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Chapter 1

Introduction

1.1 A Competition Between Forecasters

Suppose you are interested in determining which of four weather forecasters, A,
B, C, and D, is the most accurate. To this end, you consider their forecasts for
three consecutive days. For simplicity, the forecasters predict only three different
types of weather: rain, clouds, or sun. The predictions of each of the four fore-
casters are displayed in Table 1.1. With these probabilistic predictions in hand, it
is straightforward to assess the accuracy of the four forecasters: we check how well
the forecasters have predicted the weather on the three days of interest. Specif-
ically, we consider how likely the actually observed weather is according to their
forecasts. Naturally, the forecaster that has predicted the observed weather best
is the most accurate.

On Day 1 there are clouds. Forecaster A has assigned 60% to this outcome,
forecaster B 35%, forecaster C 55%, and forecaster D 33.3%. Since forecaster A
has assigned the highest probability to the observed weather they are the most
accurate for Day 1. On Day 2 it rains. Forecaster A has assigned 40% to this out-
come, forecaster B 50%, forecaster C 40%, and forecaster D 33.3%. Based on this
information we can update our knowledge about the accuracy of the four forecast-
ers. Specifically, we can consider the probability that each forecaster has assigned
to the observed data sequence “clouds” → “rain”. Forecaster A has assigned
60%×40% = 24% to this sequence, forecaster B 35%×50% = 17.5%, forecaster C
55%×40% = 22%, and forecaster D 33.3%×33.3% = 11.1%. Therefore, although
forecaster B has predicted the weather on Day 2 best, when taking into account all
available data (i.e., the weather on Day 1 and Day 2), forecaster A is still the most
accurate, followed by C, B, and D. On Day 3 the sun is shining. Forecaster A has
assigned 70% to this outcome, forecaster B 40%, forecaster C 20%, and forecaster
D 33.3%. Again, we can update our knowledge based on the new observation.
Forecaster A had assigned 24% to the observed weather sequence on the first two
days. Updating this probability with the information from Day 3 reveals that
forecaster A has assigned 24% × 70% = 16.8% to the observed weather sequence
“clouds” → “rain” → “sun”. Forecaster B has assigned 17.5% × 40% = 7% to
this sequence, forecaster C 22% × 20% = 4.4%, and forecaster D has assigned

1



1. Introduction

Table 1.1: Predictions of four weather forecasters, A, B, C and D, for three consec-
utive days. The bold numbers correspond to the weather that actually occurred
on that day.

� � �

Weather on Day 1: �

Predictions of forecaster A 25% 60% 15%
Predictions of forecaster B 55% 35% 10%
Predictions of forecaster C 25% 55% 20%
Predictions of forecaster D 33.3% 33.3% 33.3%

Weather on Day 2: �

Predictions of forecaster A 40% 50% 10%
Predictions of forecaster B 50% 35% 15%
Predictions of forecaster C 40% 35% 25%
Predictions of forecaster D 33.3% 33.3% 33.3%

Weather on Day 3: �

Predictions of forecaster A 10% 20% 70%
Predictions of forecaster B 5% 55% 40%
Predictions of forecaster C 5% 75% 20%
Predictions of forecaster D 33.3% 33.3% 33.3%

11.1%× 33.3% = 3.7% to this weather sequence. Therefore, based on these three
days, we conclude that forecaster A is the most accurate, followed by forecaster
B, forecaster C, and forecaster D. Note that we could naturally keep updating
our knowledge about the accuracy of the forecasters. Specifically, we could obtain
their predictions for future days and then check how likely the observed weather
is given their forecasts.

We can not only assess who is the best forecaster for these three days, but we
can also gauge how much better, say, forecaster A is compared to forecaster B.
Specifically, the observed weather sequence is predicted 16.8%/7% = 2.4 times bet-
ter by forecaster A than by forecaster B. Similarly, the observed weather sequence
is predicted 16.8%/4.4% = 3.8 times better by forecaster A than by forecaster C.
Finally, the observed weather sequence is predicted 16.8%/3.7% = 4.5 times better
by forecaster A than by forecaster D. By transitivity, it follows that the observed
weather sequence is predicted 1.6 times better by forecaster B than by forecaster
C, 1.9 times better by forecaster B than by forecaster D, and 1.2 times better by
forecaster C than by forecaster D. The factor by which one forecaster outpredicts
another one is known in statistics as the Bayes factor (Etz & Wagenmakers, 2017;
Jeffreys, 1961; Kass & Raftery, 1995), and it is a central part of this dissertation.

Another observation is that the predictions of forecaster D are trivial: on every
day, D assigns equal probability to each of the three possible outcomes. Naively,
one might think that this is a good strategy for performing reasonably well, since
every possible outcome receives a decent probability. However, since the only

2



1.2. Treating Scientific Models as Forecasters

predictions that matter for assessing the quality of the forecasters are the ones
for the observed weather, the vague predictions of forecaster D suffer a penalty
compared to the more risky, precise predictions of the other forecasters. For
instance, forecaster A has assigned 70% to sunshine on Day 3 and is rewarded for
this precise prediction since it turns out to be true. Note, however, that this is only
the case when these predictions are correct. For instance, forecaster C also made a
relatively precise prediction for Day 3 (i.e., 75% chance of clouds). However, this
precise prediction is not rewarded since the observed weather is sunshine. In fact,
this precise but incorrect prediction results in forecaster C loosing his second place
to forecaster B. In sum, more risky, precise predictions are rewarded compared to
vague predictions, but only in case they turn out to be true.

1.2 Treating Scientific Models as Forecasters

In science, researchers often aim to compare different accounts (i.e., models) of
the world. As showcased in the previous section, when assessing who is the most
accurate weather forecaster one just needs predictions and data for checking these
predictions – nothing more. In science we can treat models as forecasters. Based
on the forecasts of a number of competing models of interest, we can assess their
relative predictive adequacy for observed data. This approach to comparing com-
peting scientific accounts of the world is naturally implemented using Bayesian
statistics (e.g., Dawid, 1984). Specifically, Bayesian statistics allows one to update
one’s beliefs about the adequacy of competing accounts of the world by means of
observed data. In Bayesian statistics predictive performance is the tool by which
we learn, but prediction does not necessarily need to be the ultimate goal. Typ-
ically scientists are interested not only in predicting data but also in explaining
phenomena. Nevertheless, to explain phenomena one typically compares different
accounts of the world and using Bayesian statistics this is naturally accomplished
by means of comparing predictions.

When forecasts are provided directly as in the weather forecast example, assess-
ing their predictive adequacy based on observed data is straightforward. However,
for scientific models we often need to work to see what the models actually pre-
dict. Specifically, when comparing models it can be challenging to find out how
much probability exactly a model has assigned to the observed data. The reason is
that scientific models typically feature parameters, often denoted by θ, adjustable
quantities that affect what data patterns a model can predict.

As a concrete example, we consider a simplified version of the exponential decay
model for describing the relationship between memory retention and time (Lee &
Wagenmakers, 2013; Shiffrin, Lee, Kim, & Wagenmakers, 2008). In a typical
memory retention experiment participants are presented with a list of items and
subsequently their ability to remember items from the list is tested after different
periods of time have elapsed. The simplified exponential decay model features
two parameters: (1) α which corresponds to the rate of decay of information,
and (2) β which corresponds to a baseline level of remembering. Specifically,
the model stipulates that the probability of remembering an item after time t is

3



1. Introduction
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Figure 1.1: Transitioning from the θ-world to the data-world to obtain the
model’s predictions for the memory retention example. In the θ-world, all pos-
sible combinations of α and β are deemed equally plausible a priori. This re-
sults in very vague predictions for the data-world. The probabilities that are
assigned to the different retention counts for each time lag are represented by
the size of the corresponding squares. The superimposed black symbols that
are connected by a line display the data of fictitious Participant 2 from Shiffrin
et al. (2008). Available at https://tinyurl.com/yyn7e2o9 under CC license
https://creativecommons.org/licenses/by/2.0/.

exp (−α t) + β.1

To assess the accuracy of the model as a forecaster, we need to find out what
data the model predicts. Based on observed data we can then check, just as
in the weather forecast example, how much probability the model has assigned to
these observed data. For concreteness, suppose we are interested in an experiment
that presents participants with 18 items and tests their ability to remember these
items after 1, 2, 4, 7, 12, 21, 35, 59, and 99 seconds. Note that for different values
of the parameters α and β the model specifies a different exponential function
of memory retention and hence also predicts different data. To determine what
data the model predicts as a whole we need to consider the predictions for all
possible combinations of α and β and weight them by how plausible these specific
combinations of α and β are deemed a priori.

Figure 1.1 illustrates this process. The left part of the figure displays what
can be called the parameter-world or θ-world. Here we assume that α and β
can take values between 0 and 1 and each possible combination of α and β is
equally plausible a priori. To obtain the model’s predictions we need to transition
from the θ-world to what can be called the data-world. Specifically, for each
possible combination of α and β we need to determine the resulting predictions
and then take a weighted average of all of these predictions. The averaging weights
correspond to how plausible each specific combination of α and β is deemed a

1To make sure that this yields a probability, the restriction is imposed that the resulting
value cannot be smaller than 0 or larger than 1.

4
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Figure 1.2: Transitioning from the θ-world to the data-world to obtain the
model’s predictions for the memory retention example. In the θ-world, certain
combinations of α and β are deemed more plausible than others based on the
data of the three fictitious participants from Shiffrin et al. (2008). This re-
sults in more precise predictions for the data-world. The probabilities that are
assigned to the different retention counts for each time lag are represented by
the size of the corresponding squares. The superimposed black symbols that
are connected by a line display the data of fictitious Participant 2 from Shiffrin
et al. (2008). Available at https://tinyurl.com/y4o2q4d7 under CC license
https://creativecommons.org/licenses/by/2.0/.

priori. The resulting predictions are displayed in the right part of Figure 1.1.
It is apparent that these predictions are very vague. Specifically, for many time
lags the different possible numbers of remembered items (i.e., retention count)
are all assigned a similar probability. Only for the first time lags, the model
makes more precise predictions which are that a higher retention count is more
likely than a lower retention count. To determine the accuracy of the model’s
predictions one needs observed data. As an example, the superimposed black
symbols that are connected by a line in the right part of Figure 1.1 display the
data of fictitious Participant 2 from Shiffrin et al. (2008). It is apparent that the
model has assigned a decent probability to the observed retention curve, however,
the model has clearly also assigned a similar probability to a number of (very)
different possible retention curves.

To make the model predictions more precise we can incorporate prior knowl-
edge about plausible values for α and β, for instance, by considering previous
experimental data. To demonstrate how the incorporation of prior knowledge can
result in more precise predictions, we use the data of the three fictitious partic-
ipants from Shiffrin et al. (2008). The left part of Figure 1.2 displays again the
θ-world. However, this time certain combinations of α and β are assigned more
plausibility than others based on what we have learned about these parameters
from the data of the three fictitious participants. The right part of Figure 1.2
displays the resulting predictions. Clearly, the predictions are much more precise

5
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1. Introduction

than before. When assessing the accuracy of the model as a forecaster, these more
precise predictions will be advantageous in case the observed data indeed corre-
spond to the retention counts that are assigned more probability than others. For
instance, the superimposed black symbols that are connected by a line again cor-
respond to the data of fictitious Participant 2. It is apparent that the model has
predicted this observed retention curve very well. However, the refined knowledge
about what values of the parameters are more plausible than others is partially
based on exactly these data of Participant 2, so it is not valid to use these data a
second time for assessing the accuracy of the resulting predictions. Instead, these
predictions must be tested based on new data.

In practice there are typically several participants which complicates transi-
tioning from the θ-world to the data-world and determining how much probabil-
ity a model has assigned to the observed data of all participants simultaneously.
Furthermore, transitioning from the θ-world to the data-world is also more chal-
lenging for complex models that feature many parameters. A substantial part of
this dissertation is concerned with computational procedures that make it easier
to transition from the θ-world to the data-world to obtain a model’s predictions.
Specifically, these procedures provide an estimate of the marginal likelihood, the
probability of the data given a model, which allows researchers to assess how well
a model has predicted observed data. Based on this quantity researchers can
compare different accounts of the world, just as we compared different weather
forecasters in the introductory example, using the Bayes factor. For instance, in
the memory retention example, one could obtain the predictions for a competing
model of memory retention (e.g., a model that specifies a power function) and
then compare the predictive adequacy of the two models for observed data using
the Bayes factor.

The weather forecast example and also the memory retention example illus-
trated that it may be advantageous to make more precise predictions since they
are rewarded in case they are accurate. A few chapters of this dissertation are
concerned with providing statistical procedures to researchers that allow them to
make their hypotheses more precise by incorporating prior information about the
quantities of interest.

Sometimes when comparing different scientific accounts of the world, there may
not be a model that is clearly favored by the data. For instance, in the weather
forecast example, the observed weather sequence was predicted only about 2.4
times better by forecaster A than by forecaster B. Suppose you are interested
in obtaining an accurate weather forecast for a new day. In this case, it may
be prudent to take into account not only the predictions of forecaster A, but to
consider the predictions of all forecasters. Specifically, we can obtain a combined,
averaged prediction for the new day by weighting each forecaster’s predictions
by how well they have done so far. Concretely, we want to take into account
predictions from A, B, C, and D, but we want to trust the predictions of A more
than the ones of B, C, and D since they have performed better so far. This
approach is naturally implemented using Bayesian model averaging (e.g., Hoeting,
Madigan, Raftery, & Volinsky, 1999). A few chapters of this dissertation provide
concrete applications of this procedure for taking into account model uncertainty
to prevent overconfident conclusions that one could obtain by trusting a single
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forecaster.

1.3 Chapter Outline

1.3.1 Part I: Bridge Sampling

The first part of the dissertation is concerned with bridge sampling, a computa-
tional procedure that facilitates the transition from the θ-world to the data-world
to obtain a model’s predictions for observed data. Specifically, bridge sampling
yields an estimate of a model’s marginal likelihood, the probability of the data
given a model.

Chapter 2 is a tutorial on bridge sampling. The method is introduced by
comparing it with three other Monte Carlo sampling procedures for estimating
the marginal likelihood in a simple beta-binomial example. The feasibility of the
approach in practice is demonstrated using single-participant and hierarchical ver-
sions of a reinforcement learning model. It is argued that bridge sampling is an
attractive method for comparing models in mathematical psychology where re-
searchers are often interested in comparing a limited set of possibly non-nested
models that are implemented in a hierarchical fashion and may have many param-
eters.

Chapter 3 applies an advanced version of bridge sampling called Warp-III for
comparing hierarchical multinomial processing tree (MPT) models. This version
of bridge sampling accounts for potential skewness in the posterior distribution
and can thereby provide more precise estimates of the marginal likelihood of the
models. The first example demonstrates how this procedure can be used to assess
which model parameters differ across trials. Specifically, similar to the idea of com-
bining the predictions of several weather forecasters, Bayesian model averaging is
used to assess which parameters vary across trials. The second example reanalyzes
data that have been used to compare two non-nested MPT models concerning the
illusory truth effect.

Chapter 4 applies Warp-III bridge sampling for computing the marginal like-
lihood of evidence-accumulation models. Specifically, using the Linear Ballistic
Accumulator (LBA) model it is demonstrated that the combination of differential
evolution Markov chain Monte Carlo (DE-MCMC) and Warp-III bridge sampling
provides precise estimates of the marginal likelihood for both single-participant
and hierarchical versions of the LBA. An easy-to-use software implementation
is provided that allows researchers to estimate the marginal likelihood for many
evidence-accumulation models in a straightforward manner. The chapter con-
cludes with a series of recommendations for applying Warp-III bridge sampling in
practical applications.

Chapter 5 applies Bayesian methods to multidimensional scaling (MDS) models
for inferring the appropriate number of dimensions and the metric structure of
the space used to measure distance. Specifically, priors are defined for making the
model identifiable under metrics corresponding to psychologically separable and
psychologically integral stimulus domains. DE-MCMC is used in combination
with Warp-III bridge sampling to make inference about the model parameters,
to identify the appropriate number of dimensions, and to infer the appropriate
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metric of the latent space. Using five existing data sets, it is demonstrated that
the procedure provides sensible results. The chapter also discusses a number of
remaining technical challenges that need to be addressed before the method can
be applied generally in a straightforward fashion.

Chapter 6 introduces bridgesampling, an R package for estimating the marginal
likelihood (or, more generally, normalizing constants) using bridge sampling in a
generic and easy-to-use fashion. In combination with the Bayesian sampling soft-
ware Stan (Carpenter et al., 2017), the R package can provide automatic estimates
of the marginal likelihood. The package functionality is demonstrated using three
examples.

1.3.2 Part II: Multi-Model Meta-Analysis

The second part of the dissertation is concerned with methods for meta-analyzing
a set of studies. The idea of combining several forecasters using Bayesian model
averaging is applied in a few chapters of this part.

Chapter 7 proposes a Bayesian mixture model for meta-analyzing the distri-
bution of significant p values of a set of studies. Specifically, the mixture model
estimates the proportion of significant results that originate from the null hypothe-
sis of no effect, and it also provides an estimate of the probability that each specific
p value originates from the null hypothesis. The procedure is demonstrated using
two examples. A web application is provided to enable researchers to apply the
method in a straightforward manner to any set of significant p values.

Chapter 8 is a primer on Bayesian model-averaged meta-analysis. This pro-
cedure applies the idea of combining several forecasters to avoid an all-or-none
decision between a fixed-effect and a random-effects meta-analysis model. Specif-
ically, this approach combines four Bayesian meta-analysis models according to
their plausibility in light of the observed data: (1) fixed-effect null hypothesis,
(2) fixed-effect alternative hypothesis, (3) random-effects null hypothesis, and (4)
random-effects alternative hypothesis. This procedure allows researchers to ad-
dress, in a principled manner, the two key questions “Is the overall effect non-
zero?” and “Is there between-study variability in effect size?”. The method is
illustrated with an example concerning the self-concept maintenance theory.

Chapter 9 applies the Bayesian model-averaged meta-analysis introduced in
Chapter 8 to a set of six preregistered studies concerning the effect of power posing.
Specifically, the analysis focuses on the effect of power posing on felt power. The
meta-analysis yields very strong evidence for an effect of power posing on felt
power. However, the evidence is only moderate when one takes into account only
participants that were unfamiliar with the effect.

1.3.3 Part III: Hypothesis Testing

The third part of the dissertation is concerned with hypothesis testing. Specifically,
Bayesian approaches to a number of standard statistical tests are presented and
it is demonstrated how these can be used to address questions of interest. A
recurring theme is the ability to incorporate prior knowledge into the analyses
which helps make the hypotheses more precise and can thus yield tests that are
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more diagnostic and correspond closer to what researchers actually want to test.
Just as in the weather forecast example, these more precise predictions will be
rewarded when comparing different models in case they turn out to be true.

Chapter 10 illustrates how Bayesian inference can be used to quantify the
evidence in favor of a general law based on finite data. Concretely, the chapter
focuses on quantifying evidence in favor of the hypothesis that certain fundamental
constants (i.e., π, e,

√
2, and ln 2) are normal. Specifically, Bayesian inference is

used to test the more restricted hypothesis that each digit in the constants’ decimal
expansions occurs equally often. For all four constants the evidence in favor of the
general law is overwhelming.

Chapter 11 proposes the use of a flexible t-prior for effect size in the Bayesian
t-test. This prior allows researchers to incorporate advance knowledge into the
analysis to make their predictions more precise. Furthermore, this prior specifica-
tion contains previous subjective, but also objective Bayesian t-test versions. Two
measures for informed prior distributions are proposed that quantify the departure
from the objective Bayes factor desiderata of predictive matching and information
consistency. The approach is illustrated using an example concerning the facial
feedback hypothesis that features an expert prior elicitation effort.

Chapter 12 introduces abtest, an R package for conducting Bayesian A/B
tests. The implemented approach is based on work by Kass and Vaidyanathan
(1992) and allows researchers to monitor the evidence for the hypotheses that the
treatment has either a positive effect, a negative effect, or, crucially, no effect.
This method also enables one to incorporate expert knowledge about the relative
prior plausibility of the rival hypotheses as well as about the expected size of the
effect.

Chapter 13 discusses Bayesian leave-one-out cross-validation (LOO), an al-
ternative method for comparing competing models. Several limitations of this
approach are demonstrated using concrete examples and it is concluded that LOO
is not a panacea for model selection.

Chapter 14 is a rejoinder to three commentaries on Chapter 13. Each of the
commentaries is addressed and additional limitations of methods that are based
on LOO (such as Bayesian stacking) are identified. These methods are contrasted
with approaches that consistently use Bayes’ rule for both parameter estimation
and model comparison. It is concluded that LOO-based methods do not align
satisfactorily with the epistemic goal of mathematical psychology.
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Chapter 2

A Tutorial on Bridge Sampling

Abstract

The marginal likelihood plays an important role in many areas of Bayesian
statistics such as parameter estimation, model comparison, and model aver-
aging. In most applications, however, the marginal likelihood is not analyt-
ically tractable and must be approximated using numerical methods. Here
we provide a tutorial on bridge sampling (Bennett, 1976; Meng & Wong,
1996), a reliable and relatively straightforward sampling method that allows
researchers to obtain the marginal likelihood for models of varying complex-
ity. First, we introduce bridge sampling and three related sampling methods
using the beta-binomial model as a running example. We then apply bridge
sampling to estimate the marginal likelihood for the Expectancy Valence
(EV) model – a popular model for reinforcement learning. Our results in-
dicate that bridge sampling provides accurate estimates for both a single
participant and a hierarchical version of the EV model. We conclude that
bridge sampling is an attractive method for mathematical psychologists who
typically aim to approximate the marginal likelihood for a limited set of pos-
sibly high-dimensional models.

2.1 Introduction

Bayesian statistics has become increasingly popular in mathematical psychology
(Andrews & Baguley, 2013; Bayarri, Benjamin, Berger, & Sellke, 2016; Poirier,
2006; Vanpaemel, 2016; Verhagen, Levy, Millsap, & Fox, 2015; Wetzels et al.,
2016). The Bayesian approach is conceptually simple, theoretically coherent, and

This chapter is published as Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm,
U., Marsman, M., Leslie, D. S., Forster, J. J., Wagenmakers, E.–J., & Steingroever, H. (2017).
A tutorial on bridge sampling. Journal of Mathematical Psychology, 81, 80–97. doi: https://

doi.org/10.1016/j.jmp.2017.09.005. Also available as arXiv preprint : https://arxiv.org/

abs/1703.05984

13

https://doi.org/10.1016/j.jmp.2017.09.005
https://doi.org/10.1016/j.jmp.2017.09.005
https://arxiv.org/abs/1703.05984
https://arxiv.org/abs/1703.05984


2. A Tutorial on Bridge Sampling

easily applied to relatively complex problems. These problems include, for in-
stance, hierarchical modeling (Matzke, Dolan, Batchelder, & Wagenmakers, 2015;
Matzke & Wagenmakers, 2009; Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun,
& Jiang, 2005; Rouder et al., 2007) or the comparison of non-nested models (Lee,
2008; Pitt, Myung, & Zhang, 2002; Shiffrin et al., 2008). Three major applica-
tions of Bayesian statistics concern parameter estimation, model comparison, and
Bayesian model averaging. In all three areas, the marginal likelihood – that is,
the probability of the observed data given the model of interest – plays a central
role (see also Gelman & Meng, 1998).

First, in parameter estimation, we consider a single model and aim to quantify
the uncertainty for a parameter of interest θ after having observed the data y.
This is realized by means of a posterior distribution that can be obtained using
Bayes’ theorem:

p(θ | y) =
p(y | θ) p(θ)∫
p(y | θ′) p(θ′) dθ′

=

likelihood︷ ︸︸ ︷
p(y | θ)

prior︷︸︸︷
p(θ)

p(y)︸︷︷︸
marginal likelihood

. (2.1)

Here, the marginal likelihood of the data p(y) ensures that the posterior distribu-
tion is a proper probability density function (PDF) in the sense that it integrates to
1. This illustrates why in parameter estimation the marginal likelihood is referred
to as a normalizing constant.

Second, in model comparison, we consider m (m ∈ N) competing models,
and are interested in the relative plausibility of a particular model Mi (i ∈
{1, 2, . . . ,m}) given the prior model probability and the evidence from the data y
(see three special issues on this topic in the Journal of Mathematical Psychology :
J. Mulder & Wagenmakers, 2016; Myung, Forster, & Browne, 2000a; Wagenmak-
ers & Waldorp, 2006a). This relative plausibility is quantified by the so-called
posterior model probability p(Mi | y) of model Mi given the data y (Berger &
Molina, 2005):

p(Mi | y) =
p(y | Mi) p(Mi)∑m
j=1 p(y | Mj) p(Mj)

, (2.2)

where the denominator is the sum of the marginal likelihood times the prior model
probability of all m models. In model comparison, the marginal likelihood for a
specific model is also referred to as the model evidence (Didelot, Everitt, Johansen,
& Lawson, 2011), the integrated likelihood (Kass & Raftery, 1995), the predictive
likelihood of the model (Gamerman & Lopes, 2006, Chapter 7), the predictive
probability of the data (Kass & Raftery, 1995), or the prior predictive density
(Ntzoufras, 2009). Note that conceptually the marginal likelihood of Equation 2.2
is the same as the marginal likelihood of Equation 2.1. However, for the latter
equation we dropped the model index because in parameter estimation we consider
only one model.

If only two models M1 and M2 are considered, Equation 2.2 can be used to
quantify the relative posterior model plausibility of modelM1 compared to model
M2. This relative plausibility is given by the ratio of the posterior probabilities
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of both models, and is referred to as the posterior model odds:

p(M1 | y)

p(M2 | y)︸ ︷︷ ︸
posterior

odds

=
p(M1)

p(M2)︸ ︷︷ ︸
prior
odds

×
p(y | M1)

p(y | M2)︸ ︷︷ ︸
Bayes
factor

. (2.3)

Equation 2.3 illustrates that the posterior model odds are the product of two
factors: The first factor is the ratio of the prior probabilities of both models –
the prior model odds. The second factor is the ratio of the marginal likelihoods of
both models – the so-called Bayes factor (Etz & Wagenmakers, 2017; Jeffreys, 1961;
Ly, Verhagen, & Wagenmakers, 2016a, 2016b; Robert, 2016). The Bayes factor
plays an important role in model comparison and is referred to as the “standard
Bayesian solution to the hypothesis testing and model selection problems” (Lewis
& Raftery, 1997, p. 648) and “the primary tool used in Bayesian inference for
hypothesis testing and model selection” (Berger, 2006, p. 378).

Third, the marginal likelihood plays an important role in Bayesian model av-
eraging (BMA; Hoeting et al., 1999) where aspects of parameter estimation and
model comparison are combined. As in model comparison, BMA considers sev-
eral models; however, it does not aim to identify a single best model. Instead it
fully acknowledges model uncertainty. Model-averaged parameter inference can be
obtained by combining, across all models, the posterior distribution of the param-
eter of interest weighted by each model’s posterior model probability, and as such
depends on the marginal likelihood of the models. This procedure assumes that
the parameter of interest has identical interpretation across the different models.
Model-averaged predictions can be obtained in a similar manner.

A problem that arises in all three areas – parameter estimation, model com-
parison, and BMA – is that an analytical expression of the marginal likelihood
can be obtained only for certain restricted examples. This is a pressing problem
in Bayesian modeling, and in particular in mathematical psychology where mod-
els can be non-linear and equipped with a large number of parameters, especially
when the models are implemented in a hierarchical framework. Such a frame-
work incorporates both commonalities and differences between participants of one
group by assuming that the model parameters of each participant are drawn from
a group-level distribution (for advantages of the Bayesian hierarchical framework
see Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011; Navarro, Griffiths, Steyvers,
& Lee, 2006; Rouder & Lu, 2005; Rouder, Lu, Morey, Sun, & Speckman, 2008;
Rouder et al., 2005; Scheibehenne & Pachur, 2015; Shiffrin et al., 2008; Wet-
zels, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010). For instance, consider
a four-parameter Bayesian hierarchical model with four group-level distributions
each characterized by two parameters and a group size of 30 participants; this then
results in 30× 4 individual-level parameters and 2× 4 group-level parameters for
a total of 128 parameters. In sum, even simple models quickly become complex
once hierarchical aspects are introduced and this frustrates the derivation of the
marginal likelihood.

To overcome this problem, several Monte Carlo sampling methods have been
proposed to approximate the marginal likelihood. In this tutorial we focus on four
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such methods: the bridge sampling estimator (Bennett, 1976; Chapter 5 of M.-
H. Chen, Shao, & Ibrahim, 2002; Meng & Wong, 1996), and its three commonly
used special cases – the naive Monte Carlo estimator, the importance sampling
estimator, and the generalized harmonic mean estimator (for alternative meth-
ods see Gamerman & Lopes, 2006, Chapter 7; and for alternative approximation
methods relevant to model comparison and BMA see Carlin & Chib, 1995; Green,
1995).1 As we will illustrate throughout this tutorial, the bridge sampler is accu-
rate, efficient, and relatively straightforward to implement (e.g., DiCiccio, Kass,
Raftery, & Wasserman, 1997; Frühwirth–Schnatter, 2004; Meng & Wong, 1996).

The goal of this tutorial is to bring the bridge sampling estimator to the atten-
tion of mathematical psychologists. We aim to explain this estimator and facilitate
its application by suggesting a step-by-step implementation scheme. To this end,
we first show how bridge sampling and the three special cases can be used to
approximate the marginal likelihood in a simple beta-binomial model. We begin
with the naive Monte Carlo estimator and progressively work our way up – via
the importance sampling estimator and the generalized harmonic mean estima-
tor – to the most general case considered: the bridge sampling estimator. This
order was chosen such that key concepts are introduced gradually and estima-
tors are of increasing complexity and sophistication. The first three estimators
are included in this tutorial with the sole purpose of facilitating the reader’s un-
derstanding of bridge sampling. In the second part of this tutorial, we outline
how the bridge sampling estimator can be used to derive the marginal likelihood
for the Expectancy Valence (EV; Busemeyer & Stout, 2002) model – a popular,
yet relatively complex reinforcement-learning model for the Iowa gambling task
(Bechara, Damasio, Damasio, & Anderson, 1994). We apply bridge sampling to
both an individual-level and a hierarchical implementation of the EV model.

Throughout the chapter, we use the software package R (R Core Team, 2019)
to implement the bridge sampling estimator for the various models. The interested
reader is invited to reproduce our results by downloading the code and all relevant
materials from our Open Science Framework folder at https://osf.io/f9cq4/.

2.2 Four Sampling Methods to Approximate the Marginal
Likelihood

In this section we outline four standard methods to approximate the marginal like-
lihood. For more detailed explanations and derivations, we recommend Ntzoufras
(2009, Chapter 11) and Gamerman and Lopes (2006, Chapter 7); a comparative
review of the different sampling methods is presented in DiCiccio et al. (1997).
The marginal likelihood is the probability of the observed data y given a specific
model of interestM, and is defined as the integral of the likelihood over the prior:

p(y | M)︸ ︷︷ ︸
marginal
likelihood

=

∫
p(y | θ,M)︸ ︷︷ ︸

likelihood

p(θ | M)︸ ︷︷ ︸
prior

dθ, (2.4)

1The appendix provides a derivation showing that the first three estimators are indeed special
cases of the bridge sampler.
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with θ a vector containing the model parameters. Equation 2.4 illustrates that
the marginal likelihood can be interpreted as a weighted average of the likelihood
of the data given a specific value for θ where the weight is the a priori plausibility
of that specific value. Equation 2.4 can therefore be written as an expected value:

p(y | M) = Eprior [p(y | θ,M)] ,

where the expectation is taken with respect to the prior distribution. This idea is
central to the four sampling methods that we discuss in this tutorial.

2.2.1 Introduction of the Running Example: The
Beta-Binomial Model

Our running example focuses on estimating the marginal likelihood for a binomial
model assuming a uniform prior on the rate parameter θ (i.e., the beta-binomial
model). Consider a single participant who answered k = 2 out of n = 10 true/false
questions correctly. Assume that the number of correct answers follows a binomial
distribution, that is, k ∼ Binomial(n, θ) with θ ∈ (0, 1), where θ represents the
latent probability for answering any one question correctly. The probability mass
function (PMF) of the binomial distribution is given by:

Binomial(k | n, θ) =

(
n

k

)
θk(1− θ)n−k, (2.5)

where k, n ∈ Z≥0, and k ≤ n. The PMF of the binomial distribution serves as the
likelihood function in our running example.

In the Bayesian framework, we also have to specify the prior distribution of
the model parameters; the prior distribution expresses our knowledge about the
parameters before the data have been observed. In our running example, we
assume that all values of θ are equally likely a priori. This prior belief is captured
by a uniform distribution across the range of θ, that is, θ ∼ Uniform(0, 1) which
can equivalently be written in terms of a beta distribution θ ∼ Beta(1, 1). This
prior distribution is represented by the dotted line in Figure 2.1. It is evident that
the density of the prior distribution equals 1 for all values of θ. One advantage of
expressing the prior distribution by a beta distribution is that its two parameters
(i.e., in its general form the shape parameters α and β) can be thought of as
counts of “prior successes” and “prior failures”, respectively. In its general form,
the PDF of a Beta(α, β) distribution (α, β > 0) is given by:

Beta(θ; α, β) =
θα−1(1− θ)β−1

B(α, β)
,

where B(α, β) is the beta function that is defined as: B(α, β) =
∫ 1

0
tα−1(1 −

t)β−1dt = Γ(α)Γ(β)
Γ(α+β) , and Γ(n) = (n− 1)! for n ∈ N.

2.2.1.1 Analytical Derivation of the Marginal Likelihood

As we will see in this section, the beta-binomial model constitutes one of the rare
examples where the marginal likelihood is analytic. Assuming a general k and n,
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Figure 2.1: Prior and posterior distribution for the rate parameter θ from the beta-
binomial model. The Beta(1, 1) prior on the rate parameter θ is represented by the
dotted line; the Beta(3, 9) posterior distribution is represented by the solid line and
was obtained after having observed 2 correct responses out of 10 trials. Available at
https://tinyurl.com/yc8bw98v under CC license https://creativecommons

.org/licenses/by/2.0/.

we obtain the marginal likelihood as:

p(k | n)
Eq. 2.4

=

∫ 1

0

p(k | n, θ) p(θ) dθ =

∫ 1

0

(
n

k

)
θk(1− θ)n−k 1 dθ

=

(
n

k

)
B(k + 1, n− k + 1) =

1

n+ 1
, (2.6)

where we suppress the “model” in the conditioning part of the probability state-
ments because we focus on a single model in this running example. Using k = 2
and n = 10 of our example, we obtain: p(k = 2 | n = 10) = 1/11 ≈ 0.0909.
This value will be estimated in the remainder of the running example using the
naive Monte Carlo estimator, the importance sampling estimator, the generalized
harmonic mean estimator, and finally the bridge sampling estimator.

As we will see below, the importance sampling estimator, generalized harmonic
mean estimator, and bridge sampling estimator require samples from the posterior
distribution. These samples can be obtained using computer software such as
WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), JAGS (Plummer, 2003),
or Stan (Stan Development Team, 2016), even when the marginal likelihood that
functions here as a normalizing constant is not known (Equation 2.1). However,
in our running example MCMC samples are not required because we can derive
an analytical expression of the posterior distribution for θ after having observed
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the data. Using the analytic expression of the marginal likelihood (Equation 2.6)
and Bayes’ theorem, we obtain:

p(θ | k, n) =
p(k | n, θ) p(θ)

p(k | n)
=

(
n
k

)
θk(1− θ)n−k 1(

n
k

)
B(k + 1, n− k + 1)

=
θk(1− θ)n−k

B(k + 1, n− k + 1)
,

which we recognize as the PDF of the Beta(k + 1, n − k + 1) distribution. Thus,
if we assume a uniform prior on θ and observe k = 2 correct responses out of
n = 10 trials, we obtain a Beta(3, 9) distribution as posterior distribution. This
distribution is represented by the solid line in Figure 2.1. In general, if k | n, θ ∼
Binomial(n, θ) and θ ∼ Beta(1, 1), then θ | n, k ∼ Beta(k + 1, n− k + 1).

2.2.2 Method 1: The Naive Monte Carlo Estimator of the
Marginal Likelihood

The simplest method to approximate the marginal likelihood is provided by the
naive Monte Carlo estimator (Hammersley & Handscomb, 1964; Raftery & Ban-
field, 1991). This method uses the standard definition of the marginal likelihood
(Equation 2.4), and relies on the central idea that the marginal likelihood can
be written as an expected value with respect to the prior distribution, that is,
p(y) = Eprior [p(y | θ)]. This expected value of the likelihood of the data with re-
spect to the prior can be approximated by evaluating the likelihood in N samples
from the prior distribution for θ and averaging the resulting values. This yields
the naive Monte Carlo estimator p̂1(y):

p̂1(y) =
1

N

N∑
i=1

p(y | θ̃i)︸ ︷︷ ︸
average likelihood

, θ̃i ∼ p(θ)︸ ︷︷ ︸
samples from the
prior distribution

. (2.7)

2.2.2.1 Running Example

To obtain the naive Monte Carlo estimate of the marginal likelihood in our running
example, we need N samples from the Beta(1, 1) prior distribution for θ. For
illustrative purposes, we limit the number of samples to 12 whereas in practice
one should take N to be very large. We obtain the following samples:

{θ̃1, θ̃2, . . . , θ̃12} ={0.58, 0.76, 0.03, 0.93, 0.27, 0.97, 0.45, 0.46, 0.18, 0.64, 0.06, 0.15},

where we use the tilde symbol to emphasize that we refer to a sampled value. All
sampled values are represented by the gray dots in Figure 2.2.

Following Equation 2.7, the next step is to calculate the likelihood (Equa-
tion 2.5) for each θ̃i, and then to average all obtained likelihood values. This
yields the naive Monte Carlo estimate of the marginal likelihood:

p̂1(k = 2 | n = 10) =
1

12

12∑
i=1

p(k = 2 | n = 10, θ̃i) =
1

12

12∑
i=1

(
n

k

)
(θ̃i)

k(1− θ̃i)n−k
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Figure 2.2: Illustration of the naive Monte Carlo estimator for the beta-
binomial example. The dotted line represents the prior distribution and the
solid line represents the posterior distribution that was obtained after having
observed 2 correct responses out of 10 trials. The gray dots represent the
12 samples {θ̃1, θ̃2, . . . , θ̃12} randomly drawn from the Beta(1, 1) prior distribu-
tion. Available at https://tinyurl.com/y8uf6t8f under CC license https://

creativecommons.org/licenses/by/2.0/.

=
1

12

(
10

2

)(
0.582(1− 0.58)8 + . . .+ 0.152(1− 0.15)8

)
= 0.0945.

2.2.3 Method 2: The Importance Sampling Estimator of the
Marginal Likelihood

The naive Monte Carlo estimator introduced in the last section performs well if the
prior and posterior distribution have a similar shape and strong overlap. However,
the estimator is unstable if the posterior distribution is peaked relative to the prior
(e.g., Gamerman & Lopes, 2006; Ntzoufras, 2009). In such a situation, most of the
sampled values for θ result in likelihood values close to zero and contribute only
minimally to the estimate. This means that those few samples that result in high
likelihood values dominate estimates of the marginal likelihood. Consequently, the
variance of the estimator is increased (Newton & Raftery, 1994; Pajor, 2017).2

2The interested reader is referred to Pajor (2017) for a recent improvement on the calcu-
lation of the naive Monte Carlo estimator. The proposed improvement involves trimming the
prior distribution in such a way that regions with low likelihood values are eliminated, thereby
increasing the accuracy and efficiency of the estimator.
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2.2. Four Sampling Methods to Approximate the Marginal Likelihood

The importance sampling estimator, on the other hand, overcomes this short-
coming by boosting sampled values in regions of the parameter space where the
integrand of Equation 2.4 is large. This is realized by using samples from a so-
called importance density gIS(θ) instead of the prior distribution. The advantage
of sampling from an importance density is that values for θ that result in high like-
lihood values are sampled most frequently, whereas values for θ with low likelihood
values are sampled only rarely.

To derive the importance sampling estimator, Equation 2.4 is used as starting
point which is then extended by the importance density gIS(θ):

p(y) =

∫
p(y | θ) p(θ) dθ =

∫
p(y | θ) p(θ)

gIS(θ)

gIS(θ)
dθ =

∫
p(y | θ) p(θ)
gIS(θ)

gIS(θ) dθ

= EgIS(θ)

(
p(y | θ) p(θ)
gIS(θ)

)
.

This yields the importance sampling estimator p̂2(y):

p̂2(y) =
1

N

N∑
i=1

p(y | θ̃i) p(θ̃i)
gIS(θ̃i)︸ ︷︷ ︸

average adjusted likelihood

, θ̃i ∼ gIS(θ).︸ ︷︷ ︸
samples from the

importance density

(2.8)

A suitable importance density should (1) be easy to evaluate; (2) have the
same domain as the posterior distribution; (3) closely resemble the posterior dis-
tribution; and (4) have fatter tails than the posterior distribution (Neal, 2001;
Vandekerckhove, Matzke, & Wagenmakers, 2015). The latter criterion ensures
that values in the tails of the distribution cannot misleadingly dominate the esti-
mate (Neal, 2001).3

2.2.3.1 Running Example

To obtain the importance sampling estimate of the marginal likelihood in our
running example, we first need to choose an importance density gIS(θ). An im-
portance density that fulfills the four above mentioned desiderata is a mixture
between a beta density that provides the best fit to the posterior distribution
and a uniform density across the range of θ (Vandekerckhove et al., 2015). The
relative impact of the uniform density is quantified by a mixture weight γ that
ranges between 0 and 1. The larger γ, the higher the influence of the uniform
density resulting in a less peaked distribution with thick tails. If γ = 1, the beta

3To illustrate the need for an importance density with fatter tails than the posterior dis-
tribution, imagine you sample from the tail region of an importance density with thinner tails.
In this case, the numerator in Equation 2.8 would be substantially larger than the denomina-
tor resulting in a very large ratio. Since this specific ratio is only one component of the sum
displayed in Equation 2.8, this component would dominate the importance sampling estimate.
Hence, thinner tails of the importance density run the risk of producing unstable estimates across
repeated computations. In fact, the estimator may have infinite variance (e.g., Ionides, 2008;
Owen & Zhou, 2000).
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mixture density simplifies to the uniform distribution on [0, 1];4 and if γ = 0, the
beta mixture density simplifies to the beta density that provides the best fit to
the posterior distribution.

In our specific example, we already know that the Beta(3, 9) density is the
beta density that provides the best fit to the posterior distribution because this is
the analytic expression of the posterior distribution. However, to demonstrate the
general case, we show how we can find the beta distribution with the best fit to
the posterior distribution using the method of moments. This particular method
works as follows. First, we draw samples from our Beta(3, 9) posterior distribution
and obtain:5

{θ∗1 , θ∗2 , . . . , θ∗12} ={0.22, 0.16, 0.09, 0.35, 0.06, 0.27, 0.26, 0.41, 0.20, 0.43, 0.21, 0.12}.

Note that here we use θ∗i to refer to the ith sample from the posterior distribution
to distinguish it from the previously used θ̃i – the ith sample from a distribution
other than the posterior distribution, such as a prior distribution or an importance
density. Second, we compute the mean and variance of these posterior samples.
We obtain a mean of θ̄∗ = 0.232 and a variance of s2

θ∗ = 0.014.
Third, knowing that, if X ∼ Beta(α, β), then E(X) = α/(α+ β) and V (X) =

αβ/
[
(α+ β)2(α+ β + 1)

]
, we obtain the following method of moment estimates

for α and β:

α̂ = θ̄∗

(
θ̄∗(1− θ̄∗)

s2
θ∗

− 1

)
= 0.232

(
0.232(1− 0.232)

0.014
− 1

)
= 2.721,

β̂ = (1− θ̄∗)

(
θ̄∗(1− θ̄∗)

s2
θ∗

− 1

)
= (1− 0.232)

(
0.232(1− 0.232)

0.014
− 1

)
= 9.006.

Using a mixture weight on the uniform component of γ = 0.30 – a choice that was
made to ensure that, visually, the tails of the importance density are clearly thicker
than the tails of the posterior distribution – we obtain the following importance
density: γ×Beta(θ; 1, 1) + (1− γ)×Beta(θ; α̂, β̂) = .3 + .7 Beta(θ; 2.721, 9.006).
This importance density is represented by the dashed line in Figure 2.3. The figure
also shows the posterior distribution (solid line). As is evident from the figure,
the beta mixture importance density resembles the posterior distribution, but has
fatter tails.

In general, it is advised to choose the mixture weight on the uniform component
γ small enough to make the estimator efficient, yet large enough to produce fat
tails to stabilize the estimator. A suitable mixture weight can be realized by
gradually minimizing the mixture weight and investigating whether stability is
still guaranteed (i.e., robustness analysis).

4In our running example, the importance sampling estimator then reduces to the naive Monte
Carlo estimator.

5Note that, when the analytical expression of the posterior distribution is not known, pos-
terior samples can be obtained using computer software such as WinBUGS, JAGS, or Stan,
even when the marginal likelihood that functions here as a normalizing constant is not known
(Equation 2.1).
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Figure 2.3: Illustration of the importance sampling estimator for the beta-binomial
model. The dashed line represents our beta mixture importance density and
the solid gray line represents the posterior distribution that was obtained after
having observed 2 correct responses out of 10 trials. The gray dots represent
the 12 samples {θ̃1, θ̃2, . . . , θ̃12} randomly drawn from our beta mixture impor-
tance density. Available at https://tinyurl.com/yc7ho7hr under CC license
https://creativecommons.org/licenses/by/2.0/.

Drawing N = 12 samples for θ from our beta mixture importance density
results in:

{θ̃1, θ̃2, . . . , θ̃12} ={0.11, 0.07, 0.32, 0.25, 0.41, 0.39, 0.25, 0.13, 0.64, 0.26, 0.74, 0.92}.

These samples are represented by the gray dots in Figure 2.3.
The final step is to compute the average adjusted likelihood for the 12 samples

using Equation 2.8. This yields the importance sampling estimate of the marginal
likelihood as:

p̂2(k = 2 | n = 10) =
1

12

12∑
i=1

p(k = 2 | n = 10, θ̃i) p(θ̃i)

.3 + .7 Beta(θ̃i; 2.721, 9.006)

=
1

12

( (
10
2

)
0.112(1− 0.11)8 × 1

.3 + .7 Beta(0.11; 2.721, 9.006)
+ . . .+

(
10
2

)
0.922(1− 0.92)8 × 1

.3 + .7 Beta(0.92; 2.721, 9.006)

)

=
1

12

(
10

2

)
(0.0021 + . . .+ 7.3× 10−9)

= 0.0827.
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2.2.4 Method 3: The Generalized Harmonic Mean Estimator
of the Marginal Likelihood

Just as the importance sampling estimator, the generalized harmonic mean estima-
tor focuses on regions of the parameter space where the integrand of Equation 2.4
is large by using an importance density gIS(θ) (Gelfand & Dey, 1994).6 How-
ever, in contrast to the importance sampling estimator, the generalized harmonic
mean estimator requires an importance density with thinner tails for an analogous
reason as in importance sampling.

To derive the generalized harmonic mean estimator, also known as reciprocal
importance sampling estimator (Frühwirth–Schnatter, 2004), we use the following
identity:

1

p(y)
=

∫
1

p(y)
gIS(θ) dθ =

∫
p(θ | y)

p(y | θ)p(θ)
gIS(θ) dθ =

∫
gIS(θ)

p(y | θ)p(θ)
p(θ | y) dθ

= Epost

(
gIS(θ)

p(y | θ) p(θ)

)
.

Rewriting results in:

p(y) =

(
Epost

(
gIS(θ)

p(y | θ)p(θ)

))−1

,

which is used to define the generalized harmonic mean estimator p̂3(y) (Gelfand
& Dey, 1994) as follows:

p̂3(y) =

 1

N

N∑
j=1

importance density︷ ︸︸ ︷
gIS(θ∗j )

p(y | θ∗j )︸ ︷︷ ︸
likelihood

p(θ∗j )︸ ︷︷ ︸
prior


−1

, θ∗j ∼ p(θ | y) .︸ ︷︷ ︸
samples from the

posterior distribution

(2.9)

Note that the generalized harmonic mean estimator – in contrast to the im-
portance sampling estimator – evaluates samples from the posterior distribution.
In addition, note that the ratio in Equation 2.9 is the reciprocal of the ratio in
Equation 2.8; this explains why the importance density for the generalized har-
monic mean estimator should have thinner tails than the posterior distribution in
order to avoid inflation of the ratios that are part of the summation displayed in
Equation 2.9. Thus, in the case of the generalized harmonic mean estimator, a
suitable importance density should (1) have thinner tails than the posterior dis-
tribution (DiCiccio et al., 1997; Newton & Raftery, 1994), and as in importance
sampling, it should (2) be easy to evaluate; (3) have the same domain as the
posterior distribution; and (4) closely resemble the posterior distribution.

6Note that the generalized harmonic mean estimator is a more stable version of the harmonic
mean estimator (Newton & Raftery, 1994). A problem of the harmonic mean estimator is that
it is dominated by the samples that have small likelihood values.
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2.2.4.1 Running Example

To obtain the generalized harmonic mean estimate of the marginal likelihood in our
running example, we need to choose a suitable importance density. In our running
example, an importance density that fulfills the four above mentioned desiderata
can be obtained by following four steps: First, we draw N = 12 samples from the
posterior distribution. Reusing the samples from the last section, we obtain:

{θ∗1 , θ∗2 , . . . , θ∗12} ={0.22, 0.16, 0.09, 0.35, 0.06, 0.27, 0.26, 0.41, 0.20, 0.43, 0.21, 0.12}.

Second, we probit-transform all posterior samples (i.e., ξ∗j = Φ−1(θ∗j ), with j ∈
{1, 2, . . . , 12}).7 The result of this transformation is that the samples range across
the entire real line instead of the (0, 1) interval only. We obtain:

{ξ∗1 , ξ∗2 , . . . , ξ∗12} ={−0.77,−0.99,−1.34,−0.39,−1.55,−0.61,−0.64,−0.23,−0.84,

− 0.18,−0.81,−1.17}.

These probit-transformed samples are represented by the gray dots in Figure 2.4.
Third, we search for the normal distribution that provides the best fit to the

probit-transformed posterior samples ξ∗j . Using the method of moments, we ob-
tain as estimates µ̂ = −0.793 and σ̂ = 0.423. Note that the choice of a normal
importance density justifies step 2; the probit transformation (or an equivalent
transformation) was required to match the range of the posterior distribution to
the one of the normal distribution.

Finally, as importance density we choose a normal distribution with mean
µ̂ = −0.793 and standard deviation σ̂ = 0.423/1.5. This additional division by 1.5
is to ensure thinner tails of the importance density than of the probit-transformed
posterior distribution (for a discussion of alternative importance densities see Di-
Ciccio et al., 1997). We decided to divide σ̂ by 1.5 for illustrative purposes only.
Our importance density is displayed in Figure 2.4 (dashed line) together with the
probit-transformed posterior distribution (solid line).

The generalized harmonic mean estimate can now be obtained using either the
original posterior samples θ∗j or the probit-transformed samples ξ∗j . Here we use
the latter ones (see also Overstall & Forster, 2010). Incorporating our specific
importance density and a correction for having used the probit-transformation,
Equation 2.9 becomes:8

p̂3(y) =


1

N

N∑
j=1

importance density︷ ︸︸ ︷
1

σ̂
φ

(
ξ∗j − µ̂
σ̂

)
p
(
y | Φ

(
ξ∗j
))︸ ︷︷ ︸

likelihood

φ
(
ξ∗j
)︸ ︷︷ ︸

prior



−1

, ξ∗j = Φ−1(θ∗j ) and θ∗j ∼ p(θ | y) .︸ ︷︷ ︸
probit-transformed samples

from the posterior distribution

(2.10)

7Other transformation are conceivable (e.g., logit transformation).
8A detailed explanation is provided in the appendix. Note that using the original posterior

samples θ∗j would involve transforming the importance density (e.g., the normal density on ξ) to

the (0, 1) interval.
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Figure 2.4: Illustration of the generalized harmonic mean estimator for the beta-
binomial model. The solid line represents the probit-transformed Beta(3, 9)
posterior distribution that was obtained after having observed 2 correct re-
sponses out of 10 trials, and the dashed line represents the importance den-
sity N (ξ; µ = −0.793, σ = 0.423/1.5). The gray dots represent the 12 probit-
transformed samples {ξ∗1 , ξ∗2 , . . . , ξ∗12} randomly drawn from the Beta(3, 9) poste-
rior distribution. Available at https://tinyurl.com/yazgk8kj under CC license
https://creativecommons.org/licenses/by/2.0/.

For our beta-binomial model, we now obtain the generalized harmonic mean
estimate of the marginal likelihood as:

p̂3(k = 2 | n = 10) =

 1

12

12∑
j=1

1
0.423/1.5 φ

(
ξ∗j+0.793

0.423/1.5

)
p(k = 2 | n = 10,Φ(ξ∗j )) φ(ξ∗j )

−1

=

 1

12

 1
0.423/1.5 φ

(
−0.77+0.793

0.423/1.5

)
(

10
2

)
0.222(1− 0.22)8 φ(−0.77)

+ . . .+

1
0.423/1.5 φ

(
−1.17+0.793

0.423/1.5

)
(

10
2

)
0.122(1− 0.12)8 φ(−1.17)

−1

=

(
1

12

1(
10
2

) (716.89 + . . .+ 555.50)

)−1

= 0.092.
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2.2.5 Method 4: The Bridge Sampling Estimator of the
Marginal Likelihood

As became evident in the last two sections, both the importance sampling esti-
mator and the generalized harmonic mean estimator impose strong constraints on
the tail behavior of the importance density relative to the posterior distribution
to guarantee a stable estimator. Such requirements can make it difficult to find a
suitable importance density, especially when a high-dimensional posterior is con-
sidered. The bridge sampler, on the other hand, alleviates such requirements (e.g.,
Frühwirth–Schnatter, 2004).

Originally, bridge sampling was developed to directly estimate the Bayes factor,
that is, the ratio of the marginal likelihoods of two models M1 and M2 (e.g.,
Jeffreys, 1961; Kass & Raftery, 1995). However, in this tutorial, we use a version
of bridge sampling that allows us to approximate the marginal likelihood of a single
model (for an earlier application see for example Overstall & Forster, 2010). This
version is based on the following identity:

1 =

∫
p(y | θ) p(θ) h(θ) g(θ) dθ∫
p(y | θ) p(θ) h(θ) g(θ) dθ

, (2.11)

where g(θ) is the so-called proposal distribution and h(θ) the so-called bridge
function. Multiplying both sides of Equation 2.11 by the marginal likelihood p(y)
results in:

p(y) =

∫
p(y | θ) p(θ) h(θ) g(θ) dθ∫
p(y | θ) p(θ)

p(y)
h(θ) g(θ) dθ

=

∫
p(y | θ) p(θ) h(θ)

proposal
distribution︷︸︸︷
g(θ) dθ∫

h(θ) g(θ) p(θ | y)︸ ︷︷ ︸
posterior

distribution

dθ

=
Eg(θ) [p(y | θ) p(θ) h(θ)]

Epost [h(θ) g(θ)]
.

The marginal likelihood can now be approximated using:

p̂(y) =
1
N2

∑N2

i=1 p(y | θ̃i) p(θ̃i) h(θ̃i)

1
N1

∑N1

j=1 h(θ∗j ) g(θ∗j )
, θ̃i ∼ g(θ)︸ ︷︷ ︸

samples from the
proposal distribution

, θ∗j ∼ p(θ | y) .︸ ︷︷ ︸
samples from the

posterior distribution

(2.12)

Equation 2.12 illustrates that we need samples from both the proposal dis-
tribution and the posterior distribution to obtain the bridge sampling estimate
for the marginal likelihood. However, before we can apply Equation 2.12 to our
running example, we have to discuss how we can obtain a suitable proposal dis-
tribution and bridge function. Conceptually, the proposal distribution is similar
to an importance density, should resemble the posterior distribution, and should
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have sufficient overlap with the posterior distribution. According to Overstall and
Forster (2010), a convenient proposal distribution is often a normal distribution
with its first two moments chosen to match those of the posterior distribution. In
our experience, this choice for the proposal distribution works well for a wide range
of scenarios. However, this proposal distribution might produce unstable estimates
in case of high-dimensional posterior distributions that clearly do not follow a mul-
tivariate normal distribution. In such a situation, it might be advisable to consider
more sophisticated versions of bridge sampling (e.g., Frühwirth–Schnatter, 2004;
Meng & Schilling, 2002; L. Wang & Meng, 2016).

2.2.5.1 Choosing the Optimal Bridge Function

In this tutorial we use the bridge function defined as (Meng & Wong, 1996):

h(θ) = C · 1

s1p(y | θ)p(θ) + s2p(y)g(θ)
, (2.13)

where s1 = N1

N2+N1
, s2 = N2

N2+N1
, and C a constant; its particular value is not

required because h(θ) is part of both the numerator and the denominator of Equa-
tion 2.12, and therefore the constant C cancels. This particular bridge function
is referred to as the “optimal bridge function” because Meng and Wong (1996,
p. 837) proved that it minimizes the relative mean-squared error (Equation 2.16).

Equation 2.13 shows that the optimal bridge function depends on the marginal
likelihood p(y) which is the very entity we want to approximate. We can resolve
this issue by applying an iterative scheme that updates an initial guess of the
marginal likelihood until the estimate of the marginal likelihood has converged
according to a predefined tolerance level. To do so, we insert the expression for
the optimal bridge function (Equation 2.13) in Equation 2.12 (Meng & Wong,
1996). The formula to approximate the marginal likelihood on iteration t + 1 is
then specified as follows:

p̂(y)(t+1) =

1

N2

N2∑
i=1

p(y | θ̃i)p(θ̃i)
s1p(y | θ̃i)p(θ̃i) + s2p̂(y)(t)g(θ̃i)

1

N1

N1∑
j=1

g(θ∗j )

s1p(y | θ∗j )p(θ∗j ) + s2p̂(y)(t)g(θ∗j )

,

θ̃i ∼ g(θ)︸ ︷︷ ︸
samples from the

proposal distribution

, θ∗j ∼ p(θ | y)︸ ︷︷ ︸
samples from the

posterior distribution

,

(2.14)

where p̂(y)(t) denotes the estimate of the marginal likelihood on iteration t of
the iterative scheme. Note that Equation 2.14 illustrates why bridge sampling is
robust to the tail behavior of the proposal distribution relative to the posterior
distribution; the difference to the importance sampling and generalized harmonic
mean estimator is that, in the case of the bridge sampling estimator, samples from
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the tail region cannot inflate individual summation terms and thus dominate the
estimate. To illustrate this, we consider what happens to the bridge sampling es-
timator, the importance sampling estimator, and the generalized harmonic mean
estimator in case (1) the proposal/importance distribution has fatter tails than the
posterior distribution, and (2) the proposal/importance distribution has thinner
tails than the posterior distribution (see also Frühwirth–Schnatter, 2004). Specif-
ically, we look at a single term in the respective sums and consider the limit of
that term as we move further and further out in the tails. This is insightful since
a single term can have a lasting effect on the estimator (e.g., in case a single term
in a sum is very large or even infinite).

In case (1) (i.e., the proposal/importance distribution has fatter tails than the
posterior), the ratio in the importance sampling estimator (i.e., Equation 2.8)
goes to zero as we move further out in the tails. Since samples in the tails may
only be obtained occasionally and a zero term in the sum does not inflate the
estimate this is not a reason for concern. In contrast, when we consider the ratio
in the generalized harmonic mean estimator (i.e., Equation 2.9), we see that the
ratio goes to infinity as we move further out in the tails. Even if this occurs only
very rarely, this is an issue since the resulting value will dominate the estimate.
Consequently, the resulting estimator may have a large variance since samples from
the tail regions may be obtained only occasionally across repeated applications.
For the bridge sampling estimator (i.e., Equation 2.14), we need to consider the
ratio in the numerator and denominator. The ratio in the numerator will go to
zero and the ratio in the denominator will go to 1

s2 p̂(y)(t)
. Hence, both of these

ratios are bounded and will not inflate the two sums, hence also not the resulting
estimate.

In case (2) (i.e., the proposal/importance distribution has thinner tails than
the posterior), the ratio in the importance sampling estimator (i.e., Equation 2.8)
goes to infinity as we move further out in the tails, inflating the estimate. In
contrast, when we consider the ratio in the generalized harmonic mean estimator
(i.e., Equation 2.9), we see that the ratio goes to zero. As explained above, this
is not a reason for concern. These considerations explain why in importance
sampling, the importance distribution should have fatter tails than the posterior
whereas for the generalized harmonic mean estimator, it should have thinner tails.
For the bridge sampling estimator (i.e., Equation 2.14), the ratio in the numerator
will go to 1/s1 and the ratio in the denominator will go to zero. Again, both of
these ratios are bounded making the bridge sampling estimator more robust to
the tail behavior than the other two estimators. This of course assumes that not
all terms in the denominator (for case (2)) and the numerator (for case (1)) will
be zero, that is, the proposal and the posterior distribution have sufficient overlap.
In the extreme scenario of no overlap the bridge sampling estimate is not defined
because both sums of Equation 2.14 would be zero.

Extending the numerator of the right side of Equation 2.14 with 1/g(θ̃i)

1/g(θ̃i)
, and

the denominator with
1/g(θ∗j )

1/g(θ∗j ) , and subsequently defining l1,j :=
p(y|θ∗j )p(θ∗j )

g(θ∗j ) and

l2,i := p(y|θ̃i)p(θ̃i)
g(θ̃i)

, we obtain the formula for the iterative scheme of the bridge
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sampling estimator p̂4(y)(t+1) at iteration t+ 1 (Meng & Wong, 1996, p. 837):

p̂4(y)(t+1) =

1

N2

N2∑
i=1

p(y | θ̃i)p(θ̃i)
s1p(y | θ̃i)p(θ̃i) + s2p̂4(y)(t)g(θ̃i)

1/g(θ̃i)

1/g(θ̃i)

1

N1

N1∑
j=1

g(θ∗j )

s1p(y | θ∗j )p(θ∗j ) + s2p̂4(y)(t)g(θ∗j )

1/g(θ∗j )

1/g(θ∗j )

=

1

N2

N2∑
i=1

l2,i

s1l2,i + s2p̂4(y)(t)

1

N1

N1∑
j=1

1

s1l1,j + s2p̂4(y)(t)

, θ̃i ∼ g(θ)︸ ︷︷ ︸
samples from the

proposal distribution

, θ∗j ∼ p(θ | y)︸ ︷︷ ︸
samples from the

posterior distribution

.

(2.15)

Equation 2.15 suggests that, in order to obtain the bridge sampling estimate
of the marginal likelihood, a number of requirements need to be fulfilled. First,
we need N2 samples from the proposal distribution g(θ) and N1 samples from
the posterior distribution p(θ | y). Second, for all N2 samples from the proposal
distribution, we have to evaluate l2,i. This involves obtaining the value of the
unnormalized posterior (i.e., the product of the likelihood times the prior) and of
the proposal distribution for all samples. Third, we evaluate l1,j for all N1 samples
from the posterior distribution. This is analogous to evaluating l2,i. Fourth, we
have to determine the constants s1 and s2 that only depend on N1 and N2. Fifth,
we need an initial guess of the marginal likelihood p̂4(y). Since some of these
five requirements can be obtained easier than others, we will point out possible
challenges.

A first challenge is that using a suitable proposal distribution may involve
transforming the posterior samples. Consequently, we have to determine how
the transformation affects the definition of the bridge sampling estimator for the
marginal likelihood (Equation 2.15).

A second challenge is how to use theN1 samples from the posterior distribution.
One option is to use allN1 samples for both fitting the proposal distribution and for
computing the bridge sampling estimate. However, Overstall and Forster (2010)
showed that such a procedure may result in an underestimation of the marginal
likelihood. To obtain more reliable estimates they propose to divide the posterior
samples in two parts; the first part is used to obtain the best-fitting proposal
distribution, and the second part is used to compute the bridge sampling estimate.
Throughout this tutorial, we use two equally large parts. In the remainder we
therefore state that we draw 2N1 samples from the posterior distribution. The
firstN1 of the total of 2N1 samples are used for fitting the proposal distribution and
the remaining N1 samples are used in the iterative scheme (i.e., Equation 2.15).9

9In case the posterior samples are obtained via MCMC sampling using multiple chains, we
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Figure 2.5: Schematic illustration of the steps involved in obtaining the bridge sam-
pling estimate of the marginal likelihood. Available at https://tinyurl.com/

y7b2kze7 under CC license https://creativecommons.org/licenses/by/2.0/.

To summarize, the discussion of the requirements and challenges encountered
in bridge sampling illustrated that the bridge sampling estimator imposes less
strict requirements on the proposal distribution than the importance sampling
and generalized harmonic mean estimator and allows for an almost automatic
application due to the default choice of the bridge function.10

2.2.5.2 Running Example

To obtain the bridge sampling estimate of the marginal likelihood in the beta-
binomial example, we follow the eight steps illustrated in Figure 2.5:

1. We draw 2N1 = 24 samples from the Beta(3, 9) posterior distribution for θ.
We obtain the following sample of 24 values:

{θ∗1 , θ∗2 , . . . , θ∗24} ={0.22, 0.16, 0.09, 0.35, 0.06, 0.27, 0.26, 0.41, 0.20, 0.43, 0.21,

0.12, 0.15, 0.21, 0.24, 0.18, 0.12, 0.22, 0.15, 0.22, 0.23, 0.26,

0.29, 0.28}.

Note that the first 12 samples equal the ones used in the last section, whereas
the last 12 samples were obtained from drawing again 12 values from the
Beta(3, 9) posterior distribution for θ.

use the first half of the iterations per chain for fitting the proposal distribution and the second
half of the iterations per chain for the iterative scheme.

10For an explanation of where the name “bridge” comes from see https://osf.io/9jzm3/.
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2. We choose a proposal distribution.
Here we opt for an approach that can be easily generalized to models with
multiple parameters and select a normal distribution as the proposal distri-
bution g(θ).11

3. We transform the first batch of N1 posterior samples.
Since we use a normal proposal distribution, we have to transform the poste-
rior samples from the rate scale to the real line so that the range of the poste-
rior distribution matches the range of the proposal distribution. This can be
achieved by probit-transforming the posterior samples, that is, ξ∗j = Φ−1(θ∗j )
with j ∈ {1, 2, . . . , 12}. We obtain:

{ξ∗1 , ξ∗2 , . . . , ξ∗12} ={−0.77,−0.99,−1.34,−0.39,−1.55,−0.61,−0.64,−0.23,

− 0.84,−0.18,−0.81,−1.17}.

4. We fit the proposal distribution to the first batch of N1 probit-transformed
posterior samples.
We use the method of moment estimates µ̂ = −0.793 and σ̂ = 0.423 from the
first batch of N1 probit-transformed posterior samples to obtain our proposal

distribution g(ξ;µ = −0.793, σ = 0.423) = 1
0.423 φ

(
ξ+0.793

0.423

)
.

5. We draw N2 samples from the proposal distribution.
We obtain:

{ξ̃1, ξ̃2, . . . , ξ̃12} ={−1.11,−0.63,−1.48,−0.59,−0.48,−0.69,−0.74,−0.51,

− 0.82,−1.54,−0.76,−0.96}.

6. We calculate l2,i for all N2 samples from the proposal distribution.
This step involves assessing the value of the unnormalized posterior and
the proposal distribution for all N2 samples from the proposal distribution.
As in the running example for the generalized harmonic mean estimator,

we obtain the unnormalized posterior as: p
(
k = 2 | n = 10,Φ

(
ξ̃i

))
φ
(
ξ̃i

)
,

where φ
(
ξ̃i

)
comes from using the change-of-variable method (see running

example for the generalized harmonic mean estimator and the appendix for
details). Thus, as in the case of the generalized harmonic mean estimator,
the uniform prior on θ translates to a standard normal prior on ξ. The values
of the proposal distribution can easily be obtained (for example using the R

software).

7. We transform the second batch of N1 posterior samples.
As in step 2, we use the probit transformation and obtain:

{ξ∗13, ξ
∗
14, . . . , ξ

∗
24} ={−1.04,−0.81,−0.71,−0.92,−1.17,−0.77,−1.04,−0.77,

− 0.74,−0.64,−0.55,−0.58}.
11There exist several candidates for the proposal distribution. Alternative proposal distri-

butions are, for example, the importance density that we used for the importance sampling
estimator or for the generalized harmonic mean estimator, or the analytically derived Beta(3, 9)
posterior distribution.
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8. We calculate l1,j for the second batch of N1 probit-transformed samples from
the posterior distribution.
This is analogous to step 6.

9. We run the iterative scheme (Equation 2.15) until our predefined tolerance
criterion is reached.
As tolerance criterion we choose |p̂4(k = 2 | n = 10)(t+1) − p̂4(k = 2 | n =
10)(t)| /p̂4(k = 2 | n = 10)(t+1) ≤ 10−10. This requires an initial guess for
the marginal likelihood p̂4(k = 2 | n = 10)(0) which we set to 0.12

The simplicity of the beta-binomial model allows us to calculate the bridge
sampling estimate by hand. To determine p̂4(y)(t+1) according to Equation 2.15,
we need to calculate the constants s1 and s2. Since N1 = N2 = 12, we obtain: s1 =
s2 = N2/(N2 +N1) = 0.5. In addition, we need to calculate l2,i (i ∈ {1, 2, . . . , 12})
for all samples from the proposal distribution, and l1,j (j ∈ {1, 2, . . . , 12}) for the
second batch of the probit-transformed samples from the posterior distribution.
Here we show how to calculate l2,1 and l1,1 using the first sample from the proposal
distribution and the first sample of the second batch of the posterior samples,
respectively:

l2,1 =
p(k | n,Φ(ξ̃1))φ(ξ̃1)

g(ξ̃1)
=

((
10
2

)
0.132(1− 0.13)8 · 0.22
1

0.423 φ
(−1.11+0.793

0.423

) )
= 0.077,

l1,1 =
p(k | n,Φ(ξ∗13))φ(ξ∗13)

g(ξ∗13)
=

((
10
2

)
0.152(1− 0.15)8 · 0.23
1

0.423 φ
(−1.04+0.793

0.423

) )
= 0.080.

For p̂4(k = 2 | n = 10)(t+1), we then get:

p̂4(k = 2 | n = 10)(t+1) =

1
N2

N2∑
i=1

l2,i
s1l2,i + s2p̂4(k = 2 | n = 10)(t)

1
N1

N1∑
j=1

1

s1l1,j + s2p̂4(k = 2 | n = 10)(t)

=

1
12

(
0.077

0.5·0.077+0.5·p̂4(k=2|n=10)(t)
+ . . .+ 0.084

0.5·0.084+0.5·p̂4(k=2|n=10)(t)

)
1
12

(
1

0.5·0.080+0.5·p̂4(k=2|n=10)(t)
+ . . .+ 1

0.5·0.103+0.5·p̂4(k=2|n=10)(t)

) .
Using p̂(y)(0) = 0, we obtain as updated estimate of the marginal likelihood

p̂4(k = 2 | n = 10)(1) = 0.0908. This iterative procedure has to be repeated until

12A better initial guess can be obtained from, for example, the importance sampling estimator
or the generalized harmonic mean estimator explained in the previous sections. In our experience,
however, usually the exact choice of the initial value does not seem to influence the convergence
of the bridge sampler much.
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our predefined tolerance criterion is reached. For our running example, this crite-
rion is reached after five iterations. We now obtain the bridge sampling estimate
of the marginal likelihood as p̂4(k = 2 | n = 10)(5) = 0.0902.

2.2.6 Interim Summary

So far we used the beta-binomial model to illustrate the computation of four differ-
ent estimators of the marginal likelihood. These four estimators were discussed in
order of increasing sophistication, such that the first three estimators provided the
proper context for understanding the fourth, most general estimator – the bridge
sampler. This estimator is the focus in the remainder of this tutorial. The goal of
the next sections is to demonstrate that bridge sampling is particularly suitable
to estimate the marginal likelihood of popular models in mathematical psychol-
ogy. Importantly, bridge sampling may be used to obtain accurate estimates of
the marginal likelihood of hierarchical models (for a detailed comparison of bridge
sampling versus its special cases see Frühwirth–Schnatter, 2004; Sinharay & Stern,
2005).

2.2.7 Assessing the Accuracy of the Bridge Sampling Estimate

In this section we show how to quantify the accuracy of the bridge sampling
estimate. A straightforward approach would be to apply the bridge sampling pro-
cedure multiple times and investigate the variability of the marginal likelihood
estimate. In practice, however, this solution is often impractical due to the sub-
stantial computational burden of obtaining the posterior samples and evaluating
the relevant quantities in the bridge sampling procedure.

Frühwirth–Schnatter (2004) proposed an alternative approach that approxi-
mates the estimator’s expected relative mean-squared error:

RE2 =
E
[
(p̂4(y)− p(y))

2
]

p(y)2
. (2.16)

The derivation of this approximate relative mean-squared error by Frühwirth–
Schnatter takes into account that the samples from the proposal distribution g(θ)
are independent, whereas the MCMC samples from the posterior distribution p(θ |
y) may be autocorrelated. The approximate relative mean-squared error is given
by:

R̂E
2

=
1

N2

Vg(θ)(f1(θ))

E2
g(θ)(f1(θ))

+
ρf2(0)

N1

Vpost(f2(θ))

E2
post(f2(θ))

, (2.17)

where f1(θ) = p(θ|y)
s1p(θ|y)+s2g(θ)

, f2(θ) = g(θ)
s1p(θ|y)+s2g(θ)

, Vg(θ)(f1(θ)) =∫
(f1(θ)− E [f1(θ)])

2
g(θ) dθ denotes the variance of f1(θ) with respect to the

proposal distribution g(θ) (the variance Vpost(f2(θ)) is defined analogously), and
ρf2(0) corresponds to the normalized spectral density of the autocorrelated process
f2(θ) at the frequency 0.

In practice, we approximate the unknown variances and expected values by the
corresponding sample variances and means. Hence, for evaluating the variance and
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expected value with respect to g(θ), we use the N2 samples for θ̃i from the proposal
distribution. To evaluate the variance and expected value with respect to the
posterior distribution, we use the second batch of N1 samples θ∗j from the posterior
distribution which we also use in the iterative scheme for computing the marginal
likelihood. Because the posterior samples are obtained via an MCMC procedure
and are hence autocorrelated, the second term in Equation 2.17 is adjusted by
the normalized spectral density (for details see Frühwirth–Schnatter, 2004).13 To
evaluate the normalized posterior density which appears in the numerator of f1(θ)
and the denominator of both f1(θ) and f2(θ), we use the bridge sampling estimate
as normalizing constant.

Note that, under the assumption that the bridge sampling estimator p̂4(y)
is an unbiased estimator of the marginal likelihood p(y), the square root of the
relative mean-squared error (Equation 2.16) can be interpreted as the coefficient
of variation (i.e., the ratio of the standard deviation and the mean; C. E. Brown,
1998). In the remainder of this chapter, we report the coefficient of variation to
quantify the accuracy of the bridge sampling estimate.

2.3 Case Study: Bridge Sampling for Reinforcement
Learning Models

In this section, we illustrate the computation of the marginal likelihood using
bridge sampling in the context of a published data set (Busemeyer & Stout, 2002)
featuring the Expectancy Valence (EV) model – a popular reinforcement learning
(RL) model for the Iowa gambling task (IGT; Bechara et al., 1994). We first
introduce the task and the model, and then use bridge sampling to estimate the
marginal likelihood of the EV model implemented in both an individual-level and
a hierarchical Bayesian framework. For the individual-level framework, we com-
pare estimates obtained from bridge sampling to importance sampling estimates
published in Steingroever, Wetzels, and Wagenmakers (2016). For the hierarchical
framework, we compare our results to estimates from the Savage-Dickey density ra-
tio test (Dickey, 1971; Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010; Wetzels, Grasman, & Wagenmakers, 2010).

2.3.1 The Iowa Gambling Task

In this section we describe the IGT (see also Steingroever, Pachur, Šmı́ra, &
Lee, 2018; Steingroever, Wetzels, Horstmann, Neumann, & Wagenmakers, 2013;
Steingroever, Wetzels, & Wagenmakers, 2013a, 2013b, 2014; Steingroever et al.,
2016). Originally, Bechara et al. (1994) developed the IGT to distinguish decision-
making strategies of patients with lesions to the ventromedial prefrontal cortex
from the ones of healthy controls (see also Bechara, Damasio, Damasio, & Lee,
1999; Bechara, Damasio, Tranel, & Anderson, 1998; Bechara, Tranel, & Dama-
sio, 2000). During the last decades, the scope of application of the IGT has

13We estimate the spectral density at frequency zero by fitting an autoregressive model using
the spectrum0.ar() function as implemented in the coda R package (Plummer, Best, Cowles, &
Vines, 2006).
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Table 2.1: Summary of the payoff scheme of the traditional IGT as developed by
Bechara et al. (1994).

Deck A Deck B Deck C Deck D
Bad deck Bad deck Good deck Good deck
with fre- with infre- with fre- with infre-

quent losses quent losses quent losses quent losses

Reward/trial 100 100 50 50
Number of losses/10 cards 5 1 5 1
Loss/10 cards −1250 −1250 −250 −250
Net outcome/10 cards −250 −250 250 250

increased tremendously covering clinical populations with, for example, patholog-
ical gambling (Cavedini, Riboldi, Keller, D’Annucci, & Bellodi, 2002), obsessive-
compulsive disorder (Cavedini, Riboldi, D’Annucci, et al., 2002), psychopathic
tendencies (Blair, Colledge, & Mitchell, 2001), and schizophrenia (Bark, Dieck-
mann, Bogerts, & Northoff, 2005; Martino, Bucay, Butman, & Allegri, 2007).

The IGT is a card game that requires participants to choose, over several
rounds, cards from four different decks in order to maximize their long-term net
outcome (Bechara et al., 1994; Bechara, Damasio, Tranel, & Damasio, 1997). The
four decks differ in their payoffs, and two of them result in negative long-term
outcomes (i.e., the bad decks), whereas the remaining two decks result in positive
long-term outcomes (i.e., the good decks). After each choice, participants receive
feedback on the rewards and losses (if any) associated with that card, as well as
their running tally of net outcomes over all trials so far. Unbeknownst to the
participants, the task (typically) contains 100 trials.

A crucial aspect of the IGT is whether and to what extent participants even-
tually learn to prefer the good decks because only choosing from the good decks
maximizes their long-term net outcome. The good decks are typically labeled as
decks C and D, whereas the bad decks are labeled as decks A and B. Table 2.1
presents a summary of the traditional payoff scheme as developed by Bechara et al.
(1994). This table illustrates that decks A and B yield high constant rewards, but
even higher unpredictable losses: hence, the long-term net outcome is negative.
Decks C and D, on the other hand, yield low constant rewards, but even lower
unpredictable losses: hence, the long-term net outcome is positive. In addition
to the different payoff magnitudes, the decks also differ in the frequency of losses:
decks A and C yield frequent losses, while decks B and D yield infrequent losses.

2.3.2 The Expectancy Valence Model

In this section, we describe the EV model (see also Steingroever et al., 2018;
Steingroever, Wetzels, & Wagenmakers, 2013a; Steingroever et al., 2014, 2016).
Originally proposed by Busemeyer and Stout (2002), the EV model is arguably
the most popular model for the IGT (for references see Steingroever, Wetzels, &
Wagenmakers, 2013a, and for alternative IGT models see Ahn, Busemeyer, Wa-
genmakers, & Stout, 2008; Dai, Kerestes, Upton, Busemeyer, & Stout, 2015; Stein-
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groever et al., 2014; Worthy & Maddox, 2014; Worthy, Pang, & Byrne, 2013). The
model formalizes participants’ performance on the IGT through the interaction of
three model parameters that represent distinct psychological processes. The first
model assumption is that after choosing a card from deck k, k ∈ {1, 2, 3, 4}, on
trial t, participants compute a weighted mean of the experienced reward W(t) and
loss L(t) to obtain the utility of deck k on trial t, vk(t):

vk(t) = (1− w)W (t) + wL(t).

The weight that participants assign to losses relative to rewards is the attention
weight parameter w. A small value of w, that is, w < .5, is characteristic for
decision makers who put more weight on the immediate rewards and can thus
be described as reward-seeking, whereas a large value of w, that is, w > .5, is
characteristic for decision makers who put more weight on the immediate losses
and can thus be described as loss-averse (Ahn et al., 2008; Busemeyer & Stout,
2002).

The EV model further assumes that decision makers use the utility of deck
k on trial t, vk(t), to update only the expected utility of deck k, Evk(t); the
expected utilities of the unchosen decks are left unchanged. This updating process
is described by the Delta learning rule, also known as the Rescorla-Wagner rule
(Rescorla & Wagner, 1972):

Evk(t) = Evk(t− 1) + a(vk(t)− Evk(t− 1)).

If the experienced utility vk(t) is higher than expected, the expected utility of
deck k is adjusted upward. If the experienced utility vk(t) is lower than expected,
the expected utility of deck k is adjusted downward. This updating process is
influenced by the second model parameter – the updating parameter a. This
parameter quantifies the memory for rewards and losses. A value of a close to
zero indicates slow forgetting and weak recency effects, whereas a value of a close
to one indicates rapid forgetting and strong recency effects. For all models, we
initialized the expectancies of all decks to zero, Evk(0) = 0 (k ∈ {1, 2, 3, 4}). This
setting reflects neutral prior knowledge about the payoffs of the decks.

In the next step, the model assumes that the expected utilities of each deck
guide participants’ choices on the next trial t+ 1. This assumption is formalized
by the softmax choice rule, also known as the ratio-of-strength choice rule (Luce,
1959):

Pr[Sk(t+ 1)] =
eθ(t)·Evk(t)∑4
j=1 e

θ(t)·Evj(t)
.

The EV model uses this rule to compute the probability of choosing each deck on
each trial. This rule contains a sensitivity parameter θ that indexes the extent
to which trial-by-trial choices match the expected deck utilities. Values of θ close
to zero indicate random choice behavior (i.e., strong exploration), whereas large
values of θ indicate choice behavior that is strongly determined by the expected
utilities (i.e., strong exploitation). The EV model uses a trial-dependent sensi-
tivity parameter θ(t), which also depends on the final model parameter, response
consistency c′ ∈ [−5, 5]:

θ(t) = (t/10)c
′
.
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If c′ is positive, successive choices become less random and more determined by the
expected deck utilities; if c′ is negative, successive choices become more random
and less determined by the expected deck utilities, a pattern that is clearly non-
optimal. We restricted the consistency parameter of the EV model to the range
[−2, 2] instead of the proposed range [−5, 5] (Busemeyer & Stout, 2002). This
modification improved the estimation of the EV model and prevented the choice
rule from producing numbers that exceed machine precision (see also Steingroever
et al., 2014).

In sum, the EV model has three parameters: (1) the attention weight parame-
ter w ∈ [0, 1], which quantifies the weight of losses over rewards; (2) the updating
parameter a ∈ [0, 1], which determines the memory for past expectancies; and
(3) the response consistency parameter c′ ∈ [−2, 2], which determines the balance
between exploitation and exploration.

2.3.3 Data

We applied bridge sampling to a data set published by Busemeyer and Stout
(2002). The data set consists of 30 healthy participants each contributing T = 100
IGT card selections (see Busemeyer and Stout for more details on the data sets).14

2.3.4 Application of Bridge Sampling to an Individual-Level
Implementation of the EV Model

In this section we describe how we use bridge sampling to estimate the marginal
likelihood of an individual-level implementation of the EV model. This implemen-
tation estimates model parameters for each participant separately. Accordingly,
we also obtain a marginal likelihood of the EV model for every participant.

2.3.4.1 Schematic Execution of the Bridge Sampler

To obtain the bridge sampling estimate of the marginal likelihood for each partic-
ipant, we follow the steps outlined in Figure 2.5.

For each participant s, s ∈ {1, 2, . . . , 30}, we proceed as follows:

1. For each parameter, we draw 2N1 samples from the posterior distribution.
Since Steingroever et al. (2016) already fit an individual-level implementa-
tion of the EV model separately to the data of each participant in Busemeyer
and Stout (2002), we reuse their posterior samples (see Steingroever et al.,
2016, for details on the prior distributions and model implementation). Note
that they parameterized the model not in terms of c′ ∈ [−2, 2], but in terms
of c = (c′+ 2)/4, c ∈ [0, 1], and in the remainder of this chapter, we also use
this reparameterization.
For each participant, we choose 2N1 to match the number of samples ob-
tained from Steingroever et al. (2016) which was at least 5, 000; however,
whenever this number of samples was insufficient to ensure convergence of

14Note that we excluded three participants due to incomplete choice data.
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the Hamiltonian Monte Carlo (HMC) chains, Steingroever et al. (2016) re-
peated the fitting routine with 5, 000 additional samples. Steingroever et al.
(2016) confirmed convergence of the HMC chains by reporting that all R̂
statistics were below 1.05.

2. We choose a proposal distribution.
We generalize our approach from the running example and use a multivariate
normal distribution as a proposal distribution.

3. We transform the first batch of N1 posterior samples.
Since we use a multivariate normal distribution as a proposal distribution,
we have to transform all posterior samples to the real line using the probit
transformation, that is, ω∗s,j = Φ−1(w∗s,j), α

∗
s,j = Φ−1(a∗s,j), γ

∗
s,j = Φ−1(c∗s,j),

j = {1, 2, . . . , N1}.

4. We fit the proposal distribution to the first batch of N1 probit-transformed
posterior samples.
We use method of moment estimates for the mean vector and the covariance
matrix obtained from the first batch of N1 probit-transformed posterior sam-
ples to specify our multivariate normal proposal distribution.

5. We draw N2 samples from the proposal distribution.
We use the R software to randomly draw N2 samples from the proposal distri-
bution obtained in step 4. We obtain (ω̃s,i, α̃s,i, γ̃s,i) with i ∈ {1, 2, . . . , N2}.

6. We calculate l2,i for all N2 samples from the proposal distribution.
This step involves assessing the value of the unnormalized posterior and
the proposal distribution for all N2 samples from the proposal distribution.
Before we can assess the value of the unnormalized posterior (i.e., the product
of the likelihood and the prior), we have to derive how our transformation
in step 3 affects the unnormalized posterior.
First, we derive how our transformation affects the likelihood. To evaluate
the likelihood, we need to transform the probit-transformed samples back
to the original parameter scales. That is, we evaluate the likelihood for
(Φ(ω̃s,i),Φ(α̃s,i),Φ(γ̃s,i)). Before formalizing the likelihood of the observed
choices of participant s, we define the following variables: We define Chs(t)
as a vector containing the sequence of choices made by participant s up to
and including trial t, and Xs(t) as a vector containing the corresponding
sequence of net outcomes. We now obtain the following expression for the
likelihood of the observed choices of participant s:

p(Chs(T ) | Φ(ω̃s,i),Φ(α̃s,i),Φ(γ̃s,i), Xs(T − 1)) =

T−1∏
t=0

4∏
k=1

Pr[Sk(t+ 1)] · δk(t+ 1).
(2.18)

Here T is the total number of trials, Pr[Sk(t+1)] is the probability of choos-
ing deck k on trial t+ 1, and δk(t+ 1) is a dummy variable which is 1 if deck
k is chosen on trial t+ 1 and 0 otherwise.
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Second, we have to derive how our transformation affects the priors on each
EV model parameter to yield priors on the probit-transformed model pa-
rameters. Since Steingroever et al. (2016) used independent uniform priors
on [0, 1] we obtain standard normal priors on the probit-transformed model
parameters (see beta-binomial example and Appendix D for an explanation).

7. We transform the second batch of N1 posterior samples.
This is analogous to step 2.

8. We calculate l1,j for the second batch of N1 probit-transformed samples from
the posterior distribution.
This is analogous to step 6.

9. We run the iterative scheme (Equation 2.15) until our predefined tolerance
criterion is reached.
We use a tolerance criterion and initialization analogous to the running ex-
ample. Once convergence is reached, we receive an estimate of the marginal
likelihood for each participant, and derive the coefficient of variation for each
participant using Equation 2.17. The largest coefficient of variation is 2.07%
suggesting that the bridge sampler has low variance.15

2.3.4.2 Assessing the Accuracy of Our Implementation

To assess the accuracy of our implementation, we compared the marginal likeli-
hood estimates obtained with our bridge sampler to the estimates obtained with
importance sampling (Steingroever et al., 2016). Figure 2.6 shows the log marginal
likelihoods for the 30 participants of Busemeyer and Stout (2002) obtained with
bridge sampling (x-axis) and importance sampling reported by Steingroever et
al. (2016; y-axis). The two sets of estimates correspond almost perfectly. These
results indicate a successful implementation of the bridge sampler. Thus, this
section emphasizes that both the importance sampler and bridge sampler can be
used to estimate the marginal likelihood for the data of individual participants.
However, when we want to estimate the marginal likelihood of a Bayesian hierar-
chical model, it may be difficult to find a suitable importance density. The bridge
sampler, on the other hand, can be applied more easily and more efficiently.

2.3.5 Application of Bridge Sampling to a Hierarchical
Implementation of the EV Model

In this section we illustrate how bridge sampling can be used to estimate the
marginal likelihood of a hierarchical EV model. This hierarchical implementation
assumes that the parameters w, a, and c from each participant are drawn from
three separate group-level distributions. This model specification hence incorpo-
rates both the differences and the similarities between participants. We illustrate
this application using again the Busemeyer and Stout (2002) data set, and assume
that these participants constitute one group.

15Note that this measure relates to the marginal likelihoods, not to the log marginal
likelihoods.
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Figure 2.6: Comparison of the log marginal likelihoods obtained with bridge sam-
pling (x-axis) and importance sampling reported by Steingroever et al. (2016; y-
axis). The main diagonal indicates perfect correspondence between the two meth-
ods. Available at https://tinyurl.com/yac3o8qs under CC license https://

creativecommons.org/licenses/by/2.0/.

2.3.5.1 Schematic Execution of the Bridge Sampler

To compute the marginal likelihood, we again follow the steps outlined in Fig-
ure 2.5, with a few minor modifications.

1. For each parameter, that is, all individual-level and group-level parameters,
we draw 2N1 = 60, 000 samples from the posterior distribution.
To obtain the posterior samples, we fit a hierarchical Bayesian implementa-
tion of the EV model to the Busemeyer and Stout (2002) data set using the
software JAGS (Plummer, 2003).16 We assume that, for each participant s,
s ∈ {1, 2, . . . , 30}, each probit-transformed individual-level parameter (i.e.,
ωs = Φ−1(ws), αs = Φ−1(as), γs = Φ−1(cs)) is drawn from a group-level
normal distribution characterized by a group-level mean and standard devi-
ation parameter. For all group-level mean parameters µω, µα, µγ we assume
a standard normal distribution, and for all group-level standard deviation
parameters σω, σα, σγ a uniform distribution ranging from 0 to 1.5. For a
detailed explanation of the hierarchical implementation of the EV model,
see Wetzels, Vandekerckhove, et al. (2010).
To reach convergence and reduce autocorrelation, we collect two MCMC
chains, each with 120, 000 samples from the posterior distributions after

16We used a model file that is an adapted version of the model file used by Ahn et al. (2011).
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having excluded the first 30, 000 samples as burn-in. Out of these 120, 000
samples per chain, we retained every fourth value yielding 30, 000 samples
per chain. This setting resulted in all R̂ statistics below 1.05 suggesting that
all chains have successfully converged from their starting values to their sta-
tionary distributions.

2. We choose a proposal distribution.
We use a multivariate normal distribution as a proposal distribution.

3. We transform the first batch of N1 posterior samples.
As before, we ensure that the range of the posterior distribution matches
the range of the proposal distribution by using the probit transformation,
that is, ω∗s,j = Φ−1(w∗s,j), α

∗
s,j = Φ−1(a∗s,j), γ

∗
s,j = Φ−1(c∗s,j), τ

∗
ω,j =

Φ−1((σ∗ω,j) / 1.5), τ∗α,j = Φ−1((σ∗α,j) / 1.5), and τ∗γ,j = Φ−1((σ∗γ,j) / 1.5),
j = {1, 2, . . . , N1}. The group-level mean parameters do not have to be
transformed because they already range across the entire real line.

4. We fit the proposal distribution to the first batch of the N1 probit-transformed
posterior samples.
We use method of moment estimates for the mean vector and the covariance
matrix obtained from the first batch of N1 probit-transformed posterior sam-
ples to specify our multivariate normal proposal distribution.

5. We draw N2 samples from the proposal distribution.
We use the R software to randomly draw N2 samples from the pro-
posal distribution obtained in step 4. We obtain (ω̃s,i, α̃s,i, γ̃s,i) and
(µ̃ω,i, τ̃ω,i, µ̃α,i, τ̃α,i, µ̃γ,i, τ̃γ,i) with i ∈ {1, 2, . . . , N2} and s ∈ {1, 2, . . . , 30}.

6. We calculate l2,i for all N2 samples from the proposal distribution.
This step involves assessing the value of the unnormalized posterior and the
proposal distribution for all N2 samples from the proposal distribution. The
unnormalized posterior is defined as:(∏30

s=1 p(Chs(T ) | Φ(κ̃s,i), Xs(T − 1)) p(κ̃s,i | ζ̃i)
)
p(ζ̃i), where Chs(T )

refers to all choices of subject s, Xs(T − 1) to the net outcomes that subject
s experienced on trials 1, 2, . . . , T−1, κ̃s,i = (ω̃s,i, α̃s,i, γ̃s,i) to the ith sample
from the proposal distribution for the individual-level parameters of subject
s, and ζ̃i to the ith sample from the proposal distribution for all group-level
parameters (e.g., ζ̃i = (µ̃ω,i, τ̃ω,i, µ̃α,i, τ̃α,i, µ̃γ,i, τ̃γ,i)).
The likelihood function for a given participant is the same as in the individ-
ual case. However, for each participant we now have to add besides the prior
on the individual-level parameters also the prior on the group-level param-
eters. The product of the likelihood and the priors gives the unnormalized
posterior density (see Appendix E for more details).

7. We follow steps 7 – 9, as outlined for the bridge sampler of the individual-
level implementation of the EV model.
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Figure 2.7: Prior and posterior distribution of the group-level mean µα in the
Busemeyer and Stout (2002) data set. The figure shows the posterior distribution
(solid line) and the prior distribution (dotted line). The gray dot indicates the in-
tersection of the prior and the posterior distributions, for which the Savage-Dickey
Bayes factor equals 1. Available at https://tinyurl.com/y7cyxclq under CC
license https://creativecommons.org/licenses/by/2.0/.

2.3.5.2 Assessing the Accuracy of Our Implementation

To investigate the accuracy of our implementation, we compare Bayes factors ob-
tained with bridge sampling to Bayes factors obtained from the Savage-Dickey
density ratio test (Dickey, 1971; Dickey & Lientz, 1970; for a tutorial, see Wa-
genmakers et al., 2010). The Savage-Dickey density ratio is a simple method for
computing Bayes factors for nested models. We artificially create three nested
models by taking the full EV model Mf in which all parameters are free to vary,
and then restricting one of the three group-level mean parameters, that is, µω, µα,
or µγ , to a predefined value. For these values we choose the intersection point of
the prior and posterior distribution of each group-level mean parameter. To obtain
these intersection points, we fit the full EV model and then use a nonparametric
logspline density estimator (C. J. Stone, Hansen, Kooperberg, & Truong, 1997).
The obtained values are presented in Table 2.2. Since we compare the full model
to each restricted model, we obtain three Bayes factors.

According to the Savage-Dickey density ratio test, the Bayes factor for the
full model versus a specific restricted model Mr can be obtained by dividing the
height of the prior density at the predefined parameter value θ0 by the height of
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Table 2.2: Bayes factors comparing the full EV model to the restricted EV models,
log marginal likelihoods, and coefficient of variation (with respect to the marginal
likelihood) expressed as a percentage.

Model Bayes Factor Log Marginal Likelihood CV[%]

full model – −3800.434 10.13
restricted at µω = −0.334 1.202 −3800.618 16.44
restricted at µα = −0.604 1.052 −3800.484 9.71
restricted at µγ = 0.92 1.068 −3800.500 12.03

the posterior at the same location:

BFMf ,Mr
=
p(y | Mf )

p(y | Mr)
=

p(θ = θ0 | Mf )

p(θ = θ0 | y,Mf )
. (2.19)

Since we choose θ0 to be the intersection point of the prior and posterior
distribution, BFMf ,Mr

equals 1. This Savage-Dickey Bayes factor of 1 indicates
that the marginal likelihood under the full model equals the marginal likelihood
under the restricted model. Figure 2.7 illustrates the Savage-Dickey Bayes factor
comparing the full model to the model assuming µα fixed to −0.604.

The computation of the three bridge sampling Bayes factors, on the other hand,
works as follows: First, we follow the steps outlined above to obtain the bridge
sampling estimate of the full EV model. Second, we obtain the bridge sampling
estimate of the marginal likelihood for the three restricted models. This requires
adapting the steps outlined above to each of the three restricted models. Lastly,
we use the first equality in Equation 2.19 to obtain the three Bayes factors.

The Bayes factors derived from bridge sampling are reported in Table 2.2. It is
evident that Bayes factors derived from bridge sampling closely approximate the
Savage-Dickey Bayes factors of 1. These results suggest a successful implemen-
tation of the bridge sampler. This is also reflected by the close match between
the log marginal likelihoods of the four models presented in the third column of
Table 2.2.

Finally, we confirm that the bridge sampler has low variance; the coefficient of
variation with respect to the marginal likelihood of the full model and the three
restricted models ranges between 9.71 and 16.44%.

2.4 Discussion

In this tutorial, we explained how bridge sampling can be used to estimate the
marginal likelihood of popular models in mathematical psychology. As a running
example, we used the beta-binomial model to illustrate step-by-step the bridge
sampling estimator. To facilitate the understanding of the bridge sampler, we
first discussed three of its special cases – the naive Monte Carlo estimator, the
importance sampling estimator, and the generalized harmonic mean estimator.
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Consequently, we introduced key concepts that became gradually more compli-
cated and sophisticated. In the second part of this tutorial, we showed how bridge
sampling can be used to estimate the marginal likelihood of both an individual-
level and a hierarchical implementation of the Expectancy Valence (EV; Buse-
meyer & Stout, 2002) model – a popular reinforcement-learning model for the
Iowa gambling task (IGT; Bechara et al., 1994). The running example and the
application of bridge sampling to the EV model demonstrated the positive aspects
of the bridge sampling estimator, that is, its accuracy, reliability, practicality, and
ease-of-implementation (DiCiccio et al., 1997; Frühwirth–Schnatter, 2004; Meng
& Wong, 1996).

The bridge sampling estimator is superior to the naive Monte Carlo estimator,
the importance sampling estimator, and the generalized harmonic mean estimator
for several reasons. First, Meng and Wong (1996) showed that, among the four
estimators discussed in this chapter, the bridge sampler presented in this chapter
minimizes the mean-squared error because it uses the optimal bridge function. Sec-
ond, in bridge sampling, choosing a suitable proposal distribution is much easier
than choosing a suitable importance density for the importance sampling estima-
tor or the generalized harmonic mean estimator because bridge sampling is more
robust to the tail behavior of the proposal distribution relative to the posterior
distribution. This advantage facilitates the application of the bridge sampler to
higher-dimensional and complex models. This characteristic of the bridge sampler
combined with the popularity of higher-dimensional and complex models in math-
ematical psychology suggests that bridge sampling can advance model comparison
exercises in many areas of mathematical psychology (e.g., reinforcement-learning
models, response time models, multinomial processing tree models, etc.). Third,
bridge sampling is relatively straightforward to implement. In particular, our step-
by-step procedure can be easily applied to other models with only minor changes
of the code (i.e., the unnormalized posterior and potentially the proposal function
have to be adapted). In our opinion, this is one of the most attractive features
of bridge sampling: It is an accurate yet very generic method. Exploiting this
generic characteristic, we have implemented the bridge sampling procedure in the
bridgesampling R package (Gronau, Singmann, & Wagenmakers, 2020) in order
to maximize its accessibility.

Despite the numerous advantages of the bridge sampler, the take-home message
of this tutorial is not that the bridge sampler should be used blindly. There exist
a large variety of methods to approximate the marginal likelihood that differ in
their efficiency.17 The most appropriate method optimizes the trade-off between
accuracy and implementation effort. This trade-off depends on a number of aspects
such as the complexity of the model, the number of models under consideration, the
statistical experience of the researcher, and the time available. This suggests that
the choice of the method should be reconsidered each time a marginal likelihood
needs to be obtained. Obviously, when the marginal likelihood can be determined
analytically, bridge sampling is not needed at all. If the goal is to compare (at least)

17In general, a large number of approaches for model selection exist which are based on MCMC
posterior sampling and some of them are not based on approximating the models’ marginal
likelihoods (e.g., Ando, 2007; Spiegelhalter, Best, Carlin, & van der Linde, 2002). A comparison
of these methods is beyond the scope of this tutorial.
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two nested models, the Savage-Dickey density ratio test (Dickey, 1971; Dickey &
Lientz, 1970) might be a better alternative. Note, however, that this requires an
approximation of the marginal posterior density of one or more parameters which
can be unstable in case the test value falls in the tail of the distribution. If only an
individual-level implementation of a model is used, importance sampling may be
easier to implement and may require less computational effort. This presupposes
that one can find a proposal distribution with fatter tails than the posterior which
may not always be trivial (even in an individual-level case). If the goal is to
obtain the marginal likelihood of a large number of relatively simple models, the
product space or reversible jump method (RJMCMC) might be more appropriate
(Carlin & Chib, 1995; Green, 1995; Lodewyckx et al., 2011). In contrast to bridge
sampling, implementations of these methods tend to be problem-specific rather
than generic (but see Lunn, Best, & Whittaker, 2009). If a researcher with a
limited programming background and/or little time resources wants to conduct
a model comparison exercise, rough approximations of the Bayes factor, such as
the Bayesian information criterion, might be more suitable (Schwarz, 1978). It
should be kept in mind, however, that this approximation assumes a certain prior
structure that may not respect the knowledge or information that researchers have
at their disposal. On the other hand, a researcher with an extensive background
in programming and mathematical statistics might consider using path sampling
– a generalization of bridge sampling (Gelman & Meng, 1998).

To conclude, in this tutorial we showed that bridge sampling offers a reli-
able and easy-to-implement approach to estimating a model’s marginal likeli-
hood. Bridge sampling can be profitably applied to a wide range of problems
in mathematical psychology involving parameter estimation, model comparison,
and Bayesian model averaging.

R scripts for reproducing the analyses presented in this chapter are available at
https://osf.io/f9cq4/.
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2.A The Bridge Sampling Estimator as a General Case of
Methods 1 – 3

In this section we show that the naive Monte Carlo, the importance sampling,
and the generalized harmonic mean estimators are special cases of the bridge
sampling estimator under specific choices of the bridge function h(θ) and the
proposal distribution g(θ).18 An overview is provided in Table 2.3.

To prove that the bridge sampling estimator reduces to the naive Monte Carlo
estimator, consider bridge sampling, choose the prior distribution as the proposal
distribution (i.e., g(θ) = p(θ)), and specify the bridge function as h(θ) = 1/g(θ).
Inserting these specifications into Equation 2.12 yields:

p̂4

(
y | h(θ) =

1

g(θ)
, g(θ) = p(θ)

)

=

1
N2

∑N2

i=1

1

p(θ̃i)
p(y | θ̃i) p(θ̃i)

1
N1

∑N1

j=1

1

p(θ∗j )
p(θ∗j )

, θ̃i ∼ p(θ), θ∗j ∼ p(θ | y)

=
1
N2

∑N2

i=1 p(y | θ̃i)
1
N1
N1

=
1

N2

N2∑
i=1

p(y | θ̃i) , θ̃i ∼ p(θ),

which is equivalent to the naive Monte Carlo estimator shown in Equation 2.7.
To prove that the bridge sampling estimator reduces to the importance sam-

pling estimator, consider bridge sampling, choose the importance density as the
proposal distribution (i.e., g(θ) = gIS(θ)), and specify the bridge function as
h(θ) = 1/g(θ) . Inserting these specifications into Equation 2.12 yields:

p̂4

(
y | h(θ) =

1

g(θ)
, g(θ) = gIS(θ)

)

=

1
N2

∑N2

i=1

1

gIS(θ̃i)
p(y | θ̃i) p(θ̃i)

1
N1

∑N1

j=1

1

gIS(θ∗j )
gIS(θ∗j )

, θ̃i ∼ gIS(θ), θ∗j ∼ p(θ | y)

=

1
N2

∑N2

i=1

p(y | θ̃i) p(θ̃i)
gIS(θ̃i)

1
N1
N1

=
1

N2

N2∑
i=1

p(y | θ̃i) p(θ̃i)
gIS(θ̃i)

, θ̃i ∼ gIS(θ),

which is equivalent to the importance sampling estimator shown in Equation 2.8.

18Note that bridge sampling is also a general case of the Chib and Jeliazkov (2001) method of
estimating the marginal likelihood using the Metropolis-Hastings acceptance probability (Meng
& Schilling, 2002; Mira & Nicholls, 2004).
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2.B. Bridge Sampling Implementation: Avoiding Numerical Issues

To prove that the bridge sampling estimator reduces to the generalized har-
monic mean estimator, consider bridge sampling, choose the importance density as
the proposal distribution (i.e., g(θ) = gIS(θ)), and specify the bridge function as
h(θ) = 1/(p(y | θ) p(θ)). Inserting these specifications into Equation 2.12 yields:

p̂4

(
y | h(θ) =

1

p(y | θ) p(θ)
, g(θ) = gIS(θ)

)

=

1
N2

∑N2

i=1

1

p(y | θ̃i) p(θ̃i)
p(y | θ̃i) p(θ̃i)

1
N1

∑N1

j=1

1

p(y | θ∗j ) p(θ∗j )
gIS(θ∗j )

, θ̃i ∼ gIS(θ), θ∗j ∼ p(θ | y)

=
1
N2
N2

1
N1

∑N1

j=1

gIS(θ∗j )

p(y | θ∗j ) p(θ∗j )

=

 1

N1

N1∑
j=1

gIS(θ∗j )

p(y | θ∗j ) p(θ∗j )

−1

, θ∗j ∼ p(θ | y),

which is equivalent to the generalized harmonic mean estimator shown in Equa-
tion 2.9.

2.B Bridge Sampling Implementation: Avoiding
Numerical Issues

In order to avoid numerical issues, we can rewrite Equation 2.15 in the following
way:

p̂4(y)(t+1) =

1
N2

N2∑
i=1

l2,i
s1 l2,i+s2 p̂4(y)(t)

1
N1

N1∑
j=1

1
s1 l1,j+s2 p̂4(y)(t)

=

1
N2

N2∑
i=1

exp ( log(l2,i))
s1 exp ( log(l2,i))+s2p̂4(y)(t)

1
N1

N1∑
j=1

1

s1 exp ( log(l1,j))+s2p̂4(y)(t)

=

1
N2

N2∑
i=1

exp ( log(l2,i)) exp (−l∗)
s1 exp ( log(l2,i)) exp (−l∗)+s2p̂4(y)(t) exp (−l∗)

1
N1

N1∑
j=1

exp (−l∗)
s1 exp ( log(l1,j)) exp (−l∗)+s2p̂4(y)(t) exp (−l∗)
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=
1

exp (− l∗)

1
N2

N2∑
i=1

exp ( log(l2,i)−l∗)
s1 exp ( log(l2,i)−l∗)+s2p̂4(y)(t) exp (−l∗)

1
N1

N1∑
j=1

1

s1 exp ( log(l1,j)−l∗)+s2p̂4(y)(t) exp (−l∗)

= exp (l∗)

1
N2

N2∑
i=1

exp ( log(l2,i)−l∗)
s1 exp ( log(l2,i)−l∗)+s2p̂4(y)(t) exp (−l∗)

1
N1

N1∑
j=1

1

s1 exp ( log(l1,j)−l∗)+s2p̂4(y)(t) exp (−l∗)

.

l∗ is a constant which we can choose in a way that keeps the terms in the sums
manageable. We used l∗ = median(log(l1,j)). Let

r̂(t) = p̂4(y)(t) exp (− l∗),

so that
p̂4(y)(t) = r̂(t) exp (l∗).

Then we obtain

p̂4(y)(t+1) = exp (l∗)

1
N2

N2∑
i=1

exp ( log(l2,i)−l∗)
s1 exp ( log(l2,i)−l∗)+s2r̂(t)

1
N1

N1∑
j=1

1

s1 exp ( log(l1,j)−l∗)+s2r̂(t)

p̂4(y)(t+1) exp (− l∗) =

1
N2

N2∑
i=1

exp ( log(l2,i)−l∗)
s1 exp ( log(l2,i)−l∗)+s2r̂(t)

1
N1

N1∑
j=1

1

s1 exp ( log(l1,j)−l∗)+s2r̂(t)

r̂(t+1) =

1
N2

N2∑
i=1

exp ( log(l2,i)−l∗)
s1 exp ( log(l2,i)−l∗)+s2r̂(t)

1
N1

N1∑
j=1

1

s1 exp ( log(l1,j)−l∗)+s2r̂(t)

.

Hence, we can run the iterative scheme with respect to r̂ which is more convenient
because it keeps the terms in the sums manageable and multiply the result by
exp(l∗) to obtain the estimate of the marginal likelihood or, equivalently, we can
take the logarithm of the result and add l∗ to obtain an estimate of the logarithm
of the marginal likelihood.

2.C Correcting for the Probit Transformation

In this section we describe how the probit transformation affects our expression of
the generalized harmonic mean estimator (Equation 2.9) to yield Equation 2.10.
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Recall that we derived the generalized harmonic mean estimator using the follow-
ing equality:

1

p(y)
=

∫
gIS(θ)

p(y | θ)p(θ)
p(θ | y) dθ. (2.20)

For practical reasons, in the running example, we used a normal distribution
on ξ as importance density. This ξ was defined as the probit transform of θ
(i.e, ξ = Φ−1(θ)). In particular, the normal importance density was given by
1
σ̂φ
(
ξ−µ̂
σ̂

)
. Note that this importance density is a function of ξ, whereas the gen-

eral importance density gIS in Equation 2.20 is specified in terms of θ. Therefore,
to include our specific importance density into Equation 2.20, we need to write it

in terms of θ. This yields 1
σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ)) , where the latter factor comes

from applying the change-of-variable method. Replacing gIS(θ) in Equation 2.20
by this expression, results in:

1

p(y)
=

∫ 1
σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ))

p(y | θ)p(θ)
p(θ | y) dθ

= Epost

 1
σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ))

p(y | θ) p(θ)

 .

(2.21)

Rewriting results in:

p(y) =

Epost

 1
σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ))

p(y | θ) p(θ)

−1

,

which can be approximated as:

p̂3(y) =


1

N

N∑
j=1

importance density︷ ︸︸ ︷
1

σ̂
φ

(
Φ−1(θ∗j )− µ̂

σ̂

)
1

φ
(
Φ−1(θ∗j )

)
p(y | θ∗j )︸ ︷︷ ︸
likelihood

p(θ∗j )︸ ︷︷ ︸
prior



−1

, θ∗j ∼ p(θ | y) .︸ ︷︷ ︸
samples from the

posterior distribution

=


1

N

N∑
j=1

importance density︷ ︸︸ ︷
1

σ̂
φ

(
ξ∗j − µ̂
σ̂

)
p
(
y | Φ

(
ξ∗j
))︸ ︷︷ ︸

likelihood

p
(
Φ
(
ξ∗j
))
φ
(
ξ∗j
)︸ ︷︷ ︸

prior



−1

, ξ∗j = Φ−1(θ∗j ) and θ∗j ∼ p(θ | y) ,︸ ︷︷ ︸
probit-transformed samples

from the posterior distribution

(2.22)
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which shows that the generalized harmonic estimate can be obtained using the
samples from the posterior distribution, or the probit-transformed ones. In the
online-provided code, we use the latter approach (see also Overstall & Forster,
2010). Note that in our running example, ∀ξ∗j : p

(
Φ
(
ξ∗j
))

= 1.

2.D Details on the Application of Bridge Sampling to the
Individual-Level EV Model

In this section, we provide more details on how we obtained the unnormalized
posterior distribution for a specific participant s, s ∈ {1, 2, . . . , 30}. Since we
focus on one specific participant, we drop the subscript s in the remainder of this
section. As explained in Appendix B, we run the iterative scheme with respect
to r̂ to avoid numerical issues. Consequently, we have to compute log(l1,j) and
log(l2,i). Using κ̃i = (ω̃i, α̃i, γ̃i) for the ith sample from the proposal distribution,
we get for log(l2,i) (log(l1,j) works analogously):

log(l2,i) = log

(
p(Ch(T ) | Φ(κ̃i), X(T − 1)) p(Φ(κ̃i)) φ(κ̃i)

g(κ̃i)

)
.

Therefore, instead of computing the unnormalized posterior distribution di-
rectly, we compute the logarithm of the unnormalized posterior distribution:

log(p(Ch(T ) | Φ(κ̃i), X(T − 1)) p(Φ(κ̃i)) φ(κ̃i)) = log(p(Ch(T ) | Φ(κ̃i), X(T − 1)))+

log(φ(ω̃i)) + log(φ(α̃i)) + log(φ(γ̃i)),

because we assumed independent priors on each model parameter w, a, c.
log(p(Φ(κ̃i))) = 0 because p refers to the uniform prior on [0, 1].

2.E Details on the Application of Bridge Sampling to the
Hierarchical EV Model

Analogous to the last section, we explain here how we obtained the logarithm
of the unnormalized posterior for the hierarchical implementation of the EV
model. Using κ̃s,i = (ω̃s,i, α̃s,i, γ̃s,i) for the ith sample from the proposal dis-

tribution for the individual-level parameters of subject s, and ζ̃i for the ith

sample from the proposal distribution for all group-level parameters (i.e., ζ̃i =
(µ̃ω,i, τ̃ω,i, µ̃α,i, τ̃α,i, µ̃γ,i, τ̃γ,i)), we get:

log

((
30∏
s=1

p(Chs(T ) | Φ(κ̃s,i), Xs(T − 1)) p(κ̃s,i | ζ̃i)

)
p(ζ̃i)

)

=

N∑
s=1

[log(p(Chs(T ) | Φ(κ̃s,i), Xs(T − 1)))+
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log

(
1

1.5Φ(τ̃ω,i)
φ

(
ω̃s,i − µ̃ω,i
1.5Φ(τ̃ω,i)

))
+ log

(
1

1.5Φ(τ̃α,i)
φ

(
α̃s,i − µ̃α,i
1.5Φ(τ̃α,i)

))
+

log

(
1

1.5Φ(τ̃γ,i)
φ

(
γ̃s,i − µ̃γ,i
1.5Φ(τ̃γ,i)

))]
+

log (φ(µ̃ω,i)) + log (φ(µ̃α,i)) + log (φ(µ̃γ,i)) +

log (φ(τ̃ω,i)) + log (φ(τ̃α,i)) + log (φ(τ̃γ,i)) .
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Chapter 3

A Simple Method for Comparing
Complex Models: Bayesian Model

Comparison for Hierarchical
Multinomial Processing Tree Models

using Warp-III Bridge Sampling

Abstract

Multinomial processing trees (MPTs) are a popular class of cognitive
models for categorical data. Typically, researchers compare several MPTs,
each equipped with many parameters, especially when the models are im-
plemented in a hierarchical framework. A Bayesian solution is to compute
posterior model probabilities and Bayes factors. Both quantities, however,
rely on the marginal likelihood, a high-dimensional integral that cannot be
evaluated analytically. In this chapter, we show how Warp-III bridge sam-
pling can be used to compute the marginal likelihood for hierarchical MPTs.
We illustrate the procedure with two published data sets and demonstrate
how Warp-III facilitates Bayesian model averaging.

3.1 Introduction

Multinomial processing trees (MPTs; e.g., Riefer & Batchelder, 1988) are sub-
stantively motivated stochastic models for the analysis of categorical data. MPTs

This chapter is published as Gronau, Q. F., Wagenmakers, E.–J., Heck, D. W., & Matzke,
D. (2019). A simple method for comparing complex models: Bayesian model comparison for
hierarchical multinomial processing tree models using Warp-III bridge sampling. Psychometrika,
84, 261–284. doi: https://doi.org/10.1007/s11336-018-9648-3. Also available as PsyArXiv
preprint : https://psyarxiv.com/yxhfm/
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allow researchers to test theories about cognitive architecture by formalizing quali-
tatively different cognitive processes that underlie performance in an experimental
paradigm. MPTs are popular in various areas of psychology and have been applied,
for instance, in research on memory, perception, logical reasoning, and attitudes
(for reviews, see Batchelder & Riefer, 1999; Erdfelder et al., 2009; Hütter & Klauer,
2016). MPTs are related to tree-based item response theory models as presented,
for instance, in Böckenholt (2012a), Böckenholt (2012b), Culpepper (2014), and
De Boeck and Partchev (2012).1

Traditionally, parameter estimation in MPTs has relied on maximum-likelihood
methods for aggregated data (Hu & Batchelder, 1994; Singmann & Kellen, 2013).
Recently, however, MPT modelers have become increasingly interested in using
Bayesian hierarchical methods to examine individual differences in model parame-
ters (Klauer, 2010; Matzke et al., 2015; J. B. Smith & Batchelder, 2010). Bayesian
hierarchical modeling allows researchers to simultaneously account for the differ-
ences and similarities between participants and typically provides more accurate
statistical inference than the analysis of aggregated data, especially in situations
with moderate between-subject variability and scarce participant-level data (e.g.,
Gelman & Hill, 2007).

In typical applications, MPT modelers are interested in comparing a limited
set of models. The models can be nested, which is the case when testing param-
eter constraints (e.g., Batchelder & Riefer, 1990; Singmann, Kellen, & Klauer,
2013), or non-nested, which is the case when comparing structurally different
models (e.g., Fazio, Brashier, Payne, & Marsh, 2015; Kellen, Singmann, & Klauer,
2014). A wide range of model comparison and assessment methods exist both in
the frequentist and Bayesian framework, each with its own goals and operating
characteristics, such as Pearson’s χ2 test, the likelihood ratio test, information cri-
teria such as AIC (Akaike, 1973), BIC (Schwarz, 1978), DIC (Spiegelhalter et al.,
2002), and WAIC (Watanabe, 2010), leave-one-out cross-validation (Vehtari, Gel-
man, & Gabry, 2017), and posterior predictive checks (Gelman, 2013; Meng, 1994;
Robins, van der Vaart, & Ventura, 2000). Furthermore, a range of powerful meth-
ods exist for analyzing multinomial data in particular (e.g., Bishop, Fienberg, &
Holland, 1975; Maydeu-Olivares & Joe, 2005). The goal of this chapter is to enrich
the model comparison toolkit of MPT modelers by illustrating – with examples
from the literature – a computationally feasible approach to model comparison
in hierarchical MPTs based on Bayes factors and posterior model probabilities.2

Furthermore, the proposed approach also enables Bayesian model averaging which
we advocate as a principled way of testing parameter constraints while fully taking
into account model uncertainty.

Suppose one is interested in comparing a discrete set of M models
denoted as M1,M2, . . . ,MM with corresponding prior model probabilities
p(M1), p(M2), . . . , p(MM ), which satisfy the constraints p(Mi) ≥ 0 ∀i ∈
{1, 2, . . . ,M} and

∑M
i=1 p(Mi) = 1. The posterior model probability of Mi is

1The interested reader is referred to Plieninger and Heck (2018) for a comparison of these
model classes.

2Note that posterior model probabilities can also be obtained using information criteria (e.g.,
Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004).
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then obtained using Bayes’ rule:

p(Mi | data)︸ ︷︷ ︸
posterior model probability

=
p(data | Mi)∑M

j=1 p(data | Mj) p(Mj)︸ ︷︷ ︸
updating factor

× p(Mi)︸ ︷︷ ︸
prior model probability

,

(3.1)
where p(data | Mi) is the marginal likelihood of model Mi.

If model comparison involves assessing the tenability of parameter constraints
in a set of nested models, posterior model probabilities can be used to quantify
the model-averaged evidence that a parameter is free to vary or should be con-
strained across different groups or experimental conditions (e.g., Hoeting et al.,
1999; Rouder, Morey, Verhagen, Swagman, & Wagenmakers, 2017). If the model
comparison involves only two models, M1 and M2, it is convenient to consider
the odds of one model over the other one. Bayes’ rule yields:

p(M1 | data)

p(M2 | data)︸ ︷︷ ︸
posterior odds

=
p(data | M1)

p(data | M2)︸ ︷︷ ︸
Bayes factor BF12

× p(M1)

p(M2)︸ ︷︷ ︸
prior odds

. (3.2)

Equation 3.2 shows that the change in odds brought about by the data is given
by the ratio of the marginal likelihoods of the models, a quantity known as the
Bayes factor (Etz & Wagenmakers, 2017; Jeffreys, 1961; Kass & Raftery, 1995;
Ly et al., 2016a).

Equation 3.1 and Equation 3.2 illustrate that the computation of posterior
model probabilities and Bayes factors requires the computation of the marginal
likelihood of the models. The marginal likelihood is obtained by integrating out
the model parameters with respect to the parameters’ prior distribution:

p(data | Mi) =

∫
Θ

p(data | θ,Mi) p(θ | Mi)dθ. (3.3)

The marginal likelihood includes a natural penalty for overdue model complexity
and implements a form of the principle of parsimony also known as Occam’s razor
(e.g., Jefferys & Berger, 1992; Myung & Pitt, 1997; Vandekerckhove et al., 2015).3

Although conceptually straightforward, in practice it is challenging to compute
Bayes factors and posterior model probabilities for hierarchical MPTs because
the marginal likelihood features a high-dimensional integral that cannot be solved
analytically.

In this chapter, we show how Warp-III bridge sampling (Meng & Schilling,
2002; Meng & Wong, 1996, henceforth referred to as Warp-III) can be used to
estimate the marginal likelihood for hierarchical MPTs. Warp-III may be used
for nested and, crucially, also non-nested model comparisons, for which simpler
methods, such as the Savage-Dickey density ratio (Dickey & Lientz, 1970), cannot
be applied. Importantly, Warp-III is not specific to hierarchical MPTs; it may

3For details on the predictive interpretation of the marginal likelihood see the Supplemental
Materials available at https://osf.io/rycg6/.
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be used to compute the marginal likelihood for a wide range of complex cogni-
tive models. In fact, Warp-III improves upon simpler bridge sampling techniques
(e.g., DiCiccio et al., 1997; Gronau, Sarafoglou, et al., 2017) by respecting poten-
tial skewness in the posterior distribution – a typical consequence of estimating
parameters of cognitive models from scarce data (e.g., Ly et al., in press; Matzke et
al., 2015). Due to its accuracy and relatively straightforward implementation, we
believe that Warp-III is a promising and timely addition to the Bayesian toolkit
of cognitive modelers in general, and MPT modelers in particular.

The chapter is organized as follows. We first introduce the latent-trait approach
to hierarchical MPTs. We then demonstrate how Warp-III can be used to estimate
the marginal likelihood for latent-trait MPTs. Lastly, we apply the method to two
model comparison problems from published studies. The first example focuses on
Bayesian model averaging for nested models; the second example focuses on the
computation of the Bayes factor for non-nested models.

3.2 Multinomial Processing Trees

Data for MPTs consist of categorical responses4 from several participants to a
set of items. MPTs are based on the assumption that these responses follow a
multinomial distribution. MPTs reparametrize the category probabilities of the
multinomial distribution in terms of the model parameters that represent the
probabilities of latent cognitive processes (Riefer & Batchelder, 1988).

Consider the pair-clustering MPT depicted in Figure 3.1. The model was de-
veloped for the measurement of the storage and retrieval processes that determine
the recall of semantically related word pairs (Batchelder & Riefer, 1980). A typical
pair-clustering study involves a free recall memory experiment, where participants
are presented with a list of study words in a word-by-word fashion. The study list
consists of two types of items: semantically related word pairs such as knife-fork,
and words without a category partner (i.e., singletons), such as dog. After the
study phase, participants are required to recall as many of the study words as
they can. Typically, semantically related word pairs are recalled consecutively as
a “pair-cluster”.

The model represents the interplay between the hypothesized latent cognitive
processes in a rooted tree structure. The pair-clustering MPT features K = 2
independent category systems. Each category system corresponds to a separate
multinomial distribution: one for word pairs (k = 1) and one for singletons (k = 2).
The category probabilities in each system are modeled using a separate subtree
with a finite number of branches.

Each branch of a subtree corresponds to a specific sequence of processing stages
and terminates in one of Lk possible response categories denoted as Ckl, where
l = 1, . . . , Lk indexes the lth of Lk possible responses in subtree k. In the pair-
clustering MPT, the recall of word pairs is scored into L1 = 4 categories: (1) both
words of the pair are recalled consecutively (C11); (2) both words are recalled but
not consecutively (C12); (3) only one word is recalled (C13); (4) no word is recalled

4Hu (2001), Heck and Erdfelder (2016), and Heck, Erdfelder, and Kieslich (2018) proposed
extensions that also incorporate response times.
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C11

C14
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1 − r
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1 − u

u

1 − u

u

1 − u

C21

C22

Singletons

a

1 − a

c: cluster-storage

r: cluster-retrieval

u: storage-retrieval

a: singleton storage-retrieval

Figure 3.1: The pair-clustering MPT. Available at https://tinyurl.com/

yb7bma4e under CC license https://creativecommons.org/licenses/by/2.0/.

(C14). The recall of singletons is scored into L2 = 2 response categories: (1) the
word is recalled (C21); (2) the word is not recalled (C22).

The response category probabilities are expressed as a function of the MPT
parameters, θp ∈ (0, 1) ∀p ∈ {1, 2, . . . , P}, which can be collected in a vector
θ = (θ1, θ2, . . . , θP ). The pair-clustering MPT features four parameters: θ =
(c, r, u, a). The cluster-storage parameter c corresponds to the probability that
a word pair is stored as a cluster in memory. The cluster-retrieval parameter r
corresponds to the conditional probability that a clustered word pair is retrieved
from memory during the test phase. The model assumes that stored and retrieved
word clusters are always recalled consecutively. The storage-retrieval parameter
u corresponds to the conditional probability that a member of a word pair is
stored and retrieved, given that the word pair was not clustered. The model
makes the simplifying assumption that words from unclustered pairs are never
recalled consecutively. The singleton storage-retrieval parameter a corresponds
to the probability that a singleton is stored and retrieved. In many applications,
researchers impose the constraint that a = u.

The response category probabilities are obtained as follows. First, we obtain
the probability of each branch that terminates in a given response category. Let
Bklm denote the mth of Mkl branches that terminate in response category Ckl.
The probability of branch Bklm is obtained by traversing the tree from root to
leaf and multiplying the encountered parameters:

Pr(Bklm | θ) =

P∏
p=1

θ
vklmp
p (1− θp)wklmp , (3.4)

where vklmp ≥ 0 and wklmp ≥ 0 are the number of nodes on branch Bklm that are
related to parameter θp, p = 1, . . . , P , and 1 − θp, respectively. Second, we sum
the probabilities of the Mkl branches that terminate in Ckl:

Pr(Ckl | θ) =

Mkl∑
m=1

Pr(Bklm | θ). (3.5)
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For instance, the probability of response category C14 is given by Pr(C14 | θ) =
c (1− r) + (1− c) (1− u)2.

The probability of the observed response frequencies across category systems
denoted by n = (n11, . . . , n1L1

, . . . , nK1, . . . , nKLK ), where nkl is the observed
response frequency for category l = 1, . . . , Lk in category system (subtree) k =
1, . . . ,K, is given by a product-multinomial distribution:

Pr(N = n | θ) =

K∏
k=1

{
Jk!

nk1!×nk2!×...× nkLk !

Lk∏
l=1

[Pr(Ckl | θ)]
nkl

}
, (3.6)

where Jk denotes the number of items in category system k (see also Klauer, 2010;
Matzke et al., 2015).

3.2.1 Bayesian Hierarchical MPTs: The Latent-Trait Approach

Bayesian hierarchical approaches explicitly model heterogeneity in participants by
introducing a group-level distribution from which the participant-level parameters
are drawn (e.g., Gelman & Hill, 2007; Gill, 2002; Lee, 2011; Lee & Wagenmak-
ers, 2013; Rouder & Lu, 2005).5 Here we focus on Klauer’s (2010) latent-trait
approach that relies on a multivariate normal group-level distribution to describe
the between-subject variability and the correlations between the participant-level
parameters.

To model participant heterogeneity, observed responses are aggregated over
items, but not over participants, resulting in a vector of category frequencies for
each participant i: ni, i = 1, 2, . . . , I, where I is the total number of participants.
Each participant obtains a participant-specific parameter vector θi of length P .

The latent-trait approach assumes that the probit-transformed participant-
level parameter vectors θ

′

i = Φ−1(θi) follow a P -dimensional multivariate nor-

mal distribution with mean vector µ and covariance matrix Σ: θ
′

i ∼ NP (µ,Σ).
The probit-transformation Φ−1(θi) is defined component-wise, where Φ−1(·) cor-
responds to the inverse of the cumulative distribution function of the normal dis-
tribution. Priors are assigned to µ and Σ. We follow earlier implementations of
the latent-trait approach and assign independent standard normal distributions
to the P components of µ (Heck, Arnold, & Arnold, 2018; Matzke et al., 2015).
This choice corresponds to uniform priors on the probability scale for the grand
means. For the covariance matrix Σ, a convenient prior choice would be an inverse
Wishart prior with degrees of freedom ν = P + 1 and identity scale matrix. This
setting leads to uniform priors on the correlation parameters; however, this choice
is constraining on the standard deviation parameters. Although changing the de-
grees of freedom ν affords more flexibility for modeling the standard deviations, it
comes at the cost of constraining the prior on the correlation parameters (Gelman
& Hill, 2007).

This dilemma can be circumvented by using a scaled inverse Wishart prior as
introduced by Gelman and Hill (2007) and proposed in the context of hierarchical

5Bayesian hierarchical models can be also used to account for heterogeneity in items instead
of participants.
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MPT modeling by Klauer (2010). Compared to a regular inverse Wishart prior,
the scaled version has the advantage that it allows one to model the standard
deviations more flexibly while retaining the desirable uniform prior on the cor-
relation parameters. The scaled inverse Wishart prior is based on the following
decomposition of the covariance matrix Σ:

Σ = Diag(ξ)QDiag(ξ), (3.7)

where ξ is a vector of P scaling parameters and Q corresponds to the P × P un-
scaled covariance matrix. The scaled inverse Wishart prior is obtained by placing
a regular inverse Wishart prior on the unscaled covariance matrixQ and a suitable
prior on the vector of scaling parameters ξ.

We follow Klauer (2010) and assign Q an inverse Wishart prior with degrees
of freedom ν = P + 1 and scale matrix IP (i.e., P ×P identity matrix). For the P
components of ξ, we follow Heck, Arnold, and Arnold (2018) and use independent
uniform priors that range from zero to ten. These choices correspond to relatively
diffuse priors for the standard deviations of the random effects on the probit scale
and uniform priors for the correlations between the random effects.

Note that these prior distributions have been proposed in a context of pa-
rameter estimation, where the exact choice of the prior is irrelevant as long as
sufficiently informative data are available. In contrast, in the context of model
comparison, the priors have an important and lasting effect: As shown in Equa-
tion 3.3, the marginal likelihood is obtained by taking a weighted average of the
probability of the data across all possible parameter settings where the weights
correspond to the parameters’ prior density. We argue that the standard normal
and uniform priors for the grand means and the correlations, respectively, provide
a reasonable default setting also from the perspective of model comparison. The
choice of the prior for ξ is less straightforward. We report the results corresponding
to the default setting of the recently developed MPT software package TreeBUGS

(Heck, Arnold, & Arnold, 2018), but we probed the robustness of our conclusions
with a sensitivity analysis using ξp ∼ Uniform(0, ξmax)∀p ∈ {1, 2, . . . , P}, with
ξmax = 2 instead of ξmax = 10, a prior that was chosen based on the implied
group-level distributions on the probability scale. As the conclusions were unaf-
fected by the choice of the upper bound, the results of the sensitivity analysis
are mentioned only briefly and are presented in more detail in the Supplemental
Materials available at https://osf.io/rycg6/.

Under these prior settings, the probit-transformed participant-level MPT pa-
rameter vectors can be written as:

θ
′

i = µ+ ξ � ωi, (3.8)

where ωi is the P -dimensional vector with the unscaled random effects for par-
ticipant i, and � denotes the Hadamard product (i.e., entry-wise multiplication,
e.g., Liu & Trenkler, 2008). The unscaled random effects are drawn from a P -
dimensional zero-centered multivariate normal distribution with covariance matrix
Q: ωi ∼ NP (0,Q).

Note that the model is overparameterized: ξ and Q cannot be interpreted
separately. Similarly, the unscaled random effects ωi cannot be interpreted on
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their own but need to be combined with the scaling parameter vector ξ to form
the random effects of interest. The scaling parameters ξ, the unscaled covariance
matrix Q, and the unscaled random effects ωi are not of interest in themselves
and are simply an artifact of using a flexible scaled inverse Wishart prior on Σ:
the parameters of interest are θ

′

i, µ, and Σ. Therefore, the scaled inverse Wishart
prior can be regarded as a form of parameter expansion (e.g., Gelman & Hill,
2007) which has been reported to speed up convergence when fitting the model
using Markov chain Monte Carlo sampling (MCMC; e.g., Gamerman & Lopes,
2006).

The reader is referred to Klauer (2010) and Matzke et al. (2015) for a more
detailed description of the latent-trait approach. Parameter estimation may pro-
ceed using MCMC sampling implemented in standard Bayesian statistical software
such as JAGS (Plummer, 2003) or Stan (Stan Development Team, 2016).

3.2.2 Computing the Marginal Likelihood

The marginal likelihood for latent-trait MPTs is given by:6

Pr(N = n) =

∫
...

∫ I∏
i=1

 individual-level︷ ︸︸ ︷
Pr(Ni = ni | µ, ξ,ωi)

group-level︷ ︸︸ ︷
p(ωi | Q)


×

priors︷ ︸︸ ︷
p(Q)p(µ)p(ξ) dQdµdξdω1...dωI

=

∫
...

∫
I∏
i=1

[
K∏
k=1

{
Jk!

nik1!×nik2!×...× nikLk !

Lk∏
l=1

[Pr(Ckl | µ, ξ,ωi)]nikl
}

︸ ︷︷ ︸
Pr(Ni=ni|µ,ξ,ωi)

× (2π)
−P2 |Q|−

1
2 exp

{
− 1

2
ω>i Q

−1ωi

}
︸ ︷︷ ︸

p(ωi|Q)

]

× 1

2
νP
2 ΓP (ν2 )

|Q|−
ν+P+1

2 exp

{
−1

2
tr
(
Q−1

)}
︸ ︷︷ ︸

p(Q)

× (2π)
−P2 exp

{
− 1

2
µ>µ

}
︸ ︷︷ ︸

p(µ)

(ξmax)
−P︸ ︷︷ ︸

p(ξ)

dQdµdξdω1...dωI ,

(3.9)

where ΓP (a) = πP (P−1)/4
∏P
j=1 Γ

(
a+ 1−j

2

)
and Γ(z) =

∫∞
0
xz−1e−x dx are the

multivariate and regular gamma function, respectively. In this parametrization,
we do not need to explicitly integrate out the participant-level parameter vectors
θi since they are functions of µ, ξ, and ωi (see Equation 3.8).

6We omit conditioning on the model for enhanced legibility.
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We exploit the fact that the covariance matrix Q in Equation 3.9 can be inte-
grated out in closed form (see also Overstall & Forster, 2010); a detailed derivation
is provided in the Supplemental Materials. The marginal likelihood is then given
by:

Pr(N = n) =

∫
...

∫
I∏
i=1

[
K∏
k=1

{
Jk!

nik1!×nik2!×...× nikLk !

Lk∏
l=1

[Pr(Ckl | µ, ξ,ωi)]nikl
}]

×
ΓP ( ν+I

2
)

ΓP ( ν
2
)

π−
IP
2

|Ω>Ω + IP |
ν+I
2

× (2π)−
P
2 exp

{
− 1

2
µ>µ

}
× (ξmax)−P dµdξdω1...dωI ,

(3.10)

where Ω is an I ×P matrix of the P -dimensional random-effects vectors ωi of the
I participants. Even after integrating out Q the expression for the marginal like-
lihood is still a high-dimensional integral (i.e., P (I+2) dimensions); the challenge
is to find a method which yields accurate estimates of this integral.

3.3 Warp-III Bridge Sampling for MPTs

We propose to use Warp-III bridge sampling (Meng & Schilling, 2002; Meng &
Wong, 1996; Overstall, 2010), an advanced version of bridge sampling, to evalu-
ate the high-dimensional integral in Equation 3.10. Bridge sampling is a general
method for estimating normalizing constants7, a problem that is not only encoun-
tered in Bayesian inference, but also in likelihood-based approaches (Gelman &
Meng, 1998). We first outline the basic principles of bridge sampling, and then
present the details of the advanced Warp-III method. The reader is referred to
the recent tutorial by Gronau, Sarafoglou, et al. (2017) for a detailed explanation
of the general bridge sampling approach.

Let ζ = (µ, ξ,ω1, . . . ,ωI) be the vector of quantities that must be integrated
out to obtain the marginal likelihood, so that

Pr(N = n) =

∫
Pr(N = n | ζ) p(ζ)dζ. (3.11)

7Bridge sampling in its original form has been proposed to estimate a ratio of normalizing
constants. This approach, however, becomes challenging and inefficient in case the two models
have different parameter spaces (e.g., non-nested comparisons), and potentially very little overlap
between the posterior distributions. For these cases, it may be easier and more efficient to
compute each normalizing constant separately (e.g., DiCiccio et al., 1997; Overstall & Forster,
2010). This ensures that the two relevant distributions (i.e., proposal and posterior) for each of
the separate bridge sampling applications are close to each other yielding an efficient estimator.
Therefore, we recommend computing each normalizing constant separately to enable application
of the method to a wide range of model comparison scenarios.
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General bridge sampling is based on the following identity:

1 =

∫ bridge function︷︸︸︷
h(ζ) p(ζ |N = n)

proposal distribution︷︸︸︷
g(ζ) dζ∫

h(ζ) p(ζ |N = n)︸ ︷︷ ︸
posterior distribution

g(ζ) dζ

, (3.12)

where p(ζ | N = n) is the posterior distribution of ζ, g(ζ) is the probability
density function of a proposal distribution, and h(ζ) is a function such that 0 <∣∣∫ h(ζ) p(ζ |N = n) g(ζ)dζ

∣∣ <∞. It follows from Equation 3.12 that

Pr(N = n) =

∫
h(ζ) Pr(N = n | ζ) p(ζ) g(ζ)dζ∫
h(ζ) g(ζ) p(ζ |N = n)dζ

=
Eg(ζ) [h(ζ) Pr(N = n | ζ) p(ζ)]

Ep(ζ|N=n) [h(ζ) g(ζ)]
.

(3.13)

The bridge sampling estimate of the marginal likelihood is then obtained by sam-
pling from g(ζ) and p(ζ |N = n) and then using Monte Carlo approximations to
estimate the expected values.

The optimal choice of h(ζ), one that minimizes the relative mean-squared error
of the estimator, is given by:

ho(ζ) ∝ [s1 Pr(N = n | ζ) p(ζ) + s2 Pr(N = n) g(ζ)]
−1
, (3.14)

where si = Di
D1+D2

, i ∈ {1, 2}, D1 and D2 denote the number of draws from
p(ζ | N = n) and g(ζ), respectively, used to approximate the expected values
(Meng & Wong, 1996). We set D1 = D2. Note that ho is only optimal if the
draws from the posterior distribution are independent which is not the case with
MCMC procedures. To account for this fact, we replace D1 in defining the weights
s1 and s2 by the effective sample size obtained using the coda R package (Plummer
et al., 2006).8 As ho(ζ) depends on Pr(N = n), the very quantity we want to
estimate, we follow Meng and Wong (1996) and use an iterative scheme to update
an initial guess of the marginal likelihood until convergence:9

P̂r(N = n)(t+1) =

1
D2

D2∑
r=1

l2,r

s1 l2,r+s2
ˆPr(N=n)(t)

1
D1

D1∑
j=1

1

s1 l1,j+s2
ˆPr(N=n)(t)

, (3.15)

8Specifically, we used the median effective sample size across all posterior components.
9In our experience, the exact value of the initial guess typically does not have a lasting influ-

ence on the resulting estimate. Nevertheless, good initial values may lead to faster convergence.
For implementation details, see Gronau, Sarafoglou, et al. (2017), especially Appendix B.
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where l1,j =
Pr(N=n|ζ∗j ) p(ζ∗j )

g(ζ∗j )
, l2,r = Pr(N=n|ζ̃r) p(ζ̃r)

g(ζ̃r)
, {ζ∗1 , . . . , ζ∗D1

} are D1

draws from p(ζ |N = n), and {ζ̃1, . . . , ζ̃D2
} are D2 draws from g(ζ).

A remaining question is how to choose g(ζ). The precision of the bridge sam-
pling estimator is governed by the number of samples from g(ζ) and the over-
lap between g(ζ) and p(ζ | N = n) (Meng & Wong, 1996). Therefore, g(ζ)
should closely resemble the posterior distribution. For instance, we may choose
a multivariate normal distribution for g with mean vector and covariance ma-
trix that match the corresponding quantities of the posterior samples. Although
the multivariate normal approach works well in many applications (e.g., Gronau,
Sarafoglou, et al., 2017; Overstall & Forster, 2010), it can be inefficient when the
posterior distribution is skewed.

Warp-III improves upon the multivariate normal bridge sampling approach
by matching, not only the first two, but also the third moment (i.e., skewness)
of g and the posterior distribution. Consequently, in case there is no skewness,
Warp-III results in estimates with the same precision as the ones from the simpler
multivariate normal approach. However, crucially, in the presence of skewness,
Warp-III is able to match g and the posterior distribution more closely which
results in a higher precision of the marginal likelihood estimates compared to the
simpler approach. How much of an improvement Warp-III is over the simpler
multivariate normal approach may depend on the particular example at hand.

In Warp-III, g is fixed to a multivariate standard normal distribution. The
posterior distribution is then manipulated – “warped” – so that its mean vector,
covariance matrix, and skew match g. Crucially, the warped posterior distribu-
tion retains the normalizing constant of the posterior distribution. Figure 3.2
illustrates the rationale of the Warp-III transformation for the univariate case.
The histogram in the upper-left panel shows hypothetical “unbounded” poste-
rior samples that can range across the entire real line; the solid line shows the
standard normal proposal distribution g. The overlap between the two distribu-
tions is clearly suboptimal. Bridge sampling applied to these two distributions
can be thought of as “Warp-0” because the posterior distribution is not modified.
The upper-right panel illustrates “Warp-I”: Subtracting the mean of the posterior
samples from all posterior samples matches the first moment of the distributions.
The lower-right panel illustrates “Warp-II”: Dividing the zero-centered posterior
samples by their standard deviation matches the first two moments of the dis-
tributions. This approach is practically equivalent to the multivariate normal
bridge sampling approach described above. Lastly, the lower-left panel illustrates
Warp-III: Randomly assigning a minus sign to the standardized posterior samples
matches also the third moment of the distributions.

Warp-III assumes that all components of the parameter vector can range across
the entire real line. In the context of latent-trait MPTs, this assumption is not
fulfilled since ξp ∈ (0, ξmax) ∀p ∈ {1, . . . , P}. We therefore transform ξ so that

ξtrans = Φ−1
(

ξ
ξmax

)
with Jacobian (ξmax)

P NP (ξtrans; 0, IP ), where NP (x;y,Z)

denotes the probability density function of a P -dimensional normal distribution
with mean vector y and covariance matrix Z which is evaluated for the vector
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Figure 3.2: Matching the proposal and posterior distribution with warping. His-
tograms show the posterior distribution; density lines show the standard normal
proposal distribution. Available at https://tinyurl.com/y7owvsz3 under CC
license https://creativecommons.org/licenses/by/2.0/.

x.10 Let ψ = (µ, ξtrans,ω1, . . . ,ωI) denote the resulting parameter vector where
all components are on the real line.

Warp-III is then based on applying the following stochastic transformation to
ψ:

η = b︸︷︷︸
symmetry

× R−1︸︷︷︸
covariance I

× (ψ − v)︸ ︷︷ ︸
mean 0

, (3.16)

where b ∼ Bernoulli(0.5) on {−1, 1} and v corresponds to the expected value of ψ
(i.e., the mean vector). The matrix R is obtained via the Cholesky decomposition
of the covariance matrix of ψ, denoted as S, thus, S = RR>. In practice, v
and S are unknown and must be approximated using the posterior samples. Note

10As before, the probit-transformation is defined component-wise
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that Equation 3.16 simply generalizes the intuition illustrated in Figure 3.2 for
the univariate case to the general case with multiple parameters.

Due to the Bernoulli random variable b, the warped posterior density has the
form of a mixture density (see also Overstall, 2010, p. 70):

pη(η |N = n) =
|R|
2

[
p̃ψ(v −Rη |N = n)

Pr(N = n)
+
p̃ψ(v +Rη |N = n)

Pr(N = n)

]
=
p̃η(η |N = n)

Pr(N = n)
,

(3.17)

where p̃η(η | N = n) = |R|
2 [p̃ψ(v −Rη |N = n) + p̃ψ(v +Rη |N = n)] de-

notes the un-normalized warped posterior distribution and p̃ψ(· |N = n) denotes
the un-normalized posterior distribution that has been transformed to the real line
(but not warped). This proves that the warped posterior distribution retains the
normalizing constant of the original posterior distribution.

The Warp-III estimator of the marginal likelihood is then derived by using
the warped posterior distribution pη(η | N = n) instead of p(ζ | N = n) in
Equation 3.12. Equation 3.13 shows that this results in a ratio of two expected
values, where the numerator is an expected value with respect to the multivariate
standard normal proposal distribution g(η) and the denominator is an expected
value with respect to the warped posterior distribution pη(η |N = n). Hence, we
could obtain an estimate of the marginal likelihood by first warping the posterior
samples using Equation 3.16, then sampling from the proposal distribution, and
applying the iterative updating scheme in Equation 3.15.

However, in line with the literature (e.g., Sinharay & Stern, 2005), we rewrite
the expected value in the denominator of Equation 3.13 in terms of the unbounded
posterior samples that are transformed to the real line but are not warped; a
derivation is provided in the Supplemental Materials. The estimate of the marginal
likelihood is then obtained by applying the iterative scheme in Equation 3.15 using:

l1,j =

|R|
2

[
p̃ψ(2v −ψ∗j |N = n) + p̃ψ(ψ∗j |N = n)

]
g
(
R−1

(
ψ∗j − v

)) , (3.18)

and

l2,r =
|R|
2 [p̃ψ(v −Rη̃r |N = n) + p̃ψ(v +Rη̃r |N = n)]

g(η̃r)
, (3.19)

where {ψ∗1 , . . . ,ψ∗D1
} are D1 draws from pψ(ψ | N = n), and {η̃1, . . . , η̃D2

} are
D2 draws from the proposal distribution g(η). Furthermore, p̃ψ(ψ | N = n)
denotes the un-normalized posterior density of the unbounded posterior samples;
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it is therefore written in terms of ξtrans and is adjusted by the Jacobian term:11

p̃ψ(ψ |N = n) =

I∏
i=1

[
K∏
k=1

{
Jk!

nik1!×nik2!×...× nikLk !

Lk∏
l=1

[Pr(Ckl | µ, ξtrans,ωi)]
nikl

}]

×
ΓP ( ν+I

2
)

ΓP ( ν
2
)

π−
IP
2

|Ω>Ω + IP |
ν+I
2

× (2π)−
P
2 exp

{
− 1

2
µ>µ

}
× (2π)−

P
2 exp

{
− 1

2
ξ>transξtrans

}
.

(3.20)

Note that rewriting the expected value in terms of p̃ψ(ψ | N = n) is only a
technical nicety. This approach is identical to applying the Warp-III transforma-
tion to the posterior samples and then using the iterative scheme with the warped
posterior density and a multivariate standard normal proposal distribution.

3.4 Empirical Examples

3.4.1 Example 1: Nested Model Comparison

We re-analyzed the pair-clustering data set reported in Riefer, Knapp, Batchelder,
Bamber, and Manifold (2002) using the hierarchical latent-trait approach.12 Ex-
periment 4 examined the memory of patients with brain damage due to prolonged
alcoholism in comparison to a control group of alcoholic patients without indica-
tions of brain damage. The participants attempted to memorize the same list of 20
categorically related word pairs in a series of six study-test trials.13 For demon-
stration purposes, we focused on the free recall performance of the 21 control
participants. Specifically, we investigated whether the model parameters change
from the first to the second trial indicating a change in the storage and retrieval
processes as a function of practice using posterior model probabilities and Bayesian
model averaging.

3.4.1.1 Model Specification

To model differences in parameters, we augmented Equation 3.8 with a parameter
vector that captures the difference in parameters between the two trials: δ =
(δc, δr, δu). The probit-transformed parameter vectors of participant i for the first

11Note that ξmax drops out of the expression because it cancels with the first term of the
Jacobian. Implicitly, however, it still influences the marginal likelihood because it appears in

the transformation equation ξtrans = Φ−1
(

ξ
ξmax

)
. It is also needed for evaluating Pr(Ckl |

µ, ξtrans,ωi) since in order to obtain the MPT parameters on the probit scale (i.e., Equation 3.8)
we need to transform ξtrans back to ξ via the inverse transformation ξ = ξmax Φ (ξtrans).

12Data were obtained from https://bayesmodels.com/; see also Lee and Wagenmakers (2013).
13Riefer et al. (2002) did not administer singletons.
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Table 3.1: Overview of the eight nested models for the analysis of the first two
trials of the pair-clustering data set reported in Riefer et al. (2002).

Free Parameters Model
M1 M2 M3 M4 M5 M6 M7 M8

c X X X X
r X X X X
u X X X X

Note. M1 allows all three parameters to vary between trials,M8 posits that none of
the parameters vary between trials. ModelsM2 toM7 are between these extremes.

trial (θ
′

1,i) and the second trial (θ
′

2,i) are then obtained as follows:

θ
′

1,i =

group mean
for first trial︷ ︸︸ ︷
µ− δ

2
+ ξ � ωi,

θ
′

2,i = µ+
δ

2︸ ︷︷ ︸
group mean

for second trial

+ ξ � ωi.
(3.21)

For an alternative approach to modeling within-subject differences in model pa-
rameters, the reader is referred to Rouder et al. (2008).

Table 3.1 shows the 23 = 8 nested models that implement the eight sets of
possible parameter constraints. M1 allows all three parameters to vary between
trials so that δ = (δc, δr, δu). In contrast, M8 posits that none of the parameters
vary between trials so that δ = (0, 0, 0). Models M2 to M7 are between these
extremes and allow either one or two parameters to vary between trials.

We used independent zero-centered normal priors for the components of δ.
We explored a narrow (σnarrow

δ ≈ 0.52), medium (σmedium
δ ≈ 0.84), and a wide

(σwide
δ ≈ 1.28) zero-centered normal prior to assess the sensitivity of the results to

the width of the test-relevant prior distribution. As shown in the Supplemental
Materials, the standard deviations σδ were chosen to correspond to small, medium,
and large effects on the probability scale centered around 0.5. Priors for the
remaining parameters followed the specification described earlier.

We estimated the posterior distribution of the model parameters using JAGS by
adapting the script provided by Matzke et al. (2015). The JAGS code is available
in the Supplemental Materials. We ran three MCMC chains with over-dispersed
start values, discarded the first 4, 000 posterior samples as burn in, and retained
only every 20th sample to reduce autocorrelation. Results reported below are
based on a total of 90, 000 posterior samples. Convergence of the MCMC chains
was assessed by visual inspection and the R̂ statistic (R̂ < 1.05 for all parameters;
Gelman & Rubin, 1992).

Figure 3.3 shows the resulting posterior distributions of the probit group-level
means from the full model M1; the parameters were transformed back to the
probability scale. The posteriors were computed using the medium prior setting
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Figure 3.3: Posterior distributions of the probit group-level means (plotted on
the probability scale) from the full model M1 for the analysis of the first two
trials of the pair-clustering data reported in Riefer et al. (2002). The solid lines
correspond to the posteriors for the first trial, the dotted lines to the posteriors for
the second trial. Available at https://tinyurl.com/y9a33l4t under CC license
https://creativecommons.org/licenses/by/2.0/.

(σmedium
δ ) – results obtained with the narrow and wide prior were highly similar

and are not displayed. The plot of the posterior distributions based on the alter-
native prior choice for the elements of ξ (i.e., uniform priors with upper bound
ξmax = 2 instead of ξmax = 10) was visually almost indistinguishable from the
one presented here and has hence been relegated to the Supplemental Materials.
The cluster-storage c parameter did not change substantially, whereas the storage-
retrieval u, and especially the cluster-retrieval r parameter seemed to increase from
the first trial to the second.

3.4.1.2 Computing Marginal Likelihoods with Warp-III

Equation 3.20 was adjusted to include the relevant prior distributions for the
elements of δ. For each model, we split the 90, 000 posterior samples in two equal
parts (first and second half of the iterations per chain) and used the first part
for estimating R and v, and the second part for the iterative updating scheme in
Equation 3.15 (Overstall & Forster, 2010). Hence, D1 = D2 = 45, 000. To assess
the accuracy of the resulting estimates, we repeated this procedure 50 times.14

We implemented the procedure in R (R Core Team, 2019). For efficiency, we
parallelized the computations, and coded the computationally intensive elements
in efficient C++ code which was called from within R using Rcpp (Eddelbuettel et
al., 2011). Using a standard personal computer and four CPU cores, computing
the marginal likelihood for each repetition took less than one minute per model.
The code is available in the Supplemental Materials.

14We assessed the accuracy of the estimates conditional on the posterior samples, that is,
for each repetition, we used the same posterior samples but generated new samples from the
proposal distribution. Whenever feasible, it may be advantageous to also generate new posterior
samples in each repetition.
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Figure 3.4: Posterior model probabilities (left panel) and posterior inclusion prob-
abilities (right panel) for the analysis of the first two trials of the pair-clustering
data reported in Riefer et al. (2002) obtained with Warp-III bridge sampling. In
the left panel, the x-axis indicates which parameters were allowed to vary from the
first to the second trial (e.g., c− u corresponds to M3 where r was fixed between
trials). Gray symbols show the results of the 50 repetitions and black symbols
display the posterior model probabilities and posterior inclusion probabilities that
are based on the median of the 50 estimated log marginal likelihoods. Circles show
results obtained with the narrow prior, diamonds with the medium prior, and tri-
angles with the wide prior. The dotted lines show the prior model probabilities
and prior inclusion probabilities. Available at https://tinyurl.com/yaxbj9o6

under CC license https://creativecommons.org/licenses/by/2.0/.

3.4.1.3 Posterior Model Probabilities

To formally quantify evidence for the differences in parameters, we computed the
posterior model probabilities of the eight models using the marginal likelihoods
obtained with Warp-III. We assumed that all models were equally likely a priori.
The left panel of Figure 3.4 shows the posterior model probabilities for the narrow,
medium, and wide prior settings. The plot of the posterior model probabilities
based on the alternative prior choice for the elements of ξ (i.e., uniform priors with
upper bound ξmax = 2 instead of ξmax = 10) was visually almost indistinguishable
from the one presented here and has hence been relegated to the Supplemental
Materials. Formal model comparison confirmed the results of the visual inspection
of the posterior distributions shown in Figure 3.3: M2, the model that allows for
a difference in r and u, received the most support from the data. As expected, the
width of the test-relevant prior δ influenced the value of the marginal likelihood,
but it did not change the conclusions qualitatively. Warp-III provided accurate
estimates of the posterior model probabilities as indicated by the small variability
across the 50 repetitions (i.e., gray symbols). For this nested example, the pos-
terior model probabilities can be also obtained using the Savage-Dickey density
ratio representation of the Bayes factor (Dickey & Lientz, 1970; Wagenmakers et
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al., 2010). As shown in the Supplemental Materials, the Savage-Dickey proce-
dure resulted in posterior model probabilities that were highly similar to the ones
obtained with Warp-III.

3.4.1.4 Bayesian Model Averaging

Bayesian model averaging does not require researchers to commit to a single “best”
model; it allows researchers to acknowledge uncertainty about the choice of the
correct model (e.g., Hoeting et al., 1999; Rouder et al., 2017). This is achieved by
considering the posterior inclusion probabilities of the parameters. Posterior in-
clusion probabilities quantify the model-averaged evidence for a change in a given
parameter; they can be obtained by summing the posterior model probabilities of
the models that allow the parameter to differ between the trials. For instance,
the posterior inclusion probability of the c parameter is obtained by summing the
posterior model probabilities ofM1,M3,M4, andM6. Posterior inclusion prob-
abilities are then compared to the prior inclusion probabilities, in this case 0.5,
which are obtained in an analogous manner but based on the prior model proba-
bilities.15 The right panel of Figure 3.4 shows the posterior inclusion probabilities
for the three prior settings. The plot of the posterior inclusion probabilities based
on the alternative prior choice for the elements of ξ (i.e., uniform priors with upper
bound ξmax = 2 instead of ξmax = 10) was visually almost indistinguishable from
the one presented here and has hence been relegated to the Supplemental Mate-
rials. The posterior inclusion probabilities of the r and u parameter are higher
than the prior inclusion probabilities, indicating evidence for a difference in these
parameters between trials. In contrast, the posterior inclusion probability of c is
lower than the corresponding prior inclusion probability, indicating evidence for
invariance between the trials. As before, the width of the δ prior does not change
the conclusions qualitatively.

3.4.1.5 Substantive Contribution

The data from Riefer et al. (2002) have been analyzed in a number of articles.
The original article analyzed the aggregated data (an approach known to suffer
from limitations in case there is heterogeneity across participants, e.g., Klauer,
2006) and considered the p-values of G2 statistics to investigate whether parame-
ters differ across trials. J. B. Smith and Batchelder (2010) reanalyzed a subset of
the data using the hierarchical beta-MPT model (which specifies group-level beta
distributions and thus differs from the latent-trait approach that we used).16 To
investigate whether parameters differ across trials, Smith and Batchelder (a) con-
sidered the posterior distribution of the difference between trials for the group-level
mean parameters and (b) ran a classical paired sample t-test on the individual-level
parameter estimates. These approaches, however, do not allow one to quantify ev-
idence for an invariance (i.e., a simpler model where some parameters do not differ

15The change from prior inclusion odds to posterior inclusion odds can also be quantified by
means of an inclusion Bayes factor (not reported).

16Note that this data set has been also analyzed in Lee and Wagenmakers (2013, chapter
14). In this case the hierarchical latent-trait approach was used, however, no explicit model
comparison or hypothesis testing was conducted.
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across trials) on a continuous scale in a systematic way and, crucially, they do not
allow one to disentangle “absence of evidence” (i.e., the data are uninformative)
and “evidence of absence” (i.e., the data support a simpler model).17 These short-
comings can be addressed by computing Bayes factors and posterior model and
posterior inclusion probabilities. “Absence of evidence” can be inferred from Bayes
factors close to one and posterior model and posterior inclusion probabilities close
to the corresponding prior probabilities. In contrast, “evidence of absence” can be
inferred from large Bayes factors in favor of the simpler model, and in situations
when the posterior model probability of the simpler model is the highest or when
the posterior inclusion probability is smaller than the prior inclusion probability.

Our Bayesian re-analysis suggests that there is strong evidence that the prob-
ability of retrieving word pairs that have been stored as a cluster (i.e., r) changed
from the first to the second trial. Furthermore, there is evidence that the probabil-
ity of storing and retrieving words that have not been stored as a cluster (i.e., u)
differed between the two trials. Crucially, our approach also allowed us to conclude
that there is some evidence that the probability of storing a word pair as a cluster
(i.e., c) did not change from the first to the second trial (although this evidence
is not that pronounced since the posterior inclusion probability for a difference in
c is – depending on the prior choice – relatively close to the prior inclusion prob-
ability of .5). Another key improvement of our analysis over the above mentioned
analyses is the use of Bayesian model averaging. In this example, M2 received
the highest posterior probability; however,M1 also received substantive posterior
probability. Therefore, selecting a single best model (i.e.,M2) and basing final in-
ference solely on this model might be suboptimal at best and misleading at worst.
In contrast, when using the model-averaged posterior inclusion probabilities for
drawing conclusions about which parameters differ between trials, one takes into
account all models under consideration according to their plausibilities in light of
the observed data.

Finally, note that one might argue that this data set is relatively small and
is thus uninformative. However, one strength of the Bayesian approach is that it
allows one to quantify whether the data are informative or not. For this example,
the Bayesian results suggest that the data are in fact informative which is indi-
cated by posterior model/inclusion probabilities that are quite different from the
corresponding prior probabilities.

3.4.2 Example 2: Non-Nested Model Comparison

We re-analyzed data from Experiment 2 reported by Fazio et al. (2015) who inves-
tigated the influence of knowledge on the illusory truth effect. The illusory truth
effect refers to the phenomenon that, in the absence of knowledge about the truth
status of a statement, repeated statements are easier to process and are judged
more truthful than new statements. Fazio et al., however, provided evidence that
participants tend to rely on the ease of processing (i.e., fluency) even when they
have knowledge about the statement.

17Note also that it is well-known that the two-step procedure (b) used by J. B. Smith and
Batchelder can yield biased conclusions (Boehm, Hawkins, Brown, van Rijn, & Wagenmakers,
2016).
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Figure 3.5: The knowledge-conditional (top panel) and fluency-conditional (bot-
tom panel) MPTs. Available at https://tinyurl.com/ya8sovfr under CC li-
cense https://creativecommons.org/licenses/by/2.0/

We re-analyzed data from 39 participants who indicated the truthfulness (i.e.,
“true”/“false”) of 176 statements, half of which were true and half of which were
false. Half of the statements were likely to be known according to general knowl-
edge norms (“known” statements) and half of them were likely to be unknown
(“unknown” statements). An example of a true known statement is “The Pacific
Ocean is the largest ocean on Earth”. An example of a false unknown state-
ment is “Billy the Kid’s last name is Garrett”. To manipulate fluency, half of the
statements were presented twice, once in the exposure phase and once in the truth-
rating phase, whereas the other half was only presented in the truth-rating phase.
Hence, the experiment had a 2 (truth status: true vs. false) × 2 (assumed knowl-
edge: known vs. unknown) × 2 (repetition: repeated vs. not repeated) balanced
within-subject design, and each cell of the design featured 22 statements.

3.4.2.1 Model Specification

Fazio et al. (2015) constructed two MPTs to study the illusory truth effect. The
knowledge-conditional model depicted in the top panel of Figure 3.5 assumes that
participants rely on knowledge when assessing truthfulness and only rely on fluency
when they are unable to retrieve knowledge about the statement. Parameter
k represents the probability of retrieving knowledge about the statement from
memory. If knowledge is retrieved, participants are assumed to give the correct
response (i.e., “true” for true statements and “false” for false statements). If
no knowledge is retrieved with probability 1 − k, participants rely on fluency
with probability f and respond “true”. If participants do not rely on fluency
with probability 1 − f , they guess “true” with probability g and “false” with
probability 1− g. Responses to true statements are scored into the categories C11
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(correct “true” response) and C12 (incorrect “false” response). Responses to false
statements are scored into the categories C21 (incorrect “true” response) and C22

(correct “false” response). In contrast, the fluency-conditional model depicted in
the bottom panel reflects the notion that participants mainly rely on fluency and
only use knowledge in the absence of fluency. The models feature the same set of
parameters, but they assume a different conditional probability structure.

For each model, we replicated the two subtrees four times (i.e., a total of
eight subtrees per model) to accommodate the design of the experiment: the first
replicate corresponded to known true and false statements that were not repeated,
the second to known true and false statements that were repeated, the third to
unknown true and false statements that were not repeated, and the fourth to
unknown true and false statements that were repeated. Following Fazio et al.
(2015), we used separate knowledge parameters for known (kk) and unknown
(ku) statements, and separate fluency parameters for repeated statements (fr)
and statements shown only once (fn). The guessing parameter g was constrained
to be equal across the four replicates. We implemented the models within the
hierarchical latent-trait approach, using the prior specifications described earlier.

We estimated the posterior distribution of the model parameters using JAGS,
ran three MCMC chains with over-dispersed start values, discarded the first 4, 000
posterior samples as burn in, and retained only every 50th sample. Results re-
ported below are based on a total of 180, 000 posterior samples. The posterior
distributions of the group-level mean parameters are displayed in the Supplemen-
tal Materials.

3.4.2.2 Computing Bayes Factors with Warp-III

For each model, we split the 180, 000 posterior samples in two equal parts (first
and second half of the iterations per chain) and used the first part for estimating
R and v, and the second part for the iterative updating scheme in Equation 3.15
(D1 = D2 = 90, 000). Using a standard personal computer and four CPU cores,
computing the marginal likelihood took approximately three minutes per model.

The resulting marginal likelihoods were used to compute the Bayes factor in
favor of the fluency-conditional model over the knowledge-conditional model. To
assess the accuracy of the resulting Bayes factor, we repeated this procedure 50
times. Estimates of the Bayes factor ranged from 1.3 × 1042 to 3.6 × 1043 in
favor of the fluency-conditional model. Estimates of the Bayes factor based on
the alternative prior choice for the elements of ξ (i.e., uniform priors with upper
bound ξmax = 2 instead of ξmax = 10) ranged from 1.7×1041 to 1.7×1043 in favor
of the fluency-conditional model. In line with the conclusion drawn by Fazio et
al. (2015) based on the G2 statistic, this result provides overwhelming evidence in
favor of the fluency-conditional model.18

18Although the Bayes factor indicates overwhelming evidence in favor of the fluency-
conditional model, it should be kept in mind that the Bayes factor quantifies the evidence of two
models relative to each other. In practice, researchers should also check that the model that is
favored by the Bayes factor provides an adequate fit to the observed data (e.g., Steingroever et
al., 2014).
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Figure 3.6: Log Bayes factor estimates in favor of the fluency-conditional (FC)
model over the knowledge-conditional (KC) model as a function of the num-
ber of posterior samples. The Warp-III estimates are displayed in white, the
estimates based on the simpler multivariate normal approach are displayed in
gray. Available at https://tinyurl.com/ydbfev7w under CC license https://

creativecommons.org/licenses/by/2.0/.

Figure 3.6 displays the Warp-III Bayes factor estimates (on the log scale) in
white as a function of the number of posterior samples used in the bridge sampling
procedure.19 As a comparison, the estimates based on the simpler multivariate
normal bridge sampling approach are displayed in gray. As the number of poste-
rior samples increases, the Bayes factor estimates become more precise. For this
particular example, it is apparent that the Warp-III estimates are less variable
than the estimates based on the simpler multivariate normal approach.

3.4.2.3 Substantive Contribution

The authors of the original article analyzed the aggregated data (again, an ap-
proach known to be suboptimal in case there is heterogeneity across participants)

19Posterior sample sizes smaller than 180,000 were obtained by considering only a subset of
the 180,000 posterior samples for each model (i.e., no new posterior samples were obtained). Note
that the same posterior sample sizes were used for the Warp-III and the simpler multivariate
normal approach, but the results of the two methods are displayed with an offset to avoid
overlapping symbols. Plots for each model’s marginal likelihood estimates are presented in the
Supplemental Materials.
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and considered the G2 statistics with corresponding p-values. Based on the fact
that the knowledge-conditional model had a larger, significant G2 statistic com-
pared to the fluency-conditional model that had a lower, non-significant G2 statis-
tic, the authors concluded that the knowledge-conditional model fit the data poorly
and the fluency-conditional model fit the data well. Therefore, the authors favored
the fluency-conditional model based on two binary accept-reject decisions. This
makes it difficult to gauge the degree of support that the data provide in favor
of the fluency-conditional model. The Bayes factor may be 10, or 100, or 1,000
– these are very different levels of evidence. In fact, our analysis shows that the
Bayes factor is about 1.3 × 1042 to 3.6 × 1043 in favor of the fluency-conditional
model, which represents an overwhelming amount of evidence.

It could be argued that, since the compared models have the same number
of parameters, comparing G2 statistics may result in choosing the same model
as based on considering AIC or BIC. AIC is asymptotically equivalent to cross-
validation (M. Stone, 1977) which is known to be inconsistent in the sense that,
when the number of observations goes to infinity, the data-generating model will
not be chosen with certainty (Shao, 1993). In contrast, when using Bayes factors,
model-selection consistency is generally fulfilled (Bayarri, Berger, Forte, & Garćıa-
Donato, 2012). Although the BIC is a rough approximation of the Bayes factor,
we believe that it is better to compute proper Bayes factors which are transparent
with respect to the prior assumptions.

Finally, one might argue again that this data set is relatively small and is
thus uninformative. However, the resulting Bayes factor is very different from 1,
indicating that the data are in fact highly informative with respect to adjudicating
between the fluency-conditional and the knowledge-conditional model.

3.5 Discussion

Bayesian hierarchical techniques for MPT modeling are increasingly popular. Cur-
rent hierarchical MPT approaches, however, do not incorporate Bayesian model
comparison methods based on Bayes factors and posterior model probabilities,
possibly because of the computational challenges associated with the evaluation
of the marginal likelihood. In this chapter, we addressed this challenge and showed
how Warp-III bridge sampling can be used to obtain accurate and stable estimates
of the marginal likelihood of hierarchical MPTs. We applied the method to model
comparison problems from two published studies and illustrated how the marginal
likelihood can be used for Bayesian model averaging and for the computation of
the Bayes factor.

Our examples highlighted that Bayesian model comparison based on posterior
model/inclusion probabilities and Bayes factors allows researchers to disentangle
between “absence of evidence” and “evidence of absence”. Note that it is crucial
in all stages of cognitive model development, validation, and application that one
is able to quantify evidence in favor of invariances (i.e., “evidence of absence”) in a
coherent and systematic way. For model development and validation, it is impor-
tant to show that certain experimental manipulations selectively influence only a
subset of the model parameters whereas the remaining parameters are unaffected
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(i.e., selective influence studies). Once a cognitive model has been established as
a valid measurement tool, it can be used, for instance, to investigate which sub-
processes are targeted by new experimental manipulations or which subprocesses
differ or do not differ in clinical subpopulations (cognitive psychometrics; e.g.,
Riefer et al., 2002). In these applications it is important to be able to quantify
evidence for a difference but, crucially, also for an invariance since one might wish
to make statements of the form “there is evidence that retrieval processes are not
affected”.

There are often a number of different candidate models for the analysis of
observed data. In Example 1, we demonstrated how Bayesian model averaging
can be used to draw conclusions that fully take into model uncertainty. In our
opinion, Bayesian model averaging is an extremely powerful approach and, to the
best of our knowledge, it is currently not used in the context of hierarchical MPTs
and cognitive modeling more generally. We believe that attending researchers to
this approach and providing the computational tools to facilitate its application
(i.e., Warp-III) is one of the key contributions of this work.

Our examples illustrated that Warp-III is relatively straightforward to imple-
ment once posterior samples from the models have been obtained with MCMC
sampling. Another advantage of Warp-III bridge sampling is its relative speed.
In our experience, the Warp-III procedure requires much less computational time
than the MCMC sampling from the posterior. One of the crucial determinants
of the computational time of Warp-III is how long it takes to evaluate the un-
normalized posterior density. To maximize speed for our applications, we im-
plemented the un-normalized posterior density functions in C++ code called from
within R via Rcpp (Eddelbuettel et al., 2011). Compared to a simpler bridge sam-
pling version which only matches the first two moments of the proposal and the
posterior (e.g., Overstall & Forster, 2010), Warp-III is expected to take about
twice as long for a fixed number of samples due to the mixture representation
of the warping procedure which requires evaluating the un-normalized posterior
twice as often as for the simpler bridge sampling version. However, Warp-III is
also expected to be more accurate in case the posterior is skewed which means
there might be a speed-accuracy trade-off.

Despite its computational simplicity, Warp-III should not be applied blindly.
Specifically, as we demonstrated for our empirical examples, it is important to
assess the variability of the resulting model comparison measure – such as poste-
rior model probabilities or Bayes factors – by repeating the Warp-III procedure
multiple times. When the measure of interest clearly favors a given model, as
in our second example, some fluctuation is not necessarily concerning. However,
in situations where the fluctuation influences which model is favored, researchers
should either increase the number of posterior and proposal samples to decrease
the variability of the estimate, or, if this solution is practically infeasible, they
should acknowledge that the estimate does not support firm conclusions about
the relative predictive adequacy of the models.

The accuracy of the estimate is governed not only by the number of samples
but also by the overlap between the proposal and the posterior distribution. Warp-
III attempts to maximize this overlap by matching the mean vector, covariance
matrix, and the skew of the two distributions. However, in case the posterior
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distribution exhibits multiple modes, the overlap may not be sufficiently close.
Researchers should carefully check whether multi-modalities occur in their appli-
cation. If this is the case, repeated runs of the Warp-III procedure could be used
to obtain an impression of the stability of the estimate. Nevertheless, it should be
kept in mind that Warp-III is not designed for multi-modal posterior distributions
and results should be interpreted with caution. The development of bridge sam-
pling procedures for multi-modal posterior distributions is currently ongoing (e.g.,
Frühwirth–Schnatter, 2004; L. Wang & Meng, 2016). Note, however, that this is
not a very severe limitation of the Warp-III method, since posterior distributions
are unimodal in many models used in psychology – they even converge to normal
distributions under specific conditions (Dawid, 1970).

Relatedly, note that we use the unscaled effects ωi and the scaling parameters ξ
directly in the bridge sampling procedure – but technically, these are only identified
jointly. Therefore, MCMC chains for these parameters may look irregular and
exhibit, for instance, multiple modes, decreasing the efficiency of the Warp-III
procedure as mentioned above. Although this was not the case for our applications,
we advise researchers to carefully monitor the MCMC chains of the unidentified
unscaled effects and scaling parameters.

On a more theoretical note, as Equation 3.3 illustrates, Bayesian model com-
parison is sensitive to the choice of the prior distribution. We relied on relatively
standard priors for the group-level parameters, but also established the robust-
ness of our conclusions with a series of sensitivity analyses (see also Supplemental
Materials). Nevertheless, we do not suggest that our prior choices should be con-
sidered as the gold-standard for model comparison in hierarchical MPTs. Several
approaches are available for specifying theoretically justified prior distributions
for cognitive models (Lee & Vanpaemel, 2018; see also Heck & Wagenmakers,
2016, for specifying order constraints in MPTs). We believe that the increas-
ing popularity of hierarchical MPTs will enable researchers to specify informative
paradigm-specific and model-specific prior distributions based on experience with
the models (e.g., typical parameter ranges and effect sizes). The dependency on
the prior is sometimes considered as a weakness of Bayes factor model compar-
isons (e.g., Aitkin, 2001). Some researchers and statisticians even conclude that
due to this reason, the use of Bayes factors is not recommended (e.g., Gelman,
Carlin, et al., 2014, chapter 7.4).20 In contrast, we believe that the ability to
incorporate prior knowledge is an advantage of Bayesian inference; we consider
the prior as integral part of the model which should be chosen just as carefully
as the likelihood (e.g., Vanpaemel, 2010). Ideally, researchers should pre-register
their priors before data collection (Chambers, 2013, 2015) to ensure that these
are used to express genuine prior knowledge and not to increase researchers’ de-
grees of freedom in obtaining the desired results. Note that we are not the first
to advocate a Bayesian approach to hierarchical MPTs. However, to the best of
our knowledge, we are the first who advocate Bayesian model comparison using
posterior model/inclusion probabilities and Bayes factors and provide the tools

20Another objection is that Bayes factors are often used to compare nested models where
certain values of continuous parameters are treated as “special” (since the parameters are fixed
to these values). These researchers often favor continuous model expansion instead (e.g., Gelman,
Carlin, et al., 2014, chapter 7.4; Gelman & Rubin, 1995).
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to compute these quantities for hierarchical MPTs. Equipped with a feasible ap-
proach for computing the relevant quantities for Bayesian model comparison, one
could, in principle, specify an informed prior for the models themselves in addition
to the specification of the parameter prior. This way one could incorporate prior
knowledge about how likely each model is or one could, if desired, incorporate a
penalty for multiple comparisons as described in Scott and Berger (2010).

Although we focused exclusively on latent-trait MPTs, Warp-III is not limited
to the latent-trait approach or other hierarchical MPTs, such as the beta-MPT
(J. B. Smith & Batchelder, 2010) or the crossed-random effects approach (Matzke
et al., 2015). Warp-III may be used to compute the marginal likelihood for a
large variety of cognitive models. For instance, the simple multivariate normal
bridge sampling approach has been recently applied to hierarchical reinforcement
learning models (Gronau, Sarafoglou, et al., 2017). We believe that Warp-III may
be especially useful for so-called sloppy models with highly correlated parameters
(K. S. Brown & Sethna, 2003), including but not limited to race models of re-
sponse times, which often yield skewed posterior distributions (e.g., S. D. Brown
& Heathcote, 2008; Matzke, Love, & Heathcote, 2017). The Warp-III methodol-
ogy also lends itself to model comparison in extensions of hierarchical cognitive
models that impose on the model parameters a statistical structure such as a lin-
ear regression, factor analysis, or analysis of variance (e.g., Boehm, Steingroever,
& Wagenmakers, 2018; Heck, Arnold, & Arnold, 2018; Turner, Wang, & Merkle,
2017; Vandekerckhove, 2014). The application of Warp-III to complex experimen-
tal designs is ongoing work in our lab.

Although Warp-III is a general procedure for computing the marginal likeli-
hood, depending on the situation, other approaches may be better suited for the
model comparison problem at hand. If researchers focus on non-hierarchical im-
plementations of cognitive models, importance sampling may be an easier solution,
particularly in the context of MPTs (Vandekerckhove et al., 2015). If the focus is
on nested models, the Savage-Dickey density ratio is an easier and faster alterna-
tive. Lastly, if the number of models under consideration is very large, Reversible
Jump MCMC (Green, 1995) might be the appropriate choice. Nevertheless, we
believe that in most applications of hierarchical cognitive models, the research
question concerns the comparison of a limited set of possibly non-nested models.
In these situations, Warp-III provides a straightforward and accurate method for
computing the marginal likelihood for a wide range of complex models.

The Supplemental Materials can be found at: https://osf.io/rycg6/.
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Chapter 4

Computing Bayes Factors for
Evidence-Accumulation Models
Using Warp-III Bridge Sampling

Abstract

Over the last decade, the Bayesian estimation of evidence-accumulation
models has gained popularity, largely due to the advantages afforded by the
Bayesian hierarchical framework. Despite recent advances in the Bayesian
estimation of evidence-accumulation models, model comparison continues
to rely on suboptimal procedures, such as posterior parameter inference and
model selection criteria known to favor overly complex models. In this chap-
ter we advocate model comparison for evidence-accumulation models based
on the Bayes factor obtained via Warp-III bridge sampling. We demonstrate,
using the Linear Ballistic Accumulator (LBA), that Warp-III sampling pro-
vides a powerful and flexible approach that can be applied to both nested
and non-nested model comparisons, even in complex and high-dimensional
hierarchical instantiations of the LBA. We provide an easy-to-use software
implementation of the Warp-III sampler and outline a series of recommen-
dations aimed at facilitating the use of Warp-III sampling in practical ap-
plications.

4.1 Introduction

Cognitive models of response times and accuracy canonically assume an accumula-
tion process, where evidence favoring different options is summed over time until a

This chapter is published as Gronau, Q. F., Heathcote, A., & Matzke, D. (2020). Comput-
ing Bayes factors for evidence-accumulation models using Warp-III bridge sampling. Behavior
Research Methods, 52, 918–937. doi: https://doi.org/10.3758/s13428-019-01290-6. Also
available as PsyArXiv preprint : https://psyarxiv.com/9g4et
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threshold is reached that triggers an associated response. The two most prominent
types of evidence-accumulation models, the Diffusion Decision Model (DDM; Rat-
cliff, 1978; Ratcliff & McKoon, 2008) and the Linear Ballistic Accumulator (LBA;
S. D. Brown & Heathcote, 2008) have been widely applied across animal and hu-
man research in biology, psychology, economics, and the neurosciences to topics
including vision, attention, language, memory, cognition, emotion, development,
aging, and clinical disorders (for reviews, see Donkin & Brown, 2018; M. J. Mul-
der, Van Maanen, & Forstmann, 2014; Ratcliff, Smith, Brown, & McKoon, 2016).
Evidence-accumulation models are popular because they provide a comprehensive
account of the probability of choices and the associated distribution of times to
make them, and because they provide parameter estimates that directly quantify
important psychological quantities, such as the quality of the evidence provided
by a choice stimulus and the amount of evidence required to trigger the response.

Parameter estimation and statistical inference in the context of evidence-
accumulation models can be challenging because they belong to the class of
“sloppy” models with highly correlated parameters (Apgar, Witmer, White, &
Tidor, 2010; Gutenkunst et al., 2007), examples of which occur widely in biol-
ogy and psychology (Apgar et al., 2010; Gutenkunst et al., 2007; Heathcote et
al., 2018). However, with appropriate experimental designs – critically includ-
ing sufficiently high error rates and experimental trials per participant (Ratcliff
& Childers, 2015) – the model parameters can be estimated reliably using error
minimization and Bayesian methods.

Recently, the Bayesian estimation of evidence-accumulation models has gained
popularity, largely due to the advantages afforded by the Bayesian hierarchical
framework (e.g., Heathcote et al., 2018; Vandekerckhove, Tuerlinckx, & Lee, 2011;
Wiecki, Sofer, & Frank, 2013). In fact, our recent literature review indicated that
19% and 21% of the 262 and 53 papers that used the DDM and the LBA, respec-
tively, relied on Bayesian methods to estimate the model parameters.1 Bayesian
hierarchical methods simultaneously estimate model parameters for a group of par-
ticipants assuming that the participant-level parameters are drawn from a common
group-level distribution. From a statistical point of view, the group-level distri-
bution acts as a prior that pulls (“shrinks”) the participant-level parameters to
the group mean, which can result in less variable and, on average, more accurate
estimates than non-hierarchical methods (Farrell & Ludwig, 2008; Gelman & Hill,
2007; Lee & Wagenmakers, 2013; Shiffrin et al., 2008). From a psychological point
of view, the group-level distribution provides a model of individual differences.
From this perspective, it is apparent that introducing a group-level distribution
improves the model theoretically only if the group-level distribution provides a
good model for the individual variation (Farrell & Lewandowsky, 2018, section
9.5).

As a result of the strong parameter correlations in evidence-accumulation mod-
els, standard Markov chain Monte Carlo samplers (MCMC; e.g., Gilks, Richard-
son, & Spiegelhalter, 1996) typically used for Bayesian parameter estimation can

1The numbers are based on a systematic literature review of published articles that fit the
DDM and LBA to empirical data (Tran, 2018). A summary of the results is available at https://
osf.io/ynwpa/.
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be inefficient. Rather, samplers designed to handle high posterior correlations
must be used, such as differential evolution MCMC (DE-MCMC; Turner, Seder-
berg, Brown, & Steyvers, 2013). This approach to Bayesian estimation is now
readily available for the DDM, LBA, and other evidence-accumulation models in
the “Dynamic Models of Choice” software (DMC; Heathcote et al., 2018) along
with extensive tutorials and supporting functions that facilitate model diagnostics
and the analysis of results.2 In this chapter, we focus on the Bayesian approach
because of the advantages it offers, such as a coherent inferential framework, the
use of prior information, the possibility of straightforward hierarchical extensions,
and the natural quantification of uncertainty in both parameter estimates and
model predictions.

In typical applications of evidence-accumulation models, researchers are not
only interested in parameter estimation, but often wish to assess the effects of
experimental manipulations on the model parameters. For example, Strickland,
Loft, Remington, and Heathcote (2018) compared non-nested LBA models that
either allowed the effect of maintaining a prospective memory load (i.e., in the
context of a routine ongoing task, the intent to make an alternative response to
a rarely occurring stimulus) to influence only the rate of evidence accumulation
or only the threshold amount of evidence required to make a response. The for-
mer model corresponds to competition for limited information-processing capacity,
whereas the latter model corresponds to strategic slowing in order to avoid the
ongoing task response pre-empting the prospective memory response (Heathcote,
Loft, & Remington, 2015). Nested comparisons are also common in the context
of evidence-accumulation models to determine which of a set of candidate experi-
mental manipulations had an effect on a particular parameter. For example, Rae,
Heathcote, Donkin, Averell, and Brown (2014) examined whether or not an em-
phasis on the speed vs. accuracy of responding influences evidence accumulation
rates.

Despite recent advances in the Bayesian estimation of evidence-accumulation
models, model comparison continues to rely on suboptimal procedures, such as
posterior parameter inference based on complex models where separate model
parameters are estimated for each experimental condition. In this approach, dif-
ferences between parameters are often evaluated using posterior p-values (e.g.,
Klauer, 2010; Matzke, Boehm, & Vandekerckhove, 2018; Matzke et al., 2015;
Matzke, Hughes, Badcock, Michie, & Heathcote, 2017; Osth, Jansson, Dennis, &
Heathcote, 2018; J. B. Smith & Batchelder, 2010; Strickland et al., 2018; Tilman,
Osth, van Ravenzwaaij, & Heathcote, 2017; Tilman, Strayer, Eidels, & Heathcote,
2017). Posterior parameter inference has at least three limitations. First, it can
only be used for nested model comparison. Second, it cannot provide evidence
for the absence of an effect (i.e., it cannot “prove the null”), similar to classical
p-values (e.g., Wagenmakers, 2007). Third, it can result in fitting an overly com-
plex model, which is particularly problematic in the presence of strong parameter
correlations, because a real effect in one parameter can spread to create a spurious
effect on other parameters (Heathcote et al., 2015).

2A file that describes the content of the DMC tutorials and the different DMC functions is
available from https://osf.io/kygr3/.
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These shortcomings can be addressed using formal model selection. This ap-
proach critically depends on the availability of a model selection criterion that
properly penalizes the greater flexibility of more complex models. The Deviance
Information Criterion (DIC) is one of the most commonly used model selection
measures, and has the advantage that it can be easily computed from the poste-
rior samples obtained during parameter estimation. However, the DIC is known to
prefer overly complex models (Spiegelhalter et al., 2002). The more recent Widely
Applicable Information Criterion (WAIC; Vehtari et al., 2017), which is also based
on posterior samples, is an approximation to (leave-one-out) cross-validation and
suffers from the same shortcoming (Browne, 2000). It should be noted that even
as the number of observations goes to infinity, methods that approximate (leave-
one-out) cross-validation will not choose the data-generating model with certainty
(Shao, 1993).

Here we advocate model selection for evidence-accumulation models based on
the Bayes factor (e.g., Etz & Wagenmakers, 2017; Jeffreys, 1961; Kass & Raftery,
1995; Ly et al., 2016a). The Bayes factor is the principled method of performing
model selection from a Bayesian perspective and follows immediately from ap-
plying Bayes’ rule to models instead of parameters (e.g., Kass & Raftery, 1995).
In contrast to model selection methods that approximate (leave-one-out) cross-
validation, in general, the Bayes factor will choose the data-generating model with
certainty when the number of observations goes to infinity (Bayarri et al., 2012).
Although the desirability of Bayes factors has long been recognized (e.g., Jeffreys,
1939), their use has only become increasingly widespread with general linear mod-
els (e.g., ANOVA and regression; see Rouder, Morey, Speckman, & Province, 2012
and Rouder & Morey, 2012) due the availability of efficient and user-friendly soft-
ware implementations in packages such as BayesFactor (Morey & Rouder, 2015)
in R (R Core Team, 2019) and the GUI-based JASP (JASP Team, 2020). With this
chapter, we aim to bring these advantages to the domain of evidence-accumulation
models by providing an easy-to-use software implementation that uses a state-of-
the-art method for computing Bayes factors.

The Bayes factor is the predictive updating factor that changes prior model
odds for two models M1 and M2 into posterior model odds based on observed
data y:

p(M1 | y)

p(M2 | y)︸ ︷︷ ︸
posterior odds

=
p(y | M1)

p(y | M2)︸ ︷︷ ︸
Bayes factor BF12

× p(M1)

p(M2)︸ ︷︷ ︸
prior odds

. (4.1)

Continuing the example from Strickland et al. (2018), suppose that M1 refers to
the model in which only rates are affected by prospective-memory load and M2

refers to the model in which only thresholds are affected. Different researchers may
start with different prior beliefs about the relative plausibility of the two compet-
ing psychological explanations of the prospective-memory load effect. However,
the change in beliefs brought about by the data (i.e., the change from prior to pos-
terior odds which is the Bayes factor) is the same, regardless of the prior beliefs.
Therefore, reporting the Bayes factor enables researchers to update their personal
prior odds to posterior odds. Commonly, only the Bayes factor is reported and
interpreted, since strength of evidence for the two competing models is naturally
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expressed as the degree to which one should update prior beliefs about the models
based on observed data. A Bayes factor of, say, BF12 = 10 would indicate that
the data are 10 times more likely under M1 than M2, whereas a Bayes factor of
BF12 = 0.1 would indicate that the data are 10 times more likely under M2 than
M1.

As shown in Equation 4.1, the Bayes factor is the ratio of the marginal likeli-
hoods of the models. The marginal likelihood is the probability of the data given
a model and is obtained by integrating out the model parameters with respect to
the parameters’ prior distribution:

p(y | M) =

∫
Θ

p(y | θ,M) p(θ | M) dθ, (4.2)

where θ denotes the parameter vector for model M. The marginal likelihood
quantifies average predictive adequacy as follows: The likelihood p(y | θ,M)
corresponds to the predictive adequacy of a particular parameter setting θ un-
der model M. The average predictive adequacy (i.e., the marginal likelihood) is
obtained as the weighted average of the predictive adequacies across the entire
parameter space, where the weights are given by the parameters’ prior proba-
bilities. Complex models may have certain parameter settings that yield high
likelihood values, however, the large parameter space may also contain many pa-
rameter settings which result in small likelihood values, lowering the weighted
average. Consequently, the marginal likelihood – and the Bayes factor, which
contrasts the average predictive adequacy of two models – incorporates a natural
penalty for undue complexity. Interpreting the marginal likelihood as a weighted
average highlights the crucial importance of the prior distribution for Bayesian
model comparison.

For evidence-accumulation models, the integral in Equation 4.2 – and hence
the Bayes factor – cannot be computed analytically. In these cases, four major
approaches are available for computing Bayes factors: (1) approximate methods
such as the Laplace approximation (e.g., Kass & Vaidyanathan, 1992); (2) the
Savage-Dickey density ratio approximation of the Bayes factor (Dickey & Lientz,
1970; Wagenmakers et al., 2010); (3) transdimensional methods such as reversible
jump MCMC (Green, 1995); and (4) simulation-based methods that estimate the
integrals involved in the computation of the Bayes factor directly (e.g., Evans
& Annis, 2019; Evans & Brown, 2018; Meng & Schilling, 2002; Meng & Wong,
1996). Approximate methods have the disadvantage that it is typically difficult
to assess the approximation error, which could be particularly substantial for
hierarchical evidence-accumulation models. The Savage-Dickey density ratio can
only be applied to nested model comparisons. Transdimensional methods are
challenging to implement, especially in hierarchical settings and for non-nested
model comparisons, as explained in more detail later.

Therefore, here we advocate Warp-III bridge sampling (Meng & Schilling,
2002) for obtaining the Bayes factor for evidence-accumulation models. Warp-
III bridge sampling is a simulation-based method that can be applied to both
nested and non-nested comparisons and – once posterior samples from the com-
peting models have been obtained – it is straightforward to implement even in
hierarchical settings. As non-nested hierarchical comparisons are integral to many
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applications of cognitive models, we believe that Warp-III bridge sampling pro-
vides an excellent computational tool that will greatly facilitate the use of Bayesian
model comparison for evidence-accumulation models.

The chapter is organized as follows. First, we review simple Monte Carlo
sampling, another simulation-based method that has been proposed for computing
the Bayes factor for evidence-accumulation models. We then outline the details of
Warp-III bridge sampling and illustrate its use for the single-participant as well as
the hierarchical case. We focus on the LBA, but elaborate on the applicability of
our approach to other evidence-accumulation models, for instance the DDM, in the
Discussion. The Discussion also provides recommendations aimed at facilitating
the use of Warp-III bridge sampling in practical applications. The implementation
of the Warp-III bridge sampler is available at https://osf.io/ynwpa/ and has
also been incorporated into the latest DMC release.3

4.2 Simple Monte Carlo Sampling

A simple Monte Carlo estimator of the marginal likelihood is obtained by in-
terpreting the integral in Equation 4.2 as an expected value with respect to the
parameters’ prior distribution:

p(y | M) = Ep(θ|M) [p(y | θ,M)]

≈ 1

N

N∑
i=1

p(y | θ̃i,M), where θ̃i ∼ p(θ | M).
(4.3)

Thus, an estimate of the marginal likelihood can be obtained by sampling from
the prior distribution and averaging the likelihood values based on the samples.

Recently, Evans and Brown (2018) proposed the use of simple Monte Carlo
sampling for the computation of the Bayes factor for the LBA. This simple ap-
proach can work well if the posterior distribution is similar to the prior distribution;
however, when the posterior is substantially different from the prior – as is often
the case – simple Monte Carlo sampling becomes very inefficient. The reason is
that only a few prior samples (i.e., those in the region where most posterior mass is
located) result in substantial likelihood values so that the average in Equation 4.3
will be dominated by a small number of samples. The result is an unstable es-
timator, even in non-hierarchical applications. Naturally, the problem becomes
more severe in hierarchical settings where the parameter space is substantially
larger. Although increasing the number of prior samples may remedy the problem
to a certain extent, reliable estimation of the marginal likelihood of hierarchical
evidence-accumulation models using simple Monte Carlo sampling remains chal-
lenging, even with Evans and Brown’s powerful GPU implementation. Given the
many advantages of the Bayesian hierarchical framework for cognitive modeling
(e.g., Heathcote et al., 2018; Lee, 2011; Lee & Wagenmakers, 2013; Matzke et al.,
2015; Matzke, Dolan, Logan, Brown, & Wagenmakers, 2013; Shiffrin et al., 2008;

3This release is available at https://osf.io/5yeh4/. It also contains a new tuto-
rial that explicitly explains how to use the bridge sampling functionality in DMC (i.e.,
dmc 5 7 BayesFactors.R).
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Vandekerckhove et al., 2011; Wiecki et al., 2013), we believe that an alternative
approach is needed.

4.3 Warp-III Bridge Sampling

We propose the use of Warp-III bridge sampling (Meng & Schilling, 2002,
henceforth referred to as Warp-III ) for estimating the marginal likelihood for
evidence-accumulation models. Warp-III is an advanced version of bridge sam-
pling (Gronau, Sarafoglou, et al., 2017; Meng & Wong, 1996), which is based on
the following identity:

p(y | M) =
Eg(θ) [h(θ) p(y | θ,M) p(θ | M)]

Ep(θ|y,M) [h(θ) g(θ)]
, (4.4)

where g is a proposal distribution and h a bridge function.
The efficiency of the bridge sampling estimator is governed by the overlap be-

tween the proposal and the posterior distribution. A simple approach for obtaining
the bridge sampling estimator relies on a multivariate normal proposal distribution
that matches the first two moments, the mean vector and covariance matrix, of the
posterior distribution (e.g., Gronau, Sarafoglou, et al., 2017; Overstall & Forster,
2010). However, this method becomes inefficient when the posterior distribution
is skewed. To remedy this problem, Warp-III aims to maximize the overlap by
fixing the proposal distribution to a standard multivariate normal distribution4

and then “warping” (i.e., manipulating) the posterior so that it matches not only
the first two, but also the third moment of the proposal distribution (for details,
see Meng & Schilling, 2002, and Gronau, Wagenmakers, Heck, & Matzke, 2019).

Figure 4.1 illustrates the warping procedure for the univariate case using hy-
pothetical posterior samples. The solid black line in the top-left panel displays the
standard normal proposal distribution and the skewed histogram displays samples
from the posterior distribution. Since none of the moments of the two distributions
match, applying bridge sampling to these distributions can be called Warp-0 (i.e.,
the number indicates how many moments have been matched). The histogram
in the top-right panel displays the same posterior samples after subtracting their
mean from each sample. This manipulation matches the first moment of the
two distributions; the posterior samples are now zero-centered, just like the pro-
posal distribution. This is called Warp-I. In the bottom-right panel, the posterior
samples are additionally divided by their standard deviation. This manipulation
matches the first two moments of the distributions; the posterior samples are now
zero-centered with variance 1, just like the proposal distribution. This is called
Warp-II. Finally, the bottom-left panel displays the posterior samples after assign-
ing a minus sign with probability 0.5 to each sample. This manipulation achieves
symmetry and matches the first three moments of the distributions; the posterior
samples are now symmetric and zero-centered with variance 1, just like the pro-
posal distribution. This is called Warp-III. Note how successively matching the
moments of the two distributions has increased the overlap between the posterior

4Other proposal distributions, such as a multivariate t-distribution, are also conceivable.
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Figure 4.1: Illustration of the warping procedure. The black solid line shows
the standard normal proposal distribution and the gray histogram shows the pos-
terior samples. Available at https://tinyurl.com/y7owvsz3 under CC license
https://creativecommons.org/licenses/by/2.0/.

and the proposal distribution.5 We have found that the improvement afforded by
Warp-III can be crucial for efficient application of bridge sampling to evidence-
accumulation models, particularly in situations where the posteriors are skewed,
as is often the case with only a small number of observations per participant.

The bridge function h is chosen such that it minimizes the relative mean-square
error of the resulting estimator (Meng & Wong, 1996). Using this “optimal”
bridge function,6 the estimator of the marginal likelihood is obtained by updating

5The warping procedure assumes that all parameters are allowed to range across the entire
real line; if this is not the case, appropriate transformations can be applied to fulfill this re-
quirement. Note that the resulting expressions need to be adjusted by the relevant Jacobian
term.

6Note that this choice is only optimal if the samples from the posterior distribution are
independent which is not the case when using MCMC methods. To account for this fact, we
replace N1 when computing s1 and s2 by an effective sample size – the median effective sample
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an initial guess of the marginal likelihood until convergence. The estimate at
iteration t+ 1 is given by:7

p̂(y | M)(t+1) =

1
N2

N2∑
i=1

l2,i
s1 l2,i+s2 p̂(y|M)(t)

1
N1

N1∑
j=1

1
s1 l1,j+s2 p̂(y|M)(t)

, (4.5)

where sk = Nk
N1+N2 for k ∈ {1, 2},

l1,j =
|R|
2 [q(2µ−θ∗j )+q(θ∗j )]
g(R−1(θ∗j−µ))

, (4.6)

and

l2,i =
|R|
2 [q(µ−Rθ̃i)+q(µ+Rθ̃i)]

g(θ̃i)
. (4.7)

{θ∗1 ,θ∗2 , . . . ,θ∗N1
} are N1 draws from the posterior distribution, {θ̃1, θ̃2, . . . , θ̃N2

}
are N2 draws from the standard normal proposal distribution, and q(θ) = p(y |
θ,M) p(θ | M) denotes the un-normalized posterior density function. Further-
more, µ corresponds to the posterior mean vector and Σ = RR> corresponds
to the posterior covariance matrix (R is obtained via a Cholesky decomposition
of the posterior covariance matrix). The posterior mean vector and covariance
matrix can be estimated using the posterior samples. In practice, we split the
posterior samples in two halves; the first half is used to estimate µ and R and the
second half is used in the iterative scheme in Equation 4.5.

Computing l1,j and l2,i is the computationally most expensive part of the
method; fortunately, these quantities can be computed completely in parallel.
Note also that l1,j and l2,i only need to be computed once before the updating
scheme is started. Hence, with these quantities in hand, running the updating
scheme is quick and typically converges in fewer than 20 or 30 iterations. Al-
though our implementation relies on a fixed starting value, it is also possible to
start the updating scheme from an informed guess of the marginal likelihood, for
instance, based on a normal approximation to the posterior distribution. We have
found that the value of the initial guess usually does not influence the resulting
estimator substantially, but a good starting value may reduce the number of iter-
ations needed to reach convergence. Moreover, as we show later, an appropriately
chosen starting value is crucial in rare cases when the iterative scheme seemingly
does not converge.8

It can be shown that the simple Monte Carlo estimator described in the pre-
vious section is a special case of Equation 4.4 obtained by using a bridge function
other than the optimal one (e.g., Gronau, Sarafoglou, et al., 2017, Appendix A).

size across all posterior components – obtained using the coda R package (Plummer et al., 2006).
7Note that in practice, we always run the iterative scheme in a more numerically stable

way with respect to r̂(t) = const× p̂(y | M)(t) (for details, see Gronau, Sarafoglou, et al., 2017,
Appendix B).

8In principle, convergence is guaranteed (Meng & Wong, 1996), however, convergence may
be so slow that it is infeasible to wait in practice.
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Therefore, Warp-III that relies on the optimal bridge function must perform better
in terms of the relative mean-square error of the estimator than the simple Monte
Carlo approach. This will be illustrated in the next section, where we apply Warp-
III sampling to a nested model comparison problem and compare its performance
to three alternative methods, including simple Monte Carlo sampling.

4.4 Simulation Study I: Nested Model Comparison for the
Single-Participant Case

As a first example, we computed the Bayes factor for a nested model compar-
ison problem in the LBA by approximating the marginal likelihood of the two
models using Warp-III sampling. To verify the correctness of our Warp-III imple-
mentation, we also computed the Bayes factor using three alternative methods:
(1) simple Monte Carlo sampling; (2) the Savage-Dickey density ratio; and (3) a
simple version of reversible jump MCMC (RJMCMC; Green, 1995) as described
in Barker and Link (2013). We included the latter two approaches because they
provide conceptually different methods for Bayes factor computations than the
simulation-based Warp-III and simple Monte Carlo. The details of the Savage-
Dickey and the RJMCMC methods are provided in the Appendix.

4.4.1 Models and Data

We considered a data set generated from the LBA for a single participant per-
forming a simple choice task with two stimuli and two corresponding responses.
As shown in Figure 4.2, the LBA assumes a race among a set of determinis-
tic evidence-accumulation processes, with one runner per response option. The
choice is determined by the winner of the race.

On each trial, accumulation begins at a starting point drawn – independently
for each accumulator – from a uniform distribution with width A. A may vary
between accumulators, but here we assume it is the same. The evidence total
increases linearly at rate v that is drawn independently for each accumulator from
a normal distribution, which we assume here is truncated below at zero (Heathcote
& Love, 2012). The accumulator that matches the stimulus has mean rate vtrue

and standard deviation strue, and the mismatching accumulator vfalse and sfalse.
In principle, there could be different vtrue and vfalse values for each stimulus, but
here we assume they are the same. The first accumulator to reach its threshold (b)
– again potentially differing between accumulators but assumed to be the same
here – triggers the corresponding response. We estimate threshold in terms of
a positive quantity, B, which quantifies the gap between the threshold and the
upper bound of the start-point noise (i.e., B = b − A). Response time (RT) is
equal to the time taken to reach threshold plus non-decision time, t0, which is the
sum of the time to initially encode the stimulus and the time to produce a motor
response.

We estimated the Bayes factor to compare two nested LBA models. The
first, which we refer to as the full model, featured a starting point parameter
A, a threshold parameter B, mean drift rate parameters for the matching and
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Figure 4.2: Graphical representation of the Linear Ballistic Accumulator for two
possible responses (r1 and r2) corresponding to two stimuli (s1 and s2). The figure
illustrates a case where s2 is presented and the sampled rate for the r2 accumulator
is greater than the sampled rate for the r1 accumulator, i.e., the accumulation path
(dashed line) is steeper for r2 than for r1. However, as the sampled starting point
for r1 is higher than for r2, the r1 accumulator has a sufficient head start to
get to its threshold first after time td. The resulting response is an error, with
RT = t0 + td. Available at https://tinyurl.com/yc4n8lpm under CC license
https://creativecommons.org/licenses/by/2.0/.

mismatching accumulators, vtrue and vfalse, and a non-decision time parameter t0.
In order to identify the model, one accumulator parameter must be fixed (Donkin,
Brown, & Heathcote, 2009); here we assumed that the standard deviations of the
drift rate distributions were fixed to 1. In later simulations, we make only the
minimum required assumption of fixing one parameter, in particular assuming
strue = 1. We generated a data set with 250 trials per stimulus (i.e., a total of 500
trials) from the full model using the following parameter values: A = 0.5, B = 1,
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vtrue = 4, vfalse = 3, and t0 = 0.2.
The full model was compared to a restricted model in which vtrue was fixed

to 3.55. The value 3.55 yields a Bayes factor close to one (equivalently, log Bayes
factor of zero) and was chosen for two reasons. First, this value facilitates the
implementation of the Savage-Dickey density ratio. The Savage-Dickey method
relies on estimating the posterior density at the test value, which can be unreliable
when the test value falls in the tail of the posterior distribution. We circumvented
this problem by using a test value in the restricted model (vtrue = 3.55) relatively
close to the generating parameter in the full model (vtrue = 4).

Second, this value makes discriminating between the models difficult, and al-
lows us to point out the difference between inference and model inversion (Lee,
2018). Although the data have been generated from the full model, a Bayes factor
close to one indicates that the data are just as likely under the restricted model as
under the full model. This may at first appear as an undesirable property of the
Bayes factor. This reasoning, however, confuses inference and model inversion.
Model inversion means that if the data are generated from modelM1 and one fits
the data-generating modelM1 and an alternative modelM2, one is able to iden-
tify the data-generating modelM1 based on a model selection measure of interest.
Consider, however, the following example. Suppose we are interested in compar-
ing a null model which assumes that there is no difference in non-decision time t0
between two groups to an alternative model which allows the effect size to be dif-
ferent from zero. Suppose further that the alternative model is the data-generating
model and we simulate data for a small number of synthetic participants assuming
a small non-zero effect size, resulting in an observed effect size that, for this sample
of participants, happens to be approximately zero. As a result, the simpler null
model can account for the observed data almost equally well as the more complex
data-generating model and may be favored on the ground of parsimony. As more
observations are generated from the alternative model, however, it will become
clear that the effect size is non-zero, and the support for the simpler null model
will decrease – equivalently, the support for the more complex alternative model
will increase. Hence, with a large enough number of observations, model inversion
may be fulfilled.

This discussion highlights why the Bayes factor for the simulated LBA data
set is indifferent: the number of trials is relatively small and the misspecified
simpler model fixes vtrue to 3.55 which is close to the data-generating value of
4. Therefore, the slight misspecification of the simpler restricted model is almost
perfectly balanced out by its parsimony advantage compared to the more complex
full model. The example is meant as a reminder that Bayesian inference conditions
on the data at hand and that it may be reasonable to obtain evidence in favor of
a different model than the data-generating one for certain data sets. Therefore,
although one can assess the predictive adequacy of two competing models for the
observed data using the Bayes factor (Wagenmakers, Marsman, et al., 2018), the
Bayes factor should not be expected to necessarily recover a data-generating model
in a simulation study. Nevertheless, as the number of observations grows large, the
Bayes factor should select the correct model, a property known as model selection
consistency (Bayarri et al., 2012).
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4.4.2 Prior Distributions

We used the following prior distributions for the different parameter types:

A ∼ N+(1, 1)

B ∼ N+(1, 1)

vtrue ∼ N (2, 32)

vfalse ∼ N (1, 32)

t0 ∼ N(0.1,∞)(0.3, 0.252),

(4.8)

where N (µ, σ2) denotes a normal distribution with mean µ and variance σ2,
N+(µ, σ2) denotes a normal distribution truncated to allow only positive values,
and N(x,y)(µ, σ

2) denotes a normal distribution with lower truncation x and upper
truncation y. In the full model, we specified a prior distribution for all parameters,
including vtrue. In the restricted model, we specified a prior distribution for all
parameters except vtrue, as vtrue was fixed to 3.55.

The priors in Equation 4.8 were taken from Heathcote et al. (2018). Although
we believe that these priors provide a reasonable set up based on our experience
with the LBA parameter ranges, they may be replaced by empirically informed
priors in future applications. We also acknowledge that our prior choices are for
many parameters wider than the ones used by Evans and Brown (2018); this may
make the simple Monte Carlo method less efficient than when used in combination
with the Evans-Brown priors.

4.4.3 Parameter Estimation and Model Comparison

We used the DE-MCMC algorithm, as implemented in the DMC software
(https://osf.io/pbwx8/) to estimate the model parameters. We set the num-
ber of MCMC chains to three times the number of model parameters; for the full
model we ran 15 and for the restricted model we ran 12 chains with over-dispersed
start values. In order to reduce auto-correlation, we thinned each MCMC chain
to retain only every 10th posterior sample. During the burn-in period, the prob-
ability of a migration step was set to 5%; after burn-in, migration was turned off
and only crossover steps were performed. Convergence of the MCMC chains was
assessed by visual inspection and the R̂ statistic (Brooks & Gelman, 1998), which
was below 1.05 for all parameters.9 We obtained 10 independent sets of posterior
samples for both the full and the restricted model, which were used to assess the
uncertainty of the Bayes factor estimates.

Once the posterior samples were obtained, we computed the Bayes factor in
favor of the full model using the Warp-III, the simple Monte Carlo, the Savage-
Dickey, and the RJMCMC methods. The implementations of the four approaches
are available at https://osf.io/ynwpa/. To assess the uncertainty of the Bayes
factor estimates, we repeated each procedure 10 times for each model. For the

9It has been pointed out that R̂ is not a perfect indicator of convergence in certain scenarios
(e.g., Vehtari, Gelman, Simpson, Carpenter, & Bürkner, 2019). For a recent proposal of an

improved R̂, see Vehtari, Gelman, et al. (2019).
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Figure 4.3: Bayes factor estimates for the single-participant case as a function
of the number of samples. The left panel displays the log Bayes factor esti-
mates computed using the Warp-III (black crosses), simple Monte Carlo (green
circles), Savage-Dickey (blue triangles), and RJMCMC (brown squares) meth-
ods. The right panel displays the Bayes factors estimates computed using the
Warp-III (black crosses), Savage-Dickey (blue triangles), and RJMCMC (brown
squares) methods (i.e., omitting the simple Monte Carlo estimates and displaying
the results on the Bayes factor and not log Bayes factor scale). For Warp-III,
the x-axis corresponds to the number of posterior samples (collapsed across all
chains) used for computing the marginal likelihood for each model. For sim-
ple Monte Carlo, it corresponds to the number of prior samples used for com-
puting the marginal likelihoods. For Savage-Dickey, it corresponds to the num-
ber of posterior samples used to estimate the density of the posterior distribu-
tion at the test value (i.e., 3.55). For RJMCMC, it corresponds to the num-
ber of posterior samples used from each model (for details, see the Appendix).
The symbols (i.e., crosses, circles, triangles, squares) indicate the median (log)
Bayes factor estimates and bars indicate the range of the estimates across the
10 repetitions. Available at https://tinyurl.com/y5brs44a under CC license
https://creativecommons.org/licenses/by/2.0/.

Warp-III, Savage-Dickey, and RJMCMC methods, we used a fresh set of posterior
samples for each repetition.

4.4.4 Results

The left panel of Figure 4.3 displays estimates of the log Bayes factor as a func-
tion of the number of samples. Note that we included an order of magnitude more
samples for the simple Monte Carlo method in order to produce results that are
comparable to estimates provided by the other methods. The right panel of Fig-
ure 4.3 zooms in on the results obtained with the Warp-III, Savage-Dickey, and
RJMCMC methods and omits the simple Monte Carlo estimates; this panel shows
the Bayes factor and not the log Bayes factor to facilitate interpretation.

94

https://tinyurl.com/y5brs44a
https://creativecommons.org/licenses/by/2.0/


4.4. Simulation Study I: Nested Model Comparison for the Single-Participant
Case

All four methods eventually converged to a log Bayes factor estimate close
to zero (equivalently, a Bayes factor estimate close to one). As the number of
samples increased, the uncertainty of the estimates decreased. For this example,
Warp-III resulted in the smallest uncertainty intervals. The Warp-III, Savage-
Dickey, and RJMCMC methods resulted in stable Bayes factor estimates already
with 1, 000 samples. Although the three methods numerically did not yield the
exact same Bayes factors, they all produced estimates close to one with relatively
small uncertainty. The simple Monte Carlo method was clearly the least efficient;
it produced wide uncertainty intervals and took approximately 50, 000-100, 000
samples to converge to the estimates from the other methods. Note that the
number of samples required by the different methods for the stable and reliable
estimation of the Bayes factor may vary depending on the characteristics of the
specific example and should not be interpreted as a guideline.

Although in this particular example we were able to obtain stable and accurate
Bayes factor estimates with all four methods, this is not necessarily the case for
more complicated – non-nested and hierarchical – model selection problems. The
Savage-Dickey method cannot be used for non-nested model comparison. More-
over, the Savage-Dickey estimate of the Bayes factor becomes very unstable if
the test value falls in the tail of the posterior distribution because density esti-
mates in the tails of the posterior are highly variable. Similarly, the RJMCMC
approach cannot be easily generalized to situations involving non-nested compar-
isons. RJMCMC exploits the relations between the parameters of the models;
however, if the models are non-nested it might be impossible to relate the two sets
of parameters. Even generalizing RJMCMC to nested hierarchical comparisons is
challenging because it involves linking a large number of parameters, especially
if the vector of participant-level parameters differs between the two models for
each participant. Furthermore, as a result of the strong parameter correlations in
evidence-accumulation models, fixing one parameter in nested model comparisons
can lead to substantial changes in the other parameters, making it even more
difficult to efficiently link the competing models. Because of these challenges
associated with non-nested and hierarchical model comparisons, we believe that
the Savage-Dickey density ratio and RJMCMC methods are not suited as general
model selection tools for evidence-accumulation models and will not be considered
further.

The simple Monte Carlo and the Warp-III method can be used for both nested
and non-nested model comparisons because they consider one model at a time.10

In Warp-III, this also allows us to use a convenient proposal distribution chosen
to maximize the overlap between the proposal and the posterior, which leads to a
substantial gain in efficiency relative to simple Monte Carlo sampling. The inef-
ficiency of simple Monte Carlo in our straightforward single-participant example
suggests that this method is infeasible in many practical applications of hierar-
chical evidence-accumulation models. First, as also acknowledged by Evans and
Brown (2018), simple Monte Carlo can result in highly variable Bayes factor es-

10In its original form, bridge sampling has been proposed to estimate the Bayes factor directly.
In line with, for instance, Overstall and Forster (2010) here we advocate a version that estimates
one marginal likelihood at a time (see also, Meng & Schilling, 2002, section 1.3).
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timates in hierarchical settings. Second, the number of samples needed to obtain
stable estimates with simple Monte Carlo sampling can quickly become unman-
ageable. This was indeed the case when we tried to apply it to the hierarchical
model comparison problems outlined in the next section.11

4.5 Simulation Study II: Nested and Non-nested Model
Comparison for the Hierarchical Case

As a second example, we considered eight LBA data sets that featured observations
from multiple participants generated and fit using the hierarchical approach. We
investigated the performance of Warp-III for two nested and two non-nested model
comparison problems.

4.5.1 Models and Data

We simulated a design with four cells, two conditions that differed in a particular
parameter crossed with two stimuli, and two possible responses. In the nested
case, we compared a model that allowed only mean drift rate vtrue to be different
across conditions (i.e., V -model) to a null model that featured one common vtrue

parameter for both conditions (i.e., 0-model). In the non-nested case, we com-
pared the V -model to a model that allowed only threshold B to be different across
conditions (i.e., B-model). Note that we made these comparisons in both direc-
tions, for example, we computed the Bayes factor for the V -model vs. B-model
comparison when the V -model generated the data, and computed the Bayes factor
for the B-model vs. V -model comparison when the B-model generated the data.

We generated new data sets from both models in each comparison. We used
two different combinations of the number of participants (n) and the number
of trials per cell (k), both with 4, 000 data points in total. Thus, overall there
were eight different data sets: one for each of the four comparisons at each group
size. In the first combination, we simulated data using n = 20 with k = 200,
corresponding to a smaller group of participants each measured fairly well. In the
second combination, we simulated data using n = 80 with k = 50, corresponding
to a larger group of participants each measured at or below the lower bound of k
required for acceptable individual estimation. These two cases exemplified either
an emphasis on individual or group estimation. In the former case, the number of
participants was at the lower bound of n required for acceptable estimation of the
group-level parameters. In the latter case, estimation of the participant-specific
parameters relied heavily on the additional constraint provided by the hierarchical
structure.

To generate the data sets, we used normal group-level distributions for each
parameter (truncated below to allow only positive values), specified the lo-
cation (µ) and scale (σ) of the group-level distributions, and then simulated
participant-specific parameters from these normal distributions. Subsequently, the
participant-specific parameters were used to generate trials for each participant.

11We thank Nathan Evans for attempting to apply simple Monte Carlo sampling to one of
our hierarchical model comparison examples.
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To ensure identifiability, the standard deviation of the drift rate corresponding to
the accumulator for the correct response, strue, was fixed to one for every partici-
pant.

To generate data from the V -model, we used the following µ parameters (where
bracketed superscripts indicate experimental condition): µA = 1, µB = 0.4,
µ
v
(1)

true
= 4, µ

v
(2)

true
= 3, µvfalse

= 1, µsfalse
= 1, and µt0 = 0.3. For the 0-model,

we used µA = 1, µB = 0.4, µvtrue = 3, µvfalse
= 1, µsfalse

= 1, and µt0 = 0.3. For
the B-model, we used µA = 1, µB(1) = 0.3, µB(2) = 0.7, µvtrue = 3.5, µvfalse

= 1,
µsfalse

= 1, and µt0 = 0.3. The data-generating σ parameters were obtained
by dividing the µ parameters by 10, resulting in appreciable but not excessive
individual differences in the participant-specific parameters.

4.5.2 Prior Distributions

We used zero-bounded truncated normal group-level distributions to model indi-
vidual differences in the parameters. We used the following prior distributions for
the group-level parameters:

µA, σA ∼ N+(1, 1)

µB , σB ∼ N+(0.4, 0.42)

µvtrue , σvtrue ∼ N+(3, 32)

µvfalse
, σvfalse

∼ N+(1, 1)

µsfalse
, σsfalse

∼ N+(1, 1)

µt0 , σt0 ∼ N+(0.3, 0.32).

(4.9)

As for the single-participant case, we believe that the priors provide a reason-
able set up but they may be replaced by empirically informed priors in future
applications.

4.5.3 Parameter Estimation and Model Comparison

We used the DE-MCMC algorithm, as implemented in the DMC software to
estimate the model parameters. We first estimated parameters separately for
each synthetic participant, similar to our previous single-participant example.
The result of this phase provided the starting values for the hierarchical anal-
ysis. For each model, we set the number of MCMC chains to three times the
number of participant-specific parameters. We thinned each MCMC chain to
retain only every 10th posterior sample. Burn-in was accomplished by DMC’s
h.run.unstuck.dmc function with a 5% migration probability. We then used the
h.run.converge.dmc function with no migration until 250 iterations were ob-
tained that appeared to be converged to the stationary distribution (R̂ < 1.1).
Further iterations were then added using the h.run.dmc function until we ob-
tained approximately 100, 000 posterior samples per parameter (the exact number
of samples varied because the number of MCMC chains varied among the different
models). With this very large number of samples, R̂ was very close to 1 for all
parameters at both the group and participant levels. We obtained 10 independent
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Figure 4.4: Log Bayes factor estimates obtained with Warp-III sampling for the
nested hierarchical model comparisons as a function of the number of posterior
samples (collapsed across all chains) used for computing the marginal likelihood
for each model. Crosses indicate the median log Bayes factor estimates and bars
indicate the range of the estimates across the 10 repetitions. The left panel shows
results for the data sets generated from the V -model; the right panel shows results
for the data sets generated from the 0-model. Results for n = 20 with k = 200
are displayed in black; results for n = 80 with k = 50 are displayed in gray with
dotted lines. The log Bayes factor is expressed in favor of the data-generating
model. Available at https://tinyurl.com/yxgsgjaw under CC license https://
creativecommons.org/licenses/by/2.0/.

sets of posterior samples for each model, which were used to assess the uncertainty
of the Bayes factor estimates.

Once the posterior samples were obtained, we computed the Bayes factor in
favor of the data-generating models using Warp-III.12 For each model, we assessed
the uncertainty of the estimates by running the Warp-III sampler 10 times using
a fresh set of posterior samples for each repetition.

4.5.4 Results

Figure 4.4 shows the log Bayes factor estimates obtained with Warp-III sampling
as a function of the number of samples for the nested comparisons and Figure 4.5
shows the results for the non-nested comparisons.13 The log Bayes factors are
expressed in favor of the data-generating models.

12We provide R code for an exemplary hierarchical model (i.e., code for the B-model with data
generated from the B-model using n = 20, k = 200) at https://osf.io/ynwpa/. The reason why
we only provide code for one of the hierarchical examples is that (1) the data sets are simulated
and one example is sufficient to show how to apply the method (the other examples are obtained
via trivial changes to the code), (2) the corresponding files are very large. Files for the other
examples are available upon request.

13More fine-grained versions of Figure 4.4 and Figure 4.5 are available at https://osf.io/

ynwpa/.
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4.5. Simulation Study II: Nested and Non-nested Model Comparison for the
Hierarchical Case
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Figure 4.5: Log Bayes factor estimates obtained with Warp-III sampling for the
non-nested hierarchical model comparisons as a function of the number of posterior
samples (collapsed across all chains) used for computing the marginal likelihood
for each model. Crosses indicate the median log Bayes factor estimates and bars
indicate the range of the estimates across the 10 repetitions. The left panel shows
results for the data sets generated from the B-model; the right panel shows results
for the data sets generated from the V -model. Results for n = 20 with k = 200
are displayed in black; results for n = 80 with k = 50 are displayed in gray with
dotted lines. The log Bayes factor is expressed in favor of the data-generating
model. Available at https://tinyurl.com/y3f7l263 under CC license https://
creativecommons.org/licenses/by/2.0/.

The figures illustrate that Warp-III resulted in stable Bayes factor estimates in
favor of the data-generating model with narrow uncertainty intervals in all but one
case, the non-nested B-model vs. V -model comparison for the n = 80 with k = 50
data set. For this data set, the iterative scheme from Equation 4.5 initially did
not seem to converge, but instead oscillated between two different values, say x1

and x2. We were able to achieve convergence by stopping the iterative scheme and
re-starting it with the initial guess of the marginal likelihood set to the geometric
mean of the two values between which the estimate initially oscillated (i.e., the
square root of the product of x1 and x2). Although this approach enabled us
to obtain an estimate of the marginal likelihood, the uncertainty of this estimate
was noticeably larger than for the other cases. Nevertheless, this estimate was
sufficiently certain to conclude that the Bayes factor clearly favored the B-model.14

The results show that the hierarchical model comparisons required substan-
tially more samples than the single-participant case. Note also that more samples

14Note that in practice, very large log Bayes factor estimates as in this case (e.g., 880− 920)
yield the same conclusion independent of the exact number: overwhelming evidence for the
favored model. However, when the estimated Bayes factor is closer to 1 (equivalently, log Bayes
factor closer to 0), it is more important that the Bayes factor is estimated precisely as this
may influence which model is favored (see, e.g., the single-participant example and the following
example).
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were needed for the n = 80 with k = 50 data sets than for the n = 20 with
k = 200 data sets to obtain comparable uncertainty intervals. The reason is that
the number of participants, n, determines how many participant-specific param-
eters need to be integrated out, whereas the number of trials per cell, k, does
not affect the number of model parameters. Therefore, increasing the number
of participants increases the dimensionality of the integral in Equation 4.2 that
is estimated via Warp-III. It is likely that the greater difficulty in obtaining well-
behaved participant-specific parameter estimates with k = 50 has also contributed
to the larger uncertainty intervals.

All Bayes factors yielded overwhelming evidence for the data-generating model,
including the ones computed for the data sets generated from the nested 0-model
(i.e., right panel of Figure 4.4). Note, however, that the magnitude of the Bayes
factors for these nested examples is smaller than for the other examples. This
result is not unexpected: the V -model can account for all data sets that the 0-
model can account for and, additionally, also for data sets that show a difference
in vtrue between conditions. Therefore, the Bayes factor can only favor the 0-
model due to parsimony and not because it describes the data better than the
V -model. Note also that although the Bayes factors clearly favored the data-
generating models, this may not necessarily be the case in other examples. As
outlined in our earlier discussion of model inversion, Bayesian inference conditions
on the data at hand and it may be reasonable to obtain evidence in favor of a
different model than the data-generating one for certain data sets.

4.6 Simulation Study III: Estimating Equivocal Bayes
Factors for the Hierarchical Case

In the previous section, it was demonstrated that Warp-III yields stable and pre-
cise Bayes factor estimates for different hierarchical examples. Many of these
Bayes factor estimates were very large and it could be argued that for large Bayes
factors, obtaining very precise estimates is not crucial since the qualitative conclu-
sion (“overwhelming evidence”) will not change unless the estimation uncertainty
is extremely large. In this section, we demonstrate that Warp-III is also able to
provide precise estimates of a Bayes factor close to 1 for the hierarchical case. Es-
timating Bayes factors in this range precisely is important since a large estimation
uncertainty would make it difficult to judge which model is favored.

4.6.1 Models and Data

For this example, we reused the data set generated from the B-model with n = 20
and k = 200 described in the previous section. We compared the data-generating
B-model to a restricted Bres-model. The Bres-model was identical to the B-model
except that the group-level parameter µvfalse

was fixed to 1.24. This value was

chosen to yield a Bayes factor close to 1.15

15This model comparison may be regarded as artificial, however, the main goal of the example
is to demonstrate that, even in the hierarchical setting, a Bayes factor of about 1 can be estimated
precisely using Warp-III.
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Figure 4.6: Bayes factor estimates obtained with Warp-III sampling for the B-
model vs. Bres-model example as a function of the number of posterior samples
(collapsed across all chains) used for computing the marginal likelihood for each
model. Crosses indicate the median Bayes factor estimates and bars indicate the
range of the estimates across the 10 repetitions. The data set was generated
from the B-model with n = 20 and k = 200 and is identical to the one used
in the left-panel of Figure 4.5. The Bayes factor is expressed in favor of the
data-generating model. Available at https://tinyurl.com/y599st45 under CC
license https://creativecommons.org/licenses/by/2.0/.

4.6.2 Prior Distributions

The prior distributions were identical to the ones used in the previous hierarchical
example. Note that for the Bres-model, the group-level parameter µvfalse

was fixed
to 1.24 and was not assigned a prior distribution.

4.6.3 Parameter Estimation and Model Comparison

Parameter estimation and model comparison was conducted in an analogous man-
ner to the previous hierarchical example. Note that we reused the log marginal
likelihood estimates for the B-model from the previous example which was based
on the exact same data set.

4.6.4 Results

Figure 4.6 shows the Bayes factor (not log Bayes factor) estimates obtained with
Warp-III sampling as a function of the number of samples. The Bayes factor is
expressed in favor of the data-generating B-model. The figure illustrates that
Warp-III resulted in stable Bayes factor estimates with narrow uncertainty in-
tervals. The estimated Bayes factor is slightly larger than 1 indicating that the
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data-generating B-model is slightly favored. Nevertheless, a Bayes factor close to
1 indicates that none of the models is favored in a compelling fashion by the data
at hand; the evidence is ambiguous.

4.7 Discussion

Over the last decade, the Bayesian estimation of evidence-accumulation models
has gained momentum (e.g., Heathcote et al., 2018; Vandekerckhove et al., 2011;
Wiecki et al., 2013). This increase in popularity is largely attributable to the ad-
vantages afforded by the Bayesian hierarchical framework that allows researchers
to obtain well-constrained parameter estimates even in situations with relatively
few observations per participant. Despite recent advances in the Bayesian esti-
mation of evidence-accumulation models, model comparison continues to rely on
suboptimal procedures, such as posterior parameter inference and model selection
criteria known to favor overly complex models.

In this chapter, therefore, we advocated model selection for evidence-
accumulation models based on the Bayes factor (e.g., Etz & Wagenmakers, 2017;
Jeffreys, 1961; Kass & Raftery, 1995; Ly et al., 2016a). The Bayes factor is given
by the ratio of the marginal likelihoods of the competing models and thus enables
the quantification of relative evidence on a continuous scale (e.g., Wagenmakers,
Marsman, et al., 2018). The Bayes factor implements a trade-off between par-
simony and goodness-of-fit (Jefferys & Berger, 1992; Myung & Pitt, 1997) and
is considered as “the standard Bayesian solution to the hypothesis testing and
model selection problems” (Lewis & Raftery, 1997, p. 648). Bayes factors en-
able the computation of posterior model probabilities, which provide an intuitive
metric for comparison among models. Bayes factors also enable Bayesian model
averaging, which avoids the need to make categorical decisions between models and
which produces better calibrated predictions (e.g., Hoeting et al., 1999). Bayes
factors are well suited for the type of model comparison problems that are faced
by cognitive modelers because they do not favor overly complex models, and so
guard against the proliferation of “crud factors” that plague psychology (Meehl,
1990).

Despite the advantages afforded by the Bayesian framework, Bayes factors are
rarely, if ever, used for evidence-accumulation models, largely because of the com-
putational challenges involved in the evaluation of the marginal likelihood. Here
we advocated Warp-III bridge sampling (Meng & Schilling, 2002) for computing
the marginal likelihood – and hence the Bayes factor – for evidence-accumulation
models. We believe that Warp-III is well suited for cognitive models in general
and evidence-accumulation models in particular because, as we have shown, it can
be straightforwardly applied to hierarchical models and non-nested comparisons,
unlike the simple Monte Carlo and the Savage-Dickey approaches. Moreover,
Warp-III is relatively easy to implement, and requires only the posterior samples
routinely collected during parameter estimation. In contrast to transdimensional
MCMC methods, such as RJMCMC, it does not require changing the sampling
algorithm or linking the competing models, which can be problematic for hierar-
chical and non-nested models. We have shown that Warp-III bridge sampling is
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practically feasible even in complex and high-dimensional hierarchical instantia-
tions of the Linear Ballistic Accumulator (LBA; S. D. Brown & Heathcote, 2008).
Although we encountered a challenging case with scarce participant-level data (left
panel of Figure 4.5), even in that case we were able to detect and ameliorate the
convergence problem.

Once the posterior samples are obtained, computing the marginal likelihood for
the single-participant case using Warp-III is relatively fast. For each repetition, it
took approximately 13 minutes to run the Warp-III sampler with 100, 000 poste-
rior samples, using four CPU cores on our severs. As these servers are old and the
individual cores relatively slow given they are embedded in 16-core chips, more
modern quad-core laptops will achieve the task in a much shorter time. Naturally,
in the hierarchical setting, the computational burden is higher and strongly de-
pends on the number of participants. For instance, for the V -model vs. B-model
comparison (right panel in Figure 4.5) in combination with n = 20 and k = 200,
running the Warp-III sampler with 95, 000 posterior samples took approximately
7 hours, using four CPU cores on our servers. In contrast, for the n = 80 and
k = 50 case, the computational time was approximately 25 hours. However, it
is important to note that it was not necessary to collect such a high number of
posterior samples. For the individual case, the Bayes factor estimate was pre-
cise and stable after only 1, 000 samples. For most hierarchical comparisons, we
obtained well-behaved Bayes factor estimates with approximately 20, 000-30, 000
samples. Note also that the computational time strongly depends on the spe-
cific programming language used for evaluating the likelihood and the prior. Our
implementation relies on R (R Core Team, 2019), but integrating the Warp-III
sampler with Lin and Heathcote’s (2017) C++ implementation of the LBA and the
DDM is expected to speed up sampling by an order of magnitude. In summary,
although Warp-III is computationally more intensive than using model selection
criteria such as the DIC (Spiegelhalter et al., 2002), in standard applications of
evidence-accumulation models, the computational costs are manageable, even us-
ing personal computers. We believe that the computational costs of Warp-III are
a small price to pay for the advantages afforded by the use of principled Bayesian
model selection techniques. Where practical issues are faced due to the need to
select among a large number of models, researchers may consider an initial triage
using easy-to-compute alternatives, such as DIC, in order to obtain a candidate set
for model selection based on Bayes factors (for related approaches, see Madigan
& Raftery, 1994, and Overstall & Forster, 2010).

As many evidence-accumulation models have analytic likelihoods, and so are
amenable to MCMC methods for obtaining posterior distributions, Warp-III sam-
pling is not limited to the LBA, but may be readily applied to other models, such
as the Diffusion Decision Model (DDM; Ratcliff, 1978; Ratcliff & McKoon, 2008).
Heathcote et al.’s (2018) DMC software enables the hierarchical MCMC-based
estimation of not only the LBA and the DDM, but also a variety of other models
including single-boundary and racing diffusion models (Leite & Ratcliff, 2010; Lo-
gan, Van Zandt, Verbruggen, & Wagenmakers, 2014; Tilman, Strayer, et al., 2017),
lognormal race models (Heathcote & Love, 2012; Rouder, Province, Morey, Gómez,
& Heathcote, 2015), as well as race models of the stop-signal paradigm (Matzke et
al., 2013; Matzke, Love, & Heathcote, 2017). Our easy-to-use R-implementation
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of the Warp-III sampler enables the computation of the marginal likelihood of any
model implemented in the DMC software. When analytic likelihoods are not avail-
able, approximate Bayesian computation may be used to enable MCMC sampling,
opening up the possibility to explore more complex and realistic cognitive process
models (Holmes, Trueblood, & Heathcote, 2016; Turner & Sederberg, 2014), al-
though this approach remains challenging (e.g., Lin & Heathcote, 2019). Future
research should investigate the performance of simulation-based methods, such as
Warp-III, in the context of models without analytic likelihood.

As illustrated in our single-participant example, the Bayes factor will not nec-
essarily select a data-generating model. In contrast, as explained in detail before,
it might be the case that the Bayes factor favors a model different than the data-
generating one for certain data sets. However, in the single-participant example
and in the final hierarchical example, the Bayes factor did not clearly favor a
model different than the data-generating one but was approximately one, mean-
ing that both models were about equally likely. Thus, another advantage of Bayes
factors is that they allow one to disentangle evidence of absence (i.e., the Bayes
factor favors the simpler model) and absence of evidence (i.e., the Bayes factor is
approximately one).

It is crucial to acknowledge that the Bayes factor critically depends on the
prior distribution of the model parameters. We emphasize that the priors we used
in the present chapter are not the gold standard for the LBA. We are presently
developing empirically informed prior distributions for the LBA and the DDM
based on archival data sets. In the meantime, we recommend that researchers de-
velop their own empirically based priors (perhaps through pilot work or analysis of
related archival data sets) in LBA applications. For the DDM, the distributions of
parameter values in Matzke and Wagenmakers (2009) already provide reasonable
priors. We see the development of theoretically and empirically informed prior dis-
tributions as necessary part of the maturation of any well-specified quantitative
model, consistent with the position of Lee and Vanpaemel (2018).

4.7.1 Practical Recommendations

In this final section, we provide recommendations about the use of Warp-III sam-
pling in practical applications. Our recommendations should not be interpreted
as strict guidelines, but rather as suggestions based on our experience of using
Warp-III in the context of cognitive models in general and evidence-accumulation
models in particular.

4.7.1.1 How to Assess the Uncertainty and Stability of the Estimate

Once the data have been observed and the model (i.e., the likelihood and the
prior) have been specified, there is a single true marginal likelihood corresponding
to a particular data-model combination. However, for (hierarchical) evidence-
accumulation models, the true marginal likelihood cannot be computed analyt-
ically and must be estimated. As with all estimates, the marginal likelihood
provided by Warp-III is uncertain and may vary even for the same data-model
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combination. Consequently, it is crucial to assess and report the uncertainty of
the estimate and investigate the degree to which uncertainty affects conclusions.

Our recommendation is to assess the uncertainty directly for the quantity of
interest. For instance, when conclusions are based on the Bayes factor, researchers
should assess the uncertainty of the Bayes factor; when conclusions are based on
posterior model probabilities, researchers should assess the uncertainty of the pos-
terior model probabilities. To do so, we recommend researchers to compute the
quantity of interest repeatedly based on independent runs of Warp-III. For exam-
ple, when one is interested in estimating the Bayes factor, one should repeatedly
(1) draw fresh posterior samples from the competing models; (2) use Warp-III
to estimate the marginal likelihood of the models; and (3) compute the resulting
Bayes factor. The uncertainty of the estimate can then be assessed by considering
the empirical variability of the Bayes factor estimates across the repetitions. The
empirical assessment of uncertainty is generally considered as the gold standard,
even when approximate errors are available such as for the simple multivariate
normal bridge sampling estimator (e.g., Frühwirth–Schnatter, 2004).16

We find it useful to not only assess the uncertainty, but also to investigate
whether the estimate of the quantity of interest (e.g., Bayes factor) has stabilized.
As our simulations demonstrated, when successively increasing the number of
samples, the estimate becomes more precise and – after some initial fluctuation
– tends to stabilize. One way to assess stability is to compute the quantity of
interest using batches of the available posterior samples, as we have done in our
simulations. However, we acknowledge that this process can be time consuming.
A crude alternative is to compute the estimate with the corresponding uncertainty
based on (at least) three different samples sizes, for instance, (a) 1

3 , (b) 2
3 , and

(c) all of the posterior samples. Considering the sequence of these three estimates
allows one to get an idea about whether the estimate has stabilized.

4.7.1.2 How Many Samples Are Required for Precise and Stable
Estimates

Assessing the uncertainty and stability of the estimate is a natural and – in our
opinion – the best approach to determine the number of samples required for re-
liable conclusions. Note that the required level of precision and stability depends
on the particular application. For instance, for one of our non-nested hierarchical
examples (left panel in Figure 4.5), the Bayes factor estimates were relatively un-
certain and fluctuated quite substantially even in the high-sample region. However,
given that all of the estimates provided overwhelming evidence for the B-model,
the achieved accuracy and stability were sufficiently high to conclude that the B-
model was clearly favored over the V -model. In contrast, in situations when the
Bayes factor estimates do not provide compelling evidence for either model (for
instance, when the Bayes factor estimates are varying around 1), it is crucial to ob-
tain more precise and stable estimates to ensure that fluctuations do not influence
which of the two models is favored or whether it is concluded that the evidence is

16Another complication with approximate errors for separate marginal likelihood estimates is
that it is not completely straightforward to derive an approximate error for the resulting Bayes
factor estimate.
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equivocal. The single-participant and the final hierarchical example indicate that
it is possible to obtain precise and stable Warp-III Bayes factor estimates also for
this Bayes factor range.

Given these considerations, combined with the fact that the quality of the esti-
mate depends on factors such as the number of participants and the complexity of
the models, we are unable to provide general recommendations about the number
of samples necessary for the reliable application of Warp-III sampling. Warp-III
requires more posterior samples than one would typically collect for the purpose
of parameter estimation. In our experience, a minimum of 1, 000-2, 000 posterior
samples (collapsed across chains) typically provides a reasonable starting point
in single-participant applications. In hierarchical applications, we recommend at
least 10, 000-20, 000 samples. Nevertheless, as with all simulation-based methods,
the more samples, the better. Note that our recommendations assume that the
posterior samples are not highly auto-correlated; the degree of thinning in our sim-
ulations resulted in posterior samples that were virtually uncorrelated. Although
autocorrelation is not itself necessarily a problem for parameter estimation, it does
reduce the effective number of samples, and when large numbers of samples are
required it is practically efficient to thin the samples, at least to the degree that
there is little loss of effective sample size. Warp-III also benefits from having pos-
terior samples with low autocorrelation. One reason is that the “optimal” bridge
function is only optimal in case the posterior samples are independent and iden-
tically distributed which is not the case when using MCMC methods. However,
some autocorrelation may not be too worrisome since, in our implementation, we
use an effective sample size in this bridge function.

4.7.1.3 When to Use Simple Bridge Sampling and When to Use
Warp-III Sampling

The Warp-III estimator is an advanced version of the “simple” multivariate nor-
mal bridge sampling estimator (e.g., Overstall & Forster, 2010). Warp-III matches
the first three moments of the posterior and the proposal distribution; the multi-
variate normal approach – which is equivalent to Warp-II – matches only the first
two moments of the distributions. As the precision of the estimate of the marginal
likelihood is governed by the overlap between the posterior and the proposal dis-
tribution, the Warp-III estimate is at least as precise as the estimate computed
using simple bridge sampling.17 With symmetric posterior distributions, the ad-
vantage of Warp-III diminishes, but nothing is lost in terms of precision relative to
simple bridge sampling. In contrast, with skewed posterior distributions, Warp-
III results in more precise estimates because it is able to match the posterior
and the proposal more closely. Note that both Warp-III and simple bridge sam-
pling assume that the posterior samples are allowed to range across the entire real
line. Hence, the skew of the posterior distributions must be assessed after the
appropriate transformations. This does not mean that sampling from the pos-
terior distributions must occur with all parameters transformed to the real line.

17For multi-modal posterior distributions, both simple bridge sampling and Warp-III sampling
may result in insufficient overlap between the posterior and proposal distribution, and should be
used with caution.
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Table 4.1: Overview of the transformations used in the Warp-III implementation.
θi denotes a parameter and ωi denotes the corresponding new parameter that is
obtained after having transformed θi to the real line. l denotes a parameter lower
bound and u denotes an upper bound. Φ(·) denotes the cumulative distribu-
tion function and φ(·) the probability density function of the normal distribution.
The table displays the parameter type, the corresponding transformation, inverse-
transformation, and the relevant Jacobian contribution.

Type Transformation Inv.-Transformation Jacobian Contribution

unbounded ωi = θi θi = ωi

∣∣∣ ∂θi∂ωi

∣∣∣ = 1

lower-bounded ωi = log (θi − l) θi = exp (ωi) + l
∣∣∣ ∂θi∂ωi

∣∣∣ = exp (ωi)

upper-bounded ωi = log (u− θi) θi = u− exp (ωi)
∣∣∣ ∂θi∂ωi

∣∣∣ = exp (ωi)

double-bounded ωi = Φ−1
(
θi−l
u−l

)
θi = (u− l) Φ (ωi) + l

∣∣∣ ∂θi∂ωi

∣∣∣ = (u− l)φ (ωi)

In fact, in our simulations, only the v parameters were sampled on the real line;
all other parameters were transformed to the real line after the posterior samples
have been obtained. Our R-implementation of the Warp-III sampler automatically
applies the appropriate transformations to the posterior samples obtained with the
DMC software. Specifically, the implementation assumes that each posterior com-
ponent can be transformed separately18 and distinguishes between four different
parameter types: (1) unbounded parameters, (2) lower-bounded parameters, (3)
upper-bounded parameters, and (4) double-bounded parameters (i.e., parameters
that have a lower and an upper bound). Table 4.1 displays the transformations
that are used for the different parameter types. After having detected the pa-
rameter type, an appropriate transformation is applied and the expressions are
adjusted by the relevant Jacobian contribution (see Table 4.1).

In general, Warp-III is a more powerful tool than simple bridge sampling for
estimating the marginal likelihood, but the gain in precision depends on the par-
ticular application. A potential advantage of simple bridge sampling is its rel-
ative speed. Warp-III results in a mixture representation which requires one to
evaluate the un-normalized posterior twice as often as in simple bridge sampling
(e.g., Gronau, Wagenmakers, et al., 2019; Overstall, 2010). This implies a speed-
accuracy trade-off: simple bridge sampling may be less precise but faster; Warp-III
may be more precise but slower. Of course, one may increase the precision of the
simple bridge sampling estimate by increasing the number of posterior samples.
However, this approach neglects the fact that – in evidence-accumulator models
in particular – obtaining the posterior samples typically takes substantially longer
than computing the marginal likelihood using Warp-III. Therefore, although sim-
ple bridge sampling is faster for a given (initial) set of posterior samples, it is
not necessarily true that it is more efficient to run the simpler version based on

18Consequently, the code would need to be adjusted to allow for covariance matrix parameters
or probability vector parameters where constraints apply jointly to several components.
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additional posterior samples than to run Warp-III on the initial set of samples to
obtain comparable precision. Furthermore, we expect that the problem of seem-
ingly non-converging estimates may be more frequent when using simple bridge
sampling. Although this can be addressed by restarting the iterative scheme from
an appropriately chosen start value, as shown in the left panel of Figure 4.5, this
solution substantially increases the uncertainty of the estimate.

In situations where the joint posterior is exactly multivariate normal,19 sim-
ple bridge sampling is clearly more efficient than Warp-III. However, it is chal-
lenging to assess multivariate normality in the high-dimensional spaces regularly
encountered in hierarchical evidence-accumulation models. Although evaluating
the marginal posterior distributions is feasible in most standard applications, nor-
mality of the marginals – which is often not the case for evidence-accumulation
models applied to scarce data – does not necessarily imply that the joint poste-
rior is multivariate normal. In sum, if one expects multivariate normal posterior
distributions, simple bridge sampling is more efficient and should be preferred.
Whenever this is not the case, we recommend Warp-III sampling.

4.8 Conclusion

In this chapter we advocated Warp-III bridge sampling as a general method for
estimating the marginal likelihood – and hence the Bayes factor – for evidence-
accumulation models. We demonstrated that Warp-III sampling provides a pow-
erful and flexible approach that can be applied to both nested and non-nested
model comparisons and – once posterior samples from the competing models have
been obtained – it is straightforward to implement even in hierarchical settings.
We believe that our easy-to-use and freely available implementation of Warp-III
sampling will greatly facilitate the use of principled Bayesian model selection in
practical applications of evidence-accumulation models.

R scripts for reproducing the results presented in this chapter are available at
https://osf.io/ynwpa/.

19As before, multivariate normality should hold for the appropriately transformed posterior
distribution.
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4.A Savage-Dickey Density Ratio

Suppose that the parameter vector θ can be partitioned into a set of nuisance
parameters ζ and test-relevant parameters η so that θ = (ζ,η). The Savage-
Dickey density ratio (Dickey & Lientz, 1970; Wagenmakers et al., 2010) can then
be used to compute the Bayes factor for testing whether η is equal to a constant η0

in the presence of nuisance parameters ζ. Concretely, the Bayes factor compares
model M0 which assigns ζ the prior density p0(ζ) and fixes η to the constant
η0 to model M1 which assigns ζ and η the joint prior density p1(ζ,η). The
Savage-Dickey density ratio representation of the Bayes factor is then given by

BF01 =
p1(η0 | y)

p1(η0)
, (4.10)

where p1(η0 | y) denotes the marginal posterior density of η underM1 evaluated
at η0 and p1(η0) denotes the marginal prior density of η under M1 evaluated at
η0. Note that this representation is only valid in case p1(ζ | η0) = p0(ζ). Hence,
conditional on η = η0, the prior density for ζ under M1 must be identical to the
prior density of ζ underM0.20 In our single-participant example, this assumption
holds since the prior under M1 is given by p1(ζ,η) = p0(ζ) p1(η). We used a
logspline density estimator (Kooperberg, 2016) to estimate the marginal posterior
density at the point of interest.

4.B Reversible Jump Markov Chain Monte Carlo

Reversible jump Markov chain Monte Carlo (RJMCMC; Green, 1995) refers to an
MCMC sampler on an enlarged state space which incorporates a model indicator
M as an additional unknown. The posterior of the model indicator M can be used
to estimate posterior model probabilities and posterior model odds. An estimate
of the Bayes factor can be obtained by dividing the estimated posterior model
odds by the known prior model odds. Barker and Link (2013) described a version
of RJMCMC that represents the process intuitively as a Gibbs sampler where
updates of the model indicator M are alternated with updates of a “palette”
parameter vector ψ. The palette vector ψ has dimension d = max {dim(θk)}
where θk denotes the parameter vector for model Mk, k = 1, 2, . . . ,K and K
denotes the number of models under consideration.21 Each model’s parameter
vector θk can be obtained from the palette vector ψ by a known invertible mapping
gk(ψ) = ξk = (θk,uk), where uk denotes a vector of auxiliary variables which is
redundant to model Mk but ensures that the dimensionality of ψ and ξk matches.

The full-conditional distributions for the Gibbs sampler are determined by the
joint model p(y,ψ,M) = p(y | ψ,M) p(ψ | M) p(M). The model prior p(M)
is set by the researcher and evaluating the likelihood p(y | ψ,M) for a specific
model Mk is straightforward since the model-specific parameter vector θk can

20Verdinelli and Wasserman (1995) proposed a generalization of the Savage-Dickey density
ratio that relaxes this assumption.

21Technically, d ≥ max {dim(θk)}, that is, the dimensionality of ψ could be larger than the
maximum dimensionality of the model parameter vectors, however, this is uncommon in practice.
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be obtained from ψ using the function gk. The prior p(ψ | M) is obtained by
applying the change of variables theorem. Recall that ψ = g−1

k (ξk) and ξk =
(θk,uk). Furthermore, note that the prior p(ξk |Mk) = p(θk,uk |Mk) factorizes
as p(ξk | Mk) = p(θk | Mk) p(uk | θk,Mk).22 For clarity of what follows, let
fk(ξk) = p(ξk |Mk). The implied prior on ψ under model Mk is then given by

p(ψ |Mk) = fk (gk(ψ))

∣∣∣∣∂gk(ψ)

∂ψ

∣∣∣∣ , (4.11)

where
∣∣∣∂gk(ψ)

∂ψ

∣∣∣ denotes the Jacobian determinant of the transformation. The Gibbs

sampler can then be implemented by alternating between 1) drawing ψ from
the full-conditional distribution p(ψ | M,y) and 2) drawing M from the full-
conditional distribution p(M | ψ,y). Drawing ψ from p(ψ |M,y) is accomplished
as follows: one first draws θk from the model-specific posterior p(θk |Mk,y), then
samples uk from p(uk | θk,Mk), sets ξk = (θk,uk), and then computes ψ =
g−1
k (ξk). This means that one can conveniently post-process previously obtained

model-specific posterior samples since a sample from p(θk |Mk,y) can be obtained
by selecting randomly a draw from stored model-specific MCMC output. The full-
conditional distribution for the model indicator M is a categorical distribution,
where Mk is sampled with probability

p(Mk | ψ,y) =
p(y | ψ,Mk) p(ψ |Mk) p(Mk)∑K
j=1 p(y | ψ,Mj) p(ψ |Mj) p(Mj)

. (4.12)

We used the marginalized version of the Gibbs sampler described in section
2.3 of Barker and Link (2013). This marginalized version estimates the transition
matrix Φ = ({φij}), where φij = p(M (b+1) = Mj |M (b) = Mi) and M (b) denotes
the sampled value for M at iteration b of the Gibbs sampler. The marginalized
version does not require one to draw M ; instead, one estimates Φ directly, one
row at a time. The ith row of Φ is estimated by repeatedly 1) drawing ψ given
model Mi from p(ψ | Mi,y) and 2) using the drawn ψ to compute p(Mj | ψ,y),
j = 1, 2, . . . ,K. A Rao-Blackwellized estimate of the ith row of Φ is then given
by the average of the vector (p(M1 | ψ,y), p(M2 | ψ,y), . . . , p(MK | ψ,y)) across
draws from p(ψ |Mi,y). This process is repeated for all modelsMi, i = 1, 2, . . . ,K
to obtain an estimate of all rows of the transition matrix Φ. An estimate of the
posterior model probabilities is then obtained by normalizing the left eigenvector of
the estimated transition matrix corresponding to the eigenvalue 1. An advantage
of this marginalized version is that instead of sampling models according to their
posterior model probabilities, one can fix the number of samples for each model.

We applied this marginalized Gibbs sampler RJMCMC version to our single-
participant example. The dimensionality of ψ was equal to the number of param-
eters of the full model. Under the full model, we simply set ψ = θfull. Under
the null model, there was one parameter less since vtrue was fixed. Hence, the
dimensionality of the auxiliary variable vector uk = u was one for the null model

22Typically, the distribution of the auxiliary variable vector uk is assumed to be conditionally
independent of θk so that p(uk | θk,Mk) = p(uk |Mk).
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and we set ψ = (θnull, u). The auxiliary variable u was proposed from a distri-
bution constructed based on a logspline fit (Kooperberg, 2016) to the posterior
samples for vtrue under the full model. Therefore, to relate the palette vector ψ to
the model parameters (and the auxiliary variable for the null model), we used the
identity mapping for both models (i.e., gk was the identity function for both mod-
els); consequently, the Jacobian determinants of the transformations were equal
to one.
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Chapter 5

Bayesian Inference for
Multidimensional Scaling

Representations with
Psychologically-Interpretable Metrics

Abstract

Multidimensional scaling (MDS) models represent stimuli as points in
a space consisting of a number of psychological dimensions, such that the
distance between pairs of points corresponds to the dissimilarity between the
stimuli. Two fundamental challenges in inferring MDS representations from
data involve inferring the appropriate number of dimensions, and the metric
structure of the space used to measure distance. We approach both chal-
lenges as Bayesian model-selection problems. Treating MDS as a generative
model, we define priors needed for model identifiability under metrics corre-
sponding to psychologically separable and psychologically integral stimulus
domains. We then apply a differential evolution Markov-chain Monte Carlo
(DE-MCMC) method for parameter inference, and a Warp-III method for
model selection. We apply these methods to five previous data sets, which
collectively test the ability of the methods to infer an appropriate dimen-
sionality and to infer whether stimuli are psychologically separable or inte-
gral. We demonstrate that our methods produce sensible results, but note a
number of remaining technical challenges that need to be solved before the
method can easily and generally be applied. We also note the theoretical
promise of the generative modeling perspective, discussing new and extended
models of MDS representation that could be developed.

This chapter is published as Gronau, Q. F., & Lee, M. D. (2020). Bayesian inference for
multidimensional scaling representations with psychologically interpretable metrics. Compu-
tational Brain & Behavior, 3, 322–340. doi: https://doi.org/10.1007/s42113-020-00082-y.
Also available as PsyArXiv preprint : https://psyarxiv.com/5zmep/
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5. Bayesian Inference for Multidimensional Scaling
Representations with Psychologically-Interpretable Metrics

5.1 Introduction

Multidimensional scaling (MDS) was developed in the 1950s in cognitive psychol-
ogy as a statistical method for making inferences about human mental represen-
tations (Kruskal, 1964; Shepard, 1957, 1962). MDS models the similarities or
psychological proximities between pairs of stimuli, representing each stimulus as
a point in a multidimensional space, such that more similar stimuli are nearer
each other. The core psychological motivation is that the similarities reflect the
basic cognitive process of generalization. Generalization can be thought of as the
ability to treat two stimuli as being the same, and has been argued to serve as
a basis for the mental organization of knowledge, and the capability of the mind
to make adaptive predictions about properties and consequences (Shepard, 1987).
For these reasons, mental representations found via MDS methods have been and
remain widely used in cognitive process models of identification, categorization,
and decision making (e.g., Nosofsky, 1992).

Soon after its development in cognitive psychology, however, MDS algorithms
found application as a statistical method that produces a low-dimensional repre-
sentation of a set of objects, based on a measure of the similarities between them.
As a data reduction or visualization method, MDS has been applied in the natural,
biological, and human sciences, with application areas as diverse as representing
the similarities of skulls in archaeology, the tastes of colas in marketing, and the
voting patterns of senators in politics (e.g., Borg & Groenen, 1997; Cox & Cox,
1994; Schiffman, Reynolds, & Young, 1981).

Whether viewed as a model of psychological representation or a data-reduction
method, a foundational challenge in MDS modeling is determining the dimension-
ality M of the representational space. In his 1974 Presidential Address to the
Psychometric Society, Roger Shepard identified six basic challenges for MDS, the
third of which was: “The problem of determining the proper number of dimensions
for the coordinate embedding space” (Shepard, 1974, p. 377). A number of meth-
ods for solving the problem of MDS dimensionality have been developed in both
statistics and psychology. The most common approach is a scree test that aims
to identify an “elbow” in the goodness-of-fit as dimensionality increases (Cox &
Cox, 1994; Kruskal, 1964; Schiffman et al., 1981). Steyvers (2006) suggests the use
of cross-validation methods, although this approach does not seem to be widely
used.

Since choosing the correct dimensionality of an MDS is naturally regarded as
a model-selection problem – that is, choosing between a one-dimensional versus
two-dimensional versus three-dimensional representation, and so on – the statisti-
cally principled approach offered by Bayes factors should provide a solution (Kass
& Raftery, 1995). Along these lines, Lee (2001) implements an approach based on
the Bayesian Information Criterion (BIC). The difference between BIC values for
representations with different dimensionality provides a crude approximation to
the Bayes factor. Oh and Raftery (2001) provide a different approach to approx-
imation by computing the marginal likelihoods of different representations using
plug-in point estimates for the stimulus locations. This is an approximation be-
cause the exact Bayes factor requires an integration across the stimulus location
parameters. Oh (2012) develops a method based on spike-and-slab priors, in which
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Integral Separable

Figure 5.1: MDS representations with integral and separable metric structures.

the dimensionality is determined by the marginal posterior probabilities for each
dimension that the coordinate locations are not zero for all stimuli.

From the perspective of MDS as psychological models however, none of these
approaches qualify as being principled and complete. The key issue is that the the-
ory of mental representation developed by Shepard (1957, 1987, 1991) emphasizes
the role that the metric structure of the space plays in capturing key psychological
properties of the stimuli. In particular, the idea is that different metrics capture
the theoretical and empirical distinction between separable and integral stimuli
(Attneave, 1950; Garner, 1974). Separable stimuli are those for which the compo-
nent dimensions can be attended to separately. An example is different shapes of
different sizes, since it is possible for people to attend selectively to either shape
or the size. Integral stimuli, by contrast, are those for which the component di-
mensions cannot be attended to independently. The standard example is color,
since it is typically not possible for people to attend selectively to the underlying
hue, saturation, and brightness components.

Figure 5.1 shows how different metric structures are used to represent integral
and separable stimuli. In the left panel, there are four stimuli, represented by
the points p1, . . . ,p4. The pairwise distances between these points, such as d12

between the first point and the second point, are modeled using the Euclidean
metric, and so correspond to standard straight lines. In the right panel, there are
three stimuli, and the pairwise distances between them are modeled according to
the city-block metric. Intuitively, this corresponds to comparing the stimuli on
each underlying dimension independently, then adding those dissimarilities to get
an overall measure of dissimilarity.

Admittedly, this account of integrality and separability is a theoretical and
empirical caricature, and much more nuanced and detailed accounts are possible
(Shepard, 1991; Tversky & Gati, 1982). The point is that psychological represen-
tations based on MDS need to make assumptions about the metric structure of
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the space, and use metrics other than the Euclidean metric. As Jäkel, Schölkopf,
and Wichmann (2008, p. 2) point out, from the origins of MDS as a psychological
model “There was no a priori reason to believe that mental representations should
be Euclidean.” Previous methods for determining the dimensionality of MDS rep-
resentations using Bayesian model selection, however, have either been insensitive
to the metric structure of the representation (Lee, 2001), or have focused on the
Euclidean metric (Oh, 2012; Oh & Raftery, 2001).

The use of non-Euclidean metrics raises another challenge, related to inferring
MDS representations themselves. There is evidence that it can be computation-
ally difficult to find multidimensional city-block MDS representations (Groenen,
Heiser, & Meulman, 1998; Hubert, Arabie, & Hesson-McInnis, 1992), as well as
finding unidimensional MDS representations (Mair & Leeuw, 2014). Given that
these difficulties stem from basic geometric properties of the MDS representa-
tions, it seems likely they will continue to present an issue for Bayesian methods
of inference.

Finally, there is the challenge of inferring the appropriate metric structure for
an MDS representation. Shepard (1991) reviews the original statistical approach
to this problem, which involved applying non-metric MDS algorithms for a large
number of different metrics, and choosing the one with the best goodness-of-fit.
As Lee (2008) pointed out, this approach neglects to account for the component
of model complexity that arises from the functional form of parameter interac-
tion (Pitt, Kim, Navarro, & Myung, 2006), which is often the only difference
between MDS models using different psychologically-interpretable metrics. Lee
(2008) developed a Bayesian approach in which the possible metrics correspond
to a parameter that is inferred jointly with the coordinate location parameters
that represent the stimuli. Okada and Shigemasu (2010) developed and tested
this approach further, and showed it is capable of recovering the correct metric
in simulation studies. Both the Lee (2008) and Okada and Shigemasu (2010)
methods, however, failed to resolve basic challenges in model identifiability that
arise from treating the choice of metric structure as a parameter inference prob-
lem. It is possible these identifiability issues could be addressed by considering
the choice as a model-selection problem, and restricting the set of possibilities to
a few interpretable metrics.

Accordingly, the goals of this chapter are to examine the implementation of
MDS models that use psychologically-interpretable metrics, including both the
Euclidean and a non-Euclidean metric, and explore the possibility of inferring the
appropriate dimensionality and metric structure of these representations using
Bayesian model-selection methods. The structure of the remainder of the chap-
ter is as follows. In the next section, we define MDS models, and address the
issue of model identifiability under different metrics. Consistent with previous
literature, we argue that the city-block metric presents fundamental problems in
making MDS representations identifiable. This leads to the development of joint
prior distributions on the stimulus location parameters for the Euclidean metric,
and non-Euclidean metrics other than the city-block metric. With these priors es-
tablished, we apply an approach to Bayesian inference using differential evolution
Markov-chain Monte Carlo (DE-MCMC) computational sampling methods. The
DE-MCMC method helps address the difficulties inherent in inferring MDS repre-
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sentations, which are especially evident in non-Euclidean cases. We then use the
Warp-III bridge sampling method to approximate the marginal densities needed
to determine Bayes factors. We apply the method to five previously studied data
sets, differing in the type of stimuli and expected dimensionality of their MDS
representation. For all five applications, the method makes sensible inferences
about dimensionality, and produces interpretable stimulus representations. We
conclude with a discussion of remaining statistical and computational challenges,
and potential directions for refining and extending the approach.

5.2 MDS Model Identifiability

5.2.1 The Identifiability Problem

Formally, suppose there are N stimuli to be represented, based on observed prox-
imity data from P participants, with dijk measuring the proximity between the
ith and jth stimulus provided by the kth participant. We assume these observed
proximities are normalized to lie between 0 and 1. The point representing the ith
stimulus in a M -dimensional space is pi = (pi1, . . . , piM ) and the distance between
points pi and pj is measured by the Minkowski metric with metric parameter r,
so that

d̂ijk =

(
M∑
m=1

|pim − pjm|r
)1/r

. (5.1)

The Minkowski metric has special cases of the city-block metric when r = 1 and
the Euclidean metric when r = 2. Values of r between 1 and 2 can potentially be
interpreted as intermediate assumptions about the independence of stimulus di-
mensions between the end-point of complete separability and complete integrality.

The goal of MDS is for the modeled distances d̂ijk to correspond to the observed
proximities dijk. We use the probabilistic model

dijk ∼ Gaussian

(
d̂ijk,

1

σ2

)
, (5.2)

where σ is the standard deviation with which the observed proximities are mea-
sured.1 It is assumed to be the same for all of the proximities, and is given a
prior

σ ∼ TruncatedGaussian

(
0.15,

1

0.22

)
T (0, ) , (5.3)

where the T (0, ) indicates the sampled value is truncated to be a positive real
number. This is an informative prior (Lee & Vanpaemel, 2018), consistent with
previous data and modeling. Intuitively, σ corresponds to the average standard
deviation of different individual ratings of the same pair of stimuli. Empirical
estimates of this standard deviation in previous data tend to range from about 0.1

1We parameterize the Gaussian distribution in terms of mean and precision parameters, for
consistency with the JAGS graphical modeling language.
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to about 0.2 (Lee, 2001; Lee & Pope, 2003).2 Accordingly, the prior is centered
on 0.15, but allows a wide range of possibilities.

We note that this MDS model does not incorporate individual differences. It
is assumed that the same point pi represents the ith stimulus for all participants.
We also emphasize, however, that individual-level proximity data dijk are mod-
eled, rather than averaged or aggregated data across participants. The problems
inherent in averaging data have long been understood (Estes, 1956), and have
been studied in the specific cognitive modeling context provided by MDS repre-
sentations (Lee & Pope, 2003). Our approach is to require the same underlying
MDS representation to provide an account of each individual proximity matrix.

To complete the generative model, a straightforward approach would be to
give all of the coordinate locations for the representational points uniform priors
pim ∼ Uniform(−1, 1). These priors, however, made the model non-identifiable,
because the distances between points are invariant under transformations (Borg &
Groenen, 1997, Ch. 2). The distances between points are preserved under trans-
lation, reflection, axes permutation (for non-Euclidean metrics), and rotation (for
the Euclidean metric). A principled Bayesian approach for controlling these invari-
ances to ensure model identifiability constrains the coordinate location parameters
through a joint prior distribution that depends on the assumed metric.

5.2.2 Previous Approaches

Existing MDS modeling methods that use Bayesian inference almost always rely
on post-processing to address the issue of identifiability. The method developed by
Lee (2008) post-processes posterior samples of the coordinate location parameters
to control for translation, reflection, and permutation. For example, to control
for translation, the method zero centers every posterior sample of the sets of
coordinate location. The Lee (2008) method does not control for rotation, which
is problematic, because the method also attempts to infer the r metric parameter,
and so the inferred representational space can have a Euclidean metric, which
requires rotational invariance.

Most other methods, in contrast, assume the MDS space is Euclidean. The
post-processing of the coordinate location parameters used by both Oh and
Raftery (2001) and Oh (2012) assumes a Euclidean space and controls for trans-
lation, reflection, and rotation. Okada and Mayekawa (2018) extend the approach
developed by Okada (2012), which relies on Procrustes analysis. Post-processing
uses a loss function to align posterior samples of the coordinate location, but again
assumes a Euclidean space.

Besides the lack of flexibility in the nature of the distance metric, post-
processing methods have the effect of implementing modeling assumptions without
explicitly specifying those assumptions as part of the model. While this is often
practical, it is theoretically inelegant, and contrary to the goals of generative
modeling. Ideally, the constraints required for model identifiability should be part
of the model itself. In the case of MDS models, these constraints are naturally
imposed through the specification of a joint prior over the coordinate location

2See also the data repository at https://osf.io/ey9vp/
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Figure 5.2: Identification constraints for a one-dimensional representation.

parameters that addresses the transformational invariances, removes the need for
post-processing, and makes bridge sampling feasible.

This generative approach is used by the “parameter fixing” method considered
by Okada and Mayekawa (2018), who evaluate it as a contrast with the Procrustes
methods that are their focus. Parameter fixing corresponds to setting a structured
joint prior over the coordinate location parameters. Okada and Mayekawa (2018)
define the appropriate prior for a Euclidean space using results provided by Bakker
and Poole (2013), which were derived using an analytic method based on matrix
properties.

Our goal is to extend this approach to include non-Euclidean representations.
We start by considering one-dimensional MDS representations, before consider-
ing multidimensional representations in both Euclidean and non-Euclidean metric
spaces. We take a geometric approach to identifying the required joint priors for
invariance constraints, complementing the non-geometric approach of Bakker and
Poole (2013) for the Euclidean metric.

5.2.3 One-dimensional Representation

For a one-dimensional representation, all of the psychologically-interpretable met-
rics we consider give the same distances. The required constraints on the points
are shown in Figure 5.2, with one point fixed at the origin to control translation,
and second point restricted to be positive to control reflection.
These constraints can be formalized by a joint prior with

p1 = 0

p2 ∼ Uniform(0, 1)

p3, . . . , pN ∼ Uniform(−1, 1). (5.4)

5.2.4 Euclidean Multidimensional Representations

Figure 5.3 shows the constraints needed to identify Euclidean MDS representations
in two and three dimensions. In the two-dimensional case, the first point p1 is
fixed at the origin, to control translation, the second point p2 is constrained to
the positive x-axis, to control reflection in the y-axis and rotation, and the third
point p3 is constrained to have a positive y-value to control reflection in the x-
axis. The same logic is applied in the three-dimensional case, with p1 controlling
translation, p2 and p3 controlling reflection and rotation in successive axes, and
p4 controlling the final reflection.
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Figure 5.3: Identification constraints for Euclidean representations in two dimen-
sions (left) and three dimensions (right).

These are the first two cases of a general pattern, clear by induction, that
applies to a M -dimensional representation, and corresponds to the matrix result
provided by Bakker and Poole (2013). An intuitive presentation of the inductive
pattern is shown below, where “0” denotes fixing a coordinate location to zero, “+”
denotes constraining it to be positive, and “R” denotes imposing no constraint.
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im

D

p1 0 0 0 0 . . . 0
p2 + 0 0 0 . . . 0
p3 R + 0 0 . . . 0
p4 R R + 0 . . . 0
p5 R R R + . . . 0

Formally, these constraints in D dimensions correspond to the joint prior

p11, . . . , p1D = 0

p21 ∼ Uniform(0, 1)

p22, . . . , p2D = 0

p31 ∼ Uniform(−1, 1)

p32 ∼ Uniform(0, 1)

p33, . . . , p3D = 0

p41, p42 ∼ Uniform(−1, 1)

p43 ∼ Uniform(0, 1)

p44, . . . , p4D = 0

. . . (5.5)
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Figure 5.4: The nature of iso-distance curves and the identifiability of mid-points
for the three Minkowski metrics corresponding to r = 2 (Euclidean), r = 1 (city-
block), and r = 1.5.

5.2.5 Non-Euclidean Multidimensional Representations

Finding constraints for invariance in non-Euclidean metrics is more complicated,
and is especially difficult for the city-block metric. The basic geometric problem
was noted as early as Arnold (1971), and discussed in Shepard’s (1974, Figure 10)
presidential address. A simple demonstration of the fundamental problem is pro-
vided by Figure 5.4. The three panels correspond to Euclidean (r = 2), city-block
(r = 1), and a general non-Euclidean (r = 1.5) metric, and show unit iso-distance
contours around the same two points in each metric, shown as black dots. These
iso-distance contours are the “unit circles” of each metric, showing all the points
in the space that are the same distance from the two points. For the Euclidean
metric, these contours are familiar circles, and coincide at only one point, shown
by the white dot. This means that there is a unique point in the space that is
equally distant from the two points shown by black dots. In the context of an
MDS representation, a stimulus that is equally different to both of the points can
be uniquely identified.

For the city-block case, however, the iso-distance contours are diamonds, and
there are infinitely many points that are equally different. Three specific possi-
bilities are shown by white dots, but clearly any point along the line where the
iso-distance contours coincide is possible. In the context of an MDS representation,
this means that there is a fundamental difficulty in identifying a stimulus that is
equally different to both of the points. This basic problem is not, in general, solved
by the introduction of additional stimuli that provide additional constraints. In-
deed, the problem compounds for potential city-block representations with many
stimuli. Bortz (1974, see, especially, Figures 2 and 3) provides compelling exam-
ples, and the same point is emphasized in the seminal text by Borg and Groenen
(1997, pp. 369–372).

Figure 5.5 provides a concrete example, based on the more general configu-
ration examined by Borg and Groenen (1997, Figure 17.6). Each panel shows
a representation of six fictitious people in terms of two underlying dimensions.
The city-block distance between each pair of people is identical in both configu-
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Figure 5.5: Two city-block representations of six fictitious people in terms of two
dimensions. Both representations have identical proximity matrices.

rations. This means, of course, that this proximity matrix is equally consistent
with both representations, and either could be inferred from the data. But, the
two representations are substantively different, in non-trivial ways. The repre-
sentations do not differ simply by changing the axes, and have basic structural
differences. For example: Cedric, Dingbats, and Ethelred are co-linear in the first
representation, but not in the second, where Dingbats, Ethelred and Fiona be-
come co-linear; the ordering of Albert and Beowulf changes on both dimensions
between the configurations; and so on. In fact, once the lack of invariance revealed
by the Borg and Groenen (1997, Figure 17.6) analysis is understood, it is clear that
many additional representations for the proximity between the six people could
be constructed, supporting a wide range of different meaningful interpretations.

A practical approach for identifying city-block representations, used by Nosof-
sky (1985), relies on determining the values of some stimuli on some dimensions,
by means external to the MDS modeling. Ultimately, this strategy can solve the
problem, if it is possible to find the values of every stimulus on every dimension.
But, Figure 5.5 suggests the strategy may not be effective in situations where the
identification of just a few stimuli is possible. In both representations, Dingbats is
at the same location, consistent with values on dimensions having been externally
determined, yet the locations of the remaining stimuli are under-determined. In
addition, if, for example, Albert was additionally identified as being located in the
position shown in the first representation, that would constrain the inference about
Beowulf and Cedric, but would not constrain Ethelred and Fiona, who could still
be inferred to be at either of the possibilities shown in the two representations.
Thus, while the addition of stimuli, or the identification of dimension values for
some stimuli, may work in some specific circumstances, we do not believe either
represents a general approach to making city-block MDS representations identifi-
able.

We do not know how to solve the problem of MDS model invariance for the
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Figure 5.6: Identification constraints for non-Euclidean representations in two
dimensions (left) and three dimensions (right).

city-block metric. As the right-most panel of Figure 5.4 makes clear, however, the
problem does not occur for Minkowski-metric parameters r > 1. For the r = 1.5
metric, the iso-distance contours again coincide at only one point. The asymmetry
of these contours makes clear they do not have the rotational invariance of the
Euclidean r = 2 metric. In this way, general non-Euclidean metrics, such as r =
1.5, capture the psychological idea that the dimensions in an MDS representation
have meaning and allow selective attention, while avoiding the degenerate lack of
identifiability inherent in the city-block metric.

Figure 5.6 shows the constraints needed to identify these sort of non-Euclidean
MDS representations in two and three dimensions. In the two-dimensional case,
the first point p1 is once again fixed at the origin, to control translation, the
second point p2 is constrained to the positive quadrant to control reflection. In
addition, the constraint that p22 ≤ p21 is imposed, requiring the value of the
second stimulus on the y-axis not to be larger than its value on the x-axis. This
constraint controls for axis permutation, preventing the two dimensions from being
swapped, and so allocates a specific underlying stimulus dimension to each axis.
The three-dimensional case extends this logic by requiring that the z-axis value of
the second point be positive, to prevent reflection, and be less than the value of
the second point on the y-axis, to prevent permutation.

These first two cases once again make clear a general pattern, in which the co-
ordinate values of the second point are positive and order constrained.3 Formally,
the constraints for non-city-block but non-Euclidean D dimensions are

p11, . . . , p1D = 0

p21, . . . , p2D ∼ Uniform(0, 1) : p21 ≥ . . . ≥ p2D

p31, . . . , p3D ∼ Uniform(−1, 1)

. . . (5.6)

3These order constraints can be imposed either in decreasing manner, as shown in Figure 5.6
for easier visualization, or in an increasing manner, as they are in our code.
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5.3 Bayesian MDS Inference via DE-MCMC

When posterior samples for MDS models are obtained using conventional Markov-
chain Monte Carlo algorithms (MCMC; e.g., Gamerman & Lopes, 2006) it can
occur that chains get stuck in local maxima. In our experience, the reason is
typically that the stimuli that are constrained are similar to each other. To prevent
local maxima, we implemented a heuristic to order the stimuli in a way that those
defining the constraints are dissimilar. We motivate and describe this heuristic in
detail in Appendix A. In addition, to improve sampling, we used the differential
evolution Markov-chain Monte Carlo algorithm (DE-MCMC; e.g., Heathcote et
al., 2018; Turner et al., 2013) that helps to guide the chains to regions of high
posterior density.

DE-MCMC is a population-based MCMC algorithm that generates efficient
proposals via a population of interacting chains (Turner et al., 2013). One strength
of the algorithm is that it works well for highly correlated target distributions.
However, we used DE-MCMC primarily for the reason that the interacting chains
can guide each other to regions of high posterior density which helps to avoid the
issue of chains getting stuck in local maxima. Specifically, during burn-in, we used
a migration step that remedies the problem of outlier chains in an effective manner
(for details, see Turner et al., 2013, Appendix B). We found that the combination
of the ordering heuristic and DE-MCMC provides effective sampling consistently
for the Euclidean metric, and is partially effective for non-Euclidean metrics.

5.4 Bayesian Model Comparison via Bridge Sampling

5.4.1 Marginal Likelihood

Comparing MDS models with different dimensions and metrics via Bayes fac-
tors and posterior model probabilities requires the computation of the marginal
likelihood for all of the models, Mm,r, being considered where m denotes the
dimensionality and r the metric. Let D denote the observed data (i.e., the pair-
wise dissimilarity ratings dijk) and P denote the N ×m matrix with the latent
stimulus coordinates for each stimulus. The marginal likelihood for model Mm,r

corresponds to the normalizing constant of the joint posterior distribution for
θ = (P , σ):

p(D | Mm,r) =

∫
q(θ |D,Mm,r) dθ

=

∫ ∫
p(D | P , σ,Mm,r)︸ ︷︷ ︸

Likelihood

p(P | Mm,r)︸ ︷︷ ︸
Joint Prior on

Stimulus Locations

p(σ | Mm,r)︸ ︷︷ ︸
Prior on

Imprecision

dPdσ,

(5.7)

where q(θ |D,Mm,r) denotes the unnormalized joint posterior density.
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5.4.2 Bridge Sampling

Since the marginal likelihood in Equation 5.7 is not available analytically, we use
Warp-III bridge sampling (Meng & Schilling, 2002) to estimate this potentially
high-dimensional integral. Bridge sampling (Meng & Wong, 1996; for a recent
tutorial see Gronau, Sarafoglou, et al., 2017) is based on the following identity:

p(D | Mm,r) =
Eg(θ) [h(θ) q(θ |D,Mm,r)]

Ep(θ|D,Mm,r) [h(θ) g(θ)]
, (5.8)

where the numerator is an expected value with respect to a proposal distribu-
tion g(θ), the denominator is an expected value with respect to the param-
eter posterior distribution p(θ | D,Mm,r), and h(θ) is a function such that
0 <

∣∣∫ h(θ) p(θ |D,Mm,r) g(θ) dθ
∣∣ < ∞. The bridge sampling estimate is ob-

tained by sampling from the proposal distribution g(θ) and the posterior distri-
bution p(θ |D,Mm,r) to approximate the two expected values. Meng and Wong
(1996) showed that the optimal choice for h(θ) is given by

ho(θ) ∝ [s1 q(θ |D,Mm,r) + s2 p(D | Mm,r) g(θ)]
−1
, (5.9)

where si = ni/(n1 + n2), i ∈ {1, 2}, n1 denotes the number of samples from the
posterior p(θ |D,Mm,r), and n2 denotes the number of samples from the proposal
g(θ). The optimal choice for h(θ) depends on the marginal likelihood of interest.
Therefore, in practice, the bridge sampling estimate is obtained via an iterative
scheme, presented below, that updates an initial guess of the marginal likelihood
until convergence.

The variability of the bridge sampling estimate is governed not only by the
number of samples, but also, crucially, by the overlap between the proposal and
the posterior distribution. To obtain estimates with low variability, it is therefore
prudent to maximize the overlap between these two distributions. The Warp-III
approach attempts to create a large overlap by fixing the proposal to a standard
multivariate Gaussian distribution and then manipulating (i.e., “warping”) the
posterior in a way that matches the first three moments of the two distributions.4

Crucially, the warping procedure retains the normalizing constant of the posterior
(i.e., the marginal likelihood of interest).

A prerequisite for the warping procedure is that all elements of the parameter
vector are allowed to range across the entire real line. This can be achieved via
a change-of-variables of the form ζ = f(θ), where f is a suitable5 vector-valued
function that transforms the constrained elements of θ so that all elements of ζ
are unconstrained.6 The Warp-III procedure is based on the following stochastic
transformation of the unconstrained parameter vector ζ:

η = bC−1 (ζ − µ) , (5.10)

4Note that other proposal distributions are conceivable. The only constraints are that the
proposal has a zero mean vector, an identity covariance matrix, and exhibits no skewness.

5The function f needs to be one-to-one and its inverse f−1 needs to have a well-defined
Jacobian.

6We use a function f that applies a log transformation to σ and (scaled) probit transfor-
mations to the non-zero elements of P . The transformation for the ordered coordinates of the
second stimulus for the non-Euclidean case is described in Appendix B. Note that it is irrelevant
whether the coordinates are ordered as decreasing, as shown in Figure 5.6 for easier visualization,
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Figure 5.7: llustration of the Warp-III procedure. The black solid line shows the
standard Gaussian proposal distribution and the gray histogram shows synthetic
posterior samples. Available at https://tinyurl.com/y7owvsz3 under CC li-
cense https://creativecommons.org/licenses/by/2.0/.

where b ∼ Bernoulli (0.5) on {−1, 1}, µ denotes the expected value vector of the
posterior samples, and Σ = CC> denotes the posterior covariance matrix (i.e., C
is obtained via a Cholesky decomposition).

Figure 5.7 illustrates the warping approach for the univariate case. In the
upper-left panel, the solid line corresponds to the standard Gaussian proposal dis-
tribution and the gray histogram depicts synthetic posterior samples. Subtracting
the posterior mean from all samples matches the first moment of the proposal and
the posterior distribution, as shown in the upper-right panel. Dividing all sam-
ples by the posterior standard deviation matches the second moment of the two
distributions, as shown in the lower-right panel. Finally, attaching a minus sign

or increasing, as implemented in our code. The transformation described in the appendix as-
sumes the latter. These transformations can be applied after having obtained posterior samples
for θ. Furthermore, where necessary, the expressions are adjusted by the relevant Jacobian term
|detJf−1 (ζ)|.
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with probability 0.5 to the posterior samples achieves symmetry and thus matches
the third moment of the proposal and the posterior distribution, as shown in the
lower-left panel.

The Warp-III bridge sampling estimate based on ho(θ) is computed via an
iterative scheme where the value of the estimate at iteration t is given by (for
more details see Gronau, Wagenmakers, et al., 2019):

p̂(D | Mm,r)
(t+1) =

1
n2

n2∑
i=1

l2,i
s1 l2,i+s2 p̂(D|Mm,r)(t)

1
n1

n1∑
j=1

1
s1 l1,j+s2 p̂(D|Mm,r)(t)

, (5.11)

with

l1,j =
|Ĉ|
2 [q(2µ̂−ζ∗j |D,Mm,r)+q(ζ∗j |D,Mm,r)]

g(Ĉ−1(ζ∗j−µ̂))
, (5.12)

and

l2,i =
|Ĉ|
2 [q(µ̂−Ĉη̃i|D,Mm,r)+q(µ̂+Ĉη̃i|D,Mm,r)]

g(η̃i)
. (5.13)

In Equations 5.12–5.13, q(· | D,Mm,r) denotes the unnormalized posterior den-
sity with respect to the unconstrained parameter vector ζ, {ζ∗1 , ζ∗2 , . . . , ζ∗n1

} denote
n1 posterior samples, and {η̃1, η̃2, . . . , η̃n2

} denote n2 samples from the standard
multivariate Gaussian proposal distribution. To compute the Warp-III estimate
one obtains 2n1 posterior samples: the first half of these samples is used to ap-
proximate µ and C with their sample versions µ̂ and Ĉ, the second half of the
posterior samples is used in the iterative scheme (i.e., Equation 5.11). We use
the bridgesampling R package (Gronau, Singmann, & Wagenmakers, 2020) to
compute the bridge sampling estimate in Equation 5.11.

5.5 Applications

In this section, we present applications of our method to five existing data sets.
For each application, we describe the stimuli and the nature of the data, as well as
make clear our expectations about the MDS representation that will be inferred.
In particular, we state our expectations about both the dimensionality and metric
structure of the representation whenever possible. The results we present are
based on considering MDS models up to and beyond this expected dimensionality,
so that the inference our method makes is clear. Where possible, we apply our
method under the assumption that the metric space is both Euclidean (r = 2)
and non-Euclidean (r = 1.5) so that an inference can also be made about the
integrality or separability of the stimulus domain. For some applications, we were
unable to generate samples with acceptable convergence for the r = 1.5 metric.
In those cases, we only report results assuming the r = 2 metric.

5.5.1 Line Length

Our first application involves the similarity judgments between nine lines of equally
increasing length provided by 27 participants, as reported in Cohen, Nosofsky,

127



5. Bayesian Inference for Multidimensional Scaling
Representations with Psychologically-Interpretable Metrics

1 2 3

Dimensions

0

0.2

0.4

0.6

0.8

1

M
o

d
e

l 
P

ro
b

a
b

ili
ty

Figure 5.8: Results for line-length similarity data from Cohen et al. (2001).
The left panel shows the posterior model probabilities for one- through three-
dimensional MDS representations. The right panel shows the inferred one-
dimensional representation with black lines showing the line stimuli at their in-
ferred locations and blue histograms showing the marginal posterior distributions
for these locations.

and Zaki (2001). We expect these stimuli to have a one-dimensional MDS rep-
resentation, corresponding to line length. Because the Minkowski metrics are all
equivalent in a one-dimensional space, we do not have any expectations about
the metric structure. Thus, we applied our method to these data by assuming
a Euclidean metric.7 As for all of our applications, we used 15 chains and 500
burn-in samples. During burn-in, the probability of a migration step was set to
0.05. After burn-in, migration was switched off, and the algorithm was run for
9,000 iterations. We only retained every third sample so that we ended up with
3,000 samples per chain for further use (i.e., a total of 45,000 samples collapsed
across chains).

The left panel of Figure 5.8 shows posterior model probabilities, assuming equal
prior probabilities, for one-, two-, and three-dimensional MDS representations. To
assess the stability of the posterior model probability estimates, we ran the Warp-
III procedure five times based on new samples from the proposal distribution (we
always used the same set of posterior samples). These five repetitions are drawn
as separate lines but, in this case, the results are so similar that they are visually
indistinguishable. Because of the assumptions of equal prior probabilities, the ratio
of any pair of posterior probabilities is naturally interpreted as a Bayes factor. The
key result is that the expected one-dimensional representation is inferred, with a
posterior probability near one.

The right panel of Figure 5.8 shows the inferred one-dimensional MDS repre-
sentation. The black lines show the stimuli in terms of their physical line lengths,

7We note, however, for completeness that we had difficulty with convergence using the r = 1.5
metric for these data.
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Figure 5.9: Results for color similarity data from color-normal subjects reported
by Helm (1964). The left panel shows the posterior probabilities for one- through
four-dimensional MDS representations. The right panel shows the inferred three-
dimensional representation, with two dimensions shown as a two-dimensional plot
in the center, and the third dimension shown along an axis to the right. Circular
markers and labels show the inferred locations of each stimulus and error bars show
95% credible intervals for the marginal posterior distribution for each dimension.

located at the posterior mean of their location in the psychological space. The
blue histograms show the marginal posterior distributions for each line stimulus.
The MDS representation arranges the line stimuli in order of their length, but they
are not evenly spaced, despite the lines increasing in constant physical increments.
Instead, the psychological representation shows compression for the longer lines,
consistent with basic psychophysics (Fechner, 1966 [1860]). This compression is
large enough that the posterior distributions begin to overlap for the longest line
stimuli.

5.5.2 Colors

Our second application considers classic data reported by Helm (1964), involving
the similarities between ten colors. The experimental procedure involved trials
in which participants were presented with physical tiles of three different colors,
and moved one of the tiles to reflect their perceived overall similarity of the color
of this tile to the colors of the other two tiles. Based on these responses, Helm
(1964) calculated measures of pairwise similarities between the colors that have
previously been considered in the MDS literature (e.g. Borg & Groenen, 1997;
Carroll & Wish, 1974). We consider only the data from the ten participants with
normal color vision.

We expect the MDS representation to use the Euclidean metric, consistent with
the integral nature of the color stimulus domain. We also expect a two-dimensional
representation, following the color circle found by previous MDS analyses of these
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Figure 5.10: Results for rectangles with interior line segments data reported by
Kruschke (1993). The left panel shows the posterior probabilities for one- through
three-dimensional MDS representations, for both the Minkowski metrics with r =
1.5 and r = 2. The right panel shows the inferred two-dimensional representation.
The stimuli are shown at their inferred locations and error bars show 95% credible
intervals for the marginal posterior distribution for each dimension.

and other color similarity data, such as the Shepard (1962) original MDS analysis
of data reported by Ekman (1954).

Figure 5.9 shows the results of applying our method, assuming a Euclidean
metric. This was a case in which we were unable to generate samples with ac-
ceptable convergence for the r = 1.5 metric. For the Euclidean metric, there is
uncertainty regarding the dimensionality, with a three-dimensional representation
having probability a little over 0.6 and a two-dimensional representation having
almost all of the remaining probability. The inferred three-dimensional represen-
tation is shown by pairing the first two dimensions as a two-dimensional plot in the
center of Figure 5.9, and showing the remaining third dimension separately to the
right along an axis. Because of our ordering heuristic, the yellow and purple-blue
stimuli were fixed at the origin and on the first axis. These assignments mean
that the first two dimensions effectively represent the expected color circle that
“bends” the visible physical spectrum from red to purple colors into a circle that
reflects the psychological similarity between the end points. The third dimension,
which we did not expect, could correspond to something like luminance, since low
luminance purple-like colors are generally located at one end of the dimension and
high luminance yellow-like colors are generally located at the other end.

5.5.3 Rectangles with Line Segments

Our third application involves data reported by Kruschke (1993) involving the
similarity between eight geometric stimuli. These stimuli consisted of rectangles
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with interior line segments, and varied in terms of the height of the rectangle and
the horizontal location of the line segment. A total of 50 participants provided
similarity ratings on a nine-point scale for all 28 stimulus pairs. Based on the
original (Kruschke, 1993) and subsequent (e.g., Lee, 2001, 2008) analyses of these
data, we expect a two-dimensional MDS representation. We also expect the two
stimulus dimensions to be psychologically separable.

Figure 5.10 shows the results of applying our method assuming both the r =
1.5 and r = 2 metrics. It is clear that a two-dimensional representation with
the separable r = 1.5 metric is inferred. It has essentially all of the posterior
probability, with one- and three-dimensional r = 1.5 representations, and all of
the r = 2 representations having essentially no posterior probability. The inferred
representation closely matches the ways in which the stimuli physically vary, with
each psychological axis corresponding to an interpretable stimulus dimension. The
horizontal axis corresponds to the position of the line segment and the vertical axis
corresponds to the height of the rectangle.

5.5.4 Shepard Circles

Our fourth application involves data collected by Treat, McFall, Viken, and Kr-
uschke (2001), involving the similarity between nine geometric stimuli known as
“Shepard circles”. These stimuli consist of a closed semi-circle with an interior ray
from the center to the perimeter. The nine stimuli are constructed by exhaustively
varying three different radius lengths and three different angles for the internal ray.
As for the rectangles with line segments, we expect a separable two-dimensional
MDS representation. For these stimuli, we expect the dimensions to correspond
to the radius and angle dimensions.

Figure 5.11 shows the results of applying our method assuming both the r = 1.5
and r = 2 metrics.8 It is clear, once again, that a two-dimensional representation
with the separable r = 1.5 metric is inferred. The inferred representation also
again closely matches the ways in which the stimuli physically vary, with the
horizontal axis corresponding to the radius of the semi-circle and the vertical axis
corresponding to the angle of the ray.

5.5.5 Colored Shapes

Our final application considers similarity data for nine colored shape stimuli col-
lected by Lee and Navarro (2002). The stimuli were circles, squares, and triangles
that were colored red, green, and blue. The data were collected from 20 partic-
ipants, each of whom rated the similarity of each pair of stimuli on a five-point
scale.

Following the previous analysis in Lee and Navarro (2002), we expect a four-
dimensional representation. This representation is best understood as being the
product of a pair of two-dimensional representations, with one representing the
similarities between the shapes, and the other representing the similarities be-
tween the colors. There are only three shapes and three colors, and neither set

8For these stimuli, we did not have access to information about the precise physical values
of the radius and angles, and so the depictions in Figure 5.11 are approximate.
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Figure 5.11: Results for the Shepard circles data collected by Treat et al. (2001).
The left panel shows the posterior probabilities for one- through three-dimensional
MDS representations, for both the Minkowski metrics with r = 1.5 and r = 2.
The right panel shows the inferred two-dimensional representation. The stimuli
are shown at their inferred locations and error bars show 95% credible intervals
for the marginal posterior distribution for each dimension.

of three has a natural ordering. Instead, the circle, square, and triangle are all
approximately equally different from one another, and the same is true of the
red, green, and blue colors. These equal similarities are naturally represented by
two-dimensional approximately equilateral triangles. The four-dimensional rep-
resentation we expect is simply the independent combination of these two two-
dimensional sub-spaces.

Our expectations for the metric structure of the MDS representations are less
straightforward. Theoretically, the interaction between the shape and color di-
mensions is a classic example of a separable relationship. The metric structure
within the color sub-space, however, is theoretically integral, as for the previous
application. Countering these theoretical expectations is the fact that there are
only three values for the color and shape dimensions present in the stimulus set.
The corresponding approximately equilateral triangles could be equally well ac-
commodated by any of the Minkowski metrics we are considering. Thus, from
a statistical perspective – without regard to the theory of separable and integral
stimuli – we expect the simplest metric to be inferred. Since all metrics should be
able to fit the data, the one with the smallest functional form complexity should
be preferred.

We found that this was a third case in which we were unable to generate
samples with acceptable convergence for the r = 1.5 metric. Accordingly, Fig-
ure 5.12 shows the results of applying our method assuming the Euclidean metric.
A four-dimensional representation is clearly favored. This representation is shown
in terms of two two-dimensional subspaces, and has the expected structure. The
middle panel of Figure 5.12 shows a subspace that captures the similarity relation-
ships between the red, green, and blue colors. The right panel shows a subspace
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Figure 5.12: Results for colored shapes data reported by Lee and Navarro (2002).
The left panel shows the posterior probabilities for one- through five-dimensional
MDS representations for the Euclidean metric. The middle and right panels show
the inferred four-dimensional representation, with two dimensions shown in each
panel. The colored shapes show the inferred locations of each stimulus and error
bars show 95% credible intervals for the marginal posterior distribution for each
dimension.

that captures the similarity relationships between the circle, square, and triangle
shapes. These subspaces were found using an orthogonal Procrustes method (Borg
& Groenen, 1997, p. 162). In particular, we solved for the orthogonal transfor-
mation matrix that most closely mapped the inferred coordinate locations to the
expected representational structure, defined as the product of two subspaces each
with an equilateral triangle configuration.

5.6 Discussion

Collectively, the five applications demonstrate that our method is able to make
reasonable inferences about MDS representations. The inferred number of dimen-
sions, and the inferred stimulus locations, generally matched theoretical expecta-
tions, with the exception of the color application. In addition, where inferences
about whether a Euclidean or non-Euclidean metric structure were made, they
matched theoretical expectations. It is interesting to note that all of the applica-
tions for which non-Euclidean metrics made inference difficult involved stimulus
domains for which the expectation was that the Euclidean metric was appropriate.

We also think that the five applications serve to demonstrate the usefulness of
our approach to determining dimensionality and metric structure. Our approach is
to treat these determinations as Bayesian model-selection problems and use Bayes
factors to make inferences. Complete Bayes factors have not been used in this
way previously to determine either dimensionality or metric structure, and our
introduction of the Warp-III method to solve the difficult computational approx-
imation problems involved represents progress on these long-standing challenges
in MDS modeling.

Despite this progress, we think the greatest contribution of the current work
is to highlight fundamental challenges in MDS models of mental representation,
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and suggest new avenues for theoretical development. The challenges largely stem
from our insistence on fully Bayesian inference, which has enormous advantages in
terms of reaching complete, coherent, and principled conclusions, but also raises
technical hurdles. The opportunities largely stem from our adoption of a generative
modeling approach (Lee, 2018). In particular, we think there are many remaining
possibilities relating to the use of different metrics in MDS representations, and
that there is an opportunity to extend the generative approach to develop more
complete cognitive process models for inferring MDS representations. We conclude
by discussing some of these challenges and opportunities.

5.6.1 Technical Challenges

Developing a generative MDS model in a Bayesian setting required the key issue of
identifiability and invariance to be solved in terms of prior information, rather than
more heuristically through post-processing. We used an existing solution to this
challenge for the Euclidean metric, and proposed a solution for psychologically-
interpretable non-Euclidean metrics with 1 < r < 2. We also highlighted, however,
the fundamental intractability of MDS representations using the city-block met-
ric. This intractability has been documented before (Bortz 1974; Frank 2006,
Figure 5.4; Shepard 1974, Figure 11), but has not prevented the use of MDS
representations inferred based on the city-block metric in the cognitive modeling
literature (e.g., Kruschke, 1993; Lee & Wetzels, 2010).

Our current approach to determining the appropriate metric treats this infer-
ence as a model-selection problem, and only considers the possibilities r = 1.5 and
r = 2. Allowing for other metrics is theoretically interesting, but computationally
difficult. One obvious cost is the need to generate posterior probabilities across a
larger set of candidate models. But it also seems likely that some models will be
difficult to make inferences about. We tried our DE-MCMC approach for r = 1.1
on a number of data sets, and were not able to achieve satisfactory convergence.
Furthermore, as explained above, for a few of the applications we were also not
able to achieve satisfactory convergence for r = 1.5. These challenging cases in-
volved stimulus domains for which the expectation was that the Euclidean metric
was appropriate, which leads to a speculative suggestion that failure is related
to model mis-specification. This is a potential example of a general aspect of
Bayesian model comparison that can be computationally challenging: in order to
rule out models that are likely mis-specified, one needs to be able to infer them
well enough that they can be part of the model comparison. Although we be-
lieve that DE-MCMC is a powerful sampling algorithm which substantially helps
alleviate the issue of non-converging chains, future research should explore differ-
ent sampling algorithms that may perform better, particularly for non-Euclidean
metrics.

Collectively, these technical challenges mean that our approach cannot cur-
rently be applied to large naturalistic stimulus domains. For example, Nosofsky,
Sanders, Meagher, and Douglas (2018) consider MDS representations based on
sparse matrices of pairwise similarity judgments for a set of 360 images of rocks,
and Hebart, Zheng, Pereira, and Baker (2020) report extensive crowd-sourced tri-
adic comparison similarity data for 1854 images of real-world objects. Being able to
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determine the dimensionality, metric structure, and psychological representations
of MDS representations of these domains using the Bayesian framework would po-
tentially offer deep insight into how people represent the real-world stimuli. The
successful applications we presented – in which there were clear expectations about
dimensionality, metric, and representational structure – provide a basis for believ-
ing the Bayesian framework can provide this insight to situations where answers
must be inferred from data, if and when the computational technical hurdles are
overcome.

5.6.2 Other Representations

We did not consider Minkowski metrics with r < 1. This possibility has been
proposed as a way of representing stimulus domains in which the component di-
mensions compete for attention (Shepard, 1987, 1991; Tversky & Gati, 1982). The
identifiability constraints for this metric present an open research challenge, and
it is not clear how well DE-MCMC sampling methods will perform in inferring
representations.

There is also the possibility of moving beyond the Minkowski family of met-
rics. In his presidential address, Shepard (1974, Figure 11) presented a taxonomy
of metric spaces, each of which makes different fundamental representational as-
sumptions that could be appropriate for at least some stimulus domains. There
has been relatively little work in exploring these possibilities. Lindman and Caelli
(1978) investigated MDS representations using Riemannian spaces with constant
curvature, and Cox and Cox (1991) presented compelling applications for a special
case of this approach involving MDS representations on a sphere.

A new idea raised by our application to the colored shape stimuli involves the
possibility of different metric structures within the same representation. These
stimuli involved two sorts of stimulus dimensions: those representing color, which
are usually considered to be integral, and those representing qualitatively different
shapes, which seems more separable. Certainly the interaction between the color
dimensions and the shape dimensions would be expected to be separable, since
it seems likely people can selectively attend to either the color or the shape of a
stimulus, depending upon the cognitive context. This suggests a generalization of
the MDS models in which each pair of dimensions is associated with a metric.

Finally, there are alternative representational models, which do not assume
stimuli are represented by values on dimensions, that can compete with or com-
plement MDS models. These alternatives include feature-based representations
(Tversky, 1977), such as those found by additive clustering and related methods
(Shepard & Arabie, 1979) and special cases such as tree-based models (Corter,
1996; Shepard, 1980). One attraction of the Warp-III approach we used is that
it could estimate Bayes factors between fundamentally different sorts of represen-
tations – such as comparing dimensional and featural representations – since it
operates directly on posterior samples for each model applied independently to
the data. Even further, Navarro and Lee (2003) proposed a hybrid model of stim-
ulus representation that combined both dimensions and features, and it would be
conceptually elegant to choose between all of the candidate models, with various
combinations of dimensions and features, using our methods. Navarro and Lee
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(2003) used an approximate analytic approach for this purpose, which would be
significantly improved by an approach based on Bayes factors.

5.6.3 MDS Cognitive Process Models

Our modeling approach is generative, but is based on an extremely simple cog-
nitive model. In essence, we assume that all participants have the same MDS
representation, and produce dissimilarity judgments for pairs of stimuli that di-
rectly reflect the distances between those stimuli in the representation. It is likely
that much better generative models can be developed by considering more realistic
processing assumptions, and especially by including individual differences.

One example, involving the line length application, was presented in a pre-
liminary form by Lee (2014). A simple plot of the raw behavioral data suggests
that one of the 27 participants appears to have reversed the scale that was used
to judge similarity. This means that their judgments contaminate the inference
of the MDS representation. Lee (2014) used a simple latent-mixture model ex-
tension of the basic MDS generative model, in which either the scale was used
correctly or reversed. One participant was inferred to have reversed the scale, as
expected. Perhaps more importantly, however, the resulting inference about the
one-dimensional MDS representation was shown to have less uncertainty than the
one shown in Figure 5.8. In this way, the introduction of individual differences in
the cognitive process of similarity judgment helped decontaminate the inference
about the representation of stimuli.

The same basic generative approach could support much more general cogni-
tive process modeling using MDS representations. The hierarchical, latent mix-
ture, and common cause model structures advocated by Lee (2018) could allow
for rich accounts of individual differences in judgment processes or stimulus rep-
resentations, and allow for models that extend beyond the judgment of similarity
to other cognitive capabilities like categorization and inference. As one example,
Ennis (1992) considers extended assumptions about MDS representations that
allow for the noisy representation of perceptual stimuli, which could be incorpo-
rated by adding hierarchical structure to the coordinate locations. As another
example, there are extensions of the basic MDS model we considered that allow
for structured individual differences, such as INDSCAL (Carroll, 1972; Carroll &
Chang, 1970). These would be easy to implement within our generative modeling
framework. A model like INDSCAL, which assumes individuals weight the latent
stimulus dimensions differently, relies on the appropriate number of dimensions
being inferred, and evidence that the stimulus domain is separable. In this way,
the potential of our method to make these inferences is especially important. As a
final example, the rectangle and line segment stimuli are used by Kruschke (1993)
to study category learning, but the similarity data and category learning data
are analyzed independently. In effect, the similarity data are used to generate
the MDS representation, and that representation is then assumed to provide the
fixed basis for category learning. An alternative approach would be to infer the
MDS representation jointly from both the similarity judgments and the category
learning choices. This sort of flexibility raises the possibility of tackling more
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complicated cognitive phenomena, such as the ability to adapt representations in
response to changes in the external environment, or the current context or goals.

5.6.4 Conclusion

We adopted a Bayesian model selection approach to the problem of determining
the dimensionality and metric structure of MDS representations, while considering
psychologically-interpretable Euclidean and non-Euclidean metrics. Our methods
for inferring the representations, and choosing their dimensionality and metric
structure show the promise of the approach, but computational challenges remain a
barrier in terms of an easy-to-use general capability. Our methods and applications
also show the promise of placing MDS representations in a generative cognitive
modeling framework, offering the possibility of new models of how people represent
stimuli, and how those representations help guide behavior.

All code is available at https://osf.io/82g3r/.
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0

Figure 5.13: A suboptimal one-dimensional representation of the line-length simi-
larity data from Cohen et al. (2001), motivating the need for the ordering heuristic.
The black lines show the stimuli at their inferred locations in the representation,
and the blue histograms show the marginal posterior distributions for these loca-
tions.

5.A The Ordering Heuristic

Figure 5.13 provides a concrete example to motivate the need for the ordering
heuristic. It is clear this is an inferior representation to the one presented in Fig-
ure 5.8. In Figure 5.13, the first and second line stimuli, which are the two shortest,
are located at almost the same point, rather than being appropriately spaced to
reflect their psychological dissimilarity. Consistent with this intuition, the poste-
rior density is worse for the representation in Figure 5.13 than the representation
in Figure 5.8.

This suboptimality is caused by the naive application of the constraints iden-
tified in Figure 5.2 for a one-dimensional representation. The first stimulus is
fixed at the origin, and the second stimulus is constrained to be positive. It is
clear from Figure 5.13 that the second stimulus is indeed inferred to be positive,
but is extremely close to zero, with the remaining longer line stimuli “flipping” to
negative values in the MDS space. This configuration still satisfies the proximity
data reasonably well, because the required distance between the first two stimuli
is small, and the distances from the first and second stimuli to all of the others
is approximately conserved. Thus, it is the choice of the two similar stimuli as
those that are constrained that leads to this potential for a local maximum and
suboptimal representation.

Accordingly, we developed an ordering heuristic to try and assign the con-
straints for the various dimensionalities and metrics to stimuli that are sufficiently
dissimilar. Because higher dimensionalities place constraints on more than two
stimuli, the general approach is to order all of the stimuli. Our heuristic for doing
this is based on the across participants averaged pairwise dissimilarity ratings.
The first two stimuli are chosen to be the ones with the largest averaged pairwise
dissimilarity. The remaining stimuli are chosen, one at a time, by considering the
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minimum averaged pairwise dissimilarity to the already selected stimuli. Specifi-
cally, the next stimulus is always chosen to be the one with the maximum value
for the minimum averaged pairwise dissimilarity to the already selected stimuli.

We used this ordering heuristic for the colors and colored shapes applications.
For the line length application, we used the heuristic as described but then, in
an additional step, switched the first stimulus with the second stimulus. This
switch helped prevent the posterior for the ninth stimulus, corresponding to the
longest line, push against the upper bound of 1. For the rectangles with interior
line segments and Shepard circles applications, we used the heuristic as a starting
point, but we then reordered some of the stimuli manually since it seemed to help
with convergence.

5.B Transformation Ordered Vector (0-1 Bounded)

The constrained vector x, 0 ≤ x1 ≤ x2 ≤ . . . ≤ xK ≤ 1, can be transformed to an
unconstrained vector y ∈ <K as follows:

yk =

{
Φ−1 (xk) if k = 1,

Φ−1
(
xk−xk−1

1−xk−1

)
if 1 < k ≤ K,

where Φ−1(·) denotes the inverse of the normal CDF. The inverse transformation
is given by:

xk =

{
Φ (yk) if k = 1,

xk−1 + (1− xk−1) Φ (yk) if 1 < k ≤ K,

where Φ(·) denotes the normal CDF. Note that xk is a function of y1, y2, . . . , yk
(the dependence on y1, y2, . . . , yk−1 is “hidden” in xk−1). Crucially, xk does not
depend on yk+1, yk+2, . . . , yK . Consequently, the Jacobian matrix J of the trans-
formation is lower triangular so that its determinant |J | is obtained by multiplying
its diagonal entries. The diagonal entries are given by:

Jk,k =

{
φ (yk) if k = 1,

(1− xk−1)φ (yk) if 1 < k ≤ K,

where φ(·) denotes the normal PDF. Hence, the determinant of the Jacobian
matrix is given by:

|J | = φ (y1)

K∏
k=2

[(1− xk−1)φ (yk)] .
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Chapter 6

bridgesampling: An R Package for
Estimating Normalizing Constants

Abstract

Statistical procedures such as Bayes factor model selection and Bayesian
model averaging require the computation of normalizing constants (e.g.,
marginal likelihoods). These normalizing constants are notoriously difficult
to obtain, as they usually involve high-dimensional integrals that cannot be
solved analytically. Here we introduce an R package that uses bridge sam-
pling (Meng & Schilling, 2002; Meng & Wong, 1996) to estimate normalizing
constants in a generic and easy-to-use fashion. For models implemented in
Stan, the estimation procedure is automatic. We illustrate the functionality
of the package with three examples.

6.1 Introduction

In many statistical applications, it is essential to obtain normalizing constants of
the form

Z =

∫
Θ

q(θ) dθ, (6.1)

where p(θ) = q(θ)/Z denotes a probability density function (pdf) defined on the
domain Θ ⊆ Rp. For instance, the estimation of normalizing constants plays a
crucial role in free energy estimation in physics, missing data analyses in likelihood-
based approaches, Bayes factor model comparisons, and Bayesian model averaging
(e.g., Gelman & Meng, 1998). In this chapter, we focus on the role of the normal-
izing constant in Bayesian inference; however, the bridgesampling package can be
used in any context where one desires to estimate a normalizing constant.

This chapter is published as Gronau, Q. F., Singmann, H., & Wagenmakers, E.–J. (2020).
bridgesampling: An R package for estimating normalizing constants. Journal of Statistical
Software, 92. doi: https://doi.org/10.18637/jss.v092.i10. Also available as arXiv preprint :
https://arxiv.org/abs/1710.08162
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Constants

In Bayesian inference, the normalizing constant of the joint posterior distri-
bution is involved in (a) parameter estimation, where the normalizing constant
ensures that the posterior integrates to one; (b) Bayes factor model comparison,
where the ratio of normalizing constants quantifies the data-induced change in
beliefs concerning the relative plausibility of two competing models (e.g., Kass &
Raftery, 1995); (c) Bayesian model averaging, where the normalizing constant is
required to obtain posterior model probabilities (BMA; Hoeting et al., 1999).

For Bayesian parameter estimation, the need to compute the normalizing con-
stant can usually be circumvented by the use of sampling approaches such as
Markov chain Monte Carlo (MCMC; e.g., Gamerman & Lopes, 2006). However,
for Bayes factor model comparison and BMA, the normalizing constant of the
joint posterior distribution – in this context usually called marginal likelihood –
remains of essential importance. This is evident from the fact that the posterior
model probability of model Mi, i ∈ {1, 2, . . . ,m}, given data y is obtained as

p(Mi | y)︸ ︷︷ ︸
posterior model probability

=
p(y | Mi)∑m

j=1 p(y | Mj) p(Mj)︸ ︷︷ ︸
updating factor

× p(Mi)︸ ︷︷ ︸
prior model probability

,

(6.2)
where p(y | Mi) denotes the marginal likelihood of model Mi.

If the model comparison involves only two models,M1 andM2, it is convenient
to consider the odds of one model over the other. Bayes’ rule yields:

p(M1 | y)

p(M2 | y)︸ ︷︷ ︸
posterior odds

=
p(y | M1)

p(y | M2)︸ ︷︷ ︸
Bayes factor BF12

× p(M1)

p(M2)︸ ︷︷ ︸
prior odds

. (6.3)

The change in odds brought about by the data is given by the ratio of the marginal
likelihoods of the models and is known as the Bayes factor (Etz & Wagenmakers,
2017; Jeffreys, 1961; Kass & Raftery, 1995). Equation 6.2 and Equation 6.3 high-
light that the normalizing constant of the joint posterior distribution, that is, the
marginal likelihood, is required for computing both posterior model probabilities
and Bayes factors.

The marginal likelihood is obtained by integrating out the model parameters
with respect to their prior distribution:

p(y | Mi) =

∫
Θ

p(y | θ,Mi) p(θ | Mi) dθ. (6.4)

The marginal likelihood implements the principle of parsimony also known as Oc-
cam’s razor (e.g., Jefferys & Berger, 1992; Myung & Pitt, 1997; Vandekerckhove
et al., 2015). Unfortunately, the marginal likelihood can be computed analyti-
cally for only a limited number of models. For more complicated models (e.g.,
hierarchical models), the marginal likelihood is a high-dimensional integral that
usually cannot be solved analytically. This computational hurdle has complicated
the application of Bayesian model comparisons for decades.

To overcome this hurdle, a range of different methods have been developed that
vary in accuracy, speed, and complexity of implementation: naive Monte Carlo
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estimation, importance sampling, the generalized harmonic mean estimator, Re-
versible Jump MCMC (Green, 1995), the product-space method (Carlin & Chib,
1995; Lodewyckx et al., 2011), Chib’s method (Chib, 1995), thermodynamic inte-
gration (e.g., Lartillot & Philippe, 2006), path sampling (Gelman & Meng, 1998),
and others. The ideal method is fast, accurate, easy to implement, general, and
unsupervised, allowing non-expert users to treat it as a “black box”.

In our experience, one of the most promising methods for estimating nor-
malizing constants is bridge sampling (Meng & Schilling, 2002; Meng & Wong,
1996). Bridge sampling is a general procedure that performs accurately even in
high-dimensional parameter spaces such as those that are regularly encountered
in hierarchical models. In fact, simpler estimators such as the naive Monte Carlo
estimator, the generalized harmonic mean estimator, and importance sampling
are special sub-optimal cases of the bridge identity described in more detail below
(e.g., Frühwirth–Schnatter, 2004; Gronau, Sarafoglou, et al., 2017).

In this chapter, we introduce bridgesampling, an R (R Core Team, 2019) pack-
age that enables the straightforward and user-friendly estimation of the marginal
likelihood (and of normalizing constants more generally) via bridge sampling tech-
niques. In general, the user needs to provide to the bridge_sampler function four
quantities that are readily available:

• an object with posterior samples (argument samples);

• a function that computes the log of the unnormalized posterior density for
a set of model parameters (argument log_posterior);

• a data object that contains the data and potentially other relevant quantities
for evaluating log_posterior (argument data);

• lower and upper bounds for the parameters (arguments lb and ub, respec-
tively).

Given these inputs, the bridgesampling package provides an estimate of the log
marginal likelihood.

Figure 6.1 displays the steps that a user may take when using the bridge-
sampling package. Starting from the top, the user provides the basic required
arguments to the bridge_sampler function which then produces an estimate of
the log marginal likelihood. With this estimate in hand – usually for at least
two different models – the user can compute posterior model probabilities using
the post_prob function, Bayes factors using the bf function, and approximate
estimation errors using the error_measures function. A schematic call of the
bridge_sampler function looks as follows (detailed examples are provided in the
next sections):

R> bridge_sampler(samples = samples, log_posterior = log_posterior,

+ data = data, lb = lb, ub = ub)

The bridge_sampler function is an S3 generic which currently has methods for
objects of class mcmc, mcmc.list (Plummer et al., 2006), stanfit (Stan Develop-
ment Team, 2016), matrix, rjags (Plummer, 2016; Su & Yajima, 2015), runjags
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Basic	Arguments:
samples
log_posterior
data
lb
ub

bridge_sampler()

Basic	Output:
Object	of	class	
"bridge"	or	
"bridge_list"		
with	log	marginal	
likelihood	estimate(s)

bf()post_prob() error_measures()

Approximate	
estimation	error

Bayes	factorPosterior	model	
probabilities

Figure 6.1: Flow chart of the steps that a user may take when using the bridge-
sampling package. In general, the user needs to provide a posterior samples
object (samples), a function that computes the log of the unnormalized pos-
terior density (log posterior), the data (data), and parameter bounds (lb
and ub). The bridge sampler function then produces an estimate of the log
marginal likelihood. This is usually repeated for at least two different models.
The user can then compute posterior model probabilities (using the post prob

function), Bayes factors (using the bf function), and approximate estimation
errors (using the error measures function). Note that the summary method
for bridge objects automatically invokes the error measures function. Fig-
ure available at https://tinyurl.com/ybf4jxka under CC license https://

creativecommons.org/licenses/by/2.0/.

(Denwood, 2016), stanreg (Team, 2016), and for MCMC refClass objects produced
by nimble (de Valpine et al., 2017).1 This allows the user to obtain posterior sam-
ples in a convenient and efficient way, for instance, via JAGS (Plummer, 2003) or

1We thank Ben Goodrich for adding the stanreg method to our package and Perry de Valpine
for his help implementing the nimble support.
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6.2. Bridge Sampling: The Algorithm

a highly customized sampler. Hence, bridge sampling does not require users to
program their own MCMC routines to obtain posterior samples; this convenience
is usually missing for methods such as Reversible Jump MCMC (but see Gelling,
Schofield, & Barker, 2017).

When the model is specified in Stan (Carpenter et al., 2017; Stan Development
Team, 2016) – in a way that retains the constants, as described below – obtaining
the marginal likelihood is even simpler: the user only needs to pass the stanfit

object to the bridge_sampler function. The combination of Stan and the bridge-
sampling package therefore produces an unsupervised, black box computation of
the marginal likelihood.

This chapter is structured as follows: First we describe the implementation de-
tails of the algorithm from bridgesampling; second, we illustrate the functionality
of the package using a simple Bayesian t-test example where posterior samples are
obtained via JAGS. In this section, we also explain a heuristic to obtain the func-
tion that computes the log of the unnormalized posterior density in JAGS; third,
we describe in more detail the interface to Stan which enables an even more au-
tomatized computation of the marginal likelihood. Fourth, we illustrate use of the
Stan interface with two well-known examples from the Bayesian model selection
literature.

6.2 Bridge Sampling: The Algorithm

Bridge sampling can be thought of as a generalization of simpler methods for
estimating normalizing constants such as the naive Monte Carlo estimator, the
generalized harmonic mean estimator, and importance sampling (e.g., Frühwirth–
Schnatter, 2004; Gronau, Sarafoglou, et al., 2017). These simpler methods typ-
ically use samples from a single distribution, whereas bridge sampling combines
samples from two distributions.2 For instance, in its original formulation (Meng
& Wong, 1996), bridge sampling was used to estimate a ratio of two normalizing
constants such as the Bayes factor. In this scenario, the two distributions for the
bridge sampler are the posteriors for each of the two models involved. However,
the accuracy of the estimator depends crucially on the overlap between the two
involved distributions; consequently, the accuracy can be increased by estimating
a single normalizing constant at a time, using as a second distribution a convenient
normalized proposal distribution that closely matches the distribution of interest
(e.g., Gronau, Sarafoglou, et al., 2017; Overstall & Forster, 2010). The bridge
sampling estimator of the marginal likelihood is then given by:3

p(y) =
Eg(θ) [h(θ) p(y | θ) p(θ)]

Ep(θ|y) [h(θ) g(θ)]
≈

1
n2

∑n2

j=1 h(θ̃j) p(y | θ̃j) p(θ̃j)
1
n1

∑n1

i=1 h(θ∗i ) g(θ∗i )
, (6.5)

2Note, however, that these simpler methods are special cases of bridge sampling (e.g., Gronau,
Sarafoglou, et al., 2017, Appendix A). Hence, for particular choices of the bridge function and
the proposal distribution, only samples from one distribution are used.

3We omit conditioning on the model for enhanced legibility. It should be kept in mind,
however, that this yields the estimate of the marginal likelihood for a particular modelMi, that
is, p(y | Mi).
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where h(θ) is called the bridge function and g(θ) denotes the proposal distribution.
{θ∗1 ,θ∗2 , . . . ,θ∗n1

} denote n1 samples from the posterior distribution p(θ |y) and

{θ̃1, θ̃2, . . . , θ̃n2
} denote n2 samples from the proposal distribution g(θ).

To use bridge sampling in practice, one has to specify the bridge function h(θ)
and the proposal distribution g(θ). For the bridge function h(θ), the bridgesam-
pling package implements the optimal choice presented in Meng and Wong (1996)
which minimizes the relative mean-squared error of the estimator. Using this par-
ticular bridge function, the bridge sampling estimate of the marginal likelihood
is obtained via an iterative scheme that updates an initial guess of the marginal
likelihood p̂(y)(0) until convergence (for details, see Gronau, Sarafoglou, et al.,
2017; Meng & Wong, 1996). The estimate at iteration t+ 1 is obtained as follows:

p̂(y)(t+1) =

1
n2

n2∑
j=1

l2,j
s1 l2,j+s2 p̂(y)(t)

1
n1

n1∑
i=1

1
s1 l1,i+s2 p̂(y)(t)

, (6.6)

where l1,i =
p(y|θ∗i ) p(θ∗i )

g(θ∗i ) , and l2,j =
p(y|θ̃j) p(θ̃j)

g(θ̃j)
. In practice, a more numerically

stable version of Equation 6.6 is implemented that uses logarithms in combination
with the Brobdingnag R package (Hankin, 2007) to avoid numerical under- and
overflow (for details, see Gronau, Sarafoglou, et al., 2017, Appendix B).

The iterative scheme usually converges within a few iterations. Note that,
crucially, l1,i and l2,j need only be computed once before the iterative updating
scheme is started. In practice, evaluating l1,i and l2,j takes up most of the compu-
tational time. Luckily, l1,i and l2,j can be computed completely in parallel for each
i ∈ {1, 2, . . . , n1} and each j ∈ {1, 2, . . . , n2}, respectively. That is, in contrast to
MCMC procedures, the evaluation of, for instance, l1,i+1 does not require one to
evaluate l1,i first (since the posterior samples and proposal samples are already
available). The bridgesampling package enables the user to compute l1,i and l2,j
in parallel by setting the argument cores to an integer larger than one. On Unix/-
macOS machines, this parallelization is implemented using the parallel package.
On Windows machines this is achieved using the snowfall package (Knaus, 2015).4

After having specified the bridge function, one needs to choose the proposal
distribution g(θ). The bridgesampling package implements two different choices:
(a) a multivariate normal proposal distribution with mean vector and covariance
matrix that match the respective posterior samples quantities and (b) a standard
multivariate normal distribution combined with a warped posterior distribution.5

Both choices increase the efficiency of the estimator by making the proposal and
the posterior distribution as similar as possible. Note that under the optimal
bridge function, the bridge sampling estimator is robust to the relative tail behav-
ior of the posterior and the proposal distribution. This stands in sharp contrast to
the importance and the generalized harmonic mean estimator for which unwanted

4Due to technical limitations specific to Windows, this parallelization is not available for the
stanfit and stanreg methods.

5Note that other proposal distributions such as multivariate t distributions are conceivable
but are currently not implemented in the bridgesampling package.
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tail behavior produces estimators with very large or even infinite variances (e.g.,
Frühwirth–Schnatter, 2004; Gronau, Sarafoglou, et al., 2017; Owen & Zhou, 2000).

6.2.1 Option I: The Multivariate Normal Proposal Distribution

The first choice for the proposal distribution that is implemented in the bridgesam-
pling package is a multivariate normal distribution with mean vector and covari-
ance matrix that match the respective posterior samples quantities. This choice
(henceforth “the normal method”) generalizes to high dimensions and accounts for
potential correlations in the joint posterior distribution. This proposal distribution
is obtained by setting the argument method = "normal" in the bridge_sampler

function; this is the default setting. This choice assumes that all parameters are
allowed to range across the entire real line. In practice, this assumption may not be
fulfilled for all components of the parameter vector, however, it is usually possible
to transform the parameters so that this requirement is met. This is achieved by
transforming the original p-dimensional parameter vector θ (which may contain
components that range only across a subset of R) to a new parameter vector ξ
(where all components are allowed to range across the entire real line) using a dif-
feomorphic vector-valued function f so that ξ = f(θ). By the change-of-variable
rule, the posterior density with respect to the new parameter vector ξ is given by:

p(ξ | y) = pθ(f−1(ξ) | y)
∣∣det

[
Jf−1(ξ)

]∣∣ , (6.7)

where pθ(f−1(ξ) | y) refers to the untransformed posterior density with respect to
θ evaluated for f−1(ξ) = θ. Jf−1(ξ) denotes the Jacobian matrix with the element

in the i-th row and j-th column given by ∂θi
∂ξj

. Crucially, the posterior density

with respect to ξ retains the normalizing constant of the posterior density with
respect to θ; hence, one can select a convenient transformation without changing
the normalizing constant. Note that in order to apply a transformation no new
samples are required; instead the original samples can simply be transformed using
the function f .

In principle, users can select transformations themselves. Nevertheless, the
bridgesampling package comes with a set of built-in transformations (see Ta-
ble 6.1), allowing the user to work with the model in a familiar parameterization.
When the user then supplies a named vector with lower and upper bounds for the
parameters (arguments lb and ub, respectively), the package internally transforms
the relevant parameters and adjusts the expressions by the Jacobian term. Fur-
thermore, as will be elaborated upon below, when the model is fitted in Stan, the
bridgesampling package takes advantage of the rich class of Stan transformations.

The transformations built into the bridgesampling package are useful when-
ever each component of the parameter vector can be transformed separately.6 In
this scenario, there are four possible cases per parameter: (a) the parameter is
unbounded; (b) the parameter has a lower bound (e.g., variance parameters); (c)
the parameter has an upper bound; and (d) the parameter has a lower and an

6Thanks to a recent pull request by Kees Mulder, the bridgesampling package now also
supports a more complicated case in which multiple parameters are constrained jointly (i.e.,
simplex parameters). This pull request also added support for circular parameters.
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Table 6.1: Overview of built-in transformations in the bridgesampling package. l
denotes a parameter lower bound and u denotes an upper bound. Φ(·) denotes
the cumulative distribution function (cdf) and φ(·) the probability density function
(pdf) of the normal distribution.

Type Transformation Inv.-Transformation Jacobian Contribution

unbounded ξi = θi θi = ξi

∣∣∣∂θi∂ξi

∣∣∣ = 1

lower-bounded ξi = log (θi − l) θi = exp (ξi) + l
∣∣∣∂θi∂ξi

∣∣∣ = exp (ξi)

upper-bounded ξi = log (u− θi) θi = u− exp (ξi)
∣∣∣∂θi∂ξi

∣∣∣ = exp (ξi)

double-bounded ξi = Φ−1
(
θi−l
u−l

)
θi = (u− l) Φ (ξi) + l

∣∣∣∂θi∂ξi

∣∣∣ = (u− l)φ (ξi)

upper bound (e.g., probability parameters). As shown in Table 6.1, in case (a)
the identity (i.e., no) transformation is applied. In case (b) and (c), logarithmic
transformations are applied to transform the parameter to the real line. In case
(d) a probit transformation is applied. Note that internally, the posterior density
is automatically adjusted by the relevant Jacobian term. Since each component
is transformed separately, the resulting Jacobian matrix will be diagonal. This
is convenient since it implies that the absolute value of the determinant is the
product of the absolute values of the diagonal entries of the Jacobian matrix:

∣∣det
[
Jf−1(ξ)

]∣∣ =

p∏
i=1

∣∣∣∣∂θi∂ξi

∣∣∣∣ . (6.8)

Once all posterior samples have been transformed to the real line, a multi-
variate normal distribution is fitted using method-of-moments. On a side note,
bridge sampling may underestimate the marginal likelihood when the same poste-
rior samples are used both for fitting the proposal distribution and for the iterative
updating scheme (i.e., Equation 6.6). Hence, as recommended by Overstall and
Forster (2010), the bridgesampling package divides each MCMC chain into two
halves, using the first half for fitting the proposal distribution and the second half
for the iterative updating scheme.

6.2.2 Option II: Warping the Posterior Distribution

The second choice for the proposal distribution that is implemented in the bridge-
sampling package is a standard multivariate normal distribution in combination
with a warped posterior distribution. The goal is still to match the posterior and
the proposal distribution as closely as possible. However, instead of manipulating
the proposal distribution, it is fixed to a standard multivariate normal distribu-
tion, and the posterior distribution is manipulated (i.e., warped). Crucially, the
warped posterior density retains the normalizing constant of the original posterior
density. The general methodology is referred to as Warp bridge sampling (Meng
& Schilling, 2002).
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There exist several variants of Warp bridge sampling; in the bridgesampling
package, we implemented Warp-III bridge sampling (Gronau, Wagenmakers, et
al., 2019; Meng & Schilling, 2002; Overstall, 2010) which can be used by setting
method = "warp3". This version matches the first three moments of the posterior
and the proposal distribution. That is, in contrast to the simpler normal method
described above, Warp-III not only matches the mean vector and the covariance
matrix of the two distributions, but also the skewness. Consequently, when the
posterior distribution is skewed, Warp-III may result in an estimator that is less
variable. When the posterior distribution is symmetric, both Warp-III and the
normal method should yield estimators that are about equally efficient. Hence,
in principle, Warp-III should always provide estimates that are at least as precise
as the normal method. However, the Warp-III method also takes about twice as
much time to execute as the normal method; the reason for this is that Warp-III
sampling results in a mixture density (for details, see Gronau, Wagenmakers, et
al., 2019; Overstall, 2010) which requires that the unnormalized posterior density
is evaluated twice as often as in the normal method.

Figure 6.2 illustrates the intuition for the warping procedure in the univariate
case. The gray histogram in the top-left panel depicts skewed posterior samples,
the solid black line the standard normal proposal distribution. The Warp-III pro-
cedure effectively standardizes the posterior samples so that they have mean zero
(top-right panel) and variance one (bottom-right panel), and then attaches a mi-
nus sign with probability 0.5 to the samples which achieves symmetry (bottom-left
panel). This intuition naturally generalizes to the multivariate case. Starting with
posterior samples that can range across the entire real line (i.e., ξ) the multivariate
Warp-III procedure is based on the following stochastic transformation:

η = b︸︷︷︸
symmetry

× R−1︸︷︷︸
covariance I

× (ξ − µ)︸ ︷︷ ︸
mean 0

, (6.9)

where b ∼ B(0.5) on {−1, 1} and µ corresponds to the expected value of ξ (i.e., the
mean vector).7 The matrix R is obtained via the Cholesky decomposition of the
covariance matrix of ξ, denoted as Σ, hence, Σ = RR>. Bridge sampling is then
applied using this warped posterior distribution in combination with a standard
multivariate normal distribution.

6.2.3 Estimation Error

Once the marginal likelihood has been estimated, the user can obtain an estimate
of the estimation error in a number of different ways. One method is to use the
error_measures function which is an S3 generic. Note that the summary method
for objects returned by bridge sampler internally calls the error_measures func-
tion and thus provides a convenient summary of the estimated log marginal likeli-
hood and the estimation uncertainty. For marginal likelihoods estimated with the
"normal" method and repetitions = 1, the error measures function provides
an approximate relative mean-squared error of the marginal likelihood estimate,

7B(θ) denotes a Bernoulli distribution with success probability θ.
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Figure 6.2: Illustration of the warping procedure. The black solid line shows the
standard normal proposal distribution and the gray histogram shows the poste-
rior samples. Available at https://tinyurl.com/y7owvsz3 under CC license
https://creativecommons.org/licenses/by/2.0/ (see also Gronau, Heath-
cote, & Matzke, 2020; Gronau, Wagenmakers, et al., 2019).

an approximate coefficient of variation, and an approximate percentage error. The
relative mean-squared error of the marginal likelihood estimate is given by:

RE2 =
E
[
(p̂(y)− p(y))

2
]

p(y)2
. (6.10)

The bridgesampling package computes an approximate relative mean-squared er-
ror of the marginal likelihood estimate based on the derivation by Frühwirth–
Schnatter (2004) which takes into account that the samples from the proposal
distribution are independent, whereas the samples from the posterior distribution
may be autocorrelated (e.g., when using MCMC sampling procedures).

Under the assumption that the bridge sampling estimator p̂(y) is unbiased, the
square root of the relative mean-squared error (Equation 6.10) can be interpreted
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as the coefficient of variation (i.e., the ratio of the standard deviation and the
mean). To facilitate interpretation, the bridgesampling package also provides a
percentage error which is obtained by simply converting the coefficient of variation
to a percentage.

Note that the error measures function can currently not be used to obtain
approximate errors for the "warp3" method with repetitions = 1. The reason
is that, in our experience, the approximate errors appear to be unreliable in this
case.

There are two further methods for assessing the uncertainty of the marginal
likelihood estimate. These methods are computationally more costly than com-
puting approximate errors, but are available for both the "normal" method and
the "warp3" method. The first option is to set the repetitions argument of
the bridge_sampler function to an integer larger than one. This allows the
user to obtain an empirical estimate of the variability across repeated applica-
tions of the method. Applying the error measures function to the output of
the bridge sampler function that has been obtained with repetitions set to
an integer large than one provides the user with the minimum/maximum log
marginal likelihood estimate across repetitions and the interquartile range of the
log marginal likelihood estimates. Note that this procedure assesses the uncer-
tainty of the estimate conditional on the posterior samples, that is, in each rep-
etition new samples are drawn from the proposal distribution, but the posterior
samples are fixed across repetitions.

In case the user is able to easily draw new samples from the posterior dis-
tribution, the second option is to repeatedly call the bridge_sampler function,
each time with new posterior samples. This way, the user obtains an empirical
assessment of the variability of the estimate which takes into account both uncer-
tainty with respect to the samples from the proposal and also from the posterior
distribution. If computationally feasible, we recommend this method for assessing
the estimation error of the marginal likelihood.

After having outlined the underlying bridge sampling algorithm, we next
demonstrate the capabilities of the bridgesampling package using three exam-
ples. Additional examples are available as vignettes at: https://cran.r-project
.org/package=bridgesampling

6.3 Toy Example: Bayesian T -test

We start with a simple statistical example: a Bayesian paired-samples t-test
(Gronau, Ly, & Wagenmakers, 2020; Jeffreys, 1961; Ly et al., 2016b; Rouder,
Speckman, Sun, Morey, & Iverson, 2009). We use R’s sleep data set (Cushny &
Peebles, 1905) which contains measurements for the effect of two soporific drugs
on ten patients. Two different drugs where administered to the same ten patients
and the dependent measure was the average number of hours of sleep gained com-
pared to a control night in which no drug was administered. Figure 6.3 shows
the increase in sleep (in hours) of the ten patients for each of the two drugs.
To test whether the two drugs differ in effectiveness, we can conduct a Bayesian
paired-samples t-test.

151

https://cran.r-project.org/package=bridgesampling
https://cran.r-project.org/package=bridgesampling


6. bridgesampling: An R Package for Estimating Normalizing
Constants

1 2

-2

0

2

4

6

In
c
re

a
s
e
 i
n
 S

le
e
p
 (

H
o
u
rs

)

Drug

Figure 6.3: The sleep data set (Cushny & Peebles, 1905). The left violin plot
displays the distribution of the increase in sleep (in hours) of the ten patients
for the first drug, the right violin plot displays the distribution of the increase
in sleep (in hours) of the ten patients for the second drug. Boxplots and the
individual observations are superimposed. Observations for the same participant
are connected by a line. Figure available at https://tinyurl.com/yalskr23

under CC license https://creativecommons.org/licenses/by/2.0/.

The null hypothesis H0 states that the n difference scores di, i = 1, 2, . . . , n,
where n = 10, follow a normal distribution with mean zero and variance σ2, that
is, di ∼ N (0, σ2). The alternative hypothesis H1 states that the difference scores
follow a normal distribution with mean µ = σδ, where δ denotes the standardized
effect size, and variance σ2, that is, di ∼ N (σδ, σ2). Jeffreys’s prior is assigned to
the variance σ2 so that p(σ2) ∝ 1/σ2 and a zero-centered Cauchy prior with scale
parameter r = 1/

√
2 is assigned to the standardized effect size δ (for details, see

Ly et al., 2016b; Morey & Rouder, 2015; Rouder et al., 2009).
In this example, we are interested in computing the Bayes factor BF10 which

quantifies how much more likely the data are under H1 (i.e., there is a difference
between the two drugs) than under H0 (i.e., there is no difference between the two
drugs) by using the bridgesampling package. For this example, the Bayes factor
can also be easily computed using the BayesFactor package (Morey & Rouder,
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2015), allowing us to compare the results from the bridgesampling package to the
correct answer.

The first step is to obtain posterior samples. In this example, we use JAGS
in order to sample from the models. Here we focus on how to compute the log
marginal likelihood for H1. The steps for obtaining the log marginal likelihood
for H0 are analogous. After having specified the model corresponding to H1 as
the character string code H1, posterior samples can be obtained using the R2jags
package (Su & Yajima, 2015) as follows:8

R> library("R2jags")

R> data("sleep")

R> y <- sleep$extra[sleep$group == 1]

R> x <- sleep$extra[sleep$group == 2]

R> d <- x - y # compute difference scores

R> n <- length(d)

R> set.seed(1)

R> jags_H1 <- jags(data = list(d = d, n = n, r = 1 / sqrt(2)),

+ parameters.to.save = c("delta", "inv_sigma2"),

+ model.file = textConnection(code_H1),

+ n.chains = 3, n.iter = 16000, n.burnin = 1000,

+ n.thin = 1)

Note the relatively large number of posterior samples; reliable estimates for the
quantities of interest in testing usually necessitate many more posterior samples
than are required for estimation. As a rule of thumb, we suggest that testing
requires about an order of magnitude more posterior samples than estimation.

Next, we need to specify a function that take as input a named vector with
parameter values and a data object, and returns the log of the unnormalized
posterior density (i.e., the log of the integrand in Equation 6.4). This function is
easily specified by inspecting the JAGS model. As a heuristic, one only needs to
consider the model code where a “∼” sign appears. The log of the densities on
the right-hand side of these “∼” symbols needs to be evaluated for the relevant
quantities and then these log density values are summed.9 Using this heuristic,
we obtain the following unnormalized log posterior density function for H1:

R> log_posterior_H1 <- function(pars, data) {

+ delta <- pars["delta"] # extract parameter

+ inv_sigma2 <- pars["inv_sigma2"] # extract parameter

+ sigma <- 1 / sqrt(inv_sigma2) # convert precision to sigma

+ out <-

+ dcauchy(delta, scale = data$r, log = TRUE) + # prior

+ dgamma(inv_sigma2, 0.0001, 0.0001, log = TRUE) + # prior

+ sum(dnorm(data$d, sigma * delta,

+ sigma, log = TRUE)) # likelihood

8The complete code (including the JAGS models and the code for H0) can be found in the
supplemental material and also on the Open Science Framework: https://osf.io/3yc8q/.

9This heuristic assumes that the model does not include other random quantities that are
generated during sampling, such as posterior predictives.
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+ return(out)

+ }

The final step before we can compute the log marginal likelihoods is to specify
named vectors with the parameter bounds:

R> lb_H1 <- rep(-Inf, 2)

R> ub_H1 <- rep(Inf, 2)

R> names(lb_H1) <- names(ub_H1) <- c("delta", "inv_sigma2")

R> lb_H1[["inv_sigma2"]] <- 0

The log marginal likelihood for H1 can then be obtained by calling the
bridge_sampler function as follows:

R> library("bridgesampling")

R> set.seed(12345)

R> bridge_H1 <- bridge_sampler(

+ samples = jags_H1,

+ log_posterior = log_posterior_H1,

+ data = list(d = d, n = n, r = 1 / sqrt(2)),

+ lb = lb_H1,

+ ub = ub_H1

+ )

We obtain:

R> print(bridge_H1)

Bridge sampling estimate of the log marginal likelihood: -27.17103

Estimate obtained in 5 iteration(s) via method "normal".

Note that by default, the "normal" bridge sampling method is used.
Next, we can use the error_measures function to obtain an approximate per-

centage error of the estimate:

R> error_measures(bridge_H1)$percentage

[1] "0.087%"

The small approximate percentage error indicates that the marginal likelihood has
been estimated reliably. As mentioned before, we can use the summary method to
obtain a convenient summary of the bridge sampling estimate and the estimation
error. We obtain:

R> summary(bridge_H1)

Bridge sampling log marginal likelihood estimate

(method = "normal", repetitions = 1):

-27.17103
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Error Measures:

Relative Mean-Squared Error: 7.564225e-07

Coefficient of Variation: 0.0008697255

Percentage Error: 0.087%

Note:

All error measures are approximate.

After having computed the log marginal likelihood estimate for H0 in a similar
fashion, we can compute the Bayes factor for H1 over H0 using the bf function:

R> bf(bridge_H1, bridge_H0)

Estimated Bayes factor in favor of bridge_H1 over bridge_H0: 17.26001

Hence, the observed data are about 17 times more likely under H1 (which assigns
the standardized effect size δ a zero-centered Cauchy prior with scale r = 1/

√
2)

than under H0 (which fixes δ to zero). This is strong evidence for a difference in
effectiveness between the two drugs (Jeffreys, 1939, Appendix I). The estimated
Bayes factor closely matches the Bayes factor obtained with the BayesFactor pack-
age (i.e., BF10 = 17.259).

6.4 A “Black Box” Stan Interface

The previous section demonstrated how the bridgesampling package can be used to
estimate the marginal likelihood for models coded in JAGS. For custom samplers,
the steps needed to compute the marginal likelihood are the same. What is re-
quired is (a) an object with posterior samples; (b) a function that computes the log
of the unnormalized posterior density; (c) the data; and (d) parameter bounds. A
crucial step is the specification of the unnormalized log posterior density function.
For applied researchers, this step may be challenging and error-prone, whereas
for experienced statisticians it might be tedious and cumbersome, especially for
complex models with a hierarchical structure.

In order to facilitate the computation of the marginal likelihood even further,
the bridgesampling package contains an interface to the generic sampling software
Stan (Carpenter et al., 2017). Assisted by the rstan package (Stan Development
Team, 2016), this interface allows users to skip steps (b)-(d) above. Specifically,
users who fit their models in Stan (in a way that retains the constants, as is detailed
below) can obtain an estimate of the marginal likelihood by simply passing the
stanfit object to the bridge_sampler function.

The implementation of this “black box” functionality profited from the fact
that, just as the bridgesampling package, Stan’s No-U-Turn sampler internally
operates on unconstrained parameters (Hoffman & Gelman, 2014; Stan Devel-
opment Team, 2017). The rstan package provides access to these unconstrained
parameters and the corresponding log of the unnormalized posterior density. This
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means that users can fit models with parameter types that have more complicated
constraints than those currently built into bridgesampling (e.g., covariance/corre-
lation matrices) without having to hand-code the appropriate transformations.

As mentioned above, in order to use the bridgesampling package in combi-
nation with Stan the models need to be implemented in a way that retains the
constants. This can be achieved relatively easily: instead of writing, for instance,
y ∼ normal(mu, sigma) or y ∼ bernoulli(theta), one needs to write

target += normal_lpdf(y | mu, sigma);

and

target += bernoulli_lpmf(y | theta);

That is, one starts with the fixed expression target += which is then followed
by the name of the distribution (e.g., normal). The name of the distribution is
followed by _lpdf for continuous distributions and _lpmf for discrete distributions.
Finally, in parentheses, there is the variable that was to the left of the “∼” sign
(here, y), then a “|” sign, and finally the arguments of the distribution. This
achieves that the user specifies the log target density (in this case, the log of the
unnormalized posterior density) in a way that retains the constants of the involved
distributions.

Note that in case the distributions are truncated, the user needs to code the
correct renormalization. For instance, a normal distribution with upper truncation
at upper is implemented as follows

target += normal_lpdf(y | mu, sigma) -

normal_lcdf(upper | mu, sigma);

where the function normal_lcdf yields the log of the cumulative distribution
function (cdf) of the normal distribution. Likewise, a normal distribution with
lower truncation at lower is obtained as

target += normal_lpdf(y | mu, sigma) -

normal_lccdf(lower | mu, sigma);

where normal lccdf yields the log of the complementary cumulative distribution
function (ccdf) of the normal distribution (i.e., the log of one minus the cumulative
distribution function of the normal distribution). A normal distribution with lower
truncation point lower and upper truncation point upper can be implemented as
follows:

target += normal_lpdf(y | mu, sigma) -

log_diff_exp(normal_lcdf(upper | mu, sigma),

normal_lcdf(lower | mu, sigma));

where log_diff_exp(a, b) is a numerically more stable version of the operation
log (exp (a)− exp (b)). Note that when implementing a truncated distribution, it
is of course also important to give the variable of interest the correct bounds. For
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instance, for the last example where y has a lower truncation at lower and an
upper truncation at upper the variable y should be declared as10

real<lower = lower, upper = upper> y;

For more details about how to implement truncated distributions in Stan we refer
the user to the Stan manual (Stan Development Team, 2017, section 5.3, “Trun-
cated Distributions”).

In sum, the bridgesampling package enables users to obtain an estimate of
the marginal likelihood for any Stan model (programmed to retain the constants)
simply by passing the stanfit object to the bridge_sampler function. Next we
demonstrate this functionality using two prototypical examples in Bayesian model
selection.

6.4.1 Stan Example 1: Bayesian GLMM

The first example features a generalized linear mixed model (GLMM) applied to
the turtles data set (Janzen, Tucker, & Paukstis, 2000).11 This data set is included
in the bridgesampling package and contains information about 244 newborn turtles
from 31 different clutches. For each turtle, the data set includes information
about survival status (0 = died, 1 = survived), birth weight in grams, and clutch
(family) membership (indicated by a number between one and 31). Figure 6.4
displays a scatterplot of clutch membership and birth weight. The clutches have
been ordered according to mean birth weight. Dots indicate turtles who survived
and red crosses indicate turtles who died. This data set has been analyzed in
the context of Bayesian model selection before, allowing us to compare the results
from the bridgesampling package to the results reported in the literature (e.g.,
Overstall & Forster, 2010; Sinharay & Stern, 2005).

Here we focus on the model comparison that was conducted in Sinharay and
Stern (2005). The data set was analyzed using a probit regression model of the
form:

yi ∼ B(Φ(α0 + α1xi + bclutchi)), i = 1, 2, . . . , N

bj ∼ N (0, σ2), j = 1, 2, . . . , C,
(6.11)

where yi denotes the survival status of the i-th turtle (i.e., 0 = died, 1 = survived),
xi denotes the birth weight (in grams) of the i-th turtle, clutchi ∈ {1, 2, . . . , C}, i =
1, 2, . . . , N , indicates the clutch to which the i-th turtle belongs, C denotes the
number of clutches, and bclutchi denotes the random effect for the clutch to which
the i-th turtle belongs. Furthermore, Φ(·) denotes the cumulative distribution
function (cdf) of the normal distribution. Sinharay and Stern (2005) investigated

10Note that we assumed that y is a scalar. In general, y could also be declared as a vector or
an array in Stan. In this case, the term that is subtracted for renormalization would need to be
multiplied by the number of elements of y. For example, for the case of an upper truncation and
a vector y of length k the code would need to be changed to: target += normal lpdf(y | mu,

sigma) - k * normal lcdf(upper | mu, sigma); For another example, see the code for “Stan
Example 2”.

11Data were obtained from Overstall and Forster (2010) and made available in the bridgesam-
pling package with permission from the original authors.
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Figure 6.4: Data for 244 newborn turtles (Janzen et al., 2000). Birth weight
is plotted against clutch membership. The clutches have been ordered ac-
cording to their mean birth weight. Dots indicate turtles who survived and
red crosses indicate turtles who died. Figure inspired by Sinharay and Stern
(2005). Figure available at https://tinyurl.com/yagfxrbw under CC license
https://creativecommons.org/licenses/by/2.0/.

the question whether there is an effect of clutch membership, that is, they tested
the null hypothesis H0 : σ2 = 0. The following priors where assigned to the model
parameters:

α0 ∼ N (0, 10),

α1 ∼ N (0, 10),

p(σ2) =
(
1 + σ2

)−2
.

(6.12)

Sinharay and Stern (2005) computed the Bayes factor in favor of the null hypoth-

esis H0 : σ2 = 0 versus the alternative hypothesis H1 : p(σ2) =
(
1 + σ2

)−2
using

different methods and they reported a “true” Bayes factor of BF01 = 1.273 (based
on extensive numerical integration). Here we examine the extent to which we can
reproduce the Bayes factor using the bridgesampling package.

After having implemented the Stan models as character strings H0 code and
H1 code, the next step is to run Stan and obtain the posterior samples:12

12The complete code can be found in the supplemental material, on the Open Science Frame-
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R> library("bridgesampling")

R> library("rstan")

R> data("turtles")

R> set.seed(1)

R> stanfit_H0 <- stan(model_code = H0_code,

+ data = list(y = turtles$y,

+ x = turtles$x, N = nrow(turtles)),

+ iter = 15500, warmup = 500,

+ chains = 4, seed = 1)

R> stanfit_H1 <- stan(model_code = H1_code,

+ data = list(y = turtles$y,

+ x = turtles$x, N = nrow(turtles),

+ C = max(turtles$clutch),

+ clutch = turtles$clutch),

+ iter = 15500, warmup = 500,

+ chains = 4, seed = 1)

With these Stan objects in hand, estimates of the log marginal likelihoods are
obtained by simply passing the objects to the bridge_sampler function:

R> set.seed(1)

R> bridge_H0 <- bridge_sampler(stanfit_H0)

R> bridge_H1 <- bridge_sampler(stanfit_H1)

The Bayes factor in favor of H0 over H1 can then be obtained as follows:

R> bf(bridge_H0, bridge_H1)

Estimated Bayes factor in favor of bridge_H0 over bridge_H1: 1.27151

This value is close to that of 1.273 reported in Sinharay and Stern (2005). The data
are only slightly more likely under H0 than under H1, suggesting that the data do
not warrant strong claims about whether or not clutch membership affects survival.
The precision of the estimates for the marginal likelihoods can be obtained as
follows:

R> error_measures(bridge_H0)$percentage

[1] "0.00972%"

R> error_measures(bridge_H1)$percentage

[1] "0.348%"

These error percentages indicate that both marginal likelihoods have been es-
timated accurately, but – as expected – the marginal likelihood for the more
complicated model with random effects (i.e., H1) has the larger estimation error.

work (https://osf.io/3yc8q/), and is also available at ?turtles. Note that the results are
dependent on the compiler and the optimization settings. Thus, even with identical seeds results
can differ slightly from the ones reported here.
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6.4.2 Stan Example 2: Bayesian Factor Analysis

The second example concerns Bayesian factor analysis. In particular, we determine
the number of relevant latent factors by implementing the Bayesian factor analysis
model proposed by Lopes and West (2004). The model assumes that there are
t, t = 1, 2, . . . , T , observations on each of m variables. That is, each observation
yt is an m-dimensional vector. The k-factor model – where k denotes the number
of factors – relates each of the T observations yt to a latent k-dimensional vector
ft which contains for observation t the values on the latent factors, as follows:13

yt | ft ∼ Nm (βft,Σ)

ft ∼ Nk (0k, Ik) ,
(6.13)

where β denotes the m × k factor loadings matrix14, Σ = diag
(
σ2

1 , σ
2
2 , . . . , σ

2
m

)
denotes the m × m diagonal matrix with residual variances, 0k denotes a k-
dimensional vector with zeros, and Ik denotes the k × k identity matrix. Hence,
conditional on the latent factors, the observations on the m variables are assumed
to be uncorrelated with each other. Marginally, however, the observations are
usually not uncorrelated and they are distributed as

yt ∼ Nm (0m,Ω) , (6.14)

where Ω = ββ> + Σ.
Here we reanalyze a data set that contains the changes in monthly international

exchange rates for pounds sterling from January 1975 to December 1986 (West &
Harrison, 1997, pp. 612–615). Currencies tracked are US Dollar (US), Canadian
Dollar (CAN), Japanese Yen (JAP), French Franc (FRA), Italian Lira (ITA), and
the (West) German Mark (GER). Figure 6.5 displays the data.15 Using different
computational methods, including bridge sampling, Lopes and West (2004) esti-
mated the marginal likelihoods and posterior model probabilities for a factor model
with one, two, and three factors. As before, this allows us to compare the results
from the bridgesampling package to the results reported in the literature. To iden-
tify the model, the factor loading matrix β is constrained to be lower-triangular
(Lopes & West, 2004). The diagonal elements of β are constrained to be positive
by assigning them standard half-normal priors with lower truncation point zero:
βjj ∼ N (0, 1)T (0,), j = 1, 2, . . . , k, and the lower-diagonal elements are assigned
standard normal priors. The residual variances are assigned inverse-gamma priors
of the form σ2

i ∼ Inverse-Gamma(ν/2, νs2/2), i = 1, 2, . . . ,m, where ν = 2.2 and
νs2 = 0.1 (for details, see Lopes & West, 2004).

The first step in our reanalysis is to specify the Stan model as the character
string model code. We can then fit the three models corresponding to k = 1,

13Note that the model assumes that the observations are zero-centered.
14We use the original notation by Lopes and West (2004) who denoted the factor loadings

matrix with a lower-case letter. In the remainder of the chapter, matrices are denoted by upper-
case letters.

15Each series has been standardized with respect to its sample mean and standard deviation.
These standardized data are included in the bridgesampling package.

160



6.4. A “Black Box” Stan Interface

1975 1978 1981 1984 1987

-4

-2

0

2

4

Year

E
x
c
h
a
n
g
e
 R

a
te

 C
h
a
n
g
e
s US Dollar

1975 1978 1981 1984 1987

-4

-2

0

2

4

Year

E
x
c
h
a
n
g
e
 R

a
te

 C
h
a
n
g
e
s Canadian Dollar

1975 1978 1981 1984 1987

-4

-2

0

2

4

Year

E
x
c
h
a
n
g
e
 R

a
te

 C
h
a
n
g
e
s Yen

1975 1978 1981 1984 1987

-4

-2

0

2

4

Year

E
x
c
h
a
n
g
e
 R

a
te

 C
h
a
n
g
e
s Franc

1975 1978 1981 1984 1987

-4

-2

0

2

4

Year

E
x
c
h
a
n
g
e
 R

a
te

 C
h
a
n
g
e
s Lira

1975 1978 1981 1984 1987

-4

-2

0

2

4

Year

E
x
c
h
a
n
g
e
 R

a
te

 C
h
a
n
g
e
s Mark

Figure 6.5: Changes in monthly international exchange rates for pounds ster-
ling from January 1975 to December 1986 (West & Harrison, 1997, pp. 612–
615). Currencies tracked are US Dollar (US), Canadian Dollar (CAN), Japanese
Yen (JAP), French Franc (FRA), Italian Lira (ITA), and the (West) German
Mark (GER). Each series has been standardized with respect to its sample mean
and standard deviation. Figure reproduced from Lopes and West (2004). Fig-
ure available at https://tinyurl.com/ybtdddyv under CC license https://

creativecommons.org/licenses/by/2.0/.

k = 2, and k = 3 latent factors and estimate the log marginal likelihoods using
bridgesampling as follows:16

16The complete code can be found in the supplemental material, on the Open Science Frame-
work (https://osf.io/3yc8q/), and is also available at ?ier. Note that we specify initial values

161

https://tinyurl.com/ybtdddyv
https://creativecommons.org/licenses/by/2.0/
https://creativecommons.org/licenses/by/2.0/
https://osf.io/3yc8q/


6. bridgesampling: An R Package for Estimating Normalizing
Constants

R> library("rstan")

R> library("bridgesampling")

R> data("ier")

R> cores <- 4

R> options(mc.cores = cores) # for parallel MCMC chains

R> model <- stan_model(model_code = model_code) # compile model

R> set.seed(1)

R> stanfit <- bridge <- vector("list", 3)

R> for (k in 1:3) {

+ stanfit[[k]] <- sampling(model,

+ data = list(Y = ier, T = nrow(ier),

+ m = ncol(ier), k = k),

+ iter = 11000, warmup = 1000, chains = 4,

+ init = init_fun(nchains = 4, k = k,

+ m = ncol(ier)),

+ cores = cores, seed = 1)

+ bridge[[k]] <- bridge_sampler(stanfit[[k]], method = "warp3",

+ repetitions = 10, cores = cores)

+ }

Note that in this example, we use the "warp3" method instead of the "normal"

method. Furthermore, since the error_measures function cannot be used when
the estimate has been obtained using method = "warp3" with repetitions = 1,
we set repetitions = 10 to obtain an empirical estimate of the estimation uncer-
tainty (conditional on the posterior samples). We also select parallel computation
by setting cores = 4. The summary method provides a convenient overview of
the estimate and the estimation uncertainty. For instance, for the 2-factor model,
we obtain as output:

R> summary(bridge[[2]])

Bridge sampling log marginal likelihood estimate

(method = "warp3", repetitions = 10):

-903.4522

Error Measures:

Min: -903.4565

Max: -903.4481

Interquartile Range: 0.002682305

using a custom init fun function. This function may need to be changed for different applica-
tions. Furthermore, it is strongly advised to check that the chains have indeed converged since we
sometimes encountered convergence issues with this model. Note that the results are dependent
on the compiler and the optimization settings. Thus, even with identical seeds results can differ
slightly from the ones reported here.
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Table 6.2: Log marginal likelihood (logml) estimates for the k = 1, k = 2, and
k = 3 factor model. The rightmost column displays the values based on bridge
sampling reported in Lopes and West (2004).

Number of Factors Median Logml Min Logml Max Logml Lopes & West
k = 1 -1014.271 -1014.273 -1014.269 -1014.5
k = 2 -903.452 -903.457 -903.448 -903.7
k = 3 -905.271 -905.454 -905.138 −∞

Note:

All error measures are based on 10 estimates.

Table 6.2 displays for each of the three factor models (i.e., k = 1, k = 2, k = 3)
the median log marginal likelihood (logml) across repetitions, the minimum/max-
imum log marginal likelihood across repetitions, and the log marginal likelihood
value reported in Lopes and West (2004) based on bridge sampling. Note that
the negative infinity reported by Lopes and West (2004) might be due to a nu-
merical problem. For the 1-factor model and the 2-factor model, the log marginal
likelihoods obtained via bridgesampling are very similar to the ones reported in
Lopes and West (2004). Furthermore, the narrow range of the estimates indicates
that the estimation uncertainty is small (conditional on the posterior samples, as
described above).

To examine the support for the three different models (i.e., different numbers
of latent factors), we can use the post_prob function to compute posterior model
probabilities. By default, the function assumes that all models are equally likely
a priori; this can be adjusted using the prior_prob argument. Furthermore, the
model_names argument can optionally be used to provide names for the models.
Here we use the default of equal prior model probabilities and we obtain:

R> post_prob(bridge[[1]], bridge[[2]], bridge[[3]],

+ model_names = c("k = 1", "k = 2", "k = 3"))

k = 1 k = 2 k = 3

[1,] 6.278942e-49 0.8435919 0.1564081

[2,] 6.309963e-49 0.8491811 0.1508189

[3,] 6.373407e-49 0.8554668 0.1445332

[4,] 6.511718e-49 0.8739641 0.1260359

[5,] 6.582895e-49 0.8805172 0.1194828

[6,] 6.384273e-49 0.8596401 0.1403599

[7,] 6.469723e-49 0.8736989 0.1263011

[8,] 6.403270e-49 0.8616183 0.1383817

[9,] 6.426132e-49 0.8635907 0.1364093

[10,] 6.417346e-49 0.8592737 0.1407263

Each row presents the posterior model probabilities based on one repetition of the
bridge sampling procedure for all three models (i.e., each row sums to one). Hence,
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there are as many rows as repetitions.17 The 2-factor model receives most
support from the observed data. This is in line with Lopes and West (2004), who
also preferred the 2-factor model;18 based on the factor loadings, they proposed
the presence of a North American factor and a European Union factor.

6.5 Discussion

This chapter introduced bridgesampling, an R package for computing marginal
likelihoods, Bayes factors, posterior model probabilities, and normalizing constants
in general. We have demonstrated how researchers can use bridgesampling to con-
duct Bayesian model comparisons in a generic, user-friendly way: researchers need
only provide posterior samples, a function that computes the log of the unnormal-
ized posterior density, the data, and lower and upper bounds for the parameters.
Furthermore, we have described the Stan interface which makes it even easier to
obtain the marginal likelihood: researchers need only provide a stanfit object
and the bridgesampling package will automatically produce an estimate of the
log marginal likelihood.19 In other words, the bridgesampling package makes it
possible to obtain marginal likelihood estimates for any model that can be im-
plemented in Stan (in a way that retains the constants). By combining the Stan
state-of-the-art No-U-Turn sampler with bridgesampling, researchers are provided
with a general purpose, easy-to-use computational solution to the challenging task
of comparing complex Bayesian models.

As practical advice, we recommend to keep the following four points in mind
when using the bridgesampling package (see also Gronau, Heathcote, & Matzke,
2020; Gronau, Wagenmakers, et al., 2019). First, one should always check the
posterior samples carefully. A successful application of bridge sampling requires a
sufficient number of representative samples from the posterior distribution. Thus,
it is important to use efficient sampling algorithms and, in case of MCMC sam-
pling, it is crucial that researchers confirm that the chains have converged to the
joint posterior distribution. In addition, researchers need to make sure that the
model does not contain any discrete parameters since those are currently not sup-
ported. This may sound more restrictive than it is. In practice the solution is to
marginalize out the discrete parameters, something that is often possible. Note the
similarity to Stan which also deals with discrete parameters by marginalizing them
out (Stan Development Team, 2017, section 15). Furthermore, as demonstrated
in the examples, for conducting model comparisons based on bridge sampling, the

17Note that the output of the post prob function can be directly passed to the boxplot func-
tion which allows one to visualize the estimation uncertainty in the posterior model probabilities
across repetitions.

18Note that Lopes and West (2004) report a posterior model probability of 1 for the 2-factor
model. However, this estimate may be inflated by the infinite log marginal likelihood value for
the 3-factor model.

19Similar to the stanfit method, the bridge sampler method for nimble only requires the
fitted object (of class MCMC refClass) and extracts all necessary information for computing the
marginal likelihood (including the function for computing the unnormalized log posterior density
and the parameter bounds). However, at the time of writing we have not yet tested this method
in the same intensity as the stanfit method. We will add a vignette describing the nimble
interface in more detail when we have done so.
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number of posterior samples often needs to be an order of magnitude larger than
for estimation. This of course depends on a number of factors such as the com-
plexity of the model of interest, the number of posterior samples that one usually
uses for estimation, the posterior sampling algorithm used, and also the accuracy
of the marginal likelihood estimate that one desires to achieve.

Second, one should always assess the uncertainty of the bridge sampling esti-
mate. In case the uncertainty is deemed too high, one can attempt to achieve a
higher precision by increasing the number of posterior samples or, in case method

= "normal", by using the more sophisticated method = "warp3" instead (see the
third point below). Users of the bridgesampling package have different options
for assessing the estimation uncertainty. In our opinion, the “gold standard” may
be to obtain an empirical uncertainty assessment by repeating the bridge sam-
pling procedure multiple times, each time using a fresh set of posterior samples.
This approach allows users to assess the uncertainty directly for the quantity of
interest. For instance, if the focus is on computing a Bayes factor, users may re-
peat the following steps: (a) obtain posterior samples for both models, (b) use the
bridge sampler function to estimate the log marginal likelihoods, (c) compute the
Bayes factor using the bf function. The variability of these Bayes factor estimates
across repetitions then provides an assessment of the uncertainty. For certain
applications, this approach may be infeasible due to computational restrictions.
If this is the case and method = "normal", we recommend to use the approxi-
mate errors based on Frühwirth–Schnatter (2004) which are available through the
error measures function. As mentioned before, we have found these approximate
errors to work well for method = "normal", but not for method = "warp3" which
is the reason why they are not available for the latter method. Alternatively, one
can also assess the estimation uncertainty by setting the repetitions argument
to an integer larger than one. This provides an assessment of the estimation un-
certainty due to variability in the samples from the proposal distribution, but it
should be kept in mind that this does not take into account variability in the
posterior samples.

Third, one should consider whether using the more time-consuming Warp-III
method may be beneficial. The accuracy of the estimate is governed not only be
the number of samples, but also by the overlap between the posterior and the
proposal distribution (e.g., Meng & Schilling, 2002; Meng & Wong, 1996). The
bridgesampling package attempts to maximize this overlap by (a) focusing on one
marginal likelihood at a time which allows one to use a convenient proposal dis-
tribution which closely resembles the posterior distribution, (b) using a proposal
distribution which matches the mean vector and covariance matrix of the pos-
terior samples (i.e., method = "normal") or additionally also the skewness (i.e.,
method = "warp3"). Consequently, as mentioned before, method = "warp3" will
always be as precise or more precise than method = "normal"; however, it also
takes about twice as long. We have found that in many applications, method =

"normal" works well, however, in case the posterior is skewed (crucially, this refers
to the joint posterior of the quantities that have been transformed to the real line),
method = "warp3" may be the better choice. When in doubt, we believe that it
may be beneficial to also explore the Warp-III results – if this is computationally
feasible – to see how much (if any) improvement in precision is achieved by taking
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into account potential skewness. It should be kept in mind that, in case the poste-
rior distribution exhibits multiple modes, the overlap of the two distributions may
still be subject to improvement – even when using method = "warp3". The devel-
opment of efficient bridge sampling variants for these cases is subject to ongoing
research (e.g., Frühwirth–Schnatter, 2004; L. Wang & Meng, 2016).

Forth, users should carefully think about the choice of prior distribution. Even
though the bridgesampling package enables researchers to compute the marginal
likelihoods in an almost black-box manner, this does not imply that the user can
mindlessly exploit the package functionality to conduct Bayesian model compar-
isons. As is apparent from Equation 6.4, Bayesian model comparisons depend on
the choice of the parameter prior distribution. Crucially, the prior distribution
has a lasting influence on the results. Hence, meaningful Bayesian model compar-
isons require that researchers carefully consider their parameter prior distribution
(e.g., Lee & Vanpaemel, 2018), engage in sensitivity analyses, or use default prior
choices that have certain desirable properties such as model selection and infor-
mation consistency (e.g., Bayarri et al., 2012; Jeffreys, 1961; Ly et al., 2016b).20

Thus, the bridgesampling package removes the computational hurdle of obtain-
ing the marginal likelihood, thereby allowing researchers to spend more time and
effort on the specification of meaningful prior distributions.

It should also be kept in mind that there may be cases in which the bridge
sampling procedure may not be the ideal choice for conducting Bayesian model
comparisons. For instance, when the models are nested it might be faster and
easier to use the Savage-Dickey density ratio (Dickey & Lientz, 1970; Wagenmakers
et al., 2010). Another example is when the comparison of interest concerns a
very large model space, and a separate bridge sampling based computation of
marginal likelihoods may take too much time. In this scenario, Reversible Jump
MCMC (Green, 1995) may be more appropriate. The downside of Reversible
Jump MCMC is that it is usually problem-specific and cannot easily be applied in
a generic fashion to different nested and non-nested model comparison problems
(but see Gelling et al., 2017). The goal with the bridgesampling package, however,
was exactly that: to provide users with a generic way of computing marginal
likelihoods which can in principle be applied to any Bayesian model comparison
problem.

In the future, we hope that it may be possible to add bridgesampling support
for a number of R packages, such as the MCMCglmm package (Hadfield, 2010),
the JAGS interface of the mgcv package (Wood, 2016), the glmmBUGS package
(P. E. Brown & Zhou, 2018), or the blavaan21 package (Merkle & Rosseel, 2018)
so that users could conduct Bayesian model comparisons in a black box way sim-
ilar to the Stan interface. For packages that use themselves Stan for fitting the
models, adding bridgesampling support is relatively straightforward: the only po-
tential change that would have to be implemented is to make sure that the models

20Note that in the first example (i.e., the Bayesian t-test) we have used prior distributions
which lead to these desirable properties. However, in the second and third example, we simply
used the prior distributions that have been used in the literature so that we could compare our
results to the reported results.

21Note that the blavaan package already provides approximate marginal likelihoods for the
models that are obtained via a Laplace approximation.
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are coded such that all constants are retained (as explained in section 4). Once
this is achieved, computing the relevant quantities via bridgesampling works as
described in the Stan examples. For packages that do not use Stan to fit the
models, the main difficulty is specifying the unnormalized posterior density func-
tion and the parameter bounds in an automatized way. This is also the reason
why there is currently no black box interface to JAGS since, to the best of our
knowledge, specifying these quantities in an automatized way is not trivial. Nev-
ertheless, if this hurdle could be overcome, adding bridgesampling support would
be straightforward.

In sum, the bridgesampling package provides a generic, accurate, easy-to-
use, automatic, and fast way of computing marginal likelihoods and conducting
Bayesian model comparisons. With the computational challenge all but overcome,
researchers can spend more time and effort on addressing the conceptual challenge
that comes with Bayesian model comparisons: specifying prior distributions that
are either robust or meaningful.

Supplemental materials can be found at https://www.jstatsoft.org/article/
view/v092i10 and https://osf.io/3yc8q/.
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Chapter 7

Bayesian Mixture Modeling of
Significant P Values: A

Meta-Analytic Method to Estimate
the Degree of Contamination from

H0

Abstract

Publication bias and questionable research practices have long been
known to corrupt the published record. One method to assess the extent
of this corruption is to examine the meta-analytic collection of significant p
values, the so-called p-curve (Simonsohn, Nelson, & Simmons, 2014a). In-
spired by statistical research on false-discovery rates, we propose a Bayesian
mixture model analysis of the p-curve. Our mixture model assumes that
significant p values arise either from the null-hypothesis H0 (when their
distribution is uniform) or from the alternative hypothesis H1 (when their
distribution is accounted for by a simple parametric model). The mixture
model estimates the proportion of significant results that originate from H0,
but it also estimates the probability that each specific p value originates
from H0. We apply our model to two examples. The first concerns the set
of 587 significant p values for all t-tests published in the 2007 volumes of
Psychonomic Bulletin & Review and the Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition; the mixture model reveals that p
values higher than about .005 are more likely to stem from H0 than from

This chapter is published as Gronau, Q. F., Duizer, M., Bakker, M., & Wagenmakers, E.–J.
(2017). Bayesian mixture modeling of significant p values: A meta-analytic method to estimate
the degree of contamination from H0. Journal of Experimental Psychology: General, 146, 1223–
1233. doi: https://doi.org/10.1037/xge0000324. A preprint is available at: https://osf.io/

mysbp/
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H1. The second example concerns 159 significant p values from studies on
social priming and 130 from yoked control studies. The results from the
yoked controls confirm the findings from the first example, whereas the re-
sults from the social priming studies are difficult to interpret because they
are sensitive to the prior specification. To maximize accessibility, we provide
a web application that allows researchers to apply the mixture model to any
set of significant p values.

7.1 Introduction

Psychological science is experiencing a crisis of confidence (e.g., Pashler & Wagen-
makers, 2012). In response to this crisis, psychologists have offered new guidelines
for journals (e.g., Nosek et al., 2015), started large-scale replication initiatives
(e.g., Open Science Collaboration, 2015), promoted preregistration (e.g., Cham-
bers, 2013, 2015; Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit,
2012), suggested different statistical reporting practices (e.g., Eich, 2014), and de-
veloped novel statistical techniques (e.g., Francis, 2013; Guan & Vandekerckhove,
2016; Simonsohn et al., 2014a; van Assen, van Aert, & Wicherts, 2015).

Among the various newly developed statistical techniques, the p-curve proce-
dure is of special interest (Simonsohn et al., 2014a; Simonsohn, Nelson, & Sim-
mons, 2014b). This procedure considers a collection of significant p values and
asks whether their distribution contains “evidential value”. This question can be
answered because of the fact that, underH0, the distribution of significant p values
is uniform (e.g., Becker, 1991). Hence, if the observed distribution of significant
p values is relatively flat, the most likely explanation for the findings is publica-
tion bias (e.g., Rosenthal, 1979; Sterling, 1959; Sterling, Rosenbaum, & Weinkam,
1995). In addition, when most observed p values are near .05 this indicates that
the findings maybe have been the result of significance chasing (i.e., “p-hacking”;
John, Loewenstein, & Prelec, 2012; Simmons, Nelson, & Simonsohn, 2011; Simon-
sohn et al., 2014a). In the presence of a true effect, however, the distribution of p
values is right-skewed such that low p values occur more often than high p values.
The current p-curve analysis conducts a classical hypothesis test on the observed
p values and concludes that their distribution contains “evidential value” when it
is judged to be right-skewed.

The classical p-curve analysis is a promising tool to obtain an overall impres-
sion about the presence of true effects. Here we offer a novel and complementary
Bayesian analysis of the p-curve that approaches the problem from a slightly dif-
ferent angle. Similar to an analysis of false-discovery rates, our Bayesian method
assumes that the observed significant p values may have originated from H0 or H1.
The method then estimates the overall rate of contamination from H0; in addition,
the method estimates the probabilities that each specific p value originates from
H0. These estimates can help assess, on a continuous scale, the extent to which
an empirical phenomenon or a larger field is based on p values that are spurious.
Below we first outline the method and then apply it to two concrete examples.
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7.2 A Bayesian Mixture Model for Significant P Values

We depart from the assumption that the observed distribution of p values is com-
prised of two different kinds of p values: a set of p values that originates from
the null hypothesis H0 and a set of p values that originates from the alternative
hypothesis H1 representing true effects. Hence, the observed p value distribution
will be a mixture of these two kinds of p values; in practice, we do not know which
of the observed p values stem from H0 and which stem from H1.

However, using techniques from Bayesian mixture modeling (Frühwirth–
Schnatter, 2006), we can estimate (1) the overall “H0 assignment rate”, that is,
the proportion of p values that stem from H0; and (2) the probability that any
single p value originates from H0. The mixture model assumption states that the
observed p-curve is the result of a combination of two distributions: a uniform
distribution associated with H0 and a right-skewed distribution associated with
H1. Thus, the probability density function of the observed p value distribution
can be written as

f(pi) = φ fH0
(pi) + (1− φ) fH1

(pi), (7.1)

where pi denotes a specific observed p value, and φ ∈ [0, 1] is a mixing parameter
that reflects the estimated proportion of studies originating from H0 (i.e., “H0

assignment rate”). Values of φ near 1 indicate that the collection of studies are
heavily contaminated by H0.

7.2.1 The Generative Model

Figure 7.1 provides an illustration of the proposed mixture model for observed
p values. The assumed data-generating process is displayed from top to bottom.
Panel A shows that p values originating from H0 follow a uniform distribution.
In practice, we mostly observe significant p values and hence, our model focuses
on the part highlighted in blue, that is, p values smaller than .05. For statistical
convenience, we first probit-transform the p values (e.g., Efron, 2012; Tamhane
& Shi, 2009). As shown in panel B, the uniform distribution of p values under
H0 corresponds to a standard normal distribution of probit-transformed p values
(i.e., Φ−1(pi) | H0 ∼ N(0, 1)).

Panel C of Figure 7.1 shows that under H1, the distribution of p values is right-
skewed. However, the exact distribution of p values underH1 is more complex than
that underH0 as it depends on several factors such as sample size and the values of
population parameters that are relevant for the test statistic at hand (e.g., Becker,
1991). Furthermore, a given collection of observed p values will be comprised
of studies with different sample sizes, different test statistics, and, potentially,
different true effects; that is, there exists an unknown distribution of true effects
such that the collection of observed p values is inherently heterogeneous. We
therefore need to address the fact that the distribution of p values under H1 is
itself a combination of potentially many different distributions. In this chapter, we
use a simple parametric form for the probitized p values underH1, namely a normal

173



7. Bayesian Mixture Modeling of Significant P Values

D
a

ta
 G

e
n
e

ra
ti
n

g
 P

ro
c
e
s
s

0 .2 .4 .6 .8 1.05

P Values

H0

D
e

n
s
it
y

A

0 .2 .4 .6 .8 1.05

P Values

D
e

n
s
it
y

H1

C

N(0, 1)

-8 -6 2 4 6Φ
−1(0.05)

Probit-Trans. P Values

D
e

n
s
it
y

P
ro

b
it
-

T
ra

n
s
fo

rm

B

N(μ, σ
2)

-8 -6 2 4 6Φ
−1(0.05)

Probit-Trans. P Values

D
e

n
s
it
y

In
v
. P

ro
b

it-

T
ra

n
s
fo

rm

D

-8 -6 -4 2 4 6Φ
−1(0.05)

Probit-Trans. P Values

D
e

n
s
it
y

φ from H0 (1 − φ) from H1

E

0 .2 .4 .6 .8 1.05

Observed P Values

D
e

n
s
it
y

In
v
. 

P
ro

b
it
-

T
ra

n
s
fo

rm P
ro

b
it-

T
ra

n
s
fo

rm

F

In
fe

re
n

c
e

Figure 7.1: Illustration of the Bayesian mixture model for significant p values.
The assumed data-generating process is displayed from top to bottom. Under
H0, p values are uniformly distributed (A) which corresponds to a standard nor-
mal distribution of the probit-transformed p values (B). Under H1, the distribu-
tion of p values is right-skewed (C) which we model on the probit scale using
a normal distribution with unknown mean and standard deviation (D). The ob-
served mixture distribution is obtained by taking a proportion φ of p values from
H0, the proportion (1 − φ) from H1 (E), and then applying the inverse probit-
transformation (F). In practice, we start with the observed distribution of p values
(F) and infer the model parameters by using Bayes’ theorem to invert the genera-
tive model. Figure available at http://tinyurl.com/zkkxpz2 under CC license
https://creativecommons.org/licenses/by/2.0/.
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distribution with mean µ and standard deviation σ (i.e., Φ−1(pi) | H1 ∼ N(µ, σ2))
which is shown in panel D of Figure 7.1.1

The next step in the data-generating process is that, after having specified the
number of p values that we want to generate, we sample a proportion φ of probit-
transformed p values from H0 and a proportion (1 − φ) from H1. Combining
the two samples yields a generated distribution of probit-transformed p values
from the proposed mixture model. The final step is to apply the inverse probit-
transformation which results in a generated distribution of p values.

In sum, in order to generate synthetic data from our mixture model one needs
to determine the number of studies, the mixture proportion φ, and the parameters
of the normal distribution µ and σ under H1. In practical applications, we do not
know the parameters that govern the data-generating process. Instead, we only
have a distribution of observed p values in hand and from this information we wish
to infer quantities of interest. That is, instead of starting at the top of Figure 7.1
and working our way down (i.e., the data-generating perspective) we have to start
at the bottom and move up (i.e., the inferential perspective). This allows us to
decompose the observed p values into the ones that are likely to originate from
H0 and the ones who are likely to originate from H1.

7.2.2 Priors on the Model Parameters

In order to estimate the parameters of the mixture model we adopt a Bayesian
approach (Diebolt & Robert, 1994; Frühwirth–Schnatter, 2006; Lee & Wagenmak-
ers, 2013); this means that we specify our prior beliefs about the parameters of
interest in the form of prior distributions and then update these by means of the
observed data to yield posterior distributions. The posterior distributions reflect
our beliefs about the parameters of interest after having seen the data.

For the H0 assignment rate parameter φ, we use a uniform prior on the interval
[0, 1]. Furthermore, we need to specify priors for the mean and standard deviation
of the normal distribution for the probit-transformed p values under H1. For the
mean µ, we use a truncated normal prior µ ∼ N(0, 1)T (,0) (i.e., a folded standard
normal that allows only negative values of µ). The truncation is imposed to reflect
the fact that p values are expected to be smaller under H1 than under H0; the
prior mean and standard deviation were chosen for simplicity and because they
resulted in adequate performance across an extensive series of simulation studies.
For the standard deviation σ, we use a uniform prior on the interval σ ∈ (0, 1). The
bounds on these parameters impose reasonable constraints on H1; for instance,
values of σ greater than 1 make the implausible prediction that p values near 1
are more common under H1 than under H0.

As usual in Bayesian inference, the impact of the prior distributions lessens as
sample size grows. In general, we recommend that researchers explore the sensi-
tivity of the results to the prior choice for µ (for instance, by changing the prior
standard deviation from 1 to other plausible values). Researchers concerned about

1We also explored a non-parametric model which uses a flexible Bayesian procedure for
density estimation (i.e., a Dirichlet process mixture). Unfortunately, the non-parametric model
is harder to estimate and simulations suggest that it cannot easily be applied across sets of p
values with different characteristics.
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the performance of the model in repeated use may seek a Bayesian-frequentist
compromise and calibrate the prior such that, for the sample size of interest, the
mixture model yields good recovery of the contamination rate φ.

7.3 Estimating the Model and Interpreting the Results

In order to estimate the model we use Markov chain Monte Carlo (MCMC) tech-
niques implemented in the software program JAGS (Plummer, 2003) to draw sam-
ples from the posterior distributions of the model parameters (e.g., Gamerman &
Lopes, 2006; Robert & Casella, 1999). After obtaining the posterior samples, we
recommend the following three-step process.

Step 1: Confirm Convergence. Convergence can be confirmed visually
(i.e., when the different Markov chains intermix) and by inspecting the R̂ statistic
(Gelman & Rubin, 1992). Values of R̂ close to 1 indicate convergence, and values
larger than 1.1 are often regarded as an indication of insufficient convergence. If
the chains did not yet converge, it usually helps to increase the number of MCMC
samples. Once convergence has been established it is safe to continue to the next
step.

Step 2: Confirm Quality of Fit. Quality of fit can be assessed by plotting
the observed p value quantiles against the quantiles of p values predicted by the
model (i.e., a Q-Q plot). A perfect model fit results in a Q-Q plot that traces the
main diagonal. When the quality of fit has been confirmed it is safe to continue
to the next step.

Step 3: Interpretation of Results. The first quantity of interest is the over-
all H0 contamination rate φ; the uncertainty about this parameter is reflected in
a posterior distribution. This distribution can be summarized by a point (usually
the mean, median, or mode) and by an interval; for a comprehensive assessment
we recommend to inspect and report the entire posterior distribution. The second
quantity of interest is, for each observed p value separately, the probability that
it stems from H0 – this is a single number and not a distribution.

To maximize accessibility of our procedure, we have developed a web appli-
cation with an easy-to-use interface that allows researchers to apply the model
to a set of significant p values without having to master a probabilistic program-
ming language (https://qfgronau.shinyapps.io/bmmsp/). The supplemental
material provides a detailed explanation of how to use our app. Furthermore, the
supplemental material presents a set of simulation studies that highlight that the
model is able to accurately estimate the quantities of interest under a relatively
broad range of circumstances.2 To illustrate the procedure and to show which
conclusions can be drawn from the model output, we next present two example
applications from the published literature.
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Figure 7.2: Application of the Bayesian mixture model to Example 1: 587 t-test
p values. Panel A: distribution of observed p values; panel B: traceplot of the
MCMC chains for the H0 assignment rate; panel C: Q-Q plot for comparing the
observed p value distribution to the posterior predictive distribution; panel D:
posterior distribution of the H0 assignment rate; panel E: individual H0 assign-
ment probabilities. Figure available at http://tinyurl.com/h8yxn5h under CC
license https://creativecommons.org/licenses/by/2.0/.
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7.4 Example 1: 587 T -Test P Values

For our first example we apply the model to a set of p values from Wetzels et
al. (2011); these authors collected the results from all 855 t-tests reported in the
articles from the 2007 issues of Psychonomic Bulletin & Review and Journal of
Experimental Psychology: Learning, Memory, and Cognition. Here we focus on
the subset of 587 p values that were significant.3 It should be noted that these
significant p values are inherently heterogeneous: they come from a wide range of
empirical fields, and they were not screened for relevance. Thus, it is important to
keep in mind that many of these p values may correspond to manipulation checks,
and only a subset corresponds to the test of the key research hypothesis. That is,
this is an undifferentiated set of p values which has not been selected in accordance
with the guidelines proposed by Simonsohn et al. (2014a). Nevertheless, because
of their heterogeneous nature, this set of p values provides a good test case for our
model.

The results are presented in Figure 7.2. Panel A of Figure 7.2 shows the
distribution of the 587 significant p values. The same distribution was inspected
by Johnson (2013), who argued that the significant p values

“...presumably arise from two types of experiments: experiments
in which a true effect was present and the alternative hypothesis was
true, and experiments in which there was no effect present and the
null hypothesis was true. For the latter experiments, the nominal
distribution of P values is uniformly distributed on the range (0.0, 0.05)
(...) The P values displayed in this plot thus represent a mixture of
a uniform distribution and some other distribution. Even without
resorting to complicated statistical methods to fit this mixture, the
appearance of this histogram suggests that many, if not most, of the
P values falling above 0.01 are approximately uniformly distributed.
That is, most of the significant P values that fell in the range (0.01−
0.05) probably represent P values that were computed from data in
which the null hypothesis of no effect was true.”

Nevertheless, the overall distribution of p values is clearly right-skewed, and many
p values are relatively low. The Markov chain Monte Carlo chains for the H0

assignment rate φ are shown in panel B and support the claim that the samples
come from the posterior distribution. This is indicated by nicely intermixing chains
and an R̂ value of 1.00.4

Panel C of Figure 7.2 shows the model fit by means of a Q-Q plot. The Q-
Q plot allows a comparison between the distribution of observed p values and
the distribution of posterior predictive p values, that is, the distribution of p
values predicted by the model. Identical distributions yield a linear Q-Q plot

2The supplemental material, the example data sets that will be analyzed in the next sections,
and all code that we used is available on the Open Science Framework: https://osf.io/mysbp/.

3We thank Valen Johnson for providing us with the 587 significant p values.
4This panel also shows the effective samples size which is an estimate of the number of inde-

pendent samples obtained by applying a method (i.e., MCMC) that, by construction, produces
samples that are not independent (i.e., autocorrelated).
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with a slope of one. The black dots visualize the fit obtained by averaging across
posterior samples, whereas the grey dots indicate the uncertainty in the Q-Q plot
by displaying the results from individual draws from the posterior distribution.
Although the Q-Q plot based on the averaged predicted distribution is not perfect,
the uncertainty band suggests that the fit may be sufficiently acceptable to proceed
to the interpretation stage.

Panel D of Figure 7.2 shows the posterior distribution of φ, the H0 assignment
rate. This contamination rate is estimated to be near 0.4, and a Bayesian 95%
highest density interval5 ranges from 0.343 to 0.464, indicating a relatively high
precision.

In addition to the estimation of the overall contamination rate, the Bayesian
mixture model also allows us to estimate the probability that each individual p
value is assigned to H0. These estimates are shown in panel E of Figure 7.2.
The results indicate that for 41% of the observed p values the H0 assignment
probability is larger than .5; this means that, starting from a position of equipoise,
for 41% of the observed significant p values it is more likely that they stem from
H0 than from H1. Similar to the qualitative conclusion drawn by Johnson (2013),
the results suggest that p values between 0.01− 0.05 are more likely to stem from
H0 than H1. Specifically, p values larger than about .005 are associated with a
higher than 50% H0 assignment rate.

To assess the robustness of the results to the prior choice for µ, we examined
how the results change as a function of the standard deviation for the truncated
normal prior distribution for µ; in one analysis, we doubled the standard deviation
to a value of 2; in another analysis, we halved the standard deviation to a value
of 0.5. As detailed in the supplemental material, the results are robust to these
changes.

7.5 Example 2: Social Priming Studies and Yoked
Controls

For our second example we apply the model to a set of p values from social priming
studies (e.g., Kahneman, 2011) and a matched set of p values from yoked control
studies. To obtain the p values for the social priming studies we collected a large
set of articles published by prominent researchers in the field of social priming.
We used this selection method in order to preempt the critique that our results are
biased by the inclusion of low-quality studies conducted, for instance, by novices or
skeptics from unrelated fields. We followed the p-curve instructions from Simon-
sohn et al. (2014a) and distilled a single significant p value from each experiment.
Every p value was evaluated by three raters; differences of opinion were rare and
readily resolved by discussion. We believe the multi-rater method is advantageous
as it furthers the use of a consistent selection policy and reduces the occurrence of
erroneous selections. For our selection of p values, we did not record the interaction
between the three raters; however, for future applications, it may be beneficial to
document the selection process itself. An online table (https://osf.io/344zz/)

5A Bayesian 95% highest density interval is the shortest interval that captures 95% of the
posterior mass.
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Figure 7.3: Application of the Bayesian mixture model to Example 2: social
priming studies and yoked controls. First row: distributions of observed p val-
ues for the social priming studies (A) and the control studies (B); second row:
traceplots of the MCMC chains for the H0 assignment rate for the social prim-
ing studies (C) and control studies (D); third row: Q-Q plots for comparing
the observed p value distribution to the posterior predictive distribution for
the social priming studies (E) and control studies (F); panel G: posterior dis-
tributions of the H0 assignment rate; panel H: individual H0 assignment prob-
abilities. Figure available at http://tinyurl.com/gqj7c9e under CC license
https://creativecommons.org/licenses/by/2.0/.
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identifies the selected p values by reporting the article, the experiment, the test
statistic, and the p value. This information unambiguously identifies which p
value we selected, making our analysis transparent and reproducible. Note that
although we followed the guidelines by Simonsohn et al., we did not construct the
p value disclosure table exactly in the form described in Simonsohn et al. (2014a).
Although adding the specific reasons for the inclusion of each individual p value
does not alter the statistical results in any way, we acknowledge that it is generally
advisable to follow the Simonsohn et al. guidelines to the letter.

In addition, we sought to construct an appropriate comparison set of p values
as a backdrop against which to evaluate the results for the social priming stud-
ies. This comparison set was constructed by selecting, for each social priming
study under consideration, a yoked control study – that is, a study on a different
topic and published in the same journal issue immediately after the social prim-
ing study. For each experiment in the yoked control studies, we distilled a single
significant p value in the same manner as was done for the social priming studies.
This procedure yielded a total of 159 significant social priming p values and 130
significant yoked control p values. Further details regarding the studies that were
included are available at https://osf.io/344zz/ (social priming studies) and
https://osf.io/4xgdz/ (control studies).

Figure 7.3 summarizes the results from applying the Bayesian mixture model.
Panel A shows the distribution of p values for the social priming experiments, panel
B the distribution of p values for the yoked controls. Although both distributions
are right-skewed, the extent of this skew is much less pronounced than for the
t-test p values from Example 1. Furthermore, the distribution of p values for the
social priming studies shows less skew than that for the yoked control studies.
Both distributions look relatively flat from .01 to .05.

The Markov chain Monte Carlo chains of the H0 assignment rate φ for the
social priming p values are shown in panel C of the plot and support the claim that
the samples come from the posterior distribution, indicated by nicely intermixing
chains and an R̂ value of 1.03. The Markov chain Monte Carlo chains of the H0

assignment rate φ for the control p values are shown in panel D and suggest that
these samples come from the posterior distribution as well (R̂ = 1.00).

Panel E (social priming studies) and panel F (control studies) display the
model fit by means of a Q-Q plot. As for the t-test example, the black dots
provide a comparison of the observed p value distribution to the averaged predicted
distribution and the grey dots represent the uncertainty. For both sets of p values
the grey dots cover the dotted line that corresponds to a perfect fit, and hence we
tentatively proceed to the stage of interpreting the parameter estimates.

Panel G of Figure 7.3 displays the posterior distributions of the H0 assignment
rate φ. For the p values from the social priming studies, the degree of H0 con-
tamination appears to be substantial; the H0 assignment rate has a 95% highest
density interval that ranges from 0.475 to 0.880; for the yoked control p values,
this interval ranges from 0.395 to 0.643.

Panel H of Figure 7.3 shows the H0 assignment probabilities for the individual
p values. These probabilities exceed 0.5 for 81% of the social priming p values
and for 58% of the yoked control p values. Note that for the subset of p values
between 0.01−0.05, the control studies have H0 assignment rates that are actually
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somewhat higher than those for the social priming studies. Nevertheless, for both
control studies and social priming studies, the H0 assignment probabilities for p
values between 0.01−0.05 are high. As a side note, it is important to keep in mind
that a high H0 contamination rate does not necessarily imply that the underlying
theories are false (see also Simonsohn et al., 2014a); however, it does suggest
the need to change the experimental design and perhaps even the experimental
paradigm.

To assess the robustness of the results to the prior choice for µ, we conducted
the same robustness check as in the previous example and examined how the
results change as a function of the standard deviation for the truncated normal
prior distribution for µ; in one analysis, we doubled the standard deviation to a
value of 2; in another analysis, we halved the standard deviation to a value of
0.5. Results shown in the appendix suggest that for this example, a subset of the
results is sensitive to the prior choice for the µ parameter.

A visual inspection of the plots in the appendix suggests that the lack of
robustness is particularly pronounced for the social priming studies. For these
studies, the default prior setting had resulted in a 95% highest density interval
for the H0 assignment rate parameter φ which ranged from 0.475 to 0.880. When
the prior standard deviation for µ is halved, the interval widens and ranges from
0.103 to 0.753; when it is doubled, the interval ranges from 0.564 to 0.906. For the
yoked control studies, the changes are much less pronounced. For these studies,
the default interval ranged from 0.395 to 0.643; when the prior standard deviation
for µ is halved, the interval ranges from 0.319 to 0.585; when the prior standard
deviation for µ is doubled, the interval ranges from 0.416 to 0.656.

In sum, for the yoked control studies the results are comparable to those ob-
tained in the first example: the contamination rate is in the 40%-60% range, and
significant p values larger than about .005 are more likely to be assigned to H0

than to H1. For the social priming studies, the pattern is less clear. For two sets
of prior distributions on µ (i.e., the default and the one that doubles the standard
deviation) the results suggest that the contamination rate is about 75%. However,
when the standard deviation on µ is halved, the posterior distribution on the con-
tamination rate becomes very wide, and this lack of certainty is expressed though
a H0 assignment curve that is much less steep. In other words, the results for
the social priming studies should be interpreted with extreme caution, and this
underscores the importance of a sensitivity analysis. This naturally brings us to
a discussion of the mixture model’s limitations and challenges.

7.6 Challenges and Limitations

Although the mixture model is able to draw intuitive conclusions that are beyond
the reach of existing methods, the procedure does come with three important
caveats. First, estimating the parameters of the mixture model is an inherently
difficult statistical problem. Because we are considering only the significant p
values, all of the statistical action is in the tail of the distribution. The competing
models H0 and H1 make relatively similar predictions with respect to this tail,
and consequently a relatively large number of p values are required for the mixture
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model to provide informative results.
It follows that one way to facilitate parameter estimation is to consider the

complete set of p values and not just the significant ones. Until recently, the
ubiquity of publication bias prevented this approach from yielding useful data;
however, results from Registered Reports (Chambers, 2013; Chambers, Dienes,
McIntosh, Rotshtein, & Willmes, 2015) and Registered Replication Reports (e.g.,
Alogna et al., 2014; Cheung et al., 2016; Eerland et al., 2016; Wagenmakers, Beek,
et al., 2016) are free from publication bias and unaffected by cherry-picking. In
the future, data from these initiatives could be reanalyzed with a mixture model
that considers all of the reported p values.

A second caveat is that, even when a reasonable number of p values are avail-
able, a change in the parameter priors might bring about a noticeably different
result. We therefore recommend that researchers examine the robustness of the
conclusions through a sensitivity analysis where the model is applied using various
different standard deviations for the prior on the µ parameter. In our experience,
the results are even more strongly affected by the choice of the prior for the stan-
dard deviation σ. In particular, the model that restricts σ to range between zero
and one can yield results different from the model that allows σ to span the en-
tire positive part of the real line. However, in our opinion, the constraint that
σ ∈ (0, 1) is reasonable and desirable; without this restriction, the model makes
the implausible prediction that p values near 1 are more likely under H1 than un-
der H0. A complementary approach to choosing the prior distributions (especially
for µ) is to use simulation studies to calibrate the priors for the sample size at
hand, so as to achieve good recovery of the contamination rate.

The final caveat is that our approach uses a simple parametric form to account
for the distribution of p values that stem from H1. Such simplicity comes with
the risk of model-misspecification. Compared to a non-parametric model version
that we explored in earlier work, the simple parametric version has the advantage
that the model is easier to estimate; however, for specific sets of p values, the
simple parametric distribution might not be able to accurately account for the
complex distribution of p values originating from H1. This model-misspecification
may be revealed by a non-acceptable model fit as reflected, for instance, by large
deviations from the main diagonal in the Q-Q plot.

7.7 Concluding Comments

For studies that feature only a limited number of experiments, currently the sole
arbiter of success is whether – for each experiment – the p value is lower than
.05. This unfortunate state of affairs encourages publication bias, selective report-
ing, and questionable research practices (e.g., Barber, 1976). When studies are
combined, however, the shape of the distribution of significant p values conveys
additional information that allows one to estimate the degree of the bias. To this
aim, a classical “p-curve” analysis method was recently proposed by Simonsohn
et al. (2014a). Here we presented an alternative Bayesian analysis of the p-curve.
Our Bayesian mixture model was inspired by a suggestion from Johnson (2013)
and previous work on the control of false-discovery rates. The mixture model es-
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timates the extent to which the overall results have been contaminated by H0; in
addition, the method allows researchers to estimate how likely it is that a particu-
lar p value stems from H0. Note, however, that this estimate hinges on the context
in which the particular p value was analyzed. This is true for mixture modeling in
general: the estimated assignment probability for a certain observation depends
on the values for the other observations.

Similar to the classical analysis method for p-curves, our model makes a num-
ber of assumptions. One assumption is that, under H0, the distribution of p values
is uniform. In practice, this assumption may not hold; that is, particular forms
of cherry-picking and questionable research practices may yield a p-curve that is
right-skewed, thereby masquerading as the signature of a real effect. Hence, our
model will mistakenly assign such p values to the mixture component correspond-
ing to H1. Under this scheme, our mixture model contamination rate can be
considered a lower bound on the true level of contamination from H0. However,
there exist other forms of “p-hacking” and these may lead to left-skewed p-curves.
In this case, our simulation studies – reported in the supplemental materials – sug-
gest that the contamination rate is also underestimated. In general, if a literature
is “p-hacked” to such an extent that it yields left-skewed p-curves, we recommend
that our method should not be used.

We applied our mixture model to a set of significant p values from Psycho-
nomic Bulletin & Review and the Journal of Experimental Psychology: Learning,
Memory, and Cognition and also to a set of significant p values from social prim-
ing and yoked control studies. The examples highlighted the added inferential
value of our model and caution against overinterpreting the evidential value of
significant p values in the range from .01 − .05. In fact, fully consistent with the
recommendation by Johnson (2013), our applications suggest that p values larger
than .005 are more likely to be assigned to H0 than to H1.

To maximize accessibility, we have provided an easy-to-use online application
which allows researchers to apply our model in an intuitive way to any set of
significant p values (https://qfgronau.shinyapps.io/bmmsp/). Furthermore,
we provide the model code on the Open Science Framework (https://osf.io/
mysbp/). This way we hope to encourage other researchers to apply the model
within their field of interest.

The Supplemental Materials can be found at: https://osf.io/mysbp/.
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Yoked Controls

7.A Prior Sensitivity Analysis for Example 2: Social
Priming Studies and Yoked Controls

A sensitivity analysis explored the effect of assigning different prior distributions
to the µ parameter. Figure 7.4 displays the results for a prior standard deviation
of one half and Figure 7.5 shows the results for a prior standard deviation of two.
The plots highlight that for this example, the results appear to be sensitive to the
prior choice for the µ parameter. See main text for details.
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Figure 7.4: Sensitivity analysis for the application of the Bayesian mixture model
to Example 2: social priming studies and yoked controls (prior standard de-
viation for µ set to 0.5). First row: distributions of observed p values for
the social priming studies (A) and the control studies (B); second row: tra-
ceplots of the MCMC chains for the H0 assignment rate for the social prim-
ing studies (C) and control studies (D); third row: Q-Q plots for comparing
the observed p value distribution to the posterior predictive distribution for
the social priming studies (E) and control studies (F); panel G: posterior dis-
tributions of the H0 assignment rate; panel H: individual H0 assignment prob-
abilities. Figure available at http://tinyurl.com/jgyqn2g under CC license
https://creativecommons.org/licenses/by/2.0/.

186

http://tinyurl.com/jgyqn2g
https://creativecommons.org/licenses/by/2.0/


7.A. Prior Sensitivity Analysis for Example 2: Social Priming Studies and
Yoked Controls

Figure 7.5: Sensitivity analysis for the application of the Bayesian mixture model
to Example 2: social priming studies and yoked controls (prior standard devi-
ation for µ set to 2). First row: distributions of observed p values for the
social priming studies (A) and the control studies (B); second row: traceplots
of the MCMC chains for the H0 assignment rate for the social priming stud-
ies (C) and control studies (D); third row: Q-Q plots for comparing the ob-
served p value distribution to the posterior predictive distribution for the so-
cial priming studies (E) and control studies (F); panel G: posterior distribu-
tions of the H0 assignment rate; panel H: individual H0 assignment proba-
bilities. Figure available at http://tinyurl.com/huvlufn under CC license
https://creativecommons.org/licenses/by/2.0/.

187

http://tinyurl.com/huvlufn
https://creativecommons.org/licenses/by/2.0/




Chapter 8

A Primer on Bayesian
Model-Averaged Meta-Analysis

Abstract

Meta-analysis is the predominant approach for quantitatively synthesiz-
ing a set of studies. If the studies themselves are of high quality, meta-
analysis can provide valuable insights into the current scientific state of
knowledge about a particular phenomenon. In psychological science, the
most common approach is to conduct frequentist meta-analysis. In this
primer, we discuss an alternative method, Bayesian model-averaged meta-
analysis. This procedure combines the results of four Bayesian meta-analysis
models: (1) fixed-effect null hypothesis, (2) fixed-effect alternative hypoth-
esis, (3) random-effects null hypothesis, and (4) random-effects alternative
hypothesis. These models are combined according to their plausibilities in
light of the observed data to address the two key questions “Is the overall
effect non-zero?” and “Is there between-study variability in effect size?”.
Bayesian model-averaged meta-analysis therefore avoids the need to select
either a fixed-effect or random-effects model and instead takes into account
model uncertainty in a principled manner.

8.1 Introduction

Over the last decade, data collection in psychological science has become vastly
more rigorous. Currently, experiments are often preregistered and the generally
accepted best practice for investigating a particular effect is to conduct a many-
labs Registered Report (e.g., Chambers, Munafo, & et al., 2013; Hagger et al.,
2016; Klein et al., 2018; Landy et al., 2020; Wagenmakers, Beek, et al., 2016).

This chapter has been submitted for publication as Gronau, Q. F., Heck, D. W., Berkhout,
S. W., Haaf, J. M., & Wagenmakers, E.–J. (2020). A primer on Bayesian model-averaged meta-
analysis. Available as PsyArXiv preprint : https://psyarxiv.com/97qup
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Although researchers now invest a lot of time and effort in preregistering their
studies to ensure data of high quality, the way researchers analyze the resulting
data has not changed markedly. Currently, the most popular analysis approach is
still frequentist meta-analysis with p-values and confidence intervals (e.g., Boren-
stein, Hedges, Higgins, & Rothstein, 2009; Simons, Holcombe, & Spellman, 2014).
Here we present a primer on an alternative method: Bayesian model-averaged
meta-analysis (e.g., Gronau, van Erp, et al., 2017; Haaf, Hoogeveen, Berkhout,
Gronau, & Wagenmakers, 2020; Hinne, Gronau, van den Bergh, & Wagenmakers,
2020; Hoogeveen, Wagenmakers, Kay, & Elk, 2018; Scheibehenne, Gronau, Jamil,
& Wagenmakers, 2017; Vohs et al., under review). This method combines the
results of Bayesian fixed-effect and Bayesian random-effects models according to
the models’ plausibilities in light of the data. Compared to the standard frequen-
tist procedure, the Bayesian procedure affords researchers a number of pragmatic
benefits (for a general introduction to Bayesian inference and its benefits, see
the special issue in Psychonomic Bulletin & Review ; Vandekerckhove, Rouder, &
Kruschke, 2018). Specifically, the Bayesian procedure allows researchers to:

• assess the degree to which data make a claim more or less plausible. By
quantifying evidence on a continuous scale, the Bayesian approach encour-
ages more nuanced conclusions instead of all-or-none decisions. For instance,
one may make statements of the form “compared to the effect-absent hypoth-
esis, the data have made the effect-present hypothesis ten times more likely
than it was before”.

• discriminate evidence of absence from absence of evidence. This enables
researchers to disentangle whether there is evidence for the null hypothesis
or whether the data are inconclusive. For instance, one may conclude that
there is absence of evidence when the data support both the null hypothesis
and the alternative hypothesis about equally. In meta-analysis, this sce-
nario is most likely when the number of studies is small. Alternatively, one
may conclude there is evidence of absence in case the data support the null
hypothesis much more than the alternative hypothesis.

• update evidence and posterior distributions as experiments accumulate. This
enables open-ended, sequential testing and estimation that is both efficient
and ethical. For instance, if one planned to test 100 participants, but the
evidence is already compelling after 50, one may stop data collection early.
Similarly, researchers can update a Bayesian meta-analysis with data from
new studies after the initial set has already been analyzed.

• make direct and intuitive statements concerning the plausibility of models
and parameters. This enables a straightforward interpretation of the results.
For instance, one may state that, based on the observed data, the alternative
hypothesis receives probability .75 or that the probability is .50 that the
effect size is between 0.1 and 0.3.

• include expert knowledge for more diagnostic tests. This enables the incor-
poration of expert knowledge not only in the design of a study, but also in
the analysis of the resulting data. For instance, an expert may state that
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the most likely effect size is 0.3, with 95% uncertainty interval ranging from
0.1 to 0.5. This can be incorporated in the analysis in form of an informed
prior distribution for effect size. Robustness of the results can easily be
checked by comparing the results to those obtained when using a default or
less informative prior.

• model-average across fixed-effect and random-effects models which takes into
account model uncertainty. This prevents overconfidence and allows for a
graceful transition to more complicated models as data accumulate. For
instance, when addressing the question whether the meta-analytic effect size
is zero or not, model averaging allows one to take into account uncertainty
with respect to whether there is heterogeneity in effect size across studies.

In this primer we provide an introduction to Bayesian model-averaged meta-
analysis and we demonstrate the procedure using a concrete example from the
literature. The goal of this primer is to (1) highlight the pragmatic benefits of a
Bayesian model-averaged meta-analysis; (2) provide readers with the knowledge
to correctly interpret the results of such an analysis; (3) demonstrate that applied
researchers can straightforwardly conduct these analyses in practice using the R

(R Core Team, 2019) package metaBMA (Heck, Gronau, & Wagenmakers, 2019) or
JASP (JASP Team, 2020).

8.2 Bayesian Meta-Analysis

In Bayesian meta-analysis (e.g., Higgins, Thompson, & Spiegelhalter, 2009;
Rouder, Haaf, Davis-Stober, & Hilgard, 2019; Rouder & Morey, 2011; T. C. Smith,
Spiegelhalter, & Thomas, 1995; Sutton & Abrams, 2001), the most common ap-
proach is to use a random-effects model. Below, we first introduce the random-
effects model and then outline hypotheses of interest about the model parameters.

8.2.1 The Random-Effects Model

In line with the frequentist meta-analysis procedure, Bayesian meta-analysis takes
as input an observed effect size yi and a corresponding standard error SEi, for each
study i = 1, 2, . . . ,K. To accommodate studies with different dependent measures
and designs, these effect sizes are typically standardized measures such as Cohen’s
d or Fisher’s z. The random-effects model assumes that the observed effect size yi
is drawn from a normal distribution with mean equal to the latent true study effect
θi and standard deviation fixed to the observed SEi. The latent study effects θi
are themselves drawn from a normal distribution, with mean given by the overall
effect size µ and standard deviation given by the between-study heterogeneity
parameter τ . This set-up is illustrated in Figure 8.1. The model parameters µ
and τ are assigned prior distributions denoted by g(·) and h(·), respectively (see
Box 1 for recommendations on how to choose these prior distributions). In sum,
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Distribution of study effects:

!i ~ Normal(µ, "2)

!1 !2 !K

Study effects:
!1,!2,…, !K

Distribution of observed effects:

yi ~ Normal(!i , SEi
2)

…

y1 y2 yK

…

…
Observed effects:
y1, y2,…, yK

Figure 8.1: Meta-analytic random-effects model. The prior distributions for the
overall effect size µ and the between-study standard deviation τ are not dis-
played. Available at https://tinyurl.com/y7jgqyow under CC license https://
creativecommons.org/licenses/by/2.0/.

the model is specified as follows:

yi ∼ Normal(θi, SE
2
i )

θi ∼ Normal(µ, τ2)

µ ∼ g(·)
τ ∼ h(·).

(8.1)

Note that when the between-study standard deviation parameter τ = 0 the model
implies that the effect for each study is identical and is equal to µ (i.e., fixed-
effect). In contrast, when τ > 0, the model assumes that the latent true effect
varies across studies (i.e., random-effects).

8.2.2 Limitations of the Random-Effects Model

Existing Bayesian meta-analysis procedures often focus on estimating the model-
parameters µ and τ of the random-effects model (T. C. Smith et al., 1995; Stangl
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Box 1: Recommendations for Choosing the Parameter Prior Distributions

To apply the Bayesian model-averaged meta-analysis framework in prac-
tice, one needs to specify a prior distribution for the overall effect size µ and
the between-study standard deviation parameter τ . Here we describe our
approach to choosing theses prior distributions when the considered effect
size is a standardized mean difference (i.e., Cohen’s d or Hedges’ g).a For
the between-study standard deviation parameter τ , we recommend an em-
pirically informed prior distribution. This prior is based on the distribution
of non-zero between-study standard deviation estimates for standardized
mean difference effect sizes from meta-analyses reported in Psychological
Bulletin in the years 1990–2013 (van Erp, Verhagen, Grasman, & Wagen-
makers, 2017). Specifically, Gronau, van Erp, et al. (2017) approximated
this empirical distribution by an Inverse-Gamma(1, 0.15) prior on τ (see
Figure 8.3). For the overall effect size parameter µ, we recommend to con-
sider both a “default” choice and an “informed” choice. By “default” we
refer to a prior distribution that is (1) centered on zero, and (2) not overly
narrow nor overly wide (Jeffreys, 1939; Lindley, 1957). We typically use
a Cauchy prior with scale 1/

√
2 ≈ 0.707 (see Figure 8.3). This is the de-

fault choice for standardized mean differences in the BayesFactor package
(Morey & Rouder, 2015). Nevertheless, other choices like a zero-centered
normal prior also appear reasonable. By “informed” we refer to a prior
distribution that is based on expert knowledge about the studied effect
or based on a literature review. An informed prior is typically centered
on a value different from zero to capture existing knowledge about effect
size. Additionally, informed priors use expert knowledge to indicate the
expected direction of an effect by truncating the prior distribution (e.g.,
practicing should increase memory performance). An example informed
prior distribution is displayed in Figure 8.2. Considering both a “default”
and “informed” prior for µ serves as a robustness check: in case the results
do not change qualitatively, the results are robust across different plausible
prior choices. In case the results do change qualitatively, it needs to be
accepted that the data may not be very informative and that the conclu-
sion hinges on the prior specification. Another robustness check can be
conducted by varying the width of the default prior on µ.

aOther effect size measures are of course possible and can be easily analyzed using the
referenced software. Nevertheless, the parameter prior distributions need to be adjusted
for other effect size measures.

& Berry, 2000). Specifically, they focus on interpreting the posterior distribution
and possibly summaries of the posterior distribution such as the mean, median,
or 95% credible interval. However, simply fitting a random-effects model assumes
that both µ and τ are non-zero – implying that there is an effect and heterogeneity
in the effect across studies – and then focuses on estimating the size of µ and τ .
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Figure 8.2: Example of an informed prior distribution for the overall effect size
µ: a t distribution with location 0.35, scale 0.102, and three degrees of freedom,
truncated below at zero. This “Oosterwijk” prior (Gronau, Ly, & Wagenmakers,
2020) will be used later in the example. Available at https://tinyurl.com/

ycc965f2 under CC license https://creativecommons.org/licenses/by/2.0/.

Nevertheless, it has been argued that before one estimates a parameter, one should
test whether there is anything to be estimated (i.e., testing whether a parameter
is equal to zero should precede parameter estimation; Haaf, Ly, & Wagenmakers,
2019; Fisher, 1928, p. 274; Jeffreys, 1939, p. 345). Consequently, before estimating
the parameters µ and τ one should address, in a principled manner, the two
questions:

Q1: “Is the overall effect non-zero?”

Q2: “Is there between-study variability in effect size?”

Below we outline how to address these questions using Bayesian hypothesis test-
ing in combination with Bayesian model averaging.1 We have applied this frame-
work to analyze power posing studies (Gronau, van Erp, et al., 2017), to investi-
gate the effectiveness of descriptive social norms in facilitating ecological behavior
(Scheibehenne et al., 2017), to test the compensatory control theory (Hoogeveen
et al., 2018), to analyze facial feedback replication studies (Hinne et al., 2020), to

1Note that this framework does not preclude parameter estimation.
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analyze how research results are influenced by subjective decisions that scientists
make as they design studies (Landy et al., 2020), and to reanalyze the Many Labs
4 data (Haaf et al., 2020). Furthermore, we are currently applying this method-
ology to analyze a set of replication studies concerning the ego depletion effect
(Vohs et al., under review).

8.2.3 Four Rival Hypotheses

Our Bayesian model-averaged meta-analysis framework considers four candidate
hypotheses (e.g., Gronau, van Erp, et al., 2017; Scheibehenne et al., 2017).2 These
correspond to the four possibilities for fixing to zero either µ or τ , both, or neither:

1. the fixed-effect null hypothesis Hf0 : µ = 0 , τ = 0,

2. the fixed-effect alternative hypothesis Hf1 : µ ∼ g(·) , τ = 0,

3. the random-effects null hypothesis Hr0: µ = 0, τ ∼ h(·),

4. the random-effects alternative hypothesis Hr1: µ ∼ g(·) , τ ∼ h(·).

Figure 8.3 displays the differences in prior specification for the four hypotheses
(each hypothesis corresponds to a separate row). Specifically, the first column
displays the prior on the overall effect size µ and the second column displays the
prior on the between-study standard deviation τ . For the hypotheses where the
prior is not a point mass at zero, we have used the “default” prior recommendations
from Box 1 (i.e., a zero-centered Cauchy prior with scale 1/

√
2 on µ and an Inverse-

Gamma(1, 0.15) prior on τ). The third column displays the implied joint prior
on two hypothetical latent true study effects, θi and θj .

3 The fixed-effect null

hypothesisHf0 fixes µ and τ to zero (Figure 8.3, row 1, column 1–2). Consequently,
the true latent study effect is exactly zero for each study (Figure 8.3, row 1, column

3). The fixed-effect alternative hypothesis Hf1 fixes τ to zero (Figure 8.3, row 2,
column 2) but allows µ to differ from zero (i.e., µ is assigned a continuous prior
distribution; Figure 8.3, row 2, column 1). Consequently, the latent true study

effects can differ from zero. However, since Hf1 does not specify any between-study
variability (i.e., τ = 0), all studies have the identical latent true effect size. Hence,
the implied joint prior on two latent true study effects θi and θj assigns non-zero
probability mass only to the diagonal line where θi and θj are identical (Figure 8.3,
row 2, column 3). The random-effects null hypothesis Hr0 fixes the overall effect
size µ to zero (Figure 8.3, row 3, column 1), but allows the between-study standard
deviation τ to differ from zero (i.e., τ is assigned a continuous prior distribution;
Figure 8.3, row 3, column 2). Consequently, the latent true study effects may be
different, but their distribution is centered on zero since the overall effect size µ is
fixed to zero (Figure 8.3, row 3, column 3). Finally, the random-effects alternative
hypothesis Hr1 allows both µ and τ to differ from zero (Figure 8.3, row 4, column
1–2). Consequently, each latent true study effect is unique. The latent true study

2The terms ‘hypothesis’ and ‘model’ are used interchangeably.
3Note that θi and θj correspond to two latent true study effects and do not refer to the

observed effect sizes.
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Figure 8.3: Parameter prior specifications for the four hypotheses of interest. Each
row corresponds to one hypothesis (i.e., Hf0 , Hf1 , Hr0, and Hr1). The first column
displays the prior distribution on the overall effect size µ and the second column
displays the prior distribution on the between-study standard deviation τ . For the
hypotheses where the prior is not a point mass at zero, we have used the “default”
prior recommendations from Box 1 (i.e., a zero-centered Cauchy prior with scale
1/
√

2 on µ and an Inverse-Gamma(1, 0.15) prior on τ). The third column displays
the implied joint prior on two hypothetical latent true study effects, θi and θj . For
the random-effects hypotheses the contours reflect 5%, 25%, 50%, 75%, and 95% of
probability within the area. Available at https://tinyurl.com/y98wqg5t under
CC license https://creativecommons.org/licenses/by/2.0/.

effects are correlated since their size depends on the specific values for µ and τ .
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Hence, a priori, one latent true study effect being large implies that another one
will likely also be large. The distribution of two hypothetical latent true study
effects is still centered on zero since the prior on the overall effect µ is centered
on zero. However, the prior under Hr1 spreads out its mass across a larger range
of effect size values than the prior under Hr0 since µ is assigned a continuous prior
that allows values other than zero.

8.2.4 Bayesian Hypothesis Testing

Each of the four rival hypotheses corresponds to one possible combination of the
effect being present or absent and heterogeneity being present or absent. The
goal is to assess the evidence for each of the four hypotheses by updating their
plausibility in light of the observed data. Based on the shift in plausibility, one
can then address Q1 and Q2 in a principled manner.

In the Bayesian framework, evidence for a model relative to another model
is quantified using the Bayes factor (Etz & Wagenmakers, 2017; Jeffreys, 1935,
1961; Kass & Raftery, 1995; Wrinch & Jeffreys, 1921). For example, one may
be interested in the evidence for the fixed-effect model with an effect versus the
fixed-effect model with zero effect. The Bayes factor between these two models is

BFHf1 ,H
f
0︸ ︷︷ ︸

Bayes factor
for effect

=
p(data | Hf1 )

p(data | Hf0 )︸ ︷︷ ︸
Relative predictive

accuracy

, (8.2)

where p(data | H) denotes how well a hypothesis H predicted the data at hand.
Therefore the Bayes factor may be interpreted as the relative predictive accuracy
of two models (Rouder & Morey, 2019).

Here, we focus on an additional interpretation of the Bayes factor that comes
from rearranging the terms of Bayes’ rule. According to the additional interpreta-
tion the Bayes factor quantifies the change in beliefs about the hypotheses brought
about by the data (i.e., the change from prior to posterior odds of two hypotheses):

BFHf1 ,H
f
0︸ ︷︷ ︸

Bayes factor
for effect

=
p(Hf1 | data)

p(Hf0 | data)︸ ︷︷ ︸
Posterior odds

for effect

/ p(Hf1 )

p(Hf0 )︸ ︷︷ ︸
Prior odds
for effect

. (8.3)

In this equation, p(Hf1 ) denotes the prior probability of the fixed-effect alternative

hypothesis Hf1 and p(Hf1 | data) denotes the posterior probability of Hf1 (i.e.,

after having updated one’s knowledge based on observed data). Similarly, p(Hf0 )

denotes the prior probability of the fixed-effect null hypothesis Hf0 and p(Hf0 |
data) denotes the posterior probability of Hf0 .4

To illustrate how to quantify change in beliefs using the Bayes factor we con-
sider a hypothetical example. Figure 8.4 displays hypothetical prior and posterior

4Note that when comparing exactly two models, the prior probabilities do not affect the
resulting Bayes factor as they cancel out (see Appendix).
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probabilities for the four rival hypotheses. The top part of the plot shows prior
probabilities of the hypotheses (i.e., plausibility before having seen any data), and
by default all of them are set to .25. The bottom panel of Figure 8.4 displays
hypothetical posterior probabilities of the hypotheses (i.e., plausibility after hav-
ing updated one’s knowledge based on observed data). In contrast to the prior
probabilities, these are not equal anymore as the data have shifted one’s beliefs.

We are now ready to calculate the Bayes factor from Equation 8.3. For the
hypothetical example in Figure 8.4, the prior odds are given by .25/.25 = 1 and
the posterior odds are given by .40/.15 ≈ 2.67. Consequently, the Bayes factor is
BFHf1 ,H

f
0
≈ 2.67/1 = 2.67 which indicates that – assuming a fixed-effect model

– the data have made the effect-present hypothesis 2.7 times more likely than it
was before, compared to the effect-absent hypothesis. In a similar fashion, one
could compute BFHr1,Hr0 to quantify the evidence for the effect being non-zero
assuming random effects. The prior odds are again given by .25/.25 = 1 and
the posterior odds are given by .35/.10 = 3.5. Consequently, the Bayes factor is
BFHr1,Hr0 = 3.5/1 = 3.5 which indicates that – assuming a random-effects model
– the data have made the effect-present hypothesis 3.5 times more likely than it
was before, compared to the effect-absent hypothesis.

To address the question whether or not there is heterogeneity in the ef-
fect across studies (Q2; i.e., test for fixed-effect or random-effects) one may
compute BFHr1,H

f
1
. This Bayes factor compares the random-effects hypothesis

to the fixed-effect hypothesis under the assumption that effect size µ is non-
zero. For the hypothetical example in Figure 8.4, the prior odds are given by
.25/.25 = 1 and the posterior odds are given by .35/.40 = 0.875. Consequently,
BFHr1,H

f
1

= (.35/.40)/1 = 0.875 or, equivalently, BFHf1 ,Hr1
= 1/BFHr1,H

f
1
≈ 1.14.

This Bayes factor indicates that – assuming that an effect is present – the data
have made the heterogeneity-absent hypothesis about 1.14 times more likely than
it was before, compared to the heterogeneity-present hypothesis.

8.2.5 Bayesian Model Averaging

For the fictional scenario above, one could conclude that the Bayes factor in favor
of the effect-present hypothesis is either BFHr1,Hr0 = 3.5 (if there is heterogeneity
in the effect) or BFHf1 ,H

f
0
≈ 2.67 (if there is no heterogeneity). Furthermore, the

data support both the random-effects alternative hypothesis and the fixed-effect
alternative hypothesis about equally (i.e., assuming an effect, BFHf1 ,Hr1

≈ 1.14).

Hence, considerable uncertainty remains with respect to whether a fixed-effect or a
random-effects model is more appropriate. Instead of ignoring this uncertainty for
final inference, one can take this uncertainty into account by considering all four
hypotheses simultaneously according to their plausibility in light of the observed
data. This procedure is known as Bayesian model averaging (e.g., Hinne et al.,
2020; Hoeting et al., 1999).

To quantify the evidence for the effect being present while taking into account
uncertainty with respect to choosing a fixed-effect or random-effects model, one can
compute a model-averaged inclusion Bayes factor. This Bayes factor contrasts all
hypotheses that allow the effect to be non-zero (i.e., Hf1 and Hr1) to all hypotheses
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Figure 8.4: Prior probabilities of the hypotheses and computation of the model-
averaged prior inclusion odds (top panel), and exemplary posterior probabilities
and computation of the model-averaged posterior inclusion odds (bottom panel).
Available at https://www.bayesianspectacles.org/library/ under CC license
https://creativecommons.org/licenses/by/2.0/.

that constrain the effect to be exactly zero (i.e., Hf0 and Hr0) and thus fully takes
into account model uncertainty with respect to choosing a fixed-effect or random-
effects model.5 Figure 8.4 illustrates how this model-averaged inclusion Bayes

5The term “inclusion” Bayes factor refers to the fact that it contrasts all hypotheses that
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factor is computed. This Bayes factor, just as any Bayes factor, is given by
the change from prior to posterior odds. However, this time, these are prior
and posterior inclusion odds. The top panel of Figure 8.4 displays the prior
probabilities of the hypotheses. By default all of them are set to .25. The left
scale shows how to compute the prior inclusion odds for the presence of an effect.
Specifically, the hypotheses that allow µ to differ from zero (i.e., Hr1 and Hf1 ) are

contrasted with the hypotheses that fix µ to zero (i.e., Hr0 and Hf0 ). Since the
combined prior probability of the hypotheses that allow µ to differ from zero is
.50 and the combined prior probability of the hypotheses that fix µ to zero is also
.50, the prior inclusion odds are equal to one.6 The bottom panel of Figure 8.4
illustrates how to compute the posterior inclusion odds based on hypothetical
posterior probabilities. In contrast to the prior probabilities, these are not equal
anymore after having updated one’s knowledge based on observed data. The
left scale again compares the hypotheses that allow µ to differ from zero with the
hypotheses that fix µ to zero. Based on the posterior probabilities, this comparison
favors the hypotheses that allow µ to be non-zero (combined posterior probability
of .75) over the hypotheses that fix µ to zero (combined posterior probability of
.25). Consequently, the posterior inclusion odds are given by .75/.25 = 3. Finally,
the model-averaged inclusion Bayes factor for an effect is obtained by dividing the
posterior inclusion odds by the prior inclusion odds:7

BF10︸ ︷︷ ︸
Inclusion Bayes factor

for effect

=
p(Hf1 | data) + p(Hr1 | data)

p(Hf0 | data) + p(Hr0 | data)︸ ︷︷ ︸
Posterior inclusion odds

for effect

/ p(Hf1 ) + p(Hr1)

p(Hf0 ) + p(Hr0)︸ ︷︷ ︸
Prior inclusion odds

for effect

. (8.4)

In this example, dividing the posterior inclusion odds by the prior inclusion odds
yields BF10 = 3/1 = 3. This Bayes factor indicates that compared to the effect-
absent hypothesis, the data have made the effect-present hypothesis 3 times more
likely than it was before.

In a similar fashion, one can compute a model-averaged inclusion Bayes factor
to compare all hypotheses that allow the between-study standard deviation τ to
be non-zero (i.e., Hr0 and Hr1) to all hypotheses that fix τ to zero (i.e., Hf0 and

Hf1 ):

BFrf︸ ︷︷ ︸
Inclusion Bayes factor

for heterogeneity

=
p(Hr0 | data) + p(Hr1 | data)

p(Hf0 | data) + p(Hf1 | data)︸ ︷︷ ︸
Posterior inclusion odds

for heterogeneity

/ p(Hr0) + p(Hr1)

p(Hf0 ) + p(Hf1 )︸ ︷︷ ︸
Prior inclusion odds

for heterogeneity

.

(8.5)

include µ as a free parameter to all hypotheses that do not include µ as a free parameter but fix
it to zero.

6Note that this may not be the case when the prior probabilities of the hypotheses are not
set equal.

7Note that, in contrast to Bayes factors that compare only two models, inclusion Bayes
factors that involve more than two models are affected by the setting of the prior probabilities
as they do not cancel out (see Appendix).
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The computation of this Bayes factor is also illustrated in Figure 8.4 (i.e., scales
on the right). The prior inclusion odds for heterogeneity are equal to one, and
the posterior inclusion odds are equal to .45/.55 ≈ 0.82. Consequently, BFrf =
(.45/.55)/1 ≈ 0.82, or expressed in favor of no heterogeneity, BFfr ≈ 1.22. This
Bayes factor indicates that compared to the heterogeneity-present hypothesis, the
data have made the heterogeneity-absent hypothesis about 1.22 times more likely
than it was before.

One may also use model averaging in estimation to obtain a model-averaged
posterior distribution for the parameters µ and τ . These model-averaged poste-
rior distributions combine the posterior for each hypothesis by weighting them
with the posterior probability of each hypothesis. There are two useful ways of
obtaining model-averaged posteriors. First, one may combine the posterior for,
say, µ for all four hypotheses according to their posterior probabilities. Since two
of the hypotheses fix µ a priori to zero (i.e., Hf0 and Hr0), the model-averaged
posterior will be a mixture between a point-mass at zero and a continuous com-
ponent. Second, one could choose to focus only on the hypotheses that do not
fix the parameter to zero. This yields a model-averaged posterior without a spike
at zero. Importantly, in this case one needs to be clear about the fact that this
represents the model-averaged posterior under the assumption that the effect is
non-zero. In the software that we use below (i.e., metaBMA and JASP), only the lat-
ter approach has currently been implemented (i.e., displaying the model-averaged
posterior conditional on assuming that the effect is present).

8.3 Example: Testing the Self-Concept Maintenance
Theory

According to the self-concept maintenance theory (Mazar, Amir, & Ariely, 2008),
people will cheat to maximize self-profit, but only to the extent that they can still
maintain a positive self-view. In their Experiment 1, Mazar et al. gave partici-
pants an incentive and opportunity to cheat. Before working on a problem-solving
task, participants either recalled, as a moral reminder, the Ten Commandments,
or, as a neutral condition, they recalled 10 books they had read in high school.
In line with the self-concept maintenance hypothesis, participants in the moral
reminder condition reported having solved fewer problems than those in the neu-
tral condition which also reflected their actual performance better. Recently, a
Registered Replication Report (Verschuere et al., 2018) attempted to replicate
this finding. Here we focus on the primary meta-analysis that included data from
19 labs. Figure 8.5 displays the observed Cohen’s d effect size and correspond-
ing 95% confidence interval for each lab.8 Negative effect sizes are in line with
the self-concept maintenance hypothesis (i.e., the self-concept maintenance theory
predicts that participants in the Ten Commandments condition cheat less than
participants in the neutral condition, not more) whereas positive effect sizes are
opposite to what the theory predicts.

8We converted the raw effect sizes to standardized effect sizes (Cohen’s d) with corresponding
standard errors.

201



8. A Primer on Bayesian Model-Averaged Meta-Analysis

-1 -0.5 0 0.5 1

Cohen's d

Wiggins
Wick
Verschuere
Vanpaemel
Sutan
Suchotzki
Özdo�ru
Meijer
McCarthy
Loschelder
Laine
Koppel
klein Selle & Rozmann
Holzmeister
Gonza�lez-Iraizoz
Ferreira-Santos
Evans
Birt
Aczel

 0.09 [-0.26, 0.45]
-0.03 [-0.34, 0.28]
 0.08 [-0.26, 0.42]
 0.09 [-0.28, 0.45]
 0.01 [-0.39, 0.41]
 0.00 [-0.36, 0.36]
 0.40 [-0.01, 0.80]
-0.08 [-0.38, 0.22]
 0.16 [-0.24, 0.56]
-0.05 [-0.42, 0.31]
-0.17 [-0.54, 0.20]
 0.17 [-0.18, 0.52]
-0.11 [-0.44, 0.23]
 0.28 [-0.08, 0.63]
 0.09 [-0.27, 0.46]
-0.07 [-0.46, 0.31]
 0.33 [-0.05, 0.70]
 0.16 [-0.23, 0.55]
-0.10 [-0.48, 0.27]

Figure 8.5: Observed effect sizes (Cohen’s d) with corresponding 95% confidence
intervals for the Registered Replication Report by Verschuere et al. (2018). Only
the 19 labs that were included in the primary analysis are displayed. Available at
https://tinyurl.com/ydad5k7p under CC license https://creativecommons

.org/licenses/by/2.0/.

For the primary analysis, Verschuere et al. reported a meta-analytic Cohen’s
d of 0.04 (95% CI = [-0.04, 0.12]).9 Consequently, the effect was non-significant
and in the opposite direction of the effect size in the original study. Furthermore,
Verschuere et al. concluded that there was no heterogeneity across labs: τ2 = 0,
Q(18) = 13.16, p = .78. Here we conduct a reanalysis using the Bayesian model-
averaged meta-analysis approach.

8.3.1 Parameter Prior Settings

We use three different parameter prior specifications. These specifications differ
only in the prior for µ as the prior for τ is always an Inverse-Gamma(1, 0.15)
distribution. The first specification assigns µ a default zero-centered Cauchy prior
distribution with scale 1/

√
2. This specification will be referred to as Default

9Note that Verschuere et al. attached a minus sign to this effect size to indicate that the
effect goes in the direction opposite to that of the hypothesis.
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Table 8.1: Prior and posterior probabilities of the four hypotheses of interest for
the Verschuere et al. (2018) Registered Replication Report data. The posterior
probabilities are displayed for three different prior settings for the effect size pa-
rameter µ.

Hypothesis p(H) p(H | data)

Default Default Informed
(Two-Sided) (One-Sided) (One-Sided)

Hf0 .25 .754 .823 .837

Hf1 .25 .087 .017 .004
Hr0 .25 .143 .156 .159
Hr1 .25 .016 .004 .001

(Two-Sided). The second specification is very similar, but truncates the default
Cauchy prior distribution at zero in order to incorporate the directedness of the
self-concept maintenance hypothesis (i.e., participants in the Ten Commandments
condition are expected to cheat less than participants in the neutral condition,
not more). This specification will be referred to as Default (One-Sided). Finally,
the third specification uses as an informed prior for µ a t distribution that is
centered on -0.35, with scale 0.102 and three degrees of freedom. This prior is
also truncated at zero to preclude effect sizes in the direction opposite to what the
hypothesis predicts. This “Oosterwijk” prior has been elicited for a reanalysis of
a social psychology study (Gronau, Ly, & Wagenmakers, 2020), but we believe it
is a reasonable prior for psychological studies more generally.10 This specification
will be referred to as Informed (One-Sided).

8.3.2 Results

8.3.2.1 Hypotheses Posterior Probabilities

Table 8.1 displays the prior and posterior probabilities of the hypotheses for each of
the three different prior specifications. The ordering of the posterior probabilities
is identical for all three prior specifications: The fixed-effect null hypothesis Hf0
receives most posterior probability, followed by the random-effects null hypothesis
Hr0, the fixed-effect alternative hypothesis Hf1 , and the random-effects alternative
hypothesis Hr1.

8.3.2.2 Model-Averaged Bayes Factor for an Overall Effect

To address the question whether the meta-analytic effect is non-zero (i.e., Q1), we
compute the model-averaged Bayes factor BF10 for each prior setting. This can be
achieved solely based on the probabilities presented in Table 8.1. For the Default
(Two-Sided) prior setting, the posterior inclusion odds for an effect are given by

10We flipped the sign of the location parameter to align with the way the data are coded (i.e.,
the theory predicts negative effect sizes).
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(.087+ .016)/(.754+ .143) ≈ 0.115. Since the prior inclusion odds are equal to one,
this number equals the model-averaged Bayes factor, BF10 ≈ 0.115. Consequently,
BF01 = 1/BF10 ≈ 8.696 indicating moderate evidence for the absence of an effect.
For the Default (One-Sided) prior setting, the posterior inclusion odds for an effect
are given by (.017 + .004)/(.823 + .156) ≈ 0.021; this number equals the model-
averaged Bayes factor, BF10 ≈ 0.021. Consequently, BF01 = 1/BF10 ≈ 47.619
indicating very strong evidence for the absence of an effect. For the Informed (One-
Sided) prior setting, the posterior inclusion odds are calculated in the same fashion.
The model-averaged Bayes factor is therefore BF10 ≈ (.004+ .001)/(.837+ .159) ≈
0.005. Consequently, BF01 = 1/BF10 ≈ 200 indicating extreme evidence for the
absence of an effect. In sum, for all prior settings, the model-averaged Bayes factor
indicates evidence in favor of the null hypothesis of no effect. However, the degree
of evidence differs across prior settings. The reason why the Default (One-Sided)
and the Informed (One-Sided) prior setting yield more evidence for the absence
of an effect is that, as reported by Verschuere et al., the meta-analytic effect goes
in the direction opposite of what the theory predicts and these priors for µ do not
assign any mass to population effect size values that go in the opposite direction.

8.3.2.3 Model-Averaged Bayes Factor for Heterogeneity

To address the question whether there is heterogeneity in effect size across stud-
ies (i.e., Q2), we compute the model-averaged Bayes factor BFrf for each prior
setting. This can again be achieved solely based on the probabilities presented
in Table 8.1. For the Default (Two-Sided) prior setting, the posterior inclu-
sion odds for heterogeneity are given by (.143 + .016)/(.754 + .087) ≈ 0.189.
Since the prior inclusion odds are equal to one, this number equals the model-
averaged Bayes factor, BFrf ≈ 0.189. Consequently, BFfr = 1/BFrf ≈ 5.291
indicating moderate evidence for the absence of heterogeneity. For the De-
fault (One-Sided) prior setting, the posterior inclusion odds for heterogeneity
are given by (.156 + .004)/(.823 + .017) ≈ 0.190; this number equals the model-
averaged Bayes factor, BFrf ≈ 0.190. Consequently, BFfr = 1/BFrf ≈ 5.263
indicating moderate evidence for the absence of heterogeneity. For the In-
formed (One-Sided) prior setting the model-averaged Bayes factor is given by
BFrf ≈ (.159+.001)/(.837+.004) ≈ 0.190. Consequently, BFfr = 1/BFrf ≈ 5.263
indicating moderate evidence for the absence of heterogeneity. In sum, for all prior
settings, the model-averaged Bayes factor indicates evidence in favor of the null
hypothesis of no heterogeneity. The degree of evidence is very similar across prior
settings, indicating moderate evidence for the absence of heterogeneity.

8.3.2.4 Sequential Analysis

For this particular example, studies were conducted at about the same time and we
do not know the order in which they finished. However, in other cases the temporal
order may be known and of interest. This is especially the case for meta-analyses
combining studies from several decades where trends in the field may affect study
design and results. Here we demonstrate how to conduct a sequential analysis
that displays the evidence as studies accumulate. Since the presented approach
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Figure 8.6: Sequential analysis. The posterior probability for each of the four
hypotheses is displayed as a function of the number of studies included in the
analysis. Figure from JASP (jasp-stats.org).

is Bayesian, current knowledge can be updated by new evidence without having
to worry about optional stopping (Rouder, 2014). To demonstrate the sequen-
tial analysis, we make the arbitrary assumption that the temporal order of the
studies coincides with the alphabetical order of the last names of the labs’ leading
researchers. Furthermore, for demonstration purposes, we focus on one prior set-
ting, Default (Two-Sided). Figure 8.6 displays how the posterior probability for
each of the four hypotheses changes as studies accumulate. Note that at the zero
point of the x-axis, all hypotheses have “posterior” probability .25: without any
data, the posterior probability equals the prior probability. Figure 8.6 highlights
that the posterior probability for the fixed-effect null hypothesis Hf0 increases as
more studies become available. Compared to the prior probability all other hy-
potheses decrease in plausibility over time. Notably, both hypotheses that fix
effect size µ to zero (Hf0 and Hr0) have a higher posterior probability than the

two hypotheses that allow µ to differ from zero (Hf1 and Hr1). The lines end with
the inclusion of study 19, and this point describes the current state of evidence.
However, as more studies become available one could extend this analysis further
and interpret the updated state of evidence (Berger & Wolpert, 1988; Rouder,
2014; Wagenmakers, Gronau, & Vandekerckhove, 2018).
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Figure 8.7: Posterior distribution for the effect size parameter µ. The posterior is
displayed for both hypotheses that do not fix µ to zero. Additionally, the model-
averaged posterior distribution is displayed. The prior distribution is shown as a
dotted line. Figure from JASP (jasp-stats.org).

8.3.2.5 Parameter Posterior Distribution

As shown above, all prior settings resulted in evidence against the self-concept
maintenance theory. It could be argued that this makes estimation of the popu-
lation effect size unnecessary – the data offer no reason to consider an estimate
other than µ = 0. Nevertheless, in practice, it may still be of interest to show how
small or large the effect size is estimated under the assumption that the effect is
non-zero. In general we believe that for parameter estimation, it is advisable to
not use a truncated prior for the parameter of interest (van Doorn et al., in press).
The reason is that, as in the present example, the effect may be in the direction
opposite to what the hypothesis predicts. Whenever a prior is truncated to allow
only effect sizes that align with the hypothesis, it is impossible to obtain a pos-
terior that assigns probability mass to effect sizes in the opposite direction. As a
consequence, a posterior distribution based on truncated priors may be misleading
(in the present example, the truncated posterior would be left-skewed with almost
all probability mass close to zero). Figure 8.7 displays the posterior distribution
for µ based on the Default (Two-Sided) prior setting. Posteriors are shown for

both hypotheses that allow µ to differ from zero (Hf1 and Hr1) and, additionally,
the model-averaged posterior that is obtained by combining these two posteriors
according to the plausibility of the hypotheses in light of the data. Figure 8.7
shows that, assuming µ is not exactly equal to zero, it is likely to be small with
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most posterior mass in the direction opposite to what the theory predicts. Fur-
thermore, the posterior distributions under both hypotheses are very similar which
results in a model-averaged posterior that is also very similar.

8.4 Discussion

In this primer we have discussed Bayesian model-averaged meta-analysis as a
method for quantitatively synthesizing the results of a set of studies. This proce-
dure affords researchers the well-known pragmatic benefits of a Bayesian method
(Wagenmakers, Marsman, et al., 2018; Wagenmakers, Morey, & Lee, 2016). In
addition, it allows researchers to take into account model uncertainty with re-
spect to choosing a fixed-effect or random-effects model when addressing the two
key questions “Is the overall effect non-zero?” (Q1) and “Is there between-study
variability in effect size?” (Q2).

8.4.1 Effects of Prior Settings

There are two a priori settings to consider for a Bayesian model-averaged meta-
analysis: the prior probabilities for the four models (i.e., prior model probabilities)
and the prior distributions for the overall effect µ and the study heterogeneity τ
(i.e., prior parameter distributions). We now discuss each setting in turn.

Concerning the prior model probabilities, in the Appendix we show how the
results change as a function of how the prior probability is distributed across the
four models. When comparing two models the choice of prior model probabilities
does not affect the Bayes factor; however, this is no longer the case when more
than two models are in play. In such scenarios, the model-averaged Bayes factors
are generally sensitive to the choice of prior model probabilities. For unequal
prior probabilities the posterior probabilities may change quite drastically. In
our application to the data from Verschuere et al. (2018), however, the pattern
of Bayes factors is relatively robust to reasonable changes in the prior model
probabilities (see Appendix). Nevertheless, we recommend using uniform prior
probability settings across the models if there are no clear theoretical reasons for
different settings.

Concerning the prior distributions for the model parameters, concrete recom-
mendations are provided in Box 1. We showed that in our application to the data
from Verschuere et al. (2018), for some reasonably informed choices the pattern of
evidence from the Bayes factors is comparable. The more informed a prior distri-
bution is (e.g., choosing a one-sided prior distribution for the overall effect size) the
faster evidence accumulates for or against this hypothesis. When in doubt about
these settings, we recommend conducting a robustness analysis where researchers
choose several reasonable prior settings and check how these choices affect the
results. Note that in this primer, we focused on standardized mean difference
effect sizes (i.e., Cohen’s d or Hedge’s g) and provided recommendations for how
to choose the prior distributions for this case. If the observed effect sizes are not
standardized mean differences, one needs to adjust these prior distributions. Pro-
viding recommendations for other cases such as Fisher’s z and log odd ratios is
left to future research.
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8.4.2 Beyond Overall Effects

In addition to the key questions Q1 and Q2, researcher may often be interested in
incorporating discrete and continuous moderators at the study-level. Although we
did not discuss this possibility here, the metaBMA package does provide function-
ality for including moderators. Including moderators in the analysis is one way of
accounting for the fact that different subsets of studies might have different latent
effect sizes. Another possible way of incorporating and testing this assumption
would be to change the distribution of the latent study effects. Instead of a as-
suming a single continuous normal distribution of effect sizes one could assume a
latent mixture of normal distributions and then test how many components are
necessary to describe the distribution of latent study effects best (e.g., Moreau &
Corballis, 2019).

An additional approach to a Bayesian meta-analysis is to focus on the entire
distribution of study effects instead of the overall effect. For instance, Rouder et
al. (2019) propose to test whether all studies in the meta-analytic sample show an
effect in the same, expected direction, or whether some studies show an opposite
effect. An appropriate model for this analysis is one where both the distribution
of the overall effect and the distribution of individual study effects are truncated;
the latter truncation is imposed in order to allow individual study effects in one
direction only (upper level of Figure 8.1). This model can then be compared to
the unconstrained alternative (i.e., the random-effects alternative). Similar tests
have been proposed in the clinical literature where meta-analysis also serves the
purpose to test whether one treatment is superior for one patient population, and
another treatment is superior for another patient population (Gail & Simon, 1985).
Such a “Does every study show an effect?” analysis is implemented in the metaBMA
package.

As a final word of caution, we would like to stress that, in line with the
adage “garbage in, garbage out”, no statistical analysis can provide high qual-
ity inference based on low quality data that might be the result of problematic
study design, shortcomings of the implementation or sample, publication bias,
significance-chasing, etc.; Bayesian model-averaged meta-analysis is no exception.
For instance, one may use the procedure to analyze studies that have not been pre-
registered, however, the conclusions might need to be interpreted with scepticism
in case the quality of the included studies is questionable, or if the included studies
represent a biased sample of all conducted studies in a field. In contrast, when
the set of studies is of high quality, preregistered, and possibly even the result of a
Registered (Replication) Report, we believe that Bayesian model-averaged meta-
analysis can be a valuable tool that allows researchers to address key questions of
interest in a principled manner.

R code and a JASP file for reproducing the analyses can be found at: https://

osf.io/npw5c/.
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8.A. Changing the Prior Probabilities of the Hypotheses

8.A Changing the Prior Probabilities of the Hypotheses

When computing Bayes factors that compare two models such as BFHf1 ,H
f
0

(see

Equation 8.2 and Equation 8.3) the prior probabilities of the hypotheses do not
affect the resulting Bayes factor. For instance, when inserting the expressions for
the posterior probabilities in Equation 8.3, the prior probabilities cancel out:

BFHf1 ,H
f
0

=
p(data | Hf1 ) p(Hf1 )

p(data | Hf0 ) p(Hf0 )
/p(H

f
1 )

p(Hf0 )
=
p(data | Hf1 )

p(data | Hf0 )
. (8.6)

In contrast, when computing inclusion Bayes factors that involve more than two
models, the prior probabilities affect the resulting Bayes factors. For instance,
when inserting the expressions for the posterior probabilities in Equation 8.4, the
prior probabilities do not cancel out:11

BF10 =
p(data | Hf1 ) p(Hf1 ) + p(data | Hr1) p(Hr1)

p(data | Hf0 ) p(Hf0 ) + p(data | Hr0) p(Hr0)
/p(H

f
1 ) + p(Hr1)

p(Hf0 ) + p(Hr0)
. (8.7)

Here we demonstrate the effect of changing the prior probabilities of the hy-
potheses using the self-concept maintenance example. Specifically, we show how
the posterior probabilities of the hypotheses and the inclusion Bayes factors change
when:

1. increasing the prior probability of the winning hypothesis Hf0 from .25 to
.70;

2. increasing the prior probability of the worst hypothesis Hr1 from .25 to .70.

The remaining prior probability .30 is distributed evenly across the other three
hypotheses (i.e., each of the remaining hypotheses is assigned prior probability
.10).

8.A.1 Increasing the Prior Probability of Hf0
8.A.1.1 Hypotheses Posterior Probabilities

Table 8.2 displays the prior probabilities of the hypotheses and the posterior prob-
abilities of the hypotheses for each of the three different prior specifications for
µ. Although the numbers changed, the ordering of the posterior probabilities is

11The prior probabilities do cancel out when the models that allow for an effect (i.e., Hf1
and Hr1) are assigned equal prior probability c1 and the models that do not allow for an effect

(i.e., Hf0 and Hr0) are assigned equal prior probability c2. Note that c1 and c2 can be different.
However, in that case, the model-averaged Bayes factor for testing the presence of between-study
heterogeneity BFrf will be affected since the prior probabilities do not cancel out. Similarly,
for BFrf , the prior probabilities do cancel out when the models that allow for heterogeneity
(i.e., Hr0 and Hr1) are assigned equal prior probability c3 and the models that do not allow for

heterogeneity (i.e., Hf0 and Hf1 ) are assigned equal prior probability c4. However, in that case,
the model-averaged Bayes factor for testing the presence of an effect BF10 will be affected since
the prior probabilities do not cancel out anymore.
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Table 8.2: Prior and posterior probabilities of the four hypotheses of interest for
the Verschuere et al. (2018) Registered Replication Report data. The posterior
probabilities are displayed for three different prior settings for the effect size pa-
rameter µ. Note that the prior probability of Hf0 is set to .70.

Hypothesis p(H) p(H | data)

Default Default Informed
(Two-Sided) (One-Sided) (One-Sided)

Hf0 .70 .955 .970 .973

Hf1 .10 .016 .003 .001
Hr0 .10 .026 .026 .026
Hr1 .10 .003 .001 .000

identical to the one obtained when using equal prior probabilities for all four hy-
potheses: For all prior specifications, the fixed-effect null hypothesis Hf0 receives
most posterior probability, followed by the random-effects null hypothesis Hr0, the

fixed-effect alternative hypothesis Hf1 , and the random-effects alternative hypoth-
esis Hr1.

8.A.1.2 Model-Averaged Bayes Factor for an Overall Effect

For the Default (Two-Sided) prior setting, BF10 ≈ 0.077. Consequently, BF01 ≈
12.987 indicating strong evidence for the absence of an effect. Recall that equal
prior probabilities for all four hypotheses yielded BF01 ≈ 8.696 indicating mod-
erate evidence for the absence of an effect. For the Default (One-Sided) prior
setting, BF10 ≈ 0.016. Consequently, BF01 ≈ 62.5 indicating very strong evi-
dence for the absence of an effect. Equal prior probabilities for all four hypotheses
yielded BF01 ≈ 47.619 indicating also very strong evidence for the absence of an
effect. For the Informed (One-Sided) prior setting, BF10 ≈ 0.004. Consequently,
BF01 ≈ 250 indicating extreme evidence for the absence of an effect. Equal prior
probabilities for all four hypotheses yielded BF01 ≈ 200 indicating also extreme
evidence for the absence of an effect. In sum, the inclusion Bayes factors based on
the different setting of the prior probabilities of the four hypotheses (see Table 8.2)
qualitatively agree with the ones obtained when using equal prior probabilities:
there is evidence for the absence of an effect. However, they differ in the degree
of evidence for the absence of an effect.

8.A.1.3 Model-Averaged Bayes Factor for Heterogeneity

For the Default (Two-Sided) prior setting, BFrf ≈ 0.119. Consequently, BFfr ≈
8.403 indicating moderate evidence for the absence of heterogeneity. Recall that
equal prior probabilities for all four hypotheses yielded BFfr ≈ 5.291 indicating
also moderate evidence for the absence of heterogeneity. For the Default (One-
Sided) prior setting, BFrf ≈ 0.111. Consequently, BFfr ≈ 9.009 indicating moder-
ate evidence for the absence of heterogeneity. Equal prior probabilities for all four
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hypotheses yielded BFfr ≈ 5.263 indicating also moderate evidence for the ab-
sence of heterogeneity. For the Informed (One-Sided) prior setting, BFrf ≈ 0.107.
Consequently, BFfr ≈ 9.346 indicating moderate evidence for the absence of het-
erogeneity. Equal prior probabilities for all four hypotheses yielded BFfr ≈ 5.263
indicating also moderate evidence for the absence of heterogeneity. In sum, the in-
clusion Bayes factors based on the different setting of the prior probabilities of the
four hypotheses (see Table 8.2) qualitatively agree with the ones obtained when
using equal prior probabilities: there is evidence for the absence of heterogeneity.
However, they differ in the degree of evidence for the absence of heterogeneity.

8.A.2 Increasing the Prior Probability of Hr1
8.A.2.1 Hypotheses Posterior Probabilities

Table 8.3 displays the prior probabilities of the hypotheses and the posterior prob-
abilities of the hypotheses for each of the three different prior specifications for µ.
Although the numbers changed, the ordering of the posterior probabilities is simi-
lar to the one obtained when using equal prior probabilities for all four hypotheses:
For all prior specifications, the fixed-effect null hypothesis Hf0 receives most pos-
terior probability, followed by the random-effects null hypothesis Hr0. However,

now the fixed-effect alternative hypothesis Hf1 receives less posterior probability
than the random-effects alternative hypothesis Hr1.

8.A.2.2 Model-Averaged Bayes Factor for an Overall Effect

For the Default (Two-Sided) prior setting, BF10 ≈ 0.056. Consequently, BF01 ≈
17.857 indicating strong evidence for the absence of an effect. Recall that equal
prior probabilities for all four hypotheses yielded BF01 ≈ 8.696 indicating mod-
erate evidence for the absence of an effect. For the Default (One-Sided) prior
setting, BF10 ≈ 0.011. Consequently, BF01 ≈ 90.909 indicating very strong evi-
dence for the absence of an effect. Equal prior probabilities for all four hypotheses
yielded BF01 ≈ 47.619 indicating also very strong evidence for the absence of an
effect. For the Informed (One-Sided) prior setting, BF10 ≈ 0.003. Consequently,
BF01 ≈ 333.333 indicating extreme evidence for the absence of an effect. Equal
prior probabilities for all four hypotheses yielded BF01 ≈ 200 indicating also ex-
treme evidence for the absence of an effect. In sum, the inclusion Bayes factors
based on the different setting of the prior probabilities of the four hypotheses (see
Table 8.3) qualitatively agree with the ones obtained when using equal prior prob-
abilities: there is evidence for the absence of an effect. However, they differ in the
degree of evidence for the absence of an effect.

8.A.2.3 Model-Averaged Bayes Factor for Heterogeneity

For the Default (Two-Sided) prior setting, BFrf ≈ 0.076. Consequently, BFfr ≈
13.158 indicating strong evidence for the absence of heterogeneity. Recall that
equal prior probabilities for all four hypotheses yielded BFfr ≈ 5.291 indicating
moderate evidence for the absence of heterogeneity. For the Default (One-Sided)
prior setting, BFrf ≈ 0.054. Consequently, BFfr ≈ 18.519 indicating strong
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Table 8.3: Prior and posterior probabilities of the four hypotheses of interest for
the Verschuere et al. (2018) Registered Replication Report data. The posterior
probabilities are displayed for three different prior settings for the effect size pa-
rameter µ. Note that the prior probability of Hr1 is set to .70.

Hypothesis p(H) p(H | data)

Default Default Informed
(Two-Sided) (One-Sided) (One-Sided)

Hf0 .10 .687 .805 .833

Hf1 .10 .079 .017 .004
Hr0 .10 .130 .153 .158
Hr1 .70 .104 .026 .006

evidence for the absence of heterogeneity. Equal prior probabilities for all four
hypotheses yielded BFfr ≈ 5.263 indicating moderate evidence for the absence of
heterogeneity. For the Informed (One-Sided) prior setting, BFrf ≈ 0.049. Conse-
quently, BFfr ≈ 20.408 indicating strong evidence for the absence of heterogeneity.
Equal prior probabilities for all four hypotheses yielded BFfr ≈ 5.263 indicating
moderate evidence for the absence of heterogeneity. In sum, the inclusion Bayes
factors based on the different setting of the prior probabilities of the four hypothe-
ses (see Table 8.3) qualitatively agree with the ones obtained when using equal
prior probabilities: there is evidence for the absence of heterogeneity. However,
they differ in the degree of evidence for the absence of heterogeneity.

8.A.3 Summary

In sum, changing the prior probabilities of the hypotheses – as expected – has
an effect on the posterior probabilities of the hypotheses. Furthermore, it also
has an effect on the inclusion Bayes factors, that is, it has an effect on the de-
gree of model-averaged evidence. However, in this particular example, using the
particular changes to the prior probability that we used, it does not change the
qualitative overall conclusions that there is evidence for the absence of an effect
and that there is evidence for the absence of heterogeneity. In general we believe
that unless there is strong prior knowledge that suggests to set the prior probabil-
ities differently, it is prudent to set the prior probabilities of all four hypotheses
uniformly to .25.
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Chapter 9

A Bayesian Model-Averaged
Meta-Analysis of the Power Pose
Effect with Informed and Default
Priors: The Case of Felt Power

Abstract

Carney, Cuddy, and Yap (2010) found that – compared to participants
who adopted constrictive body postures – participants who adopted expan-
sive body postures reported feeling more powerful, showed an increase in
testosterone and a decrease in cortisol, and displayed an increased toler-
ance for risk. However, these power pose effects have recently come under
considerable scrutiny. Here we present a Bayesian meta-analysis of six pre-
registered studies from a special issue, focusing on the effect of power posing
on felt power. Our analysis improves on standard classical meta-analyses in
several ways. First and foremost, we considered only preregistered studies,
eliminating concerns about publication bias. Second, the Bayesian approach
enables us to quantify evidence for both the alternative and the null hypoth-
esis. Third, we use Bayesian model averaging to account for the uncertainty
with respect to the choice for a fixed-effect model or a random-effect model.
Fourth, based on a literature review we obtained an empirically informed
prior distribution for the between-study heterogeneity of effect sizes. This
empirically informed prior can serve as a default choice not only for the in-
vestigation of the power pose effect, but for effects in the field of psychology
more generally. For effect size, we considered a default and an informed
prior. Our meta-analysis yields very strong evidence for an effect of power

This chapter is published as Gronau, Q. F., van Erp, S., Heck, D. W., Cesario, J., Jonas,
K. J., & Wagenmakers, E.–J. (2017). A Bayesian model-averaged meta-analysis of the power
pose effect with informed and default priors: The case of felt power. Comprehensive Results in
Social Psychology, 2, 123–138. doi: https://doi.org/10.1080/23743603.2017.1326760. Also
available as PsyArXiv preprint : https://psyarxiv.com/9z8ch/
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9. A Bayesian Model-Averaged Meta-Analysis of the Power Pose
Effect with Informed and Default Priors: The Case of Felt Power

posing on felt power. However, when the analysis is restricted to partici-
pants unfamiliar with the effect, the meta-analysis yields evidence that is
only moderate.

9.1 Introduction

Could adopting a powerful body posture make us more powerful? Carney et al.
(2010) found that participants who adopted expansive, high-power body postures
(Figure 9.1, top row) as opposed to constrictive, low-power body postures (Fig-
ure 9.1, bottom row) reported feeling more powerful and in charge, showed an
increase in testosterone and a decrease in cortisol, and displayed an increased tol-
erance for risk. The power pose effect has attracted a lot of attention, partly due
to the anticipated consequences for day-to-day life suggesting that it might be
possible to “fake it ‘til you make it”.

However, this power pose effect has recently come under scrutiny. When Rane-
hill et al. (2015) attempted to replicate the effect, they found – similar to the orig-
inal study – that adopting high-power poses increased participants’ self-reported
feelings of power; nevertheless, they did not find an effect on testosterone or corti-
sol nor on behavioral measures such as risk taking. Carney, Cuddy, and Yap (2015)
pointed out a number of methodological differences that they believe might have
been the cause for the diverging results. Recently, Garrison, Tang, and Schme-
ichel (2016) conducted a preregistered replication and extension of the power pose
study, and they failed to identify an effect of power posing on risk taking behav-
ior. Furthermore, in contrast to Ranehill et al. (2015), these authors did not find
evidence for a power pose effect on subjective feelings of power.

In a special issue, seven preregistered studies investigated the effect of power
posing under various circumstances (i.e., A. H. Bailey, LaFrance, & Dovidio, 2017;
Bombari, Schmid Mast, & Pulfrey, 2017; Jackson, Nault, Smart Richman, LaBelle,
& Rohleder, 2017; Keller, Johnson, & Harder, 2017; Klaschinski, Schröder-Abé, &
Schnabel, 2017; Latu, Duffy, Pardal, & Alger, 2017; Ronay, Tybur, van Huijstee, &
Morssinkhof, 2017). Here we present a meta-analysis of the effect of power posing
on self-reported felt power, which was included as a dependent variable in six of
the seven studies in the special issue.

Our analysis improves upon classical analyses in several ways. First, we only
consider a set of preregistered studies which comes with the advantage that publi-
cation bias can be ruled out a priori (cf. the concept of a prospective meta-analysis
in medicine). Second, the Bayesian approach enables us to quantify evidence for
both the alternative hypothesis and for the null hypothesis; note that this evidence
can be seamlessly updated as future studies on the effect become available. Third,
Bayesian model averaging enables us to fully acknowledge uncertainty with respect
to the choice of a fixed-effect or random-effect model; in the fixed-effect model,
the effect is assumed to be identical across studies; in the random-effect model,
the effect is assumed to vary across studies. Instead of adopting one model for
inference and ignoring the other model entirely, we can weight the results of both
models according to their posterior plausibilities. This yields a model-averaged
measure of evidence and a model-averaged estimate for the meta-analytic effect
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Figure 9.1: High-power poses (top row) and low-power poses (bottom row). CC-
BY: Artwork by Viktor Beekman, commissioned by Eric-Jan Wagenmakers.

size. Fourth, the Bayesian approach enables us to incorporate existing knowledge
into our analysis (e.g., Rhodes, Turner, & Higgins, 2015). Based on an extensive
literature review of meta-analyses in the field of psychology, we obtained an in-
formed prior distribution for the between-study heterogeneity. This informed prior
distribution can serve as an informed default not only for the investigation of the
power pose effect in the present meta-analysis, but for the field of psychology more
generally. For effect size we also consider an informed prior distribution based on
knowledge about effect sizes in the field of psychology. As a robustness check with
respect to the prior choice we show that qualitatively similar results are obtained
when we instead use a default prior for the effect size parameter.

The outline of this chapter is as follows: first, we explain the details of our anal-
ysis. Second, we present the results of an extensive literature review that allowed
us to specify an informed prior distribution for the between-study heterogeneity.
Third, we present the results of the model-averaged Bayesian meta-analysis for
two different prior choices for effect size. Finally, we investigate whether the re-
sults change when only participants unaware of the power pose effect are included

215



9. A Bayesian Model-Averaged Meta-Analysis of the Power Pose
Effect with Informed and Default Priors: The Case of Felt Power

in the analysis.

9.2 Method

In our meta-analysis, we focused on the dependent variable felt power which was
measured in all replication studies in the special issue except for the study by
Jackson et al., which was therefore not considered in the analysis. We investigated
the question whether felt power was higher in the high-power condition than in
the low-power condition.

9.2.1 Analysis of Individual Studies

When considering a single study, the power pose effect can be tested using a stan-
dard one-sided, independent-samples t-test. Hence, the first step in our analysis
was to compute one-sided Bayesian t-tests (Gronau, Ly, & Wagenmakers, 2020;
Ly et al., 2016b; Rouder et al., 2009). This allowed us (1) to estimate for each
study the posterior distribution of the standardized effect size that represents our
beliefs about the effect size after having observed the data of that study and (2)
to quantify the evidence that each study provides in favor of the hypothesis that
the power pose effect is positive (H+) versus the null hypothesis that the effect is
zero (H0).

To quantify the evidence that the data provide for or against H+ we computed
the Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995) which is the predictive
updating factor that quantifies how much the data have changed the relative plau-
sibility of the competing models. The Bayes factor has an intuitive interpretation:
when BF+0 = 10 this indicates that the data are ten times more likely under H+

than under H0; when BF+0 = 1/5 this indicates that the data are five times more
likely under H0 than under H+.

9.2.2 Meta-Analysis

The next step in our analysis was to combine the studies with the help of a
Bayesian meta-analysis (e.g., Marsman et al., 2017) to obtain an estimate of the
overall effect size and to quantify the evidence for an effect that takes into account
all studies simultaneously. In a classical meta-analysis the analyst has to make
a choice between a fixed-effect and a random-effect model. A fixed-effect model
makes the assumption that there is one underlying effect size so that the true
effect in each study is identical; differences in the observed effect sizes are solely
due to normally distributed sampling error. This can be formalized as follows:
we assume that yi ∼ N (δfixed, SE

2
i ), where yi, i = 1, 2, ..., n denotes the observed

effect size in the ith of n studies, SEi denotes the corresponding standard error
which is commonly assumed to be known, and δfixed corresponds to the common
true effect size.

In contrast, a random-effect model allows for idiosyncratic study effects, that
is, we no longer impose the constraint that there exists one common true effect
size for all studies. The random study effects are usually assumed to follow a nor-
mal distribution with a mean equal to the overall effect size that we are interested
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in and a standard deviation that corresponds to the between-study heterogene-
ity. Note that analogously to the fixed-effect model, the model still incorporates
random sampling error so that the observed effect size for a given study is not nec-
essarily identical to the true effect size for that study. These assumptions yield a
model with a hierarchical structure which can be formalized as follows: let δrandom

denote the mean of the normal distribution of the study effects (i.e., the quantity
that we are interested in), τ denote the standard deviation of that normal distri-
bution (i.e., between-study heterogeneity), and θi denote the true study effect for
the ith study. Then, θi ∼ N (δrandom, τ

2) and yi | θi ∼ N (θi, SE
2
i ). The structure

of the model allows one to analytically integrate out the random study effects so
that the model can equivalently be written as yi ∼ N (δrandom, τ

2 + SE2
i ) which

can be more convenient from a computational perspective.

9.2.3 Bayesian Model Averaging

The choice of a fixed-effect or random-effect model commonly relies on a test for
heterogeneity or on a priori considerations. Final inference is then based on either
the fixed-effect or random-effect model. When the number of studies is small, this
choice may be difficult; and in certain cases, the choice may be consequential. The
Bayesian approach, however, allows a compromise solution: instead of selecting
either a fixed-effect or random-effect model, we can use Bayesian model averaging
(e.g., Haldane, 1932; Hoeting et al., 1999) and retain all models for final inference.
Conclusions are then based on a combination of all models where the results of
each model are taken into account according to the model’s plausibility in light
of the observed data. Concretely, Bayesian model averaging allows us to obtain
a model-averaged estimate for the meta-analytic effect size (Sutton & Abrams,
2001) and to quantify the overall evidence for an effect that considers both the
fixed-effect and random-effect model (Scheibehenne et al., 2017).

With respect to hypothesis testing, for the current analysis we entertained
four models of interest, shown in Table 9.1: (1) the fixed-effect model H+; (2) the
fixed-effect model H0 (i.e., δfixed = 0); (3) the random-effect model H+; (4) the
random-effect model H0 (i.e., δrandom = 0). The fixed-effect meta-analytic Bayes
factor was obtained by comparing case (1) to case (2); the random-effect meta-
analytic Bayes factor pitched case (3) against case (4). To compute the model-
averaged Bayes factor, we contrasted the summed posterior model probabilities
(i.e., the probability of a model given the data) for cases (1) and (3) against the
summed posterior model probabilities for cases (2) and (4). This assumes that all
four models are equally likely a priori, a common assumption in model averaging
scenarios. In case the prior model probabilities were not identical, the ratio of the
summed posterior model probabilities for cases (1) and (3) over (2) and (4) would
need to be divided by a ratio obtained in a similar fashion but this time based on
the prior model probabilities.

With respect to parameter estimation, we computed a model-averaged effect
size estimate based on the four model versions described above, except that we
no longer imposed the constraint that the effect size has to be positive. In other
words, consistent with standard practice, we imposed a directional constraint for
testing but not for estimation (cf. Jeffreys, 1961, who also used different priors
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Table 9.1: The four meta-analysis models included in the Bayesian model averag-
ing for hypothesis testing.

Hypotheses Fixed-Effect Meta-Analysis Random-Effect Meta-Analysis

H0: No effect Fixed overall effect size δfixed = 0 Mean overall effect size δrandom = 0
Study heterogeneity τ
Study effect size θi (i = 1, 2, . . . , n)

H+: Positive effect Fixed overall effect size δfixed Mean overall effect size δrandom

Study heterogeneity τ
Study effect size θi (i = 1, 2, . . . , n)

for estimation and testing). This reflects the fact that the estimation framework
is generally more exploratory in nature, and this mindset is inconsistent with the
use of hard boundaries. The combined estimate was obtained by combining the
estimates of models (1) and (3) – but without the order-constraints – according
to their posterior model probabilities. To conduct the model-averaged Bayesian
meta-analysis, we used the R package metaBMA (Heck et al., 2019).

9.2.4 Prior Distributions

In the Bayesian approach, model parameters are assigned prior distributions that
reflect the knowledge, uncertainty, or beliefs for the parameters before seeing the
data. Using Bayes’ theorem, these prior distributions are then updated by the data
to yield posterior distributions, which reflect the uncertainty for the parameters
after the data have been observed. Consequently, in order to conduct our Bayesian
analyses, prior distributions were required for all model parameters.

For the standardized effect size, we considered two different prior choices. First,
we used what has now become the default choice in the field of psychology, that is,
a zero-centered Cauchy distribution with scale parameter equal to 1/

√
2 (Morey

& Rouder, 2015). Second, we considered the informed prior distribution reported
in Gronau, Ly, and Wagenmakers (2020): a t distribution with location 0.350,
scale 0.102, and three degrees of freedom, which is displayed in Figure 9.2. This
prior distribution was elicited from Dr. Oosterwijk, a social psychologist at the
University of Amsterdam, for a reanalysis of the Registered Replication Report
on the facial feedback hypothesis (Wagenmakers, Beek, et al., 2016). We believe
this prior distribution is generally plausible for a wide range of small-to-medium
effects in social psychology (i.e., for effects whose presence needs to be ascertained
by statistical analysis). One could elicit a “power pose prior”, but we believe
the resulting distribution would be highly similar to the Oosterwijk prior, and
therefore yield highly similar inferences. Researchers interested in using a specific
“power pose prior” are invited to explore this option using the R code provided
online (https://osf.io/r2cds/).

For the one-sided hypothesis tests, the priors were truncated at zero, that is,
the model encoded the a priori assumption that negative effect sizes are impossible.
For estimating the effect size, however, we removed this truncation. The informed
and default priors are depicted in Figure 9.2. The informed prior expresses the
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Figure 9.2: Depiction of the default and informed prior distribution for the stan-
dardized effect size. The default prior is a Cauchy distribution with scale 1/

√
2,

the informed prior is a t distribution with location 0.350, scale 0.102, and three
degrees of freedom. Figure available at http://tinyurl.com/j9dthma under CC
license https://creativecommons.org/licenses/by/2.0/.

belief that the effect size is positive but most likely small to medium in size. The
default prior on the other hand is more spread out (i.e., less informative) and it is
centered on zero. Figure 9.2 also illustrates how the priors were truncated at zero
for testing whereas for estimation, this truncation was removed.

In addition to the prior distribution for the effect size, the Bayesian meta-
analysis required a prior distribution for the between-study heterogeneity. Here
we chose an informed prior distribution for the between-study standard deviation
τ . This informed prior was based on all available between-study heterogeneity
estimates for mean-difference effect sizes in meta-analyses reported in Psycholog-
ical Bulletin in the years 1990 to 2013 (van Erp et al., 2017, https://osf.io/
preprints/psyarxiv/myu9c). The distribution of these 162 estimates is shown
in Figure 9.3. Note that we have excluded between-study heterogeneity estimates
that were exactly equal to zero, as the prior should reflect knowledge conditional on
the assumption that the random-effect model is true; between-study heterogeneity
estimates of exactly zero, however, suggest that the fixed-effect model was more
appropriate. The distribution of the estimates in Figure 9.3 suggests that (1) the
between-study standard deviations in the field of psychology range from 0 to 1 and
(2) there are more small estimates than large ones. These two features are cap-
tured by an Inverse-Gamma(1, 0.15) distribution (depicted in Figure 9.3 as a solid
line).1 Note, however, that this prior distribution does not completely rule out
the possibility that between-study heterogeneity is larger than 1; the distribution
merely assigns values larger than 1 a relatively small prior credibility. This inverse-

1For computational convenience, it is common practice to assign an inverse-gamma prior to
the variance instead of to the standard deviation. Here we use the inverse-gamma as a convenient
summary for the empirical distribution of the between-study heterogeneity estimates.
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Figure 9.3: Distribution of the non-zero between-study standard deviations
from meta-analyses reported in Psychological Bulletin (1990-2013; van Erp et
al., 2017). The informed Inverse-Gamma(1, 0.15) prior distribution is displayed
on top. Figure available at http://tinyurl.com/lwfa9rd under CC license
https://creativecommons.org/licenses/by/2.0/.

gamma distribution resembles the one obtained when maximum-likelihood meth-
ods are used to fit an inverse-gamma distribution to the between-study heterogene-
ity estimates. However, in our opinion, the maximum-likelihood inverse-gamma
distribution slightly overemphasizes small between-study heterogeneity values. In
the appendix, we present the results obtained under two alternative prior choices
for between-study heterogeneity: (1) the maximum-likelihood inverse-gamma dis-
tribution; and (2) a Beta(1, 2) prior distribution. The results are robust across all
of these prior choices.

Having specified the models and prior distributions, we needed to compute the
probability of the data given each model under consideration. This was achieved
by integrating out the model parameters with respect to their prior distributions.
For the models for which this was not possible analytically, we evaluated this
quantity using numerical integration as implemented in the R package metaBMA

(Heck et al., 2019). R code for reproducing all analyses can be found on the Open
Science Framework: https://osf.io/r2cds/.2

2The R code also allows one to explore alternative prior choices easily.
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Figure 9.4: Bayesian model-averaged meta-analysis using the default Cauchy prior
with scale 1/

√
2 for the standardized effect size. The dots and diamonds corre-

spond to the median of the posterior distribution for the effect size; the lines
correspond to the 95% highest density intervals. The one-sided Bayes factors are
displayed on the right, flanked by classical two-sided p-values. Figure available
at http://tinyurl.com/kz2jpwb under CC license https://creativecommons

.org/licenses/by/2.0/.

9.3 Results

9.3.1 Analysis of Reported Studies: Default Prior on Effect
Size

Figure 9.4 displays the results of the Bayesian analysis using the default effect size
prior for the studies as reported in the special issue. Note that most studies did not
exclude participants who were familiar with the effect, for instance, from viewing
the TED talk about power posing, which is currently the second most popular
TED talk of all time (https://www.ted.com/playlists/171/the most popular

talks of all). This analysis is based on a total of 1071 participants. Below,
we investigate how the results change when considering only those participants
who indicated not to know the power pose effect. The upper part of Figure 9.4
displays the results of the Bayesian t-tests. The left-part of the figure displays for
each study the median of the posterior distribution for the effect size (grey dots)
and a 95% highest density interval (HDI; i.e., the shortest interval that captures
95% of the posterior mass). The right part of the figure shows the one-sided default
Bayes factors in favor ofH+ and, for comparison, the (two-sided) p-values obtained
from classical independent samples t-tests. Based on the posterior distributions, it
appears that there might be a positive effect. However, this is hard to assess since
the 95% highest density intervals are relatively wide. All Bayes factors except one
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are between 1/3 and 3 indicating that there is not much evidence for H+ or H0.
Hence, when considering the individual studies separately, we cannot draw strong
conclusions about whether there is an effect or not.

Each study alone does not provide much evidence in favor of either hypothesis;
however, a Bayesian meta-analysis allows us to obtain an impression of the overall
evidence obtained when considering all studies simultaneously. The lower part
of Figure 9.4 displays the result of the Bayesian meta-analysis using the default
Cauchy prior with scale 1/

√
2 for the meta-analytic effect size. The black dia-

monds display the median of the posterior distribution of the meta-analytic effect
size for the fixed-effect, random-effect, and model-averaged analysis, and the lines
correspond to the 95% highest density intervals. The model-averaged posterior
distribution is obtained by combining the estimates of the fixed-effect and the
random-effect model according to their plausibility in light of the data. The lower
right part of Figure 9.4 shows the meta-analytic one-sided Bayes factors and, for
the fixed-effect and the random-effect model, the two-sided p-value obtained by
conducting classical meta-analyses. The meta-analytic fixed-effect Bayes factor
equals BF+0 = 89.6, indicating very strong evidence in favor of an effect of power
posing on felt power. The meta-analytic random-effect Bayes factor is less extreme
but still indicates evidence for an effect: BF+0 = 9.4. The observed data support
a fixed-effect model more than a random-effect model: the Bayes factor that com-
pares case (1), fixed-effect H+, to case (3), random-effect H+, (not displayed)
indicates that the data are 4.0 times more likely under the fixed-effect model than
under the random-effect model. This is reflected in the model-averaged result:
the meta-analytic model-averaged Bayes factor equals BF+0 = 33.1 indicating
very strong evidence in favor of an effect of power posing on felt power. The
median of the model-averaged meta-analytic effect size is equal to 0.22 [95% HDI:
0.09, 0.34].

To sum up, the Bayesian meta-analytic results based on the default prior for
the effect size provide very strong evidence in favor of the hypothesis that power
posing leads to an increase in felt power.

9.3.2 Analysis of Reported Studies: Informed Prior on Effect
Size

Next, we consider the results based on the informed t prior distribution for the
effect size with location 0.350, scale 0.102, and three degrees of freedom (cf. Fig-
ure 9.2). The results are displayed in Figure 9.5. The effect size posterior dis-
tributions for the individual studies clearly show the influence of the informed
prior distribution: the posteriors are narrower and slightly shifted towards the
location of the informed prior. The individual study one-sided informed Bayes
factors are larger than the default ones. This can be explained by interpreting
the Bayes factor as an assessment tool of the predictive success of two competing
hypotheses. The informed alternative hypothesis makes much riskier predictions
than the default alternative hypothesis; however, these risky predictions are re-
warded because the observed effect sizes fall within the range of values predicted
by the informed hypothesis. Hence, since the predictions match the observed data,
the informed hypothesis yields more evidence for the presence of the power pose
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Figure 9.5: Bayesian model-averaged meta-analysis using the informed t prior with
location 0.350, scale 0.102, and three degrees of freedom for the standardized effect
size (depicted in Figure 9.2). The dots and diamonds correspond to the median of
the posterior distribution for the effect size; the lines correspond to the 95% highest
density intervals. The one-sided Bayes factors are displayed on the right, flanked
by classical two-sided p-values. Figure available at http://tinyurl.com/n8mwfsv
under CC license https://creativecommons.org/licenses/by/2.0/.

effect as compared to an alternative hypothesis that specifies a default prior for
the effect size. Nevertheless, only two of the study-specific Bayes factors provide
moderate evidence for an effect, whereas the other four provide only anecdotal
evidence for H+ or H0.

The informed meta-analytic fixed-effect Bayes factor is BF+0 = 191.8 indicat-
ing extreme evidence in favor of an effect of power posing on felt power. The in-
formed meta-analytic random-effect Bayes factor is less extreme but still indicates
strong evidence for an effect: BF+0 = 20.7. As for the default prior, the observed
data support a fixed-effect model more than a random-effect model, the Bayes
factor that compares case (1), fixed-effect H+, to case (3), random-effect H+, (not
displayed) indicates that the data are 3.9 times more likely under the fixed-effect
model than under the random-effect model (not displayed). The informed meta-
analytic model-averaged Bayes factor is equal to BF+0 = 71.4 indicating very
strong evidence in favor of an effect of power posing on felt power. The median
of the model-averaged meta-analytic effect size is similar to the default one and is
equal to 0.26 [95% HDI: 0.14, 0.37].

To sum up, the Bayesian meta-analytic results based on the informed prior
for the effect size provide very strong evidence in favor of the hypothesis that
power posing leads to an increase in felt power. The informed analysis yields
more evidence for an effect as compared to the default analysis indicating that the
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Figure 9.6: Bayesian model-averaged meta-analysis for the subset of participants
unfamiliar with the effect using the default Cauchy prior with scale 1/

√
2 for the

standardized effect size. The dots and diamonds correspond to the median of the
posterior distribution for the effect size; the lines correspond to the 95% highest
density intervals. The one-sided Bayes factors are displayed on the right, flanked
by classical two-sided p-values. Figure available at http://tinyurl.com/kmfcnhz
under CC license https://creativecommons.org/licenses/by/2.0/.

successful predictions of the informed hypothesis are rewarded.

9.3.3 Moderator Analysis: Knowledge of the Effect (Default
Prior on Effect Size)

Next we investigate whether and how the results change when considering only
participants who indicated to be unaware of the power posing effect. Hence, par-
ticipants who could guess the goal of the study or were familiar with the power
pose TED talk were excluded in all studies under consideration, leaving a total of
809 participants. Figure 9.6 displays the results of the Bayesian analysis using the
default effect size prior. Compared to Figure 9.4, the posterior distributions are
shifted towards smaller values and the 95% highest density intervals are relatively
wide (due to the reduced sample size). Three Bayes factors are between 1/3 and
3 indicating that there is little evidence for H+ or H0, one Bayes factor indicates
moderate evidence for the alternative hypothesis, and two Bayes factors indicate
moderate evidence for the null hypothesis. Hence, similar to the previous anal-
ysis, when considering the individual studies separately, we cannot draw strong
conclusions about whether or not there is an effect.

The lower part of Figure 9.6 displays the result of the Bayesian meta-analysis
using the default Cauchy prior with scale 1/

√
2. The meta-analytic fixed-effect
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Bayes factor equals BF+0 = 4.4 indicating moderate evidence in favor of an ef-
fect of power posing on felt power. The meta-analytic random-effect Bayes factor
equals BF+0 = 1.6 indicating only anecdotal evidence for the alternative hypoth-
esis. The observed data support a fixed-effect model more than a random-effect
model: the Bayes factor that compares case (1), fixed-effect H+, to case (3),
random-effect H+, (not displayed) indicates that the data are 3.1 times more
likely under the fixed-effect model than under the random-effect model. This is
reflected in the model-averaged result: the meta-analytic model-averaged Bayes
factor is equal to BF+0 = 3.1 indicating moderate evidence in favor of an effect
of power posing on felt power. The median of the model-averaged meta-analytic
effect size is equal to 0.18 [95% HDI: 0.03, 0.33].

To sum up, when considering only participants who were unaware of the effect
and using the default effect size prior, we obtain only moderate evidence for an
effect of power posing on felt power. This is in contrast to the results of the
previous analysis in which participants who were familiar with the effect were
mostly not excluded.

9.3.4 Moderator Analysis: Knowledge of the Effect (Informed
Prior on Effect Size)

Next we consider the results based on the informed t prior distribution for effect
size with location 0.350, scale 0.102, and three degrees of freedom (depicted in
Figure 9.2) when taking into account only participants unfamiliar with the effect.
The results are displayed in Figure 9.7. As before, the effect size posterior distri-
butions for the individual studies clearly show the influence of the informed prior
distribution: the posteriors are narrower and slightly shifted towards the location
of the informed prior. Again, the individual study one-sided informed Bayes fac-
tors are larger than the default ones. Nevertheless, only one Bayes factor provides
moderate evidence for an effect, four provide anecdotal evidence for the alternative
or the null hypothesis, and one provides moderate evidence for the null.

The informed meta-analytic fixed-effect Bayes factor equals BF+0 = 6.8, in-
dicating moderate evidence in favor of an effect of power posing on felt power.
The informed meta-analytic random-effect Bayes factor is BF+0 = 2.6, indicating
anecdotal evidence for an effect. As for the default prior, the observed data sup-
port a fixed-effect model more than a random-effect model, the Bayes factor that
compares case (1), fixed-effect H+, to case (3), random-effect H+, (not displayed)
indicates that the data are 3.0 times more likely under the fixed-effect model
than under the random-effect model. The informed meta-analytic model-averaged
Bayes factor is equal to BF+0 = 4.9 indicating moderate evidence in favor of an
effect of power posing on felt power. The median of the model-averaged meta-
analytic effect size is equal to 0.23 [95% HDI: 0.10, 0.36].

To sum up, when considering only participants who were unaware of the effect,
the results were robust with respect to using the informed or the default prior for
the effect size. In both analyses, we found only moderate evidence in favor of the
hypothesis that power posing leads to an increase in felt power.
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Figure 9.7: Bayesian model-averaged meta-analysis for the subset of participants
unfamiliar with the effect using the informed t prior with location 0.350, scale
0.102, and three degrees of freedom for the standardized effect size. The dots
and diamonds correspond to the median of the posterior distribution for the effect
size; the lines correspond to the 95% highest density intervals. The one-sided
Bayes factors are displayed on the right, flanked by classical two-sided p-values.
Figure available at http://tinyurl.com/n7r4huj under CC license https://

creativecommons.org/licenses/by/2.0/.

9.4 Discussion

Six preregistered studies in a special issue were subjected to a Bayesian meta-
analysis of the effect of power posing on self-reported felt power. The Bayesian
approach enabled us to fully acknowledge uncertainty with respect to the choice
of a fixed-effect or a random-effect model, and allowed us to incorporate prior in-
formation about between-study heterogeneity and plausible effect sizes in the field
of psychology. The informed prior distribution for between-study heterogeneity
was based on an extensive literature review, and we believe it may serve as an
informed default in the field of psychology more generally (cf. Rhodes et al., 2015,
for a similar approach in medicine).

When considering the studies as reported (i.e., most studies did not exclude
participants who were familiar with the effect), we obtained very strong evidence
that adopting high-power poses increases subjective feelings of power; this was the
case for both the analysis based on a default prior and an informed prior for the
effect size. However, when considering only participants unfamiliar with the effect,
we obtained only moderate evidence for an effect for both the default and informed
effect size prior analysis. This suggests that knowledge of the effect might play a
role with respect to the size of the effect of power posing on felt power, although
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a formal assessment of this possibility requires a different statistical analysis (e.g.,
Gelman & Stern, 2006; Nieuwenhuis, Forstmann, & Wagenmakers, 2011), the de-
velopment of which is beyond the scope of this chapter. Future studies might
investigate this potential moderating effect and explore the extent to which the
felt power effect is a demand characteristic. Note that the Bayesian approach al-
lows us to seamlessly update the evidence as more studies become available (e.g.,
Scheibehenne et al., 2017).

Our meta-analysis focused on the effect of power posing on feelings of subjective
power and did not consider behavioral or hormonal measures. Nevertheless, we
would like to emphasize that given a set of preregistered studies that include the
behavioral and hormonal measures of interest, our methodology can readily be
applied to quantify evidence in a coherent Bayesian way for those measures as
well.

R scripts for reproducing the analyses presented in this chapter are available at
https://osf.io/r2cds/.
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Figure 9.8: Distribution of the non-zero between-study standard deviations from
meta-analyses reported in Psychological Bulletin (1990-2013; van Erp et al.,
2017). The informed Inverse-Gamma(1, 0.15) prior distribution is displayed on
top as a solid line, the maximum-likelihood inverse-gamma distribution is de-
picted as a dashed line, and the Beta(1, 2) distribution is depicted as a dot-
ted line. Figure available at http://tinyurl.com/k6yyz6b under CC license
https://creativecommons.org/licenses/by/2.0/.

9.A Robustness Check: Different Priors for the
Between-Study Heterogeneity

Here we investigate whether and how the analyses results change under different
priors for the between-study heterogeneity. Specifically, we explore two alternative
prior choices to the Inverse-Gamma(1, 0.15) prior: (1) the maximum-likelihood
inverse-gamma distribution (depicted as a dashed line in Figure 9.8); and (2) a
Beta(1, 2) prior distribution (depicted as a dotted line in Figure 9.8). Table 9.2
displays the results for the reported data and Table 9.3 displays the results for
the data of the subset of participants who were unfamiliar with the power pose
effect: for all three prior choices for the between-study heterogeneity the results
are highly similar.
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Table 9.2: Meta-analytic Bayes factors (BF+0) for different prior choices for the
between-study heterogeneity (reported data).

Inverse-Gamma(1, 0.15) ML Inverse-Gamma Beta(1, 2)

meta-analytic
fixed-effect 89.6 89.6 89.6
Bayes factor

informed meta-
analytic fixed- 191.8 191.8 191.8
effect Bayes
factor

meta-analytic
random-effect 9.4 10.0 9.2
Bayes factor

informed meta-
analytic random- 20.7 22.0 20.2
effect Bayes
factor

meta-analytic
model-averaged 33.1 32.1 35.1
Bayes factor

informed meta-
analytic model- 71.4 69.1 75.5
averaged Bayes
factor
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Table 9.3: Meta-analytic Bayes factors (BF+0) for different prior choices for the
between-study heterogeneity (unfamiliar participants).

Inverse-Gamma(1, 0.15) ML Inverse-Gamma Beta(1, 2)

meta-analytic
fixed-effect 4.4 4.4 4.4
Bayes factor

informed meta-
analytic fixed- 6.8 6.8 6.8
effect Bayes
factor

meta-analytic
random-effect 1.6 1.7 1.7
Bayes factor

informed meta-
analytic random- 2.6 2.7 2.7
effect Bayes
factor

meta-analytic
model-averaged 3.1 3.1 3.3
Bayes factor

informed meta-
analytic model- 4.9 4.8 5.1
averaged Bayes
factor
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Chapter 10

Bayesian Evidence Accumulation in
Experimental Mathematics: A Case

Study of Four Irrational Numbers

Abstract

Many questions in experimental mathematics are fundamentally induc-
tive in nature. Here we demonstrate how Bayesian inference – the logic
of partial beliefs – can be used to quantify the evidence that finite data
provide in favor of a general law. As a concrete example we focus on the
general law which posits that certain fundamental constants (i.e., the irra-
tional numbers π, e,

√
2, and ln 2) are normal; specifically, we consider the

more restricted hypothesis that each digit in the constant’s decimal expan-
sion occurs equally often. Our analysis indicates that for each of the four
constants, the evidence in favor of the general law is overwhelming. We
argue that the Bayesian paradigm is particularly apt for applications in ex-
perimental mathematics, a field in which the plausibility of a general law
is in need of constant revision in light of data sets whose size is increasing
continually and indefinitely.

10.1 Introduction

Experimental mathematics focuses on data and computation in order to ad-
dress and discover mathematical questions that have so far escaped formal proof
(D. H. Bailey & Borwein, 2009). In many cases, this means that mathematical
conjectures are examined by studying their consequences for a large range of data;

This chapter is published as Gronau, Q. F., & Wagenmakers, E.–J. (2018). Bayesian evi-
dence accumulation in experimental mathematics: A case study of four irrational numbers. Ex-
perimental Mathematics, 27, 277–286. doi: https://doi.org/10.1080/10586458.2016.1256006.
Also available as arXiv preprint : https://arxiv.org/abs/1602.03423
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every time a consequence is confirmed this increases one’s confidence in the verac-
ity of the conjecture. Complete confidence in the truth or falsehood of a conjecture
can only be achieved with the help of a rigorous mathematical proof. Nevertheless,
in between absolute truth and falsehood there exist partial beliefs, the intensity
of which can be quantified using the rules of probability calculus (Borel, 1965;
Ramsey, 1926).

Thus, an important role in experimental mathematics is played by heuristic
reasoning and induction. Even in pure mathematics, inductive processes facilitate
novel development:

“every mathematician with some experience uses readily and effec-
tively the same method that Euler used which is basically the following:
To examine a theorem T , we deduce from it some easily verifiable con-
sequences C1, C2, C3, . . . . If one of these consequences is found to be
false, theorem T is refuted and the question is decided. But if all the
consequences C1, C2, C3, . . . happen to be valid, we are led after a more
or less lengthy sequence of verifications to an ‘inductive’ conviction of
the validity of theorem T . We attain a degree of belief so strong that
it seems superfluous to make any ulterior verifications.” (Polya, 1941,
pp. 455-456)

Here we illustrate how to formalize the process of induction for a venerable
problem in experimental mathematics: we will quantify degree of belief in the
statement that particular irrational numbers (i.e., π, e,

√
2, and ln 2) are normal,

or, more specifically, that the 10 digits of their decimal expansions occur equally
often. This illustration does not address the more complicated question of whether
all sequences of digits occur equally often: the sequence studied here is of length
1. Nevertheless, the simplified problem highlights the favorable properties of the
general method and can be extended to more complicated scenarios.

To foreshadow the conclusion, our study shows that there is overwhelming
evidence in favor of the general law that all digits in the decimal expansion of π,
e,
√

2, and ln 2 occur equally often. Our statistical analysis improves on standard
frequentist inference in several major ways that we elaborate upon below.

10.2 Bayes Factors to Quantify Evidence for General Laws

In experimental mathematics, the topic of interest often concerns the possible
existence of a general law. This law – sometimes termed the null hypothesis H0 –
specifies an invariance (e.g., π is normal) that imposes some sort of restriction on
the data (e.g., the digits of the decimal expansion of π occur equally often). The
negation of the general law – sometimes termed the alternative hypothesis H1 –
relaxes the restriction imposed by the general law.

In order to quantify the evidence that the data provide for or against a gen-
eral law, Jeffreys (1961) developed a formal system of statistical inference whose
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centerpiece is the following equation (Wrinch & Jeffreys, 1921, p. 387):

p(H0 | data)

p(H1 | data)︸ ︷︷ ︸
Posterior odds

=
p(H0)

p(H1)︸ ︷︷ ︸
Prior odds

× p(data | H0)

p(data | H1)︸ ︷︷ ︸
Bayes factor BF01

. (10.1)

Jeffreys’s work focused on the Bayes factor, which is the change from prior to
posterior model odds brought about by the data. The Bayes factor also quantifies
the relatively predictive adequacy of the models under consideration, and the log
of the Bayes factor is the weight of evidence provided by the data (Kass & Raftery,
1995). When BF01 = 10 this indicates that the data are 10 times more likely under
H0 than under H1; when BF01 = .2 this indicates that the data are 5 times more
likely under H1 than under H0.

Let H0 be specified by a series of nuisance parameters ζ and, crucially, a
parameter of interest that is fixed at a specific value, θ = θ0. Then H1 is specified
using similar nuisance parameters ζ, but in addition H1 releases the restriction
on θ. In order to obtain the Bayes factor one needs to integrate out the model
parameters as follows:

BF01 =

∫
Z
p(data | θ0, ζ,H0) p(ζ | θ0,H0) dζ∫

Θ

∫
Z
p(data | θ, ζ,H1) p(θ, ζ | H1) dζ dθ

. (10.2)

Equation 10.2 reveals several properties of Bayes factor inference that distin-
guish it from frequentist inference using p values. First, the Bayes factor contrasts
two hypotheses, the general law and its negation. Consequently, it is possible
to quantify evidence in favor of the general law (i.e., whenever BF01 > 1). As
we will see below, one of our tests for the first 100 million digits of π produces
BF01 = 1.86×1030, which is overwhelming evidence in favor of the law that the dig-
its of the decimal expansion of π occur equally often; in contrast, a non-significant
p value can only suggest a failure to reject H0 (e.g., Frey, 2009). Moreover, as we
will demonstrate below, the evidential meaning of a p value changes with sample
size (Lindley, 1957). This is particularly problematic for the study of the behav-
ior of decimal expansions, since there can be as many as 10 trillion digits under
consideration.

Second, the Bayes factor respects the probability calculus and allows coherent
updating of beliefs; specifically, consider two batches of data, y1 and y2. Then,
BF01(y1, y2) = BF01(y1) × BF01(y2 | y1): the Bayes factor for the joint data set
can be decomposed as the product of the Bayes factor for the first batch multiplied
by the Bayes factor for the second batch, conditional on the information obtained
from the first data set. Consequently – and in contrast to p value inference – Bayes
factors can be seamlessly updated as new data arrive, indefinitely and without a
well-defined sampling plan (Berger & Berry, 1988a, 1988b). This property is par-
ticularly relevant for the study of normality of fundamental constants, since new
computational and mathematical developments continually increase the length of
the decimal expansion (Wrench Jr, 1960).
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10.3 The Normality of Irrational Numbers

A real number x is normal in base b if all of the digit sequences in its base b
expansion occur equally often (e.g., Borel, 1909); consequently, each string of t
consecutive digits has limiting frequency b−t. In our example, we consider the
decimal expansion and focus on strings of length 1. Hence, normality entails that
each digit occurs with limiting frequency 1/10.

The conjecture that certain fundamental constants – irrational numbers such
as π, e,

√
2, and ln 2 – are normal has attracted much scientific scrutiny (e.g.,

D. H. Bailey & Borwein, 2009; D. H. Bailey & Crandall, 2001; Borwein, Bailey,
& Bailey, 2004). Aside from theoretical interest and practical application, the
enduring fascination with this topic may be due in part to the paradoxical result
that the digits sequences are perfectly predictable yet apparently appear random:

“Plenty of arrangements in which design had a hand [...] would be
quite indistinguishable in their results from those in which no design
whatever could be traced. Perhaps the most striking case in point here
is to be found in the arrangement of the digits in one of the natural
arithmetical constants, such as π or e, or in a table of logarithms. If
we look to the process of production of these digits, no extremer in-
stance can be found of what we mean by the antithesis of randomness:
every figure has its necessarily pre-ordained position, and a moment’s
flagging of intention would defeat the whole purpose of the calculator.
And yet, if we look to results only, no better instance can be found
than one of these rows of digits if it were intended to illustrate what
we practically understand by a chance arrangement of a number of
objects. Each digit occurs approximately equally often, and this ten-
dency developes [sic] as we advance further [...] In fact, if we were to
take the whole row of hitherto calculated figures, cut off the first five
as familiar to us all, and contemplate the rest, no one would have the
slightest reason to suppose that these had not come out as the results
of a die with ten equal faces.” (Venn, 1888, p. 111)

But are constants such as π, e,
√

2, and ln 2 truly normal? Intuitive arguments
suggest that normality must be the rule (Venn, 1888, pp. 111-115) but so far
the problem has eluded a rigorous mathematical proof. In lieu of such a proof,
research in experimental mathematics has developed a wide range of tests to assess
whether or not the hypothesis of normality can be rejected (e.g., D. H. Bailey et
al., 2012; Frey, 2009; Ganz, 2014; Jaditz, 2000; Marsaglia, 2005; Tu & Fischbach,
2005, p. 281), some of which involve visual methods of data presentation (e.g.,
Aragón Artacho, Bailey, Borwein, & Borwein, 2012; Venn, 1888, p. 118). In
line with Venn’s conjecture, most tests conclude that for the constants under
investigation, the hypothesis of normality cannot be rejected.

However, to the best of our knowledge only one study has tried to quantify the
strength of inductive support in favor of normality (i.e., D. H. Bailey et al., 2012).
Below we outline a multinomial Bayes factor test of equivalence that allows one
to quantify the evidence in favor of the general law that each digit occurs equally
often.
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10.4 A Bayes Factor Multinomial Test for Normality

The general law or null hypothesis H0 states that π, e,
√

2, and ln 2 are normal.
Here we consider the more restricted law that each digit in the decimal expansion
occurs equally often (i.e., we focus on series of length 1 only). Hence, H0 stipulates
that θ0j = 1

10 ∀ j ∈ {0, 1, . . . , 9}, where j indexes the digits.
Next we need to specify our expectations under H1, that is, our beliefs about

the distribution of digit occurrences under the assumption that the general law
does not hold, and before having seen actual data. We explore two alternative
models. The first model assigns the digit probabilities θj an uninformative Dirich-
let prior D(a = 1); under this alternative hypothesis Ha=1

1 , all combinations of
digit probabilities are equally likely a priori. In other words, the predictions of
Ha=1

1 are relatively imprecise. The second model assigns the digit probabilities
θj an informative Dirichlet prior D(a = 50); under this alternative hypothesis
Ha=50

1 , the predictions of Ha=50
1 are relatively precise, and similar to those made

by H0. In effect, the predictions from Ha=50
1 are the same as those made by a

model that is initialized with an uninformative Dirichlet prior D(a = 1) which is
then updated based on 49 hypothetical occurrences for each of the ten digits, that
is, a hypothetical sequence of a total of 490 digits that corresponds perfectly with
H0.

Thus, model Ha=1
1 yields predictions that are relatively imprecise, whereas

model Ha=50
1 yields predictions that are relatively precise. The Bayes factor for

H0 versus H1 is an indication of relative predictive adequacy, and by constructing
two very different versions of H1 – one predictively dissimilar to H0, one predic-
tively similar – our analysis captures a wide range of plausible outcomes (e.g.,
Spiegelhalter, Freedman, & Parmar, 1994).

With H0 and H1 specified, the Bayes factor for the multinomial test of equiv-
alence (O’Hagan & Forster, 2004, p. 350) is given by

BF01 =
B(a)

B(a+ n)

9∏
j=0

θ
nj
0j

=
B(a)

B(a+ n)

9∏
j=0

10−nj ,

(10.3)

where a and n are vectors of length ten (i.e., the number of different digits); the
elements of n contain the number of occurrences for each of the ten digits. Finally,
B(·) is a generalization of the beta distribution (O’Hagan & Forster, 2004, p. 341):

B(a) =

∏9
j=0 Γ(aj)

Γ
(∑9

j=0 aj

) , (10.4)

where Γ(t) is the gamma function defined as Γ(t) =
∫∞

0
xt−1e−x dx. For compu-

tational convenience we use the natural logarithm of the Bayes factor:

log BF01 = logB(a)− logB(a+ n)−N log 10, (10.5)

where N is the total number of observed digits.
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10.4.1 Example 1: The Case of π

In our first example we compute multinomial Bayes factors for the digits of π.
We compute the Bayes factor sequentially, as a function of an increasing number
of available digits, with an upper bound of 100 million. Figure 10.1 displays the
results in steps of 1,000 digits. The Bayes factor that contrasts H0 versus Ha=1

1 is
indicated by the black line, and it shows that the evidence increasingly supports
the general law. After all 100 million digits have been taken into account, the
observed data are 1.86 × 1030 times more likely to occur under H0 than under
Ha=1

1 . The extent of this support is overwhelming. The red line indicates the
maximum Bayes factor, that is, the Bayes factor that is obtained in case the digits
were to occur equally often – that is, hypothetical data perfectly consistent with
H0.

The dark grey area in Figure 10.1 indicates where a frequentist p value hy-
pothesis test would fail to reject the null hypothesis. This area was determined in
two steps. First, we considered the hypothetical distribution of counts across the
ten digit categories and constructed a threshold data set for which H0 has a 5%
chance of producing outcomes that are at least as extreme. Second, this threshold
data set was used to compute a Bayes factor, and this threshold Bayes factor is
plotted in Figure 10.1 as the lower bound of the dark grey area.

In order to construct the threshold data set, the number of counts in each
digit category was obtained as follows. In this multinomial scenario there are
nine degrees of freedom. Without loss of generality, the number of counts in
the first eight of ten categories may be set equal to the expected frequency of
N
10 : n0, n1, . . . , n7 = N

10 . Consequently, the first eight summands of the χ2-test

formula are equal to zero. Furthermore,
∑9
j=0 nj = N , so that if n8 is known, n9

is determined by n9 = 2
10N − n8. We then obtain the number of counts in the

ninth category n8 by solving the following quadratic equation for n8:

χ2
95% =

(
n8 − N

10

)2
N/10

+

((
2
10 N − n8

)
− N

10

)2
N/10

, (10.6)

where χ2
95% denotes the 95-th percentile of the χ2 distribution with nine degrees

of freedom.
Figure 10.1 shows that the height of the dark grey area’s lower bound increases

with N . This means that it is possible to encounter a data set for which the
Bayes factor indicates overwhelming evidence in favor of H0, whereas the fixed-α
frequentist hypothesis test suggests that H0 ought to be rejected. In this way
Figure 10.1 provides a visual illustration of the Jeffreys-Lindley paradox (Jeffreys,
1961; Lindley, 1957), a paradox that will turn out to be especially relevant for the
later analysis of e,

√
2, and ln 2.

A qualitative similar pattern of results is apparent when we consider the grey
line in Figure 10.1: the Bayes factor that contrasts H0 versus Ha=50

1 . Because
this model makes predictions that are relatively similar to those of H0, the data
are less diagnostic than before. Nevertheless, the evidence increasingly supports
the general law. After all 100 million digits are observed, the observed data are
BF01 = 1.92× 1022 times more likely to occur under H0 than under Ha=50

1 . The
extent of this support remains overwhelming.
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Figure 10.1: Sequential Bayes factors in favor of equal occurrence probabilities
based on the first 100 million digits of π. The results in the top part of the panel
correspond to an uninformative D(a = 1) prior for the alternative hypothesis;
the results in the lower part of the panel correspond to the use of an informative
D(a = 50) prior. The red lines indicate the maximum possible evidence for H0,
and the grey areas indicate where 95% of the Bayes factors would fall if H0 were
true. After 100 million digits, the final Bayes factor under a D(a = 1) prior
is BF01 = 1.86 × 1030 (log BF01 = 69.70); under a D(a = 50) prior, the final
Bayes factor equals BF01 = 1.92 × 1022 (log BF01 = 51.31). Figure available
at http://tinyurl.com/zelm4o4 under CC license https://creativecommons

.org/licenses/by/2.0/.

For completeness, we also computed Bayes factors based on the first trillion dec-
imal digits of π as reported in D. H. Bailey and Borwein (2009, p. 11) (not shown).
As expected from the upward evidential trajectories in Figure 10.1, increasing the
sequence length strengthens the support in favor of the general law: based on one
trillion decimal digits, the D(a = 1) prior for H1 yields BF01 = 3.65 × 1046

(log BF01 = 107.29)1, and the D(a = 50) prior yields BF01 = 4.07 × 1038

(log BF01 = 88.90).
Finally, consider the fact that the two evidential trajectories – one for a com-

parison against Ha=1
1 , one for a comparison against Ha=50

1 – have a similar shape

1Such an excessive degree of evidence in favor of a general law may well constitute a world
record.
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and appear to differ only by a constant factor. This pattern is not a coincidence,
and it follows from the nature of sequential updating for Bayes factors (Jeffreys,
1961, p. 334). Recall that there exist two mathematically equivalent ways to up-
date the Bayes factor when new data y2 appear. The first method is to compute
a single new Bayes factor using all of the available observations, BF(y = y1, y2);
the second method is to compute a Bayes factor only for the new data, but based
on the posterior distribution that is the result of having encountered the previous
data – this Bayes factor, BF(y2 | y1) is then multiplied by the Bayes factor for the
old data, BF(y1) to yield the updated Bayes factor BF(y = y1, y2).

Now let y1 denote a starting sequence of digits large enough so that the joint
posterior distribution for the θj ’s under Ha=1

1 is relatively similar to that under
Ha=50

1 (i.e., when the data are said to have overwhelmed the prior). From that
point onward, the change in the Bayes factor as a result of new data y2, BF(y2 |
y1), will be virtually identical for both instantiations of H1. Hence, following
an initial phase of posterior convergence, the subsequent evidential updates are
almost completely independent of the prior distribution on the model parameters.2

Equation 10.1 shows that the Bayes factor quantifies the change in belief
brought about by the data; as a first derivative of belief (expressed on the log
scale), it achieves independence of the prior model log odds. In turn, Figure 10.1
illustrates that the change in the log Bayes factor – the second derivative of belief
– achieves independence of the prior distribution on the model parameters, albeit
only in the limit of large samples.

The next three cases concern a study of the irrational numbers e,
√

2, and ln 2;
the analysis and conclusion for these cases echo the ones for the case of π.

10.4.2 Example 2: The Case of e

In our second example we compute multinomial Bayes factors for the digits of the
base of the natural logarithm: Euler’s number e. Proceeding in similar fashion as
for the case of π, Figure 10.2 shows the evidential trajectories (in steps of 1,000
digits) for the first 100 million digits of e.3 As was the case for π, the upward
trajectories signal an increasing degree of support in favor of the general law.
After all 100 million digits have been taken into account, the observed data are
2.61×1030 times more likely to occur under H0 than under Ha=1

1 , and 2.69×1022

times more likely under H0 than under Ha=50
1 . Again, the extent of this support

is overwhelming.
Note that, as for the case of π, the two evidential trajectories – one for a

comparison against Ha=1
1 , one for a comparison against Ha=50

1 – have a similar
shape and appear to differ only by a constant factor. In contrast to the case of π,
however, the Jeffreys-Lindley paradox is more than just a theoretical possibility:
Figure 10.2 shows that the evidential trajectories move outside the grey area when

2That is, after a sufficient number of observations, the trajectories of the log Bayes factors
for the different priors for H1 are equal, only shifted by a constant. In fact, regardless of the
irrational number under consideration, this constant – which corresponds to the difference in
log(BFa=1

01 ) and log(BFa=50
01 ) – approaches 18.39 (for a derivation see the appendix).

3Data were obtained using the pifast software (http://numbers.computation.free.fr/
Constants/PiProgram/pifast.html).
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Figure 10.2: Sequential Bayes factors in favor of equal occurrence probabilities
based on the first 100 million digits of e. The results in the top part of the panel
correspond to an uninformative D(a = 1) prior for the alternative hypothesis;
the results in the lower part of the panel correspond to the use of an informative
D(a = 50) prior. The red lines indicate the maximum possible evidence for H0,
and the grey areas indicate where 95% of the Bayes factors would fall if H0 were
true. After 100 million digits, the final Bayes factor under a D(a = 1) prior
is BF01 = 2.61 × 1030 (log BF01 = 70.04); under a D(a = 50) prior, the final
Bayes factor equals BF01 = 2.69 × 1022 (log BF01 = 51.65). Figure available
at http://tinyurl.com/h3wenqo under CC license https://creativecommons

.org/licenses/by/2.0/.

the total digit count is between 82, 100 and 254, 000, meaning that for those digit
counts the frequentist hypothesis test (with a fixed α-level of .05) suggests that H0

ought to be rejected. For the same data, both Bayes factors indicate compelling
evidence in favor of H0.4

4A frequentist statistician may object that this is a sequential design whose proper analysis
demands a correction of the α level. However, the same data may well occur in a fixed sample
size design. In addition, the frequentist correction of α levels is undefined when the digit count
increases indefinitely.
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10.4.3 Example 3: The Case of
√

2

In our third example we compute multinomial Bayes factors for the digits of
√

2.
Proceeding in similar fashion as above, Figure 10.3 shows the evidential trajecto-
ries (in steps of 1,000 digits) for the first 100 million digits of

√
2.5 As was the

case for π and e, upward evidential trajectories reveal an increasing degree of sup-
port in favor of the general law. After all 100 million digits have been taken into
account, the observed data are 7.29 × 1030 times more likely to occur under H0

than under Ha=1
1 , and 7.52× 1022 times more likely under H0 than under Ha=50

1 .
As before, the extent of this support is overwhelming.

As Figure 10.3 shows, the analysis of
√

2 provides yet another demonstration of
the Jeffreys-Lindley paradox: when the total digit count ranges between 1 million
and 2 million, and between 20 and 40 million (especially close to 40 million), a
frequentist analysis occasionally rejects H0 at an α-level of .05 (i.e., the evidential
trajectories temporarily leave the grey area) whereas, for the same data, both
Bayes factors indicate compelling evidence in favor of H0.

10.4.4 Example 4: The Case of ln 2

In our fourth and final example we compute multinomial Bayes factors for the
digits of ln 2. Figure 10.4 shows the evidential trajectories (in steps of 1,000
digits) for the first 100 million digits of ln 2.6 As was the case for π, e, and√

2, upward trajectories reflect the increasing degree of support in favor of the
general law. After all 100 million digits have been taken into account, the observed
data are 7.58 × 1029 times more likely to occur under H0 than under Ha=1

1 , and
7.81× 1021 times more likely under H0 than under Ha=50

1 . As Figure 10.4 shows,
the analysis of ln 2 provides again a demonstration of the Jeffreys-Lindley paradox:
the evidential trajectories leave the grey area multiple times indicating that a
frequentist analysis rejects H0 at an α-level of .05 whereas, for the same data,
both Bayes factors indicate compelling evidence in favor of H0.

10.5 Alternative Analysis

The analyses presented so far used two different Dirichlet distributions as a prior
for the parameter vector under the alternative hypothesis H1. In this way, we
demonstrated that the results do not change qualitatively when considering an
uninformed or an informed Dirichlet prior distribution. A Dirichlet distribution is
commonly used as a prior distribution for the parameter vector of a multinomial
likelihood since it conveniently leads to an analytical solution for the Bayes factor.

However, one might ask whether the results are sensitive to the particular
choice of the family of prior distributions used to specify the alternative hypothesis
H1, that is the family of Dirichlet distributions. To highlight the robustness of our
conclusion, we present the results of an analysis that is based on a more flexible

5Data were obtained using the pifast software (http://numbers.computation.free.fr/
Constants/PiProgram/pifast.html).

6Data were obtained using the pifast software (http://numbers.computation.free.fr/
Constants/PiProgram/pifast.html).
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10.5. Alternative Analysis

Figure 10.3: Sequential Bayes factors in favor of equal occurrence probabilities
based on the first 100 million digits of

√
2. The results in the top part of the panel

correspond to an uninformative D(a = 1) prior for the alternative hypothesis;
the results in the lower part of the panel correspond to the use of an informative
D(a = 50) prior. The red lines indicate the maximum possible evidence for H0,
and the grey areas indicate where 95% of the Bayes factors would fall if H0 were
true. After 100 million digits, the final Bayes factor under a D(a = 1) prior
is BF01 = 7.29 × 1030 (log BF01 = 71.06); under a D(a = 50) prior, the final
Bayes factor equals BF01 = 7.52 × 1022 (log BF01 = 52.67). Figure available
at http://tinyurl.com/jgwu523 under CC license https://creativecommons

.org/licenses/by/2.0/.

prior distribution than the Dirichlet distribution, namely a two component mixture
of Dirichlet distributions. Mixture distributions have the property that the shape
of the density is extremely flexible and can easily account for skewness, excess
kurtosis, and even multi-modality (Frühwirth–Schnatter, 2006) which makes them
an ideal candidate for testing the sensitivity to a wide range of prior distributions.
As Dalal and Hall (1983) showed, in fact any prior distribution may be arbitrarily
closely approximated by a suitable mixture of conjugate prior distributions (i.e.,
prior distributions that, combined with a certain likelihood, lead to a posterior
distribution that is in the same family of distributions as the prior distribution).7

7Of course, in some cases this may require a very “rich” mixture, that is, a mixture prior
with many components.
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Figure 10.4: Sequential Bayes factors in favor of equal occurrence probabilities
based on the first 100 million digits of ln 2. The results in the top part of the panel
correspond to an uninformative D(a = 1) prior for the alternative hypothesis; the
results in the lower part of the panel correspond to the use of an informative
D(a = 50) prior. The red lines indicate the maximum possible evidence for H0,
and the grey areas indicate where 95% of the Bayes factors would fall if H0 were
true. After 100 million digits, the final Bayes factor under a D(a = 1) prior
is BF01 = 7.58 × 1029 (log BF01 = 68.80); under a D(a = 50) prior, the final
Bayes factor equals BF01 = 7.81 × 1021 (log BF01 = 50.41). Figure available
at http://tinyurl.com/jqdyd3w under CC license https://creativecommons

.org/licenses/by/2.0/.

As an example, we considered a two component mixture of a D(a1 = 5)
Dirichlet distribution which assigns more mass to probability vectors that have
components that are similar to each other (i.e., similar digit probabilities) and a
D(a2 = 1/5) Dirichlet distribution which assigns more mass to the corners of the
simplex (i.e., one digit probability dominates) where the mixing weight was equal
to w = 0.5.8 It is easily shown that also under this prior choice, the Bayes factor is

available analytically. Recall that the Bayes factor is defined as BF01 = p(data|H0)

p(data|H1)
.

p(data | H0) is obtained by inserting θ0j = 1
10 ∀ j ∈ {0, 1, . . . , 9} into the multino-

8R code that allows one to explore how the results change for a different choice of a two
component Dirichlet mixture prior is available on the Open Science Framework under https://

osf.io/cmn2z/.
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10.5. Alternative Analysis

Figure 10.5: Sequential Bayes factors in favor of equal occurrence probabili-
ties based on the first 100 million digits of π, e,

√
2, and ln 2. The results

correspond to the use of a two component mixture prior of a D(a1 = 5)
and D(a2 = 1/5) Dirichlet distribution where the mixing weight was equal
to w = 0.5. The red lines indicate the maximum possible evidence for H0,
and the grey areas indicate where 95% of the Bayes factors would fall if H0

were true. Figure available at http://tinyurl.com/hw4gmlr under CC license
https://creativecommons.org/licenses/by/2.0/.

mial likelihood. In order to obtain p(data | H1), we use the fact that any mixture
of conjugate prior distributions is itself conjugate, that is, leads to a posterior
distribution that is again a mixture of the same family of distributions, only with
updated parameters (Dalal & Hall, 1983). Hence, since the Dirichlet distribution
is conjugate to the multinomial likelihood, the posterior distribution when using
a mixture of Dirichlet distributions as a prior is again a mixture of Dirichlet dis-
tributions (with updated parameters). This implies that we know the normalizing
constant of the posterior distribution under the alternative hypothesis H1 which
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is equivalent to p(data | H1). Hence, we can calculate the Bayes factor as follows:

BF01 =
p(data | H0)

p(data | H1)

=
N !

n0!n1!...n9!

∏9
j=0 θ

nj
0j∫

Θ

N !
n0!n1!...n9!

∏9
j=0 θ

nj
j (w 1

B(a1)

∏9
j=0 θ

a1j−1
j + (1− w) 1

B(a2)

∏9
j=0 θ

a2j−1
j )dθ

=

∏9
j=0 θ

nj
0j

w 1
B(a1)

∫
Θ

∏9
j=0 θ

a1j+nj−1
j dθ + (1− w) 1

B(a2)

∫
Θ

∏9
j=0 θ

a2j+nj−1
j dθ

=

∏9
j=0 θ

nj
0j

w B(a1+n)
B(a1) + (1− w) B(a2+n)

B(a2)

.

(10.7)

Figure 10.5 displays the results for the 100 million digits of the four irrational
numbers that are based on the two component mixture prior described above. For
π, the final Bayes factor equals 1.41 × 1027; for e, the final Bayes factor equals
1.97 × 1027; for

√
2, the final Bayes factor equals 5.52 × 1027; for ln 2 the final

Bayes factor equals 5.73× 1026.
The results based on the mixture prior are very similar to the previous ones,

that is, we again obtain overwhelming support in favor of the assumption that
all digits occur equally often; hence, we conclude that inference appears to be
relatively robust to the particular choice of prior distribution that is used.

10.6 Discussion and Conclusion

With the help of four examples we illustrated how Bayesian inference can be used
to quantify evidence in favor of a general law (Jeffreys, 1961). Specifically, we
examined the degree to which the data support the conjecture that the digits in
the decimal expansion of π, e,

√
2, and ln 2 occur equally often. Our main analysis

featured two prior distributions used to instantiate models as alternatives to the
general law: the alternative model Ha=50

1 resembled the general law, whereas the
alternative model Ha=1

1 did not. An infinite number of plausible alternatives and
associated inferences lie in between these two extremes. Regardless of whether
the comparison involved Ha=50

1 or Ha=1
1 , the evidence was always compelling and

the sequential analysis produced evidential trajectories that reflected increasing
support in favor of the general law. Future data can update the evidence and
extend these trajectories indefinitely.

Figures 10.1–10.4 clearly show the different outcomes for Ha=50
1 versus Ha=1

1 .
This dependence on the model specification is sometimes felt to be a weakness of
the Bayesian approach, as the specification of the prior distribution for the model
parameters is not always straightforward or objective. However, the dependence
on the prior distribution is also a strength, as it allows the researcher to insert
relevant information into the model to devise a test that more closely represents the
underlying theory. Does it make sense to assign the model parameters a Dirichlet
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D(a = 50) prior? It is easy to use existing knowledge about the distribution
of trillions of digits for π to argue that this Dirichlet distribution is overly wide
and hence inappropriate; however, this conclusion confuses prior knowledge with
posterior knowledge – as the name implies, the prior distribution should reflect
our opinion before and not after the data have been observed.

In the present work we tried to alleviate concerns about the sensitivity to the
prior specification in three ways. First, for our main analysis, we used a sandwich
approach in which we examined the results for two very different prior distribu-
tions, thereby capturing a wide range of outcomes for alternative specifications
(e.g., Spiegelhalter et al., 1994). Second, we considered a different, very flexible
family of alternative prior distributions (i.e., a two component mixture of Dirichlet
distributions) and we demonstrated that the results do not change qualitatively
– the evidence in favor of the general law remains overwhelming. Third, we have
shown that the second derivative of belief – the change in the Bayes factor as
a result of new data – becomes insensitive to the prior specification as N grows
large. Here, the evidential trajectories all suggest that the evidence for the general
law increases as more digits become available. Figure 10.6 displays the results for
π, e,

√
2, and ln 2 side-by-side and emphasizes that for all four irrational numbers

that we investigated, we obtain similar overwhelming support for the general law
which states that all digits occur equally often – this is the case for all three prior
distributions that we considered.

A remaining concern is that our Dirichlet prior on Ha=50
1 may be overly wide

and therefore bias the test in favor of the general law. To assess the validity of this
concern we conducted a simulation study in which the normality assumption was
violated: one digit was given an occurrence probability of .11, whereas each of the
remaining digits were given occurrence probabilities of .89/9. Figure 10.7 shows
that for all 1, 000 simulated data sets, the evidential trajectories indicate increasing
evidence against the general law. After 1 million digits, the average Bayes factor
in favor of the alternative hypothesis is BF10 = 1.19 × 10214 (log BF10 = 492.93)
under the D(a = 1) prior and BF10 = 8.88× 10221 (log BF10 = 511.05) under the
D(a = 50) prior. Thus, with our instantiations of H1 the Bayes factor is able to
provide overwhelming evidence against the general law when it is false.

One of the main challenges for Bayesian inference in the study of normality for
fundamental constants is to extend the simple multinomial approach presented
here to account for longer digit sequences. As the digit series grows large, the
number of multinomial categories also grows while the number of unique sequences
decreases. Ultimately, this means that even with trillions of digits, a test for
normality may lack the data for a diagnostic test. Nevertheless, alternative models
of randomness can be entertained and given a Bayesian implementation – once this
is done, the principles outlined by Jeffreys can be used to quantify the evidence
for or against the general law.

The Supplemental Materials can be found at: https://osf.io/5ysiu/.
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Figure 10.6: Sequential Bayes factors in favor of equal occurrence probabilities
based on the first 100 million digits of π, e,

√
2, and ln 2. The results in the

upper panel correspond to the use of an uninformative D(a = 1) prior for the
alternative hypothesis; the results in the middle panel correspond to the use of
an informative D(a = 50) prior; the results in the lower panel correspond to the
use of a two component mixture prior of a D(a1 = 5) and D(a2 = 1/5) Dirichlet
distribution where the mixing weight was equal to w = 0.5. Figure available
at http://tinyurl.com/hhut8dp under CC license https://creativecommons

.org/licenses/by/2.0/.
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Figure 10.7: Sequential Bayes factors in favor of equal occurrence probabilities
for 1, 000 simulated data sets of 1 million digits each. In every data set, one
digit was given an occurrence probability of .11 whereas each of the other digits
occurred with probability .89/9. The evidential trajectories indicate increasingly
strong evidence against the general law. Figure available at http://tinyurl.com/
j4qk2ht under CC license https://creativecommons.org/licenses/by/2.0/.
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10.A Limit of the Difference Between the Log Bayes
Factors

The Savage-Dickey density ratio (Dickey & Lientz, 1970; Wetzels, Grasman, &
Wagenmakers, 2010) representations of the Bayes factors are:

BFa=1
01 =

p(θ0 | data,a = 1)

p(θ0 | a = 1)

BFa=50
01 =

p(θ0 | data,a = 50)

p(θ0 | a = 50)
,

where θ0 is a vector of length ten with all elements being equal to 1
10 . Hence, the

log Bayes factors are given by:

log BFa=1
01 = log (p(θ0 | data,a = 1))− log (p(θ0 | a = 1))

log BFa=50
01 = log (p(θ0 | data,a = 50))− log (p(θ0 | a = 50)).

The difference between the two log Bayes factors is:

log BFa=1
01 − log BFa=50

01 = log (p(θ0 | data,a = 1))− log (p(θ0 | a = 1))

− log (p(θ0 | data,a = 50)) + log (p(θ0 | a = 50))

= log (p(θ0 | a = 50))− log (p(θ0 | a = 1))

+ log (p(θ0 | data,a = 1))− log (p(θ0 | data,a = 50)).

As soon as the data have overwhelmed the prior, the posteriors under both Ha=1
1

and Ha=50
1 will be the same, hence the last two terms cancel and the difference

of the two log Bayes factors – when N grows large – is given by the difference
between the log prior densities:

lim
N→∞

[ log BFa=1
01 − log BFa=50

01 ] = log (p(θ0 | a = 50))− log (p(θ0 | a = 1))

which is equal to 18.39.
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Chapter 11

Informed Bayesian T -Tests

Abstract

Across the empirical sciences, few statistical procedures rival the pop-
ularity of the frequentist t-test. In contrast, the Bayesian versions of the
t-test have languished in obscurity. In recent years, however, the theoretical
and practical advantages of the Bayesian t-test have become increasingly
apparent and various Bayesian t-tests have been proposed, both objective
ones (based on general desiderata) and subjective ones (based on expert
knowledge). Here we propose a flexible t-prior for standardized effect size
that allows computation of the Bayes factor by evaluating a single numerical
integral. This specification contains previous objective and subjective t-test
Bayes factors as special cases. Furthermore, we propose two measures for
informed prior distributions that quantify the departure from the objective
Bayes factor desiderata of predictive matching and information consistency.
We illustrate the use of informed prior distributions based on an expert prior
elicitation effort.

11.1 Introduction

The t-test is designed to assess whether or not two means differ. The question is
fundamental, and consequently the t-test has grown to be an inferential workhorse
of the empirical sciences. The popularity of the t-test is underscored by considering
the p-values published in eight major psychology journals from 1985 until 2013
(Nuijten, Hartgerink, Assen, Epskamp, & Wicherts, 2016); out of a total of 258,105
p-values, 26% tested the significance of a t statistic. For comparison, 4% of those
p-values tested an r statistic, 4% a z statistic, 9% a χ2 statistic, and 57% an
F statistic. Similarly, Wetzels et al. (2011) found 855 t-tests reported in 252
psychology articles, for an average of about 3.4 t-tests per article.

This chapter is published as Gronau, Q. F., Ly, A., & Wagenmakers, E.–J. (2020). Informed
Bayesian t-tests. The American Statistician, 74, 137–143. doi: https://doi.org/10.1080/

00031305.2018.1562983. Also available as arXiv preprint : https://arxiv.org/abs/1704.02479
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The two-sample t-test typically assumes that the data are normally distributed
with common standard deviation, that is, Y1i ∼ N (µ+ σδ

2 , σ
2) and Y2j ∼ N (µ−

σδ
2 , σ

2) for i = 1, . . . , n1 and j = 1, . . . , n2. The parameter µ is interpreted as a
grand mean, σ as the common standard deviation, and δ as the (standardized)
effect size. A typical application involves a treatment group and a control group
and the task is to infer whether or not the treatment has an effect. The null
hypothesis of the treatment not being effective corresponds to H0 : δ = 0 and
implies that the population means of the two groups are the same, while the
two-sided alternative H1 allows the effect size to vary freely, and implies that the
population means of the two groups differ.

This chapter concerns the Bayesian t-test originally developed by Jeffreys
(1948) in the one-sample setting, and recently extended to the two-sample set-
up by Gönen, Johnson, Lu, and Westfall (2005) and, subsequently, Rouder et
al. (2009). In his work on hypothesis testing, Jeffreys focused on the Bayes fac-
tor (Etz & Wagenmakers, 2017; Kass & Raftery, 1995; Ly et al., 2016a, 2016b;
Robert, Chopin, & Rousseau, 2009), the predictive updating factor that quantifies
the change in relative beliefs about the hypotheses H1 and H0 based on observed
data d (Wrinch & Jeffreys, 1921, p. 387):

P (H1 | d)

P (H0 | d)︸ ︷︷ ︸
Posterior odds

=
p(d |H1)

p(d |H0)︸ ︷︷ ︸
BF10(d)

P (H1)

P (H0)︸ ︷︷ ︸
Prior odds

. (11.1)

The Bayes factor is given by the ratio of the marginal likelihoods of H1 and
H0 that are obtained by integrating out the model parameters with respect to
the parameters’ prior distribution. For the two-sample t-test, the null model H0

specifies two free parameters ζ = (µ, σ), while the alternative has three, namely,
(ζ, δ) = (µ, σ, δ). Once the priors π0(ζ) and π1(ζ, δ) are specified, the parameters
of each model can be integrated out as follows

BF10(d) =

∫
∆

∫
Z
f(d | δ, ζ,H1)π1(δ, ζ) dζ dδ∫
Z
f(d | ζ,H0)π0(ζ) dζ

. (11.2)

Eq. 11.2 shows that the Bayes factor can be regarded as the ratio of two weighted
averages where the weights correspond to the prior distribution for the parameters.
Consequently, the choice of the prior distributions is crucial for the development
of a Bayes factor hypothesis test. Jeffreys (1961) elaborated on various procedures
to select priors for a Bayes factor and the construction of his one-sample t-test
became the norm in objective Bayesian analysis (e.g., Bayarri et al., 2012; Berger
& Pericchi, 2001; Liang, Paulo, Molina, Clyde, & Berger, 2008). Jeffreys’s Bayes
factor for the two-sample t-test, however, was needlessly complicated and it was
Gönen et al. (2005) who provided the desired simplification.

The innovation of Gönen et al. (2005) was to reparameterize the means of
the two groups, µ1 and µ2, in terms of a grand mean and the effect size, as was
introduced at the start of this section. Following Jeffreys, the second idea was to
use a right Haar prior π0(µ, σ) ∝ σ−1 on the nuisance parameters, the parameters
common to both the null and the alternative model (Bayarri et al., 2012, Berger,
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Pericchi, & Varshavsky, 1998, Severini, Mukerjee, & Ghosh, 2002). Using this
prior choice, the marginal likelihood of the null model – the denominator of the
Bayes factor BF10(d) – is proportional to the density of a standard t-distribution
evaluated at the observed t-value. The third idea was to decompose the prior
under the alternative hypothesis into a product of the prior used under the null
hypothesis, and a test-relevant prior on the (standardized) effect size, that is,
π1(µ, σ, δ) = π0(µ, σ)π(δ). Finally, Gönen et al. (2005) showed that a normal
prior δ ∼ N (µδ, g) on the effect size yields a Bayes factor for the two-sample t-test
that is easily calculated:

BF10(d;µδ, g) =

1√
1+nδg

Tν( t√
1+nδg

;
√

nδ
1+nδg

µδ)

Tν(t)
, (11.3)

where 1
bTν( tb ; a) denotes the density of a t-distribution with ν degrees of freedom,

non-centrality parameter a and scale b, Tν(t) = Tν(t ; 0) denotes the density of a
standard t-distribution, and d refers to the data consisting of degrees of freedom
ν = n1 + n2 − 2, the observed t-value t =

√
nδ(ȳ1 − ȳ2)/sp, where nδ = (1/n1 +

1/n2)−1 is the effective sample size, and νs2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2 the pooled

sums of squares.1 This means that practitioners who can calculate a classical
t-test can also easily conduct a Bayesian two-sample t-test: they only need to
choose the hyperparameter µδ corresponding to the effect size prior mean and the
hyperparameter g corresponding to the prior variance. For brevity, we refer to the
latter choice δ ∼ N (µδ, g) as a g-prior on δ, since it resembles the priors Zellner
(1986) proposed in the regression framework.2

Later Bayes factors for the two-sample t-test proposed by Rouder et al.
(2009) and M. Wang and Liu (2016) retained the first three ideas: the pa-
rameterization in terms of the grand mean and effect size, the use of the right
Haar prior on the nuisance parameters π0(µ, σ) ∝ σ−1, and the decomposition
π1(µ, σ, δ) = π0(µ, σ)π(δ), but they differ in the choice of the test relevant prior
π(δ). M. Wang and Liu (2016) noted that the Bayes factors of Gönen et al. (2005)
are information inconsistent, which implies that the Bayes factor in favor of the
alternative does not go to infinity when the observed t-value increases indefinitely.
To make the Bayes factor information consistent, M. Wang and Liu (2016) in-
stead proposed to assign g a Pearson type VI/beta prime hyper-prior distribution
(see also Maruyama & George, 2011, for this proposal in the regression context).
Inspired by the developments of Liang et al. (2008) in the regression framework,
Rouder et al. (2009) proposed to replace the normal prior on δ by a Cauchy prior
π(δ) = Cauchy(δ ; 0, γ), a choice that resembles that of Jeffreys (1948) proposition
for the one-sample t-test with prior scale γ = 1. In their response to M. Wang and
Liu (2016), Gönen, Johnson, Lu, and Westfall (2019) stressed the relevance of a
subjective prior specification and noted that the Bayes factors proposed by Rouder

1In fact, the Bayes factors for the two-sample t-test discussed here also cover the one-sample
case, by (1) replacing the effective sample size by the sample size n; (2) replacing the degrees
of freedom ν by n − 1; and (3) replacing the two-sample t-value by its one sample equivalent
t =
√
nȳ/sy , where νs2y =

∑n
i=1(yi − ȳ)2.

2When µδ = 0, the normal g-prior on δ translates to Zellner’s g-prior on the mean difference
(µ1 − µ2) ∼ N (0, gσ2).
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et al. (2009) and M. Wang and Liu (2016) are not flexible enough to incorporate
available expert knowledge, since these objective Bayes factors are based on priors
that are centered at zero. Here – without taking sides in the discussion between
objective and subjective inference – we present a generalized form of the Bayes
factor developed by Rouder et al. (2009) that allows the prior specification to be
informed by substantive domain knowledge.

The remainder of this chapter is organized as follows: Section 2 presents the
proposed Bayes factor and two measures for quantifying the departure from Jef-
freys’s desiderata of predictive matching and information consistency. Section 3
demonstrates, using a concrete example, how the proposed Bayes factor can be
used in practice to incorporate expert knowledge based on a prior elicitation effort.
The chapter ends with concluding comments.

11.2 Theory

We use the framework of Gönen et al. (2005) and extend the priors proposed by
Rouder et al. (2009) to allow for more informed Bayesian t-tests. We exploit the
fact that, with π0(µ, σ) ∝ σ−1, the Bayes factor can be written as3

BF10(d) =

∫
Tν(t |

√
nδδ)π(δ)dδ

Tν(t)
, (11.4)

where Tν(t | a) denotes the density of a t-distribution with ν degrees of freedom
and non-centrality parameter a. The numerator can be easily evaluated using
numerical integration. Consequently, Eq. 11.4 shows that researchers can easily
obtain a Bayes factor based on any proper prior for the standardized effect size δ
by inserting the prior density of interest for π(δ).

We propose the use of a flexible t-prior for δ, that is, π(δ) = 1
γTκ( δ−µδγ ),

allowing practitioners to incorporate expert knowledge about standardized effect
size by specifying a location hyperparameter µδ, a scale hyperparameter γ, and a
degrees of freedom hyperparameter κ. The resulting Bayes factor is given by:

BF10(d;µδ, γ, κ) =

∫
Tν(t |√nδδ) 1

γTκ( δ−µδγ )dδ

Tν(t)
, (11.5)

where the integral in the numerator can be easily calculated using free software
packages such as R (R Core Team, 2019). We believe that the proposed Bayes
factor based on a t-prior for effect size has a number of advantages. First, similar
to the Bayes factor proposed by Gönen et al. (2005) – which is a special case
obtained by taking γ =

√
g and κ → ∞ – it allows researchers, if desired, to

incorporate existing expert knowledge about effect size into the prior specification
furthering cumulative scientific learning. Second, this class of priors contains the
Cauchy prior of Rouder et al. (2009) as a special case (obtained by setting κ = 1,
µδ = 0). Therefore, using the same expression, researchers can incorporate expert
prior knowledge or they can use an objective default prior. Third, this set-up

3A derivation is provided in the online appendix (Theorem A.1, Theorem A.2, and the
associated corollaries).
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allows researchers to quantify the departure from Jeffreys’s predictive matching
and information consistency desiderata based on departure measures proposed
below. This enables a more formal assessment of differences between objective
and subjective prior choices and may benefit the dialog between objective and
subjective Bayesians (see, e.g., M. Wang & Liu, 2016, and Gönen et al., 2019).

11.2.1 Two Measures for the Departure from Jeffreys’s
Desiderata

11.2.1.1 Predictive Matching

Jeffreys considered two desiderata for prior choice. The first desideratum, pre-
dictive matching, states that the Bayes factor should be perfectly indifferent (i.e.,
BF10(d) = 1) in case the data are completely uninformative. Recall that the
alternative model has three free parameters; it is therefore natural to require at
least three observations before conclusions can be drawn. Consequently, Jeffreys
required a Bayes factor of 1 for any data set of size smaller or equal to 2, thus,
for ν = 0. As apparent from Eq. 11.1, this requirement guarantees the posterior
model odds to be the same as the prior model odds for completely uninformative
data sets. For instance, the data set dν<min consisting of only one observation in
each group n1 = n2 = 1 automatically has zero sums of squares, that is, νs2

p = 0.
If ȳ1 6= ȳ2 the associated t-value would then be unbounded. Let f(d | δ) denote
the reduced likelihood (i.e., the likelihood with the nuisance parameters integrated
out): f(d | δ) =

∫ ∫
f(d |µ, σ, δ)σ−1dµdσ. Using a lemma distilled from the Bate-

man project (Bateman et al., 1953, 1954; Ly, Marsman, & Wagenmakers, 2018),
straightforward but tedious computations show that f(d | δ) is proportional to the
density of a t-distribution with ν degrees of freedom and non-centrality parame-
ter
√
nδδ (see Theorem A.2 in the online appendix for details). To convey that

nothing is learned from the data set dν<min, Jeffreys chose π(δ) such that

p(dν<min |H0) = p(dν<min |H1) =

∫
f(dν<min | δ)π(δ)dδ. (11.6)

As νs2
p = 0, nδ = 1/2, and ȳ1 6= ȳ2, we obtain

(2|ȳ1 − ȳ2|)−1 =

∫
(2|ȳ1 − ȳ2|)−1[1 + sign(ȳ1 − ȳ2)Erf( δ2 )]π(δ)dδ, (11.7)

where sign(z) is one when z is positive, minus one when z is negative, and
zero otherwise (see Corollary A.1.3 and Corollary A.2.1 in the online appendix).

Erf(z) = 2√
π

∫ z
0
e−u

2

du is the error function, an odd function of z. Note that the

requirement Eq. 11.7 is fulfilled if a proper symmetric prior is used for δ. Based
on Eq. 11.7 we define the (two-sided) departure of any proper prior with respect
to Jeffreys’s predictive matching criterion as

D(π,Pred | dν<min) =

∫
sign(ȳ1 − ȳ2)Erf( δ2 )π(δ)dδ, (11.8)

and note that BF10(dν<min) = 1 + D(π,Pred | dν<min). For instance, a t-prior
located at µδ = 0.350, with scale γ = 0.103 and κ = 3 degrees of freedom, as used
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later on in the example, has a departure of the predictive matching criterion of
0.0198 when ȳ1 > ȳ2. In other words, for completely uninformative data sets with
ȳ1 < ȳ2 the Bayes factor will be BF10(dν<min) ≈ 0.98, while if ȳ1 > ȳ2 the Bayes
factor would be BF10(dν<min) ≈ 1.02, instead.

11.2.1.2 Information Consistency

The second desideratum, information consistency, states that the Bayes factor
should provide infinite support for the alternative in case the data are overwhelm-
ingly informative (Bayarri et al., 2012; Jeffreys, 1942). An overwhelmingly infor-
mative data set for the two-sample t-test is denoted by dinfo,ν with ν ≥ 1, effective
sample size nδ > 1/2,4 a (pooled) sums of squares νs2

p = 0, and an observed
mean difference ȳ1− ȳ2 6= 0, thus, an unbounded t-value. For such an overwhelm-
ingly informative data set dinfo,ν to provide infinite support for the alternative,
Jeffreys required that p(dinfo,ν |H0) is bounded and that π(δ) is chosen such that∫
f(dinfo,ν | δ)π(δ)dδ diverges. With νs2

p = 0 and ȳ1 6= ȳ2 the marginal likelihood
of the null model becomes

p(dinfo,ν |H0) =
Γ(ν+1

2 )

2π
ν+1

2
√
ν + 2

(nδ(ȳ1 − ȳ2)2)
−ν+1

2 , (11.9)

which is indeed bounded (see Corollary A.1.3 in the online appendix). In Corol-
lary A.2.2 of the online appendix it is shown that for δ large, the reduced likelihood
f(dinfo,ν | δ) with νs2

p = 0 behaves like a polynomial with leading order ν, that is,

f(dinfo,ν | δ) ∼ δν . (11.10)

To guarantee for degrees of freedom ν that
∫
f(dinfo,ν | δ)π(δ)dδ diverges, it suffices

to take a prior that does not have the νth moment. As information consistency
should hold for all ν ≥ 1, this implies that π(δ) should be chosen such that it does
not have a first moment. Based on the condition that the marginal likelihood
should already diverge for ν = 1, we define the departure of Jeffreys’s information
consistency criterion as

D(π, InfoConsist) = arg min

{
ν ∈ N :

∫
f(dinfo,ν | δ)π(δ)dδ 6∈ R

}
− 1. (11.11)

If π(δ) is taken to be a t-prior with κ degrees of freedom the departure from
Jeffreys’s information consistency criterion is κ−1, since a t-distribution has κ−1
moments. For instance, a t-prior with κ = 3 degrees of freedom has only two
moments and, therefore, misses the information consistency by two samples. This
means that the Bayes factor only goes to infinity for overwhelmingly informative
data when ν ≥ 3. Therefore, an informed t-prior with degrees of freedom larger
than one requires more observations to be “convinced” by the data than does an
objective prior with degrees of freedom equal to 1.

4This condition implies that there is at least one observation per group.
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11.2.1.3 Practical Value of the Proposed Departure Measures

The departure measures introduced above can be used to issue recommendations
for researchers who would like to incorporate expert knowledge into the prior
specification, but would also like to retain Jeffreys’s desiderata as much as possible.
For the proposed t-prior, we recommend that researchers who would like to retain
information consistency choose κ ∈ (0, 1]. For instance, setting κ = 1 results
in a Cauchy prior. Note that, crucially, information consistency still holds if
this Cauchy prior is centered on a value other than zero which enables one to
incorporate expert knowledge about effect size by shifting the prior away from
zero. Researchers who want to retain predictive matching should specify the prior
to be centered on zero (i.e., µδ = 0); however, the scale parameter γ and the
degrees of freedom κ can be chosen freely. Next, we demonstrate with an example
how the proposed Bayes factor can be used in practice. The example features a
prior elicitation effort (e.g., Kadane & Wolfson, 1998) highlighting the practical
feasibility of specifying an informed prior based on expert knowledge.

11.3 Practice

The facial feedback hypothesis states that affective responses can be influenced
by one’s facial expression even when that facial expression is not the result of
an emotional experience. In a seminal study, Strack, Martin, and Stepper (1988)
found that participants who held a pen between their teeth (inducing a facial
expression similar to a smile) rated cartoons as more funny on a 10-point Likert
scale ranging from 0-9 than participants who held a pen with their lips (inducing
a facial expression similar to a pout).

In a recently published Registered Replication Report (Wagenmakers, Beek, et
al., 2016), 17 labs worldwide attempted to replicate this finding using a preregis-
tered and independently vetted protocol. A classical random-effects meta-analysis
yielded an estimate of the mean difference between the “smile” and “pout” condi-
tion equal to 0.03 [95% CI: −0.11, 0.16]. Furthermore, one-sided default Bayesian
unpaired t-tests (using a zero-centered Cauchy prior with scale 1/

√
2 for effect

size, the current standard in the field of psychology; see Morey & Rouder, 2015)
revealed that for all 17 studies, the Bayes factor indicated evidence in favor of
the null hypothesis and for 13 out of the 17 studies, the Bayes factor in favor of
the null was larger than 3. Overall, the authors concluded that “the results were
inconsistent with the original result” (Wagenmakers, Beek, et al., 2016, p. 924).

Here we present an informed reanalysis of the data of one of the labs based on
a prior elicitation effort with Dr. Suzanne Oosterwijk, a social psychologist at the
University of Amsterdam with considerable expertise in this domain. The results
for the other labs can be found in online appendix C.

11.3.1 Prior Elicitation

Before commencing the elicitation process, we asked our expert to ignore the
knowledge about the failed replication of Strack et al. (1988). Next, we stressed
that the goal of the elicitation effort was to obtain an informed prior distribu-
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tion for δ under the alternative hypothesis H1, that is, under the assumption that
the effect is present. This was important in order to prevent unwittingly elicit-
ing a prior that is a mixture between a point mass at zero and the distribution
of interest. Then, we proceeded in steps of increasing sophistication. First, to-
gether with the expert we decided that the theory specified a direction, implying
a one-sided hypothesis test. Next, we asked the expert to provide a value for the
median of the effect size: this yielded a value of 0.35. Subsequently, we asked
for values for the 33% and 66% percentile of the prior distribution for the effect
size: this yielded values of 33%-tile = 0.25 and 66%-tile = 0.45. To finesse and
validate the specified prior distribution we used the MATCH Uncertainty Elic-
itation Tool (http://optics.eee.nottingham.ac.uk/match/uncertainty.php;
see also online appendix B), a web application that allows one to elicit probabil-
ity distributions from experts (Morris, Oakley, & Crowe, 2014). Furthermore, we
used R’s (R Core Team, 2019) plotting capabilities for eliciting the prior number of
degrees of freedom. The complete elicitation effort took approximately one hour
and resulted in a t-distribution with location 0.350, scale 0.102, and 3 degrees of
freedom. As shown in the theory part, this prior choice has a departure from the
predictive matching criterion of ±0.0198 and misses information consistency by
two samples. It should be emphasized, however, that the goal of this prior elici-
tation was to construct a prior that truly reflects the expert’s knowledge without
being constrained by considerations about Bayes factor desiderata. Alternatively,
in an elicitation effort that puts more emphasis on these desiderata, one could,
for instance, fix the degrees of freedom to one and let the expert only choose the
location and scale.

11.3.2 Reanalysis of the Oosterwijk Replication Study

Having elicited an informed prior distribution for δ under the alternative hypothe-
sis, we now turn to a detailed reanalysis of the facial feedback replication attempt
from Dr. Oosterwijk’s lab at the University of Amsterdam. This data set fea-
tures 53 participants in the “smile” condition with an average funniness rating of
4.63 (SD = 1.48), and 57 participants in the “pout” condition with an average
funniness rating of 4.87 (SD = 1.32); consequently, the observed t statistic is
t(108) = −0.90.

The alternative hypothesis is directional, that is, the teeth condition is pre-
dicted to result in relatively high funniness ratings, not relatively low funniness
ratings. In order to respect the directional nature of the alternative hypothesis the
two-sided informed t-test outlined above requires an adjustment. Specifically, the
Bayes factor that compares an alternative hypothesis that only allows for positive
effect size values to the null hypothesis can be computed via a simply identity that
exploits the transitive nature of the Bayes factor (Morey & Wagenmakers, 2014):

BF+0(d) =
p(d |H+)

p(d |H1)︸ ︷︷ ︸
BF+1(d)

p(d |H1)

p(d |H0)︸ ︷︷ ︸
BF10(d)

= BF+1(d)BF10(d). (11.12)

We already showed how to obtain BF10(d), that is, the Bayes factor for the two-
sided test of an informed alternative hypothesis; the correction term BF+1(d) can
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Figure 11.1: Results of an informed reanalysis of the facial feedback hypothesis
replication data from the Oosterwijk lab. The dotted line corresponds to the
elicited 1

0.102T3

(
δ−0.350

0.102

)
prior distribution. The solid line corresponds to the

associated posterior distribution, with a 95% credible interval and the posterior
median displayed on top. The Bayes factor in favor of the null hypothesis over the
one-sided informed alternative hypothesis equals BF0+(d; 0.350, 0.102, 3) = 11.5.
Figure available at https://tinyurl.com/mk7uaxm under CC license https://

creativecommons.org/licenses/by/2.0/.

be obtained by simply dividing the posterior mass for δ larger than zero by the
prior mass for δ larger than zero.5 The Bayes factor hypothesis test that we report
will respect the directional nature of the facial feedback hypothesis and include
the correction term from Eq. 11.12.

Fig. 11.1 shows the results of the reanalysis of the data from the Ooster-
wijk lab. The displayed prior and posterior distribution do not impose the direc-
tional constraint. The one-sided Bayes factor based on the informed prior equals
BF0+(d; 0.350, 0.102, 3) = 11.5, indicating that the data are about twelve times
more likely under the null hypothesis than under the one-sided alternative hypoth-
esis.

For comparison, Fig. 11.2 displays the results based on the default one-sided
zero-centered Cauchy distribution with scale 1/

√
2. The one-sided default Bayes

factor equals BF0+(d; 0, 1/
√

2, 1) = 8.7, indicating that the data are about 9 times
more likely under the null hypothesis than under the one-sided default alternative
hypothesis. Hence, both the informed and the default Bayes factor yield the same
qualitative conclusion, that is, evidence for the null hypothesis. However, the
unrestricted posterior distributions differ noticeably between the informed and the

5The expression for the marginal posterior distribution for δ is provided in Corollary A.2.3
in the online appendix. Using this expression, numerical integration can be used to obtain the
desired posterior mass.
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Figure 11.2: Results of the default analysis of the facial feedback hypothesis
replication data from the Oosterwijk lab. The dotted line corresponds to the
default Cauchy prior distribution with scale parameter 1/

√
2. The solid line

corresponds to the associated posterior distribution, with a 95% credible in-
terval and the posterior median displayed on top. The Bayes factor in favor
of the null hypothesis over the one-sided default alternative hypothesis equals
BF0+(d; 0, 1/

√
2, 1) = 8.7. Figure available at https://tinyurl.com/mgs28ob

under CC license https://creativecommons.org/licenses/by/2.0/.

default analysis: the posterior median based on the informed prior specification
is positive and equal to 0.153 (95% credible interval: [−0.264, 0.390]) whereas the
posterior median based on the default prior distribution is equal to −0.152 (95%
credible interval: [−0.511, 0.200]).

11.4 Concluding Comments

The comparison between two means is a quintessential inference problem. Origi-
nally developed by Jeffreys (1948) in the one-sample setting, the Bayesian t-test
has recently been extended to the two-sample set-up by Gönen et al. (2005) and,
subsequently, by Rouder et al. (2009) and M. Wang and Liu (2016). Here we
showed that practitioners can easily and intuitively use a generalized version of
the Bayes factor by Rouder et al. (2009) to inform their two-sample Bayesian t-
tests. We used the framework of Gönen et al. (2005) and extended the priors by
Rouder et al. (2009) to allow for more informed Bayesian t-tests that can incor-
porate expert knowledge by using a flexible t-prior. An advantage of the flexible
t-prior is that it contains the objective default prior by Rouder et al. (2009) as a
special case and the subjective prior proposed by Gönen et al. (2005) as a limiting
case. Therefore, practitioners can use the same formula to compute subjective and
objective Bayesian t-tests. To encourage its adoption in applied work, we have
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implemented the proposed Bayesian t-test set-up in the open-source statistical pro-
gram JASP (JASP Team, 2020, jasp-stats.org). In the theoretical part of this
chapter, we investigated theoretical properties of the informed t-prior. Specifically,
we discussed popular Bayes factor desiderata and proposed measures to quantify
the deviation of an informed t-test from its objective counterpart. In the practical
part of the chapter, we illustrated the use of the informed Bayes factor with an
example. Similar to the prior proposed by Gönen et al. (2005), the flexible t-prior
may encourage the use of prior distributions that better represent the predictions
from the hypothesis under test, allowing more meaningful conclusions to be drawn
from the same data (Rouder, Morey, Verhagen, Province, & Wagenmakers, 2016;
Rouder, Morey, & Wagenmakers, 2016).

Other choices than a t-prior for effect size are conceivable. Eq. 11.3 shows
that one can obtain a Bayes factor for any scale-mixture of normals by integrating
Eq. 11.3 with respect to a prior on g (see Theorem A.3 in the online appendix;
for possible choices see, e.g., Bayarri et al., 2012). This also includes the prior
proposed by M. Wang and Liu (2016) and highlights that it is straightforward
to extend this prior to include a location parameter that can be specified based
on expert knowledge. In fact, the expressions for the Bayes factor that we pre-
sented make it relatively straightforward to use any proper prior on standardized
effect size (see Eq. 11.4). The proposed departure measures can then be used to
investigate information consistency and predictive matching for different choices.

In this chapter, we focused on the Bayes factor as the inferential tool for
quantifying the relative evidence for competing hypotheses based on observed
data. However, it could be argued that a complete Bayesian analysis requires one
to also specify the prior plausibilities of the competing hypotheses. This is of
particular importance in situations where unlikely hypotheses are tested or when
multiple comparisons are considered (Scott & Berger, 2010). Although specifying
the prior plausibilities of the competing hypotheses may not be trivial, once this
has been achieved, the Bayes factor can be simply multiplied by the prior odds to
obtain the posterior odds of interest.

R code and the online appendix are available at: https://osf.io/37vch/.
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Chapter 12

Informed Bayesian Inference for the
A/B Test

Abstract

Booming in business and a staple analysis in medical trials, the A/B test
assesses the effect of an intervention or treatment by comparing its success
rate with that of a control condition. Across many practical applications, it
is desirable that (1) evidence can be obtained in favor of the null hypothesis
that the treatment is ineffective; (2) evidence can be monitored as the data
accumulate; (3) expert prior knowledge can be taken into account. Most ex-
isting approaches do not fulfill these desiderata. In this chapter we describe
a Bayesian A/B procedure based on Kass and Vaidyanathan (1992) that
allows one to monitor the evidence for the hypotheses that the treatment
has either a positive effect, a negative effect, or, crucially, no effect. Further-
more, this approach enables one to incorporate expert knowledge about the
relative prior plausibility of the rival hypotheses and about the expected size
of the effect, given that it is non-zero. To facilitate the wider adoption of
this Bayesian procedure we developed the abtest package in R. We illustrate
the package options and the associated statistical results with a synthetic
example.

12.1 Introduction

Does the modification of a company website increase the number of online pur-
chases? Does a new drug result in a lower mortality rate? These are just two
examples of the kinds of questions that can be addressed with A/B testing, a
procedure popular not only in business and medical clinical trials, but also in

This chapter has been submitted for publication as Gronau, Q. F., Raj K. N., A., & Wa-
genmakers, E.–J. (2019). Informed Bayesian inference for the A/B test. Available as arXiv
preprint : https://arxiv.org/abs/1905.02068
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12. Informed Bayesian Inference for the A/B Test

fields such as psychology, neuroscience, and biology. An A/B test compares the
success rate of two options or treatment arms, A and B, and therefore can be
conceptualized as a test for a difference between two proportions (Little, 1989).1

Typically, options A and B correspond to a control condition and an intervention
or treatment of interest.

Regardless of the specific field of application, we believe three general desider-
ata for A/B tests can be identified. First, it is desirable that evidence can be
obtained in favor of the null hypothesis that there is no difference between options
A and B. For instance, suppose a programmer alters code that should leave the
appearance of a website unaffected. An A/B test may be conducted to confirm
that the code changes did not lead to unintended consequences. Alternatively,
suppose that a cheaper drug is introduced as a replacement of the standard drug;
here, an A/B test may confirm that the cheaper drug is as effective as the drug
that is currently standard.

Second, it is desirable that evidence can be monitored as the data accumulate.
Data collection can be time-consuming and expensive, and interim tests allow
one to assess whether the results in hand are already sufficiently compelling or
whether additional data ought to be obtained. There is also an ethical aspect
to this desideratum, one that is particularly pronounced in case of new clinical
treatments that are potentially beneficial or harmful; it is unethical to withhold
treatment that interim analysis shows to be beneficial, just as it is unethical to
continue to administer a treatment that interim analysis shows to be harmful (e.g.,
Armitage, 1960; see also Ware, 1989 and the accompanying discussion).

Third, it is desirable that expert knowledge can be taken into account (e.g.,
O’Hagan, 2019). In many A/B testing applications, there exists considerable
expert knowledge about what size of effect to expect. For instance, the effect
of website changes on conversion rates is often less than 0.5% (Berman, Pekelis,
Scott, & Van den Bulte, 2018). Incorporating such expert knowledge into the
statistical analysis will yield a more targeted test.

Unfortunately, the majority of A/B testing procedures that are currently in
vogue do not fulfill the above desiderata. Specifically, many companies apply
standard p-value-based null hypothesis significance testing to assess whether or
not options A and B differ. This procedure has the advantage that it is read-
ily available in software such as R (R Core Team, 2019, e.g., via the functions
prop.test, fisher.test, and chisq.test). However, this approach cannot dis-
tinguish between absence of evidence (i.e., the data are inconclusive) and evidence
of absence (i.e., the data provide support for the null hypothesis that options
A and B do not differ; e.g., Dienes, 2014). Furthermore, although common prac-
tice, sequentially monitoring the uncorrected p-value (and stopping data collection
as soon as the p-value is smaller than some fixed α-level) invalidates the analy-
sis (e.g., Feller, 1940). However, there exist valid classical sequential procedures
that enable one to monitor a corrected p-value as data accumulate (e.g., Malek,
Katariya, Chow, & Ghavamzadeh, 2017). For instance, Optimizely, one of the
leading commercial A/B testing platforms, has recently implemented an alter-

1The A/B test set-up discussed in this chapter assumes that the dependent variable is binary.
Nevertheless, the dependent variable could in principle also be continuous.
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native p-value-based approach that allows users to continuously monitor the test
outcome (Johari, Koomen, Pekelis, & Walsh, 2017). Nevertheless, these sequential
p-value-based procedures retain the inability to quantify evidence for the absence
of an effect. Furthermore, (sequential) p-value-based A/B testing does not allow
one to incorporate expert knowledge into the statistical analysis in a straightfor-
ward manner.

An alternative A/B testing approach that has become more popular of late is
Bayesian estimation. For instance, VWO, another leading A/B testing platform,
has recently implemented a Bayesian estimation approach (Stucchio, 2015). A
Bayesian estimation approach is also available via the bayesAB package (Port-
man, 2019).2 Since Bayesian inference is immune to optional stopping (Berger &
Wolpert, 1988), this approach allows one to monitor the analysis output as data
accumulate. A Bayesian estimation approach also enables the incorporation of
expert knowledge via the specification of a prior distribution that captures the
expert’s knowledge about a parameter of interest. However, this approach oper-
ates under the assumption that an effect exists – since a continuous prior assigns
zero probability to a single null value – and consequently does not allow one to
obtain evidence in favor of the null hypothesis of no effect. For instance, bayesAB
provides the user with the posterior probability that one option yields more suc-
cesses than the other, but this ignores the fact that both options could be equally
effective. Furthermore, the currently used Bayesian estimation approaches – such
as the one implemented in bayesAB – typically assign independent priors to the
success probabilities of the control and treatment condition, a practice that was
critiqued by Howard (1998).3

To overcome the limitations of the current A/B tests we developed the abtest
package in R (R Core Team, 2019). The abtest package implements Bayesian infer-
ence for the A/B test, using informed prior distributions that induce a dependency
between the two success probabilities. The analysis approach is based on a model
by Kass and Vaidyanathan (1992); for alternative approaches see Deng, Lu, and
Chen (2016), Jamil, Marsman, Ly, Morey, and Wagenmakers (2017), Pham-Gia,
Van Thin, and Doan (2017), and Skorski (2019). The implemented Bayesian pro-
cedure allows users (1) to obtain evidence in favor of the null hypothesis (e.g.,
Berger & Delampady, 1987; Wagenmakers, Marsman, et al., 2018); (2) monitor
the evidence as the data accumulate (e.g., Rouder, 2014); and (3) elicit and in-
corporate expert prior knowledge (e.g., O’Hagan, 2019). The abtest package thus
fulfills all three desiderata mentioned above.

The abtest package provides functionality for both hypothesis testing and pa-
rameter estimation. In line with Jeffreys (1939) and Fisher (1928), we believe that
testing and estimation are complementary activities (Haaf et al., 2019): before a

2The bayesAB package provides a range of functions for Bayesian A/B testing. One advantage
is that users can choose from a range of different data distributions (e.g., Bernoulli, normal,
Poisson, etc.).

3“do English or Scots cattle have a higher proportion of cows infected with a certain virus?
Suppose we were informed (before collecting any data) that the proportion of English cows
infected was 0.8. With independent uniform priors we would now give H1 (p1 > p2) a probability
of 0.8 (because the chance that p2 > 0.8 is still 0.2). In very many cases this would not be
appropriate. Often we will believe (for example) that if p1 is 80%, p2 will be near 80% as well
and will be almost equally likely to be larger or smaller.” (p. 363)
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parameter is estimated, it should be tested whether there is anything to justify
estimation at all. Jeffreys (1939, p. 345) related this principle to Occam’s razor:
“variation must be taken as random until there is positive evidence to the con-
trary” (see also Kass & Raftery, 1995, Section 8.1). However, some researchers
and practitioners oppose this idea, for instance because they believe that one
should replace hypothesis testing with parameter estimation (e.g., Gelman & Ru-
bin, 1995; Cumming, 2014). Nevertheless, the abtest package may also be useful
for researchers without an interest in hypothesis testing, since the package can
also be used exclusively for Bayesian parameter estimation (and prior elicitation).

This chapter is organized as follows: The next section discusses the implemen-
tation details of the Bayesian A/B test procedure used in abtest. Subsequently,
the functionality of the abtest package and the practical benefits of the imple-
mented approach are demonstrated using a synthetic example. The chapter ends
with concluding comments.

12.2 Implementation Details

The Bayesian A/B test implemented in the abtest package is based on Kass and
Vaidyanathan (1992, Section 3, “Testing Equality of Two Binomial Proportions”).
Appendix A-C provide detailed derivations.

12.2.1 Model

Let y1 denote the number of successes for option A with n1 denoting the cor-
responding total number of observations for option A. Similarly, y2 denotes the
number of successes for option B with n2 denoting the corresponding total number
of observations for option B. The Bayesian A/B test model based on Kass and
Vaidyanathan (1992) is specified as follows:4

log

(
p1

1− p1

)
= β − ψ

2

log

(
p2

1− p2

)
= β +

ψ

2

y1 ∼ Binomial(n1, p1)

y2 ∼ Binomial(n2, p2).

(12.1)

Therefore, the model assumes that y1 and y2 follow binomial distributions with
success probabilities p1 and p2. These probabilities are functions of the two model
parameters, β and ψ. Specifically, the log odds corresponding to p1 are given by
β−ψ/2 and the log odds corresponding to p2 are given by β+ψ/2. The nuisance
parameter β corresponds to the grand mean of the log odds and the test-relevant
parameter ψ corresponds to the log odds ratio. When ψ is positive, this implies
that p2 > p1 (i.e., option B has a higher success probability than option A);
when ψ is negative this implies that p2 < p1 (i.e., option B has a lower success
probability than option A).

4Note that this is equivalent to a logistic regression model with a binary covariate (i.e., group
membership) that is coded using ±0.5.
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12.2.2 Hypotheses

The abtest package enables both estimation of the model parameters and testing
of hypotheses about the test-relevant log odds ratio parameter ψ. There are four
hypotheses that are of potential interest:

1. The null hypothesis H0 which states that the success probabilities p1 and p2

are identical, that is, p1 = p2. This is equivalent to H0 : ψ = 0. This hy-
pothesis corresponds to the claim that there is no difference between options
A and B (i.e., the “A/A test”).

2. The two-sided alternative hypothesis H1 which states that the two success
probabilities p1 and p2 are not equal (i.e., p1 6= p2), but does not specify
which of the two is larger. This is equivalent to H1 : ψ 6= 0. This hypothesis
corresponds to the claim that options A and B differ but it is not specified
which one yields more successes.

3. The one-sided hypothesis H+ which states that the second success proba-
bility p2 is larger than the first success probability p1. This is equivalent to
H+ : ψ > 0. This hypothesis corresponds to the claim that option B yields
more successes than option A.

4. The one-sided hypothesis H− which states that the first success probability
p1 is larger than the second success probability p2. This is equivalent to
H− : ψ < 0. This hypothesis corresponds to the claim that option A yields
more successes than option B.

Researchers who conduct an A/B test are usually interested in answering the
question: Does option B yield more successes than option A (i.e., H+), fewer
successes than option A (i.e., H−), or is there no difference between options A
and B (i.e., H0)? Therefore, it may be argued that the hypotheses of interest are
typically H+, H−, and H0. Consequently, by default, only these three hypotheses
are assigned non-zero prior probability in the abtest package. Specifically, a default
prior probability of .50 is assigned to the hypothesis that there is no effect (i.e.,
H0), and the remaining prior probability is split evenly across the hypothesis that
there is a positive effect (i.e., H+ receives .25) and a negative effect (i.e., H− also
receives .25). The user may change these default prior probabilities to custom
values. Table 12.1 provides an overview of five qualitatively different tests that
can be conducted by assigning prior probabilities to hypotheses in certain ways.5

The first column displays the default setting that assigns probability .50 to the
null hypothesis and splits the remaining probability evenly across H+ and H−.
The second column displays a prior probability assignment that implements an
undirected test (i.e., H0 is compared to the undirected H1). The third column
displays a prior probability assignment for testing whether the effect is non-existent

5Note that, except for the first column of Table 12.1 which displays the default setting, the
remaining examples use equal prior probabilities for all hypotheses that are assigned non-zero
prior probability. However, the user can of course also assign prior probability unevenly to the
hypotheses of interest (e.g., if prior knowledge exists about the relative plausibility of the rival
hypotheses).
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Table 12.1: Changing the prior probability assignments across rival hypotheses
produces different tests.

Test

Hypothesis Default Undirected Positive Negative Direction

H0 .50 .50 .50 .50 0
H1 0 .50 0 0 0
H+ .25 0 .50 0 .50
H− .25 0 0 .50 .50

or positive. The fourth column displays a prior probability assignment for testing
whether the effect is non-existent or negative. Finally, the fifth column displays
a prior probability assignment for a test of direction, that is, for testing whether
the effect is positive or negative. This last setting may be of interest whenever the
null hypothesis is a priori deemed implausible, uninteresting, or irrelevant.

12.2.3 Parameter Priors

The abtest package assigns normal priors to the model parameters: β ∼ N (µβ , σ
2
β)

and ψ ∼ N (µψ, σ
2
ψ). As illustrated in the example below, these priors result in a

dependency in the implied prior for the success probabilities p1 and p2, which is
generally desirable (Howard, 1998).

For the one-sided hypotheses H+ and H−, the prior on ψ is truncated at
zero. Specifically, for H+, the prior on ψ is a truncated normal distribution with
parameters µψ and σψ and lower bound at zero. For H−, the prior on ψ is a
truncated normal distribution with parameters µψ and σψ and upper bound at
zero. These normal priors are computationally convenient and sufficiently flexible
to encode a wide range of prior information.

By default, the abtest package assigns standard normal priors to both β and
ψ. For the nuisance parameter β, a standard normal prior results in a relatively
flat implied prior on p1 and p2 when ψ = 0. Generally, the choice of a prior
for the nuisance parameter β is relatively inconsequential (Kass & Vaidyanathan,
1992). In contrast, the prior on the test-relevant parameter ψ is consequential, as
it defines the extent to which the hypotheses of interest differ from H0. Our choice
for a default standard normal prior on the test-relevant parameter ψ is motivated
by the fact that a zero-centered prior does not favor any of the two options A or
B a priori. Furthermore, the standard deviation of 1 results in a prior distribution
that assigns mass to a wide range of reasonable log odds ratios (H. Chen, Cohen,
& Chen, 2010) without being so uninformative that the results unduly favor H0

(Bartlett, 1957; Lindley, 1957).6 However, large changes in the prior standard
deviation of the test-relevant parameter may result in large changes in the results,
as the prior standard deviation governs the degree to which the hypothesis of

6Note that the default implied prior on the absolute risk p2−p1 is considerably more narrow
than the prior induced by the popular default choice that assigns p1 and p2 independent uniform
distributions (Jeffreys, 1935).
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interest makes predictions that differ from H0. To include prior knowledge about
the expected results, the abtest package allows the user to change the default
values of the prior distributions for the nuisance parameter β and the test-relevant
parameter ψ, either by changing the location of the normal prior distribution, the
scale, or both.

12.2.4 Encoding Prior Information

A straightforward way to encode prior information about the model parameters
is to set µβ , σβ , µψ, and σψ directly. However, it may sometimes be easier to
specify prior distributions based on quantities such as the (log) odds ratio, relative
risk (i.e., p2/p1, the ratio of the success probability in condition B and condition
A), and absolute risk (i.e., p2 − p1, the difference of the success probability in
condition B and condition A). The elicit_prior function allows users to encode
prior information about a quantity of interest (either log odds ratio, odds ratio,
relative risk, or absolute risk). The function assumes that the prior on β is not
the primary target of prior elicitation and is fixed by the user a priori (using the
arguments mu_beta and sigma_beta) – for instance, to a standard normal prior
which corresponds to a relatively flat implied prior on p1 and p2 when ψ = 0.

To encode prior information, the user needs to provide quantiles for a quantity
of interest. Let qi, i = 1, . . . , I denote the values of I quantiles provided by the
user and let probi, i = 1, . . . , I denote the corresponding probabilities (e.g., for the
median, probi = 0.5). Least-squares minimization is used to obtain µψ and σψ as
follows:

(µψ, σψ) = arg min
µψ,σψ

I∑
i=1

(F (qi;µψ, σψ)− probi)
2
, (12.2)

where F (·;µψ, σψ) corresponds to the cumulative distribution function (cdf) for
the quantity of interest implied by the normal prior on ψ. For some quantities,
this cdf also depends on the prior for β; however, as described above, it is assumed
that µβ and σβ are fixed a priori.

12.2.5 Hypothesis Testing

To quantify the evidence that the data provide for H0, H1, H+, and H−, one
can compute Bayes factors (Jeffreys, 1939; Kass & Raftery, 1995) and posterior
probabilities of the rival hypotheses. The posterior probability of hypothesis Hj ,
j ∈ {0, 1,+,−} is given by:

posterior probability︷ ︸︸ ︷
p(Hj | data) =

updating factor︷ ︸︸ ︷
p(data | Hj)∑

k p(data | Hk) p(Hk)
×

prior probability︷ ︸︸ ︷
p(Hj) . (12.3)

The Bayes factor for comparing hypotheses Hj and Hk equals the change from
prior to posterior odds:

p(Hj | data)

p(Hk | data)︸ ︷︷ ︸
posterior odds

=
p(data | Hj)
p(data | Hk)︸ ︷︷ ︸

Bayes factor BFjk

× p(Hj)
p(Hk)︸ ︷︷ ︸

prior odds

. (12.4)
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In order to obtain posterior probabilities of the hypotheses and Bayes factors
one needs to evaluate the marginal likelihood p(data | Hj) for each hypothesis
j ∈ {0, 1,+,−}. ForH0 andH1, we evaluate the marginal likelihood using Laplace
approximations as suggested by Kass and Vaidyanathan (1992). Specifically, the
marginal likelihood for H0 is approximated by:

p(data | H0) =

∫
p(data | β)︸ ︷︷ ︸

likelihood

π0(β)︸ ︷︷ ︸
prior

dβ

≈ (2πσ2
0)

1
2 exp {l∗0(β∗0)} ,

(12.5)

where l∗0(β) = log {p(data | β)π0(β)}, β∗0 corresponds to the mode of l∗0(β), and

σ2
0 =

(
− d2

dβ2 l
∗
0(β)

)−1
∣∣∣∣
β=β∗0

denotes the inverse of the negative second derivative

of l∗0(β) evaluated at the mode β∗0 .
The marginal likelihood for H1 is approximated by:

p(data | H1) =

∫ ∫
p(data | β, ψ)︸ ︷︷ ︸

likelihood

π(β, ψ)︸ ︷︷ ︸
prior

dβdψ

≈ 2π det (Σ1)
1
2 exp {l∗(β∗, ψ∗)} ,

(12.6)

where l∗(β, ψ) = log {p(data | β, ψ)π(β, ψ)}, (β∗, ψ∗) denotes the mode of l∗(β, ψ),

and Σ1 = (−H1)
−1 |(β,ψ)=(β∗,ψ∗) denotes the inverse of the negative Hessian H1

(i.e., the matrix with second-order partial derivatives) of l∗(β, ψ) evaluated at the
mode (β∗, ψ∗).

These Laplace approximations work well in practice, even for sample sizes that
are extremely small. As a demonstration, for a range of synthetic data sets we
computed the (log of the) Bayes factor BF10 which compares H1 to H0 using the
above Laplace approximations and, as a comparison, also using bridge sampling
(Gronau, Singmann, & Wagenmakers, 2020; Meng & Wong, 1996). The priors on
β and ψ were standard normal distributions. Figure 12.1 displays the results and
confirms that the Laplace approximation yields accurate results, even for sample
sizes as small as n1 = n2 = 5.

For the one-sided hypotheses H+ and H−, Laplace approximations did not
appear to yield accurate results for small sample sizes, even after removing the
constraint on ψ through the parameterization (β, ξ) = (β, log (ψ)) for H+ and
(β, ξ) = (β, log (−ψ)) for H−. The abtest package therefore uses importance
sampling to increase the accuracy of the Laplace approximations when computing
the marginal likelihoods for H+ and H−. Specifically, a Laplace approximation
is used to approximate the mode and covariance matrix of the posterior. The
importance density is then given by a multivariate t distribution with location
set to the approximated posterior mode, scale matrix set to the approximated
posterior covariance matrix, and five degrees of freedom (note that the user can
change the degrees of freedom). The marginal likelihood for H+ is then estimated
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Figure 12.1: Comparison of the Laplace approximation and bridge sampling
for computing the (log of the) Bayes factor BF10. We considered all possi-
ble combinations of n1 ∈ {5, 10, 20, 50, 100} and n2 ∈ {5, 10, 20, 50, 100}. For
each of the n1-n2 combinations, we considered all possible combinations of
y1 ∈ { 1

5n1,
2
5n1,

3
5n1,

4
5n1} and y2 ∈ { 1

5n2,
2
5n2,

3
5n2,

4
5n2}. The results reveal that

the two methods yield highly similar results, even when sample size is very small.
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as follows:

p(data | H+) =

∫ ∫
p(data | β, ξ)︸ ︷︷ ︸

likelihood

π+(β, ξ)︸ ︷︷ ︸
prior

dβdξ

≈ 1

S

S∑
s=1

p(data | β̃s, ξ̃s)π+(β̃s, ξ̃s)

gis(β̃s, ξ̃s)
,

(12.7)

where
{
β̃s, ξ̃s

}S
s=1

denotes S samples from the multivariate t importance density

gis, and
π+(β, ξ) = N (β;µβ , σ

2
β)N+(exp(ξ);µψ, σ

2
ψ) exp(ξ), (12.8)

where N (x; y, z) denotes the probability density function of a normal distribution
with mean y and variance z that is evaluated at x. Furthermore, N+(x; y, z)
denotes the density of a normal distribution that is truncated to allow only positive
values for x. The marginal likelihood for H− is computed analogously.

12.2.6 Obtaining Posterior Samples

In a Bayesian A/B test application, one may not only be interested in testing
hypotheses, but also in obtaining posterior samples for the model parameters
under H1, H+, and H−. The abtest package allows the user to obtain posterior
samples using sampling importance resampling (e.g., Robert & Casella, 2010).
Specifically, posterior samples for H+ are obtained as follows (samples for the
other hypotheses are obtained in an analogous manner):

1. Generate S samples from the multivariate t proposal distribution mentioned

before, denoted by
{
β̃s, ξ̃s

}S
s=1

.

2. Compute the importance weights:

ws =
p(data | β̃s, ξ̃s)π+(β̃s, ξ̃s)

gis(β̃s, ξ̃s)
, s = 1, 2, . . . , S. (12.9)

3. Renormalize the importance weights: vs = ws/
∑S
t=1 wt, s = 1, 2, . . . , S.

4. Resample (with replacement) from the samples obtained from the impor-
tance density according to the normalized importance weights vs which yields
(approximate) samples from the posterior distribution.

12.3 Example: Effectiveness of Resilience Training

Suppose the managers of a large consultancy firm are interested in reducing the
number of employees who quit within the first six months, possibly due to the
high stress involved in the job. A coaching company offers a resilience training
and claims that this training greatly reduces the number of employees who quit.
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Implementing the training for all newly hired employees would be expensive and
some of the managers are not completely convinced that the training is at all
effective. Therefore, the managers decide to run an A/B test where half of a
sample of newly hired employees will receive the training, the other half will not
be trained. The dependent variable is whether or not an employee quit within the
first six months (1 = still on the job, 0 = quit).

12.3.1 Prior Specification

Before commencing the A/B test, the managers ask the coaching company to
specify how effective they believe the training will be. The coaching company
claims that, based on past experience with the training, they expect the proportion
of employees who do not quit within the first six months to be 15% larger for the
group who received the training, with a 95% uncertainty interval ranging from
a 2.5% benefit to a 27.5% benefit. Assuming that the claimed 15% corresponds
to the prior median, this expectation corresponds to a median absolute risk (i.e.,
p2− p1) of 0.15 with a 95% uncertainty interval ranging from 0.025 to 0.275. The
elicit_prior function can be used to encode this prior information:7

R> library("abtest")

R> prior_par <- elicit_prior(q = c(0.025, 0.15, 0.275),

+ prob = c(.025, .5, .975),

+ what = "arisk")

The obtained prior on the absolute risk can be visualized as follows:

R> plot_prior(prior_par, what = "arisk")

The resulting graph is shown in the top panel of Figure 12.2. The user can also
visualize the (implied) prior for other quantities. For instance, the prior on the
log odds ratio (middle panel of Figure 12.2) is obtained as follows:

R> plot_prior(prior_par, what = "logor")

The implied prior on the success probabilities p1 and p2 (bottom panel of Fig-
ure 12.2) is obtained as follows:

R> plot_prior(prior_par, what = "p1p2")

The bottom panel of Figure 12.2 illustrates that there is a dependency between
p1 and p2 which is arguably desirable (Howard, 1998): When one of the success
probabilities is very (small) large, it is likely that the other one will also be (small)
large.

7All code and plots are also available at https://osf.io/t3ajr/.
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Figure 12.2: Elicited (implied) prior distributions for the effectiveness of the re-
silience training. The top panel displays the prior distribution for the absolute
risk which corresponds to the difference between the probability of still being on
the job for the trained and the non-trained employees (i.e., p2 − p1). The middle
panel shows the prior distribution for the log odds ratio parameter ψ. The bot-
tom panel displays the implied joint prior distribution for the success probabilities
p1 and p2. The bottom panel illustrates that the two success probabilities are
assigned dependent priors. Furthermore, most prior mass is above the main diag-
onal which represents the coaching company’s prior expectation that the training
is successful.
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12.3.2 Hypothesis Testing

After having specified the prior distribution for the test-relevant parameter, the
consultancy firm starts to collect data. These (synthetic) data8 are included in the
abtest package (i.e., seqdata) and consist of a total of 1, 000 observations (500 in
each group). The number of employees still on the job after six months is 249 in
the group without training and 269 in the trained group. Therefore, the observed
success probabilities are p̂1 = .498 in the control group and p̂2 = .538 in the group
that received training. Consequently, the observed success probabilities suggest
that there is a positive effect of the training of 4%; however, a statistical analysis
is required to assess whether this observed difference is statistically compelling.
The ab_test function can be used to conduct a Bayesian A/B test as follows:

R> data("seqdata")

R> set.seed(1)

R> ab <- ab_test(data = seqdata, prior_par = prior_par)

This yields the following output:

R> print(ab)

Bayesian A/B Test Results:

Bayes Factors:

BF10: 0.1406443

BF+0: 0.13823

BF-0: 0.4920187

Prior Probabilities Hypotheses:

H+: 0.25

H-: 0.25

H0: 0.5

Posterior Probabilities Hypotheses:

H+: 0.0526

H-: 0.1871

H0: 0.7604

The first part of the output presents Bayes factors in favor of the hypotheses H1,
H+, andH−, where the reference hypothesis (i.e., denominator of the Bayes factor)
is H0. Since all three Bayes factors are smaller than 1, they all indicate evidence in
favor of the null hypothesis of no effect. The next part of the output displays the

8The data set is structured such that the sequential nature of the data is retained: the data
set contains the number of observations and the number of successes in each of the two groups
after each observation.
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P(H+ | data) = 0.053

P(H  | data) = 0.187

P(H0 | data) = 0.760

Figure 12.3: Posterior probabilities of the hypotheses visualized as a probability
wheel.

prior probabilities of the hypotheses with non-zero prior probability. As explained
before, the default setting assigns probability .50 to the null hypothesis and splits
the remaining probability evenly across H+ and H−. The user can change this
default setting via the prior_prob argument (e.g., to assign non-zero probability
to H1). The final part of the output displays the posterior probabilities of the
hypotheses with non-zero prior probability. The posterior probability of the null
hypothesis H0 indicates that the data have increased the plausibility of the null
hypothesis from .50 to .76. Furthermore, the data have decreased the plausibility
of both H+ and H−.

As an aside, it may appear paradoxical that the data indicate a 4% positive
effect of the training and yet the posterior probability of H− is larger than that of
H+. The reason for this result is that the company’s prior was overly ambitious,
and H+ is penalized for having predicted effects that are much too large. Fur-
thermore, note that the test-relevant prior distribution under H− is obtained by
truncating the prior on ψ at zero and renormalizing. Since the company’s prior
assigns almost all mass to positive log odds ratio values, renormalizing the neg-
ative part of the distribution results in a prior that is highly similar to H0; this
explains why H− receives non-trivial posterior probability. These considerations
underscore the fact that the outcome of a Bayesian analysis is always relative to
the specific set of models (and associated prior distributions) under consideration.
Because highly informed priors can exert a large influence on the results, it is gen-
erally wise to examine the robustness of the conclusions by executing the default
analysis as well. This analysis is reported in Appendix D.

The abtest package allows users to visualize the posterior probabilities of the
hypotheses by means of a probability wheel (Figure 12.3):

R> prob_wheel(ab)

Overall, the data support the hypothesis that the training is ineffective over the
company’s hypothesis that the training is highly effective. The Bayes factor for
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Figure 12.4: Sequential analysis results. The posterior probability of each hypoth-
esis is plotted as a function of the number of observations across groups. On top,
two probability wheels visualize the prior probabilities of the hypotheses and the
posterior probabilities after taking into account all observations.

H0 over H+ equals 1/0.138 ≈ 7.2, which indicates moderate evidence (Jeffreys,
1939, Appendix I).

Since the data set is of a sequential nature, it may be of interest to consider not
only the result based on all observations, but to conduct also a sequential analysis
that tracks the evidential flow as a function of the total number of observations
(i.e., the number of observations across both groups). This sequential analysis can
be conducted as follows:

R> plot_sequential(ab, thin = 4)

Setting the thin argument to 4 indicates that the evidence is computed after every
4th observation. Thinning can be useful to speed up the analysis in case the data
set is very large or in case observations arrive in batches. Figure 12.4 displays
the result of the sequential analysis. The posterior probability of each hypothesis
with non-zero prior probability is plotted as a function of the total number of
observations. At the top, two probability wheels visualize the prior probabilities
of the hypotheses and the posterior probabilities of the hypotheses based on all
available data. Figure 12.4 shows that after some initial fluctuation, adding more
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observations increased the probability of the null hypothesis that there is no effect
of the training.

12.3.3 Parameter Estimation

The data indicate evidence in favor of the null hypothesis versus the hypothesis
that the training is highly effective, leaving open the possibility that the training
does have an effect, but of a more modest size than the company anticipated. To
assess this possibility one may investigate the potential size of the effect under the
assumption that the effect is non-zero.9 For parameter estimation, we generally
prefer to investigate the posterior distribution for the unconstrained alternative
hypothesis H1; however, the abtest package also provides posterior samples and
plotting functionality for the constrained hypotheses H+ and H−.

The top panel of Figure 12.5 displays the posterior distribution for the absolute
risk (i.e., p2 − p1) that can be obtained as follows:

R> plot_posterior(ab, what = "arisk")

The top panel of Figure 12.5 shows the prior distribution as a dotted line and
the posterior distribution (with 95% central credible interval) as a solid line. The
plot indicates that, under the assumption that the difference between the two
success probabilities is not exactly zero, it is likely to be smaller than expected:
the posterior median is 0.067 and the 95% central credible interval ranges from
0.011 to 0.122.

The middle panel of Figure 12.5 displays the posterior distribution for the log
odds ratio ψ that can be obtained as follows:

R> plot_posterior(ab, what = "logor")

The middle panel of Figure 12.5 indicates that, given the log odds ratio is not
exactly zero, it is likely to be between 0.043 and 0.492, where the posterior median
is 0.267.

It may also be of interest to consider the marginal posterior distributions of
the success probabilities p1 and p2. This plot can be produced as follows:

R> plot_posterior(ab, what = "p1p2")

The bottom panel of Figure 12.5 displays the resulting plot. In this example, p1

and p2 correspond to the probability of still being on the job after six month for the
non-trained employees and the employees that received the training, respectively.
The bottom panel of Figure 12.5 indicates that the posterior median for p1 is
0.485, with 95% credible ranging from 0.443 to 0.527, and the posterior median
for p2 is 0.551, with 95% credible interval ranging from 0.509 to 0.592.

In sum, this synthetic data set offers modest evidence in favor of the null hy-
pothesis which states that the training is not effective over the hypothesis that
the training is highly effective; nevertheless, the consultancy firm should probably

9For consistency, we continue this analysis with the company’s prior; an analysis with the
less enthusiastic default prior is provided in Appendix D.
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Figure 12.5: (Implied) prior and posterior distributions underH1. The dotted lines
display the prior distributions, the solid lines display the posterior distributions
(with 95% central credible intervals). The medians and the bounds of the 95%
central credible intervals are displayed on top of each panel. The top panel displays
the posterior distribution for the absolute risk (i.e., p2−p1); the middle panel shows
the posterior distribution for the log odds ratio parameter ψ; the bottom panel
displays the marginal posterior distributions for the success probabilities p1 and
p2.
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continue to collect data in order to obtain more compelling evidence before de-
ciding whether or not the training should be implemented. If the true effect is as
small as 4%, continued testing will ultimately show compelling evidence for H+

over H0. Note that continued testing is trivial in the Bayesian framework: the
results can simply be updated as new observations arrive.

12.4 Concluding Comments

In this chapter, we have introduced the abtest package that implements both
Bayesian hypothesis testing and Bayesian estimation for the A/B test using in-
formed priors. The procedure allows users to (1) obtain evidence in favor of the
null hypothesis; (2) monitor the evidence as data accumulate; and (3) elicit and
incorporate expert prior distributions. We hope that the provided analysis ap-
proach is useful across different fields that apply A/B testing on a routine basis,
particularly business and medicine.

Despite the practical benefits that the package offers right now, there are areas
for future improvement. For instance, abtest currently allows users to compare
two groups; however, there are applications in which one may be interested in
simultaneously comparing more than two groups. Furthermore, at the moment,
abtest expects the dependent variable to be binary. Nevertheless, in certain sce-
narios, it may be more natural to compare the two groups based on a continuous
outcome variable. This scenario resembles an independent samples t-test for which
well-established Bayesian procedures exist (e.g., Ly et al., 2016b; Rouder et al.,
2009) which are available, for instance, in the BayesFactor package (Morey &
Rouder, 2015) and JASP (JASP Team, 2020).10 Moreover, currently, the abtest
package does not provide functions for generating predictions. Note, however, that
users can generate predictions in a straightforward manner themselves based on
the posterior samples that are provided by abtest. The implementation also does
not allow users to incorporate utilities explicitly (e.g., Lindley, 1985). However,
again, based on the provided posterior probabilities and posterior samples, users
who wish to take into account utilities may do so in a relatively straightforward
way. Furthermore, users interested in adjusting the model used in abtest (e.g., to
account for hierarchically-structured data or covariates) are referred to general-
purpose Bayesian software such as Stan (Carpenter et al., 2017; Stan Development
Team, 2016) and the related R package brms (Bürkner, 2017). In combination with
the bridgesampling package (Gronau, Singmann, & Wagenmakers, 2020), this en-
ables the user to compare custom models using Bayes factors and posterior model
probabilities. A more structural limitation of abtest is that it has been developed
to analyze A/B test data, but not to run the A/B test experiment itself.

In sum, A/B testing is ubiquitous in business and medicine. Here we have
demonstrated how the abtest package enables relatively complete Bayesian infer-
ence including the capability to obtain support for the null, continuously monitor
the results, and elicit and incorporate expert prior knowledge. Hopefully, this

10For a list of Bayesian R packages, see https://cran.r-project.org/web/views/Bayesian

.html.
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approach forms a basis for evidence-based conclusions that will benefit both busi-
nesses and patients.

R code for reproducing the analyses presented in this chapter is available at
https://osf.io/t3ajr/.
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12.A Interpretation of the Parameters

Here we show that β corresponds to the grand mean of the log odds and that ψ
corresponds to the log odds ratio (for the model definition, see Equation 12.1).
The nuisance parameter β corresponds to the grand mean of the log odds since

1

2
log

(
p1

1− p1

)
+

1

2
log

(
p2

1− p2

)
=

1

2
β − 1

4
ψ +

1

2
β +

1

4
ψ = β.

The test-relevant parameter ψ corresponds to the log odds ratio since

log

(
p2

1−p2
p1

1−p1

)
= log

(
p2

1− p2

)
− log

(
p1

1− p1

)
= β +

ψ

2
−
(
β − ψ

2

)
= ψ.

12.B Prior Elicitation: Implied Distributions

The prior elicitation approach described in Equation 12.2 requires the cdf’s for the
quantities of interest. Here, we derive the implied cdf’s for these quantities; we
also derive the corresponding probability density functions (pdf’s). Additionally,
we derive four further implied distributions of interest: the joint pdf of p1 and
p2, the conditional pdf of p2 given p1 is fixed to a particular value, the marginal
distribution for p1, and the marginal distribution for p2. A few of these expres-
sions will contain a one-dimensional integral which can easily be evaluated using
numerical integration.

12.B.1 Log Odds Ratio

Since ψ itself corresponds to the log odds ratio, F (·;µψ, σψ) corresponds in this
case to the cdf of a normal distribution with mean µψ and standard deviation σψ.
The corresponding pdf is the normal probability density function.

12.B.2 Odds Ratio

The implied prior on the odds ratio ω = exp(ψ) is a log-normal distribution.
Hence, F (·;µψ, σψ) corresponds in this case to the cdf of a log-normal distribution
with parameters µψ and σψ. The corresponding pdf is the log-normal probability
density function.

12.B.3 Relative Risk

The relative risk is given by Λ = p2
p1

. We use a capital letter (i.e., Λ) to refer

to the random variable and use a lower-case letter (i.e., λ) to refer to a concrete
realization. Note that so far, we have abused notation by only using lower-case
letters, but it should be clear from the context when we referred to a random
variable or a concrete realization. However, for deriving the following cdf, we need
the distinction to keep the notation clear. To derive the implied cdf for the relative
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risk, we proceed as follows:
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Hence, the desired cdf can be written as
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(12.10)
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where Φ
(
·;µψ, σ2

ψ

)
denotes the cdf of a normal distribution with mean µψ and

variance σ2
ψ, and N (·;µβ , σ2

β) denotes the corresponding pdf.
The pdf of the relative risk is obtained by taking the derivative with respect

to λ:
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12.B.4 Absolute Risk

The absolute risk is given by Υ = p2 − p1. We use the upper-case letter Υ to
refer to the random variable and the lower-case letter υ to refer to a concrete
realization. To derive the implied cdf for the absolute risk, we proceed as follows:

P (Υ ≤ υ) = P (p2 − p1 ≤ υ)

= P (p2 ≤ υ + p1)
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Therefore,
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The pdf of the absolute risk is obtained by taking the derivative with respect to
υ:
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12.B.5 Joint Distribution of p1 and p2

Another distribution of interest is the implied joint distribution of the two success
probabilities p1 and p2. This distribution will not be used to elicit the prior on
ψ which is the reason why we only derive the pdf and not the cdf. The model
parameters β and ψ are related to p1 and p2 as follows:
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.
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Hence, the inverse transformation is given by:
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12.B.6 Marginal Distribution of p1

The marginal distribution of p1 is given by:
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12.B.7 Marginal Distribution of p2

The marginal distribution of p2 is given by:
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12.B.8 Conditional Distribution of p2 given p1

Another distribution of interest is the conditional distribution of the second success
probability p2 given a particular value of p1. This distribution will not be used
for prior elicitation which is the reason why we only present the expression for the
pdf which is given by:
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12.B.9 Implied Distributions for Truncated Priors on the Log
Odds Ratio

Note that the above expressions can be all easily modified in case the prior on
the log odds ratio ψ is a truncated normal distribution (e.g., restricting ψ to be
larger/smaller than zero) which is the case for the hypotheses H+ and H−. In this
case, the normal prior density function and cumulative distribution function for ψ
simply need to be replaced by the truncated versions. For the implied log-normal
prior on the odds ratio, the truncation bounds simply need to be exponentiated
to obtain the truncation bounds with respect to the log-normal prior.

12.C Laplace Approximation Details

The Laplace approximations require first-order and second-order derivatives. Let
us first state explicitly the functions for which we need to find the derivatives. For
H0 we have:
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For H1 we have:
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For H+ we have:
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Finally, for H− we have

l∗−(β, ξ) = log {p(y | β, ξ)π−(β, ξ)}
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12.C.1 First-order Derivatives

The first-order derivatives are used to find the modes for the Laplace approxima-
tions. As shown below, we can find these derivatives analytically; however, setting
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the derivatives equal to zero and solving for the parameters is not straightforward.
Nevertheless, having these derivatives is useful not only as an intermediate step to
finding the second-order derivatives but also for finding the modes: This allows us
to provide numerical optimizers with the analytic expressions for the derivatives
which can increase speed and accuracy for numerically finding the modes of the
relevant functions.

The first-order derivative for l0(β) is given by:

d

dβ
l∗0(β) =

y1 + y2 − (n1 + n2 − y1 − y2) exp(β)

1 + exp(β)
− β − µβ

σ2
β

. (12.22)

The first-order partial derivatives for l∗(β, ψ) are given by

∂

∂β
l∗(β, ψ) =

y1 − (n1 − y1) exp(β − ψ
2 )

1 + exp(β − ψ
2 )

+
y2 − (n2 − y2) exp(β + ψ

2 )

1 + exp(β + ψ
2 )

− β − µβ
σ2
β

,

(12.23)
and

∂

∂ψ
l∗(β, ψ) =

1

2
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(n1 − y1) exp(β − ψ

2 )− y1

1 + exp(β − ψ
2 )

+
y2 − (n2 − y2) exp(β + ψ

2 )

1 + exp(β + ψ
2 )

)

− ψ − µψ
σ2
ψ

.

(12.24)

The first-order partial derivatives for l∗+(β, ξ) are given by:

∂

∂β
l∗+(β, ξ) =
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)
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(12.25)

and

∂

∂ξ
l∗+(β, ξ) =

exp(ξ)
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(12.26)

The first-order partial derivatives for l∗−(β, ξ) are given by:

∂

∂β
l∗−(β, ξ) =

y1 − (n1 − y1) exp
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(12.27)

289



12. Informed Bayesian Inference for the A/B Test

and

∂

∂ξ
l∗−(β, ξ) =

exp(ξ)
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− exp(ξ)− µψ

σ2
ψ

+ 1.

(12.28)

12.C.2 Second-order Derivatives

For the Laplace approximations, we also need the inverse of the negative Hessians.
The Hessian is the matrix with the second-order partial derivatives which is the
reason why we now present expressions for the second-order partial derivatives.
Note that under all hypotheses there are either one or two parameters. Hence,
the Hessians will be at most 2 by 2 matrices. For matrices up to 2 by 2, it is
straightforward to find the inverse and the determinant which makes it easy to
obtain the quantities needed for the Laplace approximations once we have the
required derivatives.

For l∗0(β), there is only one parameter and the second-order derivative is given
by:

d2

dβ2
l∗0(β) = − (n1 + n2) exp(β)

(1 + exp(β))
2 − 1

σ2
β

. (12.29)

For l∗(β, ψ) the second-order partial derivatives are given by
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and
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and
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For l∗+(β, ξ) the second-order partial derivatives are given by
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(12.33)
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and
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and
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For l∗−(β, ξ) the second-order partial derivatives are given by
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and
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and
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(12.38)

12.C.3 Hessians

Having derived the relevant second-order partial derivatives, we can simply build
the Hessian matrices of interest by inserting the relevant expressions. Next, we
present symbolically the Hessians of interest, that is, we show which of the second-
order partial derivatives need to be inserted where. Note that we omit the one
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for H0 since this is a single number which is simply the second-order derivative of
l∗0(β).

The Hessian for H1 is given by:

H1 =

(
∂2

∂β2 l
∗(β, ψ) ∂2

∂β∂ψ l
∗(β, ψ)

∂2
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∗(β, ψ)

)
. (12.39)

The Hessian for H+ is given by:
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The Hessian for H− is given by:

H− =
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12.C.3.1 Computing the Inverse of the Negative Hessians

Note that computing the inverses of the 2 by 2 negative Hessians is straightforward:
We simply need to attach minus signs to each element of the Hessians and then

make use of the fact that the inverse of a 2 by 2 matrix A =

(
a b
c d

)
is given by

A−1 = 1

det(A)

(
d −b
−c a

)
, where det (A) = ad− bc.

12.D Example: Effectiveness of Resilience Training
(Default Analysis)

Here we present the results for the resilience training example obtained using the
default prior setting.

12.D.1 Prior Specification

We use the default prior setting in the abtest package that assigns both β and ψ
standard normal prior distributions. The implied prior on the absolute risk can
be visualized as follows:

R> library("abtest")

R> plot_prior(what = "arisk")

The resulting graph is shown in the top panel of Figure 12.6. The user can also
visualize the (implied) prior for other quantities. For instance, the prior on the
log odds ratio (middle panel of Figure 12.6) is obtained as follows:

R> plot_prior(what = "logor")

The implied prior on the success probabilities p1 and p2 (bottom panel of Fig-
ure 12.6) is obtained as follows:
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Figure 12.6: Default (implied) prior distributions. The top panel displays the prior
distribution for the absolute risk which corresponds to the difference between the
probability of still being on the job for the trained and the non-trained employees
(i.e., p2 − p1). The middle panel shows the prior distribution for the log odds
ratio parameter ψ. The bottom panel displays the implied joint prior distribution
for the success probabilities p1 and p2. The bottom panel illustrates that the two
success probabilities are assigned dependent priors.
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R> plot_prior(what = "p1p2")

The bottom panel of Figure 12.6 illustrates that there is a dependency between
p1 and p2 which is arguably desirable (Howard, 1998): When one of the success
probabilities is very (small) large, it is likely that the other one will also be (small)
large.

12.D.2 Hypothesis Testing

The ab test function can be used to conduct a Bayesian A/B test using the
default prior setting as follows:

R> data("seqdata")

R> set.seed(1)

R> ab_default <- ab_test(data = seqdata)

This yields the following output:

R> print(ab_default)

Bayesian A/B Test Results:

Bayes Factors:

BF10: 0.2767214

BF+0: 0.4890489

BF-0: 0.05778357

Prior Probabilities Hypotheses:

H+: 0.25

H-: 0.25

H0: 0.5

Posterior Probabilities Hypotheses:

H+: 0.192

H-: 0.0227

H0: 0.7853

The first part of the output presents Bayes factors in favor of the hypotheses
H1, H+, and H−, where the reference hypothesis (i.e., denominator of the Bayes
factor) is H0. Since all three Bayes factors are smaller than 1, they all indicate
evidence in favor of the null hypothesis of no effect. The next part of the output
displays the prior probabilities of the hypotheses with non-zero prior probability.
The final part of the output displays the posterior probabilities of the hypotheses
with non-zero prior probability. The posterior probability of the null hypothesis
H0 indicates that the data have increased the plausibility of the null hypothesis
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P(H+ | data) = 0.192

P(H  | data) = 0.023

P(H0 | data) = 0.785

Figure 12.7: Posterior probabilities of the hypotheses visualized as a probability
wheel.

from .50 to .79. Furthermore, the data have decreased the plausibility of both H+

and H−.
The abtest package allows users to visualize the posterior probabilities of the

hypotheses by means of a probability wheel (Figure 12.7):

R> prob_wheel(ab_default)

Overall, the data support the hypothesis that the training is ineffective over the
hypothesis that the training has a positive effect. The Bayes factor for H0 over H+

equals 1/0.489 ≈ 2.04; however, this indicates only anecdotal evidence (Jeffreys,
1939, Appendix I).

Since the data set is of a sequential nature, it may be of interest to consider not
only the result based on all observations, but to conduct also a sequential analysis
that tracks the evidential flow as a function of the total number of observations
(i.e., the number of observations across both groups). This sequential analysis can
be conducted as follows:

R> plot_sequential(ab_default, thin = 4)

Figure 12.8 displays the result of the sequential analysis. The sequential analysis
indicates that after some initial fluctuation, adding more observations increased
the probability of the null hypothesis that there is no effect of the training.

12.D.3 Parameter Estimation

The data indicate only anecdotal evidence in favor of the null hypothesis versus
the hypothesis that the training is effective, leaving open the possibility that the
training does have an effect. To assess this possibility one may investigate the
potential size of the effect under the assumption that the effect is non-zero. For
parameter estimation, we generally prefer to investigate the posterior distribution
for the unconstrained alternative hypothesis H1.
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Figure 12.8: Sequential analysis results. The posterior probability of each hypoth-
esis is plotted as a function of the number of observations across groups. On top,
two probability wheels visualize the prior probabilities of the hypotheses and the
posterior probabilities after taking into account all observations.

The top panel of Figure 12.9 displays the posterior distribution for the absolute
risk (i.e., p2 − p1) that can be obtained as follows:

R> plot_posterior(ab_default, what = "arisk")

The top panel of Figure 12.9 shows the prior distribution as a dotted line and the
posterior distribution (with 95% central credible interval) as a solid line. The plot
indicates that, under the assumption that the difference between the two success
probabilities is not exactly zero, the posterior median is 0.039 and the 95% central
credible interval ranges from −0.022 to 0.101.

The middle panel of Figure 12.9 displays the posterior distribution for the log
odds ratio ψ that can be obtained as follows:

R> plot_posterior(ab_default, what = "logor")

The middle panel of Figure 12.9 indicates that, given the log odds ratio is not
exactly zero, it is likely to be between −0.089 and 0.406, where the posterior
median is 0.159.
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Figure 12.9: (Implied) prior and posterior distributions underH1. The dotted lines
display the prior distributions, the solid lines display the posterior distributions
(with 95% central credible intervals). The medians and the bounds of the 95%
central credible intervals are displayed on top of each panel. The top panel displays
the posterior distribution for the absolute risk (i.e., p2−p1); the middle panel shows
the posterior distribution for the log odds ratio parameter ψ; the bottom panel
displays the marginal posterior distributions for the success probabilities p1 and
p2.
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It may also be of interest to consider the marginal posterior distributions of
the success probabilities p1 and p2. This plot can be produced as follows:

R> plot_posterior(ab_default, what = "p1p2")

The bottom panel of Figure 12.9 displays the resulting plot. In this example, p1

and p2 correspond to the probability of still being on the job after six month for the
non-trained employees and the employees that received the training, respectively.
The bottom panel of Figure 12.9 indicates that the posterior median for p1 is
0.498, with 95% credible ranging from 0.455 to 0.542, and the posterior median
for p2 is 0.537, with 95% credible interval ranging from 0.494 to 0.581.

In sum, based on a default prior analysis, this synthetic data set offers anec-
dotal evidence in favor of the null hypothesis which states that the training is not
effective over the hypothesis that the training is effective; the consultancy firm
should probably continue to collect data in order to obtain more compelling evi-
dence before deciding whether or not the training should be implemented. If the
true effect is as small as 4%, continued testing will ultimately show compelling
evidence for H+ over H0. Note that continued testing is trivial in the Bayesian
framework: the results can simply be updated as new observations arrive.

12.E Progesterone in Women with Bleeding in Early
Pregnancy: Absence of Evidence, Not Evidence of
Absence

As an example application of the abtest package, here we present the
results of a reanalysis of a recent medical trial.11

A recent trial assessed the effectiveness of progesterone in preventing miscarriages
(Coomarasamy et al., 2019). The number of live births was 74.7% (1513/2025) in
the progesterone group and 72.5% (1459/2013) in the placebo group (p = .08). The
authors concluded: “The incidence of adverse events did not differ significantly
between the groups.”

This conclusion leaves unaddressed the degree to which the data undercut or
support the progesterone hypothesis. To quantify such evidence we conducted
Bayesian logistic regression (Gronau, Raj K. N., & Wagenmakers, 2019; Kass &
Vaidyanathan, 1992). Under the no-effect model H0, the log odds ratio equals
ψ = 0, whereas under the positive-effect model H+, ψ is assigned a positive-only
normal prior N+(µ, σ2). A default analysis (i.e., µ = 0, σ = 1) reveals only weak
evidence for H0 (Jeffreys, 1939). Figure 12.10 shows the evidence is weak for all
combinations of µ in [0,0.30] and σ in [0.25,1].

In sum, these data neither undercut nor support the progesterone hypothesis
in compelling fashion.

11This reanalysis is available on PsyArXiv : Gronau, Q. F., & Wagenmakers, E.–J. (2019).
Progesterone in women with bleeding in early pregnancy: Absence of evidence, not evidence of
absence. https://psyarxiv.com/etk7g/
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12.E. Progesterone in Women with Bleeding in Early Pregnancy: Absence of
Evidence, Not Evidence of Absence
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Figure 12.10: Across different priors, the evidence for no-effect H0 over positive-
effect H+ is weak.
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Chapter 13

Limitations of Bayesian
Leave-One-Out Cross-Validation for

Model Selection

Abstract

Cross-validation (CV) is increasingly popular as a generic method to
adjudicate between mathematical models of cognition and behavior. In order
to measure model generalizability, CV quantifies out-of-sample predictive
performance, and the CV preference goes to the model that predicted the
out-of-sample data best. The advantages of CV include theoretic simplicity
and practical feasibility. Despite its prominence, however, the limitations of
CV are often underappreciated. Here we demonstrate the limitations of a
particular form of CV – Bayesian leave-one-out cross-validation or LOO –
with three concrete examples. In each example, a data set of infinite size is
perfectly in line with the predictions of a simple model (i.e., a general law
or invariance). Nevertheless, LOO shows bounded and relatively modest
support for the simple model. We conclude that CV is not a panacea for
model selection.

[...] if you can’t do simple
problems, how can you do
complicated ones?

Dennis Lindley (1985, p. 65)

This chapter is published as Gronau, Q. F., & Wagenmakers, E.–J. (2019). Limitations of
Bayesian leave-one-out cross-validation for model selection. Computational Brain & Behavior, 2,
1–11. doi: https://doi.org/10.1007/s42113-018-0011-7. Also available as PsyArXiv preprint :
https://psyarxiv.com/at7cx/
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13. Limitations of Bayesian Leave-One-Out Cross-Validation for
Model Selection

13.1 Introduction

Model selection is a perennial problem, both in mathematical psychology (e.g.,
the three special issues for the Journal of Mathematical Psychology : J. Mulder &
Wagenmakers, 2016; Myung, Forster, & Browne, 2000b; Wagenmakers & Waldorp,
2006b) and in statistics (e.g., Ando, 2010; Burnham & Anderson, 2002; Claeskens
& Hjort, 2008; Grünwald, Myung, & Pitt, 2005; Wrinch & Jeffreys, 1921). The
main challenge for model selection is known both as the bias-variance tradeoff and
as the parsimony-fit tradeoff (e.g., Myung, 2000; Myung & Pitt, 1997). These
tradeoffs form the basis of what may be called the fundamental law of model
selection: when the goal is to assess a model’s predictive performance, goodness-
of-fit ought to be discounted by model complexity. For instance, consider the
comparison between two regression models, MS and MC ; the ‘simple’ model
MS has k predictors, whereas the ‘complex’ model MC has l predictors more,
for a total of k + l. Hence, MS is said to be nested under MC . In such cases,
MC always outperformsMS in terms of goodness-of-fit (e.g., variance explained),
even when the l extra predictors are useless in the sense that they capture only
the idiosyncratic, nonreplicable noise in the sample at hand. Consequently, model
selection methods that violate the fundamental law trivially fail, because they
prefer the most complex model regardless of the data.

All popular methods of model selection adhere to the fundamental law in that
they seek to chart a route that avoids the Scylla of ‘overfitting’ (i.e., overweight-
ing goodness-of-fit such that complex models receive an undue preference) and
the Charybdis of ‘underfitting’ (i.e., overweighting parsimony such that simple
models receive an undue preference). Both Scylla and Charybdis result in the se-
lection of models with poor predictive performance; models that fall prey to Scylla
mistake what is idiosyncratic noise in the sample for replicable signal, leading to
excess variability in the parameter estimates; in contrast, models that fall prey to
Charybdis mistake what is replicable signal for idiosyncratic noise, leading to bias
in the parameter estimates. Both excess variability and bias result in suboptimal
predictions, that is, poor generalizability.

The cornucopia of model selection methods includes (1) approximate meth-
ods such as AIC (Akaike, 1973) and BIC (Nathoo & Masson, 2016; Schwarz,
1978), which punish complexity by an additive term that includes the number
of free parameters; (2) methods that quantify predictive performance by aver-
aging goodness-of-fit across the model’s entire parameter space (i.e., the Bayes
factor, e.g., Jeffreys, 1961; Kass & Raftery, 1995; Ly et al., 2016b; Rouder et
al., 2012); note that the averaging process indirectly penalizes complexity, as a
vast parameter space will generally contain large swathes that produce a poor fit
(Vandekerckhove et al., 2015); (3) methods based on minimum description length
(Grünwald, 2007; Myung, Navarro, & Pitt, 2006; Rissanen, 2007), where the goal
is the efficient transmission of information, that is, a model and the data it en-
codes; complex models take more bits to describe and transmit; (4) methods such
as cross-validation (CV; Browne, 2000; M. Stone, 1974) that assess predictive per-
formance directly, namely by separating the data in a part that is used for fitting
(i.e., the calibration set or training set) and a part that is used to assess predictive
adequacy (i.e., the validation set or test set).
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13.1. Introduction

Each model selection method comes with its own set of assumptions and op-
erating characteristics which may or may not be appropriate for the application
at hand. For instance, AIC and BIC assume that model complexity can be ap-
proximated by counting the number of free parameters, and the Bayes factor
presupposes the availability of a reasonable joint prior distribution across the pa-
rameter space (Lee & Vanpaemel, 2018). The focus of the current chapter is on
CV, an increasingly popular and generic model selection procedure (e.g., Doxas,
Dennis, & Oliver, 2010; Hastie, Tibshirani, Friedman, & Vetterling, 2008; Yarkoni
& Westfall, 2017). Specifically, our investigation concerns leave-one-out CV, where
the model is trained on all observations except one, which then forms the test set.
The procedure is repeated for all n observations, and the overall predictive CV
performance is the sum of the predictive scores for each of the n test sets.

Originally developed within a frequentist framework, leave-one-out CV can
also be executed within a Bayesian framework; in the Bayesian framework, the
predictions for the test sets are based not on a point estimate but on the entire
posterior distribution (Geisser & Eddy, 1979; Gelfand, Dey, & Chang, 1992; see
also Geisser, 1975). Henceforth we will refer to this Bayesian version of leave-
one-out CV as LOO (e.g., Gelman, Hwang, & Vehtari, 2014; Vehtari et al., 2017;
Vehtari & Ojanen, 2012).1

To foreshadow our conclusion, we demonstrate below with three concrete ex-
amples how LOO can yield conclusions that appear undesirable; specifically, in the
idealized case where there exist a data set of infinite size that is perfectly consistent
with the simple model MS , LOO will nevertheless fail to strongly endorse MS .
It has long been known that CV has this property, termed “inconsistency” (e.g.,
Shao, 1993).2 Our examples demonstrate not just that CV is inconsistent, but
also serve to explicate the reason for the inconsistency. Moreover, the examples
show not only that CV is inconsistent, that is, the support for the true MS does
not increase without bound,3 but they also show that the degree of the support
for the trueMS is surprisingly modest. One of our examples also reveals that, in
contrast to what is commonly assumed, the results for LOO can depend strongly
on the prior distribution, even asymptotically; finally, in all three examples the
observation of data perfectly consistent with MS may nevertheless cause LOO
to decrease its preference for MS . Before we turn to the three examples we first
introduce LOO in more detail.

1The LOO functionality is available through the R package “loo” (Vehtari, Gabry, Yao, &
Gelman, 2018), see also http://mc-stan.org/loo/.

2“[...] it is known to many statisticians (although a rigorous statement has probably not
been given in the literature) that the cross-validation with nv ≡ 1 is asymptotically incorrect
(inconsistent) and is too conservative in the sense that it tends to select an unnecessarily large
model” (Shao, 1993, p. 486).

3The authors agree with Bayarri et al. (2012, p. 1553) who argued that “[...] it would be
philosophically troubling to be in a situation with infinite data generated from one of the models
being considered, and not choosing the correct model.”
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13.2 Bayesian Leave-One-Out Cross-Validation

The general principle of cross-validation is to partition a data set consisting of
n observations y1, y2, . . . , yn into a training set and a test set. The training set
is used to fit the model and the test set is used to evaluate the fitted model’s
predictive adequacy. LOO repeatedly partitions the data set into a training set
which consists of all data points except the ith one, denoted as y−i, and then
evaluates the predictive density for the held-out data point yi. The log of these
predictive densities for all data points is summed to obtain the LOO estimate of
the expected log pointwise predictive density (elpd; Gelman, Hwang, & Vehtari,
2014; Vehtari et al., 2017):4

elpdloo =

n∑
i=1

log p(yi | y−i), (13.1)

where

p(yi | y−i) =

∫
p(yi | θ) p(θ | y−i) dθ (13.2)

is the leave-one-out predictive density for data point yi given the remaining data
points y−i and θ denotes the model parameters.

It is insightful to note the close connection of LOO to what Gelfand and Dey
(1994) called the pseudo-Bayes factor (PSBF) which they attribute to Geisser
and Eddy (1979). Recall that the Bayes factor that compares models M1 and
M2 (Kass & Raftery, 1995) is defined as:

BF12 =
p(y | M1)

p(y | M2)
, (13.3)

where y = (y1, y2, . . . , yn) and p(y | Mm) =
∫

Θm
p(y | θm,Mm) p(θm | Mm) dθm

denotes the marginal likelihood of model Mm, m ∈ {1, 2}. The pseudo-Bayes
factor PSBF replaces the marginal likelihood of each model by the product of the
leave-one-out predictive densities so that:

PSBF12 =

∏n
i=1 p(yi | y−i,M1)∏n
i=1 p(yi | y−i,M2)

= exp
{

∆elpdM1,M2

loo

}
,

(13.4)

where ∆elpdM1,M2

loo = elpdM1

loo − elpdM2

loo and elpdMm

loo denotes the LOO estimate
for model Mm, m ∈ {1, 2}. It is also worth mentioning that LOO can be used
to compute model weights (e.g., Yao, Vehtari, Simpson, & Gelman, 2018; see also
Burnham & Anderson, 2002; Wagenmakers & Farrell, 2004) as follows:

wm =
exp

{
elpdMm

loo

}
∑M
j=1 exp

{
elpd

Mj

loo

} , (13.5)

4Note that the following expressions are conditional on a specific model. However, we have
omitted conditioning on the model for enhanced legibility.
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where wm denotes the model weight for model Mm and M is the number of
models under consideration. The LOO results from the three examples below will
be primarily presented as weights.

13.3 Example 1: Induction

As a first example, we consider what is perhaps the world’s oldest inference prob-
lem, one that has occupied philosophers for over two millennia: given a general
law such as “all X’s have property Y”, how does the accumulation of confirmatory
instances (i.e., X’s that indeed have property Y) increase our confidence in the
general law? Examples of such general laws include “all ravens are black”, “all
apples grow on apple trees”, “all neutral atoms have the same number of protons
and electrons”, and “all children with Down syndrome have all or part of a third
copy of chromosome 21”.

To address this question statistically we can compare two models (e.g., Etz
& Wagenmakers, 2017; Wrinch & Jeffreys, 1921). The first model corresponds to
the general law and can be conceptualized as H0 : θ = 1, where θ is a Bernoulli
probability parameter. This model predicts that only confirmatory instances are
encountered. The second model relaxes the general law and is therefore more
complex; it assigns θ a prior distribution, which, for mathematical convenience,
we take to be from the beta family – consequently, we have H1 : θ ∼ Beta(a, b).

In the following, we assume that, in line with the prediction from H0, only
confirmatory instances are observed. In such a scenario, we submit that there are
at least three desiderata for model selection. First, for any sample size n > 0 of
confirmatory instances, the data ought to support the general law H0; second, as
n increases, so should the level of support in favor of H0; third, as n increases
without bound, the support in favor of H0 should grow infinitely large.

How does LOO perform in this scenario? Before proceeding, note that when
LOO makes predictions based on the maximum likelihood estimate (MLE), none
of the above desiderata are fulfilled. Any training set of size n−1 will contain k =
n−1 confirmatory instances, such that the MLE under H1 is θ̂ = k/(n−1) = 1; of
course, the general law H0 does not contain any adjustable parameters and simply
stipulates that θ = 1. When the models’ predictive performance is evaluated for
the test set observation, it then transpires that bothH0 andH1 have θ set to 1 (H0

on principle, H1 by virtue of having seen the n−1 confirmatory instances from the
training set), so that they make identical predictions. Consequently, according to
the maximum likelihood version of LOO, the data are completely uninformative,
no matter how many confirmatory instances are observed.5

The Bayesian LOO makes predictions using the leave-one-out posterior distri-
bution for θ under H1, and this means that it at least fulfills the first desidera-
tum: the prediction under H0 : θ = 1 is perfect, whereas the prediction under
H1 : θ ∼ Beta(a + n − 1, b) involves values of θ that do not make such perfect
predictions. As a result, the Bayesian LOO will show that the general law H0

outpredicts H1 for the test set.

5This holds for k-fold CV in general.
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What happens when sample size n grows large? Intuitively, two forces are
in opposition: on the one hand, as n grows large, the leave-one-out posterior
distribution of θ under the complex model H1 will be increasingly concentrated
near 1, generating predictions for the test set data that are increasingly similar to
those made by H0. On the other hand, even with n large, the predictions from H1

will still be inferior to those from H0, and these inferior predictions are multiplied
by n, the number of test sets.

As it turns out, these two forces are asymptotically in balance, so that the level
of support in favor of H0 approaches a bound as n grows large. We first provide
the mathematical result and then show the outcome for a few select scenarios.

13.3.1 Mathematical Result

In Example 1 the data consist of n realizations drawn from a Bernoulli distribution,
denoted by yi, i = 1, 2, . . . , n. Under H0, the success probability θ is fixed to 1
and under H1, θ is assigned a Beta(a, b) prior. We consider the case where only
successes are observed, that is, yi = 1,∀i ∈ {1, 2, . . . , n}. The model corresponding
to H0 : θ = 1 has no free parameters and predicts yi = 1 with probability one.
Therefore, the Bayesian LOO estimate elpdH0

loo is equal to 0. To calculate the LOO
estimate under H1, one needs to be able to evaluate the predictive density for a
single data point given the remaining data points. Recall that the posterior based
on n− 1 observations is a Beta(a+n− 1, b) distribution. Consequently, the leave-
one-out predictive density is obtained as a generalization (with a and b potentially
different from 1) of Laplace’s rule of succession applied to n− 1 observations,

p(yi | y−i) =

∫ 1

0

θ︸︷︷︸
p(yi|θ)

Γ(a+n−1+b)
Γ(a+n−1) Γ(b) θ

a+n−2 (1− θ)b−1︸ ︷︷ ︸
p(θ|y−i)

dθ

=
a+ n− 1

a+ n− 1 + b
,

(13.6)

and the Bayesian LOO estimate under H1 is given by

elpdH1

loo = n log

(
a+ n− 1

a+ n− 1 + b

)
. (13.7)

The difference in the LOO estimates is

∆elpdH0,H1

loo = elpdH0

loo − elpdH1

loo

= −n log

(
a+ n− 1

a+ n− 1 + b

)
.

(13.8)

As the number of confirmatory instances n grows large, the difference in the LOO
estimates approaches a bound (see Appendix A for a derivation):

lim
n→∞

∆elpdH0,H1

loo = b. (13.9)

Hence, the asymptotic difference in the Bayesian LOO estimates under H0 and
underH1 equals the Beta prior parameter b. Consequently, the limit of the pseudo-
Bayes factor is

lim
n→∞

PSBF01 = exp {b} , (13.10)
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Figure 13.1: Example 1: LOO weights for H0 : θ = 1 as a function of the
number of confirmatory instances n, evaluated in relation to five different prior
specifications for H1: (a) H1 : θ ∼ Beta(1, 5); (b) H1 : θ ∼ Beta(5, 5); (c)
H1 : θ ∼ Beta(2, 2); (d) H1 : θ ∼ Beta(1, 1); (e) H1 : θ ∼ Beta(0.5, 0.5). The dot-
ted horizontal lines indicate the corresponding analytical asymptotic bounds. See
text for details. Available at https://tinyurl.com/ya2r4gx8 under CC license
https://creativecommons.org/licenses/by/2.0/.

and the limit of the model weight for H0 is

lim
n→∞

w0 =
exp {b}

1 + exp {b}
. (13.11)

13.3.2 Select Scenarios

The mathematical result can be applied to a series of select scenarios. Figure 13.1
shows the LOO weight in favor of the general law H0 as a function of the number
of confirmatory instances n, separately for five different prior specifications under
H1. The figure confirms that for each prior specification, the LOO weight for H0

approaches its asymptotic bound as n grows large.
We conclude the following: (1) as n grows large, the support for the general

law H0 approaches a bound; (2) for many common prior distributions, this bound
is surprisingly low. For instance, the Laplace prior θ ∼ Beta(1,1) (case d) yields

307

https://tinyurl.com/ya2r4gx8
https://creativecommons.org/licenses/by/2.0/


13. Limitations of Bayesian Leave-One-Out Cross-Validation for
Model Selection

a weight of e/(1 + e) ≈ 0.731; (3) contrary to popular belief, our results provide
an example of a situation in which the results from LOO are highly dependent on
the prior distribution, even asymptotically. This is clear from Equation 13.11 and
evidenced in Figure 13.1; (4) as shown by case (e) in Figure 13.1, the choice of
Jeffreys’s prior (i.e., θ ∼ Beta(0.5, 0.5)) results in a function that approaches the
asymptote from above. This means that, according to LOO, the observation of ad-
ditional confirmatory instances actually decreases the support for the general law,
violating the second desideratum outlined above. This violation can be explained
by the fact that the confirmatory instances help the complex model H1 concen-
trate more mass near 1, thereby better mimicking the predictions from the simple
model H0. For some prior choices, this increased ability to mimic outweighs the
fact that the additional confirmatory instances are better predicted by H0 than
by H1.

One counterargument to this demonstration could be that, despite its vener-
able history, the case of induction is somewhat idiosyncratic, having to do more
with logic than with statistics. To rebut this argument we present two additional
examples.

13.4 Example 2: Chance

As a second example, we consider the case where the general law states that the
Bernoulli probability parameter θ equals 1/2 rather than 1. Processes that may be
guided by such a law include “the probability that a randomly chosen digit from the
decimal expansion of π is odd rather than even” (Gronau & Wagenmakers, 2018),
“the probability that a particular Uranium-238 atom will decay in the next 4.5
billion years”, or “the probability that an extrovert participant in an experiment on
extra-sensory perception correctly predicts whether an erotic picture will appear
on the right or on the left side of a computer screen” (Bem, 2011).

Hence, the general law holds thatH0 : θ = 1/2, and the model that relaxes that
law is given by H1 : θ ∼ Beta(a, b), as in Example 1. Also, similar to Example 1,
we consider the situation where the observed data are perfectly consistent with
the predictions from H0. To accomplish this, we consider only even sample sizes
n and set the number of successes k equal to n/2. In other words, the binary
data come as pairs, where one member is a success and the other is a failure. The
general desiderata are similar to those from Example 1: First, for any sample size
with k = n/2 successes, the data ought to support the general law H0; second, as
n increases (for n even and with k = n/2 successes), so should the level of support
in favor of H0; third, as n increases without bound, the support in favor of H0

should grow infinity large.

13.4.1 Mathematical Result

In Example 2 the data consist again of n realizations drawn from a Bernoulli
distribution, denoted by yi, i = 1, 2, . . . , n. Under H0, the success probability θ
is now fixed to 1/2; under H1, θ is again assigned a Beta(a, b) prior. The model
corresponding to H0 : θ = 1/2 has no free parameters and predicts yi = 0 with
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probability 1/2 and yi = 1 with probability 1/2. Therefore, the LOO estimate
is given by elpdH0

loo = −n log (2). To calculate the LOO estimate under H1, one
needs to be able to evaluate the predictive density for a single data point given
the remaining data points. Recall that the posterior based on n− 1 observations
is a Beta(a+ k−i, b+ n− 1− k−i) distribution, where k−i =

∑
j 6=i yj denotes the

number of successes based on all data points except the ith one. Consequently,
the leave-one-out predictive density is given by:

p(yi | y−i) =

∫ 1

0

θyi (1− θ)1−yi︸ ︷︷ ︸
p(yi|θ)

× Γ(a+b+n−1)
Γ(a+k−i) Γ(b+n−k−i−1) θ

a+k−i−1 (1− θ)b+n−k−i−2︸ ︷︷ ︸
p(θ|y−i)

dθ

=


a+k−1
a+b+n−1 if yi = 1

b+n−k−1
a+b+n−1 if yi = 0,

(13.12)

where k =
∑n
i=1 yi denotes the total number of successes. Example 2 considers

the case where n is even and the number of successes k equals n
2 . The Bayesian

LOO estimate under H1 is then given by:

elpdH1

loo =
n

2
log

(
a+ n

2 − 1

a+ b+ n− 1

)
+
n

2
log

(
b+ n

2 − 1

a+ b+ n− 1

)
. (13.13)

The difference in the LOO estimates can be written as

∆elpdH0,H1

loo =
n

2
log

(
a+ b+ n− 1

2a+ n− 2

)
+
n

2
log

(
a+ b+ n− 1

2b+ n− 2

)
. (13.14)

As the even sample size n grows large, the difference in the LOO estimates ap-
proaches a bound (see Appendix B for a derivation):

lim
n→∞

∆elpdH0,H1

loo = 1. (13.15)

Consequently, the limit of the pseudo-Bayes factor is

lim
n→∞

PSBF01 = e ≈ 2.718, (13.16)

and the limit of the model weight for H0 is

lim
n→∞

w0 =
e

1 + e
≈ 0.731. (13.17)

13.4.2 Select Scenarios

The mathematical result can be applied to a series of select scenarios, as before.
Figure 13.2 shows the LOO weight in favor of the general law H0 as a function of
the even number of observations n, separately for five different prior specifications
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Figure 13.2: Example 2: LOO weights for H0 : θ = 1/2 as a function of the
number of observations n, where the number of successes k = n/2, evaluated
in relation to five different prior specifications for H1: (a) H1 : θ ∼ Beta(1, 5);
(b) H1 : θ ∼ Beta(5, 5); (c) H1 : θ ∼ Beta(2, 2); (d) H1 : θ ∼ Beta(1, 1); (e)
H1 : θ ∼ Beta(0.5, 0.5). The dotted horizontal line indicates the corresponding
analytical asymptotic bound. Note that only even sample sizes are displayed. See
text for details. Available at https://tinyurl.com/y8azu4hc under CC license
https://creativecommons.org/licenses/by/2.0/.

under H1. The figure confirms that for each prior specification, the LOO weight
for H0 approaches its asymptotic bound as n grows large.

We conclude the following: (1) as n grows large, the support for the general law
H0 approaches a bound; (2) in contrast to Example 1, this bound is independent of
the particular choice of Beta prior distribution for θ under H1; however, consistent
with Example 1, this bound is surprisingly low. Even with an infinite number of
observations, exactly half of which are successes and half of which are failures, the
model weight for the general law H0 does not exceed a modest 0.731; (3) as shown
by case (e) in Figure 13.2, the choice of Jeffreys’s prior (i.e., θ ∼ Beta(0.5, 0.5))
results in a function that approaches the asymptote from above. This means
that, according to LOO, the observation of additional success-failure pairs actu-
ally decreases the support for the general law, violating the second desideratum
outlined above; (4) as shown by case (a) in Figure 13.2, the choice of a Beta(1, 5)
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prior results in a nonmonotonic relation, where the addition of H0-consistent pairs
initially increases the support for H0, and later decreases it.

In sum, the result of the LOO procedure for a test against a chance process,
H0 : θ = 1/2, reveals behavior that is broadly similar to that for the test of induc-
tion (H0 : θ = 0 or H0 : θ = 1), and that violates two seemingly uncontroversial
desiderata, namely that the additional observation of data that are perfectly con-
sistent with the general law H0 ought to result in more support for H0, and do
so without bound as n grows indefinitely. The final example concerns continuous
data.

13.5 Example 3: Nullity of a Normal Mean

As a final example, we consider the case of the z-test: data are normally distributed
with unknown mean µ and known variance σ2 = 1. For concreteness we consider
a general law which states that the mean µ equals 0, that is, H0 : µ = 0. The
model that relaxes the general law assigns a prior distribution to µ; specifically,
we consider H1 : µ ∼ N (0, σ2

0). Similar to Examples 1 and 2, we consider the
situation where the observed data are perfectly consistent with the predictions
from H0. Consequently, we consider data for which the sample mean ȳ is exactly
0 and the sample variance s2 = 1

n−1

∑n
i=1(yi − ȳ)2 is exactly 1.

The general desiderata are similar to those from Example 1 and 2: First, for
any sample size n with sample mean equal to zero and sample variance equal to
one, the data ought to support the general law H0; second, as n increases, so
should the level of support in favor of H0; third, as n increases without bound,
the support in favor of H0 should grow infinitely large.

13.5.1 Mathematical Result

In Example 3 the data consist of n realizations drawn from a normal distribution
with mean µ and known variance σ2 = 1: yi ∼ N (µ, 1), i = 1, 2, . . . , n. Under
H0 the mean µ is fixed to 0; under H1, µ is assigned a N (0, σ2

0) prior. The model
corresponding to H0 : µ = 0 has no free parameters so that the Bayesian LOO
estimate is obtained by summing the log likelihood values:

elpdH0

loo = −n
2

log (2π)− n− 1

2
. (13.18)

To calculate the LOO estimate under H1, one needs to be able to evaluate the
predictive density for a single data point given the remaining data points. Recall
that the posterior for µ based on n − 1 observations is a N (µ−i, σ

2
−i) normal

distribution distribution, with

µ−i =
(n− 1)ȳ−i

n− 1 + 1
σ2
0

, (13.19)

and

σ2
−i =

1

n− 1 + 1
σ2
0

, (13.20)
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where ȳ−i = 1
n−1

∑
j 6=i yj denotes the mean of the observations without the

ith data point. Consequently, the leave-one-out predictive density is given by
a N (µ−i, 1 + σ2

−i) distribution which follows from well-known properties of a
product of normal distributions. Example 3 considers data sets that convey the
maximal possible evidence for H0 by having a sample mean of ȳ = 0 and a sample
variance of s2 = 1. The Bayesian LOO estimate under H1 is then given by:

elpdH1

loo = −n
2

log (2π)− n

2
log

(
n+ 1

σ2
0

n− 1 + 1
σ2
0

)
−

(n− 1)
(
n+ 1

σ2
0

)
2
(
n− 1 + 1

σ2
0

) . (13.21)

The difference in the LOO estimates can be written as

∆elpdH0,H1

loo =
n

2
log

(
n+ 1

σ2
0

n− 1 + 1
σ2
0

)
+

n− 1

2
(
n− 1 + 1

σ2
0

) . (13.22)

As the sample size n grows without bound, the difference in the LOO estimates
approaches a bound (see Appendix C for a derivation):

lim
n→∞

∆elpdH0,H1

loo = 1. (13.23)

Consequently, the limit of the pseudo-Bayes factor is

lim
n→∞

PSBF01 = e ≈ 2.718, (13.24)

and the limit of the model weight for H0 is

lim
n→∞

w0 =
e

1 + e
≈ 0.731, (13.25)

which is identical to the limit obtained in Example 2.

13.5.2 Select Scenarios

As in the previous two examples, the mathematical result can be applied to a series
of select scenarios. Figure 13.3 shows the LOO weight in favor of the general law
H0 as a function of the sample size n with sample mean exactly zero and sample
variance exactly one, separately for four different prior specifications of H1. The
figure confirms that for each prior specification, the LOO weight forH0 approaches
the asymptotic bound as n grows large.

We conclude the following: (1) as n grows large, the support for the general
law H0 approaches a bound; (2) in contrast to Example 1, but consistent with
Example 2, this bound is independent of the particular choice of normal prior
distribution for µ under H1; however, consistent with both earlier examples, this
bound is surprisingly low. Even with an infinite number of observations and a
sample mean of exactly zero, the model weight on the general law H0 does not
exceed a modest 0.731; (3) as shown by case (a) in Figure 13.3, the choice of a
N (0, 32) prior distributions results in a function that approaches the asymptote
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Figure 13.3: Example 3: LOO weights for H0 : µ = 0 as a function of sample size
n, for data sets with sample mean equal to zero and sample variance equal to one,
evaluated in relation to four different prior specifications for H1: (a) H1 : µ ∼
N (0, 32); (b) H1 : µ ∼ N (0, 1.52); (c) H1 : µ ∼ N (0, 1); (d) H1 : µ ∼ N (0, 0.52).
The dotted horizontal line indicates the corresponding analytical asymptotic
bound. See text for details. Available at https://tinyurl.com/y7qhtp3o under
CC license https://creativecommons.org/licenses/by/2.0/.

from above. This means that, according to LOO, increasing the sample size of
observations that are perfectly consistent with H0 actually decreases the support
for H0, violating the second desideratum outlined earlier; (4) some prior distri-
butions (e.g., µ ∼ N (0, 2.0352)) result in a nonmonotonic relation, where the
addition of H0-consistent observations initially increases the support for H0, and
later decreases it toward asymptote.6

In sum, the result of the LOO procedure for a z-test involving H0 : µ = 0
shows behavior similar to that for the test of induction (H0 : θ = 0 or H0 : θ = 1)
and the test against chance (H0 : θ = 1/2); this behavior violates two seemingly
uncontroversial desiderata of inference, namely that the additional observation of
data that are perfectly consistent with the general law H0 ought to result in more

6Because the size of this nonmonotonicity is relatively small, we have omitted it from the
figure. The OSF project page https://osf.io/6s5zp/ contains a figure that zooms in on the
nonmonotonicity.
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support for H0, and do so without bound.

13.6 Closing Comments

Three simple examples revealed some expected as well as some unexpected lim-
itations of Bayesian leave-one-out cross-validation or LOO. In the statistical lit-
erature it is already well-known that LOO is inconsistent (Shao, 1993), meaning
that the true data-generating model will not be chosen with certainty as the sam-
ple size approaches infinity. Our examples provide a concrete demonstration of
this phenomenon; moreover, our examples highlighted that, as the number of H0-
consistent observations n increases indefinitely, the bound on support in favor of
H0 may remain modest. Inconsistency is arguably not a practical problem when
the support is bounded at a level of evidence that is astronomically large, say a
weight of 0.99999999; however, for both the test against chance and the z-test,
the level of asymptotic LOO support for H0 was categorized by Jeffreys (1939) as
“not worth more than a bare comment” (p. 357).

It thus appears that, when the data are generated from a simple model, LOO
falls prey to the Scylla of overfitting, giving undue preference to the complex
model. The reason for this cuts to the heart of cross-validation: when two candi-
date models are given access to the same training set, this benefits the complex
more than it benefits the simple model. In our examples, the simple model did
not have any free parameters at all, and consequently these models gained no ben-
efit whatsoever from having been given access to the training data; in contrast,
the more complex models did have free parameters, and these parameters greatly
profited from having been given access to the data set. Perhaps this bias may be
overcome by introducing a cost function, such that the price for advance infor-
mation (i.e., the training set) depends on the complexity of the model – models
that stand to benefit more from the training set should pay a higher price for
being granted access to it. Another approach is to abandon the leave-one-out idea
and instead decrease the size of the training set as the number of observations n
increases;7 Shao (1993) demonstrated that this approach can yield consistency.

In order to better understand the behavior of leave-one-out cross-validation it
is also useful to consider AIC, a method to which it is asymptotically equivalent
(M. Stone, 1977). Indeed, for Example 2 and Example 3, the asymptotic LOO
model weight equals that obtained when using AIC (Burnham & Anderson, 2002;
Wagenmakers & Farrell, 2004). In addition, as pointed out by O’Hagan and
Forster (2004, p. 187), “AIC corresponds to a partial Bayes factor in which one-
fifth of the data are applied as a training sample and four-fifths are used for model
comparison”. O’Hagan and Forster (2004) further note that this method is not
consistent. It is also not immediately clear, in general, why setting aside one-fifth
of the data for training is a recommendable course of action.

7Critics of cross-validation might argue that one weakness of the approach is that it is not
a unique method for assessing predictive performance. That is, users of cross-validation need to
decide which form to use exactly (e.g., leave-one-out, leave-two-out, k-fold, etc.) and different
choices generally yield different results.
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Another unexpected result was that, depending on the prior distribution,
adding H0-consistent information may decrease the LOO preference for H0; some-
times, as the H0-consistent observations accumulate, the LOO preference for H0

may even be nonmonotonic, first increasing (or decreasing) and later decreasing
(or increasing).

The examples outlined here are simple, and a LOO proponent may argue
that, in real-world applications of substantive interest, simple models are never
true, that is, the asymptotic data are never fully consistent with a simple model.
Nevertheless, when researchers use LOO to compare two different models, it is
important to keep in mind that the comparison is not between the predictive
adequacy of the two models as originally entertained; the comparison is between
predictive adequacy of two models where both have had advance access to all of
the observations except one.

In sum, cross-validation is an appealing method for model selection. It directly
assesses predictive ability, it is intuitive, and oftentimes it can be implemented
with little effort. In the literature, it is occasionally mentioned that a drawback
of cross-validation (and specifically LOO) is the computational burden involved.
We believe that there is another, more fundamental drawback that deserves at-
tention, namely the fact that LOO violates several common-sense desiderata of
statistical support. Researchers who use LOO to adjudicate between competing
mathematical models for cognition and behavior should be aware of this limita-
tion and perhaps assess the robustness of their LOO conclusions by employing
alternative procedures for model selection as well.

R code and more detailed derivations can be found at: https://osf.io/6s5zp/.
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13.A Derivation Example 1 – Induction

To investigate how the difference in the LOO estimates

∆elpdH0,H1

loo = elpdH0

loo − elpdH1

loo

= − log

[(
a+ n− 1

a+ n− 1 + b

)n]
behaves as the number of observations goes to infinity, one can consider the limit

of
(

a+n−1
a+n−1+b

)n
as n→∞:

lim
n→∞

(
a+ n− 1

a+ n− 1 + b

)n
= exp

 lim
n→∞

log
[

a+n−1
a+n−1+b

]
1
n

 .

The limit of the denominator is limn→∞
1
n = 0 and it is also straightforward to

show that limn→∞ log
[

a+n−1
a+n−1+b

]
= 0. Therefore, both the limit of the numerator

and of the denominator are 0 and L’Hôpital’s rule can be applied which yields

lim
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(
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a+ n− 1 + b

)n
= exp

{
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n→∞

b

1 + (2a− 2 + b) 1
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n2

}
.

Hence,

lim
n→∞

(
a+ n− 1

a+ n− 1 + b

)n
= exp {−b} .

Therefore, the difference in the Bayesian LOO estimates ∆elpdH0,H1

loo as n → ∞
is given by:

lim
n→∞

∆elpdH0,H1

loo = b.

13.B Derivation Example 2 – Chance

The difference in the LOO estimates can be written as

∆elpdH0,H1

loo = log

[(
a+ b+ n− 1

2a+ n− 2

)n
2

]
+ log
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a+ b+ n− 1

2b+ n− 2
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2

]
.

To investigate how this difference behaves as the number of observations goes to

infinity, one can consider the limit of
(
a+b+n−1
2a+n−2

)n
2

and of
(
a+b+n−1
2b+n−2

)n
2

as n→∞.

We first introduce a new variable m so that n = 2m, where m = 1, 2, 3, . . ., which
ensures that the number of observation is even, and then consider the limits as
m→∞. The limit of the first expression is given by

lim
m→∞

(
a+ b+ 2m− 1

2a+ 2m− 2

)m
= exp

 lim
m→∞

log
(
a+b+2m−1
2a+2m−2

)
1
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The limit of the denominator is 0 and it is also straightforward to show that the
limit of the numerator is 0. Hence, L’Hôpital’s rule can be applied which yields

lim
m→∞

(
a+ b+ 2m− 1

2a+ 2m− 2

)m
= exp

{
b− a+ 1

2

}
.

Next, we consider the limit of the expressions in the second logarithm as m → ∞:

lim
m→∞

(
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2b+ 2m− 2

)m
= exp
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log
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2b+2m−2

)
1
m

 .

The limit of the denominator is 0 and it is also straightforward to show that the
limit of the numerator is 0. Hence, L’Hôpital’s rule can be applied which yields

lim
m→∞

(
a+ b+ 2m− 1
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= exp

{
a− b+ 1

2

}
.

Therefore, the difference in the LOO of the two models as m→∞ is given by:
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m→∞

[
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]
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2
+
a− b+ 1

2

= 1.

13.C Derivation Example 3 – Nullity of a Normal Mean

We first show how to obtain the expression for the difference in the LOO estimates.
Note that the LOO estimate under H1 can be written as:
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Since we consider data sets that have a sample mean of exactly 0, we know that∑n
i=1 yi = 0 so that

∑
j 6=i yj = −yi. Furthermore, since the sample variance

is exactly one and the sample mean is exactly zero, we know that s2 = 1 =
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and
n∑
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Hence, using these results and after some further simplifications, the LOO estimate
under H1 can be written as
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Therefore, the difference in the LOO estimates can be written as
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To investigate how this difference behaves as the number of observations goes to
infinity, we take the limit of each of the terms. The limit of the first term is
obtained by taking the limit of the expression in the logarithm:
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The limit of the denominator is 0 and it is also straightforward to show that the
limit of the numerator is 0. Hence, L’Hôpital’s rule can be applied which yields
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n→∞

(
n+

1
σ2
0

n−1+
1
σ2
0

)n
2

= exp

{
1

2

}
.

The limit of the second term is given by:
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Therefore, the difference in the LOO of the two models as n→∞ is given by:
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[
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Chapter 14

Rejoinder: More Limitations of
Bayesian Leave-One-Out

Cross-Validation

Abstract

We recently discussed several limitations of Bayesian leave-one-out cross-
validation (LOO) for model selection. Our contribution attracted three
thought-provoking commentaries. In this rejoinder, we address each of
the commentaries and identify several additional limitations of LOO-based
methods such as Bayesian stacking. We focus on differences between LOO-
based methods versus approaches that consistently use Bayes’ rule for both
parameter estimation and model comparison. We conclude that LOO-based
methods do not align satisfactorily with the epistemic goal of mathematical
psychology.

Bayesian leave-one-out cross-validation (LOO) is increasingly popular for the
comparison and selection of quantitative models of cognition and behavior.1 In
a recent article for Computational Brain & Behavior, we outlined several limita-
tions of LOO (Gronau & Wagenmakers, 2019). Specifically, three concrete, simple
examples illustrated that when a data set of infinite size is perfectly in line with
the predictions of a simple modelMS and LOO is used to compareMS to a more
complex modelMC , LOO shows bounded support forMS . As we mentioned, this
model selection inconsistency has been known for a long time (e.g., Shao, 1993).
We also discussed limitations that were unexpected (at least to us). Concretely,

This chapter is published as Gronau, Q. F., & Wagenmakers, E.–J. (2019). Rejoinder: More
limitations of Bayesian leave-one-out cross-validation. Computational Brain & Behavior, 2, 35–
47. doi: https://doi.org/10.1007/s42113-018-0022-4. Also available as PsyArXiv preprint :
https://psyarxiv.com/38zxu

1Throughout this chapter, we use the terms model comparison and model selection inter-
changeably, although it may be argued that there is a subtle difference.
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for data perfectly consistent with the simpler model MS , (1) the limiting bound
of evidence for MS is often surprisingly modest; (2) the LOO preference for MS

may be a non-monotonic function of the number of observations (meaning that
additional observations perfectly consistent with MS may in fact decrease the
LOO-preference for MS); and (3) contrary to popular belief, the LOO result can
depend strongly on the parameter prior distribution, even asymptotically.

Our discussion of the limitations of LOO attracted three commentaries. In the
first commentary, Vehtari, Simpson, Yao, and Gelman (2019) claim that we “fo-
cus on pathologizing a known and essentially unimportant property of the method;
and they fail to discuss the most common issues that arise when using LOO for
a real statistical analysis”. Furthermore, Vehtari, Simpson, et al. state that we
used a version of LOO that is not best practice and they suggest to use LOO-
based Bayesian stacking instead (Yao et al., 2018). Vehtari, Simpson, et al. also
criticize us for making the assumption that one of the models under considera-
tion is “true” and use this as a springboard to question the usefulness of Bayes
factors (e.g., Jeffreys, 1961; Kass & Raftery, 1995) and Bayesian model averaging
(BMA; e.g., Hoeting et al., 1999; Jevons, 1874/1913). Finally, Vehtari, Simp-
son, et al. point out what they believe are more serious limitations of LOO-based
methods. The second commentary is by Navarro (2019) and discusses how the
scientific goal of explanation aligns with traditional statistical concerns; Navarro
suggests that the model selection literature may focus too heavily on the statistical
issues of model choice and too little on the scientific questions of interest. In the
third commentary, Shiffrin and Chandramouli (2019) advocate Bayesian inference
for non-overlapping model classes. Furthermore, Shiffrin and Chandramouli ad-
vocate tests of interval-null hypotheses instead of point-null hypotheses. Finally,
Shiffrin and Chandramouli demonstrate that comparing non-overlapping hypothe-
ses (where the null is an interval) eliminates the model selection inconsistency of
LOO.

We thank the contributors for a productive discussion. To keep this rejoinder
concise, we decided to address only the key points of disagreement. First, however,
we will outline what we believe to be the primary goal of mathematical psychology.

14.1 Mathematical Psychology: An Epistemic Enterprise

Mathematical psychology is founded on the principle that psychological theories
about cognition and behavior ought to be made precise by implementing them as
quantitative models. Fum, Del Missier, and Stocco (2007, p. 136) write:

“Verbally expressed statements are sometimes flawed by internal
inconsistencies, logical contradictions, theoretical weaknesses and gaps.
A running computational model, on the other hand, can be considered
as a sufficiency proof of the internal coherence and completeness of the
ideas it is based upon.”

There exist different opinions about the role of models. As mentioned by Navarro
(2019), Bernardo and Smith (1994, p. 238) state:
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“Many authors [...] highlight a distinction between what one might
call scientific and technological approaches to models. The essence
of the dichotomy is that scientists are assumed to seek explanatory
models, which aim at providing insight into and understanding of the
“true” mechanisms of the phenomenon under study; whereas technolo-
gists are content with empirical models, which are not concerned with
the “truth” but simply with providing a reliable basis for practical
action in predicting and controlling phenomena of interest.”

Bernardo and Smith (1994, p. 238) conclude that when models are evaluated based
on their predictions, the distinction is immaterial. In contrast, we believe that the
distinction remains crucial. To us, the purpose of mathematical psychology is
epistemic: the ultimate goal is to understand phenomena by developing theories,
implementing these theories rigorously as quantitative models, and testing these
models on observed data. Hence, our view of mathematical psychology aligns
with what Bernardo and Smith call the “scientific approach”. In contrast, the
main goal of the “technological approach” is the prediction of future data. There
is an important distinction between these two approaches since, if the goal is
solely prediction, one may be satisfied with models and methods that can be
characterized as black-box “prediction devices”. The components and parameters
of such prediction devices may not permit a substantive interpretation.

We believe that for many mathematical psychologists predictive adequacy is
only a pragmatic means to an epistemic end. Quantitative models of cognition
and behavior typically feature parameters that represent latent cognitive processes;
these are of interest in and of themselves and do not serve only as tuning knobs
of prediction devices. We do not wish to suggest that prediction is unimportant;
in fact, we believe that models ought to be compared based on the predictions
they made for observed data. However, we feel that the goal in mathematical
psychology is virtually always an epistemic one, where models instantiate mean-
ingful theories, and not a predictive one, where predictions are made for their own
sake without the goal of developing and employing substantive theory. The fol-
lowing sections demonstrate by example that LOO-based methods have important
limitations when the goal is epistemic rather than purely predictive.

14.2 Rejoinder to Vehtari, Simpson, Yao, & Gelman

Vehtari, Simpson, et al. (2019, henceforth VSYG) claim that we used a LOO ver-
sion that is not in line with best practice and conclude that “[..] the claimed “lim-
itations of Bayesian leave-one-out cross-validation” from GW do not apply to the
version of Bayesian leave-one-out cross-validation that we recommend”. Specif-
ically, (1) VSYG claim that we fail to take into account the empirical variance
of the LOO estimate; they recommend doing so by using pseudo-BMA+ weights
(Yao et al., 2018); (2) VSYG suggest that it would be even better to use Bayesian
stacking (Yao et al., 2018). First, we agree that one should take into account the
empirical variance of the LOO estimate in case it is non-zero. However, as VSYG
mention “[...] this does not make a difference in their very specialized examples”.
Second, since VSYG claim that the limitations we mentioned are well-known and
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suggest Bayesian stacking instead, below we outline further limitations of LOO-
based methods such as Bayesian stacking. We start by discussing the relevance of
the assumption that one of the models under consideration is “true” which VSYG
use to question the usefulness of Bayes factors and Bayesian model averaging.

14.2.1 LOO Is Motivated by an Illusory Distinction Between
M-Open Tools and M-Closed Tools

LOO-based methods have been recommended for what is called the M-open
setting (Bernardo & Smith, 1994). Consider a set of M candidate models:
M1,M2, . . . ,MM . M-open refers to a situation where the “true” model is not
included in the set of candidate models. This stands in contrast to the M-closed
setting where one of the models in the set is “true” in the sense that it corresponds
to the data-generating process.

In the M-closed case it is valid (although not universally recommended; see
Gelman, Carlin, et al., 2014, chapter 7.4; Gelman & Shalizi, 2013) to employ
model comparison and prediction approaches that consistently use Bayes’ rule, not
only to update one’s knowledge about parameters within a model, but also about
the models themselves (e.g., by means of BMA, Bayes factors, posterior model
probabilities). These approaches assign prior probabilities p(Mk), k = 1, 2, . . . ,M
to a set of M models.2

In the M-open case, however, the appropriateness of these supposedly “M-
closed tools” is often questioned (Bernardo & Smith, 1994, pp. 383–407; Yao et al.,
2018). Moreover, George Box’s famous adage “all models are wrong” may then be
invoked to question the use of these “M-closed tools” in any practical application.
For instance, Li and Dunson (in press) argue that “Philosophically, in order to
interpret pr(Mj | y(n)) as a model probability, one must rely on the (arguably
always flawed) assumption that one of the models in the list M is exactly true,
known as the M-closed case.”

Our objections to this line of reasoning are threefold. First, if we were to accept
that these “M-closed tools” are unsuitable for practical data analysis, this would
similarly disqualify the specification of parameter priors and the computation of
posterior predictives. As explained in the next section, individual parameter values
or specific parameter ranges can be conceptualized as individual models.

Second, Bayes’ rule does not refer to an underlying ‘truth’ and the prior prob-
ability that is assigned across models (or across parameters) quantifies relative
plausibility. Feldman (2015) has emphatically argued this point:3

2Note that the value of the Bayes factor is independent of the prior model probabilities since
it quantifies the change from prior to posterior model odds. However, although it is independent
of the value of the prior model odds, it assumes that, in principle, these could be specified.

3Relatedly, Wasserman (2000, p. 103) argued: “Second, even when all models are wrong, it
is useful to consider the relative merits of two models. Newtonian physics and general relativity
are both wrong. Yet it makes sense to compare the relative evidence in favor of one or the
other. Our conclusion would be: under the tentative working hypothesis that one of these two
theories is correct, we find that the evidence strongly favors general relativity. It is understood
that the working hypothesis that one of the models is correct is wrong. But it is a useful,
tentative hypothesis and, proceeding under that hypothesis, it makes sense to evaluate the
relative posterior probabilities of those hypotheses.”
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“But such a strong assumption [that one of the candidate models is
true] is not really necessary in a Bayesian framework—at least, it is not
required or implied by any of the equations. Rather, Bayesian inference
only assumes that there is some set M of possible models under consid-
eration, which are tied to the data via likelihood functions p(X | M).
Bayes’ rule allows these models to be compared to each other in terms
of plausibility, but says nothing whatsoever about whether any of the
models is true in a larger or absolute sense (see Feldman, 2014). The
‘truth’ of the models (whatever that even means—see remarks above
about semantics) never enters into it.” (Feldman, 2015, p. 1524)

Third, Feldman (2013, pp. 17-18) points out, as did Bayesian pioneers Ed
Jaynes and Dennis Lindley before him, that the assignment of prior probabilities is
always conditional on background knowledge K. Hence, when we write p(Mk) this
is really just a convenient shorthand for the more accurate notation p(Mk | K), a
renormalized probability for a subset of relevant models selected by conditioning
on the current knowledge K. Background knowledge K provides the pragmatic
filter that allows us to define, from the infinite collection of possible models, a
subset of models that pass a certain minimum threshold of plausibility, feasibility,
or substantive interest. This conceptualization of prior model probabilities is in
line with our epistemic view on mathematical psychology. Given a set of competing
theoretical accounts of interest, implemented as quantitative models (i.e., given our
background knowledge K), we are interested in quantifying the relative evidence
for each of these models based on observed data. Nowhere do we assume any of
the models that represent rival theories to be true in an absolute sense.

We do not wish to suggest that the possibility of model-misspecification can
be happily ignored; all models necessarily make assumptions and simplifications
and it may happen that given a set of models, even the best one fails to provide
a satisfactory description of the phenomenon of interest. In our opinion, however,
this does not suggest that the entire approach of assigning prior probabilities to
a set of rival models is flawed from the outset or that it does not make sense. In
contrast, the presence of model-misspecification suggests that one ought to refine
the models or develop new theories that are able to better capture the relevant
aspects of the phenomenon of interest (i.e., expand the background knowledge
base K). These new model versions can then be incorporated in the set of models
and can be compared to each other based on new data.

14.2.2 LOO Depends on an Arbitrary Distinction Between
Parameter Estimation and Model Comparison

We do not believe that the distinction between M-open and M-closed is a valid
argument against approaches that consistently use Bayes’ rule for both parame-
ters and models. Those who disagree may feel that assigning model probabilities
p(Mk) does not make sense in theM-open setting; these dissenters would, in our
opinion, then also need to object to assigning prior probabilities to parameters
and computing quantities such as posterior predictives. The reason is that the
distinction between parameter estimation and model comparison can be regarded
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as artificial (see also Gelman, 2011, p. 76). It has long been known that estimation
can be viewed as a special case of model comparison (also known as ‘testing’):4

“We shall not consider the philosophy of Bayesian estimation pro-
cedures here. These procedures can be regarded as a special case of
Bayesian hypothesis testing since every statement of the form that a
vectorial parameter belongs to a region is itself a hypothesis [but esti-
mates are less often formulated before making observations].” (Good,
1983, p. 126)

14.2.2.1 Discrete Parameters

The fact that labeling a problem as parameter estimation or model comparison
can be regarded as arbitrary is most apparent for discrete parameter models. As
a concrete example, consider a scenario inspired by Hammersley (1950, p. 236)
about tumor transplantability in mice (see also Choirat & Seri, 2012). For a cer-
tain type of mating, the probability of a tumor “taking” when transplanted from
one of the grandparents is (1/2)k, where k is an integer that corresponds to the
number of genes determining transplantability (all of which must be present for
a “take” to occur). Suppose, for illustrative purposes, we know that the number
of relevant genes is between 1 and 10 and we deem each number equally likely
a priori: p(k) = 1/10, for all k ∈ {1, 2, . . . , 10}. The likelihood corresponds to

a binomial distribution with success probability θ = (1/2)
k
. Suppose fictitious

data show 1 “take” out of 6 attempts. The resulting posterior distribution for k
is displayed in Figure 14.1. In this example, k could be regarded as a parame-
ter, so that the distribution in Figure 14.1 is a parameter posterior distribution.
However, k could also be regarded as an index for a set of 10 competing models
M1,M2, . . . ,M10, where Mk : θ = (1/2)k, k = 1, 2, . . . , 10. In this case, the
distribution in Figure 14.1 visualizes the posterior model probabilities.

After having obtained a posterior over the number of genes k, one may be
interested in predicting new data ynew given the observed data y (i.e., 1 “take”
out of 6 attempts). This is achieved by marginalizing over k:

p(ynew | y) =

10∑
k=1

p(ynew | k) p(k | y), (14.1)

where p(k | y) corresponds to the posterior distribution depicted in Figure 14.1.
When k is regarded as a parameter, Equation 14.1 corresponds to the posterior
predictive distribution; when k is regarded as indexing separate models, Equa-
tion 14.1 corresponds to the BMA predictive distribution for new data. This shows
that the mathematical operation of computing a posterior predictive is identical
to that used in Bayesian model averaging.5 Proponents of LOO-based methods
who believe there is an issue with BMA may not appreciate that this issue ap-
plies with equal force to posterior predictives, a concept integral to LOO-based

4See also http://www.bayesianspectacles.org/bayes-factors-for-those-who-hate-bayes

-factors/.
5Appendix A contains a fragment from Jevons (1874/1913) that features another example.
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Figure 14.1: Parameter estimation or model comparison? Shown is the poste-
rior distribution for the tumor transplant example based on 1 “take” out of 6
attempts and a uniform prior for k, the number of genes determining trans-
plantability. Here k may be regarded as a parameter, such that the depicted
distribution is a parameter posterior distribution, or k may be regarded as index-
ing separate models, so that the depicted distribution corresponds to posterior
model probabilities. Available at https://tinyurl.com/y94uj4h8 under CC li-
cense https://creativecommons.org/licenses/by/2.0/.

methods such as Bayesian stacking. When treating k as a parameter, one could
equally ask ‘what if none of the values for k is ‘true’? How can we define p(k) in
the knowledge that none of these values will perfectly capture the data-generating
process?’

As mentioned earlier, one may argue that it does make sense to define p(k),
even when it is not strictly speaking true, because we assume that we operate
within a more narrow context, one that is obtained by conditioning on a model
MEstimation:6 p(k | MEstimation). We agree and, crucially, this conditioning ar-
gument applies to models as well; we should really write p(Mk | K), that is, the
probability of model Mk given background knowledge K. Both for parameters
and models, plausibility assessments are always part of a subset of possibilities.
In other words, regardless of whether we are estimating parameters or comparing

6Note that, in contrast to M1,M2, . . . ,M10, the model MEstimation does not fix k to a
single value but allows k to vary freely.
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models, we have to make assumptions and simplifications. When these assump-
tions are violated this signals a potential problem with the inference, but it does
not mean that the entire approach is flawed from the outset. In sum, for pre-
dictions from discrete parameter models the proponents of LOO may recommend
posterior predictives when the problem is phrased as estimation, whereas they
may recommend LOO-based Bayesian stacking when the problem is phrased as
model comparison.

14.2.2.2 Continuous Parameters

We have argued that the distinction between parameter estimation and model
comparison is purely semantic. Bayes’ rule does not care about such labels: the
same result is obtained regardless of what is called a parameter or a model. In
contrast, LOO-based methods lack this coherence: the distinction between pa-
rameters and models is crucial. For instance, BMA yields the same results as
Bayesian parameter estimation when the set of models is obtained by partition-
ing a continuous parameter space into non-overlapping intervals, with prior model
probabilities set equal to the prior mass in the respective intervals (see Appendix B
for a derivation). As a concrete example, suppose observations yi, i = 1, 2, . . . , n
are assumed to follow a Bernoulli distribution with success probability θ. In this
scenario, one could assign θ a prior distribution p(θ) – for concreteness, we as-
sume a uniform prior – and then obtain a posterior for θ. Subsequently, one may
obtain predictions for a new data point ynew based on the posterior for θ. Alterna-
tively, one could also use BMA for the following three models: M1 : θ ∈ [0, .25),
M2 : θ ∈ [.25, .75], and M3 : θ ∈ (.75, 1]. Given a uniform prior on θ, BMA
and Bayesian parameter estimation yield identical results when (1) the prior for θ
under each model is a (renormalized) uniform prior, and (2) the prior model prob-
abilities are p(M1) = .25, p(M2) = .5, and p(M3) = .25 (i.e., the probabilities
that the uniform prior for θ assigns to the three intervals).

The left column of Figure 14.2 displays the BMA results for n = 20 observa-
tions, half of which are successes. Panel (1a) depicts the uniform prior distribution
for θ that is partitioned into three intervals to produce the models M1, M2, and
M3. The displayed prior model probabilities correspond to the mass that the uni-
form prior for θ assigns to each interval. Panel (1b) displays the BMA posterior
distribution – it is identical to the posterior obtained when conducting Bayesian
parameter estimation for the common model that assigns θ a uniform prior from 0
to 1. The weights that BMA uses to average the results of the different models are
given by the posterior model probabilities. M2 receives almost all posterior model
probability: p(M2 | y) = .99, as the observed data are predicted much better by
values of θ that are inside rather than outside the [.25, .75] interval. Panel (1c)
displays the BMA predictive distribution for a single new observation ynew. This
distribution is identical to the posterior predictive distribution obtained based on
Bayesian parameter estimation. In line with the fact that the posterior for θ is
symmetric around .5, ynew is predicted to be a success with probability .5.

The right column of Figure 14.2 displays the results obtained when using
Bayesian stacking (Yao et al., 2018). Panel (2a) displays again the uniform prior
distribution for θ that is partitioned into three intervals to produce the models
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Figure 14.2: BMA (left column) and Bayesian stacking (right column) results for
the Bernoulli example based on 10 successes out of n = 20 observations. Pan-
els (1a) and (2a) show the uniform prior distribution for θ which is partitioned
into three non-overlapping intervals to yield models M1, M2, and M3. Panel
(1a) also displays the prior model probabilities (not used in stacking). Panel (1b)
displays the BMA posterior based on using the posterior model probabilities as
averaging weights, and panel (2b) displays a model-averaged posterior obtained
using the stacking weights. Panel (1c) displays the BMA predictions for a sin-
gle new observation ynew and panel (2c) displays the corresponding predictions
from stacking. Available at https://tinyurl.com/yaql2vt4 under CC license
https://creativecommons.org/licenses/by/2.0/.

M1, M2, and M3. In contrast to BMA, Bayesian stacking does not assign prior
probabilities to the different models. Panel (2b) displays a model-averaged pos-
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Table 14.1: LOO predictive densities.

Observation p(yi | y−i,M1) p(yi | y−i,M2) p(yi | y−i,M3)

yi = 0 .7758 .4786 .2206
yi = 1 .2206 .4786 .7758

terior distribution and panel (2c) displays the Bayesian stacking predictive distri-
bution; both of these are obtained by combining the different models according to
the stacking weights.7 The stacking-based predictions are indistinguishable from
those of BMA and appear very reasonable: it is predicted that the next observation
will be a success with probability .5. However, the stacking weights themselves
are highly undesirable indicators of the plausibility of the different models in light
of the observed data. M2, the model that clearly outpredicts the other two, is in
fact decisively ruled out, as its stacking weight is equal to 0. To understand this
result, first note that the stacking weights wk, k = 1, 2, . . . ,M are obtained by
maximizing the following objective function (subject to the constraint that wk ≥ 0

and
∑M
k=1 wk = 1):

1

n

n∑
i=1

log

(
M∑
k=1

wk p(yi | y−i,Mk)

)
. (14.2)

Table 14.1 displays the LOO predictive density values for yi = 0 and yi = 1 for the
three models under consideration. M1 andM3 make mirrored predictions whereas
the LOO predictive density for M2 is identical for yi = 0 and yi = 1. Combining
the models’ LOO predictive densities according to the stacking weights w1 = .5,
w2 = 0, and w3 = .5 yields

∑M
k=1 wk p(yi | y−i,Mk) ≈ .4982, for all i = 1, 2, . . . , n.

The objective function thus attains a larger value than when using, for instance,
w1 = 0, w2 = 1, and w3 = 0 (

∑M
k=1 wk p(yi | y−i,Mk) ≈ .4786), or when using

w1 = 1/3, w2 = 1/3, and w3 = 1/3 (
∑M
k=1 wk p(yi | y−i,Mk) ≈ .4917).

We need to emphasize that Yao et al. do not suggest to use the stacking weights
to obtain a model-averaged posterior as in panel (2b); instead, Yao et al. focus
purely on predictions. Nevertheless, this distribution highlights the undesirable
nature of the stacking weights when used as indicators for the plausibility of differ-
ent models and parameters. The plot also shows how Bayesian stacking achieves
predictions that are indistinguishable from the BMA predictions by combining two
models with low plausibility that make mirrored predictions.

Bayesian stacking was designed to make good predictions in the presence of
model-misspecification and may be a valuable tool in case prediction is the main
goal. However, we believe that mathematical psychology has an epistemic pur-
pose: researchers are typically interested in quantifying the evidence for different
models which represent competing theories of cognition and behavior. Our exam-
ple illustrates that the stacking weights do not appear to align satisfactorily with
this goal. This is also highlighted by the fact that, as VSYG mention, the stacking
weight for a simple general law model (i.e., Example 1 of Gronau & Wagenmakers,

7The stacking weights were obtained using the loo package (Vehtari et al., 2018).
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2019) is equal to 1 when all observations are in line with the general law, inde-
pendent of the number of observations n. VSYG state: “The lack of dependence
on n may look suspicious”. Indeed; suppose one is asked whether all swans are
white and two white swans are observed. Is it warranted to conclude that the gen-
eral law is now firmly established? Should predictions about the future disregard
the possibility that the general law might fail? Even though VSYG provide an
explanation why they believe suspicion is not warranted, we remain doubtful.

In sum, we are skeptical about the usefulness of Bayesian stacking in mathe-
matical psychology where the goal is of an epistemic and not a purely predictive
nature.

14.2.3 LOO Depends on an Arbitrary Distinction Between
Data that Arrive Sequentially or “Simultaneously”

LOO is based on repeatedly leaving out one of the observations and evaluating
the prediction for this held-out data point based on the remaining observations.
Concretely, given data y = (y1, y2, . . . , yn), LOO evaluates the predictive density
p(yi | y−i) for all i = 1, 2, . . . , n, where y−i denotes all data points except the ith
one. It is well-known that LOO is theoretically unsatisfactory when applied to
time series data since, in this case, LOO uses the future to predict the past, for
all i 6= n (e.g., Bürkner, Vehtari, & Gabry, 2018). As VSYG point out, there exist
alternative cross-validation schemes that do not have this property and may be
applied in this context (e.g., Bürkner et al., 2018). Therefore, time series data are
treated differently from data that do not exhibit a temporal structure. However,
we argue that all data form a time series. When conducting an experiment,
participants come in over time; the data have a temporal order. Consequently,
the use of LOO implies that one uses the future to predict the past. It seems
unsatisfactory to apply a method that is not recommended for time series to data
that have a temporal order, even if that temporal order is disregarded in the
analysis because the observations are judged to be exchangeable.

Another consequence of the fact that LOO does not respect the temporal na-
ture of the data is that LOO is inconsistent with what Dawid (1984, p. 278) termed
the prequential approach which “[...] is founded on the premiss that the purpose
of statistical inference is to make sequential probability forecasts for future obser-
vations”. In contrast, Bayes factors are consistent with the prequential approach
(e.g., Wagenmakers, Grünwald, & Steyvers, 2006). The reason is that the Bayes
factor compares two models based on the ratio of their marginal likelihoods. The
marginal likelihood corresponds to the joint probability of the data given a model.
Consequently, it is easy to show that the marginal likelihood of modelMk can be
conceptualized as an accumulation of one-step-ahead predictions:

p(y | Mk) = p(y1 | Mk) p(y2 | y1,Mk) p(y3 | y1:2,Mk) . . . p(yn | y1:(n−1),Mk),
(14.3)

where y1:i = (y1, y2, . . . , yi) denotes the first i observations. Each term in Equa-
tion 14.3 is obtained by integrating over the model parameters θ. For the first
observation, p(y1 | Mk) =

∫
Θ
p(y1 | θ,Mk) p(θ | Mk) dθ, and for i > 1,

p(yi | y1:(i−1),Mk) =
∫

Θ
p(yi | θ, y1:(i−1),Mk) p(θ | y1:(i−1),Mk) dθ. Thus, Bayes
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factors – but not LOO – produce the same result, regardless of whether the data
are analyzed one at a time or all at once.

A common criticism of the Bayes factor is its dependence on the parameter
prior distribution since one starts by making predictions based on the prior distri-
bution. There are a number of replies to this concern. First, it may be regarded
as desirable that the result depends on the prior information, as this allows one
to incorporate existing prior knowledge. In mathematical psychology, parameters
typically correspond to psychological variables about which theories exist; the pa-
rameter prior can be used to encode these existing psychological theories (e.g., Lee
& Vanpaemel, 2018; Vanpaemel, 2010). Second, proponents of LOO who criticize
Bayes factors for being prior dependent do not object to generating predictions
based on posterior distributions, as this is an integral part of the LOO procedure.
However, the prior that one entertains at a certain time may be the posterior based
on past observations. Third, as is good practice in parameter inference, concerns
about prior sensitivity of the Bayes factor may be alleviated by conducting sen-
sitivity analyses across a range of plausible prior distributions. In many cases,
the sensitivity analysis may show that the qualitative conclusions are robust to
the exact prior choice. However, when the results change drastically this is also
valuable information since it highlights that researchers with different, reasonable
prior beliefs may draw quite different conclusions.

In sum, we argue that LOO uses the future to predict the past: all data have
a temporal structure, even though the analyst may not have access to it or may
choose to ignore it. LOO is therefore inconsistent with Dawid’s prequential ap-
proach. In contrast, Bayes factors can be naturally conceptualized as assessing
the models’ sequential, probabilistic one-step-ahead predictions and are thus con-
sistent with the prequential approach.

14.3 Rejoinder to Navarro

The commentary by Navarro (2019) discusses how the scientific goal of expla-
nation aligns with traditional statistical concerns and suggests that the model
selection literature may focus too much on the statistical issues of model choice
and too little on the scientific questions of interest.8 In line with our epistemic
view on mathematical psychology, we agree that the starting point should always
be meaningful theories that are made precise by implementing them as quantita-
tive models. The models’ plausibilities may then be evaluated based on observed
data. In case the data pass what Berkson termed the interocular traumatic test
– the data are so compelling that the conclusion “hits you straight between the
eyes”– no statistical analysis may be required. However, as Edwards, Lindman,
and Savage (1963, p. 217) remark: “[...] the enthusiast’s interocular trauma
may be the skeptic’s random error. A little arithmetic to verify the extent of the
trauma can yield great peace of mind for little cost.” Furthermore, often the data
may not yield a clear result at first sight; consequently, we believe it is useful to
more formally quantify the evidence for the models, just as it is useful to make

8One key aspect that is being discussed is the M-open versus M-closed distinction that we
have already addressed in a previous section.
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verbal theories precise by implementing them as quantitative models. Of course,
researchers should be aware of the assumptions not only of their models but also
of their model evaluation metrics. We agree with Lewandowsky and Farrell (2010,
p. 10): “Model comparison rests on both quantitative evaluation and intellectual
and scholarly judgment.”

Navarro writes: “I am of the view that the behaviour of a selection proce-
dure applied to toy problems is a poor proxy for the inferential problems facing
scientists.” First, although the examples we used are simple, we do not regard
them as “toy problems”. Our first example dealt with quantifying evidence for
a general law of the form “all X’s have property Y ”; this is perhaps the world’s
oldest inference problem and has been discussed by a plethora of philosophers,
mathematicians, and statisticians (e.g., Laplace, 1829/1902; Polya, 1954a, 1954b;
Wrinch & Jeffreys, 1919). Even Aristotle was already concerned with making
inference about a general law (Whewell, 1840, p. 294):9

“We find that several animals which are deficient in bile are
longlived, as man, the horse, and the mule; hence we infer that all
animals which are deficient in bile are longlived.” (Analytica Priora,
ii, 23)

Second, although we agree with Navarro that scientists should also consider
more complex problems, we still believe that considering simple problems is in-
valuable for investigating how model evaluation metrics behave. Suppose one
considers a simple example and finds that a model evaluation metric of inter-
est exhibits highly undesirable properties. One could proceed to more complex
problems in the hope that these undesirable properties will not be manifest; how-
ever, to us, it seems questionable whether this hope is warranted and it may be
considerably harder to verify this in the more complex case.

Navarro uses an example to showcase how Bayes factors can “misbehave”.
A general law model M1 that asserts that a Bernoulli probability θ equals 1 is
compared to an “unknown quantity” model M2 that assigns θ a uniform prior.
For any data set of size n that consists of only successes with the exception of
a single failure, the Bayes factor will decisively rule out the general law model
M1 in favor of M2.10 Navarro concludes that the Bayes factor misbehaves since
“In real life none of us would choose M2 over M1 in this situation, because from
our point of view the general law model is actually “closer” to the truth than the
uninformed model”. Navarro furthermore states: “While there are many people
who assert that “a single failure is enough to falsify a theory”, I confess I have not
yet encountered anyone willing to truly follow this principle in real life”. Indeed,
we believe that a single failure is enough to falsify a general law and so did, for
instance, Wrinch and Jeffreys (1919, p. 729):

“[...] if for instance we consider that either Einstein’s or Silber-
stein’s form of the principle of general relativity is true, a single fact

9The authors would like to state that they disagree with the conclusion in this particular
example.

10Note that n may be infinity.
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contradictory to one would amount to a proof of the other in every
case.”

Other examples are provided by Polya (1954a) who discussed how mathematical
conjectures are “irrevocably exploded” by a single failure. For instance, the fa-
mous Goldbach conjecture holds that every even integer greater than two can be
expressed as the sum of two prime numbers. The conjecture has been confirmed
for all integers up to 4×1018.11 Yet, the occurrence of a single failure would refute
the Goldbach conjecture decisively. Polya (1954a, p. 6) notes how the search for
a suitable decomposition of 60 has ended in success (60 = 7 + 53) and explains:

“The conjecture has been verified in one more case. The contrary
outcome would have settled the fate of Goldbach’s conjecture once and
for all. If, trying all primes under a given even number, such as 60, you
never arrive at a decomposition into a sum of two primes, you thereby
explode the conjecture irrevocably [italics ours].”

Finally, suppose the general law of interest states that “all swans are white”.
In case one traveled to Australia and observed a single black swan, to us, the
only reasonable conclusion to draw would be that the general law does not hold.
We speculate that researchers who believe that in this situation M1 should be
favored do not truly entertain a general law model, but an alternative model M∗1
that states “almost all X’s have property Y ”. Under M∗1, θ is assigned a prior
that is concentrated near 1 but does not completely rule out values very close to
1 (e.g., θ ∼ Beta(a, 1), with a large). This showcases that what has been termed
a “misbehavior” of the Bayes factor may be due to the implicit invocation of a
third model M∗1 as a replacement of the general law model M1.

14.4 Rejoinder to Shiffrin & Chandramouli

Shiffrin and Chandramouli (2019, henceforth SC) argue in favor of comparing non-
overlapping model classes using Bayesian inference. Furthermore, SC advocate
focusing on interval-null hypotheses instead of point-null hypotheses. Finally, SC
demonstrate that comparing non-overlapping hypotheses (where the null is an
interval) eliminates the model selection inconsistency of LOO. We believe it is
interesting to see that LOO can be made consistent when the models are defined
so that the parameter spaces do not overlap, although – as SC state themselves –
the result is not completely unexpected.

SC remark that when testing a point-null versus a hypothesis that assigns a
continuous prior distribution to the parameter of interest, the “standard” approach
of calculating Bayes factors is identical to SCs proposal to consider non-overlapping
models (since a single point has measure zero). Therefore, SCs approach only
differs in case one does not consider point-null hypotheses. We believe that it may
be of interest to consider interval-hypotheses in certain scenarios; in these cases,
we agree that defining the models such that the parameter spaces do not overlap

11http://sweet.ua.pt/tos/goldbach.html
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can be beneficial (see also Morey & Rouder, 2011). However, we also believe that
there are situations where it is useful to test point-null hypotheses.12

First, we believe that there are situations in which the point-null is exactly
true. SC mention an example of testing ESP with coin flipping and argue that the
‘chance’ point-null hypothesis is never exactly true since coins are never perfect
and, consequently, will not produce ‘heads’ with probability exactly .5. However,
consider the following alternative experiment for testing ESP: Participants are
presented with pictures either on the right or left side of the screen and are asked
to indicate on which side the next picture will appear. Suppose that exactly half
of the pictures are presented on the right, the other half on the left (and the order
is randomly permuted). In this scenario, given that we do not believe in ESP, we
believe that the point-null – which states that the probability of a correct response
is .5 – is exactly true.

Second, we believe that testing point-null hypotheses is crucial in all stages
of cognitive model development, validation, and application. When developing
and validating a model, it is important to show that certain experimental ma-
nipulations selectively influence only a subset of the model parameters whereas
the remaining parameters are unaffected. In applications, cognitive models may
be used, for instance, to investigate which subprocesses differ or do not differ
in clinical subpopulations (cognitive psychometrics; e.g., Riefer et al., 2002). In
these applications researchers are interested in quantifying evidence for a differ-
ence (“there is evidence that cognitive process X is affected”), but, crucially, also
for an invariance or, equivalently, point-null hypothesis (“there is evidence that
cognitive process Y is not affected”).13

Third, even in case one does not believe that the point-null hypothesis can
be true exactly, it appears that it is still useful to be able to reject at least this
“unreasonable” hypothesis. For instance, if one wants to convince a skeptic that
a new research finding works, it seems difficult to do so if one cannot even reject
a point-null hypothesis which some people argue is never true exactly.

To use SCs proposal in practice, it appears crucial to be able to detect shared
model instances (i.e., parameter settings that predict the same outcome distribu-
tion). This may not always be straightforward, especially when the two models
are defined on different parameter spaces. Consider the comparison between M1

with parameter θ ∈ Θ and M2 with parameter ξ ∈ Ξ. Suppose one is told that
θ corresponds to a Bernoulli success probability and ξ = log (θ/(1− θ)) denotes
the log odds with the restriction that ξ > 0. In this case, it is straightforward
to see that the models share instances (i.e., the restriction ξ > 0 corresponds to
θ > .5). Consequently, it appears to us that SC would recommend to eliminate
the shared instances and would consider the comparison betweenM∗1 : θ ≤ .5 and
M2 : ξ > 0. However, in case the models under consideration are more complex

12We have detailed our arguments for why we believe it can be useful to test point-null
hypotheses in the following blog posts: https://tinyurl.com/y8org8bt and https://tinyurl

.com/ya7cl3cq.
13Proponents of interval-null hypotheses might argue that the same can be achieved using

interval-null hypotheses. However, one would then need to adjust the statement to read “there
is evidence that cognitive process Y is almost not affected”.
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cognitive models that feature many parameters, it may not be trivial to detect
whether the models share instances.

SC write that their commentary is motivated by “the desire to have statistics
serve science, not science serve statistics”. However, to us, it seems that their
approach imposes certain constraints on how researchers can act which appears to
go against the dictum advanced by SC. Suppose there are two researchers, A and
B, who have different hypotheses, HA and HB , about a phenomenon of interest.
These hypotheses happen to overlap. In line with the fact that “statistics should
serve science” we believe that these two researchers should be allowed to compare
their hypotheses in their original versions without first altering the hypotheses to
the non-overlapping H∗A and H∗B to fit SCs Procrustean bed of model comparison
with non-overlapping model classes. Moreover, it appears that researcher A and
B would need to change their hypotheses again in case a third hypothesis HC is
introduced that partially overlaps with the first two hypotheses.

14.5 Concluding Remarks

In this rejoinder to Vehtari, Simpson, et al. (2019), Navarro (2019), and Shiffrin
and Chandramouli (2019), we have pointed out further limitations of Bayesian
leave-one-out cross-validation. In particular, (1) LOO-based methods such as
Bayesian stacking do not align satisfactorily with the epistemic goal of mathe-
matical psychology; (2) LOO-based methods depend on an arbitrary distinction
between parameter estimation and model comparison; and (3) LOO-based meth-
ods depend on an arbitrary distinction between data that arrive sequentially or
“simultaneously”. In line with Lewandowsky and Farrell (2010) we believe that
careful model comparison requires both quantitative evaluation and intellectual
and scholarly judgment. We personally prefer quantitative evaluation of models
based on consistently using Bayes’ rule for both parameters and models (e.g., via
the Bayes factor). This approach has the advantage that, in line with the epistemic
purpose of mathematical psychology, it enables the quantification of evidence for
a set of competing theories that are implemented as quantitative models. Re-
searchers may criticize the specification of an ingredient of Bayes’ rule such as
the prior distribution for a particular application. However, once the ingredients
have been specified, there is only one optimal way of updating one’s knowledge
in light of observed data: the one that is dictated by Bayes’ rule. Alternative
methods may be useful in specific circumstances and for specific purposes but –
as we illustrated with the case of LOO – they will break down in other settings
yielding results that can be surprising, misleading, and incoherent.

R code for reproducing the examples can be found at: https://osf.io/eydtg/.
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14.A Jevons (1874) on Bayesian Model Averaging

Jevons’ 1874 masterpiece The Principles of Science contains the section “Simple
Illustration of the Inverse Problem” that showcases how BMA (for prediction)
and posterior prediction are identical operations. For historical interest, and out
of respect for the clarity of Jevons’ writing, we present the section in full:

“Suppose it to be known that a ballot-box contains only four black
or white balls, the ratio of black and white balls being unknown. Four
drawings having been made with replacement, and a white ball hav-
ing appeared on each occasion but one, it is required to determine the
probability that a white ball will appear next time. Now the hypothe-
ses which can be made as to the contents of the urn are very limited
in number, and are at most the following five:–

4 white and 0 black balls

3 ,, ,, 1 ,, ,,

2 ,, ,, 2 ,, ,,

1 ,, ,, 3 ,, ,,

0 ,, ,, 4 ,, ,,

The actual occurrence of black and white balls in the drawings renders
the first and last hypotheses out of the question, so that we have only
three left to consider.

If the box contains three white and one black, the probability of
drawing a white each time is 3

4 , and a black 1
4 ; so that the compound

event observed, namely, three white and one black, has the probability
3
4 ×

3
4 ×

3
4 ×

1
4 , by the rule already given (p. 233).14 But as it is

indifferent to us in what order the balls are drawn, and the black ball
might come first, second, third, or fourth, we must multiply by four,
to obtain the probability of three white and one black in any order,
thus getting 27

64 .
Taking the next hypothesis of two white and two black balls in the

urn, we obtain for the same probability the quantity 1
2 ×

1
2 ×

1
2 ×

1
2 ×4,

or 16
64 , and from the third hypothesis of one white and three black we

deduce likewise 1
4 ×

1
4 ×

1
4 ×

3
4 × 4, or 3

64 . According, then, as we
adopt the first, second, or third hypothesis, the probability that the
result actually noticed would follow is 27

64 , 16
64 , and 3

64 . Now it is certain
that one or other of these hypotheses must be the true one, and their
absolute probabilities are proportional to the probabilities that the

14The relevant text on p. 233 reads: “When the component events are independent, a sim-
ple rule can be given for calculating the probability of the compound event, thus—Multiply
together the fractions expressing the probabilities of the independent component events.” [italics
in original]
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observed events would follow from them (see p. 279).15 All we have to
do, then, in order to obtain the absolute probability of each hypothesis,
is to alter these fractions in a uniform ratio, so that their sum shall
be unity, the expression of certainty. Now since 27 + 16 + 3 = 46,
this will be effected by dividing each fraction by 46 and multiplying
by 64. Thus the probability of the first, second, and third hypotheses
are respectively—

27

46
,

16

46
,

3

46
.

The inductive part of the problem is now completed, since we have
found that the urn most likely contains three white and one black ball,
and have assigned the exact probability of each possible supposition.
But we are now in a position to resume deductive reasoning, and infer
the probability that the next drawing will yield, say a white ball. For
if the box contains three white and one black ball, the probability of
drawing a white one is certainly 3

4 ; and as the probability of the box
being so constituted is 27

46 , the compound probability that the box will
be so filled and will give a white ball at the next trial, is

27

46
× 3

4
or

81

184
.

Again, the probability is 16
46 that the box contains two white and

two black, and under those conditions the probability is 1
2 that a white

ball will appear; hence the probability that a white ball will appear in
consequence of that condition, is

16

46
× 1

2
or

32

184
.

From the third supposition we get in like manner the probability

3

46
× 1

4
or

3

184
.

Now since one and not more than one hypothesis can be true, we may
add together these separate probabilities, and we find that

81

184
+

32

184
+

3

184
or

116

184

is the complete probability that a white ball will be next drawn under
the conditions and data supposed.” (Jevons, 1874/1913, pp. 292-294)

In the next section, General Solution of the Inverse Problem, Jevons points out
that in order for the procedure to be applied to natural phenomena, an infinite
number of hypotheses need to be considered:

15Note from the authors: this assumes that the hypotheses are equally likely a priori. The
relevant text on p. 279 reads: “If an event can be produced by any one of a certain number of
different causes, the probabilities of the existence of these causes as inferred from the event, are
proportional to the probabilities of the event as derived from these causes.” [italics in original]
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“When we take the step of supposing the balls within the urn to be
infinite in number, the possible proportions of white and black balls
also become infinite, and the probability of any one proportion actu-
ally existing is infinitely small. Hence the final result that the next
ball drawn will be white is really the sum of an infinite number of in-
finitely small quantities. It might seem, indeed, utterly impossible to
calculate out a problem having an infinite number of hypotheses, but
the wonderful resources of the integral calculus enable this to be done
with far greater facility than if we supposed any large finite number of
balls, and then actually computed the results. I will not attempt to
describe the processes by which Laplace finally accomplished the com-
plete solution of the problem. They are to be found described in several
English works, especially De Morgan’s ‘Treatise on Probabilities,’ in
the ‘Encyclopædia Metropolitana,’ and Mr. Todhunter’s ‘History of
the Theory of Probability.’ The abbreviating power of mathematical
analysis was never more strikingly shown. But I may add that though
the integral calculus is employed as a means of summing infinitely nu-
merous results, we in no way abandon the principles of combinations
already treated.[italics ours]” (Jevons, 1874/1913, p. 296)

14.B Coherence of BMA and Bayesian Parameter
Inference

Here we show why BMA yields the same results as Bayesian parameter inference
when the set of models is obtained by partitioning a continuous parameter space
into non-overlapping intervals, with prior model probabilities set equal to the prior
mass in the respective intervals. Given observed data y, a parameter of interest
θ,16 a corresponding prior distribution p(θ), and likelihood p(y | θ), the posterior
distribution for θ is given by

p(θ | y) =
p(y | θ) p(θ)∫

Θ
p(y | θ) p(θ) dθ

, (14.4)

where Θ denotes the parameter space. The posterior predictive distribution for
new data ynew is given by

p(ynew | y) =

∫
Θ

p(ynew | θ, y) p(θ | y) dθ, (14.5)

where it is often the case that p(ynew | θ, y) = p(ynew | θ).
BMA is based on combining the results of different models based on the

models’ plausibilities in light of the observed data. We consider the mod-
els M1,M2, . . . ,MM that are obtained by partitioning the parameter space Θ
into M non-overlapping intervals. We denote these non-overlapping intervals by
A1, A2, . . . , AM . For instance, when θ corresponds to a success probability, we

16Here we focus on the case of a single parameter, however, the results naturally generalize
to the case where θ is a parameter vector.
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could partition Θ = [0, 1] into two intervals A1 = [0, .5) and A2 = [.5, 1]. The
prior distribution for θ under each model Mk, k = 1, 2, . . . ,M is obtained by
considering the part of p(θ) that corresponds to the interval Ak and then renor-
malizing the prior density by the prior mass in that subinterval:

p(θ | Mk) =
p(θ)

Ck
I (θ ∈ Ak) , (14.6)

where Ck =
∫
Ak
p(θ) dθ and I denotes the indicator function. Note that the

M models differ only in the prior distribution for θ but not in the likelihood,
consequently p(y | θ,Mk) = p(y | θ). Each model’s prior probability p(Mk) is set
equal to the prior mass that p(θ) assigns to the interval Ak:

p(Mk) =

∫
Ak

p(θ) dθ = Ck. (14.7)

Given this set-up, the posterior probability for model Mk corresponds to the
posterior mass that the “regular” parameter posterior for θ assigns to the interval
Ak:

p(Mk | y) =
p(y | Mk)Ck∑M
j=1 p(y | Mj)Cj

=

∫
Ak
p(y | θ) p(θ)Ck

dθ Ck∑M
j=1

∫
Aj
p(y | θ) p(θ)Cj

dθ Cj

=

∫
Ak
p(y | θ) p(θ) dθ∫

Θ
p(y | θ) p(θ) dθ

=

∫
Ak

p(θ | y) dθ,

(14.8)

where we used – in reverse order – the fact that for b2 ∈ (b1, b3),
∫ b3
b1
f(x) dx =∫ b2

b1
f(x) dx+

∫ b3
b2
f(x) dx.

The model-averaged posterior distribution for θ is obtained as follows:

pBMA(θ | y) =

M∑
k=1

p(θ | y,Mk) p(Mk | y)

=

M∑
k=1

p(y|θ)
p(θ)
Ck

I(θ∈Ak)

p(y|Mk)︸ ︷︷ ︸
p(θ|y,Mk)

p(y|Mk)Ck∑M
j=1 p(y|Mj)Cj︸ ︷︷ ︸
p(Mk|y)

=
p(y | θ) p(θ)∑M
j=1 p(y | Mj)Cj

M∑
k=1

I (θ ∈ Ak)

=
p(y | θ) p(θ)∑M

j=1

∫
Aj
p(y | θ) p(θ)Cj

dθ Cj

=
p(y | θ) p(θ)∫

Θ
p(y | θ) p(θ) dθ

,

(14.9)
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where we used the fact that any given value for θ will only fall in one of Ak,
k = 1, 2, . . . ,M , hence,

∑M
k=1 I (θ ∈ Ak) = 1. This shows that the model-averaged

posterior pBMA(θ | y) is identical to the “regular” parameter posterior (i.e., Equa-
tion 14.4).

To obtain the model-averaged predictive distribution for new data ynew, we
first note that the predictive distribution for model Mk is given by

p(ynew | y,Mk) =

∫
p(ynew | θ, y) p(θ | y,Mk) dθ

=

∫
p(ynew | θ, y)

p(y|θ)
p(θ)
Ck

I(θ∈Ak)

p(y|Mk)︸ ︷︷ ︸
p(θ|y,Mk)

dθ

=

∫
Ak
p(ynew | θ, y) p(y | θ) p(θ) dθ

Ck p(y | Mk)
.

(14.10)

The model-averaged predictive distribution is

pBMA(ynew | y) =

M∑
k=1

p(ynew | y,Mk) p(Mk | y)

=

M∑
k=1

∫
Ak
p(ynew | θ, y) p(y | θ) p(θ) dθ

Ck p(y | Mk)︸ ︷︷ ︸
p(ynew|y,Mk)

p(y | Mk)Ck∑M
j=1 p(y | Mj)Cj︸ ︷︷ ︸

p(Mk|y)

=

∑M
k=1

∫
Ak
p(ynew | θ, y) p(y | θ) p(θ) dθ∑M

j=1

∫
Aj
p(y | θ) p(θ)Cj

dθ Cj

=

∫
Θ
p(ynew | θ, y) p(y | θ) p(θ) dθ∫

Θ
p(y | θ) p(θ) dθ

=

∫
Θ

p(ynew | θ, y) p(θ | y) dθ.

(14.11)

This shows that the model-averaged predictive distribution pBMA(ynew | y) is
identical to the “regular” predictive distribution (i.e., Equation 14.5).
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Chapter 15

Summary and Future Directions

In this dissertation entitled “Bayes Factor Model Comparison for Psychological
Science”, rival scientific models were compared by treating them as competing
forecasters and assessing their relative predictive adequacy using the Bayes factor.
The first part of the dissertation was concerned with bridge sampling, a compu-
tational procedure for estimating the marginal likelihood – the key quantity for
computing Bayes factors. The second part of the dissertation was concerned with
Bayesian methods for meta-analyzing a set of studies. One central concept of this
part was the idea to combine several forecasters using Bayesian model averaging
(BMA). The third part of the dissertation introduced Bayesian approaches to a
number of standard statistical tests. A central idea of this part was the incorpo-
ration of prior knowledge into the analyses to make the models’ forecasts more
precise. Below, I summarize each chapter and its main conclusions accompanied
by potential avenues for future development. This chapter ends with a general
conclusion.

15.1 Part I: Bridge Sampling

15.1.1 Chapter Summaries and Future Directions

Chapter 2 proposed the use of bridge sampling for estimating the marginal likeli-
hood, the key quantity for comparing the relative predictive adequacy of competing
models using the Bayes factor. Obtaining accurate estimates of this quantity is
challenging, particularly for complex models that feature many parameters and are
implemented in a hierarchical fashion. Using a reinforcement learning example, it
was demonstrated that bridge sampling yields reliable and accurate estimates of
the marginal likelihood, even for hierarchical versions of the model. Furthermore,
bridge sampling is relatively straightforward to implement. Since bridge sampling
requires estimating the marginal likelihood for each model separately, when the
comparison of interest involves a large number of models, other methods may be
more efficient. However, in contrast to bridge sampling these methods typically
tend to be problem-specific. Furthermore, it was argued that most applications of

343



15. Summary and Future Directions

interest in mathematical psychology specifically, and psychology more generally,
involve only a limited number of potentially non-nested competing models that
may be implemented in a hierarchical fashion. In this setting, bridge sampling is
an ideal candidate for obtaining accurate estimates of the marginal likelihood.

Chapter 3 applied Warp-III bridge sampling for comparing hierarchical multi-
nomial processing tree (MPT) models. In contrast to the version of bridge sam-
pling introduced in Chapter 2, Warp-III bridge sampling also takes into account
potential skewness of the posterior distribution which makes this version more effi-
cient in case the posterior is indeed asymmetrical. Using a nested and a non-nested
example it was demonstrated how this approach enables researchers to address con-
crete questions of interest. Specifically, the first example applied Bayesian model
averaging to assess which MPT parameters differ across trials in a pair-clustering
experiment whereas the second example compared two structurally different MPT
models concerning the illusory truth effect. One central advantage of Bayesian
model comparison is the ability to disentangle absence of evidence (i.e., the data
are inconclusive) from evidence of absence (i.e., the data support an invariance).
It was argued that it is crucial in all stages of cognitive model development, valida-
tion, and application that one is able to quantify evidence in favor of invariances.
When developing and validating a model one key step is to show that certain ex-
perimental manipulations affect only a subset of the model parameters, but also to
show that the remaining parameters are unaffected (i.e., demonstrate selective in-
fluence). Furthermore, in applications, a researcher may wish to make statements
of the form “there is evidence that cognitive process X is not affected” which
again corresponds to quantifying evidence for an invariance. An avenue for future
development is to apply Warp-III bridge sampling to hierarchical MPT models
that feature random effects not only for participants, but also items (Matzke et
al., 2015).

Chapter 4 applied Warp-III bridge sampling for computing the marginal likeli-
hood of evidence-accumulation models. Obtaining posterior samples for evidence-
accumulation models such as the Linear Ballistic Accumulator (LBA) is chal-
lenging and requires specialized sampling algorithms such as differential evolution
Markov chain Monte Carlo (DE-MCMC). It was demonstrated that, in combi-
nation with DE-MCMC, Warp-III bridge sampling provides precise estimates of
the marginal likelihood for both single-participant and hierarchical versions of the
LBA. To facilitate the practical application of this Bayesian model comparison
approach for evidence-accumulation models, an easy-to-use software implementa-
tion has been provided. The chapter concluded with a series of recommendations
for applying Warp-III bridge sampling in practical applications. Many of these
recommendations were aimed at assessing whether the estimate of the marginal
likelihood is precise enough to draw meaningful conclusions. For many of the
hierarchical examples in this chapter, the Bayes factors provided overwhelming
evidence in favor of one model, so that some fluctuation in the marginal likelihood
estimates may not alter the overall conclusions. However, the final example also
demonstrated that Warp-III bridge sampling can provide precise estimates of the
marginal likelihoods and hence also the Bayes factor when there is about equal
evidence in favor of both hierarchical LBA models of interest. In this case, it is
crucial that the estimates are precise in order to avoid the erroneous conclusion
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that one model is favored when in fact this is an artefact of a variable estimate.
Chapter 5 applied Bayesian methods to infer the appropriate number of di-

mensions and the metric structure of multidimensional scaling (MDS) models.
Priors were defined for making the model identifiable under metrics corresponding
to psychologically separable and psychologically integral stimulus domains. Ob-
taining high quality posterior samples is challenging for MDS models and in this
chapter, DE-MCMC was used for this task. Warp-III bridge sampling was applied
to identify the appropriate number of dimensions and to infer the appropriate
metric of the latent space. A series of examples demonstrated that the procedure
provides sensible results for many data sets. However, it was also pointed out that
there are a number of challenges that need to be addressed before the method can
be applied in a general, straightforward manner. Most importantly, for certain
examples, it can be difficult to obtain high quality posterior samples, even using
DE-MCMC. When the posterior samples are not of a high quality, this will also
negatively affect the precision of the Warp-III bridge sampling estimate. There-
fore, in the future it should be investigated whether posterior sampling algorithms
other than DE-MCMC are better suited for obtaining high quality samples for
MDS models in a reliable manner.

Chapter 6 introduced bridgesampling, an R package for estimating the
marginal likelihood (or, more generally, normalizing constants) using bridge sam-
pling in a generic and easy-to-use fashion. Specifically, the package enables the
computation of the marginal likelihood for any model for which one can provide
posterior samples, a function that computes the log of the unnormalized posterior
density for a set of model parameters, the data, and lower and upper bounds for
the parameters. When the model of interest is implemented in Stan (Carpenter
et al., 2017), the computation of the marginal likelihood is automatic: one sim-
ply needs to pass the object with the posterior samples to the bridgesampling

package. Thus, the package makes it possible to obtain marginal likelihood esti-
mates for any model that can be implemented in Stan (in a way that retains the
constants). Adding support for a similar automatic computation of the marginal
likelihood for other Bayesian sampling software such as JAGS (Plummer, 2003) is
a worthwhile future task. In fact, a similar support has already been added for
the nimble package (de Valpine et al., 2017).

15.1.2 Discussion

One reason why Bayesian model comparison approaches have not been applied
more widely so far may be that it can be difficult to compute the quantities
of interest. This is particularly true when the comparison involves hierarchical
models. Bridge sampling provides a computational resolution to this challenge that
yields precise estimates of the marginal likelihood, even for hierarchical models.
One benefit of bridge sampling is that it is relatively generic and simple to apply
in different applications. These characteristics enabled the development of the
bridgesampling package that can provide an automatic estimate of the marginal
likelihood. The package implements two versions of bridge sampling. The first
is based on a proposal distribution that matches the mean and covariance of
the posterior samples, the second, Warp-III bridge sampling, additionally takes
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into account skewness. These two version of bridge sampling can provide precise
estimates for many applications of interest. However, in case the posterior samples
exhibit multiple modes, both of these versions may be inefficient. Developing
efficient bridge sampling versions for these challenging cases is the topic of ongoing
research (e.g., Nott, Kohn, & Fielding, 2008; L. Wang & Meng, 2016).

Bridge sampling provides an estimate of the marginal likelihood. To use this
estimate in practice, it is important to confirm that the estimate is precise enough
to address the question of interest. There exist quick approximate methods for
assessing the variability of the estimate (Frühwirth–Schnatter, 2004), however,
they do not always appear suitable, particularly not for Warp-III bridge sampling.
Therefore, the best way of assessing the variability is repeating the bridge sampling
procedure multiple times, a process that can be time-consuming. Developing reli-
able error estimates that are quick to compute, also for Warp-III bridge sampling,
is an avenue for future development.

Bridge sampling provides a solution to the difficult task of computing the
marginal likelihood and therefore allows researchers to spend more time on the
conceptual challenge of specifying prior distributions that are robust or meaning-
ful. Specifically, it is important that bridge sampling is not applied blindly but
that researchers carefully consider their prior choices which directly affect what
data the models can predict. There are a number of approaches to specifying sen-
sible prior distributions (e.g., Bayarri et al., 2012; Lee & Vanpaemel, 2018). One
way of alleviating concerns about the influence of particular choices is to simply
conduct a prior sensitivity analysis as has been done, for instance, in Chapter 3.

Finally, it could be argued that it might be dangerous to provide researchers
with tools that could be used in an incorrect way. It is true that researchers could
use the bridgesampling package to conduct meaningless model comparisons in
case the priors are pathological, for instance, in case they do not correspond to
what the researchers actually want to test. However, it could also be argued that
developing such tools is crucial since they allow researchers to spend more time
on thinking about the more conceptual rather than the computational challenges.
Furthermore, only when one can compute the marginal likelihood for a model of
interest one can check how much different prior choices actually affect the results.

15.2 Part II: Multi-Model Meta-Analysis

15.2.1 Chapter Summaries and Future Directions

Chapter 7 proposed a two-component Bayesian mixture model for meta-analyzing
the distribution of significant p values of a set of studies. One component corre-
sponds to the null hypothesis of no effect (i.e., H0), the other component corre-
sponds to the alternative hypothesis which states that an effect is present (i.e.,
H1). This mixture model allows researchers to estimate the proportion of signif-
icant results that originate from H0. Additionally, the mixture model provides
an estimate of the probability that each specific p value originates from H0. The
procedure was demonstrated using two examples and a web application has been
provided to facilitate the application of the method in practice. It was pointed out
that even with many p values available, the results can be affected by the choice
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of the prior distributions. Therefore, it was recommended to conduct a prior sen-
sitivity analysis to assess the effect of different prior choices on the results. It was
also noted that the distribution of significant p values originating from H1 is repre-
sented by a simple parametric distribution. The distribution of significant p values
originating from H1 can be complex so that this parametric representation could
be too simplistic, at least for certain examples. Therefore, a potential avenue for
future development is to explore alternative non-parametric approaches for rep-
resenting the p value distribution under H1. One such non-parametric approach
(i.e., a Dirichlet process mixture) has already been explored when developing the
chapter. However, unfortunately, the specific approach that was explored made
the model challenging to estimate and simulations suggested that it cannot easily
be applied across sets of p values with different characteristics.

Chapter 8 introduced Bayesian model-averaged meta-analysis. This procedure
implements the idea of combining several forecasters according to their plausi-
bility in light of the observed data to avoid an all-or-none decision between a
fixed-effect and a random-effects meta-analysis model. Specifically, four Bayesian
meta-analysis models are considered simultaneously: (1) fixed-effect null hypothe-
sis, (2) fixed-effect alternative hypothesis, (3) random-effects null hypothesis, and
(4) random-effects alternative hypothesis. This approach allows researchers to
address, in a principled manner, the two key questions “Is the overall effect non-
zero?” and “Is there between-study variability in effect size?”. The procedure
was demonstrated using an example concerning the self-concept maintenance the-
ory. Prior recommendations were provided for standardized mean difference effect
sizes. An avenue for future development is to provide prior recommendations for
other effect sizes such as Fisher’s z and log odds ratios. Furthermore, it would
be interesting to explore how the idea that subsets of studies might have different
latent effect sizes could be incorporated in this Bayesian model averaging frame-
work. One possibility is to specify a latent mixture of normal distributions for the
effect sizes (e.g., Moreau & Corballis, 2019). One could then take into account
model versions with different numbers of latent components and combine them
again for final inference using Bayesian model averaging.

Chapter 9 applied the Bayesian model-averaged meta-analysis introduced in
Chapter 8 to analyze six preregistered studies concerning the effect of power pos-
ing. Specifically, the meta-analysis focused on the effect of power posing on felt
power. There was strong evidence for an effect of power posing on felt power,
however, the evidence was only moderate when considering only participants that
were unfamiliar with the effect. An avenue for future development is to adjust
the Bayesian model-averaged meta-analysis to test this potential participant-level
moderator directly.

15.2.2 Discussion

The second part of this dissertation presented different Bayesian methods for meta-
analyzing a set of studies. Just as with existing meta-analysis procedures, the
adage “garbage in, garbage out” also applies to these Bayesian methods. With low
quality data, no statistical analysis can provide high quality inference. However,
recently it has become more common to conduct preregistered studies, for instance,
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in the form of Registered Reports (Chambers, 2013; Chambers et al., 2015) or
Registered Replication Reports (e.g., Wagenmakers, Beek, et al., 2016) which are
free from publication bias and unaffected by cherry-picking. These high quality
data greatly facilitate the application of the proposed methods. Concretely, when
applying the Bayesian mixture model from Chapter 7, one aspect that makes
estimating the parameters challenging is that, in its current version, the model
considers only significant p values. Therefore, all statistical action is in the tail of
the distribution where it is difficult to disentangle the two mixture components.
This has the consequence that a relatively large number of p values is required to
obtain reliable estimates of the model parameters. However, when meta-analyzing
a set of preregistered studies one could adjust the model to consider the complete
distribution of p values since publication bias can be ruled out. This may greatly
facilitate estimating the model parameters, even based on a smaller number of
p values. Naturally, having available a set of studies free of publication bias
also greatly benefits the application of the Bayesian model-averaged meta-analysis
presented in Chapter 8 and Chapter 9. One may of course also use the procedure
to analyze studies that have not been preregistered; however, the conclusions need
to be interpreted with scepticism if it cannot be ruled out that the included studies
represent a biased sample of all conducted studies in the field. In contrast, if the
included studies have been preregistered, Bayesian model-averaged meta-analysis
can be a valuable tool that allows researchers to address key questions of interest
in a principled manner.

15.3 Part III: Hypothesis Testing

15.3.1 Chapter Summaries and Future Directions

Chapter 10 demonstrated how Bayesian inference can be used to quantify the
evidence in favor of a general law based on finite data. Specifically, the chapter
focused on quantifying evidence in favor of the hypothesis that each digit in the
decimal expansions of π, e,

√
2, and ln 2 occurs equally often. The evidence in favor

of the general law was overwhelming for all four constants. This analysis provided a
concrete demonstration that Bayesian inference can be used sequentially to update
one’s knowledge as new data become available over time. Importantly, this process
can be continued indefinitely without invalidating the results as can be the case
when using frequentist inference based on p values (e.g., Berger & Wolpert, 1988;
Rouder, 2014). Furthermore, the chapter illustrated that what can be called the
second derivative of belief – the change in the Bayes factor as a result of new
data – becomes insensitive to the prior specification as the number of observations
grows large. Therefore, although the results based on different priors were not
identical quantitatively (but they were qualitatively), the evidential trajectories
for all prior choices suggested that the evidence for the general law increases as
more digits become available.

Chapter 11 proposed the use of a flexible t-prior for effect size in the Bayesian
t-test. This approach enables researchers to incorporate prior knowledge into the
analysis to make their predictions more precise. The proposed prior specification
contains previous subjective Bayesian t-test versions, but also objective ones. It
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can therefore be used to incorporate prior knowledge, but also to conduct a de-
fault Bayesian t-test in case strong prior knowledge is absent. Two measures for
informed prior distributions were proposed that quantify the departure from the
objective Bayes factor desiderata of predictive matching and information consis-
tency. One possible application of these departure measures is issuing recommen-
dations for researchers who would like to incorporate expert knowledge into the
prior specification, but would also like to retain Jeffreys’s desiderata as much as
possible. For instance, specifying a t-prior with one degree of freedom (i.e., a
Cauchy distribution) ensures that information consistency holds. Crucially, this
is also the case if this Cauchy prior is centered on a value other than zero which
enables one to incorporate expert knowledge about effect size. Researchers who
want to retain predictive matching should specify the prior to be centered on zero,
but can freely choose the scale parameter and the degrees of freedom. The pro-
posed Bayesian t-test using a flexible t-prior was demonstrated using an example
concerning the facial feedback hypothesis that featured an expert prior elicitation
effort.

Chapter 12 introduced abtest, an R package for conducting Bayesian A/B
tests based on work by Kass and Vaidyanathan (1992). This Bayesian hypothesis
testing approach comes with the well-known advantages of allowing researchers to
(1) obtain evidence in favor of the null hypothesis that the treatment is ineffective,
(2) monitor the evidence as the data accumulate, (3) take into account expert
prior knowledge. Specifically, the implemented Bayesian A/B test enables one to
monitor the evidence for the hypotheses that the treatment has either a positive
effect, a negative effect, or, crucially, no effect. Furthermore, this method also
allows one to incorporate expert knowledge about the relative prior plausibility of
the rival hypotheses as well as about the expected size of the effect. An avenue
for future development is to extend the package functionality so that it is possible
to simultaneously compare more than two groups.

Chapter 13 discussed Bayesian leave-one-out cross-validation (LOO), an alter-
native method for comparing competing models. Using three concrete examples,
it was illustrated that when a data set of infinite size is perfectly in line with
the predictions of a simple model and this model is compared to a more complex
model, LOO shows bounded support for the simple model. Importantly, (1) this
limiting bound of support is often surprisingly low, (2) the LOO-preference for
the simple model may be a non-monotonic function of the number of observations
(i.e., additional observations perfectly in line with the simple model may in fact
decrease the LOO-preference for the simple model), (3) the LOO result can depend
strongly on the prior choice, even asymptotically. Therefore, it was concluded that
LOO is not a panacea for model selection.

Chapter 14 addressed three commentaries on Chapter 13 and identified addi-
tional limitations of methods that are based on LOO (such as Bayesian stacking).
Specifically, (1) LOO-based methods such as Bayesian stacking do not align sat-
isfactorily with the epistemic goal of mathematical psychology, (2) LOO-based
methods depend on an arbitrary distinction between parameter estimation and
model comparison, and (3) LOO-based methods depend on an arbitrary distinc-
tion between data that arrive sequentially or “simultaneously”. It was argued in
favor of using Bayes’ rule consistently, for both parameter estimation and model
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comparison. Alternative methods such as LOO may be useful in specific circum-
stances and for specific purposes but, as illustrated, will yield results that are
surprising, misleading, and incoherent in other settings.

15.3.2 Discussion

The third part of this dissertation introduced Bayesian hypothesis testing ap-
proaches to a number of standard statistical tests and discussed Bayesian leave-
one-out cross-validation, an alternative method for comparing competing mod-
els. The introduced approaches come with the well-known pragmatic benefits of
Bayesian hypothesis testing (e.g., Wagenmakers, Marsman, et al., 2018; Wagen-
makers, Morey, & Lee, 2016) such as enabling researchers to (1) obtain evidence in
favor of the null hypothesis, (2) monitor the evidence sequentially as the data accu-
mulate, (3) incorporate existing prior knowledge into the analyses. The advantages
of the last point were already illustrated in the introduction of this dissertation:
specifying informed prior distributions can result in more precise predictions which
will be rewarded in case they turn out to be true. When designing and conducting
experiments, researchers rely on prior knowledge to make the best possible choices.
A natural next step is to apply the idea of cumulative scientific learning also on
the level of the statistical analysis and incorporate existing knowledge in the form
of an informed prior distribution.

There exist alternative approaches to Bayesian model comparison that do not
rely on computing Bayes factors. One of these is Bayesian leave-one-out cross-
validation (LOO). Applying this approach effectively means that parameter esti-
mation is approached in a very different way than model comparison. Specifically,
to estimate the parameters one simply applies Bayes’ rule whereas to compare
models Bayesian cross-validation is conducted. However, the distinction between
parameter estimation and model comparison is in some sense artificial (consider,
e.g., models with discrete parameters) and treating them differently results in
certain inconsistencies, as has been demonstrated. These inconsistencies can be
avoided by approaching parameter estimation and model comparison in the same
way – by systematically applying Bayes’ rule.

15.4 General Conclusion

To conclude this dissertation, a concrete example is used to illustrate how the dif-
ferent parts of this dissertation can be applied in combination to address practical
questions of interest. The example is a reanalysis of the Registered Replication Re-
port concerning the facial feedback hypothesis (Wagenmakers, Beek, et al., 2016)
and has been presented in Hinne et al. (2020). The facial feedback hypothesis
states that affective responses can be influenced by one’s facial expression even
when that facial expression is not the result of an emotional experience. Strack
et al. (1988) reported that participants who held a pen between their teeth (in-
ducing a facial expression similar to a smile; see Figure 15.1, left panel) rated
cartoons as more funny on a 10-point Likert scale ranging from 0-9 than partic-
ipants who held a pen with their lips (inducing a facial expression similar to a
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Figure 15.1: Illustration of two ways of holding a pen in a facial feedback study
(see also Wagenmakers, Beek, et al., 2016). Left panel: the pen is held with
the teeth, inducing a facial expression similar to a smile. Right panel: the pen
is held with the lips, inducing a facial expression similar to a pout. Available
at http://tinyurl.com/zm7p9l7 under CC license https://creativecommons

.org/licenses/by/2.0/.

pout; see Figure 15.1, right panel). In a Registered Replication Report that fea-
tured data from 17 labs, Wagenmakers, Beek, et al. (2016) reported a classical
random-effects meta-analysis estimate of the mean difference between the “smile”
and “pout” condition equal to 0.03 [95% CI: -0.11, 0.16]. Furthermore, for all labs
individually, default independent samples t-test Bayes factors indicated evidence
in favor of the null hypothesis and for 13 out of the 17 labs, the Bayes factor in
favor of the null hypothesis was larger than 3.

Figure 15.2 displays the results of a Bayesian reanalysis of these replication
data (see also Hinne et al., 2020). Based on work presented in the third part of
this dissertation (i.e., Chapter 11), for each of the 17 labs separately, an informed
independent samples t-test Bayes factor is displayed, accompanied by an estimate
of the lab’s effect size plus 95% Bayesian uncertainty interval.1 Specifically, the
informed “Oosterwijk prior” from Chapter 11 was used for effect size: a t dis-
tribution with location 0.35, scale 0.102, and 3 degrees of freedom. For 15 out
of the 17 labs, the informed t-test Bayes factor indicates evidence in favor of the
null hypothesis and for 10 out of the 17 labs the Bayes factor in favor of the null
hypothesis is larger than 3. For both labs for which the Bayes factor does not
indicate evidence in favor of the null hypothesis, the Bayes factor in favor of an
effect is smaller than 2.

The lower part of Figure 15.2 displays the results of a Bayesian model-averaged
meta-analysis as has been introduced in the second part of this dissertation. Specif-
ically, below the results of a Bayesian fixed-effect and a Bayesian random-effects

1For testing, the prior on effect size was truncated below at zero, whereas for estimation this
truncation was removed.
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Figure 15.2: Results of the reanalysis of the facial feedback Registered Replication
Report data (Wagenmakers, Beek, et al., 2016; see also Hinne et al., 2020). The
upper part displays for each lab separately an informed Bayesian independent
samples t-test Bayes factor, accompanied by an estimate of the lab’s effect size
plus 95% Bayesian uncertainty interval. The lower part displays the results of a
Bayesian fixed-effect, a Bayesian random-effects, and a Bayesian model-averaged
meta-analysis. Available at https://tinyurl.com/y4ocdpjf under CC license
https://creativecommons.org/licenses/by/2.0/.

meta-analysis, the model-averaged results are displayed which combine the results
of the Bayesian fixed-effect and Bayesian random-effects meta-analysis according
to their plausibility in light of the observed data. To obtain the meta-analytic
Bayes factors of interest, one needs to compute the marginal likelihood for all
meta-analysis models under consideration. This can be challenging, particularly,
for the hierarchical random-effects model. One computational resolution is to use
bridge sampling, as has been presented in the first part of this dissertation. Fur-
thermore, when implementing the Bayesian meta-analysis models one needs to
choose a prior for the between-study heterogeneity parameter τ . As has been rec-
ommended in Chapter 8, an informed Inverse-Gamma(1, 0.15) prior is used that is
based on the distribution of non-zero between-study standard deviation estimates
for standardized mean difference effect sizes from meta-analyses reported in Psy-
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chological Bulletin in the years 1990–2013 (van Erp et al., 2017). The Bayesian
model-averaged meta-analytic Bayes factor in favor of the null hypothesis is equal
to 54.618, indicating very strong evidence in favor of the facial feedback effect
being absent.

This example demonstrated how ideas and methods from the three parts of this
dissertation can be used to address practical questions of interest. Furthermore,
the example also provided a concrete demonstration of a few general advantages of
Bayesian hypothesis testing using Bayes factors. Specifically, it demonstrated that
Bayes factors can be used to quantify evidence in favor of the null hypothesis of
no effect and that existing prior knowledge can be incorporated into the statistical
analysis. Additionally, in case new facial feedback replications become available
in the future, the presented results can be updated based on these new data which
highlights that Bayesian inference can be applied sequentially to update one’s
knowledge as new information becomes available.

In sum, in this dissertation, I hope to have provided tools for researchers inter-
ested in applying Bayesian inference to their own data that facilitate addressing
questions of interest in a principled and easy-to-use manner.
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Marsman, M., Schönbrodt, F. D., Morey, R. D., Yao, Y., Gelman, A., & Wagen-
makers, E.-J. (2017). A Bayesian bird’s eye view of “replications of important
results in social psychology”. Royal Society Open Science, 4 , 160426.
216

Martino, D. J., Bucay, D., Butman, J. T., & Allegri, R. F. (2007). Neuropsycholog-
ical frontal impairments and negative symptoms in schizophrenia. Psychiatry
Research, 152 , 121–128.
36

Maruyama, Y., & George, E. I. (2011). Fully Bayes factors with a generalized
g–prior. The Annals of Statistics, 39 , 2740–2765.
253

Matzke, D., Boehm, U., & Vandekerckhove, J. (2018). Bayesian inference for
psychology, part III: Parameter estimation in nonstandard models. Psycho-
nomic Bulletin & Review , 25 , 77–101.
83

Matzke, D., Dolan, C. V., Batchelder, W. H., & Wagenmakers, E.-J. (2015).
Bayesian estimation of multinomial processing tree models with heterogene-
ity in participants and items. Psychometrika, 80 , 205–235.
14, 56, 58, 60, 62, 69, 80, 83, 86, 344

Matzke, D., Dolan, C. V., Logan, G. D., Brown, S. D., & Wagenmakers, E.-J.
(2013). Bayesian parametric estimation of stop–signal reaction time distri-
butions. Journal of Experimental Psychology: General , 142 , 1047–1073.
86, 103

Matzke, D., Hughes, M., Badcock, J. C., Michie, P., & Heathcote, A. (2017).
Failures of cognitive control or attention? The case of stop-signal deficits in
schizophrenia. Attention, Perception, & Psychophysics, 79 , 1078–1086.
83

Matzke, D., Love, J., & Heathcote, A. (2017). A Bayesian approach for estimating
the probability of trigger failures in the stop–signal paradigm. Behavior
Research Methods, 49 , 267–281.
80, 103

377



References

Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of ex–
Gaussian and shifted Wald parameters: A diffusion model analysis. Psycho-
nomic Bulletin & Review , 16 , 798–817.
14, 104

Maydeu-Olivares, A., & Joe, H. (2005). Limited-and full-information estima-
tion and Goodness-of-Fit testing in 2n contingency tables. Journal of the
American Statistical Association, 100 , 1009–1020.
56

Mazar, N., Amir, O., & Ariely, D. (2008). The dishonesty of honest people:
A theory of self-concept maintenance. Journal of Marketing Research, 45 ,
633–644.
201

Meehl, P. E. (1990). Appraising and amending theories: The strategy of
Lakatosian defense and two principles that warrant it. Psychological In-
quiry , 1 , 108–141.
102

Meng, X.-L. (1994). Posterior predictive p–values. The Annals of Statistics, 22 ,
1142–1160.
56

Meng, X.-L., & Schilling, S. (2002). Warp bridge sampling. Journal of Computa-
tional and Graphical Statistics, 11 , 552–586.
28, 47, 57, 63, 85, 87, 95, 102, 125, 141, 143, 148, 149, 165

Meng, X.-L., & Wong, W. H. (1996). Simulating ratios of normalizing constants
via a simple identity: A theoretical exploration. Statistica Sinica, 6 , 831–
860.
13, 16, 28, 30, 45, 57, 63, 64, 65, 85, 87, 88, 89, 125, 141, 143, 145, 146, 165,
270

Merkle, E. C., & Rosseel, Y. (2018). blavaan: Bayesian structural equation models
via parameter expansion. Journal of Statistical Software, 85 .
166

Mira, A., & Nicholls, G. K. (2004). Bridge estimation of the probability density
at a point. Statistica Sinica, 14 , 603–612.
47

Moreau, D., & Corballis, M. C. (2019). When averaging goes wrong: The case for
mixture model estimation in psychological science. Journal of Experimental
Psychology: General , 148 , 1615–1627.
208, 347

Morey, R. D., & Rouder, J. N. (2011). Bayes factor approaches for testing interval
null hypotheses. Psychological Methods, 16 , 406–419.
333

Morey, R. D., & Rouder, J. N. (2015). BayesFactor 0.9.11-1. Comprehensive
R Archive Network. Retrieved from http://cran.r-project.org/web/

packages/BayesFactor/index.html

84, 152, 193, 218, 257, 280
Morey, R. D., & Wagenmakers, E.-J. (2014). Simple relation between Bayesian

order-restricted and point-null hypothesis tests. Statistics and Probability
Letters, 92 , 121–124.

378

http://cran.r-project.org/web/packages/BayesFactor/index.html
http://cran.r-project.org/web/packages/BayesFactor/index.html


References

258
Morris, D. E., Oakley, J. E., & Crowe, J. A. (2014). A web-based tool for eliciting

probability distributions from experts. Environmental Modelling & Software,
52 , 1–4.
258

Mulder, J., & Wagenmakers, E.-J. (2016). Editor’s introduction to the special issue
on “Bayes factors for testing hypotheses in psychological research: Practical
relevance and new developments”. Journal of Mathematical Psychology , 72 ,
1–5.
14, 302

Mulder, M. J., Van Maanen, L., & Forstmann, B. U. (2014). Perceptual decision
neurosciences—a model-based review. Neuroscience, 277 , 872–884.
82

Myung, I. J. (2000). The importance of complexity in model selection. Journal
of Mathematical Psychology , 44 , 190–204.
302

Myung, I. J., Forster, M. R., & Browne, M. W. (2000a). Guest editors’ introduc-
tion: Special issue on model selection. Journal of Mathematical Psychology ,
44 , 1–2.
14

Myung, I. J., Forster, M. R., & Browne, M. W. (2000b). Model selection [Special
issue]. Journal of Mathematical Psychology , 44 (1–2).
302

Myung, I. J., Navarro, D. J., & Pitt, M. A. (2006). Model selection by normalized
maximum likelihood. Journal of Mathematical Psychology , 50 , 167–179.
302

Myung, I. J., & Pitt, M. A. (1997). Applying Occam’s razor in modeling cognition:
A Bayesian approach. Psychonomic Bulletin & Review , 4 , 79–95.
57, 102, 142, 302

Nathoo, F. S., & Masson, M. E. J. (2016). Bayesian alternatives to null–hypothesis
significance testing for repeated–measures designs. Journal of Mathematical
Psychology , 72 , 144–157.
302

Navarro, D. J. (2019). Between the devil and the deep blue sea: Tensions between
scientific judgement and statistical model selection. Computational Brain &
Behavior , 2 , 28–34.
320, 330, 331, 334

Navarro, D. J., Griffiths, T. L., Steyvers, M., & Lee, M. D. (2006). Modeling
individual differences using Dirichlet processes. Journal of Mathematical
Psychology , 50 , 101–122.
15

Navarro, D. J., & Lee, M. D. (2003). Combining dimensions and features in
similarity-based representations. In S. Becker, S. Thrun, & K. Obermayer
(Eds.), Advances in Neural Information Processing Systems 15 (pp. 59–66).
Cambridge, MA: MIT Press.
135

379



References

Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing ,
11 , 125–139.
21

Newton, M. A., & Raftery, A. E. (1994). Approximate Bayesian inference with
the weighted likelihood bootstrap. Journal of the Royal Statistical Society.
Series B (Methodological), 56 , 3–48.
20, 24

Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E.-J. (2011). Erroneous
analyses of interactions in neuroscience: A problem of significance. Nature
Neuroscience, 14 , 1105–1107.
227

Nosek, B. A., Alter, G., Banks, G. C., Borsboom, D., Bowman, S. D., Breckler,
S. J., . . . Yarkoni, T. (2015). Promoting an open research culture. Science,
348 , 1422–1425.
172

Nosofsky, R. M. (1985). Overall similarity and the identification of separable-
dimension stimuli: A choice model analysis. Perception & Psychophysics,
38 , 415–432.
122

Nosofsky, R. M. (1992). Similarity scaling and cognitive process models. Annual
Review of Psychology , 43 , 25–53.
114

Nosofsky, R. M., Sanders, C. A., Meagher, B. J., & Douglas, B. J. (2018). Toward
the development of a feature-space representation for a complex natural
category domain. Behavior Research Methods, 50 , 530–556.
134

Nott, D. J., Kohn, R. J., & Fielding, M. (2008). Approximating the marginal
likelihood using copula. arXiv preprint arXiv:0810.5474 .
346

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken, NJ: Wiley.
14, 16, 20

Nuijten, M. B., Hartgerink, C. H., Assen, M. A., Epskamp, S., & Wicherts, J. M.
(2016). The prevalence of statistical reporting errors in psychology (1985–
2013). Behavior research methods, 48 , 1205–1226.
251

Oh, M.-S. (2012). A simple and efficient Bayesian procedure for selecting dimen-
sionality in multidimensional scaling. Journal of Multivariate Analysis, 107 ,
200–209.
114, 116, 118

Oh, M.-S., & Raftery, A. E. (2001). Bayesian multidimensional scaling and choice
of dimension. Journal of the American Statistical Association, 96 , 1031–
1044.
114, 116, 118

O’Hagan, A. (2019). Expert knowledge elicitation: Subjective but scientific. The
American Statistician, 73 , 69–81.
264, 265

380



References

O’Hagan, A., & Forster, J. J. (2004). Kendall’s advanced theory of statistics vol.
2B: Bayesian inference (2nd ed.). London: Arnold.
237, 314

Okada, K. (2012). A Bayesian approach to asymmetric multidimensional scaling.
Behaviormetrika, 39 , 49–62.
118

Okada, K., & Mayekawa, S.-i. (2018). Post-processing of Markov chain Monte
Carlo output in Bayesian latent variable models with application to multi-
dimensional scaling. Computational Statistics, 33 , 1457–1473.
118, 119

Okada, K., & Shigemasu, K. (2010). Bayesian multidimensional scaling for the
estimation of a Minkowski exponent. Behavior Research Methods, 42 , 899–
905.
116

Open Science Collaboration. (2015). Estimating the reproducibility of psycholog-
ical science. Science, 349 , aac4716.
172

Osth, A., Jansson, A., Dennis, S., & Heathcote, A. (2018). Modeling the dynam-
ics of recognition memory testing with a combined model of retrieval and
decision making. Cognitive Psychology , 104 , 106–142.
83

Overstall, A. M. (2010). Default Bayesian model determination for generalised
liner mixed models (Doctoral dissertation, University of Southampton). Re-
trieved from https://eprints.soton.ac.uk/170229/

63, 67, 107, 149
Overstall, A. M., & Forster, J. J. (2010). Default Bayesian model determination

methods for generalised linear mixed models. Computational Statistics &
Data Analysis, 54 , 3269–3288.
25, 27, 28, 30, 52, 63, 65, 70, 78, 87, 95, 103, 106, 145, 148, 157

Owen, A., & Zhou, Y. (2000). Safe and effective importance sampling. Journal
of the American Statistical Association, 95 , 135–143.
21, 147

Pajor, A. (2017). Estimating the marginal likelihood using the arithmetic mean
identity. Bayesian Analysis, 12 , 261–287.
20

Pashler, H., & Wagenmakers, E.-J. (2012). Editors’ introduction to the spe-
cial section on replicability in psychological science: A crisis of confidence?
Perspectives on Psychological Science, 7 , 528–530.
172

Pham-Gia, T., Van Thin, N., & Doan, P. P. (2017). Inferences on the difference
of two proportions: A Bayesian approach. Open Journal of Statistics, 7 ,
1–15.
265

Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis
by parameter space partitioning. Psychological Review , 113 , 57–83.
116

381

https://eprints.soton.ac.uk/170229/


References

Pitt, M. A., Myung, I. J., & Zhang, S. (2002). Toward a method of selecting among
computational models of cognition. Psychological Review , 109 , 472–491.
14

Plieninger, H., & Heck, D. W. (2018). A new model for acquiescence at the
interface of psychometrics and cognitive psychology. Multivariate Behavioral
Research, 53 , 633–654.
56

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling. In K. Hornik, F. Leisch, & A. Zeileis (Eds.), Proceed-
ings of the 3rd international workshop on distributed statistical computing.
Vienna, Austria.
18, 41, 62, 144, 176, 345

Plummer, M. (2016). rjags: Bayesian graphical models using MCMC [Computer
software manual]. Retrieved from https://CRAN.R-project.org/package=

rjags (R package version 4-6)
143

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence
diagnosis and output analysis for MCMC. R News, 6 , 7–11.
35, 64, 89, 143

Poirier, D. J. (2006). The growth of Bayesian methods in statistics and economics
since 1970. Bayesian Analysis, 1 , 969–980.
13

Polya, G. (1941). Heuristic reasoning and the theory of probability. The American
Mathematical Monthly , 48 , 450–465.
234

Polya, G. (1954a). Mathematics and plausible reasoning: Vol. I. Induction and
analogy in mathematics. Princeton, NJ: Princeton University Press.
331, 332

Polya, G. (1954b). Mathematics and plausible reasoning: Vol. II. Patterns of
plausible inference. Princeton, NJ: Princeton University Press.
331

Portman, F. (2019). bayesAB: Fast Bayesian methods for AB testing [Computer
software manual]. Retrieved from https://CRAN.R-project.org/package=

bayesAB (R package version 1.1.2)
265

R Core Team. (2019). R: A language and environment for statistical computing
[Computer software manual]. Vienna, Austria. Retrieved from https://

www.R-project.org/

16, 70, 84, 103, 143, 191, 254, 258, 264, 265
Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S. (2014). The hare

and the tortoise: Emphasizing speed can change the evidence used to make
decisions. Journal of Experimental Psychology: Learning, Memory, and Cog-
nition, 40 , 1226–1243.
83

Raftery, A. E., & Banfield, J. D. (1991). Stopping the Gibbs sampler, the use of
morphology, and other issues in spatial statistics (Bayesian image restora-

382

https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=bayesAB
https://CRAN.R-project.org/package=bayesAB
https://www.R-project.org/
https://www.R-project.org/


References

tion, with two applications in spatial statistics)–(discussion). Annals of the
Institute of Statistical Mathematics, 43 , 32–43.
19

Ramsey, F. P. (1926). Truth and probability. In R. B. Braithwaite (Ed.), The
foundations of mathematics and other logical essays (pp. 156–198). London:
Kegan Paul.
234

Ranehill, E., Dreber, A., Johannesson, M., Leiberg, S., Sul, S., & Weber, R. A.
(2015). Assessing the robustness of power posing: No effect on hormones and
risk tolerance in a large sample of men and women. Psychological Science,
26 , 653–656.
214

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review , 85 ,
59–108.
82, 103

Ratcliff, R., & Childers, R. (2015). Individual differences and fitting methods for
the two-choice diffusion model of decision making. Decision, 2 , 237–279.
82

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: Theory and
data for two–choice decision tasks. Neural Computation, 20 , 873–922.
82, 103

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion decision
model: Current issues and history. Trends in Cognitive Sciences, 20 , 260–
281.
82

Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforcement. In
A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current
research and theory (pp. 64–99). New York: Appleton-Century-Crofts.
37

Rhodes, K. M., Turner, R. M., & Higgins, J. P. T. (2015). Predictive distributions
were developed for the extent of heterogeneity in meta-analyses of continuous
outcome data. Journal of Clinical Epidemiology , 68 , 52–60.
215, 226

Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the mea-
surement of cognitive processes. Psychological Review , 95 , 318–339.
55, 58

Riefer, D. M., Knapp, B. R., Batchelder, W. H., Bamber, D., & Manifold, V.
(2002). Cognitive psychometrics: Assessing storage and retrieval deficits in
special populations with multinomial processing tree models. Psychological
Assessment , 14 , 184–201.
68, 69, 70, 71, 72, 78, 333

Rissanen, J. (2007). Information and complexity in statistical modeling. New
York: Springer.
302

Robert, C. P. (2016). The expected demise of the Bayes factor. Journal of
Mathematical Psychology , 72 , 33–37.

383



References

15
Robert, C. P., & Casella, G. (1999). Monte Carlo statistical methods. New York:

Springer.
176

Robert, C. P., & Casella, G. (2010). Introducing Monte Carlo methods with R.
New York: Springer-Verlag.
272

Robert, C. P., Chopin, N., & Rousseau, J. (2009). Harold Jeffreys’s Theory of
Probability revisited. Statistical Science, 24 , 141–172.
252

Robins, J. M., van der Vaart, A., & Ventura, V. (2000). Asymptotic distribution
of p values in composite null models. Journal of the American Statistical
Association, 95 , 1143–1156.
56

Ronay, R., Tybur, J. M., van Huijstee, D., & Morssinkhof, M. (2017). Embodied
power, testosterone, and overconfidence as a causal pathway to risk taking.
Comprehensive Results in Social Psychology , 2 , 28–43.
214

Rosenthal, R. (1979). An introduction to the file drawer problem. Psychological
Bulletin, 86 , 638–641.
172

Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic
Bulletin & Review , 21 , 301–308.
205, 265, 348

Rouder, J. N., Haaf, J. M., Davis-Stober, C. P., & Hilgard, J. (2019). Beyond
overall effects: A Bayesian approach to finding constraints in meta-analysis.
Psychological Methods, 24 , 606–621.
191, 208

Rouder, J. N., & Lu, J. (2005). An introduction to Bayesian hierarchical models
with an application in the theory of signal detection. Psychonomic Bulletin
& Review , 12 , 573–604.
14, 15, 60

Rouder, J. N., Lu, J., Morey, R. D., Sun, D., & Speckman, P. L. (2008). A
hierarchical process dissociation model. Journal of Experimental Psychology:
General , 137 , 370–389.
15, 69

Rouder, J. N., Lu, J., Speckman, P. L., Sun, D., & Jiang, Y. (2005). A hierarchical
model for estimating response time distributions. Psychonomic Bulletin &
Review , 12 , 195–223.
14, 15

Rouder, J. N., Lu, J., Sun, D., Speckman, P., Morey, R., & Naveh-Benjamin, M.
(2007). Signal detection models with random participant and item effects.
Psychometrika, 72 , 621–642.
14

Rouder, J. N., & Morey, R. D. (2011). A Bayes factor meta-analysis of Bem’s
ESP claim. Psychonomic Bulletin & Review , 18 , 682–689.
191

384



References

Rouder, J. N., & Morey, R. D. (2012). Default Bayes factors for model selection
in regression. Multivariate Behavioral Research, 47 , 877–903.
84

Rouder, J. N., & Morey, R. D. (2019). Teaching Bayes’ theorem: Strength of
evidence as predictive accuracy. The American Statistician, 73 , 186–190.
197

Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default
Bayes factors for ANOVA designs. Journal of Mathematical Psychology , 56 ,
356–374.
84, 302

Rouder, J. N., Morey, R. D., Verhagen, A. J., Province, J. M., & Wagenmakers,
E.-J. (2016). Is there a free lunch in inference? Topics in Cognitive Science,
8 , 520–547.
261

Rouder, J. N., Morey, R. D., Verhagen, A. J., Swagman, A. R., & Wagenmakers,
E.-J. (2017). Bayesian analysis of factorial designs. Psychological Methods,
22 , 304–321.
57, 72

Rouder, J. N., Morey, R. D., & Wagenmakers, E.-J. (2016). The interplay between
subjectivity, statistical practice, and psychological science. Collabra, 2 , 1–
12.
261

Rouder, J. N., Province, J. M., Morey, R. D., Gómez, P., & Heathcote, A. (2015).
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In dit proefschrift, getiteld “Bayes Factor Model Comparison for Psychological
Science”, werden rivaliserende wetenschappelijke modellen vergeleken door ze te
zien als voorspellers, en de kwaliteit van hun voorspellingen te beoordelen aan de
hand van de Bayes factor. Het eerste deel van het proefschrift behandelde bridge
sampling, een computationele methode voor het schatten van de marginale waar-
schijnlijkheid – de hoofdcomponent voor het berekenen van Bayes factors. Het
tweede deel van het proefschrift behandelde Bayesiaanse methoden voor meta-
analyse van meerdere studies. Een centraal concept in dit deel was het combine-
ren van verschillende voorspellers middels Bayesian model averaging (BMA). Het
derde deel van dit proefschrift introduceerde Bayesiaanse equivalenten van een
aantal standaard statistische toetsen. Een centraal concept van dit deel was het
meenemen van voorkennis in de analyses, zodat de voorspellingen van de statistis-
tische modellen accurater worden. Hieronder geef ik een korte samenvatting van
elk hoofdstuk.

Deel I: Bridge Sampling

Hoofdstuk 2 gaf een tutorial over bridge sampling, waarmee de marginale waar-
schijnlijkheid geschat kan worden, de hoofdcomponent voor het vergelijken van de
kwaliteit van de voorspellingen van verschillende statistische modellen door middel
van de Bayes factor. De methode werd gëıntroduceerd door de methode te vergelij-
ken met drie andere Monte Carlo sampling methoden die gebruikt worden voor het
schatten van de marginale waarschijnlijkheid in een simpel beta-binomiaal voor-
beeld. De praktische haalbaarheid van de methode werd aangetoond aan de hand
van single-participant en hiërarchische versies van het reinforcement learning mo-
del. Hieruit werd geconcludeerd dat bridge sampling een aantrekkelijke methode
is voor het vergelijken van modellen in mathematische psychologie. In dit veld
zijn onderzoekers vaak gëınteresseerd in het vergelijken van een kleine set van
hiërarchische modellen, waar er veel parameters geschat moeten worden.

Hoofdstuk 3 liet een toepassing zien van een geavanceerde versie van bridge
sampling (Warp-III ) voor het vergelijken van hierarchical multinomial processing
tree (MPT) modellen. Deze versie van bridge sampling houdt rekening met moge-
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lijke skewing van de posterior verdeling en kan daardoor een preciezere schatting
geven van de marginale waarschijnlijkheid van de modellen. Het eerste voorbeeld
liet zien hoe deze methode gebruikt kan worden voor het beoordelen welke model
parameters verschillen tussen trials. Dit wordt bewerkstelligd door middel van het
combineren van de voorspellingen van verschillende voorspellers (oftewel Bayesian
model averaging). Het tweede voorbeeld was het opnieuw analyseren van data die
werd gebruikt om twee niet-geneste MPT modellen te vergelijken, om het illusory
truth effect te bestuderen.

Hoofdstuk 4 liet een toepassing zien van Warp-III bridge sampling voor het be-
rekenen van de marginale waarschijnlijkheid van evidence-accumulation modellen.
Het Linear Ballistic Accumulator (LBA) model werd gebruikt om te demonstre-
ren dat het combineren van differential evolution Markov chain Monte Carlo (DE-
MCMC) en Warp-III bridge sampling een precieze schatting geeft van de marginale
waarschijnlijkheid van zowel single-participant, als hiërarchische versies van het
LBA model. Door de methode te koppelen met een gebruiksvriendelijke software
implementatie kunnen onderzoekers gemakkelijk de marginale waarschijnlijkheid
schatten van verscheidene evidence-accumulation modellen. Dit hoofdstuk conclu-
deerde met een serie van aanbevelingen voor het toepassen van Warp-III bridge
sampling.

Hoofdstuk 5 liet een toepassing zien van multidimensional scaling (MDS) mo-
dellen voor het achterhalen van het optimale aantal dimensies, en de metrische
structuur van de ruimte waarin gemeten wordt. In de toepassing werd voorken-
nis meegenomen om het model identificeerbaar te maken wanneer er zowel psy-
chologisch gescheiden, als psychologisch gëıntegreerde, stimuli gebruikt worden.
DE-MCMC werd gebruikt samen met Warp-III bridge sampling om conclusies te
trekken over de model parameters, om het optimale aantal dimensies te achterha-
len, en om de gepaste metriek te vinden voor de latente ruimte. Aan de hand van
vijf bestaande datasets werd aangetoond dat de methode zinnige resultaten geeft
in deze settings. Het hoofdstuk besprak ook een aantal onopgeloste uitdagingen
die opgelost dienen te worden, alvorens de methode in het algemeen toegepast kan
worden.

Hoofdstuk 6 introduceerde een R pakket genaamd bridgesampling. Dit pakket
kan gebruikt worden om de marginale waarschijnlijkheid (of, algemener, de norma-
lizerende constante) te schatten door middel van bridge sampling, op een algemene
en gebruiksvriendelijke manier. Gecombineerd met de Bayesiaanse sampling soft-
ware Stan (Carpenter et al., 2017), kan het R pakket automatisch de marginale
waarschijnlijkheid schatten. Het gebruik van het pakket werd gedemonstreerd aan
de hand van drie data voorbeelden.

Deel II: Multi-Model Meta-Analyse

Hoofdstuk 7 stelde voor om meta-analyse van de verdeling van significante p-
waarden uit te voeren aan de hand van een Bayesiaans gemengd model. Het
gemengde model schat de proportie van de significante resultaten die voortkomen
uit de nulhypothese, die geen effect veronderstelt, en het model geeft voor elke
p-waarde een schatting van de kans dat deze voortkomt uit de nulhypothese. De
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procedure werd gedemonstreerd aan de hand van twee voorbeelden. Door middel
van een webapplicatie kunnen onderzoekers de methode toepassen om p-waarden
te analyseren op een gebruiksvriendelijke manier.

Hoofdstuk 8 zette een Bayesiaanse model-averaged meta-analyse uiteen. De
procedure is gebaseerd op het combineren van verschillende voorspellers, zodat
voorkomen kan worden dat een alles-of-niets beslissing genomen wordt tussen een
fixed-effect model en een random-effects meta-analyse model. Deze procedure
combineert vier Bayesiaanse meta-analyse modellen op basis van hun plausibi-
liteit onder de geobserveerde data: (1) fixed-effect nulhypothese, (2) fixed-effect
alternatieve hypothese, (3) random-effects nulhypothese, en (4) random-effects
alternatieve hypothese. Deze procedure stelt de onderzoeker in staat om twee be-
langrijke vragen te beantwoorden: “Is het algemene effect verschillend van nul?”
en “Zijn er verschillen in effect size tussen de studies?”. De methode werd gede-
monstreerd aan de hand van een data voorbeeld.

Hoofdstuk 9 liet een toepassing zien van de Bayesiaanse model-averaged meta-
analyse gëıntroduceerd in Hoofdstuk 8, op de resultaten van zes gepreregistreerde
studies over het effect van power posing. De analyse ging hoofdzakelijk over het
effect van power posing op felt power. De meta-analyse resulteerde in sterk be-
wijs voor het effect van power posing op felt power. Echter was het bewijs enkel
gematigd wanneer participanten werden uitgesloten die al bekend waren met het
effect.

Deel III: Hypothese Toetsing

Hoofdstuk 10 demonstreerde hoe Bayesiaanse statistiek gebruikt kan worden om
het bewijs te kwantificeren voor een algemene wet, gebaseerd op een eindige data-
set. Het hoofdstuk beschreef hoe het kwantificeren van bewijs voor de hypothese
dat fundamentele constanten (zoals π, e,

√
2, en ln 2) normaal zijn. Bayesiaanse

statistiek werd gebruikt om de restrictieve hypothese te toetsen dat elk cijfer even
vaak voorkomt in de decimalen van de constanten. Voor alle vier de constanten
werd bewijs gevonden voor de algemene wet.

Hoofdstuk 11 stelde voor om een flexibele t-prior te gebruiken voor de effect
size in de Bayesiaanse t-toets. Deze prior stelt wetenschappers in staat om voor-
kennis mee te nemen in hun analyse, en zo een preciezere voorspelling te maken.
Deze prior verdeling bevat vorige subjectieve, maar ook objectieve versies van de
Bayesiaanse t-toets. Twee graadmeters werden voorgesteld om te kwantificeren
tot in hoeverre werd voldaan aan de desiderata van de objectieve Bayes factor :
voorspellende passendheid en informatie consistentie. De methode werd gedemon-
streerd aan de hand van een voorbeeld over de facial feedback hypothese, waarbij
de priors werden gekozen door een expert.

Hoofdstuk 12 introduceerde abtest, een R pakket voor het uitvoeren van Bay-
esiaanse A/B toetsen. De gëımplementeerde aanpak is gebaseerd op het werk van
Kass en Vaidyanathan (1992) en stelt onderzoekers in staat om het de opstapeling
van bewijs te volgen voor de hypotheses dat de behandeling een positief effect,
negatief effect, of geen effect heeft. Met deze methode is het ook mogelijk om
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kennis mee te nemen van experts voor het berekenen van de relatieve a priori
waarschijnlijkheid van zowel hypotheses, als de verwachte waarde van het effect.

Hoofdstuk 13 besprak Bayesiaanse leave-one-out cross-validation (LOO), een
alternatieve methode voor het vergelijken van rivaliserende modellen. Verschil-
lende tekortkomingen van deze benadering werden aangetoont aan de hand van
concrete data voorbeelden. Hieruit werd de conclusie getrokken dat LOO geen
wondermiddel is voor modelselectie.

Hoofdstuk 14 biedt een weerwoord aan drie commentaren op Hoofdstuk 13.
Elk van de commentaren werd behandeld, en aanvullende tekortkomingen van
methoden gebaseerd op LOO (zoals Bayesian stacking) werden aangetoond. Deze
methoden werden vergeleken met methoden die wel consistent zijn in hun gebruik
van de regel van Bayes voor zwel parameter schatting als model vergelijking. De
conclusie was dat methoden die gebaseerd zijn op LOO, niet op één lijn liggen met
het epistemische doel van mathematische psychologie.
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