitation and exploration.

2.3.3 Data

We applied bridge sampling to a data set published by Busemeyer and Stout
(2002). The data set consists of 30 healthy participants each contributing 7' = 100
IGT card selections (see Busemeyer and Stout for more details on the data sets).!

2.3.4 Application of Bridge Sampling to an Individual-Level
Implementation of the EV Model

In this section we describe how we use bridge sampling to estimate the marginal
likelihood of an individual-level implementation of the EV model. This implemen-
tation estimates model parameters for each participant separately. Accordingly,
we also obtain a marginal likelihood of the EV model for every participant.

2.3.4.1 Schematic Execution of the Bridge Sampler

To obtain the bridge sampling estimate of the marginal likelihood for each partic-
ipant, we follow the steps outlined in Figure 2.5.
For each participant s, s € {1,2,...,30}, we proceed as follows:

1. For each parameter, we draw 2N1 samples from the posterior distribution.
Since Steingroever et al. (2016) already fit an individual-level implementa-
tion of the EV model separately to the data of each participant in Busemeyer
and Stout (2002), we reuse their posterior samples (see Steingroever et al.,
2016, for details on the prior distributions and model implementation). Note
that they parameterized the model not in terms of ¢’ € [—2,2], but in terms
of c = (' +2)/4, ¢ € [0,1], and in the remainder of this chapter, we also use
this reparameterization.

For each participant, we choose 2N; to match the number of samples ob-
tained from Steingroever et al. (2016) which was at least 5,000; however,
whenever this number of samples was insufficient to ensure convergence of

14Note that we excluded three participants due to incomplete choice data.
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the Hamiltonian Monte Carlo (HMC) chains, Steingroever et al. (2016) re-
peated the fitting routine with 5,000 additional samples. Steingroever et al.
(2016) confirmed convergence of the HMC chains by reporting that all R
statistics were below 1.05.

. We choose a proposal distribution.
We generalize our approach from the running example and use a multivariate
normal distribution as a proposal distribution.

. We transform the first batch of N1 posterior samples.

Since we use a multivariate normal distribution as a proposal distribution,
we have to transform all posterior samples to the real line using the probit
t.ransformation, that is, w? ; = @~ H(w} ), ak; = @7 (al ), vi; = D (ck ),
i={12,...,N1}.

. We fit the proposal distribution to the first batch of N1 probit-transformed
posterior samples.

We use method of moment estimates for the mean vector and the covariance
matrix obtained from the first batch of V7 probit-transformed posterior sam-
ples to specify our multivariate normal proposal distribution.

. We draw Ns samples from the proposal distribution.
We use the R software to randomly draw Ns samples from the proposal distri-
bution obtained in step 4. We obtain (@ ;, &s4,7s,:) with i € {1,2,..., Na}.

. We calculate l3 ; for all No samples from the proposal distribution.

This step involves assessing the value of the unnormalized posterior and
the proposal distribution for all Ny samples from the proposal distribution.
Before we can assess the value of the unnormalized posterior (i.e., the product
of the likelihood and the prior), we have to derive how our transformation
in step 3 affects the unnormalized posterior.

First, we derive how our transformation affects the likelihood. To evaluate
the likelihood, we need to transform the probit-transformed samples back
to the original parameter scales. That is, we evaluate the likelihood for
(D(@s,4), ®(Gs,i), ©(Fs,:)). Before formalizing the likelihood of the observed
choices of participant s, we define the following variables: We define Chg(t)
as a vector containing the sequence of choices made by participant s up to
and including trial ¢, and X(¢) as a vector containing the corresponding
sequence of net outcomes. We now obtain the following expression for the
likelihood of the observed choices of participant s:

(ON‘ ) (79 z) Xe(Tf 1)) =

p(C’hS(T) ‘ (I)(‘I’S 2)
T—1 4
H H F[Sk(t+1)] - 6k(t +1).

(2.18)

Here T is the total number of trials, Pr[Sk(t+1)] is the probability of choos-
ing deck & on trial t+ 1, and 0 (¢ + 1) is a dummy variable which is 1 if deck
k is chosen on trial t + 1 and O otherwise.
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Second, we have to derive how our transformation affects the priors on each
EV model parameter to yield priors on the probit-transformed model pa-
rameters. Since Steingroever et al. (2016) used independent uniform priors
on [0,1] we obtain standard normal priors on the probit-transformed model
parameters (see beta-binomial example and Appendix D for an explanation).

7. We transform the second batch of N1 posterior samples.
This is analogous to step 2.

8. We calculate 1 ; for the second batch of N1 probit-transformed samples from
the posterior distribution.
This is analogous to step 6.

9. We run the iterative scheme (Equation 2.15) until our predefined tolerance
criterion is reached.
We use a tolerance criterion and initialization analogous to the running ex-
ample. Once convergence is reached, we receive an estimate of the marginal
likelihood for each participant, and derive the coefficient of variation for each
participant using Equation 2.17. The largest coefficient of variation is 2.07%
suggesting that the bridge sampler has low variance.'®

2.3.4.2 Assessing the Accuracy of Our Implementation

To assess the accuracy of our implementation, we compared the marginal likeli-
hood estimates obtained with our bridge sampler to the estimates obtained with
importance sampling (Steingroever et al., 2016). Figure 2.6 shows the log marginal
likelihoods for the 30 participants of Busemeyer and Stout (2002) obtained with
bridge sampling (x-axis) and importance sampling reported by Steingroever et
al. (2016; y-axis). The two sets of estimates correspond almost perfectly. These
results indicate a successful implementation of the bridge sampler. Thus, this
section emphasizes that both the importance sampler and bridge sampler can be
used to estimate the marginal likelihood for the data of individual participants.
However, when we want to estimate the marginal likelihood of a Bayesian hierar-
chical model, it may be difficult to find a suitable importance density. The bridge
sampler, on the other hand, can be applied more easily and more efficiently.

2.3.5 Application of Bridge Sampling to a Hierarchical
Implementation of the EV Model

In this section we illustrate how bridge sampling can be used to estimate the
marginal likelihood of a hierarchical EV model. This hierarchical implementation
assumes that the parameters w, a, and ¢ from each participant are drawn from
three separate group-level distributions. This model specification hence incorpo-
rates both the differences and the similarities between participants. We illustrate
this application using again the Busemeyer and Stout (2002) data set, and assume
that these participants constitute one group.

15Note that this measure relates to the marginal likelihoods, not to the log marginal
likelihoods.
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Log Marginal Likelihoods
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Figure 2.6: Comparison of the log marginal likelihoods obtained with bridge sam-
pling (x-axis) and importance sampling reported by Steingroever et al. (2016; y-
axis). The main diagonal indicates perfect correspondence between the two meth-
ods. Available at https://tinyurl.com/yac308gs under CC license https://
creativecommons.org/licenses/by/2.0/.

2.3.5.1 Schematic Execution of the Bridge Sampler

To compute the marginal likelihood, we again follow the steps outlined in Fig-
ure 2.5, with a few minor modifications.

1. For each parameter, that is, all individual-level and group-level parameters,
we draw 2N = 60,000 samples from the posterior distribution.
To obtain the posterior samples, we fit a hierarchical Bayesian implementa-
tion of the EV model to the Busemeyer and Stout (2002) data set using the
software JAGS (Plummer, 2003).'¢ We assume that, for each participant s,
s € {1,2,...,30}, each probit-transformed individual-level parameter (i.e.,
ws = O Hwy), as = P (ay), 75 = @ 1(c,)) is drawn from a group-level
normal distribution characterized by a group-level mean and standard devi-
ation parameter. For all group-level mean parameters fi,, ftq, [ty We assume
a standard normal distribution, and for all group-level standard deviation
parameters o, 04,0, a uniform distribution ranging from 0 to 1.5. For a
detailed explanation of the hierarchical implementation of the EV model,
see Wetzels, Vandekerckhove, et al. (2010).
To reach convergence and reduce autocorrelation, we collect two MCMC
chains, each with 120,000 samples from the posterior distributions after

16We used a model file that is an adapted version of the model file used by Ahn et al. (2011).
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having excluded the first 30,000 samples as burn-in. Out of these 120,000
samples per chain, we retained every fourth value yielding 30,000 samples
per chain. This setting resulted in all R statistics below 1.05 suggesting that
all chains have successfully converged from their starting values to their sta-
tionary distributions.

. We choose a proposal distribution.

We use a multivariate normal distribution as a proposal distribution.

. We transform the first batch of N1 posterior samples.

As before, we ensure that the range of the posterior distribution matches
the range of the proposal distribution by using the probit transformation,

that is, wi; = ® Y(w};), af; = @ Yal,), vi; = @M cky), Th,; =
d1((0r ;) /15), T = ®M((oh;)/1.5), and 72 = ®7((0F ;) /1.5),

j =11,2,...,N;}. The group-level mean parameters do not have to be
transformed because they already range across the entire real line.

. We fit the proposal distribution to the first batch of the N1 probit-transformed

posterior samples.

We use method of moment estimates for the mean vector and the covariance
matrix obtained from the first batch of N7 probit-transformed posterior sam-
ples to specify our multivariate normal proposal distribution.

. We draw No samples from the proposal distribution.

We use the R software to randomly draw N, samples from the pro-
posal distribution obtained in step 4. We obtain (@5, &s,Ys,i) and
(ﬂw,h 7-w,i7 [La,i, 7-o¢,i7 [L%Z‘, 7:771') with 7 € {1, 2,... ,NQ} and s € {1, 2,..., 30}

. We calculate lz; for all Ny samples from the proposal distribution.

This step involves assessing the value of the unnormalized posterior and the
proposal distribution for all Ny samples from the proposal distribution. The
unnormalized posterior is defined as:

(T2, P(ChA(T) | @(Re i), Xo(T = 1)) (R | ) p(C),  where  Chy(T)
refers to all choices of subject s, Xs(T — 1) to the net outcomes that subject
s experienced on trials 1,2,...,T—1, Rs; = (@s,i, Os,i,7s,s) to the it" sample
from the proposal distribution for the individual-level parameters of subject
s, and ¢; to the i“i sample from the proposal distribution for all group-level
parameters (e'g'a Cz = (ﬂw,’ia 7~—w,i7 ,aa,ia 7204,1" ﬂ’y,ia 7-’y,i))'

The likelihood function for a given participant is the same as in the individ-
ual case. However, for each participant we now have to add besides the prior
on the individual-level parameters also the prior on the group-level param-
eters. The product of the likelihood and the priors gives the unnormalized
posterior density (see Appendix E for more details).

. We follow steps 7 — 9, as outlined for the bridge sampler of the individual-

level implementation of the EV model.
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Figure 2.7: Prior and posterior distribution of the group-level mean pu, in the
Busemeyer and Stout (2002) data set. The figure shows the posterior distribution
(solid line) and the prior distribution (dotted line). The gray dot indicates the in-
tersection of the prior and the posterior distributions, for which the Savage-Dickey
Bayes factor equals 1. Available at https://tinyurl.com/y7cyxclg under CC
license https://creativecommons.org/licenses/by/2.0/.

2.3.5.2 Assessing the Accuracy of Our Implementation

To investigate the accuracy of our implementation, we compare Bayes factors ob-
tained with bridge sampling to Bayes factors obtained from the Savage-Dickey
density ratio test (Dickey, 1971; Dickey & Lientz, 1970; for a tutorial, see Wa-
genmakers et al., 2010). The Savage-Dickey density ratio is a simple method for
computing Bayes factors for nested models. We artificially create three nested
models by taking the full EV model M in which all parameters are free to vary,
and then restricting one of the three group-level mean parameters, that is, p,, fa,
or U, to a predefined value. For these values we choose the intersection point of
the prior and posterior distribution of each group-level mean parameter. To obtain
these intersection points, we fit the full EV model and then use a nonparametric
logspline density estimator (C. J. Stone, Hansen, Kooperberg, & Truong, 1997).
The obtained values are presented in Table 2.2. Since we compare the full model
to each restricted model, we obtain three Bayes factors.

According to the Savage-Dickey density ratio test, the Bayes factor for the
full model versus a specific restricted model M,. can be obtained by dividing the
height of the prior density at the predefined parameter value 6y by the height of
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Table 2.2: Bayes factors comparing the full EV model to the restricted EV models,
log marginal likelihoods, and coefficient of variation (with respect to the marginal
likelihood) expressed as a percentage.

Model Bayes Factor Log Marginal Likelihood CV[%)]
full model - —3800.434 10.13
restricted at p, = —0.334 1.202 —3800.618 16.44
restricted at p, = —0.604 1.052 —3800.484 9.71
restricted at p, = 0.92 1.068 —3800.500 12.03

the posterior at the same location:

P(y | Mf) P(9 = 0o | Mf)
BF = = . 2.19
MM ply ML) p(0 =6 |y, My) (2.19)

Since we choose 0y to be the intersection point of the prior and posterior
distribution, BFaq, a1, equals 1. This Savage-Dickey Bayes factor of 1 indicates
that the marginal likelihood under the full model equals the marginal likelihood
under the restricted model. Figure 2.7 illustrates the Savage-Dickey Bayes factor
comparing the full model to the model assuming pu,, fixed to —0.604.

The computation of the three bridge sampling Bayes factors, on the other hand,
works as follows: First, we follow the steps outlined above to obtain the bridge
sampling estimate of the full EV model. Second, we obtain the bridge sampling
estimate of the marginal likelihood for the three restricted models. This requires
adapting the steps outlined above to each of the three restricted models. Lastly,
we use the first equality in Equation 2.19 to obtain the three Bayes factors.

The Bayes factors derived from bridge sampling are reported in Table 2.2. It is
evident that Bayes factors derived from bridge sampling closely approximate the
Savage-Dickey Bayes factors of 1. These results suggest a successful implemen-
tation of the bridge sampler. This is also reflected by the close match between
the log marginal likelihoods of the four models presented in the third column of
Table 2.2.

Finally, we confirm that the bridge sampler has low variance; the coefficient of
variation with respect to the marginal likelihood of the full model and the three
restricted models ranges between 9.71 and 16.44%.

2.4 Discussion

In this tutorial, we explained how bridge sampling can be used to estimate the
marginal likelihood of popular models in mathematical psychology. As a running
example, we used the beta-binomial model to illustrate step-by-step the bridge
sampling estimator. To facilitate the understanding of the bridge sampler, we
first discussed three of its special cases — the naive Monte Carlo estimator, the
importance sampling estimator, and the generalized harmonic mean estimator.
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2.4. Discussion

Consequently, we introduced key concepts that became gradually more compli-
cated and sophisticated. In the second part of this tutorial, we showed how bridge
sampling can be used to estimate the marginal likelihood of both an individual-
level and a hierarchical implementation of the Expectancy Valence (EV; Buse-
meyer & Stout, 2002) model — a popular reinforcement-learning model for the
Iowa gambling task (IGT; Bechara et al., 1994). The running example and the
application of bridge sampling to the EV model demonstrated the positive aspects
of the bridge sampling estimator, that is, its accuracy, reliability, practicality, and
ease-of-implementation (DiCiccio et al., 1997; Frithwirth-Schnatter, 2004; Meng
& Wong, 1996).

The bridge sampling estimator is superior to the naive Monte Carlo estimator,
the importance sampling estimator, and the generalized harmonic mean estimator
for several reasons. First, Meng and Wong (1996) showed that, among the four
estimators discussed in this chapter, the bridge sampler presented in this chapter
minimizes the mean-squared error because it uses the optimal bridge function. Sec-
ond, in bridge sampling, choosing a suitable proposal distribution is much easier
than choosing a suitable importance density for the importance sampling estima-
tor or the generalized harmonic mean estimator because bridge sampling is more
robust to the tail behavior of the proposal distribution relative to the posterior
distribution. This advantage facilitates the application of the bridge sampler to
higher-dimensional and complex models. This characteristic of the bridge sampler
combined with the popularity of higher-dimensional and complex models in math-
ematical psychology suggests that bridge sampling can advance model comparison
exercises in many areas of mathematical psychology (e.g., reinforcement-learning
models, response time models, multinomial processing tree models, etc.). Third,
bridge sampling is relatively straightforward to implement. In particular, our step-
by-step procedure can be easily applied to other models with only minor changes
of the code (i.e., the unnormalized posterior and potentially the proposal function
have to be adapted). In our opinion, this is one of the most attractive features
of bridge sampling: It is an accurate yet very generic method. Exploiting this
generic characteristic, we have implemented the bridge sampling procedure in the
bridgesampling R package (Gronau, Singmann, & Wagenmakers, 2020) in order
to maximize its accessibility.

Despite the numerous advantages of the bridge sampler, the take-home message
of this tutorial is not that the bridge sampler should be used blindly. There exist
a large variety of methods to approximate the marginal likelihood that differ in
their efficiency.!” The most appropriate method optimizes the trade-off between
accuracy and implementation effort. This trade-off depends on a number of aspects
such as the complexity of the model, the number of models under consideration, the
statistical experience of the researcher, and the time available. This suggests that
the choice of the method should be reconsidered each time a marginal likelihood
needs to be obtained. Obviously, when the marginal likelihood can be determined
analytically, bridge sampling is not needed at all. If the goal is to compare (at least)

17In general, a large number of approaches for model selection exist which are based on MCMC
posterior sampling and some of them are not based on approximating the models’ marginal
likelihoods (e.g., Ando, 2007; Spiegelhalter, Best, Carlin, & van der Linde, 2002). A comparison
of these methods is beyond the scope of this tutorial.
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two nested models, the Savage-Dickey density ratio test (Dickey, 1971; Dickey &
Lientz, 1970) might be a better alternative. Note, however, that this requires an
approximation of the marginal posterior density of one or more parameters which
can be unstable in case the test value falls in the tail of the distribution. If only an
individual-level implementation of a model is used, importance sampling may be
easier to implement and may require less computational effort. This presupposes
that one can find a proposal distribution with fatter tails than the posterior which
may not always be trivial (even in an individual-level case). If the goal is to
obtain the marginal likelihood of a large number of relatively simple models, the
product space or reversible jump method (RJIMCMC) might be more appropriate
(Carlin & Chib, 1995; Green, 1995; Lodewyckx et al., 2011). In contrast to bridge
sampling, implementations of these methods tend to be problem-specific rather
than generic (but see Lunn, Best, & Whittaker, 2009). If a researcher with a
limited programming background and/or little time resources wants to conduct
a model comparison exercise, rough approximations of the Bayes factor, such as
the Bayesian information criterion, might be more suitable (Schwarz, 1978). It
should be kept in mind, however, that this approximation assumes a certain prior
structure that may not respect the knowledge or information that researchers have
at their disposal. On the other hand, a researcher with an extensive background
in programming and mathematical statistics might consider using path sampling
— a generalization of bridge sampling (Gelman & Meng, 1998).

To conclude, in this tutorial we showed that bridge sampling offers a reli-
able and easy-to-implement approach to estimating a model’s marginal likeli-
hood. Bridge sampling can be profitably applied to a wide range of problems
in mathematical psychology involving parameter estimation, model comparison,
and Bayesian model averaging.

R scripts for reproducing the analyses presented in this chapter are available at
https://osf.io/f9cq4/.
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2.A. The Bridge Sampling Estimator as a General Case of Methods 1 — 3

2.A The Bridge Sampling Estimator as a General Case of
Methods 1 — 3

In this section we show that the naive Monte Carlo, the importance sampling,
and the generalized harmonic mean estimators are special cases of the bridge
sampling estimator under specific choices of the bridge function h(f) and the
proposal distribution g(#).!* An overview is provided in Table 2.3.

To prove that the bridge sampling estimator reduces to the naive Monte Carlo
estimator, consider bridge sampling, choose the prior distribution as the proposal
distribution (i.e., g(#) = p(0)), and specify the bridge function as h(8) = 1/g(0).
Inserting these specifications into Equation 2.12 yields:

a{y 16) = 5. 9(6) = 0(6))

= AL 0;) p(6;)

1
1 Ny *

|-

No o Ny

. Zi:lp(y|0i) 1 ~ ~

- = LS byl 8. b~ (o).
= ) B0

which is equivalent to the naive Monte Carlo estimator shown in Equation 2.7.

To prove that the bridge sampling estimator reduces to the importance sam-
pling estimator, consider bridge sampling, choose the importance density as the
proposal distribution (i.e., g(0) = grs(0)), and specify the bridge function as
h(0) =1/g(0) . Inserting these specifications into Equation 2.12 yields:

pa(y | h(6) =

N i T BEAl |0:) p(0:)
= IS 1 s 92 ~ 915(9)7 9; Np(e | y)

1
1 N1
N1 Z]:l 915(0;) gIS( ])

1 ZN2 p(y | éi)p(éi)

N. i=1 0 Nz ) ).
2 0, 1 Garyl6)p:) 5
) Cons0) LS00 g )
=N 2 g1s(6s)

which is equivalent to the importance sampling estimator shown in Equation 2.8.

18Note that bridge sampling is also a general case of the Chib and Jeliazkov (2001) method of
estimating the marginal likelihood using the Metropolis-Hastings acceptance probability (Meng
& Schilling, 2002; Mira & Nicholls, 2004).
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2.

Table 2.3: Summary of the bridge sampling estimator for the marginal likelihood, and its special cases: the naive Monte Carlo,

importance sampling, and generalized harmonic mean estimator.

Method Estimator Samples Bridge Function h(#)
Bridge sampling ZFM MUMMJ Ply| O ) p(0:) i J 0; ~ g(0) h(6) = ¢
N 5 h(B7) 9(63) o Py [ 0)p(9) + 3 p(y)9(0)
05 ~p(0 | y)
. 1y . . 1
Naive Monte —>ip(y|6:) 0; ~ p(0) h(8) = — and g(0) = p(9)
N 9(9)
Carlo
0:) p(0; - 1
Importance .ZMU@ y16:) p(6) 0; ~grs(0)  h(0) = o and g(0) = grs(0)
sampling g1s(6:) 9(9)
| — o\ 1
. grs\b;
Generalized N2 oa 107 007 0 ~p@|y) h(l)=——-—<and g(f)=grs(8
Goneralived | X255 07) 0] O O = oy ¢ 910 = 915 0)

Note. p(0) is the prior distribution, grs(6) is the importance density, p(0 | y) is the posterior distribution, g(6) is the
proposal distribution, h(6) is the bridge function, and C' is a constant. The last column shows the bridge function

needed to obtain the special cases.
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To prove that the bridge sampling estimator reduces to the generalized har-
monic mean estimator, consider bridge sampling, choose the importance density as
the proposal distribution (i.e., g(0) = grs(0)), and specify the bridge function as
h(0) =1/(p(y | 0) p(9)). Inserting these specifications into Equation 2.12 yields:

) 1
Py 140 = STy 90 = 950)
1 ~ ~
= ——————p(y | 6;) p(6:)
" Py | Gi)pl(&-) , 0i~g1s(0), 05 ~p0]y)

N
o

—1
V. M o
= Ny 2 = LZ% , 05 ~p(0]y),
Lle 915(9]') Ny 1P(y | ej)p(ej)
Ne ==t p(y | 03) p(67)

Jj=

which is equivalent to the generalized harmonic mean estimator shown in Equa-
tion 2.9.

2.B Bridge Sampling Implementation: Avoiding
Numerical Issues

In order to avoid numerical issues, we can rewrite Equation 2.15 in the following
way:
N.
1 f: l2i
N> = l2,i+s2 Pa(y)®
pa(y) = M

1
N ]; s111,5+s2 Pa(y)®

1 % exp(log(lg,i))
N3 =1 s1exp (1Og(l2,i))+52ﬁ4(y)(t)
Ny

1 1
N1 =i exp (log(l1,;))+s2pa (y) ™

n % exp(log(lz,i))EXP(fl*)
N & st exp ( log(lz,i)) exp (—l*>+82ﬁ4(y)(f) exp (_l*)
1 Ny exp(—l*)

N1 =y siexp ( log(ll,j)) exp (—l*)+52ﬁ4(y)(t) exp (—l*)
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1 % exp(log(b’i)fl*)
1 No =1 s1exp ( log(lgﬁi)—l*)-&-32;134(‘1;)(") exp (—l*)
exp (—1*) Ny N
Ny J=1 s1exp ( log(ll,j)—l*)—&-szzu(y)(") exp (—l*)
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1 1

N 2 sy exp (Toglin,,) 1) +52pa(0) ) oxp (17

[* is a constant which we can choose in a way that keeps the terms in the sums
manageable. We used {* = median(log(ly;)). Let

P = pa(y) D exp (= 17),
so that

Then we obtain
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Hence, we can run the iterative scheme with respect to 7 which is more convenient
because it keeps the terms in the sums manageable and multiply the result by
exp(l*) to obtain the estimate of the marginal likelihood or, equivalently, we can
take the logarithm of the result and add [* to obtain an estimate of the logarithm
of the marginal likelihood.

2.C Correcting for the Probit Transformation

In this section we describe how the probit transformation affects our expression of
the generalized harmonic mean estimator (Equation 2.9) to yield Equation 2.10.
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2.C. Correcting for the Probit Transformation

Recall that we derived the generalized harmonic mean estimator using the follow-
ing equality:

1 g1s(9)
p(y) / oy [op(e) PO 1Y) 46 (2.20)

For practical reasons, in the running example, we used a normal distribution
on £ as importance density. This £ was defined as the probit transform of 6
(i.e, &€ = ®71(0)). In particular, the normal importance density was given by
é(b E?T") Note that this importance density is a function of £, whereas the gen-

eral importance density g;s in Equation 2.20 is specified in terms of #. Therefore,
to include our specific importance density into Equation 2.20, we need to write it

in terms of #. This yields %qﬁ (‘yl(ﬁg)_ﬂ) ¢(q>_11(9)), where the latter factor comes

g
from applying the change-of-variable method. Replacing grs(#) in Equation 2.20
by this expression, results in:
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(2.21)
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Rewriting results in:

1. (2" O)—n 1
Lo () sty
p(y | 0) p(0) ’

p(y) = IEpost

which can be approximated as:
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R
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likelihood prior from the posterior distribution

(2.22)
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which shows that the generalized harmonic estimate can be obtained using the
samples from the posterior distribution, or the probit-transformed ones. In the
online-provided code, we use the latter approach (see also Overstall & Forster,
2010). Note that in our running example, V& p (<I> (5;‘)) =1.

2.D Details on the Application of Bridge Sampling to the
Individual-Level EV Model

In this section, we provide more details on how we obtained the unnormalized
posterior distribution for a specific participant s, s € {1,2,...,30}. Since we
focus on one specific participant, we drop the subscript s in the remainder of this
section. As explained in Appendix B, we run the iterative scheme with respect
to 7 to avoid numerical issues. Consequently, we have to compute log(ly ;) and
log(l2,;). Using &; = (@, a4, 7;) for the i*" sample from the proposal distribution,
we get for log(l2,;) (log(li ;) works analogously):

Ch(T) | ®(R:), X (T — 1)) p(®(&;)) ¢<rez->>
9(R;) '

log(l2,;) = log (p(

Therefore, instead of computing the unnormalized posterior distribution di-
rectly, we compute the logarithm of the unnormalized posterior distribution:

log(p(CA(T) | ®(Ra), X(T = 1)) p(®(£:)) ¢(Ri)) = log(p(Ch(T) | ®(R:), X(T — 1))+
log(¢(wi)) + log(p(a)) + log(¢(71)),

because we assumed independent priors on each model parameter w, a, c.
log(p(®(R;))) = 0 because p refers to the uniform prior on [0, 1].

2.E Details on the Application of Bridge Sampling to the
Hierarchical EV Model

Analogous to the last section, we explain here how we obtained the logarithm
of the unnormalized posterior for the hierarchical implementation of the EV
model. Using Rs; = (@s,i, Gs,i,7s,:) for the i*" sample from the proposal dis-
tribution for the individual-level parameters of subject s, and Ei for the 7"
sample from the proposal distribution for all group-level parameters (i.e., 51 =
(ﬂw,iv'Fw,iaﬁa,iv"ia,iaﬂ%ia%'y,i))v we get:

1og<<Hpch ) | ®(Fs ), Xo(T = 1)) (n“|<>> (E))

N
Z IOg ) I (I)(K/s z) XS(T - 1)))+
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Model

1 1 CDs,i - [Lw,i +l 1 ¢ ds,i - ﬂa,i +
e\ 150(7,,) ¢ 1.50(7,,) B\ 15070 “ \ 150(7.)

o 1 p Vi = Hry,i
S\ 150(7,.) “ \ 150(7,,)

log (¢(fiw,i)) + 108 (¢(fia,i)) + log (¢ (fiy.i)) +

_|_

log (¢(7w,i)) +10g (¢(7a.i)) +10g (4(75.4)) -
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Chapter 3

A Simple Method for Comparing
Complex Models: Bayesian Model
Comparison for Hierarchical
Multinomial Processing Tree Models
using Warp-Ill Bridge Sampling

Abstract

Multinomial processing trees (MPTs) are a popular class of cognitive
models for categorical data. Typically, researchers compare several MPTs,
each equipped with many parameters, especially when the models are im-
plemented in a hierarchical framework. A Bayesian solution is to compute
posterior model probabilities and Bayes factors. Both quantities, however,
rely on the marginal likelihood, a high-dimensional integral that cannot be
evaluated analytically. In this chapter, we show how Warp-III bridge sam-
pling can be used to compute the marginal likelihood for hierarchical MPTs.
We illustrate the procedure with two published data sets and demonstrate
how Warp-1II facilitates Bayesian model averaging.

3.1 Introduction

Multinomial processing trees (MPTs; e.g., Riefer & Batchelder, 1988) are sub-
stantively motivated stochastic models for the analysis of categorical data. MPTs

This chapter is published as Gronau, Q. F., Wagenmakers, E.—J., Heck, D. W., & Matzke,
D. (2019). A simple method for comparing complex models: Bayesian model comparison for
hierarchical multinomial processing tree models using Warp-III bridge sampling. Psychometrika,
84, 261-284. doi: https://doi.org/10.1007/s11336-018-9648-3. Also available as PsyArXiv
preprint: https://psyarxiv.com/yxhfm/
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3. BAYESIAN MODEL COMPARISON FOR HIERARCHICAL MULTINOMIAL
PROCESSING TREE MODELS USING WARP-III BRIDGE SAMPLING

allow researchers to test theories about cognitive architecture by formalizing quali-
tatively different cognitive processes that underlie performance in an experimental
paradigm. MPTs are popular in various areas of psychology and have been applied,
for instance, in research on memory, perception, logical reasoning, and attitudes
(for reviews, see Batchelder & Riefer, 1999; Erdfelder et al., 2009; Hiitter & Klauer,
2016). MPTs are related to tree-based item response theory models as presented,
for instance, in Bockenholt (2012a), Bockenholt (2012b), Culpepper (2014), and
De Boeck and Partchev (2012).

Traditionally, parameter estimation in MPT's has relied on maximum-likelihood
methods for aggregated data (Hu & Batchelder, 1994; Singmann & Kellen, 2013).
Recently, however, MPT modelers have become increasingly interested in using
Bayesian hierarchical methods to examine individual differences in model parame-
ters (Klauer, 2010; Matzke et al., 2015; J. B. Smith & Batchelder, 2010). Bayesian
hierarchical modeling allows researchers to simultaneously account for the differ-
ences and similarities between participants and typically provides more accurate
statistical inference than the analysis of aggregated data, especially in situations
with moderate between-subject variability and scarce participant-level data (e.g.,
Gelman & Hill, 2007).

In typical applications, MPT modelers are interested in comparing a limited
set of models. The models can be nested, which is the case when testing param-
eter constraints (e.g., Batchelder & Riefer, 1990; Singmann, Kellen, & Klauer,
2013), or non-nested, which is the case when comparing structurally different
models (e.g., Fazio, Brashier, Payne, & Marsh, 2015; Kellen, Singmann, & Klauer,
2014). A wide range of model comparison and assessment methods exist both in
the frequentist and Bayesian framework, each with its own goals and operating
characteristics, such as Pearson’s x? test, the likelihood ratio test, information cri-
teria such as AIC (Akaike, 1973), BIC (Schwarz, 1978), DIC (Spiegelhalter et al.,
2002), and WAIC (Watanabe, 2010), leave-one-out cross-validation (Vehtari, Gel-
man, & Gabry, 2017), and posterior predictive checks (Gelman, 2013; Meng, 1994;
Robins, van der Vaart, & Ventura, 2000). Furthermore, a range of powerful meth-
ods exist for analyzing multinomial data in particular (e.g., Bishop, Fienberg, &
Holland, 1975; Maydeu-Olivares & Joe, 2005). The goal of this chapter is to enrich
the model comparison toolkit of MPT modelers by illustrating — with examples
from the literature — a computationally feasible approach to model comparison
in hierarchical MPTs based on Bayes factors and posterior model probabilities.?
Furthermore, the proposed approach also enables Bayesian model averaging which
we advocate as a principled way of testing parameter constraints while fully taking
into account model uncertainty.

Suppose one is interested in comparing a discrete set of M models
denoted as Mi, Mas,..., My with corresponding prior model probabilities
p(M1),p(M3),...,p(Myr), which satisfy the constraints p(M;) > 0 Vi €
{1,2,...,M} and Zf‘il p(M;) = 1. The posterior model probability of M; is

IThe interested reader is referred to Plieninger and Heck (2018) for a comparison of these
model classes.

2Note that posterior model probabilities can also be obtained using information criteria (e.g.,
Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004).
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then obtained using Bayes’ rule:

p(M; | data) = —Pdata ] Mo o opM)
— Zj:l p(data | ./\/lj)p(./\/lj)

updating factor

posterior model probability prior model probability

(3.1)
where p(data | M;) is the marginal likelihood of model M,;.

If model comparison involves assessing the tenability of parameter constraints
in a set of nested models, posterior model probabilities can be used to quantify
the model-averaged evidence that a parameter is free to vary or should be con-
strained across different groups or experimental conditions (e.g., Hoeting et al.,
1999; Rouder, Morey, Verhagen, Swagman, & Wagenmakers, 2017). If the model
comparison involves only two models, M; and M, it is convenient to consider
the odds of one model over the other one. Bayes’ rule yields:

p(My | data) _ p(data| Mi)  p(Mi)
p(Mz | data)  p(data| M) ~ p(Ms)
———

posterior odds Bayes factor BF12  prior odds

(3.2)

Equation 3.2 shows that the change in odds brought about by the data is given
by the ratio of the marginal likelihoods of the models, a quantity known as the
Bayes factor (Etz & Wagenmakers, 2017; Jeffreys, 1961; Kass & Raftery, 1995;
Ly et al., 2016a).

Equation 3.1 and Equation 3.2 illustrate that the computation of posterior
model probabilities and Bayes factors requires the computation of the marginal
likelihood of the models. The marginal likelihood is obtained by integrating out
the model parameters with respect to the parameters’ prior distribution:

p(data | M;) = /@p(data | 6, M;)p(0 | M,;)de. (3.3)

The marginal likelihood includes a natural penalty for overdue model complexity
and implements a form of the principle of parsimony also known as Occam’s razor
(e.g., Jefferys & Berger, 1992; Myung & Pitt, 1997; Vandekerckhove et al., 2015).3
Although conceptually straightforward, in practice it is challenging to compute
Bayes factors and posterior model probabilities for hierarchical MPTs because
the marginal likelihood features a high-dimensional integral that cannot be solved
analytically.

In this chapter, we show how Warp-III bridge sampling (Meng & Schilling,
2002; Meng & Wong, 1996, henceforth referred to as Warp-1II) can be used to
estimate the marginal likelihood for hierarchical MPTs. Warp-III may be used
for nested and, crucially, also non-nested model comparisons, for which simpler
methods, such as the Savage-Dickey density ratio (Dickey & Lientz, 1970), cannot
be applied. Importantly, Warp-III is not specific to hierarchical MPTs; it may

3For details on the predictive interpretation of the marginal likelihood see the Supplemental
Materials available at https://osf.io/rycg6/.
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be used to compute the marginal likelihood for a wide range of complex cogni-
tive models. In fact, Warp-III improves upon simpler bridge sampling techniques
(e.g., DiCiccio et al., 1997; Gronau, Sarafoglou, et al., 2017) by respecting poten-
tial skewness in the posterior distribution — a typical consequence of estimating
parameters of cognitive models from scarce data (e.g., Ly et al., in press; Matzke et
al., 2015). Due to its accuracy and relatively straightforward implementation, we
believe that Warp-III is a promising and timely addition to the Bayesian toolkit
of cognitive modelers in general, and MPT modelers in particular.

The chapter is organized as follows. We first introduce the latent-trait approach
to hierarchical MPTs. We then demonstrate how Warp-III can be used to estimate
the marginal likelihood for latent-trait MPTs. Lastly, we apply the method to two
model comparison problems from published studies. The first example focuses on
Bayesian model averaging for nested models; the second example focuses on the
computation of the Bayes factor for non-nested models.

3.2 Multinomial Processing Trees

Data for MPTs consist of categorical responses* from several participants to a
set of items. MPTs are based on the assumption that these responses follow a
multinomial distribution. MPTs reparametrize the category probabilities of the
multinomial distribution in terms of the model parameters that represent the
probabilities of latent cognitive processes (Riefer & Batchelder, 1988).

Consider the pair-clustering MPT depicted in Figure 3.1. The model was de-
veloped for the measurement of the storage and retrieval processes that determine
the recall of semantically related word pairs (Batchelder & Riefer, 1980). A typical
pair-clustering study involves a free recall memory experiment, where participants
are presented with a list of study words in a word-by-word fashion. The study list
consists of two types of items: semantically related word pairs such as knife-fork,
and words without a category partner (i.e., singletons), such as dog. After the
study phase, participants are required to recall as many of the study words as
they can. Typically, semantically related word pairs are recalled consecutively as
a “pair-cluster”.

The model represents the interplay between the hypothesized latent cognitive
processes in a rooted tree structure. The pair-clustering MPT features K = 2
independent category systems. Each category system corresponds to a separate
multinomial distribution: one for word pairs (k = 1) and one for singletons (k = 2).
The category probabilities in each system are modeled using a separate subtree
with a finite number of branches.

Each branch of a subtree corresponds to a specific sequence of processing stages
and terminates in one of L possible response categories denoted as Cy;, where
Il =1,...,L; indexes the [th of L, possible responses in subtree k. In the pair-
clustering MPT, the recall of word pairs is scored into L; = 4 categories: (1) both
words of the pair are recalled consecutively (C11); (2) both words are recalled but
not consecutively (C12); (3) only one word is recalled (C13); (4) no word is recalled

4Hu (2001), Heck and Erdfelder (2016), and Heck, Erdfelder, and Kieslich (2018) proposed
extensions that also incorporate response times.
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a Co;

Singletons <
022

1-a

c: cluster-storage

r: cluster-retrieval

u: storage-retrieval

a: singleton storage-retrieval

Figure 3.1: The pair-clustering MPT. Available at https://tinyurl.com/
yb7bmade under CC license https://creativecommons.org/licenses/by/2.0/.

(C14). The recall of singletons is scored into Ls = 2 response categories: (1) the
word is recalled (Ca1); (2) the word is not recalled (Caz).

The response category probabilities are expressed as a function of the MPT
parameters, 6, € (0,1) ¥Vp € {1,2,..., P}, which can be collected in a vector
0 = (01,05,...,0p). The pair-clustering MPT features four parameters: 6 =
(¢,r,u,a). The cluster-storage parameter ¢ corresponds to the probability that
a word pair is stored as a cluster in memory. The cluster-retrieval parameter r
corresponds to the conditional probability that a clustered word pair is retrieved
from memory during the test phase. The model assumes that stored and retrieved
word clusters are always recalled consecutively. The storage-retrieval parameter
u corresponds to the conditional probability that a member of a word pair is
stored and retrieved, given that the word pair was not clustered. The model
makes the simplifying assumption that words from unclustered pairs are never
recalled consecutively. The singleton storage-retrieval parameter a corresponds
to the probability that a singleton is stored and retrieved. In many applications,
researchers impose the constraint that a = u.

The response category probabilities are obtained as follows. First, we obtain
the probability of each branch that terminates in a given response category. Let
By denote the mth of My, branches that terminate in response category Cp;.
The probability of branch By, is obtained by traversing the tree from root to
leaf and multiplying the encountered parameters:

P Bklm | 0 H evklmp _ )’wklmp7 (34)

where viimp > 0 and wypmp > 0 are the number of nodes on branch By, that are
related to parameter 6,, p = 1,..., P, and 1 — 0, respectively. Second, we sum
the probabilities of the M}, branches that terminate in Ch;:

My

Ckl | 9 Z PI“ Bk:lm | 0 (35)
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For instance, the probability of response category Ci4 is given by Pr(Ci4 | 0) =
c(I—r)+(1—e¢)(1—u)
The probability of the observed response frequencies across category systems

denoted by n = (n11,...,M1L,,---,NK1,---s KL, ), Where ng is the observed
response frequency for category I = 1,..., Li in category system (subtree) k =
1,..., K, is given by a product-multinomial distribution:

K Ly
Pr(N=n|6)=]] { I I Pr(Cu | 0)]”’“}, (3.6)

np1! Xnga! X... X ngr, !
paiet k1 k2 KLkt 3

where Jy denotes the number of items in category system k& (see also Klauer, 2010;
Matzke et al., 2015).

3.2.1 Bayesian Hierarchical MPTs: The Latent-Trait Approach

Bayesian hierarchical approaches explicitly model heterogeneity in participants by
introducing a group-level distribution from which the participant-level parameters
are drawn (e.g., Gelman & Hill, 2007; Gill, 2002; Lee, 2011; Lee & Wagenmak-
ers, 2013; Rouder & Lu, 2005).°> Here we focus on Klauer’s (2010) latent-trait
approach that relies on a multivariate normal group-level distribution to describe
the between-subject variability and the correlations between the participant-level
parameters.

To model participant heterogeneity, observed responses are aggregated over
items, but not over participants, resulting in a vector of category frequencies for
each participant i: n;, i = 1,2,...,1, where I is the total number of participants.
Each participant obtains a participant-specific parameter vector 8; of length P.

The latent-trait approach assumes that the probit-transformed participant-
level parameter vectors 0; = ®71(0;) follow a P-dimensional multivariate nor-
mal distribution with mean vector g and covariance matrix 3: 0; ~ Np(p,X).
The probit-transformation ®~1(;) is defined component-wise, where ®~!(-) cor-
responds to the inverse of the cumulative distribution function of the normal dis-
tribution. Priors are assigned to g and 3. We follow earlier implementations of
the latent-trait approach and assign independent standard normal distributions
to the P components of g (Heck, Arnold, & Arnold, 2018; Matzke et al., 2015).
This choice corresponds to uniform priors on the probability scale for the grand
means. For the covariance matrix 3, a convenient prior choice would be an inverse
Wishart prior with degrees of freedom v = P + 1 and identity scale matrix. This
setting leads to uniform priors on the correlation parameters; however, this choice
is constraining on the standard deviation parameters. Although changing the de-
grees of freedom v affords more flexibility for modeling the standard deviations, it
comes at the cost of constraining the prior on the correlation parameters (Gelman
& Hill, 2007).

This dilemma can be circumvented by using a scaled inverse Wishart prior as
introduced by Gelman and Hill (2007) and proposed in the context of hierarchical

5Bayesian hierarchical models can be also used to account for heterogeneity in items instead
of participants.
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MPT modeling by Klauer (2010). Compared to a regular inverse Wishart prior,
the scaled version has the advantage that it allows one to model the standard
deviations more flexibly while retaining the desirable uniform prior on the cor-
relation parameters. The scaled inverse Wishart prior is based on the following
decomposition of the covariance matrix 3:

¥ = Diag(£) Q Diag(¢), (3.7)

where £ is a vector of P scaling parameters and @ corresponds to the P x P un-
scaled covariance matrix. The scaled inverse Wishart prior is obtained by placing
a regular inverse Wishart prior on the unscaled covariance matrix @ and a suitable
prior on the vector of scaling parameters &.

We follow Klauer (2010) and assign @ an inverse Wishart prior with degrees
of freedom v = P+ 1 and scale matrix Ip (i.e., P x P identity matrix). For the P
components of €, we follow Heck, Arnold, and Arnold (2018) and use independent
uniform priors that range from zero to ten. These choices correspond to relatively
diffuse priors for the standard deviations of the random effects on the probit scale
and uniform priors for the correlations between the random effects.

Note that these prior distributions have been proposed in a context of pa-
rameter estimation, where the exact choice of the prior is irrelevant as long as
sufficiently informative data are available. In contrast, in the context of model
comparison, the priors have an important and lasting effect: As shown in Equa-
tion 3.3, the marginal likelihood is obtained by taking a weighted average of the
probability of the data across all possible parameter settings where the weights
correspond to the parameters’ prior density. We argue that the standard normal
and uniform priors for the grand means and the correlations, respectively, provide
a reasonable default setting also from the perspective of model comparison. The
choice of the prior for £ is less straightforward. We report the results corresponding
to the default setting of the recently developed MPT software package TreeBUGS
(Heck, Arnold, & Arnold, 2018), but we probed the robustness of our conclusions
with a sensitivity analysis using &, ~ Uniform(0, {max) Vp € {1,2,..., P}, with
Emax = 2 instead of &pax = 10, a prior that was chosen based on the implied
group-level distributions on the probability scale. As the conclusions were unaf-
fected by the choice of the upper bound, the results of the sensitivity analysis
are mentioned only briefly and are presented in more detail in the Supplemental
Materials available at https://osf.io/rycg6/.

Under these prior settings, the probit-transformed participant-level MPT pa-
rameter vectors can be written as:

0, =pn+E0w, (3.8)

where w; is the P-dimensional vector with the unscaled random effects for par-
ticipant i, and ® denotes the Hadamard product (i.e., entry-wise multiplication,
e.g., Liu & Trenkler, 2008). The unscaled random effects are drawn from a P-
dimensional zero-centered multivariate normal distribution with covariance matrix
QZ w; ~ NP(O7 Q)

Note that the model is overparameterized: € and @ cannot be interpreted
separately. Similarly, the unscaled random effects w; cannot be interpreted on
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their own but need to be combined with the scaling parameter vector £ to form
the random effects of interest. The scaling parameters &, the unscaled covariance
matrix @, and the unscaled random effects w; are not of interest in themselves
and are simply an artifact of using a flexible scaled inverse Wishart prior on X:
the parameters of interest are 0;, p, and 3. Therefore, the scaled inverse Wishart
prior can be regarded as a form of parameter expansion (e.g., Gelman & Hill,
2007) which has been reported to speed up convergence when fitting the model
using Markov chain Monte Carlo sampling (MCMC; e.g., Gamerman & Lopes,
2006).

The reader is referred to Klauer (2010) and Matzke et al. (2015) for a more
detailed description of the latent-trait approach. Parameter estimation may pro-
ceed using MCMC sampling implemented in standard Bayesian statistical software
such as JAGS (Plummer, 2003) or Stan (Stan Development Team, 2016).

3.2.2 Computing the Marginal Likelihood
The marginal likelihood for latent-trait MPTs is given by:®

individual-level group-level

——

1
Pr(N=n)= //H Pr(N;=mn; | p,&§ wi)p(w; | Q)
i=1

priors

—_—~
x p(Q)p(p)p(§) dQdpdédw; ...dw;

I K Jk' Ly
=/.. : Pr(Cry | p, &, wi)]™*
/ /g [g{mkl!xmkglx...xkak!ll;[l[ ( K ‘N 5 )] }

Pr(N;=mn;|p,&,w;)

< n) Fl@ e { - ol Qlwi}]

p(wi|Q)
1 v+P41 1
X —s———— T2 expl —=tr 1}
| e @)
r(Q)
_P 1 T _p
X (2m) Texpq — s pp (max)  dQdpdédw;...dwy,
2 —_——
p(€)
p(p)

(3.9)

where I'p(a) = 7P (P=1)/4 Hle I (a+ 1%3) and T'(z) = fooo " le~®dx are the
multivariate and regular gamma function, respectively. In this parametrization,
we do not need to explicitly integrate out the participant-level parameter vectors
0, since they are functions of u, &, and w; (see Equation 3.8).

6We omit conditioning on the model for enhanced legibility.
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We exploit the fact that the covariance matrix @ in Equation 3.9 can be inte-
grated out in closed form (see also Overstall & Forster, 2010); a detailed derivation
is provided in the Supplemental Materials. The marginal likelihood is then given
by:

I [ K T Ly
— — N )ikl
Pr(N =n) —//le[l 1_[1 ret T Xeal X X maeEs] E[Pr(Ckz | 1, &, wi)]

k=

Tp(4h) 7 _Pr 1
X T (;) = —IT X (2m)” 2 exp —ip,Tu
P(5) 10T+ 1|2

X (Emax)ip dudﬁduudw[,
(3.10)

where €2 is an I x P matrix of the P-dimensional random-effects vectors w; of the
I participants. Even after integrating out @ the expression for the marginal like-
lihood is still a high-dimensional integral (i.e., P(I +2) dimensions); the challenge
is to find a method which yields accurate estimates of this integral.

3.3 Warp-III Bridge Sampling for MPTs

We propose to use Warp-I11 bridge sampling (Meng & Schilling, 2002; Meng &
Wong, 1996; Overstall, 2010), an advanced version of bridge sampling, to evalu-
ate the high-dimensional integral in Equation 3.10. Bridge sampling is a general
method for estimating normalizing constants’, a problem that is not only encoun-
tered in Bayesian inference, but also in likelihood-based approaches (Gelman &
Meng, 1998). We first outline the basic principles of bridge sampling, and then
present the details of the advanced Warp-III method. The reader is referred to
the recent tutorial by Gronau, Sarafoglou, et al. (2017) for a detailed explanation
of the general bridge sampling approach.

Let ¢ = (u, &, w1,...,wr) be the vector of quantities that must be integrated
out to obtain the marginal likelihood, so that

Pr(N =n) :/Pr(N =n|¢)p(¢)d¢. (3.11)

"Bridge sampling in its original form has been proposed to estimate a ratio of normalizing
constants. This approach, however, becomes challenging and inefficient in case the two models
have different parameter spaces (e.g., non-nested comparisons), and potentially very little overlap
between the posterior distributions. For these cases, it may be easier and more efficient to
compute each normalizing constant separately (e.g., DiCiccio et al., 1997; Overstall & Forster,
2010). This ensures that the two relevant distributions (i.e., proposal and posterior) for each of
the separate bridge sampling applications are close to each other yielding an efficient estimator.
Therefore, we recommend computing each normalizing constant separately to enable application
of the method to a wide range of model comparison scenarios.
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General bridge sampling is based on the following identity:

bridge function proposal distribution
~ = ~ =
h¢)  p(C| N =mn) 9(¢) d¢

1=

, (3.12)
/ h¢)  p(|N=mn) 9(¢) d¢
—_——

posterior distribution

where p(¢ | N = n) is the posterior distribution of ¢, ¢g(¢) is the probability
density function of a proposal distribution, and h(¢) is a function such that 0 <
|[h(&)p(¢ | N =mn)g(¢)d¢| < co. It follows from Equation 3.12 that

/h(C) Pr(N =mn | ¢)p(¢) 9(¢)d¢

/h(C)g(C)p(C | N =n)d¢ (3.13)

_ By MO Pr(N =n | () p()]
Ep(¢in=n) [A(C) 9(¢)] '

The bridge sampling estimate of the marginal likelihood is then obtained by sam-
pling from ¢(¢) and p(¢ | N = n) and then using Monte Carlo approximations to
estimate the expected values.

The optimal choice of h(¢), one that minimizes the relative mean-squared error
of the estimator, is given by:

ho(¢) o< [s1 Pr(N = n | ¢)p(¢) + s2 Pr(N =n) g(¢)] ", (3.14)

where s; = ﬁ, i € {1,2}, D; and Dy denote the number of draws from
p(¢ | N = n) and g(¢), respectively, used to approximate the expected values
(Meng & Wong, 1996). We set D1 = D,. Note that h, is only optimal if the
draws from the posterior distribution are independent which is not the case with
MCMC procedures. To account for this fact, we replace D; in defining the weights
s1 and s by the effective sample size obtained using the coda R package (Plummer
et al., 2006).8 As h,(¢) depends on Pr(N = m), the very quantity we want to
estimate, we follow Meng and Wong (1996) and use an iterative scheme to update
an initial guess of the marginal likelihood until convergence:®

D
;2
D

2
lo.r
—1 Ss1l2,r+s2 PI‘(N:n)(t)
1

‘ [l

=]

Pr(N = n)(+D) =
Z 1

1 j=1 51 llyj-‘rSz ].jr(N:'n)(t)

, (3.15)

|~

)

8Specifically, we used the median effective sample size across all posterior components.

91In our experience, the exact value of the initial guess typically does not have a lasting influ-
ence on the resulting estimate. Nevertheless, good initial values may lead to faster convergence.
For implementation details, see Gronau, Sarafoglou, et al. (2017), especially Appendix B.
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*y ok oz
Pr(N g”(i?;))?(g )7 lQ,r = PT(N;?le),)p(Cr)7 {Cikv AR Czk)l} are Dl
draws from p(¢ | N = n), and {Ci,...,Cp,} are Dy draws from g(¢).

A remaining question is how to choose ¢g(¢). The precision of the bridge sam-
pling estimator is governed by the number of samples from ¢(¢) and the over-
lap between ¢(¢) and p(¢ | N = n) (Meng & Wong, 1996). Therefore, g(¢)
should closely resemble the posterior distribution. For instance, we may choose
a multivariate normal distribution for g with mean vector and covariance ma-
trix that match the corresponding quantities of the posterior samples. Although
the multivariate normal approach works well in many applications (e.g., Gronau,
Sarafoglou, et al., 2017; Overstall & Forster, 2010), it can be inefficient when the
posterior distribution is skewed.

Warp-III improves upon the multivariate normal bridge sampling approach
by matching, not only the first two, but also the third moment (i.e., skewness)
of g and the posterior distribution. Consequently, in case there is no skewness,
Warp-III results in estimates with the same precision as the ones from the simpler
multivariate normal approach. However, crucially, in the presence of skewness,
Warp-III is able to match g and the posterior distribution more closely which
results in a higher precision of the marginal likelihood estimates compared to the
simpler approach. How much of an improvement Warp-III is over the simpler
multivariate normal approach may depend on the particular example at hand.

In Warp-III, g is fixed to a multivariate standard normal distribution. The
posterior distribution is then manipulated — “warped” — so that its mean vector,
covariance matrix, and skew match g. Crucially, the warped posterior distribu-
tion retains the normalizing constant of the posterior distribution. Figure 3.2
illustrates the rationale of the Warp-III transformation for the univariate case.
The histogram in the upper-left panel shows hypothetical “unbounded” poste-
rior samples that can range across the entire real line; the solid line shows the
standard normal proposal distribution g. The overlap between the two distribu-
tions is clearly suboptimal. Bridge sampling applied to these two distributions
can be thought of as “Warp-0” because the posterior distribution is not modified.
The upper-right panel illustrates “Warp-I”: Subtracting the mean of the posterior
samples from all posterior samples matches the first moment of the distributions.
The lower-right panel illustrates “Warp-I1I": Dividing the zero-centered posterior
samples by their standard deviation matches the first two moments of the dis-
tributions. This approach is practically equivalent to the multivariate normal
bridge sampling approach described above. Lastly, the lower-left panel illustrates
Warp-III: Randomly assigning a minus sign to the standardized posterior samples
matches also the third moment of the distributions.

Warp-III assumes that all components of the parameter vector can range across
the entire real line. In the context of latent-trait MPTs, this assumption is not
fulfilled since &, € (0,&max) VP € {1,...,P}. We therefore transform & so that

€trans = @71 (ﬁrn%) with Jacobian (gmax)PNP(Etrans; 07 IP)v where NP(:B;y, Z)

denotes the probability density function of a P-dimensional normal distribution
with mean vector y and covariance matrix Z which is evaluated for the vector

where Iy ; =
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Figure 3.2: Matching the proposal and posterior distribution with warping. His-
tograms show the posterior distribution; density lines show the standard normal
proposal distribution. Available at https://tinyurl.com/y7owvsz3 under CC
license https://creativecommons.org/licenses/by/2.0/.

.10 Let ¢ = (4, Etrans, w1, - - - ,wr) denote the resulting parameter vector where
all components are on the real line.
Warp-III is then based on applying the following stochastic transformation to

P:
n= &b x R x @-v) (3.16)

symmetry covariance I mean 0

where b ~ Bernoulli(0.5) on {—1,1} and v corresponds to the expected value of 4
(i.e., the mean vector). The matrix R is obtained via the Cholesky decomposition
of the covariance matrix of 1, denoted as S, thus, § = RR'". In practice, v
and S are unknown and must be approximated using the posterior samples. Note

10 As before, the probit-transformation is defined component-wise

66


https://tinyurl.com/y7owvsz3
https://creativecommons.org/licenses/by/2.0/
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that Equation 3.16 simply generalizes the intuition illustrated in Figure 3.2 for
the univariate case to the general case with multiple parameters.

Due to the Bernoulli random variable b, the warped posterior density has the
form of a mixture density (see also Overstall, 2010, p. 70):

_IR| [fy(v—Rn| N =n)  py(v+Rn|N=n)

pa(n| N =n) == Pr(N = n) Pr(N = n)
_ | N=n) o
Pr(N =n) ’

where jn(n | N = n) = Bl 5 (v — Rn| N =n) + jy(v+ Rn| N =n)] de-

notes the un-normalized warped posterior distribution and py (- | N = n) denotes
the un-normalized posterior distribution that has been transformed to the real line
(but not warped). This proves that the warped posterior distribution retains the
normalizing constant of the original posterior distribution.

The Warp-III estimator of the marginal likelihood is then derived by using
the warped posterior distribution p,(n | N = n) instead of p(¢ | N = n) in
Equation 3.12. Equation 3.13 shows that this results in a ratio of two expected
values, where the numerator is an expected value with respect to the multivariate
standard normal proposal distribution g(7n7) and the denominator is an expected
value with respect to the warped posterior distribution py(n | N = n). Hence, we
could obtain an estimate of the marginal likelihood by first warping the posterior
samples using Equation 3.16, then sampling from the proposal distribution, and
applying the iterative updating scheme in Equation 3.15.

However, in line with the literature (e.g., Sinharay & Stern, 2005), we rewrite
the expected value in the denominator of Equation 3.13 in terms of the unbounded
posterior samples that are transformed to the real line but are not warped; a
derivation is provided in the Supplemental Materials. The estimate of the marginal
likelihood is then obtained by applying the iterative scheme in Equation 3.15 using:

B [5y(20 — ¥ | N =n) + py(y¥ | N = n)]

L= , 3.18
s (R (F ) .

and
by, = Bl = R | N :;{ : pu(v+ Rl | N = n)] (319)

where {9}, ..., ¥} } are Dy draws from py (¢ | N = n), and {#1,...,7p,} are
Dy draws from the proposal distribution g(n). Furthermore, py (¢ | N = n)
denotes the un-normalized posterior density of the unbounded posterior samples;
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it is therefore written in terms of € ans and is adjusted by the Jacobian term:'!

I K Ly
= _ _ Ji! Tkl
pd’(d) | N = n) = 1:[1 |:kl_[1 {nlkll Xnik2! %% nik:Lk' ll:[1 [Pr(ckl ‘ IJ‘aEtransaWZ)]

1 |
re(sh) o«

Te(3) |0mQ + I1p| %

_P 1
X (2m)" 2 exp{ - §€Ians€trans}~

x (2m) "% exp{ —gH u}

(3.20)

Note that rewriting the expected value in terms of py (¢ | N = n) is only a
technical nicety. This approach is identical to applying the Warp-III transforma-
tion to the posterior samples and then using the iterative scheme with the warped
posterior density and a multivariate standard normal proposal distribution.

3.4 Empirical Examples

3.4.1 Example 1: Nested Model Comparison

We re-analyzed the pair-clustering data set reported in Riefer, Knapp, Batchelder,
Bamber, and Manifold (2002) using the hierarchical latent-trait approach.'? Ex-
periment 4 examined the memory of patients with brain damage due to prolonged
alcoholism in comparison to a control group of alcoholic patients without indica-
tions of brain damage. The participants attempted to memorize the same list of 20
categorically related word pairs in a series of six study-test trials.'> For demon-
stration purposes, we focused on the free recall performance of the 21 control
participants. Specifically, we investigated whether the model parameters change
from the first to the second trial indicating a change in the storage and retrieval
processes as a function of practice using posterior model probabilities and Bayesian
model averaging.

3.4.1.1 Model Specification

To model differences in parameters, we augmented Equation 3.8 with a parameter
vector that captures the difference in parameters between the two trials: 6 =
(0c, 67, 0,). The probit-transformed parameter vectors of participant ¢ for the first

11Note that Emax drops out of the expression because it cancels with the first term of the

Jacobian. Implicitly, however, it still influences the marginal likelihood because it appears in

&H]Eax

1, Etrans, w;) since in order to obtain the MPT parameters on the probit scale (i.e., Equation 3.8)

we need to transform &¢rans back to € via the inverse transformation € = Emax @ (€trans)-
12Data were obtained from https://bayesmodels. com/; see also Lee and Wagenmakers (2013).
L3Riefer et al. (2002) did not administer singletons.

the transformation equation &trans = ® ! ( ) It is also needed for evaluating Pr(Cy; |
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Table 3.1: Overview of the eight nested models for the analysis of the first two
trials of the pair-clustering data set reported in Riefer et al. (2002).

Free Parameters Model
My My Mg My Ms Mg Mz Mg
c v v v v
r v v v v
U v v v v

Note. M allows all three parameters to vary between trials, Mg posits that none of
the parameters vary between trials. Models M2 to M7 are between these extremes.
. ’ . / .
trial (6, ;) and the second trial (6, ;) are then obtained as follows:

group mean
for first trial

/ 6
0= n- B} + 0w,
5 (3.21)
——

group mean
for second trial

For an alternative approach to modeling within-subject differences in model pa-
rameters, the reader is referred to Rouder et al. (2008).

Table 3.1 shows the 23 = 8 nested models that implement the eight sets of
possible parameter constraints. M allows all three parameters to vary between
trials so that = (., d,, d,). In contrast, Mg posits that none of the parameters
vary between trials so that § = (0,0,0). Models My to My are between these
extremes and allow either one or two parameters to vary between trials.

We used independent zero-centered normal priors for the components of §.
We explored a narrow (o287°% ~ 0.52), medium (o™ ~ 0.84), and a wide
(Ug’“de ~2 1.28) zero-centered normal prior to assess the sensitivity of the results to
the width of the test-relevant prior distribution. As shown in the Supplemental
Materials, the standard deviations o5 were chosen to correspond to small, medium,
and large effects on the probability scale centered around 0.5. Priors for the
remaining parameters followed the specification described earlier.

We estimated the posterior distribution of the model parameters using JAGS by
adapting the script provided by Matzke et al. (2015). The JAGS code is available
in the Supplemental Materials. We ran three MCMC chains with over-dispersed
start values, discarded the first 4,000 posterior samples as burn in, and retained
only every 20th sample to reduce autocorrelation. Results reported below are
based on a total of 90,000 posterior samples. Convergence of the MCMC chains
was assessed by visual inspection and the R statistic (R < 1.05 for all parameters;
Gelman & Rubin, 1992).

Figure 3.3 shows the resulting posterior distributions of the probit group-level
means from the full model M;; the parameters were transformed back to the
probability scale. The posteriors were computed using the medium prior setting
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Figure 3.3: Posterior distributions of the probit group-level means (plotted on
the probability scale) from the full model M; for the analysis of the first two
trials of the pair-clustering data reported in Riefer et al. (2002). The solid lines
correspond to the posteriors for the first trial, the dotted lines to the posteriors for
the second trial. Available at https://tinyurl.com/y9a3314t under CC license
https://creativecommons.org/licenses/by/2.0/.

(agne‘ii“m) — results obtained with the narrow and wide prior were highly similar
and are not displayed. The plot of the posterior distributions based on the alter-
native prior choice for the elements of & (i.e., uniform priors with upper bound
Emax = 2 instead of &nax = 10) was visually almost indistinguishable from the
one presented here and has hence been relegated to the Supplemental Materials.
The cluster-storage ¢ parameter did not change substantially, whereas the storage-
retrieval u, and especially the cluster-retrieval r parameter seemed to increase from
the first trial to the second.

3.4.1.2 Computing Marginal Likelihoods with Warp-III

Equation 3.20 was adjusted to include the relevant prior distributions for the
elements of §. For each model, we split the 90,000 posterior samples in two equal
parts (first and second half of the iterations per chain) and used the first part
for estimating R and v, and the second part for the iterative updating scheme in
Equation 3.15 (Overstall & Forster, 2010). Hence, D; = Dy = 45,000. To assess
the accuracy of the resulting estimates, we repeated this procedure 50 times.'*
We implemented the procedure in R (R Core Team, 2019). For efficiency, we
parallelized the computations, and coded the computationally intensive elements
in efficient C++ code which was called from within R using Repp (Eddelbuettel et
al., 2011). Using a standard personal computer and four CPU cores, computing
the marginal likelihood for each repetition took less than one minute per model.
The code is available in the Supplemental Materials.

14\We assessed the accuracy of the estimates conditional on the posterior samples, that is,
for each repetition, we used the same posterior samples but generated new samples from the
proposal distribution. Whenever feasible, it may be advantageous to also generate new posterior
samples in each repetition.
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Figure 3.4: Posterior model probabilities (left panel) and posterior inclusion prob-
abilities (right panel) for the analysis of the first two trials of the pair-clustering
data reported in Riefer et al. (2002) obtained with Warp-I1I bridge sampling. In
the left panel, the z-axis indicates which parameters were allowed to vary from the
first to the second trial (e.g., ¢ — u corresponds to M3 where r was fixed between
trials). Gray symbols show the results of the 50 repetitions and black symbols
display the posterior model probabilities and posterior inclusion probabilities that
are based on the median of the 50 estimated log marginal likelihoods. Circles show
results obtained with the narrow prior, diamonds with the medium prior, and tri-
angles with the wide prior. The dotted lines show the prior model probabilities
and prior inclusion probabilities. Available at https://tinyurl.com/yaxbj906
under CC license https://creativecommons.org/licenses/by/2.0/.

3.4.1.3 Posterior Model Probabilities

To formally quantify evidence for the differences in parameters, we computed the
posterior model probabilities of the eight models using the marginal likelihoods
obtained with Warp-III. We assumed that all models were equally likely a priori.
The left panel of Figure 3.4 shows the posterior model probabilities for the narrow,
medium, and wide prior settings. The plot of the posterior model probabilities
based on the alternative prior choice for the elements of &€ (i.e., uniform priors with
upper bound &,.x = 2 instead of &ax = 10) was visually almost indistinguishable
from the one presented here and has hence been relegated to the Supplemental
Materials. Formal model comparison confirmed the results of the visual inspection
of the posterior distributions shown in Figure 3.3: Ms, the model that allows for
a difference in r and wu, received the most support from the data. As expected, the
width of the test-relevant prior é influenced the value of the marginal likelihood,
but it did not change the conclusions qualitatively. Warp-III provided accurate
estimates of the posterior model probabilities as indicated by the small variability
across the 50 repetitions (i.e., gray symbols). For this nested example, the pos-
terior model probabilities can be also obtained using the Savage-Dickey density
ratio representation of the Bayes factor (Dickey & Lientz, 1970; Wagenmakers et
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al., 2010). As shown in the Supplemental Materials, the Savage-Dickey proce-
dure resulted in posterior model probabilities that were highly similar to the ones
obtained with Warp-III.

3.4.1.4 Bayesian Model Averaging

Bayesian model averaging does not require researchers to commit to a single “best”
model; it allows researchers to acknowledge uncertainty about the choice of the
correct model (e.g., Hoeting et al., 1999; Rouder et al., 2017). This is achieved by
considering the posterior inclusion probabilities of the parameters. Posterior in-
clusion probabilities quantify the model-averaged evidence for a change in a given
parameter; they can be obtained by summing the posterior model probabilities of
the models that allow the parameter to differ between the trials. For instance,
the posterior inclusion probability of the ¢ parameter is obtained by summing the
posterior model probabilities of M1, M3, My, and Mg. Posterior inclusion prob-
abilities are then compared to the prior inclusion probabilities, in this case 0.5,
which are obtained in an analogous manner but based on the prior model proba-
bilities.!> The right panel of Figure 3.4 shows the posterior inclusion probabilities
for the three prior settings. The plot of the posterior inclusion probabilities based
on the alternative prior choice for the elements of £ (i.e., uniform priors with upper
bound &ax = 2 instead of {nax = 10) was visually almost indistinguishable from
the one presented here and has hence been relegated to the Supplemental Mate-
rials. The posterior inclusion probabilities of the r and uw parameter are higher
than the prior inclusion probabilities, indicating evidence for a difference in these
parameters between trials. In contrast, the posterior inclusion probability of ¢ is
lower than the corresponding prior inclusion probability, indicating evidence for
invariance between the trials. As before, the width of the & prior does not change
the conclusions qualitatively.

3.4.1.5 Substantive Contribution

The data from Riefer et al. (2002) have been analyzed in a number of articles.
The original article analyzed the aggregated data (an approach known to suffer
from limitations in case there is heterogeneity across participants, e.g., Klauer,
2006) and considered the p-values of G? statistics to investigate whether parame-
ters differ across trials. J. B. Smith and Batchelder (2010) reanalyzed a subset of
the data using the hierarchical beta-MPT model (which specifies group-level beta
distributions and thus differs from the latent-trait approach that we used).'6 To
investigate whether parameters differ across trials, Smith and Batchelder (a) con-
sidered the posterior distribution of the difference between trials for the group-level
mean parameters and (b) ran a classical paired sample ¢-test on the individual-level
parameter estimates. These approaches, however, do not allow one to quantify ev-
idence for an invariance (i.e., a simpler model where some parameters do not differ

15The change from prior inclusion odds to posterior inclusion odds can also be quantified by
means of an inclusion Bayes factor (not reported).

16Note that this data set has been also analyzed in Lee and Wagenmakers (2013, chapter
14). In this case the hierarchical latent-trait approach was used, however, no explicit model
comparison or hypothesis testing was conducted.
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across trials) on a continuous scale in a systematic way and, crucially, they do not
allow one to disentangle “absence of evidence” (i.e., the data are uninformative)
and “evidence of absence” (i.e., the data support a simpler model).!” These short-
comings can be addressed by computing Bayes factors and posterior model and
posterior inclusion probabilities. “Absence of evidence” can be inferred from Bayes
factors close to one and posterior model and posterior inclusion probabilities close
to the corresponding prior probabilities. In contrast, “evidence of absence” can be
inferred from large Bayes factors in favor of the simpler model, and in situations
when the posterior model probability of the simpler model is the highest or when
the posterior inclusion probability is smaller than the prior inclusion probability.

Our Bayesian re-analysis suggests that there is strong evidence that the prob-
ability of retrieving word pairs that have been stored as a cluster (i.e., r) changed
from the first to the second trial. Furthermore, there is evidence that the probabil-
ity of storing and retrieving words that have not been stored as a cluster (i.e., u)
differed between the two trials. Crucially, our approach also allowed us to conclude
that there is some evidence that the probability of storing a word pair as a cluster
(i.e., ¢) did not change from the first to the second trial (although this evidence
is not that pronounced since the posterior inclusion probability for a difference in
c is — depending on the prior choice — relatively close to the prior inclusion prob-
ability of .5). Another key improvement of our analysis over the above mentioned
analyses is the use of Bayesian model averaging. In this example, My received
the highest posterior probability; however, M; also received substantive posterior
probability. Therefore, selecting a single best model (i.e., M) and basing final in-
ference solely on this model might be suboptimal at best and misleading at worst.
In contrast, when using the model-averaged posterior inclusion probabilities for
drawing conclusions about which parameters differ between trials, one takes into
account all models under consideration according to their plausibilities in light of
the observed data.

Finally, note that one might argue that this data set is relatively small and
is thus uninformative. However, one strength of the Bayesian approach is that it
allows one to quantify whether the data are informative or not. For this example,
the Bayesian results suggest that the data are in fact informative which is indi-
cated by posterior model/inclusion probabilities that are quite different from the
corresponding prior probabilities.

3.4.2 Example 2: Non-Nested Model Comparison

We re-analyzed data from Experiment 2 reported by Fazio et al. (2015) who inves-
tigated the influence of knowledge on the illusory truth effect. The illusory truth
effect refers to the phenomenon that, in the absence of knowledge about the truth
status of a statement, repeated statements are easier to process and are judged
more truthful than new statements. Fazio et al., however, provided evidence that
participants tend to rely on the ease of processing (i.e., fluency) even when they
have knowledge about the statement.

7Note also that it is well-known that the two-step procedure (b) used by J. B. Smith and
Batchelder can yield biased conclusions (Boehm, Hawkins, Brown, van Rijn, & Wagenmakers,
2016).
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Figure 3.5: The knowledge-conditional (top panel) and fluency-conditional (bot-
tom panel) MPTs. Available at https://tinyurl.com/ya8sovfr under CC li-
cense https://creativecommons.org/licenses/by/2.0/

We re-analyzed data from 39 participants who indicated the truthfulness (i.e.,
“true” / “false”) of 176 statements, half of which were true and half of which were
false. Half of the statements were likely to be known according to general knowl-
edge norms (“known” statements) and half of them were likely to be unknown
(“unknown” statements). An example of a true known statement is “The Pacific
Ocean is the largest ocean on Earth”. An example of a false unknown state-
ment is “Billy the Kid’s last name is Garrett”. To manipulate fluency, half of the
statements were presented twice, once in the exposure phase and once in the truth-
rating phase, whereas the other half was only presented in the truth-rating phase.
Hence, the experiment had a 2 (truth status: true vs. false) x 2 (assumed knowl-
edge: known vs. unknown) x 2 (repetition: repeated vs. not repeated) balanced
within-subject design, and each cell of the design featured 22 statements.

3.4.2.1 Model Specification

Fazio et al. (2015) constructed two MPTSs to study the illusory truth effect. The
knowledge-conditional model depicted in the top panel of Figure 3.5 assumes that
participants rely on knowledge when assessing truthfulness and only rely on fluency
when they are unable to retrieve knowledge about the statement. Parameter
k represents the probability of retrieving knowledge about the statement from
memory. If knowledge is retrieved, participants are assumed to give the correct
response (i.e., “true” for true statements and “false” for false statements). If
no knowledge is retrieved with probability 1 — k, participants rely on fluency
with probability f and respond “true”. If participants do not rely on fluency
with probability 1 — f, they guess “true” with probability g and “false” with
probability 1 — g. Responses to true statements are scored into the categories C14
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(correct “true” response) and Co (incorrect “false” response). Responses to false
statements are scored into the categories Ca; (incorrect “true” response) and Cao
(correct “false” response). In contrast, the fluency-conditional model depicted in
the bottom panel reflects the notion that participants mainly rely on fluency and
only use knowledge in the absence of fluency. The models feature the same set of
parameters, but they assume a different conditional probability structure.

For each model, we replicated the two subtrees four times (i.e., a total of
eight subtrees per model) to accommodate the design of the experiment: the first
replicate corresponded to known true and false statements that were not repeated,
the second to known true and false statements that were repeated, the third to
unknown true and false statements that were not repeated, and the fourth to
unknown true and false statements that were repeated. Following Fazio et al.
(2015), we used separate knowledge parameters for known (ki) and unknown
(kzu) statements, and separate fluency parameters for repeated statements ( fr)
and statements shown only once (f,,). The guessing parameter g was constrained
to be equal across the four replicates. We implemented the models within the
hierarchical latent-trait approach, using the prior specifications described earlier.

We estimated the posterior distribution of the model parameters using JAGS,
ran three MCMC chains with over-dispersed start values, discarded the first 4, 000
posterior samples as burn in, and retained only every 50th sample. Results re-
ported below are based on a total of 180,000 posterior samples. The posterior
distributions of the group-level mean parameters are displayed in the Supplemen-
tal Materials.

3.4.2.2 Computing Bayes Factors with Warp-III

For each model, we split the 180,000 posterior samples in two equal parts (first
and second half of the iterations per chain) and used the first part for estimating
R and v, and the second part for the iterative updating scheme in Equation 3.15
(D1 = Dy = 90,000). Using a standard personal computer and four CPU cores,
computing the marginal likelihood took approximately three minutes per model.

The resulting marginal likelihoods were used to compute the Bayes factor in
favor of the fluency-conditional model over the knowledge-conditional model. To
assess the accuracy of the resulting Bayes factor, we repeated this procedure 50
times. Estimates of the Bayes factor ranged from 1.3 x 10%*? to 3.6 x 10*? in
favor of the fluency-conditional model. Estimates of the Bayes factor based on
the alternative prior choice for the elements of € (i.e., uniform priors with upper
bound &ax = 2 instead of &ay = 10) ranged from 1.7 x 104! to 1.7 x 10*3 in favor
of the fluency-conditional model. In line with the conclusion drawn by Fazio et
al. (2015) based on the G? statistic, this result provides overwhelming evidence in
favor of the fluency-conditional model.'®

18 Although the Bayes factor indicates overwhelming evidence in favor of the fluency-
conditional model, it should be kept in mind that the Bayes factor quantifies the evidence of two
models relative to each other. In practice, researchers should also check that the model that is
favored by the Bayes factor provides an adequate fit to the observed data (e.g., Steingroever et
al., 2014).
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Figure 3.6: Log Bayes factor estimates in favor of the fluency-conditional (FC)
model over the knowledge-conditional (KC) model as a function of the num-
ber of posterior samples. The Warp-III estimates are displayed in white, the
estimates based on the simpler multivariate normal approach are displayed in
gray. Available at https://tinyurl.com/ydbfev7w under CC license https://
creativecommons.org/licenses/by/2.0/.

Figure 3.6 displays the Warp-11T Bayes factor estimates (on the log scale) in
white as a function of the number of posterior samples used in the bridge sampling
procedure.’® As a comparison, the estimates based on the simpler multivariate
normal bridge sampling approach are displayed in gray. As the number of poste-
rior samples increases, the Bayes factor estimates become more precise. For this
particular example, it is apparent that the Warp-III estimates are less variable
than the estimates based on the simpler multivariate normal approach.

3.4.2.3 Substantive Contribution

The authors of the original article analyzed the aggregated data (again, an ap-
proach known to be suboptimal in case there is heterogeneity across participants)

9Posterior sample sizes smaller than 180,000 were obtained by considering only a subset of
the 180,000 posterior samples for each model (i.e., no new posterior samples were obtained). Note
that the same posterior sample sizes were used for the Warp-III and the simpler multivariate
normal approach, but the results of the two methods are displayed with an offset to avoid
overlapping symbols. Plots for each model’s marginal likelihood estimates are presented in the
Supplemental Materials.
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and considered the G2 statistics with corresponding p-values. Based on the fact
that the knowledge-conditional model had a larger, significant G? statistic com-
pared to the fluency-conditional model that had a lower, non-significant G2 statis-
tic, the authors concluded that the knowledge-conditional model fit the data poorly
and the fluency-conditional model fit the data well. Therefore, the authors favored
the fluency-conditional model based on two binary accept-reject decisions. This
makes it difficult to gauge the degree of support that the data provide in favor
of the fluency-conditional model. The Bayes factor may be 10, or 100, or 1,000
— these are very different levels of evidence. In fact, our analysis shows that the
Bayes factor is about 1.3 x 102 to 3.6 x 10*® in favor of the fluency-conditional
model, which represents an overwhelming amount of evidence.

It could be argued that, since the compared models have the same number
of parameters, comparing G? statistics may result in choosing the same model
as based on considering AIC or BIC. AIC is asymptotically equivalent to cross-
validation (M. Stone, 1977) which is known to be inconsistent in the sense that,
when the number of observations goes to infinity, the data-generating model will
not be chosen with certainty (Shao, 1993). In contrast, when using Bayes factors,
model-selection consistency is generally fulfilled (Bayarri, Berger, Forte, & Garcia-
Donato, 2012). Although the BIC is a rough approximation of the Bayes factor,
we believe that it is better to compute proper Bayes factors which are transparent
with respect to the prior assumptions.

Finally, one might argue again that this data set is relatively small and is
thus uninformative. However, the resulting Bayes factor is very different from 1,
indicating that the data are in fact highly informative with respect to adjudicating
between the fluency-conditional and the knowledge-conditional model.

3.5 Discussion

Bayesian hierarchical techniques for MPT modeling are increasingly popular. Cur-
rent hierarchical MPT approaches, however, do not incorporate Bayesian model
comparison methods based on Bayes factors and posterior model probabilities,
possibly because of the computational challenges associated with the evaluation
of the marginal likelihood. In this chapter, we addressed this challenge and showed
how Warp-III bridge sampling can be used to obtain accurate and stable estimates
of the marginal likelihood of hierarchical MPTs. We applied the method to model
comparison problems from two published studies and illustrated how the marginal
likelihood can be used for Bayesian model averaging and for the computation of
the Bayes factor.

Our examples highlighted that Bayesian model comparison based on posterior
model/inclusion probabilities and Bayes factors allows researchers to disentangle
between “absence of evidence” and “evidence of absence”. Note that it is crucial
in all stages of cognitive model development, validation, and application that one
is able to quantify evidence in favor of invariances (i.e., “evidence of absence”) in a
coherent and systematic way. For model development and validation, it is impor-
tant to show that certain experimental manipulations selectively influence only a
subset of the model parameters whereas the remaining parameters are unaffected
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(i.e., selective influence studies). Once a cognitive model has been established as
a valid measurement tool, it can be used, for instance, to investigate which sub-
processes are targeted by new experimental manipulations or which subprocesses
differ or do not differ in clinical subpopulations (cognitive psychometrics; e.g.,
Riefer et al., 2002). In these applications it is important to be able to quantify
evidence for a difference but, crucially, also for an invariance since one might wish
to make statements of the form “there is evidence that retrieval processes are not
affected”.

There are often a number of different candidate models for the analysis of
observed data. In Example 1, we demonstrated how Bayesian model averaging
can be used to draw conclusions that fully take into model uncertainty. In our
opinion, Bayesian model averaging is an extremely powerful approach and, to the
best of our knowledge, it is currently not used in the context of hierarchical MPTs
and cognitive modeling more generally. We believe that attending researchers to
this approach and providing the computational tools to facilitate its application
(i.e., Warp-III) is one of the key contributions of this work.

Our examples illustrated that Warp-III is relatively straightforward to imple-
ment once posterior samples from the models have been obtained with MCMC
sampling. Another advantage of Warp-III bridge sampling is its relative speed.
In our experience, the Warp-III procedure requires much less computational time
than the MCMC sampling from the posterior. One of the crucial determinants
of the computational time of Warp-III is how long it takes to evaluate the un-
normalized posterior density. To maximize speed for our applications, we im-
plemented the un-normalized posterior density functions in C++ code called from
within R via Repp (Eddelbuettel et al., 2011). Compared to a simpler bridge sam-
pling version which only matches the first two moments of the proposal and the
posterior (e.g., Overstall & Forster, 2010), Warp-III is expected to take about
twice as long for a fixed number of samples due to the mixture representation
of the warping procedure which requires evaluating the un-normalized posterior
twice as often as for the simpler bridge sampling version. However, Warp-III is
also expected to be more accurate in case the posterior is skewed which means
there might be a speed-accuracy trade-off.

Despite its computational simplicity, Warp-III should not be applied blindly.
Specifically, as we demonstrated for our empirical examples, it is important to
assess the variability of the resulting model comparison measure — such as poste-
rior model probabilities or Bayes factors — by repeating the Warp-III procedure
multiple times. When the measure of interest clearly favors a given model, as
in our second example, some fluctuation is not necessarily concerning. However,
in situations where the fluctuation influences which model is favored, researchers
should either increase the number of posterior and proposal samples to decrease
the variability of the estimate, or, if this solution is practically infeasible, they
should acknowledge that the estimate does not support firm conclusions about
the relative predictive adequacy of the models.

The accuracy of the estimate is governed not only by the number of samples
but also by the overlap between the proposal and the posterior distribution. Warp-
IIT attempts to maximize this overlap by matching the mean vector, covariance
matrix, and the skew of the two distributions. However, in case the posterior
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distribution exhibits multiple modes, the overlap may not be sufficiently close.
Researchers should carefully check whether multi-modalities occur in their appli-
cation. If this is the case, repeated runs of the Warp-III procedure could be used
to obtain an impression of the stability of the estimate. Nevertheless, it should be
kept in mind that Warp-III is not designed for multi-modal posterior distributions
and results should be interpreted with caution. The development of bridge sam-
pling procedures for multi-modal posterior distributions is currently ongoing (e.g.,
Frithwirth-Schnatter, 2004; L. Wang & Meng, 2016). Note, however, that this is
not a very severe limitation of the Warp-III method, since posterior distributions
are unimodal in many models used in psychology — they even converge to normal
distributions under specific conditions (Dawid, 1970).

Relatedly, note that we use the unscaled effects w; and the scaling parameters &
directly in the bridge sampling procedure — but technically, these are only identified
jointly. Therefore, MCMC chains for these parameters may look irregular and
exhibit, for instance, multiple modes, decreasing the efficiency of the Warp-III
procedure as mentioned above. Although this was not the case for our applications,
we advise researchers to carefully monitor the MCMC chains of the unidentified
unscaled effects and scaling parameters.

On a more theoretical note, as Equation 3.3 illustrates, Bayesian model com-
parison is sensitive to the choice of the prior distribution. We relied on relatively
standard priors for the group-level parameters, but also established the robust-
ness of our conclusions with a series of sensitivity analyses (see also Supplemental
Materials). Nevertheless, we do not suggest that our prior choices should be con-
sidered as the gold-standard for model comparison in hierarchical MPTs. Several
approaches are available for specifying theoretically justified prior distributions
for cognitive models (Lee & Vanpaemel, 2018; see also Heck & Wagenmakers,
2016, for specifying order constraints in MPTs). We believe that the increas-
ing popularity of hierarchical MPTs will enable researchers to specify informative
paradigm-specific and model-specific prior distributions based on experience with
the models (e.g., typical parameter ranges and effect sizes). The dependency on
the prior is sometimes considered as a weakness of Bayes factor model compar-
isons (e.g., Aitkin, 2001). Some researchers and statisticians even conclude that
due to this reason, the use of Bayes factors is not recommended (e.g., Gelman,
Carlin, et al., 2014, chapter 7.4).2° In contrast, we believe that the ability to
incorporate prior knowledge is an advantage of Bayesian inference; we consider
the prior as integral part of the model which should be chosen just as carefully
as the likelihood (e.g., Vanpaemel, 2010). Ideally, researchers should pre-register
their priors before data collection (Chambers, 2013, 2015) to ensure that these
are used to express genuine prior knowledge and not to increase researchers’ de-
grees of freedom in obtaining the desired results. Note that we are not the first
to advocate a Bayesian approach to hierarchical MPTs. However, to the best of
our knowledge, we are the first who advocate Bayesian model comparison using
posterior model/inclusion probabilities and Bayes factors and provide the tools

20 Another objection is that Bayes factors are often used to compare nested models where
certain values of continuous parameters are treated as “special” (since the parameters are fixed
to these values). These researchers often favor continuous model expansion instead (e.g., Gelman,
Carlin, et al., 2014, chapter 7.4; Gelman & Rubin, 1995).
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to compute these quantities for hierarchical MPTs. Equipped with a feasible ap-
proach for computing the relevant quantities for Bayesian model comparison, one
could, in principle, specify an informed prior for the models themselves in addition
to the specification of the parameter prior. This way one could incorporate prior
knowledge about how likely each model is or one could, if desired, incorporate a
penalty for multiple comparisons as described in Scott and Berger (2010).

Although we focused exclusively on latent-trait MPTs, Warp-III is not limited
to the latent-trait approach or other hierarchical MPTs, such as the beta-MPT
(J. B. Smith & Batchelder, 2010) or the crossed-random effects approach (Matzke
et al.; 2015). Warp-III may be used to compute the marginal likelihood for a
large variety of cognitive models. For instance, the simple multivariate normal
bridge sampling approach has been recently applied to hierarchical reinforcement
learning models (Gronau, Sarafoglou, et al., 2017). We believe that Warp-III may
be especially useful for so-called sloppy models with highly correlated parameters
(K. S. Brown & Sethna, 2003), including but not limited to race models of re-
sponse times, which often yield skewed posterior distributions (e.g., S. D. Brown
& Heathcote, 2008; Matzke, Love, & Heathcote, 2017). The Warp-III methodol-
ogy also lends itself to model comparison in extensions of hierarchical cognitive
models that impose on the model parameters a statistical structure such as a lin-
ear regression, factor analysis, or analysis of variance (e.g., Boehm, Steingroever,
& Wagenmakers, 2018; Heck, Arnold, & Arnold, 2018; Turner, Wang, & Merkle,
2017; Vandekerckhove, 2014). The application of Warp-III to complex experimen-
tal designs is ongoing work in our lab.

Although Warp-III is a general procedure for computing the marginal likeli-
hood, depending on the situation, other approaches may be better suited for the
model comparison problem at hand. If researchers focus on non-hierarchical im-
plementations of cognitive models, importance sampling may be an easier solution,
particularly in the context of MPTs (Vandekerckhove et al., 2015). If the focus is
on nested models, the Savage-Dickey density ratio is an easier and faster alterna-
tive. Lastly, if the number of models under consideration is very large, Reversible
Jump MCMC (Green, 1995) might be the appropriate choice. Nevertheless, we
believe that in most applications of hierarchical cognitive models, the research
question concerns the comparison of a limited set of possibly non-nested models.
In these situations, Warp-III provides a straightforward and accurate method for
computing the marginal likelihood for a wide range of complex models.

The Supplemental Materials can be found at: https://osf.io/rycgé/.
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Chapter 4

Computing Bayes Factors for
Evidence-Accumulation Models
Using Warp-lll Bridge Sampling

Abstract

Over the last decade, the Bayesian estimation of evidence-accumulation
models has gained popularity, largely due to the advantages afforded by the
Bayesian hierarchical framework. Despite recent advances in the Bayesian
estimation of evidence-accumulation models, model comparison continues
to rely on suboptimal procedures, such as posterior parameter inference and
model selection criteria known to favor overly complex models. In this chap-
ter we advocate model comparison for evidence-accumulation models based
on the Bayes factor obtained via Warp-III bridge sampling. We demonstrate,
using the Linear Ballistic Accumulator (LBA), that Warp-111 sampling pro-
vides a powerful and flexible approach that can be applied to both nested
and non-nested model comparisons, even in complex and high-dimensional
hierarchical instantiations of the LBA. We provide an easy-to-use software
implementation of the Warp-III sampler and outline a series of recommen-
dations aimed at facilitating the use of Warp-III sampling in practical ap-
plications.

4.1 Introduction

Cognitive models of response times and accuracy canonically assume an accumula-
tion process, where evidence favoring different options is summed over time until a

This chapter is published as Gronau, Q. F., Heathcote, A., & Matzke, D. (2020). Comput-
ing Bayes factors for evidence-accumulation models using Warp-III bridge sampling. Behavior
Research Methods, 52, 918-937. doi: https://doi.org/10.3758/s13428-019-01290-6. Also
available as PsyArXiv preprint: https://psyarxiv.com/9géet
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threshold is reached that triggers an associated response. The two most prominent
types of evidence-accumulation models, the Diffusion Decision Model (DDM; Rat-
cliff, 1978; Ratcliff & McKoon, 2008) and the Linear Ballistic Accumulator (LBA;
S. D. Brown & Heathcote, 2008) have been widely applied across animal and hu-
man research in biology, psychology, economics, and the neurosciences to topics
including vision, attention, language, memory, cognition, emotion, development,
aging, and clinical disorders (for reviews, see Donkin & Brown, 2018; M. J. Mul-
der, Van Maanen, & Forstmann, 2014; Ratcliff, Smith, Brown, & McKoon, 2016).
Evidence-accumulation models are popular because they provide a comprehensive
account of the probability of choices and the associated distribution of times to
make them, and because they provide parameter estimates that directly quantify
important psychological quantities, such as the quality of the evidence provided
by a choice stimulus and the amount of evidence required to trigger the response.

Parameter estimation and statistical inference in the context of evidence-
accumulation models can be challenging because they belong to the class of
“sloppy” models with highly correlated parameters (Apgar, Witmer, White, &
Tidor, 2010; Gutenkunst et al., 2007), examples of which occur widely in biol-
ogy and psychology (Apgar et al., 2010; Gutenkunst et al., 2007; Heathcote et
al., 2018). However, with appropriate experimental designs — critically includ-
ing sufficiently high error rates and experimental trials per participant (Ratcliff
& Childers, 2015) — the model parameters can be estimated reliably using error
minimization and Bayesian methods.

Recently, the Bayesian estimation of evidence-accumulation models has gained
popularity, largely due to the advantages afforded by the Bayesian hierarchical
framework (e.g., Heathcote et al., 2018; Vandekerckhove, Tuerlinckx, & Lee, 2011;
Wiecki, Sofer, & Frank, 2013). In fact, our recent literature review indicated that
19% and 21% of the 262 and 53 papers that used the DDM and the LBA, respec-
tively, relied on Bayesian methods to estimate the model parameters.! Bayesian
hierarchical methods simultaneously estimate model parameters for a group of par-
ticipants assuming that the participant-level parameters are drawn from a common
group-level distribution. From a statistical point of view, the group-level distri-
bution acts as a prior that pulls (“shrinks”) the participant-level parameters to
the group mean, which can result in less variable and, on average, more accurate
estimates than non-hierarchical methods (Farrell & Ludwig, 2008; Gelman & Hill,
2007; Lee & Wagenmakers, 2013; Shiffrin et al., 2008). From a psychological point
of view, the group-level distribution provides a model of individual differences.
From this perspective, it is apparent that introducing a group-level distribution
improves the model theoretically only if the group-level distribution provides a
good model for the individual variation (Farrell & Lewandowsky, 2018, section
9.5).

As a result of the strong parameter correlations in evidence-accumulation mod-
els, standard Markov chain Monte Carlo samplers (MCMC; e.g., Gilks, Richard-
son, & Spiegelhalter, 1996) typically used for Bayesian parameter estimation can

1The numbers are based on a systematic literature review of published articles that fit the
DDM and LBA to empirical data (Tran, 2018). A summary of the results is available at https://
osf.io/ynwpa/.
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be inefficient. Rather, samplers designed to handle high posterior correlations
must be used, such as differential evolution MCMC (DE-MCMC; Turner, Seder-
berg, Brown, & Steyvers, 2013). This approach to Bayesian estimation is now
readily available for the DDM, LBA, and other evidence-accumulation models in
the “Dynamic Models of Choice” software (DMC; Heathcote et al., 2018) along
with extensive tutorials and supporting functions that facilitate model diagnostics
and the analysis of results.? In this chapter, we focus on the Bayesian approach
because of the advantages it offers, such as a coherent inferential framework, the
use of prior information, the possibility of straightforward hierarchical extensions,
and the natural quantification of uncertainty in both parameter estimates and
model predictions.

In typical applications of evidence-accumulation models, researchers are not
only interested in parameter estimation, but often wish to assess the effects of
experimental manipulations on the model parameters. For example, Strickland,
Loft, Remington, and Heathcote (2018) compared non-nested LBA models that
either allowed the effect of maintaining a prospective memory load (i.e., in the
context of a routine ongoing task, the intent to make an alternative response to
a rarely occurring stimulus) to influence only the rate of evidence accumulation
or only the threshold amount of evidence required to make a response. The for-
mer model corresponds to competition for limited information-processing capacity,
whereas the latter model corresponds to strategic slowing in order to avoid the
ongoing task response pre-empting the prospective memory response (Heathcote,
Loft, & Remington, 2015). Nested comparisons are also common in the context
of evidence-accumulation models to determine which of a set of candidate experi-
mental manipulations had an effect on a particular parameter. For example, Rae,
Heathcote, Donkin, Averell, and Brown (2014) examined whether or not an em-
phasis on the speed vs. accuracy of responding influences evidence accumulation
rates.

Despite recent advances in the Bayesian estimation of evidence-accumulation
models, model comparison continues to rely on suboptimal procedures, such as
posterior parameter inference based on complex models where separate model
parameters are estimated for each experimental condition. In this approach, dif-
ferences between parameters are often evaluated using posterior p-values (e.g.,
Klauer, 2010; Matzke, Boehm, & Vandekerckhove, 2018; Matzke et al., 2015;
Matzke, Hughes, Badcock, Michie, & Heathcote, 2017; Osth, Jansson, Dennis, &
Heathcote, 2018; J. B. Smith & Batchelder, 2010; Strickland et al., 2018; Tilman,
Osth, van Ravenzwaaij, & Heathcote, 2017; Tilman, Strayer, Eidels, & Heathcote,
2017). Posterior parameter inference has at least three limitations. First, it can
only be used for nested model comparison. Second, it cannot provide evidence
for the absence of an effect (i.e., it cannot “prove the null”), similar to classical
p-values (e.g., Wagenmakers, 2007). Third, it can result in fitting an overly com-
plex model, which is particularly problematic in the presence of strong parameter
correlations, because a real effect in one parameter can spread to create a spurious
effect on other parameters (Heathcote et al., 2015).

2A file that describes the content of the DMC tutorials and the different DMC functions is
available from https://osf.io/kygr3/.
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These shortcomings can be addressed using formal model selection. This ap-
proach critically depends on the availability of a model selection criterion that
properly penalizes the greater flexibility of more complex models. The Deviance
Information Criterion (DIC) is one of the most commonly used model selection
measures, and has the advantage that it can be easily computed from the poste-
rior samples obtained during parameter estimation. However, the DIC is known to
prefer overly complex models (Spiegelhalter et al., 2002). The more recent Widely
Applicable Information Criterion (WAIC; Vehtari et al., 2017), which is also based
on posterior samples, is an approximation to (leave-one-out) cross-validation and
suffers from the same shortcoming (Browne, 2000). It should be noted that even
as the number of observations goes to infinity, methods that approximate (leave-
one-out) cross-validation will not choose the data-generating model with certainty
(Shao, 1993).

Here we advocate model selection for evidence-accumulation models based on
the Bayes factor (e.g., Etz & Wagenmakers, 2017; Jeffreys, 1961; Kass & Raftery,
1995; Ly et al., 2016a). The Bayes factor is the principled method of performing
model selection from a Bayesian perspective and follows immediately from ap-
plying Bayes’ rule to models instead of parameters (e.g., Kass & Raftery, 1995).
In contrast to model selection methods that approximate (leave-one-out) cross-
validation, in general, the Bayes factor will choose the data-generating model with
certainty when the number of observations goes to infinity (Bayarri et al., 2012).
Although the desirability of Bayes factors has long been recognized (e.g., Jeffreys,
1939), their use has only become increasingly widespread with general linear mod-
els (e.g., ANOVA and regression; see Rouder, Morey, Speckman, & Province, 2012
and Rouder & Morey, 2012) due the availability of efficient and user-friendly soft-
ware implementations in packages such as BayesFactor (Morey & Rouder, 2015)
in R (R Core Team, 2019) and the GUI-based JASP (JASP Team, 2020). With this
chapter, we aim to bring these advantages to the domain of evidence-accumulation
models by providing an easy-to-use software implementation that uses a state-of-
the-art method for computing Bayes factors.

The Bayes factor is the predictive updating factor that changes prior model
odds for two models M; and M into posterior model odds based on observed

data y:
pMily)  ply| M) " p(My) .

(4.1)

pMaly)  ply | My) p(Ms)
——
posterior odds Bayes factor BF2 prior odds

Continuing the example from Strickland et al. (2018), suppose that M refers to
the model in which only rates are affected by prospective-memory load and Mo
refers to the model in which only thresholds are affected. Different researchers may
start with different prior beliefs about the relative plausibility of the two compet-
ing psychological explanations of the prospective-memory load effect. However,
the change in beliefs brought about by the data (i.e., the change from prior to pos-
terior odds which is the Bayes factor) is the same, regardless of the prior beliefs.
Therefore, reporting the Bayes factor enables researchers to update their personal
prior odds to posterior odds. Commonly, only the Bayes factor is reported and
interpreted, since strength of evidence for the two competing models is naturally
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expressed as the degree to which one should update prior beliefs about the models
based on observed data. A Bayes factor of, say, BF12 = 10 would indicate that
the data are 10 times more likely under M; than Ms, whereas a Bayes factor of
BF15 = 0.1 would indicate that the data are 10 times more likely under Ms than
M.

As shown in Equation 4.1, the Bayes factor is the ratio of the marginal likeli-
hoods of the models. The marginal likelihood is the probability of the data given
a model and is obtained by integrating out the model parameters with respect to
the parameters’ prior distribution:

ply | M) = /@ p(y | 8.M)p(6 | M) de, (4.2)

where 6@ denotes the parameter vector for model M. The marginal likelihood
quantifies average predictive adequacy as follows: The likelihood p(y | 8, M)
corresponds to the predictive adequacy of a particular parameter setting 6 un-
der model M. The average predictive adequacy (i.e., the marginal likelihood) is
obtained as the weighted average of the predictive adequacies across the entire
parameter space, where the weights are given by the parameters’ prior proba-
bilities. Complex models may have certain parameter settings that yield high
likelihood values, however, the large parameter space may also contain many pa-
rameter settings which result in small likelihood values, lowering the weighted
average. Consequently, the marginal likelihood — and the Bayes factor, which
contrasts the average predictive adequacy of two models — incorporates a natural
penalty for undue complexity. Interpreting the marginal likelihood as a weighted
average highlights the crucial importance of the prior distribution for Bayesian
model comparison.

For evidence-accumulation models, the integral in Equation 4.2 — and hence
the Bayes factor — cannot be computed analytically. In these cases, four major
approaches are available for computing Bayes factors: (1) approximate methods
such as the Laplace approximation (e.g., Kass & Vaidyanathan, 1992); (2) the
Savage-Dickey density ratio approximation of the Bayes factor (Dickey & Lientz,
1970; Wagenmakers et al., 2010); (3) transdimensional methods such as reversible
jump MCMC (Green, 1995); and (4) simulation-based methods that estimate the
integrals involved in the computation of the Bayes factor directly (e.g., Evans
& Annis, 2019; Evans & Brown, 2018; Meng & Schilling, 2002; Meng & Wong,
1996). Approximate methods have the disadvantage that it is typically difficult
to assess the approximation error, which could be particularly substantial for
hierarchical evidence-accumulation models. The Savage-Dickey density ratio can
only be applied to nested model comparisons. Transdimensional methods are
challenging to implement, especially in hierarchical settings and for non-nested
model comparisons, as explained in more detail later.

Therefore, here we advocate Warp-III bridge sampling (Meng & Schilling,
2002) for obtaining the Bayes factor for evidence-accumulation models. Warp-
IIT bridge sampling is a simulation-based method that can be applied to both
nested and non-nested comparisons and — once posterior samples from the com-
peting models have been obtained — it is straightforward to implement even in
hierarchical settings. As non-nested hierarchical comparisons are integral to many
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applications of cognitive models, we believe that Warp-III bridge sampling pro-
vides an excellent computational tool that will greatly facilitate the use of Bayesian
model comparison for evidence-accumulation models.

The chapter is organized as follows. First, we review simple Monte Carlo
sampling, another simulation-based method that has been proposed for computing
the Bayes factor for evidence-accumulation models. We then outline the details of
Warp-III bridge sampling and illustrate its use for the single-participant as well as
the hierarchical case. We focus on the LBA, but elaborate on the applicability of
our approach to other evidence-accumulation models, for instance the DDM, in the
Discussion. The Discussion also provides recommendations aimed at facilitating
the use of Warp-III bridge sampling in practical applications. The implementation
of the Warp-III bridge sampler is available at https://osf.io/ynwpa/ and has
also been incorporated into the latest DMC release.?

4.2 Simple Monte Carlo Sampling

A simple Monte Carlo estimator of the marginal likelihood is obtained by in-
terpreting the integral in Equation 4.2 as an expected value with respect to the
parameters’ prior distribution:

p(y | M) = EP(G\M) [p(y | G,M)]
N
~ %Zp(y | 6;, M), where 6; ~ p(8 | M). (4.3)

i=1

Thus, an estimate of the marginal likelihood can be obtained by sampling from
the prior distribution and averaging the likelihood values based on the samples.
Recently, Evans and Brown (2018) proposed the use of simple Monte Carlo
sampling for the computation of the Bayes factor for the LBA. This simple ap-
proach can work well if the posterior distribution is similar to the prior distribution;
however, when the posterior is substantially different from the prior — as is often
the case — simple Monte Carlo sampling becomes very inefficient. The reason is
that only a few prior samples (i.e., those in the region where most posterior mass is
located) result in substantial likelihood values so that the average in Equation 4.3
will be dominated by a small number of samples. The result is an unstable es-
timator, even in non-hierarchical applications. Naturally, the problem becomes
more severe in hierarchical settings where the parameter space is substantially
larger. Although increasing the number of prior samples may remedy the problem
to a certain extent, reliable estimation of the marginal likelihood of hierarchical
evidence-accumulation models using simple Monte Carlo sampling remains chal-
lenging, even with Evans and Brown’s powerful GPU implementation. Given the
many advantages of the Bayesian hierarchical framework for cognitive modeling
(e.g., Heathcote et al., 2018; Lee, 2011; Lee & Wagenmakers, 2013; Matzke et al.,
2015; Matzke, Dolan, Logan, Brown, & Wagenmakers, 2013; Shiffrin et al., 2008;

3This release is available at https://osf.io/byeh4/. It also contains a new tuto-
rial that explicitly explains how to use the bridge sampling functionality in DMC (i.e.,
dmec_5_7_BayesFactors.R).
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Vandekerckhove et al., 2011; Wiecki et al., 2013), we believe that an alternative
approach is needed.

4.3 Warp-III Bridge Sampling

We propose the use of Warp-III bridge sampling (Meng & Schilling, 2002,
henceforth referred to as Warp-III) for estimating the marginal likelihood for
evidence-accumulation models. Warp-III is an advanced version of bridge sam-
pling (Gronau, Sarafoglou, et al., 2017; Meng & Wong, 1996), which is based on
the following identity:

Ey0) [1(8) p(y | 6, M) p(8 | M)]
Ep6ly.m) [1(6) 9(0)] ’

where g is a proposal distribution and A a bridge function.

The efficiency of the bridge sampling estimator is governed by the overlap be-
tween the proposal and the posterior distribution. A simple approach for obtaining
the bridge sampling estimator relies on a multivariate normal proposal distribution
that matches the first two moments, the mean vector and covariance matrix, of the
posterior distribution (e.g., Gronau, Sarafoglou, et al., 2017; Overstall & Forster,
2010). However, this method becomes inefficient when the posterior distribution
is skewed. To remedy this problem, Warp-III aims to maximize the overlap by
fixing the proposal distribution to a standard multivariate normal distribution*
and then “warping” (i.e., manipulating) the posterior so that it matches not only
the first two, but also the third moment of the proposal distribution (for details,
see Meng & Schilling, 2002, and Gronau, Wagenmakers, Heck, & Matzke, 2019).

Figure 4.1 illustrates the warping procedure for the univariate case using hy-
pothetical posterior samples. The solid black line in the top-left panel displays the
standard normal proposal distribution and the skewed histogram displays samples
from the posterior distribution. Since none of the moments of the two distributions
match, applying bridge sampling to these distributions can be called Warp-0 (i.e.,
the number indicates how many moments have been matched). The histogram
in the top-right panel displays the same posterior samples after subtracting their
mean from each sample. This manipulation matches the first moment of the
two distributions; the posterior samples are now zero-centered, just like the pro-
posal distribution. This is called Warp-I. In the bottom-right panel, the posterior
samples are additionally divided by their standard deviation. This manipulation
matches the first two moments of the distributions; the posterior samples are now
zero-centered with variance 1, just like the proposal distribution. This is called
Warp-II. Finally, the bottom-left panel displays the posterior samples after assign-
ing a minus sign with probability 0.5 to each sample. This manipulation achieves
symmetry and matches the first three moments of the distributions; the posterior
samples are now symmetric and zero-centered with variance 1, just like the pro-
posal distribution. This is called Warp-III. Note how successively matching the
moments of the two distributions has increased the overlap between the posterior

ply | M) =

(4.4)

4Other proposal distributions, such as a multivariate t-distribution, are also conceivable.
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Figure 4.1: Illustration of the warping procedure. The black solid line shows
the standard normal proposal distribution and the gray histogram shows the pos-
terior samples. Available at https://tinyurl.com/y7owvsz3 under CC license
https://creativecommons.org/licenses/by/2.0/.

and the proposal distribution.> We have found that the improvement afforded by
Warp-III can be crucial for efficient application of bridge sampling to evidence-
accumulation models, particularly in situations where the posteriors are skewed,
as is often the case with only a small number of observations per participant.
The bridge function h is chosen such that it minimizes the relative mean-square
error of the resulting estimator (Meng & Wong, 1996). Using this “optimal”
bridge function,® the estimator of the marginal likelihood is obtained by updating

5The warping procedure assumes that all parameters are allowed to range across the entire
real line; if this is not the case, appropriate transformations can be applied to fulfill this re-
quirement. Note that the resulting expressions need to be adjusted by the relevant Jacobian
term.

6Note that this choice is only optimal if the samples from the posterior distribution are
independent which is not the case when using MCMC methods. To account for this fact, we
replace N1 when computing s; and s2 by an effective sample size — the median effective sample
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an initial guess of the marginal likelihood until convergence. The estimate at
iteration ¢ + 1 is given by:”

1 32 !
2,4
| M) = — 2 7 (49)

Ny
+ 3 1
Ny = s1l1j+s2 p(y|M)®

where s; = %5 +N2 for k € {1, 2},
LBl| " "
5 |9@p—65)+q(6; )]
hj= (R (9; W) (4.6)
and i |
o B [q(u—RO:)+q(u+RE;)
lQ,z - 9(9,) (47)

{67,05,...,0% } are Ny draws from the posterior distribution, {él, 0o, ..., éNz}
are Ny draws from the standard normal proposal distribution, and ¢(8) = p(y |
0, M)p(0 | M) denotes the un-normalized posterior density function. Further-
more, p corresponds to the posterior mean vector and ¥ = RR' corresponds
to the posterior covariance matrix (R is obtained via a Cholesky decomposition
of the posterior covariance matrix). The posterior mean vector and covariance
matrix can be estimated using the posterior samples. In practice, we split the
posterior samples in two halves; the first half is used to estimate g and R and the
second half is used in the iterative scheme in Equation 4.5.

Computing !; ; and ly; is the computationally most expensive part of the
method; fortunately, these quantities can be computed completely in parallel.
Note also that /; ; and I3 ; only need to be computed once before the updating
scheme is started. Hence, with these quantities in hand, running the updating
scheme is quick and typically converges in fewer than 20 or 30 iterations. Al-
though our implementation relies on a fixed starting value, it is also possible to
start the updating scheme from an informed guess of the marginal likelihood, for
instance, based on a normal approximation to the posterior distribution. We have
found that the value of the initial guess usually does not influence the resulting
estimator substantially, but a good starting value may reduce the number of iter-
ations needed to reach convergence. Moreover, as we show later, an appropriately
chosen starting value is crucial in rare cases when the iterative scheme seemingly
does not converge.®

It can be shown that the simple Monte Carlo estimator described in the pre-
vious section is a special case of Equation 4.4 obtained by using a bridge function
other than the optimal one (e.g., Gronau, Sarafoglou, et al., 2017, Appendix A).

size across all posterior components — obtained using the coda R package (Plummer et al., 2006).
"Note that in practice, we always run the iterative scheme in a more numerically stable
way with respect to #(t) = const x p(y | M)®) (for details, see Gronau, Sarafoglou, et al., 2017,
Appendix B).
81n principle, convergence is guaranteed (Meng & Wong, 1996), however, convergence may
be so slow that it is infeasible to wait in practice.
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Therefore, Warp-I1I that relies on the optimal bridge function must perform better
in terms of the relative mean-square error of the estimator than the simple Monte
Carlo approach. This will be illustrated in the next section, where we apply Warp-
IIT sampling to a nested model comparison problem and compare its performance
to three alternative methods, including simple Monte Carlo sampling.

4.4 Simulation Study I: Nested Model Comparison for the
Single-Participant Case

As a first example, we computed the Bayes factor for a nested model compar-
ison problem in the LBA by approximating the marginal likelihood of the two
models using Warp-III sampling. To verify the correctness of our Warp-III imple-
mentation, we also computed the Bayes factor using three alternative methods:
(1) simple Monte Carlo sampling; (2) the Savage-Dickey density ratio; and (3) a
simple version of reversible jump MCMC (RJMCMC; Green, 1995) as described
in Barker and Link (2013). We included the latter two approaches because they
provide conceptually different methods for Bayes factor computations than the
simulation-based Warp-III and simple Monte Carlo. The details of the Savage-
Dickey and the RIMCMC methods are provided in the Appendix.

4.4.1 Models and Data

We considered a data set generated from the LBA for a single participant per-
forming a simple choice task with two stimuli and two corresponding responses.
As shown in Figure 4.2, the LBA assumes a race among a set of determinis-
tic evidence-accumulation processes, with one runner per response option. The
choice is determined by the winner of the race.

On each trial, accumulation begins at a starting point drawn — independently
for each accumulator — from a uniform distribution with width A. A may vary
between accumulators, but here we assume it is the same. The evidence total
increases linearly at rate v that is drawn independently for each accumulator from
a normal distribution, which we assume here is truncated below at zero (Heathcote
& Love, 2012). The accumulator that matches the stimulus has mean rate vye
and standard deviation Sirye, and the mismatching accumulator ve,se and Sgaise-
In principle, there could be different vi,ye and wveage values for each stimulus, but
here we assume they are the same. The first accumulator to reach its threshold (b)
— again potentially differing between accumulators but assumed to be the same
here — triggers the corresponding response. We estimate threshold in terms of
a positive quantity, B, which quantifies the gap between the threshold and the
upper bound of the start-point noise (i.e., B = b — A). Response time (RT) is
equal to the time taken to reach threshold plus non-decision time, tg, which is the
sum of the time to initially encode the stimulus and the time to produce a motor
response.

We estimated the Bayes factor to compare two nested LBA models. The
first, which we refer to as the full model, featured a starting point parameter
A, a threshold parameter B, mean drift rate parameters for the matching and
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Figure 4.2: Graphical representation of the Linear Ballistic Accumulator for two
possible responses (rl and r2) corresponding to two stimuli (s1 and s2). The figure
illustrates a case where s2 is presented and the sampled rate for the r2 accumulator
is greater than the sampled rate for the 1 accumulator, i.e., the accumulation path
(dashed line) is steeper for 72 than for 1. However, as the sampled starting point
for r1 is higher than for r2, the r1 accumulator has a sufficient head start to
get to its threshold first after time t5. The resulting response is an error, with
RT =ty + tq. Available at https://tinyurl.com/yc4n8lpm under CC license
https://creativecommons.org/licenses/by/2.0/.

mismatching accumulators, viue and vgaise, and a non-decision time parameter t.
In order to identify the model, one accumulator parameter must be fixed (Donkin,
Brown, & Heathcote, 2009); here we assumed that the standard deviations of the
drift rate distributions were fixed to 1. In later simulations, we make only the
minimum required assumption of fixing one parameter, in particular assuming
Strue = 1. We generated a data set with 250 trials per stimulus (i.e., a total of 500
trials) from the full model using the following parameter values: A = 0.5, B =1,
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Vtrue = 4, Vfalse = 3, and to = 0.2.

The full model was compared to a restricted model in which v was fixed
to 3.55. The value 3.55 yields a Bayes factor close to one (equivalently, log Bayes
factor of zero) and was chosen for two reasons. First, this value facilitates the
implementation of the Savage-Dickey density ratio. The Savage-Dickey method
relies on estimating the posterior density at the test value, which can be unreliable
when the test value falls in the tail of the posterior distribution. We circumvented
this problem by using a test value in the restricted model (v¢rye = 3.55) relatively
close to the generating parameter in the full model (viyye = 4).

Second, this value makes discriminating between the models difficult, and al-
lows us to point out the difference between inference and model inversion (Lee,
2018). Although the data have been generated from the full model, a Bayes factor
close to one indicates that the data are just as likely under the restricted model as
under the full model. This may at first appear as an undesirable property of the
Bayes factor. This reasoning, however, confuses inference and model inversion.
Model inversion means that if the data are generated from model M; and one fits
the data-generating model M; and an alternative model Ms, one is able to iden-
tify the data-generating model M based on a model selection measure of interest.
Consider, however, the following example. Suppose we are interested in compar-
ing a null model which assumes that there is no difference in non-decision time #¢
between two groups to an alternative model which allows the effect size to be dif-
ferent from zero. Suppose further that the alternative model is the data-generating
model and we simulate data for a small number of synthetic participants assuming
a small non-zero effect size, resulting in an observed effect size that, for this sample
of participants, happens to be approximately zero. As a result, the simpler null
model can account for the observed data almost equally well as the more complex
data-generating model and may be favored on the ground of parsimony. As more
observations are generated from the alternative model, however, it will become
clear that the effect size is non-zero, and the support for the simpler null model
will decrease — equivalently, the support for the more complex alternative model
will increase. Hence, with a large enough number of observations, model inversion
may be fulfilled.

This discussion highlights why the Bayes factor for the simulated LBA data
set is indifferent: the number of trials is relatively small and the misspecified
simpler model fixes vy to 3.55 which is close to the data-generating value of
4. Therefore, the slight misspecification of the simpler restricted model is almost
perfectly balanced out by its parsimony advantage compared to the more complex
full model. The example is meant as a reminder that Bayesian inference conditions
on the data at hand and that it may be reasonable to obtain evidence in favor of
a different model than the data-generating one for certain data sets. Therefore,
although one can assess the predictive adequacy of two competing models for the
observed data using the Bayes factor (Wagenmakers, Marsman, et al., 2018), the
Bayes factor should not be expected to necessarily recover a data-generating model
in a simulation study. Nevertheless, as the number of observations grows large, the
Bayes factor should select the correct model, a property known as model selection
consistency (Bayarri et al., 2012).
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4.4.2 Prior Distributions

We used the following prior distributions for the different parameter types:

)
)

Virwe ~ N(2,3%) (4.8)
)

to ~ N0.1,00)(0.3,0.25%),
where N(p,0?) denotes a normal distribution with mean p and variance o2,
N, (u,02) denotes a normal distribution truncated to allow only positive values,
and N, (z,y) (1, 0?) denotes a normal distribution with lower truncation z and upper
truncation y. In the full model, we specified a prior distribution for all parameters,
including virue. In the restricted model, we specified a prior distribution for all
parameters except Vtrue, a8 Vtrue Was fixed to 3.55.

The priors in Equation 4.8 were taken from Heathcote et al. (2018). Although
we believe that these priors provide a reasonable set up based on our experience
with the LBA parameter ranges, they may be replaced by empirically informed
priors in future applications. We also acknowledge that our prior choices are for
many parameters wider than the ones used by Evans and Brown (2018); this may
make the simple Monte Carlo method less efficient than when used in combination
with the Evans-Brown priors.

4.4.3 Parameter Estimation and Model Comparison

We used the DE-MCMC algorithm, as implemented in the DMC software
(https://osf.io/pbwx8/) to estimate the model parameters. We set the num-
ber of MCMC chains to three times the number of model parameters; for the full
model we ran 15 and for the restricted model we ran 12 chains with over-dispersed
start values. In order to reduce auto-correlation, we thinned each MCMC chain
to retain only every 10" posterior sample. During the burn-in period, the prob-
ability of a migration step was set to 5%; after burn-in, migration was turned off
and only crossover steps were performed. Convergence of the MCMC chains was
assessed by visual inspection and the R statistic (Brooks & Gelman, 1998), which
was below 1.05 for all parameters.” We obtained 10 independent sets of posterior
samples for both the full and the restricted model, which were used to assess the
uncertainty of the Bayes factor estimates.

Once the posterior samples were obtained, we computed the Bayes factor in
favor of the full model using the Warp-III, the simple Monte Carlo, the Savage-
Dickey, and the RIMCMC methods. The implementations of the four approaches
are available at https://osf.io/ynwpa/. To assess the uncertainty of the Bayes
factor estimates, we repeated each procedure 10 times for each model. For the

91t has been pointed out that Ris not a perfect indicator of convergence in certain scenarios
(e.g., Vehtari, Gelman, Simpson, Carpenter, & Biirkner, 2019). For a recent proposal of an
improved R, see Vehtari, Gelman, et al. (2019).
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Figure 4.3: Bayes factor estimates for the single-participant case as a function
of the number of samples. The left panel displays the log Bayes factor esti-
mates computed using the Warp-IIT (black crosses), simple Monte Carlo (green
circles), Savage-Dickey (blue triangles), and RIMCMC (brown squares) meth-
ods. The right panel displays the Bayes factors estimates computed using the
Warp-III (black crosses), Savage-Dickey (blue triangles), and RIMCMC (brown
squares) methods (i.e., omitting the simple Monte Carlo estimates and displaying
the results on the Bayes factor and not log Bayes factor scale). For Warp-I11,
the z-axis corresponds to the number of posterior samples (collapsed across all
chains) used for computing the marginal likelihood for each model. For sim-
ple Monte Carlo, it corresponds to the number of prior samples used for com-
puting the marginal likelihoods. For Savage-Dickey, it corresponds to the num-
ber of posterior samples used to estimate the density of the posterior distribu-
tion at the test value (i.e., 3.55). For RIMCMC, it corresponds to the num-
ber of posterior samples used from each model (for details, see the Appendix).
The symbols (i.e., crosses, circles, triangles, squares) indicate the median (log)
Bayes factor estimates and bars indicate the range of the estimates across the
10 repetitions. Available at https://tinyurl.com/y5brs44a under CC license
https://creativecommons.org/licenses/by/2.0/.

Warp-III, Savage-Dickey, and RIMCMC methods, we used a fresh set of posterior
samples for each repetition.

4.4.4 Results

The left panel of Figure 4.3 displays estimates of the log Bayes factor as a func-
tion of the number of samples. Note that we included an order of magnitude more
samples for the simple Monte Carlo method in order to produce results that are
comparable to estimates provided by the other methods. The right panel of Fig-
ure 4.3 zooms in on the results obtained with the Warp-I1I, Savage-Dickey, and
RJMCMC methods and omits the simple Monte Carlo estimates; this panel shows
the Bayes factor and not the log Bayes factor to facilitate interpretation.
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All four methods eventually converged to a log Bayes factor estimate close
to zero (equivalently, a Bayes factor estimate close to one). As the number of
samples increased, the uncertainty of the estimates decreased. For this example,
Warp-III resulted in the smallest uncertainty intervals. The Warp-III, Savage-
Dickey, and RIMCMC methods resulted in stable Bayes factor estimates already
with 1,000 samples. Although the three methods numerically did not yield the
exact same Bayes factors, they all produced estimates close to one with relatively
small uncertainty. The simple Monte Carlo method was clearly the least efficient;
it produced wide uncertainty intervals and took approximately 50,000-100,000
samples to converge to the estimates from the other methods. Note that the
number of samples required by the different methods for the stable and reliable
estimation of the Bayes factor may vary depending on the characteristics of the
specific example and should not be interpreted as a guideline.

Although in this particular example we were able to obtain stable and accurate
Bayes factor estimates with all four methods, this is not necessarily the case for
more complicated — non-nested and hierarchical — model selection problems. The
Savage-Dickey method cannot be used for non-nested model comparison. More-
over, the Savage-Dickey estimate of the Bayes factor becomes very unstable if
the test value falls in the tail of the posterior distribution because density esti-
mates in the tails of the posterior are highly variable. Similarly, the RIMCMC
approach cannot be easily generalized to situations involving non-nested compar-
isons. RJMCMC exploits the relations between the parameters of the models;
however, if the models are non-nested it might be impossible to relate the two sets
of parameters. Even generalizing RIMCMC to nested hierarchical comparisons is
challenging because it involves linking a large number of parameters, especially
if the vector of participant-level parameters differs between the two models for
each participant. Furthermore, as a result of the strong parameter correlations in
evidence-accumulation models, fixing one parameter in nested model comparisons
can lead to substantial changes in the other parameters, making it even more
difficult to efficiently link the competing models. Because of these challenges
associated with non-nested and hierarchical model comparisons, we believe that
the Savage-Dickey density ratio and RIMCMC methods are not suited as general
model selection tools for evidence-accumulation models and will not be considered
further.

The simple Monte Carlo and the Warp-III method can be used for both nested
and non-nested model comparisons because they consider one model at a time.!?
In Warp-I1I, this also allows us to use a convenient proposal distribution chosen
to maximize the overlap between the proposal and the posterior, which leads to a
substantial gain in efficiency relative to simple Monte Carlo sampling. The inef-
ficiency of simple Monte Carlo in our straightforward single-participant example
suggests that this method is infeasible in many practical applications of hierar-
chical evidence-accumulation models. First, as also acknowledged by Evans and
Brown (2018), simple Monte Carlo can result in highly variable Bayes factor es-

101n its original form, bridge sampling has been proposed to estimate the Bayes factor directly.
In line with, for instance, Overstall and Forster (2010) here we advocate a version that estimates
one marginal likelihood at a time (see also, Meng & Schilling, 2002, section 1.3).
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timates in hierarchical settings. Second, the number of samples needed to obtain
stable estimates with simple Monte Carlo sampling can quickly become unman-
ageable. This was indeed the case when we tried to apply it to the hierarchical
model comparison problems outlined in the next section.'!

4.5 Simulation Study II: Nested and Non-nested Model
Comparison for the Hierarchical Case

As a second example, we considered eight LBA data sets that featured observations
from multiple participants generated and fit using the hierarchical approach. We
investigated the performance of Warp-III for two nested and two non-nested model
comparison problems.

4.5.1 Models and Data

We simulated a design with four cells, two conditions that differed in a particular
parameter crossed with two stimuli, and two possible responses. In the nested
case, we compared a model that allowed only mean drift rate vi.ye to be different
across conditions (i.e., V-model) to a null model that featured one common vgye
parameter for both conditions (i.e., 0-model). In the non-nested case, we com-
pared the V-model to a model that allowed only threshold B to be different across
conditions (i.e., B-model). Note that we made these comparisons in both direc-
tions, for example, we computed the Bayes factor for the V-model vs. B-model
comparison when the V-model generated the data, and computed the Bayes factor
for the B-model vs. V-model comparison when the B-model generated the data.

We generated new data sets from both models in each comparison. We used
two different combinations of the number of participants (n) and the number
of trials per cell (k), both with 4,000 data points in total. Thus, overall there
were eight different data sets: one for each of the four comparisons at each group
size. In the first combination, we simulated data using n = 20 with & = 200,
corresponding to a smaller group of participants each measured fairly well. In the
second combination, we simulated data using n = 80 with k£ = 50, corresponding
to a larger group of participants each measured at or below the lower bound of k&
required for acceptable individual estimation. These two cases exemplified either
an emphasis on individual or group estimation. In the former case, the number of
participants was at the lower bound of n required for acceptable estimation of the
group-level parameters. In the latter case, estimation of the participant-specific
parameters relied heavily on the additional constraint provided by the hierarchical
structure.

To generate the data sets, we used normal group-level distributions for each
parameter (truncated below to allow only positive values), specified the lo-
cation (u) and scale (o) of the group-level distributions, and then simulated
participant-specific parameters from these normal distributions. Subsequently, the
participant-specific parameters were used to generate trials for each participant.

HWe thank Nathan Evans for attempting to apply simple Monte Carlo sampling to one of
our hierarchical model comparison examples.
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To ensure identifiability, the standard deviation of the drift rate corresponding to
the accumulator for the correct response, Sirue, was fixed to one for every partici-

pant.
To generate data from the V-model, we used the following u parameters (where
bracketed superscripts indicate experimental condition): pua = 1, up = 04,

0 b = 4, uvém =3, Hugree = s Hspee = 1> and pg, = 0.3. For the 0-model,
rue rue

we used pa =1, pp = 0.4, po 0 =3, fopee = Ls Bsgyee = 1o and gy, = 0.3. For
the B-model, we used pa =1, ugay = 0.3, pupe = 0.7, pyyye = 35, Hogyee = 1
Pspse = 1o and py, = 0.3. The data-generating o parameters were obtained
by dividing the p parameters by 10, resulting in appreciable but not excessive
individual differences in the participant-specific parameters.

4.5.2 Prior Distributions

We used zero-bounded truncated normal group-level distributions to model indi-
vidual differences in the parameters. We used the following prior distributions for
the group-level parameters:

(L1
(0.4,0.4%)
Hogrnes Tvpre ~ N (3, 3?)
~ Ny (1,1)
(1
(

pa,oa ~ Ny
UB,0B NN+

(4.9)

Hvgatser Tvtalse

Hspase O stalse NN+ ’ )
fitg: Ot ~ N4 (0.3,0.37).

As for the single-participant case, we believe that the priors provide a reason-
able set up but they may be replaced by empirically informed priors in future
applications.

4.5.3 Parameter Estimation and Model Comparison

We used the DE-MCMC algorithm, as implemented in the DMC software to
estimate the model parameters. We first estimated parameters separately for
each synthetic participant, similar to our previous single-participant example.
The result of this phase provided the starting values for the hierarchical anal-
ysis. For each model, we set the number of MCMC chains to three times the
number of participant-specific parameters. We thinned each MCMC chain to
retain only every 10*" posterior sample. Burn-in was accomplished by DMC’s
h.run.unstuck.dmc function with a 5% migration probability. We then used the
h.run.converge.dmc function with no migration until 250 iterations were ob-
tained that appeared to be converged to the stationary distribution (R < 1.1).
Further iterations were then added using the h.run.dmc function until we ob-
tained approximately 100,000 posterior samples per parameter (the exact number
of samples varied because the number of MCMC chains varied among the different
models). With this very large number of samples, R was very close to 1 for all
parameters at both the group and participant levels. We obtained 10 independent
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Figure 4.4: Log Bayes factor estimates obtained with Warp-III sampling for the
nested hierarchical model comparisons as a function of the number of posterior
samples (collapsed across all chains) used for computing the marginal likelihood
for each model. Crosses indicate the median log Bayes factor estimates and bars
indicate the range of the estimates across the 10 repetitions. The left panel shows
results for the data sets generated from the V-model; the right panel shows results
for the data sets generated from the 0-model. Results for n = 20 with £ = 200
are displayed in black; results for n = 80 with £ = 50 are displayed in gray with
dotted lines. The log Bayes factor is expressed in favor of the data-generating
model. Available at https://tinyurl.com/yxgsgjaw under CC license https://
creativecommons.org/licenses/by/2.0/.

sets of posterior samples for each model, which were used to assess the uncertainty
of the Bayes factor estimates.

Once the posterior samples were obtained, we computed the Bayes factor in
favor of the data-generating models using Warp-II1.12 For each model, we assessed
the uncertainty of the estimates by running the Warp-III sampler 10 times using
a fresh set of posterior samples for each repetition.

4.5.4 Results

Figure 4.4 shows the log Bayes factor estimates obtained with Warp-III sampling
as a function of the number of samples for the nested comparisons and Figure 4.5
shows the results for the non-nested comparisons.!> The log Bayes factors are
expressed in favor of the data-generating models.

12We provide R code for an exemplary hierarchical model (i.e., code for the B-model with data
generated from the B-model using n = 20, k = 200) at https://osf.io/ynwpa/. The reason why
we only provide code for one of the hierarchical examples is that (1) the data sets are simulated
and one example is sufficient to show how to apply the method (the other examples are obtained
via trivial changes to the code), (2) the corresponding files are very large. Files for the other
examples are available upon request.

13More fine-grained versions of Figure 4.4 and Figure 4.5 are available at https://osf.io/
ynwpa/.
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4.5. Simulation Study II: Nested and Non-nested Model Comparison for the
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Figure 4.5: Log Bayes factor estimates obtained with Warp-III sampling for the
non-nested hierarchical model comparisons as a function of the number of posterior
samples (collapsed across all chains) used for computing the marginal likelihood
for each model. Crosses indicate the median log Bayes factor estimates and bars
indicate the range of the estimates across the 10 repetitions. The left panel shows
results for the data sets generated from the B-model; the right panel shows results
for the data sets generated from the V-model. Results for n = 20 with k£ = 200
are displayed in black; results for n = 80 with k = 50 are displayed in gray with
dotted lines. The log Bayes factor is expressed in favor of the data-generating
model. Available at https://tinyurl.com/y3£71263 under CC license https://
creativecommons.org/licenses/by/2.0/.

The figures illustrate that Warp-III resulted in stable Bayes factor estimates in
favor of the data-generating model with narrow uncertainty intervals in all but one
case, the non-nested B-model vs. V-model comparison for the n = 80 with & = 50
data set. For this data set, the iterative scheme from Equation 4.5 initially did
not seem to converge, but instead oscillated between two different values, say x1
and zo. We were able to achieve convergence by stopping the iterative scheme and
re-starting it with the initial guess of the marginal likelihood set to the geometric
mean of the two values between which the estimate initially oscillated (i.e., the
square root of the product of xz; and ). Although this approach enabled us
to obtain an estimate of the marginal likelihood, the uncertainty of this estimate
was noticeably larger than for the other cases. Nevertheless, this estimate was
sufficiently certain to conclude that the Bayes factor clearly favored the B-model.*

The results show that the hierarchical model comparisons required substan-
tially more samples than the single-participant case. Note also that more samples

MNote that in practice, very large log Bayes factor estimates as in this case (e.g., 880 — 920)
yield the same conclusion independent of the exact number: overwhelming evidence for the
favored model. However, when the estimated Bayes factor is closer to 1 (equivalently, log Bayes
factor closer to 0), it is more important that the Bayes factor is estimated precisely as this
may influence which model is favored (see, e.g., the single-participant example and the following
example).
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were needed for the n = 80 with k& = 50 data sets than for the n = 20 with
k = 200 data sets to obtain comparable uncertainty intervals. The reason is that
the number of participants, n, determines how many participant-specific param-
eters need to be integrated out, whereas the number of trials per cell, k, does
not affect the number of model parameters. Therefore, increasing the number
of participants increases the dimensionality of the integral in Equation 4.2 that
is estimated via Warp-III. It is likely that the greater difficulty in obtaining well-
behaved participant-specific parameter estimates with & = 50 has also contributed
to the larger uncertainty intervals.

All Bayes factors yielded overwhelming evidence for the data-generating model,
including the ones computed for the data sets generated from the nested 0-model
(i.e., right panel of Figure 4.4). Note, however, that the magnitude of the Bayes
factors for these nested examples is smaller than for the other examples. This
result is not unexpected: the V-model can account for all data sets that the O-
model can account for and, additionally, also for data sets that show a difference
in vgue between conditions. Therefore, the Bayes factor can only favor the 0-
model due to parsimony and not because it describes the data better than the
V-model. Note also that although the Bayes factors clearly favored the data-
generating models, this may not necessarily be the case in other examples. As
outlined in our earlier discussion of model inversion, Bayesian inference conditions
on the data at hand and it may be reasonable to obtain evidence in favor of a
different model than the data-generating one for certain data sets.

4.6 Simulation Study III: Estimating Equivocal Bayes
Factors for the Hierarchical Case

In the previous section, it was demonstrated that Warp-III yields stable and pre-
cise Bayes factor estimates for different hierarchical examples. Many of these
Bayes factor estimates were very large and it could be argued that for large Bayes
factors, obtaining very precise estimates is not crucial since the qualitative conclu-
sion (“overwhelming evidence”) will not change unless the estimation uncertainty
is extremely large. In this section, we demonstrate that Warp-III is also able to
provide precise estimates of a Bayes factor close to 1 for the hierarchical case. Es-
timating Bayes factors in this range precisely is important since a large estimation
uncertainty would make it difficult to judge which model is favored.

4.6.1 Models and Data

For this example, we reused the data set generated from the B-model with n = 20
and k = 200 described in the previous section. We compared the data-generating
B-model to a restricted B,es-model. The B,.-model was identical to the B-model
except that the group-level parameter i, =~ was fixed to 1.24. This value was
chosen to yield a Bayes factor close to 1.1

15This model comparison may be regarded as artificial, however, the main goal of the example
is to demonstrate that, even in the hierarchical setting, a Bayes factor of about 1 can be estimated
precisely using Warp-III.
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Figure 4.6: Bayes factor estimates obtained with Warp-III sampling for the B-
model vs. Bres-model example as a function of the number of posterior samples
(collapsed across all chains) used for computing the marginal likelihood for each
model. Crosses indicate the median Bayes factor estimates and bars indicate the
range of the estimates across the 10 repetitions. The data set was generated
from the B-model with n = 20 and & = 200 and is identical to the one used
in the left-panel of Figure 4.5. The Bayes factor is expressed in favor of the
data-generating model. Available at https://tinyurl.com/y599st45 under CC
license https://creativecommons.org/licenses/by/2.0/.

4.6.2 Prior Distributions

The prior distributions were identical to the ones used in the previous hierarchical
example. Note that for the B,es-model, the group-level parameter p.,, was fixed
to 1.24 and was not assigned a prior distribution.

4.6.3 Parameter Estimation and Model Comparison

Parameter estimation and model comparison was conducted in an analogous man-
ner to the previous hierarchical example. Note that we reused the log marginal
likelihood estimates for the B-model from the previous example which was based
on the exact same data set.

4.6.4 Results

Figure 4.6 shows the Bayes factor (not log Bayes factor) estimates obtained with
Warp-III sampling as a function of the number of samples. The Bayes factor is
expressed in favor of the data-generating B-model. The figure illustrates that
Warp-III resulted in stable Bayes factor estimates with narrow uncertainty in-
tervals. The estimated Bayes factor is slightly larger than 1 indicating that the
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data-generating B-model is slightly favored. Nevertheless, a Bayes factor close to
1 indicates that none of the models is favored in a compelling fashion by the data
at hand; the evidence is ambiguous.

4.7 Discussion

Over the last decade, the Bayesian estimation of evidence-accumulation models
has gained momentum (e.g., Heathcote et al., 2018; Vandekerckhove et al., 2011;
Wiecki et al., 2013). This increase in popularity is largely attributable to the ad-
vantages afforded by the Bayesian hierarchical framework that allows researchers
to obtain well-constrained parameter estimates even in situations with relatively
few observations per participant. Despite recent advances in the Bayesian esti-
mation of evidence-accumulation models, model comparison continues to rely on
suboptimal procedures, such as posterior parameter inference and model selection
criteria known to favor overly complex models.

In this chapter, therefore, we advocated model selection for evidence-
accumulation models based on the Bayes factor (e.g., Etz & Wagenmakers, 2017;
Jeffreys, 1961; Kass & Raftery, 1995; Ly et al., 2016a). The Bayes factor is given
by the ratio of the marginal likelihoods of the competing models and thus enables
the quantification of relative evidence on a continuous scale (e.g., Wagenmakers,
Marsman, et al., 2018). The Bayes factor implements a trade-off between par-
simony and goodness-of-fit (Jefferys & Berger, 1992; Myung & Pitt, 1997) and
is considered as “the standard Bayesian solution to the hypothesis testing and
model selection problems” (Lewis & Raftery, 1997, p. 648). Bayes factors en-
able the computation of posterior model probabilities, which provide an intuitive
metric for comparison among models. Bayes factors also enable Bayesian model
averaging, which avoids the need to make categorical decisions between models and
which produces better calibrated predictions (e.g., Hoeting et al., 1999). Bayes
factors are well suited for the type of model comparison problems that are faced
by cognitive modelers because they do not favor overly complex models, and so
guard against the proliferation of “crud factors” that plague psychology (Meehl,
1990).

Despite the advantages afforded by the Bayesian framework, Bayes factors are
rarely, if ever, used for evidence-accumulation models, largely because of the com-
putational challenges involved in the evaluation of the marginal likelihood. Here
we advocated Warp-III bridge sampling (Meng & Schilling, 2002) for computing
the marginal likelihood — and hence the Bayes factor — for evidence-accumulation
models. We believe that Warp-III is well suited for cognitive models in general
and evidence-accumulation models in particular because, as we have shown, it can
be straightforwardly applied to hierarchical models and non-nested comparisons,
unlike the simple Monte Carlo and the Savage-Dickey approaches. Moreover,
Warp-III is relatively easy to implement, and requires only the posterior samples
routinely collected during parameter estimation. In contrast to transdimensional
MCMC methods, such as RIMCMC, it does not require changing the sampling
algorithm or linking the competing models, which can be problematic for hierar-
chical and non-nested models. We have shown that Warp-III bridge sampling is
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practically feasible even in complex and high-dimensional hierarchical instantia-
tions of the Linear Ballistic Accumulator (LBA; S. D. Brown & Heathcote, 2008).
Although we encountered a challenging case with scarce participant-level data (left
panel of Figure 4.5), even in that case we were able to detect and ameliorate the
convergence problem.

Once the posterior samples are obtained, computing the marginal likelihood for
the single-participant case using Warp-III is relatively fast. For each repetition, it
took approximately 13 minutes to run the Warp-III sampler with 100,000 poste-
rior samples, using four CPU cores on our severs. As these servers are old and the
individual cores relatively slow given they are embedded in 16-core chips, more
modern quad-core laptops will achieve the task in a much shorter time. Naturally,
in the hierarchical setting, the computational burden is higher and strongly de-
pends on the number of participants. For instance, for the V-model vs. B-model
comparison (right panel in Figure 4.5) in combination with n = 20 and k = 200,
running the Warp-III sampler with 95,000 posterior samples took approximately
7 hours, using four CPU cores on our servers. In contrast, for the n = 80 and
k = 50 case, the computational time was approximately 25 hours. However, it
is important to note that it was not necessary to collect such a high number of
posterior samples. For the individual case, the Bayes factor estimate was pre-
cise and stable after only 1,000 samples. For most hierarchical comparisons, we
obtained well-behaved Bayes factor estimates with approximately 20,000-30, 000
samples. Note also that the computational time strongly depends on the spe-
cific programming language used for evaluating the likelihood and the prior. Our
implementation relies on R (R Core Team, 2019), but integrating the Warp-III
sampler with Lin and Heathcote’s (2017) C++ implementation of the LBA and the
DDM is expected to speed up sampling by an order of magnitude. In summary,
although Warp-III is computationally more intensive than using model selection
criteria such as the DIC (Spiegelhalter et al., 2002), in standard applications of
evidence-accumulation models, the computational costs are manageable, even us-
ing personal computers. We believe that the computational costs of Warp-III are
a small price to pay for the advantages afforded by the use of principled Bayesian
model selection techniques. Where practical issues are faced due to the need to
select among a large number of models, researchers may consider an initial triage
using easy-to-compute alternatives, such as DIC, in order to obtain a candidate set
for model selection based on Bayes factors (for related approaches, see Madigan
& Raftery, 1994, and Overstall & Forster, 2010).

As many evidence-accumulation models have analytic likelihoods, and so are
amenable to MCMC methods for obtaining posterior distributions, Warp-III sam-
pling is not limited to the LBA, but may be readily applied to other models, such
as the Diffusion Decision Model (DDM; Ratcliff, 1978; Ratcliff & McKoon, 2008).
Heathcote et al.’s (2018) DMC software enables the hierarchical MCMC-based
estimation of not only the LBA and the DDM, but also a variety of other models
including single-boundary and racing diffusion models (Leite & Ratcliff, 2010; Lo-
gan, Van Zandt, Verbruggen, & Wagenmakers, 2014; Tilman, Strayer, et al., 2017),
lognormal race models (Heathcote & Love, 2012; Rouder, Province, Morey, Gémez,
& Heathcote, 2015), as well as race models of the stop-signal paradigm (Matzke et
al., 2013; Matzke, Love, & Heathcote, 2017). Our easy-to-use R-implementation
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of the Warp-III sampler enables the computation of the marginal likelihood of any
model implemented in the DMC software. When analytic likelihoods are not avail-
able, approximate Bayesian computation may be used to enable MCMC sampling,
opening up the possibility to explore more complex and realistic cognitive process
models (Holmes, Trueblood, & Heathcote, 2016; Turner & Sederberg, 2014), al-
though this approach remains challenging (e.g., Lin & Heathcote, 2019). Future
research should investigate the performance of simulation-based methods, such as
Warp-III, in the context of models without analytic likelihood.

As illustrated in our single-participant example, the Bayes factor will not nec-
essarily select a data-generating model. In contrast, as explained in detail before,
it might be the case that the Bayes factor favors a model different than the data-
generating one for certain data sets. However, in the single-participant example
and in the final hierarchical example, the Bayes factor did not clearly favor a
model different than the data-generating one but was approximately one, mean-
ing that both models were about equally likely. Thus, another advantage of Bayes
factors is that they allow one to disentangle evidence of absence (i.e., the Bayes
factor favors the simpler model) and absence of evidence (i.e., the Bayes factor is
approximately one).

It is crucial to acknowledge that the Bayes factor critically depends on the
prior distribution of the model parameters. We emphasize that the priors we used
in the present chapter are not the gold standard for the LBA. We are presently
developing empirically informed prior distributions for the LBA and the DDM
based on archival data sets. In the meantime, we recommend that researchers de-
velop their own empirically based priors (perhaps through pilot work or analysis of
related archival data sets) in LBA applications. For the DDM, the distributions of
parameter values in Matzke and Wagenmakers (2009) already provide reasonable
priors. We see the development of theoretically and empirically informed prior dis-
tributions as necessary part of the maturation of any well-specified quantitative
model, consistent with the position of Lee and Vanpaemel (2018).

4.7.1 Practical Recommendations

In this final section, we provide recommendations about the use of Warp-III sam-
pling in practical applications. Our recommendations should not be interpreted
as strict guidelines, but rather as suggestions based on our experience of using
Warp-III in the context of cognitive models in general and evidence-accumulation
models in particular.

4.7.1.1 How to Assess the Uncertainty and Stability of the Estimate

Once the data have been observed and the model (i.e., the likelihood and the
prior) have been specified, there is a single true marginal likelihood corresponding
to a particular data-model combination. However, for (hierarchical) evidence-
accumulation models, the true marginal likelihood cannot be computed analyt-
ically and must be estimated. As with all estimates, the marginal likelihood
provided by Warp-III is uncertain and may vary even for the same data-model
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combination. Consequently, it is crucial to assess and report the uncertainty of
the estimate and investigate the degree to which uncertainty affects conclusions.

Our recommendation is to assess the uncertainty directly for the quantity of
interest. For instance, when conclusions are based on the Bayes factor, researchers
should assess the uncertainty of the Bayes factor; when conclusions are based on
posterior model probabilities, researchers should assess the uncertainty of the pos-
terior model probabilities. To do so, we recommend researchers to compute the
quantity of interest repeatedly based on independent runs of Warp-III. For exam-
ple, when one is interested in estimating the Bayes factor, one should repeatedly
(1) draw fresh posterior samples from the competing models; (2) use Warp-111
to estimate the marginal likelihood of the models; and (3) compute the resulting
Bayes factor. The uncertainty of the estimate can then be assessed by considering
the empirical variability of the Bayes factor estimates across the repetitions. The
empirical assessment of uncertainty is generally considered as the gold standard,
even when approximate errors are available such as for the simple multivariate
normal bridge sampling estimator (e.g., Friihwirth-Schnatter, 2004).16

We find it useful to not only assess the uncertainty, but also to investigate
whether the estimate of the quantity of interest (e.g., Bayes factor) has stabilized.
As our simulations demonstrated, when successively increasing the number of
samples, the estimate becomes more precise and — after some initial fluctuation
— tends to stabilize. One way to assess stability is to compute the quantity of
interest using batches of the available posterior samples, as we have done in our
simulations. However, we acknowledge that this process can be time consuming.
A crude alternative is to compute the estimate with the corresponding uncertainty
based on (at least) three different samples sizes, for instance, (a) 3, (b) 2, and
(c) all of the posterior samples. Considering the sequence of these three estimates
allows one to get an idea about whether the estimate has stabilized.

4.7.1.2 How Many Samples Are Required for Precise and Stable
Estimates

Assessing the uncertainty and stability of the estimate is a natural and — in our
opinion — the best approach to determine the number of samples required for re-
liable conclusions. Note that the required level of precision and stability depends
on the particular application. For instance, for one of our non-nested hierarchical
examples (left panel in Figure 4.5), the Bayes factor estimates were relatively un-
certain and fluctuated quite substantially even in the high-sample region. However,
given that all of the estimates provided overwhelming evidence for the B-model,
the achieved accuracy and stability were sufficiently high to conclude that the B-
model was clearly favored over the V-model. In contrast, in situations when the
Bayes factor estimates do not provide compelling evidence for either model (for
instance, when the Bayes factor estimates are varying around 1), it is crucial to ob-
tain more precise and stable estimates to ensure that fluctuations do not influence
which of the two models is favored or whether it is concluded that the evidence is

16 Another complication with approximate errors for separate marginal likelihood estimates is
that it is not completely straightforward to derive an approximate error for the resulting Bayes
factor estimate.

105



4. COMPUTING BAYES FACTORS FOR EVIDENCE-ACCUMULATION MODELS
USING WARP-III BRIDGE SAMPLING

equivocal. The single-participant and the final hierarchical example indicate that
it is possible to obtain precise and stable Warp-III Bayes factor estimates also for
this Bayes factor range.

Given these considerations, combined with the fact that the quality of the esti-
mate depends on factors such as the number of participants and the complexity of
the models, we are unable to provide general recommendations about the number
of samples necessary for the reliable application of Warp-III sampling. Warp-II1
requires more posterior samples than one would typically collect for the purpose
of parameter estimation. In our experience, a minimum of 1,000-2,000 posterior
samples (collapsed across chains) typically provides a reasonable starting point
in single-participant applications. In hierarchical applications, we recommend at
least 10,000-20, 000 samples. Nevertheless, as with all simulation-based methods,
the more samples, the better. Note that our recommendations assume that the
posterior samples are not highly auto-correlated; the degree of thinning in our sim-
ulations resulted in posterior samples that were virtually uncorrelated. Although
autocorrelation is not itself necessarily a problem for parameter estimation, it does
reduce the effective number of samples, and when large numbers of samples are
required it is practically efficient to thin the samples, at least to the degree that
there is little loss of effective sample size. Warp-III also benefits from having pos-
terior samples with low autocorrelation. One reason is that the “optimal” bridge
function is only optimal in case the posterior samples are independent and iden-
tically distributed which is not the case when using MCMC methods. However,
some autocorrelation may not be too worrisome since, in our implementation, we
use an effective sample size in this bridge function.

4.7.1.3 When to Use Simple Bridge Sampling and When to Use
Warp-III Sampling

The Warp-IIT estimator is an advanced version of the “simple” multivariate nor-
mal bridge sampling estimator (e.g., Overstall & Forster, 2010). Warp-III matches
the first three moments of the posterior and the proposal distribution; the multi-
variate normal approach — which is equivalent to Warp-II — matches only the first
two moments of the distributions. As the precision of the estimate of the marginal
likelihood is governed by the overlap between the posterior and the proposal dis-
tribution, the Warp-III estimate is at least as precise as the estimate computed
using simple bridge sampling.!” With symmetric posterior distributions, the ad-
vantage of Warp-III diminishes, but nothing is lost in terms of precision relative to
simple bridge sampling. In contrast, with skewed posterior distributions, Warp-
IIT results in more precise estimates because it is able to match the posterior
and the proposal more closely. Note that both Warp-III and simple bridge sam-
pling assume that the posterior samples are allowed to range across the entire real
line. Hence, the skew of the posterior distributions must be assessed after the
appropriate transformations. This does not mean that sampling from the pos-
terior distributions must occur with all parameters transformed to the real line.

17For multi-modal posterior distributions, both simple bridge sampling and Warp-III sampling
may result in insufficient overlap between the posterior and proposal distribution, and should be
used with caution.
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Table 4.1: Overview of the transformations used in the Warp-III implementation.
f; denotes a parameter and w; denotes the corresponding new parameter that is
obtained after having transformed 6; to the real line. [ denotes a parameter lower
bound and u denotes an upper bound. &(-) denotes the cumulative distribu-
tion function and ¢(-) the probability density function of the normal distribution.
The table displays the parameter type, the corresponding transformation, inverse-
transformation, and the relevant Jacobian contribution.

Type Transformation Inv.-Transformation Jacobian Contribution
unbounded w; =0; 0; = w; ’% =1

lower-bounded  w; =log (6; — 1) 0; = exp (w;) +1 ’gg = exp (w;)
upper-bounded  w; = log (u — 6;) 0; = u— exp (w;) ggi = exp (w;)
double-bounded  w; = &1 (%) bi=(u—)® )+ |2%]=(u—1)6(w)

In fact, in our simulations, only the v parameters were sampled on the real line;
all other parameters were transformed to the real line after the posterior samples
have been obtained. Our R-implementation of the Warp-III sampler automatically
applies the appropriate transformations to the posterior samples obtained with the
DMC software. Specifically, the implementation assumes that each posterior com-
ponent can be transformed separately'® and distinguishes between four different
parameter types: (1) unbounded parameters, (2) lower-bounded parameters, (3)
upper-bounded parameters, and (4) double-bounded parameters (i.e., parameters
that have a lower and an upper bound). Table 4.1 displays the transformations
that are used for the different parameter types. After having detected the pa-
rameter type, an appropriate transformation is applied and the expressions are
adjusted by the relevant Jacobian contribution (see Table 4.1).

In general, Warp-III is a more powerful tool than simple bridge sampling for
estimating the marginal likelihood, but the gain in precision depends on the par-
ticular application. A potential advantage of simple bridge sampling is its rel-
ative speed. Warp-III results in a mixture representation which requires one to
evaluate the un-normalized posterior twice as often as in simple bridge sampling
(e.g., Gronau, Wagenmakers, et al., 2019; Overstall, 2010). This implies a speed-
accuracy trade-off: simple bridge sampling may be less precise but faster; Warp-I11
may be more precise but slower. Of course, one may increase the precision of the
simple bridge sampling estimate by increasing the number of posterior samples.
However, this approach neglects the fact that — in evidence-accumulator models
in particular — obtaining the posterior samples typically takes substantially longer
than computing the marginal likelihood using Warp-III. Therefore, although sim-
ple bridge sampling is faster for a given (initial) set of posterior samples, it is
not necessarily true that it is more efficient to run the simpler version based on

18 Consequently, the code would need to be adjusted to allow for covariance matrix parameters
or probability vector parameters where constraints apply jointly to several components.
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additional posterior samples than to run Warp-III on the initial set of samples to
obtain comparable precision. Furthermore, we expect that the problem of seem-
ingly non-converging estimates may be more frequent when using simple bridge
sampling. Although this can be addressed by restarting the iterative scheme from
an appropriately chosen start value, as shown in the left panel of Figure 4.5, this
solution substantially increases the uncertainty of the estimate.

In situations where the joint posterior is exactly multivariate norma sim-
ple bridge sampling is clearly more efficient than Warp-III. However, it is chal-
lenging to assess multivariate normality in the high-dimensional spaces regularly
encountered in hierarchical evidence-accumulation models. Although evaluating
the marginal posterior distributions is feasible in most standard applications, nor-
mality of the marginals — which is often not the case for evidence-accumulation
models applied to scarce data — does not necessarily imply that the joint poste-
rior is multivariate normal. In sum, if one expects multivariate normal posterior
distributions, simple bridge sampling is more efficient and should be preferred.
Whenever this is not the case, we recommend Warp-III sampling.

1719

4.8 Conclusion

In this chapter we advocated Warp-III bridge sampling as a general method for
estimating the marginal likelihood — and hence the Bayes factor — for evidence-
accumulation models. We demonstrated that Warp-III sampling provides a pow-
erful and flexible approach that can be applied to both nested and non-nested
model comparisons and — once posterior samples from the competing models have
been obtained — it is straightforward to implement even in hierarchical settings.
We believe that our easy-to-use and freely available implementation of Warp-II1
sampling will greatly facilitate the use of principled Bayesian model selection in
practical applications of evidence-accumulation models.

R scripts for reproducing the results presented in this chapter are available at
https://osf.io/ynupa/.

19 As before, multivariate normality should hold for the appropriately transformed posterior
distribution.
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4.A. Savage-Dickey Density Ratio

4.A Savage-Dickey Density Ratio

Suppose that the parameter vector @ can be partitioned into a set of nuisance
parameters ¢ and test-relevant parameters n so that 8 = ({,n). The Savage-
Dickey density ratio (Dickey & Lientz, 1970; Wagenmakers et al., 2010) can then
be used to compute the Bayes factor for testing whether n is equal to a constant ng
in the presence of nuisance parameters {. Concretely, the Bayes factor compares
model M which assigns ¢ the prior density py(¢) and fixes 1 to the constant
1o to model M; which assigns ¢ and n the joint prior density pi(¢,n). The
Savage-Dickey density ratio representation of the Bayes factor is then given by

BFO]_ _ p1(770 | y)7 (410)

p1(no)

where p1(no | y) denotes the marginal posterior density of n under M; evaluated
at mo and p;(ng) denotes the marginal prior density of n under M; evaluated at
1. Note that this representation is only valid in case p1(¢ | 170) = po(¢). Hence,
conditional on 1 = ng, the prior density for ¢ under M; must be identical to the
prior density of ¢ under My.2° In our single-participant example, this assumption
holds since the prior under M, is given by p1({,n) = po(¢) p1(n). We used a
logspline density estimator (Kooperberg, 2016) to estimate the marginal posterior
density at the point of interest.

4.B Reversible Jump Markov Chain Monte Carlo

Reversible jump Markov chain Monte Carlo (RIMCMC; Green, 1995) refers to an
MCMC sampler on an enlarged state space which incorporates a model indicator
M as an additional unknown. The posterior of the model indicator M can be used
to estimate posterior model probabilities and posterior model odds. An estimate
of the Bayes factor can be obtained by dividing the estimated posterior model
odds by the known prior model odds. Barker and Link (2013) described a version
of RIMCMC that represents the process intuitively as a Gibbs sampler where
updates of the model indicator M are alternated with updates of a “palette”
parameter vector v. The palette vector 1 has dimension d = max {dim(6y)}
where 65 denotes the parameter vector for model My, k£ = 1,2,..., K and K
denotes the number of models under consideration.?! Each model’s parameter
vector @, can be obtained from the palette vector ¥ by a known invertible mapping
gk (1) = & = (0, uy), where uy denotes a vector of auxiliary variables which is
redundant to model M}, but ensures that the dimensionality of 1) and &, matches.

The full-conditional distributions for the Gibbs sampler are determined by the
joint model p(y, ¥, M) = p(y | ¥, M)p(xp | M)p(M). The model prior p(M)
is set by the researcher and evaluating the likelihood p(y | ¥, M) for a specific
model M} is straightforward since the model-specific parameter vector 6y can

20Verdinelli and Wasserman (1995) proposed a generalization of the Savage-Dickey density
ratio that relaxes this assumption.

21 Technically, d > max {dim(6)}, that is, the dimensionality of 1 could be larger than the
maximum dimensionality of the model parameter vectors, however, this is uncommon in practice.
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be obtained from % using the function gi. The prior p(¢» | M) is obtained by
applying the change of variables theorem. Recall that ¥ = g,;l(fk) and & =
(0, ur). Furthermore, note that the prior p(&x | My) = p(Ok, ur | My) factorizes
as p(& | My) = p(0x | My)p(uy | Ok, My).??> For clarity of what follows, let
fx(&x) = p(€r | My). The implied prior on % under model My, is then given by

P | Me) = fi (96(%)) ‘89’“('”) , (411)

o

where ‘698’“71(;/’) ‘ denotes the Jacobian determinant of the transformation. The Gibbs

sampler can then be implemented by alternating between 1) drawing ) from
the full-conditional distribution p(¢ | M,y) and 2) drawing M from the full-
conditional distribution p(M | v, y). Drawing v from p(v) | M, y) is accomplished
as follows: one first draws 0y, from the model-specific posterior p(0y | My, y), then
samples uy from p(ug | Ok, My), sets & = (Ok,uy), and then computes ¢ =
g;l(ﬁk). This means that one can conveniently post-process previously obtained
model-specific posterior samples since a sample from p(0y, | My, y) can be obtained
by selecting randomly a draw from stored model-specific MCMC output. The full-
conditional distribution for the model indicator M is a categorical distribution,
where M, is sampled with probability

P Py | %, My) p( | Mi) p(My) 4.12
p(Ms|$,y) Sy | v, M) p(3p | My) p(M;) -

We used the marginalized version of the Gibbs sampler described in section
2.3 of Barker and Link (2013). This marginalized version estimates the transition
matrix ¢ = ({(]5”}), where (]5@‘ = p(M(bJrl) = Mj ‘ M(b) = Mz) and M(b) denotes
the sampled value for M at iteration b of the Gibbs sampler. The marginalized
version does not require one to draw M; instead, one estimates ® directly, one
row at a time. The ith row of ® is estimated by repeatedly 1) drawing 1) given
model M; from p(v | M;,y) and 2) using the drawn 4 to compute p(M; | ¥, y),
j=1,2,..., K. A Rao-Blackwellized estimate of the ith row of ® is then given
by the average of the vector (p(M; | ¥, y),p(Ma | ¥,vy),...,p(Mxk | ¥,y)) across
draws from p(v | M;,y). This process is repeated for all models M;, i = 1,2,..., K
to obtain an estimate of all rows of the transition matrix ®. An estimate of the
posterior model probabilities is then obtained by normalizing the left eigenvector of
the estimated transition matrix corresponding to the eigenvalue 1. An advantage
of this marginalized version is that instead of sampling models according to their
posterior model probabilities, one can fix the number of samples for each model.

We applied this marginalized Gibbs sampler RJIMCMC version to our single-
participant example. The dimensionality of 1) was equal to the number of param-
eters of the full model. Under the full model, we simply set ©¥» = Ogy;. Under
the null model, there was one parameter less since vy, was fixed. Hence, the
dimensionality of the auxiliary variable vector w; = u was one for the null model

22Typically, the distribution of the auxiliary variable vector uy, is assumed to be conditionally
independent of 0 so that p(uy | Ok, M) = p(uy | My).
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and we set ¥ = (@nun,u). The auxiliary variable u was proposed from a distri-
bution constructed based on a logspline fit (Kooperberg, 2016) to the posterior
samples for vipye under the full model. Therefore, to relate the palette vector v to
the model parameters (and the auxiliary variable for the null model), we used the
identity mapping for both models (i.e., g was the identity function for both mod-
els); consequently, the Jacobian determinants of the transformations were equal
to one.
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Chapter 5]

Bayesian Inference for
Multidimensional Scaling
Representations with
Psychologically-Interpretable Metrics

Abstract

Multidimensional scaling (MDS) models represent stimuli as points in
a space consisting of a number of psychological dimensions, such that the
distance between pairs of points corresponds to the dissimilarity between the
stimuli. Two fundamental challenges in inferring MDS representations from
data involve inferring the appropriate number of dimensions, and the metric
structure of the space used to measure distance. We approach both chal-
lenges as Bayesian model-selection problems. Treating MDS as a generative
model, we define priors needed for model identifiability under metrics corre-
sponding to psychologically separable and psychologically integral stimulus
domains. We then apply a differential evolution Markov-chain Monte Carlo
(DE-MCMC) method for parameter inference, and a Warp-I1I11 method for
model selection. We apply these methods to five previous data sets, which
collectively test the ability of the methods to infer an appropriate dimen-
sionality and to infer whether stimuli are psychologically separable or inte-
gral. We demonstrate that our methods produce sensible results, but note a
number of remaining technical challenges that need to be solved before the
method can easily and generally be applied. We also note the theoretical
promise of the generative modeling perspective, discussing new and extended
models of MDS representation that could be developed.

This chapter is published as Gronau, Q. F., & Lee, M. D. (2020). Bayesian inference for
multidimensional scaling representations with psychologically interpretable metrics. Compu-
tational Brain & Behavior, 3, 322-340. doi: https://doi.org/10.1007/s42113-020-00082-y.
Also available as PsyArXiv preprint: https://psyarxiv.com/5zmep/
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5. BAYESIAN INFERENCE FOR MULTIDIMENSIONAL SCALING
REPRESENTATIONS WITH PSYCHOLOGICALLY-INTERPRETABLE METRICS

5.1 Introduction

Multidimensional scaling (MDS) was developed in the 1950s in cognitive psychol-
ogy as a statistical method for making inferences about human mental represen-
tations (Kruskal, 1964; Shepard, 1957, 1962). MDS models the similarities or
psychological proximities between pairs of stimuli, representing each stimulus as
a point in a multidimensional space, such that more similar stimuli are nearer
each other. The core psychological motivation is that the similarities reflect the
basic cognitive process of generalization. Generalization can be thought of as the
ability to treat two stimuli as being the same, and has been argued to serve as
a basis for the mental organization of knowledge, and the capability of the mind
to make adaptive predictions about properties and consequences (Shepard, 1987).
For these reasons, mental representations found via MDS methods have been and
remain widely used in cognitive process models of identification, categorization,
and decision making (e.g., Nosofsky, 1992).

Soon after its development in cognitive psychology, however, MDS algorithms
found application as a statistical method that produces a low-dimensional repre-
sentation of a set of objects, based on a measure of the similarities between them.
As a data reduction or visualization method, MDS has been applied in the natural,
biological, and human sciences, with application areas as diverse as representing
the similarities of skulls in archaeology, the tastes of colas in marketing, and the
voting patterns of senators in politics (e.g., Borg & Groenen, 1997; Cox & Cox,
1994; Schiffman, Reynolds, & Young, 1981).

Whether viewed as a model of psychological representation or a data-reduction
method, a foundational challenge in MDS modeling is determining the dimension-
ality M of the representational space. In his 1974 Presidential Address to the
Psychometric Society, Roger Shepard identified six basic challenges for MDS, the
third of which was: “The problem of determining the proper number of dimensions
for the coordinate embedding space” (Shepard, 1974, p. 377). A number of meth-
ods for solving the problem of MDS dimensionality have been developed in both
statistics and psychology. The most common approach is a scree test that aims
to identify an “elbow” in the goodness-of-fit as dimensionality increases (Cox &
Cox, 1994; Kruskal, 1964; Schiffman et al., 1981). Steyvers (2006) suggests the use
of cross-validation methods, although this approach does not seem to be widely
used.

Since choosing the correct dimensionality of an MDS is naturally regarded as
a model-selection problem — that is, choosing between a one-dimensional versus
two-dimensional versus three-dimensional representation, and so on — the statisti-
cally principled approach offered by Bayes factors should provide a solution (Kass
& Raftery, 1995). Along these lines, Lee (2001) implements an approach based on
the Bayesian Information Criterion (BIC). The difference between BIC values for
representations with different dimensionality provides a crude approximation to
the Bayes factor. Oh and Raftery (2001) provide a different approach to approx-
imation by computing the marginal likelihoods of different representations using
plug-in point estimates for the stimulus locations. This is an approximation be-
cause the exact Bayes factor requires an integration across the stimulus location
parameters. Oh (2012) develops a method based on spike-and-slab priors, in which
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Figure 5.1: MDS representations with integral and separable metric structures.

the dimensionality is determined by the marginal posterior probabilities for each
dimension that the coordinate locations are not zero for all stimuli.

From the perspective of MDS as psychological models however, none of these
approaches qualify as being principled and complete. The key issue is that the the-
ory of mental representation developed by Shepard (1957, 1987, 1991) emphasizes
the role that the metric structure of the space plays in capturing key psychological
properties of the stimuli. In particular, the idea is that different metrics capture
the theoretical and empirical distinction between separable and integral stimuli
(Attneave, 1950; Garner, 1974). Separable stimuli are those for which the compo-
nent dimensions can be attended to separately. An example is different shapes of
different sizes, since it is possible for people to attend selectively to either shape
or the size. Integral stimuli, by contrast, are those for which the component di-
mensions cannot be attended to independently. The standard example is color,
since it is typically not possible for people to attend selectively to the underlying
hue, saturation, and brightness components.

Figure 5.1 shows how different metric structures are used to represent integral
and separable stimuli. In the left panel, there are four stimuli, represented by
the points p1,...,ps. The pairwise distances between these points, such as dis
between the first point and the second point, are modeled using the Euclidean
metric, and so correspond to standard straight lines. In the right panel, there are
three stimuli, and the pairwise distances between them are modeled according to
the city-block metric. Intuitively, this corresponds to comparing the stimuli on
each underlying dimension independently, then adding those dissimarilities to get
an overall measure of dissimilarity.

Admittedly, this account of integrality and separability is a theoretical and
empirical caricature, and much more nuanced and detailed accounts are possible
(Shepard, 1991; Tversky & Gati, 1982). The point is that psychological represen-
tations based on MDS need to make assumptions about the metric structure of
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the space, and use metrics other than the Euclidean metric. As Jékel, Scholkopf,
and Wichmann (2008, p. 2) point out, from the origins of MDS as a psychological
model “There was no a priori reason to believe that mental representations should
be Euclidean.” Previous methods for determining the dimensionality of MDS rep-
resentations using Bayesian model selection, however, have either been insensitive
to the metric structure of the representation (Lee, 2001), or have focused on the
Euclidean metric (Oh, 2012; Oh & Raftery, 2001).

The use of non-Euclidean metrics raises another challenge, related to inferring
MDS representations themselves. There is evidence that it can be computation-
ally difficult to find multidimensional city-block MDS representations (Groenen,
Heiser, & Meulman, 1998; Hubert, Arabie, & Hesson-McInnis, 1992), as well as
finding unidimensional MDS representations (Mair & Leeuw, 2014). Given that
these difficulties stem from basic geometric properties of the MDS representa-
tions, it seems likely they will continue to present an issue for Bayesian methods
of inference.

Finally, there is the challenge of inferring the appropriate metric structure for
an MDS representation. Shepard (1991) reviews the original statistical approach
to this problem, which involved applying non-metric MDS algorithms for a large
number of different metrics, and choosing the one with the best goodness-of-fit.
As Lee (2008) pointed out, this approach neglects to account for the component
of model complexity that arises from the functional form of parameter interac-
tion (Pitt, Kim, Navarro, & Myung, 2006), which is often the only difference
between MDS models using different psychologically-interpretable metrics. Lee
(2008) developed a Bayesian approach in which the possible metrics correspond
to a parameter that is inferred jointly with the coordinate location parameters
that represent the stimuli. Okada and Shigemasu (2010) developed and tested
this approach further, and showed it is capable of recovering the correct metric
in simulation studies. Both the Lee (2008) and Okada and Shigemasu (2010)
methods, however, failed to resolve basic challenges in model identifiability that
arise from treating the choice of metric structure as a parameter inference prob-
lem. It is possible these identifiability issues could be addressed by considering
the choice as a model-selection problem, and restricting the set of possibilities to
a few interpretable metrics.

Accordingly, the goals of this chapter are to examine the implementation of
MDS models that use psychologically-interpretable metrics, including both the
Euclidean and a non-Euclidean metric, and explore the possibility of inferring the
appropriate dimensionality and metric structure of these representations using
Bayesian model-selection methods. The structure of the remainder of the chap-
ter is as follows. In the next section, we define MDS models, and address the
issue of model identifiability under different metrics. Consistent with previous
literature, we argue that the city-block metric presents fundamental problems in
making MDS representations identifiable. This leads to the development of joint
prior distributions on the stimulus location parameters for the Euclidean metric,
and non-Euclidean metrics other than the city-block metric. With these priors es-
tablished, we apply an approach to Bayesian inference using differential evolution
Markov-chain Monte Carlo (DE-MCMC) computational sampling methods. The
DE-MCMC method helps address the difficulties inherent in inferring MDS repre-
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sentations, which are especially evident in non-Euclidean cases. We then use the
Warp-III bridge sampling method to approximate the marginal densities needed
to determine Bayes factors. We apply the method to five previously studied data
sets, differing in the type of stimuli and expected dimensionality of their MDS
representation. For all five applications, the method makes sensible inferences
about dimensionality, and produces interpretable stimulus representations. We
conclude with a discussion of remaining statistical and computational challenges,
and potential directions for refining and extending the approach.

5.2 MDS Model Identifiability

5.2.1 The Identifiability Problem

Formally, suppose there are N stimuli to be represented, based on observed prox-
imity data from P participants, with d;;; measuring the proximity between the
ith and jth stimulus provided by the kth participant. We assume these observed
proximities are normalized to lie between 0 and 1. The point representing the ith
stimulus in a M-dimensional space is p; = (p;1, - - ., pins) and the distance between
points p; and p; is measured by the Minkowski metric with metric parameter r,

so that
M 1/r

m=1
The Minkowski metric has special cases of the city-block metric when r = 1 and
the Euclidean metric when r = 2. Values of r between 1 and 2 can potentially be
interpreted as intermediate assumptions about the independence of stimulus di-
mensions between the end-point of complete separability and complete integrality.
The goal of MDS is for the modeled distances dijk to correspond to the observed
proximities d;;r. We use the probabilistic model

(s 1
d;;i ~ Gaussian (dijk, O'2> , (5.2)

where o is the standard deviation with which the observed proximities are mea-
sured.! It is assumed to be the same for all of the proximities, and is given a
prior

0.22

where the T'(0,) indicates the sampled value is truncated to be a positive real
number. This is an informative prior (Lee & Vanpaemel, 2018), consistent with
previous data and modeling. Intuitively, o corresponds to the average standard
deviation of different individual ratings of the same pair of stimuli. Empirical
estimates of this standard deviation in previous data tend to range from about 0.1

1
o ~ TruncatedGaussian <0.15, ) T(0,), (5.3)

1We parameterize the Gaussian distribution in terms of mean and precision parameters, for
consistency with the JAGS graphical modeling language.
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to about 0.2 (Lee, 2001; Lee & Pope, 2003).2 Accordingly, the prior is centered
on 0.15, but allows a wide range of possibilities.

We note that this MDS model does not incorporate individual differences. It
is assumed that the same point p; represents the ith stimulus for all participants.
We also emphasize, however, that individual-level proximity data d;;;, are mod-
eled, rather than averaged or aggregated data across participants. The problems
inherent in averaging data have long been understood (Estes, 1956), and have
been studied in the specific cognitive modeling context provided by MDS repre-
sentations (Lee & Pope, 2003). Our approach is to require the same underlying
MDS representation to provide an account of each individual proximity matrix.

To complete the generative model, a straightforward approach would be to
give all of the coordinate locations for the representational points uniform priors
Dim ~ Uniform(—1,1). These priors, however, made the model non-identifiable,
because the distances between points are invariant under transformations (Borg &
Groenen, 1997, Ch. 2). The distances between points are preserved under trans-
lation, reflection, axes permutation (for non-Euclidean metrics), and rotation (for
the Euclidean metric). A principled Bayesian approach for controlling these invari-
ances to ensure model identifiability constrains the coordinate location parameters
through a joint prior distribution that depends on the assumed metric.

5.2.2 Previous Approaches

Existing MDS modeling methods that use Bayesian inference almost always rely
on post-processing to address the issue of identifiability. The method developed by
Lee (2008) post-processes posterior samples of the coordinate location parameters
to control for translation, reflection, and permutation. For example, to control
for translation, the method zero centers every posterior sample of the sets of
coordinate location. The Lee (2008) method does not control for rotation, which
is problematic, because the method also attempts to infer the r metric parameter,
and so the inferred representational space can have a Euclidean metric, which
requires rotational invariance.

Most other methods, in contrast, assume the MDS space is Euclidean. The
post-processing of the coordinate location parameters used by both Oh and
Raftery (2001) and Oh (2012) assumes a Euclidean space and controls for trans-
lation, reflection, and rotation. Okada and Mayekawa (2018) extend the approach
developed by Okada (2012), which relies on Procrustes analysis. Post-processing
uses a loss function to align posterior samples of the coordinate location, but again
assumes a Euclidean space.

Besides the lack of flexibility in the nature of the distance metric, post-
processing methods have the effect of implementing modeling assumptions without
explicitly specifying those assumptions as part of the model. While this is often
practical, it is theoretically inelegant, and contrary to the goals of generative
modeling. Ideally, the constraints required for model identifiability should be part
of the model itself. In the case of MDS models, these constraints are naturally
imposed through the specification of a joint prior over the coordinate location

2See also the data repository at https://osf.io/ey9vp/
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Figure 5.2: Identification constraints for a one-dimensional representation.

parameters that addresses the transformational invariances, removes the need for
post-processing, and makes bridge sampling feasible.

This generative approach is used by the “parameter fixing” method considered
by Okada and Mayekawa (2018), who evaluate it as a contrast with the Procrustes
methods that are their focus. Parameter fixing corresponds to setting a structured
joint prior over the coordinate location parameters. Okada and Mayekawa (2018)
define the appropriate prior for a Fuclidean space using results provided by Bakker
and Poole (2013), which were derived using an analytic method based on matrix
properties.

Our goal is to extend this approach to include non-Euclidean representations.
We start by considering one-dimensional MDS representations, before consider-
ing multidimensional representations in both Euclidean and non-Euclidean metric
spaces. We take a geometric approach to identifying the required joint priors for
invariance constraints, complementing the non-geometric approach of Bakker and
Poole (2013) for the Euclidean metric.

5.2.3 One-dimensional Representation

For a one-dimensional representation, all of the psychologically-interpretable met-
rics we consider give the same distances. The required constraints on the points
are shown in Figure 5.2, with one point fixed at the origin to control translation,
and second point restricted to be positive to control reflection.

These constraints can be formalized by a joint prior with

o= 0
p2  ~ Uniform(0,1)
p3y...,pn ~ Uniform(—1,1). (5.4)

5.2.4 Euclidean Multidimensional Representations

Figure 5.3 shows the constraints needed to identify Euclidean MDS representations
in two and three dimensions. In the two-dimensional case, the first point p; is
fixed at the origin, to control translation, the second point po is constrained to
the positive z-axis, to control reflection in the y-axis and rotation, and the third
point ps is constrained to have a positive y-value to control reflection in the x-
axis. The same logic is applied in the three-dimensional case, with p; controlling
translation, py and p3 controlling reflection and rotation in successive axes, and
p4 controlling the final reflection.
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pu =0, p2=0
pa1 >0, pp=0
p32 >0

p1 =0, p2 =0, pi3 =0

p21 20, p2 =0, p33 =0 Pa
ps2 > 0, ps3 =0 o ®
pa3 =0 o
o3 /
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Figure 5.3: Identification constraints for Euclidean representations in two dimen-
sions (left) and three dimensions (right).

These are the first two cases of a general pattern, clear by induction, that
applies to a M-dimensional representation, and corresponds to the matrix result
provided by Bakker and Poole (2013). An intuitive presentation of the inductive
pattern is shown below, where “0” denotes fixing a coordinate location to zero, “+”
denotes constraining it to be positive, and “R” denotes imposing no constraint.

D1
D2
D3
D4
Ds

— AN M < Q
E E E E E
o o Qo N0 a
o 0 0 0 ... 0
+ 0 0 0 ... 0
R + 0 0 ... O
R R + 0 ... 0
R R R + ... 0

Formally, these constraints in D dimensions correspond to the joint prior

P11, --

P22, ...

P33, .-

Paaq, - -

pp = 0
p21 ~ Uniform(0,1)
p2p = 0
ps1 ~ Uniform(—1,1)
p32  ~  Uniform(0,1)
sp3sp = 0
pa1,pa2 ~ Uniform(—1,1)
pa3 ~  Uniform(0,1)
pap = 0
(5.5)
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r=20 r=1.0 r=1.5

- . 40
Figure 5.4: The nature of iso-distance curves and the identifiability of mid-points

for the three Minkowski metrics corresponding to r = 2 (Euclidean), r = 1 (city-
block), and r = 1.5.

5.2.5 Non-Euclidean Multidimensional Representations

Finding constraints for invariance in non-Euclidean metrics is more complicated,
and is especially difficult for the city-block metric. The basic geometric problem
was noted as early as Arnold (1971), and discussed in Shepard’s (1974, Figure 10)
presidential address. A simple demonstration of the fundamental problem is pro-
vided by Figure 5.4. The three panels correspond to Euclidean (r = 2), city-block
(r =1), and a general non-Euclidean (r = 1.5) metric, and show unit iso-distance
contours around the same two points in each metric, shown as black dots. These
iso-distance contours are the “unit circles” of each metric, showing all the points
in the space that are the same distance from the two points. For the Euclidean
metric, these contours are familiar circles, and coincide at only one point, shown
by the white dot. This means that there is a unique point in the space that is
equally distant from the two points shown by black dots. In the context of an
MDS representation, a stimulus that is equally different to both of the points can
be uniquely identified.

For the city-block case, however, the iso-distance contours are diamonds, and
there are infinitely many points that are equally different. Three specific possi-
bilities are shown by white dots, but clearly any point along the line where the
iso-distance contours coincide is possible. In the context of an MDS representation,
this means that there is a fundamental difficulty in identifying a stimulus that is
equally different to both of the points. This basic problem is not, in general, solved
by the introduction of additional stimuli that provide additional constraints. In-
deed, the problem compounds for potential city-block representations with many
stimuli. Bortz (1974, see, especially, Figures 2 and 3) provides compelling exam-
ples, and the same point is emphasized in the seminal text by Borg and Groenen
(1997, pp. 369-372).

Figure 5.5 provides a concrete example, based on the more general configu-
ration examined by Borg and Groenen (1997, Figure 17.6). FEach panel shows
a representation of six fictitious people in terms of two underlying dimensions.
The city-block distance between each pair of people is identical in both configu-
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Figure 5.5: Two city-block representations of six fictitious people in terms of two
dimensions. Both representations have identical proximity matrices.

rations. This means, of course, that this proximity matrix is equally consistent
with both representations, and either could be inferred from the data. But, the
two representations are substantively different, in non-trivial ways. The repre-
sentations do not differ simply by changing the axes, and have basic structural
differences. For example: Cedric, Dingbats, and Ethelred are co-linear in the first
representation, but not in the second, where Dingbats, Ethelred and Fiona be-
come co-linear; the ordering of Albert and Beowulf changes on both dimensions
between the configurations; and so on. In fact, once the lack of invariance revealed
by the Borg and Groenen (1997, Figure 17.6) analysis is understood, it is clear that
many additional representations for the proximity between the six people could
be constructed, supporting a wide range of different meaningful interpretations.

A practical approach for identifying city-block representations, used by Nosof-
sky (1985), relies on determining the values of some stimuli on some dimensions,
by means external to the MDS modeling. Ultimately, this strategy can solve the
problem, if it is possible to find the values of every stimulus on every dimension.
But, Figure 5.5 suggests the strategy may not be effective in situations where the
identification of just a few stimuli is possible. In both representations, Dingbats is
at the same location, consistent with values on dimensions having been externally
determined, yet the locations of the remaining stimuli are under-determined. In
addition, if, for example, Albert was additionally identified as being located in the
position shown in the first representation, that would constrain the inference about
Beowulf and Cedric, but would not constrain Ethelred and Fiona, who could still
be inferred to be at either of the possibilities shown in the two representations.
Thus, while the addition of stimuli, or the identification of dimension values for
some stimuli, may work in some specific circumstances, we do not believe either
represents a general approach to making city-block MDS representations identifi-
able.

We do not know how to solve the problem of MDS model invariance for the
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pun=0,p2=0
P21 >0, 0 < pa <pn

o pn=0,p2=0, pi3=0
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Figure 5.6: Identification constraints for non-Euclidean representations in two
dimensions (left) and three dimensions (right).

city-block metric. As the right-most panel of Figure 5.4 makes clear, however, the
problem does not occur for Minkowski-metric parameters r > 1. For the r = 1.5
metric, the iso-distance contours again coincide at only one point. The asymmetry
of these contours makes clear they do not have the rotational invariance of the
Euclidean r = 2 metric. In this way, general non-Euclidean metrics, such as r =
1.5, capture the psychological idea that the dimensions in an MDS representation
have meaning and allow selective attention, while avoiding the degenerate lack of
identifiability inherent in the city-block metric.

Figure 5.6 shows the constraints needed to identify these sort of non-Euclidean
MDS representations in two and three dimensions. In the two-dimensional case,
the first point p; is once again fixed at the origin, to control translation, the
second point p, is constrained to the positive quadrant to control reflection. In
addition, the constraint that pss < po; is imposed, requiring the value of the
second stimulus on the y-axis not to be larger than its value on the z-axis. This
constraint controls for axis permutation, preventing the two dimensions from being
swapped, and so allocates a specific underlying stimulus dimension to each axis.
The three-dimensional case extends this logic by requiring that the z-axis value of
the second point be positive, to prevent reflection, and be less than the value of
the second point on the y-axis, to prevent permutation.

These first two cases once again make clear a general pattern, in which the co-
ordinate values of the second point are positive and order constrained.® Formally,
the constraints for non-city-block but non-Euclidean D dimensions are

pit,---,pip = 0
D21,---,02p ~ Uniform(0,1):  poy > ... > pap
Ps1,...,P3p ~ Uniform(—1,1)
(5.6)

3These order constraints can be imposed either in decreasing manner, as shown in Figure 5.6
for easier visualization, or in an increasing manner, as they are in our code.
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5.3 Bayesian MDS Inference via DE-MCMC

When posterior samples for MDS models are obtained using conventional Markov-
chain Monte Carlo algorithms (MCMC; e.g., Gamerman & Lopes, 2006) it can
occur that chains get stuck in local maxima. In our experience, the reason is
typically that the stimuli that are constrained are similar to each other. To prevent
local maxima, we implemented a heuristic to order the stimuli in a way that those
defining the constraints are dissimilar. We motivate and describe this heuristic in
detail in Appendix A. In addition, to improve sampling, we used the differential
evolution Markov-chain Monte Carlo algorithm (DE-MCMC; e.g., Heathcote et
al., 2018; Turner et al., 2013) that helps to guide the chains to regions of high
posterior density.

DE-MCMC is a population-based MCMC algorithm that generates efficient
proposals via a population of interacting chains (Turner et al., 2013). One strength
of the algorithm is that it works well for highly correlated target distributions.
However, we used DE-MCMC primarily for the reason that the interacting chains
can guide each other to regions of high posterior density which helps to avoid the
issue of chains getting stuck in local maxima. Specifically, during burn-in, we used
a migration step that remedies the problem of outlier chains in an effective manner
(for details, see Turner et al., 2013, Appendix B). We found that the combination
of the ordering heuristic and DE-MCMC provides effective sampling consistently
for the Euclidean metric, and is partially effective for non-Euclidean metrics.

5.4 Bayesian Model Comparison via Bridge Sampling

5.4.1 Marginal Likelihood

Comparing MDS models with different dimensions and metrics via Bayes fac-
tors and posterior model probabilities requires the computation of the marginal
likelihood for all of the models, M,, ., being considered where m denotes the
dimensionality and r the metric. Let D denote the observed data (i.e., the pair-
wise dissimilarity ratings d;;i) and P denote the N x m matrix with the latent
stimulus coordinates for each stimulus. The marginal likelihood for model M,,,
corresponds to the normalizing constant of the joint posterior distribution for
0= (P,o):

p(D | My,) = / ¢(6| D, Myn.,) d6

_ / / p(D | P,o, Muy) p(P| Mps) p(o| Mo,) dPdo,

Likelihood Joint Prior on Prior on
Stimulus Locations Imprecision

(5.7)

where ¢(0 | D, M, ) denotes the unnormalized joint posterior density.
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5.4.2 Bridge Sampling

Since the marginal likelihood in Equation 5.7 is not available analytically, we use
Warp-III bridge sampling (Meng & Schilling, 2002) to estimate this potentially
high-dimensional integral. Bridge sampling (Meng & Wong, 1996; for a recent
tutorial see Gronau, Sarafoglou, et al., 2017) is based on the following identity:

Eqe0) [(6) (0 | D, M, ;)]
Ep0/DM,, ) [1M(6)g(0)]

where the numerator is an expected value with respect to a proposal distribu-
tion ¢(@), the denominator is an expected value with respect to the param-
eter posterior distribution p(@ | D, M,, ), and h(@) is a function such that
0 < |[hO)p(6| D, M,y,,)g(0)d6| < co. The bridge sampling estimate is ob-
tained by sampling from the proposal distribution g(€) and the posterior distri-
bution p(0 | D, M,, ) to approximate the two expected values. Meng and Wong
(1996) showed that the optimal choice for h(0) is given by

ho(0) o [519(0 | D, Miyp) + 52 p(D | My s) 9(60)] ", (5.9)

where s; = n;/(n1 + na), i € {1,2}, ny denotes the number of samples from the
posterior p(@ | D, M,, ), and ny denotes the number of samples from the proposal
g(0). The optimal choice for h(0) depends on the marginal likelihood of interest.
Therefore, in practice, the bridge sampling estimate is obtained via an iterative
scheme, presented below, that updates an initial guess of the marginal likelihood
until convergence.

The variability of the bridge sampling estimate is governed not only by the
number of samples, but also, crucially, by the overlap between the proposal and
the posterior distribution. To obtain estimates with low variability, it is therefore
prudent to maximize the overlap between these two distributions. The Warp-III
approach attempts to create a large overlap by fixing the proposal to a standard
multivariate Gaussian distribution and then manipulating (i.e., “warping”) the
posterior in a way that matches the first three moments of the two distributions.*
Crucially, the warping procedure retains the normalizing constant of the posterior
(i.e., the marginal likelihood of interest).

A prerequisite for the warping procedure is that all elements of the parameter
vector are allowed to range across the entire real line. This can be achieved via
a change-of-variables of the form ¢ = f(0), where f is a suitable® vector-valued
function that transforms the constrained elements of @ so that all elements of ¢
are unconstrained.® The Warp-III procedure is based on the following stochastic
transformation of the unconstrained parameter vector (:

n=0C"" ({—p), (5.10)

4Note that other proposal distributions are conceivable. The only constraints are that the
proposal has a zero mean vector, an identity covariance matrix, and exhibits no skewness.

5The function f needs to be one-to-one and its inverse f—! needs to have a well-defined
Jacobian.

6We use a function f that applies a log transformation to o and (scaled) probit transfor-
mations to the non-zero elements of P. The transformation for the ordered coordinates of the
second stimulus for the non-Euclidean case is described in Appendix B. Note that it is irrelevant
whether the coordinates are ordered as decreasing, as shown in Figure 5.6 for easier visualization,

p(D | My, ) = (5.8)
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Figure 5.7: llustration of the Warp-III procedure. The black solid line shows the
standard Gaussian proposal distribution and the gray histogram shows synthetic
posterior samples. Available at https://tinyurl.com/y7owvsz3 under CC li-
cense https://creativecommons.org/licenses/by/2.0/.

where b ~ Bernoulli (0.5) on {—1,1}, p denotes the expected value vector of the
posterior samples, and ¥ = CC'" denotes the posterior covariance matrix (i.e., C
is obtained via a Cholesky decomposition).

Figure 5.7 illustrates the warping approach for the univariate case. In the
upper-left panel, the solid line corresponds to the standard Gaussian proposal dis-
tribution and the gray histogram depicts synthetic posterior samples. Subtracting
the posterior mean from all samples matches the first moment of the proposal and
the posterior distribution, as shown in the upper-right panel. Dividing all sam-
ples by the posterior standard deviation matches the second moment of the two
distributions, as shown in the lower-right panel. Finally, attaching a minus sign

or increasing, as implemented in our code. The transformation described in the appendix as-
sumes the latter. These transformations can be applied after having obtained posterior samples
for 8. Furthermore, where necessary, the expressions are adjusted by the relevant Jacobian term

|det 51 (C)].
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5.5. Applications

with probability 0.5 to the posterior samples achieves symmetry and thus matches
the third moment of the proposal and the posterior distribution, as shown in the
lower-left panel.

The Warp-IIT bridge sampling estimate based on h,(0) is computed via an
iterative scheme where the value of the estimate at iteration ¢ is given by (for
more details see Gronau, Wagenmakers, et al., 2019):

1 %2: l2,i
na = s1l2i+s2 ﬁ(D‘Mmy,‘)(t)
A(D | Moy) T = —2 : (5.11)

1
ni 321 S1 ll,j*‘rSQ ﬁ(D‘Mm,r)(t)

with @
C
- Faa=¢ 1D M) +a(¢S D Mon,r)]
b = o(C (¢ #) ’ (5.12)
and |
g~ G| D, Mo )+t Cii | D Mo
oy = = [a(a—Cil g,(fzi)qm il ] (5.13)

In Equations 5.12-5.13, ¢(- | D, M, ) denotes the unnormalized posterior den-
sity with respect to the unconstrained parameter vector ¢, {¢,¢5, ..., ¢, } denote
ny posterior samples, and {71, M2, ..., f,, } denote ny samples from the standard
multivariate Gaussian proposal distribution. To compute the Warp-III estimate
one obtains 2n; posterior samples: the first half of these samples is used to ap-
proximate g and C' with their sample versions f and C, the second half of the
posterior samples is used in the iterative scheme (i.e., Equation 5.11). We use
the bridgesampling R package (Gronau, Singmann, & Wagenmakers, 2020) to
compute the bridge sampling estimate in Equation 5.11.

5.5 Applications

In this section, we present applications of our method to five existing data sets.
For each application, we describe the stimuli and the nature of the data, as well as
make clear our expectations about the MDS representation that will be inferred.
In particular, we state our expectations about both the dimensionality and metric
structure of the representation whenever possible. The results we present are
based on considering MDS models up to and beyond this expected dimensionality,
so that the inference our method makes is clear. Where possible, we apply our
method under the assumption that the metric space is both Euclidean (r = 2)
and non-Euclidean (r = 1.5) so that an inference can also be made about the
integrality or separability of the stimulus domain. For some applications, we were
unable to generate samples with acceptable convergence for the r = 1.5 metric.
In those cases, we only report results assuming the r = 2 metric.

5.5.1 Line Length

Our first application involves the similarity judgments between nine lines of equally
increasing length provided by 27 participants, as reported in Cohen, Nosofsky,
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Figure 5.8: Results for line-length similarity data from Cohen et al. (2001).
The left panel shows the posterior model probabilities for one- through three-
dimensional MDS representations. The right panel shows the inferred one-
dimensional representation with black lines showing the line stimuli at their in-
ferred locations and blue histograms showing the marginal posterior distributions
for these locations.

and Zaki (2001). We expect these stimuli to have a one-dimensional MDS rep-
resentation, corresponding to line length. Because the Minkowski metrics are all
equivalent in a one-dimensional space, we do not have any expectations about
the metric structure. Thus, we applied our method to these data by assuming
a Euclidean metric.” As for all of our applications, we used 15 chains and 500
burn-in samples. During burn-in, the probability of a migration step was set to
0.05. After burn-in, migration was switched off, and the algorithm was run for
9,000 iterations. We only retained every third sample so that we ended up with
3,000 samples per chain for further use (i.e., a total of 45,000 samples collapsed
across chains).

The left panel of Figure 5.8 shows posterior model probabilities, assuming equal
prior probabilities, for one-, two-, and three-dimensional MDS representations. To
assess the stability of the posterior model probability estimates, we ran the Warp-
III procedure five times based on new samples from the proposal distribution (we
always used the same set of posterior samples). These five repetitions are drawn
as separate lines but, in this case, the results are so similar that they are visually
indistinguishable. Because of the assumptions of equal prior probabilities, the ratio
of any pair of posterior probabilities is naturally interpreted as a Bayes factor. The
key result is that the expected one-dimensional representation is inferred, with a
posterior probability near one.

The right panel of Figure 5.8 shows the inferred one-dimensional MDS repre-
sentation. The black lines show the stimuli in terms of their physical line lengths,

TWe note, however, for completeness that we had difficulty with convergence using the r = 1.5
metric for these data.
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Figure 5.9: Results for color similarity data from color-normal subjects reported
by Helm (1964). The left panel shows the posterior probabilities for one- through
four-dimensional MDS representations. The right panel shows the inferred three-
dimensional representation, with two dimensions shown as a two-dimensional plot
in the center, and the third dimension shown along an axis to the right. Circular
markers and labels show the inferred locations of each stimulus and error bars show
95% credible intervals for the marginal posterior distribution for each dimension.

located at the posterior mean of their location in the psychological space. The
blue histograms show the marginal posterior distributions for each line stimulus.
The MDS representation arranges the line stimuli in order of their length, but they
are not evenly spaced, despite the lines increasing in constant physical increments.
Instead, the psychological representation shows compression for the longer lines,
consistent with basic psychophysics (Fechner, 1966 [1860]). This compression is
large enough that the posterior distributions begin to overlap for the longest line
stimuli.

5.5.2 Colors

Our second application considers classic data reported by Helm (1964), involving
the similarities between ten colors. The experimental procedure involved trials
in which participants were presented with physical tiles of three different colors,
and moved one of the tiles to reflect their perceived overall similarity of the color
of this tile to the colors of the other two tiles. Based on these responses, Helm
(1964) calculated measures of pairwise similarities between the colors that have
previously been considered in the MDS literature (e.g. Borg & Groenen, 1997;
Carroll & Wish, 1974). We consider only the data from the ten participants with
normal color vision.

We expect the MDS representation to use the Euclidean metric, consistent with
the integral nature of the color stimulus domain. We also expect a two-dimensional
representation, following the color circle found by previous MDS analyses of these
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Figure 5.10: Results for rectangles with interior line segments data reported by
Kruschke (1993). The left panel shows the posterior probabilities for one- through
three-dimensional MDS representations, for both the Minkowski metrics with r =
1.5 and r = 2. The right panel shows the inferred two-dimensional representation.
The stimuli are shown at their inferred locations and error bars show 95% credible
intervals for the marginal posterior distribution for each dimension.

and other color similarity data, such as the Shepard (1962) original MDS analysis
of data reported by Ekman (1954).

Figure 5.9 shows the results of applying our method, assuming a Euclidean
metric. This was a case in which we were unable to generate samples with ac-
ceptable convergence for the » = 1.5 metric. For the Euclidean metric, there is
uncertainty regarding the dimensionality, with a three-dimensional representation
having probability a little over 0.6 and a two-dimensional representation having
almost all of the remaining probability. The inferred three-dimensional represen-
tation is shown by pairing the first two dimensions as a two-dimensional plot in the
center of Figure 5.9, and showing the remaining third dimension separately to the
right along an axis. Because of our ordering heuristic, the yellow and purple-blue
stimuli were fixed at the origin and on the first axis. These assignments mean
that the first two dimensions effectively represent the expected color circle that
“bends” the visible physical spectrum from red to purple colors into a circle that
reflects the psychological similarity between the end points. The third dimension,
which we did not expect, could correspond to something like luminance, since low
luminance purple-like colors are generally located at one end of the dimension and
high luminance yellow-like colors are generally located at the other end.

5.5.3 Rectangles with Line Segments

Our third application involves data reported by Kruschke (1993) involving the
similarity between eight geometric stimuli. These stimuli consisted of rectangles
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with interior line segments, and varied in terms of the height of the rectangle and
the horizontal location of the line segment. A total of 50 participants provided
similarity ratings on a nine-point scale for all 28 stimulus pairs. Based on the
original (Kruschke, 1993) and subsequent (e.g., Lee, 2001, 2008) analyses of these
data, we expect a two-dimensional MDS representation. We also expect the two
stimulus dimensions to be psychologically separable.

Figure 5.10 shows the results of applying our method assuming both the r =
1.5 and r = 2 metrics. It is clear that a two-dimensional representation with
the separable r = 1.5 metric is inferred. It has essentially all of the posterior
probability, with one- and three-dimensional r = 1.5 representations, and all of
the r = 2 representations having essentially no posterior probability. The inferred
representation closely matches the ways in which the stimuli physically vary, with
each psychological axis corresponding to an interpretable stimulus dimension. The
horizontal axis corresponds to the position of the line segment and the vertical axis
corresponds to the height of the rectangle.

5.5.4 Shepard Circles

Our fourth application involves data collected by Treat, McFall, Viken, and Kr-
uschke (2001), involving the similarity between nine geometric stimuli known as
“Shepard circles”. These stimuli consist of a closed semi-circle with an interior ray
from the center to the perimeter. The nine stimuli are constructed by exhaustively
varying three different radius lengths and three different angles for the internal ray.
As for the rectangles with line segments, we expect a separable two-dimensional
MDS representation. For these stimuli, we expect the dimensions to correspond
to the radius and angle dimensions.

Figure 5.11 shows the results of applying our method assuming both the r = 1.5
and r = 2 metrics.® It is clear, once again, that a two-dimensional representation
with the separable r = 1.5 metric is inferred. The inferred representation also
again closely matches the ways in which the stimuli physically vary, with the
horizontal axis corresponding to the radius of the semi-circle and the vertical axis
corresponding to the angle of the ray.

5.5.5 Colored Shapes

Our final application considers similarity data for nine colored shape stimuli col-
lected by Lee and Navarro (2002). The stimuli were circles, squares, and triangles
that were colored red, green, and blue. The data were collected from 20 partic-
ipants, each of whom rated the similarity of each pair of stimuli on a five-point
scale.

Following the previous analysis in Lee and Navarro (2002), we expect a four-
dimensional representation. This representation is best understood as being the
product of a pair of two-dimensional representations, with one representing the
similarities between the shapes, and the other representing the similarities be-
tween the colors. There are only three shapes and three colors, and neither set

8For these stimuli, we did not have access to information about the precise physical values
of the radius and angles, and so the depictions in Figure 5.11 are approximate.
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Figure 5.11: Results for the Shepard circles data collected by Treat et al. (2001).
The left panel shows the posterior probabilities for one- through three-dimensional
MDS representations, for both the Minkowski metrics with » = 1.5 and r = 2.
The right panel shows the inferred two-dimensional representation. The stimuli
are shown at their inferred locations and error bars show 95% credible intervals
for the marginal posterior distribution for each dimension.

of three has a natural ordering. Instead, the circle, square, and triangle are all
approximately equally different from one another, and the same is true of the
red, green, and blue colors. These equal similarities are naturally represented by
two-dimensional approximately equilateral triangles. The four-dimensional rep-
resentation we expect is simply the independent combination of these two two-
dimensional sub-spaces.

Our expectations for the metric structure of the MDS representations are less
straightforward. Theoretically, the interaction between the shape and color di-
mensions is a classic example of a separable relationship. The metric structure
within the color sub-space, however, is theoretically integral, as for the previous
application. Countering these theoretical expectations is the fact that there are
only three values for the color and shape dimensions present in the stimulus set.
The corresponding approximately equilateral triangles could be equally well ac-
commodated by any of the Minkowski metrics we are considering. Thus, from
a statistical perspective — without regard to the theory of separable and integral
stimuli — we expect the simplest metric to be inferred. Since all metrics should be
able to fit the data, the one with the smallest functional form complexity should
be preferred.

We found that this was a third case in which we were unable to generate
samples with acceptable convergence for the r = 1.5 metric. Accordingly, Fig-
ure 5.12 shows the results of applying our method assuming the Euclidean metric.
A four-dimensional representation is clearly favored. This representation is shown
in terms of two two-dimensional subspaces, and has the expected structure. The
middle panel of Figure 5.12 shows a subspace that captures the similarity relation-
ships between the red, green, and blue colors. The right panel shows a subspace
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Figure 5.12: Results for colored shapes data reported by Lee and Navarro (2002).
The left panel shows the posterior probabilities for one- through five-dimensional
MDS representations for the Euclidean metric. The middle and right panels show
the inferred four-dimensional representation, with two dimensions shown in each
panel. The colored shapes show the inferred locations of each stimulus and error
bars show 95% credible intervals for the marginal posterior distribution for each
dimension.

that captures the similarity relationships between the circle, square, and triangle
shapes. These subspaces were found using an orthogonal Procrustes method (Borg
& Groenen, 1997, p. 162). In particular, we solved for the orthogonal transfor-
mation matrix that most closely mapped the inferred coordinate locations to the
expected representational structure, defined as the product of two subspaces each
with an equilateral triangle configuration.

5.6 Discussion

Collectively, the five applications demonstrate that our method is able to make
reasonable inferences about MDS representations. The inferred number of dimen-
sions, and the inferred stimulus locations, generally matched theoretical expecta-
tions, with the exception of the color application. In addition, where inferences
about whether a Euclidean or non-Euclidean metric structure were made, they
matched theoretical expectations. It is interesting to note that all of the applica-
tions for which non-Euclidean metrics made inference difficult involved stimulus
domains for which the expectation was that the Euclidean metric was appropriate.

We also think that the five applications serve to demonstrate the usefulness of
our approach to determining dimensionality and metric structure. Our approach is
to treat these determinations as Bayesian model-selection problems and use Bayes
factors to make inferences. Complete Bayes factors have not been used in this
way previously to determine either dimensionality or metric structure, and our
introduction of the Warp-III method to solve the difficult computational approx-
imation problems involved represents progress on these long-standing challenges
in MDS modeling.

Despite this progress, we think the greatest contribution of the current work
is to highlight fundamental challenges in MDS models of mental representation,
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and suggest new avenues for theoretical development. The challenges largely stem
from our insistence on fully Bayesian inference, which has enormous advantages in
terms of reaching complete, coherent, and principled conclusions, but also raises
technical hurdles. The opportunities largely stem from our adoption of a generative
modeling approach (Lee, 2018). In particular, we think there are many remaining
possibilities relating to the use of different metrics in MDS representations, and
that there is an opportunity to extend the generative approach to develop more
complete cognitive process models for inferring MDS representations. We conclude
by discussing some of these challenges and opportunities.

5.6.1 Technical Challenges

Developing a generative MDS model in a Bayesian setting required the key issue of
identifiability and invariance to be solved in terms of prior information, rather than
more heuristically through post-processing. We used an existing solution to this
challenge for the Euclidean metric, and proposed a solution for psychologically-
interpretable non-Euclidean metrics with 1 < r < 2. We also highlighted, however,
the fundamental intractability of MDS representations using the city-block met-
ric. This intractability has been documented before (Bortz 1974; Frank 2006,
Figure 5.4; Shepard 1974, Figure 11), but has not prevented the use of MDS
representations inferred based on the city-block metric in the cognitive modeling
literature (e.g., Kruschke, 1993; Lee & Wetzels, 2010).

Our current approach to determining the appropriate metric treats this infer-
ence as a model-selection problem, and only considers the possibilities » = 1.5 and
r = 2. Allowing for other metrics is theoretically interesting, but computationally
difficult. One obvious cost is the need to generate posterior probabilities across a
larger set of candidate models. But it also seems likely that some models will be
difficult to make inferences about. We tried our DE-MCMC approach for r = 1.1
on a number of data sets, and were not able to achieve satisfactory convergence.
Furthermore, as explained above, for a few of the applications we were also not
able to achieve satisfactory convergence for » = 1.5. These challenging cases in-
volved stimulus domains for which the expectation was that the Euclidean metric
was appropriate, which leads to a speculative suggestion that failure is related
to model mis-specification. This is a potential example of a general aspect of
Bayesian model comparison that can be computationally challenging: in order to
rule out models that are likely mis-specified, one needs to be able to infer them
well enough that they can be part of the model comparison. Although we be-
lieve that DE-MCMC is a powerful sampling algorithm which substantially helps
alleviate the issue of non-converging chains, future research should explore differ-
ent sampling algorithms that may perform better, particularly for non-Euclidean
metrics.

Collectively, these technical challenges mean that our approach cannot cur-
rently be applied to large naturalistic stimulus domains. For example, Nosofsky,
Sanders, Meagher, and Douglas (2018) consider MDS representations based on
sparse matrices of pairwise similarity judgments for a set of 360 images of rocks,
and Hebart, Zheng, Pereira, and Baker (2020) report extensive crowd-sourced tri-
adic comparison similarity data for 1854 images of real-world objects. Being able to
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determine the dimensionality, metric structure, and psychological representations
of MDS representations of these domains using the Bayesian framework would po-
tentially offer deep insight into how people represent the real-world stimuli. The
successful applications we presented — in which there were clear expectations about
dimensionality, metric, and representational structure — provide a basis for believ-
ing the Bayesian framework can provide this insight to situations where answers
must be inferred from data, if and when the computational technical hurdles are
overcome.

5.6.2 Other Representations

We did not consider Minkowski metrics with r < 1. This possibility has been
proposed as a way of representing stimulus domains in which the component di-
mensions compete for attention (Shepard, 1987, 1991; Tversky & Gati, 1982). The
identifiability constraints for this metric present an open research challenge, and
it is not clear how well DE-MCMC sampling methods will perform in inferring
representations.

There is also the possibility of moving beyond the Minkowski family of met-
rics. In his presidential address, Shepard (1974, Figure 11) presented a taxonomy
of metric spaces, each of which makes different fundamental representational as-
sumptions that could be appropriate for at least some stimulus domains. There
has been relatively little work in exploring these possibilities. Lindman and Caelli
(1978) investigated MDS representations using Riemannian spaces with constant
curvature, and Cox and Cox (1991) presented compelling applications for a special
case of this approach involving MDS representations on a sphere.

A new idea raised by our application to the colored shape stimuli involves the
possibility of different metric structures within the same representation. These
stimuli involved two sorts of stimulus dimensions: those representing color, which
are usually considered to be integral, and those representing qualitatively different
shapes, which seems more separable. Certainly the interaction between the color
dimensions and the shape dimensions would be expected to be separable, since
it seems likely people can selectively attend to either the color or the shape of a
stimulus, depending upon the cognitive context. This suggests a generalization of
the MDS models in which each pair of dimensions is associated with a metric.

Finally, there are alternative representational models, which do not assume
stimuli are represented by values on dimensions, that can compete with or com-
plement MDS models. These alternatives include feature-based representations
(Tversky, 1977), such as those found by additive clustering and related methods
(Shepard & Arabie, 1979) and special cases such as tree-based models (Corter,
1996; Shepard, 1980). One attraction of the Warp-III approach we used is that
it could estimate Bayes factors between fundamentally different sorts of represen-
tations — such as comparing dimensional and featural representations — since it
operates directly on posterior samples for each model applied independently to
the data. Even further, Navarro and Lee (2003) proposed a hybrid model of stim-
ulus representation that combined both dimensions and features, and it would be
conceptually elegant to choose between all of the candidate models, with various
combinations of dimensions and features, using our methods. Navarro and Lee
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(2003) used an approximate analytic approach for this purpose, which would be
significantly improved by an approach based on Bayes factors.

5.6.3 MDS Cognitive Process Models

Our modeling approach is generative, but is based on an extremely simple cog-
nitive model. In essence, we assume that all participants have the same MDS
representation, and produce dissimilarity judgments for pairs of stimuli that di-
rectly reflect the distances between those stimuli in the representation. It is likely
that much better generative models can be developed by considering more realistic
processing assumptions, and especially by including individual differences.

One example, involving the line length application, was presented in a pre-
liminary form by Lee (2014). A simple plot of the raw behavioral data suggests
that one of the 27 participants appears to have reversed the scale that was used
to judge similarity. This means that their judgments contaminate the inference
of the MDS representation. Lee (2014) used a simple latent-mixture model ex-
tension of the basic MDS generative model, in which either the scale was used
correctly or reversed. One participant was inferred to have reversed the scale, as
expected. Perhaps more importantly, however, the resulting inference about the
one-dimensional MDS representation was shown to have less uncertainty than the
one shown in Figure 5.8. In this way, the introduction of individual differences in
the cognitive process of similarity judgment helped decontaminate the inference
about the representation of stimuli.

The same basic generative approach could support much more general cogni-
tive process modeling using MDS representations. The hierarchical, latent mix-
ture, and common cause model structures advocated by Lee (2018) could allow
for rich accounts of individual differences in judgment processes or stimulus rep-
resentations, and allow for models that extend beyond the judgment of similarity
to other cognitive capabilities like categorization and inference. As one example,
Ennis (1992) considers extended assumptions about MDS representations that
allow for the noisy representation of perceptual stimuli, which could be incorpo-
rated by adding hierarchical structure to the coordinate locations. As another
example, there are extensions of the basic MDS model we considered that allow
for structured individual differences, such as INDSCAL (Carroll, 1972; Carroll &
Chang, 1970). These would be easy to implement within our generative modeling
framework. A model like INDSCAL, which assumes individuals weight the latent
stimulus dimensions differently, relies on the appropriate number of dimensions
being inferred, and evidence that the stimulus domain is separable. In this way,
the potential of our method to make these inferences is especially important. As a
final example, the rectangle and line segment stimuli are used by Kruschke (1993)
to study category learning, but the similarity data and category learning data
are analyzed independently. In effect, the similarity data are used to generate
the MDS representation, and that representation is then assumed to provide the
fixed basis for category learning. An alternative approach would be to infer the
MDS representation jointly from both the similarity judgments and the category
learning choices. This sort of flexibility raises the possibility of tackling more
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complicated cognitive phenomena, such as the ability to adapt representations in
response to changes in the external environment, or the current context or goals.

5.6.4 Conclusion

We adopted a Bayesian model selection approach to the problem of determining
the dimensionality and metric structure of MDS representations, while considering
psychologically-interpretable Euclidean and non-Euclidean metrics. Our methods
for inferring the representations, and choosing their dimensionality and metric
structure show the promise of the approach, but computational challenges remain a
barrier in terms of an easy-to-use general capability. Our methods and applications
also show the promise of placing MDS representations in a generative cognitive
modeling framework, offering the possibility of new models of how people represent
stimuli, and how those representations help guide behavior.

All code is available at https://osf.i0/82g3r/.
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0

Figure 5.13: A suboptimal one-dimensional representation of the line-length simi-
larity data from Cohen et al. (2001), motivating the need for the ordering heuristic.
The black lines show the stimuli at their inferred locations in the representation,
and the blue histograms show the marginal posterior distributions for these loca-
tions.

5.A The Ordering Heuristic

Figure 5.13 provides a concrete example to motivate the need for the ordering
heuristic. It is clear this is an inferior representation to the one presented in Fig-
ure 5.8. In Figure 5.13, the first and second line stimuli, which are the two shortest,
are located at almost the same point, rather than being appropriately spaced to
reflect their psychological dissimilarity. Consistent with this intuition, the poste-
rior density is worse for the representation in Figure 5.13 than the representation
in Figure 5.8.

This suboptimality is caused by the naive application of the constraints iden-
tified in Figure 5.2 for a one-dimensional representation. The first stimulus is
fixed at the origin, and the second stimulus is constrained to be positive. It is
clear from Figure 5.13 that the second stimulus is indeed inferred to be positive,
but is extremely close to zero, with the remaining longer line stimuli “flipping” to
negative values in the MDS space. This configuration still satisfies the proximity
data reasonably well, because the required distance between the first two stimuli
is small, and the distances from the first and second stimuli to all of the others
is approximately conserved. Thus, it is the choice of the two similar stimuli as
those that are constrained that leads to this potential for a local maximum and
suboptimal representation.

Accordingly, we developed an ordering heuristic to try and assign the con-
straints for the various dimensionalities and metrics to stimuli that are sufficiently
dissimilar. Because higher dimensionalities place constraints on more than two
stimuli, the general approach is to order all of the stimuli. Our heuristic for doing
this is based on the across participants averaged pairwise dissimilarity ratings.
The first two stimuli are chosen to be the ones with the largest averaged pairwise
dissimilarity. The remaining stimuli are chosen, one at a time, by considering the
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minimum averaged pairwise dissimilarity to the already selected stimuli. Specifi-
cally, the next stimulus is always chosen to be the one with the maximum value
for the minimum averaged pairwise dissimilarity to the already selected stimuli.

We used this ordering heuristic for the colors and colored shapes applications.
For the line length application, we used the heuristic as described but then, in
an additional step, switched the first stimulus with the second stimulus. This
switch helped prevent the posterior for the ninth stimulus, corresponding to the
longest line, push against the upper bound of 1. For the rectangles with interior
line segments and Shepard circles applications, we used the heuristic as a starting
point, but we then reordered some of the stimuli manually since it seemed to help
with convergence.

5.B Transformation Ordered Vector (0-1 Bounded)

The constrained vector @, 0 < z1 < x5 < ... < zg <1, can be transformed to an
unconstrained vector y € RE as follows:

o1 (21 if k=1,
Uk =9 g1 (7””1,*) if1<k<K,

where ®~1(-) denotes the inverse of the normal CDF. The inverse transformation
is given by:

= (I)(yk) ifk‘:L
P o+ (L me) @ (y) ifl< k<K,

where ®(-) denotes the normal CDF. Note that xj is a function of y1,ys,..., Yk
(the dependence on y1,y2,...,yr—1 is “hidden” in zp_1). Crucially, z; does not
depend on yr41, Ykt2,---,Yr. Consequently, the Jacobian matrix J of the trans-
formation is lower triangular so that its determinant | 7| is obtained by multiplying
its diagonal entries. The diagonal entries are given by:
g fow) ifh=1,

’ (lfl‘k_l)d)(yk) if1<k§K,

where ¢(-) denotes the normal PDF. Hence, the determinant of the Jacobian
matrix is given by:

K

1T = ¢ (y1) H (1= zk-1) & (yr)] -

k=2
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Chapter O

bridgesampling: An R Package for
Estimating Normalizing Constants

Abstract

Statistical procedures such as Bayes factor model selection and Bayesian
model averaging require the computation of normalizing constants (e.g.,
marginal likelihoods). These normalizing constants are notoriously difficult
to obtain, as they usually involve high-dimensional integrals that cannot be
solved analytically. Here we introduce an R package that uses bridge sam-
pling (Meng & Schilling, 2002; Meng & Wong, 1996) to estimate normalizing
constants in a generic and easy-to-use fashion. For models implemented in
Stan, the estimation procedure is automatic. We illustrate the functionality
of the package with three examples.

6.1 Introduction

In many statistical applications, it is essential to obtain normalizing constants of
the form

Z:/@q(a)da, (6.1)

where p(0) = ¢(0)/Z denotes a probability density function (pdf) defined on the
domain ® C RP. For instance, the estimation of normalizing constants plays a
crucial role in free energy estimation in physics, missing data analyses in likelihood-
based approaches, Bayes factor model comparisons, and Bayesian model averaging
(e.g., Gelman & Meng, 1998). In this chapter, we focus on the role of the normal-
izing constant in Bayesian inference; however, the bridgesampling package can be
used in any context where one desires to estimate a normalizing constant.

This chapter is published as Gronau, Q. F., Singmann, H., & Wagenmakers, E.—J. (2020).
bridgesampling: An R package for estimating normalizing constants. Journal of Statistical
Software, 92. doi: https://doi.org/10.18637/jss.v092.110. Also available as arXiv preprint:
https://arxiv.org/abs/1710.08162
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6. BRIDGESAMPLING: AN R PACKAGE FOR ESTIMATING NORMALIZING
CONSTANTS

In Bayesian inference, the normalizing constant of the joint posterior distri-
bution is involved in (a) parameter estimation, where the normalizing constant
ensures that the posterior integrates to one; (b) Bayes factor model comparison,
where the ratio of normalizing constants quantifies the data-induced change in
beliefs concerning the relative plausibility of two competing models (e.g., Kass &
Raftery, 1995); (c) Bayesian model averaging, where the normalizing constant is
required to obtain posterior model probabilities (BMA; Hoeting et al., 1999).

For Bayesian parameter estimation, the need to compute the normalizing con-
stant can usually be circumvented by the use of sampling approaches such as
Markov chain Monte Carlo (MCMC; e.g., Gamerman & Lopes, 2006). However,
for Bayes factor model comparison and BMA, the normalizing constant of the
joint posterior distribution — in this context usually called marginal likelihood —
remains of essential importance. This is evident from the fact that the posterior
model probability of model M;, i € {1,2,...,m}, given data y is obtained as

ply | M)

p(Mi | y) = X p(M)
EZ,_/ Z;”:lp(y ‘ Mj)p(./\/lj) W_Z/ ’
posterior model probability prior model probability

updating factor
(6.2)
where p(y | M;) denotes the marginal likelihood of model M;.
If the model comparison involves only two models, M1 and Mo, it is convenient
to consider the odds of one model over the other. Bayes’ rule yields:

pMily) _ ply M) p(Mi)

- . (6.3)
p(M: | y) p(y | Ms) p(M>)

——
posterior odds Bayes factor BF 5 prior odds

The change in odds brought about by the data is given by the ratio of the marginal
likelihoods of the models and is known as the Bayes factor (Etz & Wagenmakers,
2017; Jeffreys, 1961; Kass & Raftery, 1995). Equation 6.2 and Equation 6.3 high-
light that the normalizing constant of the joint posterior distribution, that is, the
marginal likelihood, is required for computing both posterior model probabilities
and Bayes factors.

The marginal likelihood is obtained by integrating out the model parameters
with respect to their prior distribution:

ply | Mi) = /@ p(y | 8, M;) p(6 | M;) d6. (6.4)

The marginal likelihood implements the principle of parsimony also known as Oc-
cam’s razor (e.g., Jefferys & Berger, 1992; Myung & Pitt, 1997; Vandekerckhove
et al., 2015). Unfortunately, the marginal likelihood can be computed analyti-
cally for only a limited number of models. For more complicated models (e.g.,
hierarchical models), the marginal likelihood is a high-dimensional integral that
usually cannot be solved analytically. This computational hurdle has complicated
the application of Bayesian model comparisons for decades.

To overcome this hurdle, a range of different methods have been developed that
vary in accuracy, speed, and complexity of implementation: naive Monte Carlo
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estimation, importance sampling, the generalized harmonic mean estimator, Re-
versible Jump MCMC (Green, 1995), the product-space method (Carlin & Chib,
1995; Lodewyckx et al., 2011), Chib’s method (Chib, 1995), thermodynamic inte-
gration (e.g., Lartillot & Philippe, 2006), path sampling (Gelman & Meng, 1998),
and others. The ideal method is fast, accurate, easy to implement, general, and
unsupervised, allowing non-expert users to treat it as a “black box”.

In our experience, one of the most promising methods for estimating nor-
malizing constants is bridge sampling (Meng & Schilling, 2002; Meng & Wong,
1996). Bridge sampling is a general procedure that performs accurately even in
high-dimensional parameter spaces such as those that are regularly encountered
in hierarchical models. In fact, simpler estimators such as the naive Monte Carlo
estimator, the generalized harmonic mean estimator, and importance sampling
are special sub-optimal cases of the bridge identity described in more detail below
(e.g., Frithwirth-Schnatter, 2004; Gronau, Sarafoglou, et al., 2017).

In this chapter, we introduce bridgesampling, an R (R Core Team, 2019) pack-
age that enables the straightforward and user-friendly estimation of the marginal
likelihood (and of normalizing constants more generally) via bridge sampling tech-
niques. In general, the user needs to provide to the bridge_sampler function four
quantities that are readily available:

e an object with posterior samples (argument samples);

e a function that computes the log of the unnormalized posterior density for
a set of model parameters (argument log_posterior);

e a data object that contains the data and potentially other relevant quantities
for evaluating log_posterior (argument data);

e lower and upper bounds for the parameters (arguments 1b and ub, respec-
tively).

Given these inputs, the bridgesampling package provides an estimate of the log
marginal likelihood.

Figure 6.1 displays the steps that a user may take when using the bridge-
sampling package. Starting from the top, the user provides the basic required
arguments to the bridge_sampler function which then produces an estimate of
the log marginal likelihood. With this estimate in hand — usually for at least
two different models — the user can compute posterior model probabilities using
the post_prob function, Bayes factors using the bf function, and approximate
estimation errors using the error_measures function. A schematic call of the
bridge_sampler function looks as follows (detailed examples are provided in the
next sections):

R> bridge_sampler(samples = samples, log_posterior = log_posterior,
+ data = data, 1b = 1b, ub = ub)

The bridge_sampler function is an S3 generic which currently has methods for
objects of class mecmc, meme.1ist (Plummer et al., 2006), stanfit (Stan Develop-
ment Team, 2016), matrix, rjags (Plummer, 2016; Su & Yajima, 2015), runjags
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Basic Arguments:
samples
log posterior

data
1b
ub

bridge sampler ()

Basic Output:

Object of class
"bridge" or
"bridge list"
with log marginal
likelihood estimate(s)

post _prob () bf () error measures ()

Posterior model Bayes factor Approximate
probabilities estimation error

Figure 6.1: Flow chart of the steps that a user may take when using the bridge-
sampling package. In general, the user needs to provide a posterior samples
object (samples), a function that computes the log of the unnormalized pos-
terior density (log_posterior), the data (data), and parameter bounds (1b
and ub). The bridge_sampler function then produces an estimate of the log
marginal likelihood. This is usually repeated for at least two different models.
The user can then compute posterior model probabilities (using the post_prob
function), Bayes factors (using the bf function), and approximate estimation
errors (using the error measures function). Note that the summary method
for bridge objects automatically invokes the error measures function. Fig-
ure available at https://tinyurl.com/ybf4jxka under CC license https://
creativecommons.org/licenses/by/2.0/.

(Denwood, 2016), stanreg (Team, 2016), and for MCMC_refClass objects produced
by nimble (de Valpine et al., 2017).! This allows the user to obtain posterior sam-
ples in a convenient and efficient way, for instance, via JAGS (Plummer, 2003) or

1We thank Ben Goodrich for adding the stanreg method to our package and Perry de Valpine
for his help implementing the nimble support.
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a highly customized sampler. Hence, bridge sampling does not require users to
program their own MCMC routines to obtain posterior samples; this convenience
is usually missing for methods such as Reversible Jump MCMC (but see Gelling,
Schofield, & Barker, 2017).

When the model is specified in Stan (Carpenter et al., 2017; Stan Development
Team, 2016) — in a way that retains the constants, as described below — obtaining
the marginal likelihood is even simpler: the user only needs to pass the stanfit
object to the bridge_sampler function. The combination of Stan and the bridge-
sampling package therefore produces an unsupervised, black box computation of
the marginal likelihood.

This chapter is structured as follows: First we describe the implementation de-
tails of the algorithm from bridgesampling; second, we illustrate the functionality
of the package using a simple Bayesian t-test example where posterior samples are
obtained via JAGS. In this section, we also explain a heuristic to obtain the func-
tion that computes the log of the unnormalized posterior density in JAGS; third,
we describe in more detail the interface to Stan which enables an even more au-
tomatized computation of the marginal likelihood. Fourth, we illustrate use of the
Stan interface with two well-known examples from the Bayesian model selection
literature.

6.2 Bridge Sampling: The Algorithm

Bridge sampling can be thought of as a generalization of simpler methods for
estimating normalizing constants such as the naive Monte Carlo estimator, the
generalized harmonic mean estimator, and importance sampling (e.g., Frithwirth—
Schnatter, 2004; Gronau, Sarafoglou, et al., 2017). These simpler methods typ-
ically use samples from a single dist