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Chapter 1

Introduction

1.1 Two Friends Playing Mario Kart

One faithful afternoon in June, 2016, rather than enjoying the sunny outside,
me and my good friend Sjoerd were playing a video game called Mario Kart. In
this game, 12 cartoon racers battle for first place in various outlandish racing
circuits, with enticing names such as “Peach Beach” and “Rainbow Road”. We
had been playing this game for a while already, and had generally been enjoying
it. However, we could not agree as to who was the better racer of the two. Luckily,
I had some experience in statistics, and proposed to gather some data in order to
settle the dispute. In the year that followed, we recorded our respective end
positions (i.e., ranks) for a total of 332 races. Table 1.1 lists the results of eight
races, to illustrate the structure of our data, where we refer to ourselves as Player
1 and Player 2. Because there were also 10 computer controlled racers, the rank
for each race could vary between 1 (i.e., finishing first) and 12 (i.e., finishing
last). Our primary interest was to figure out who finished higher than the other,
regardless of whether a computer controlled character had beat us both.

Unfortunately, gathering the data did not settle the dispute by itself. A statis-
tical analysis was needed that could test two competing hypotheses. As a starting
point, we wanted to simply see whether there was a difference in our skill levels
or not, and considered two hypotheses:

H0 : We are equally skilled.

H1 : There is a difference in our skill levels.

The most popular approach for comparing these hypotheses is to conduct a fre-
quentist paired samples t-test. This is a procedure that takes the difference be-
tween the average value in one group of observations (i.e., the ranks of Player 1)
and the average value in another group of observations (i.e., the ranks of Player 2).
Then, it assesses whether this difference deviates substantially from 0 by means
of a p-value: the probability of the observed difference, or an unobserved greater
difference, if H0 is true. However, the fundamental flaws of this approach are
twofold: it is based on the p-value and it is a t-test applied to rank data.

The flaws of the p-value are well-documented (e.g., Bayarri & Berger, 2004;
R. L. Wasserstein & Lazar, 2016; Wagenmakers et al., 2017). For example, the
p-value does not quantify evidence in favor of H0: there can only be absence of
evidence for a difference in skill, rather than evidence of absence. An appealing

1



1. Introduction

Table 1.1: The outcomes of eight Mario Kart races. In the first race, on the Maple Treeway circuit,
Player 1 finished first, and Player 2 finished third. In the second race, on Toad Factory, Player 1
finished second, and Player 2 finished first. The end position in bold indicates which of the two
players won that specific round. Since we were only interested in beating each other, the outcome on
Mario Circuit, where Player 1 finished fourth and Player 2 finished fifth, is therefore counted as a win
for Player 1.

Circuit Player 1 Player 2

Maple Treeway 1 3
Toad Factory 2 1
DK Mountain 1 2
Shy Guy Beach 3 7

Delphino Square 2 1
Peach Beach 9 7
Mario Circuit 4 5
Bowser’s Castle 3 1

alternative to the p-value is the Bayes factor, which directly pits the two hypothe-
ses against each other and directly quantifies how likely the data are under one
hypothesis, compared to the other hypothesis. It therefore allows evidence in
favor of either hypothesis under consideration.

The inappropriateness of the t-test in this scenario comes from two assump-
tions made by this test. First, the t-test assumes the data to be normally dis-
tributed. Because the data at hand are integers, and are often equal to 1, 2, and
3 (we generally manged to beat the computer controlled racers), the data are not
continuous and follow a skewed distribution. Especially if we would have few
observations, violations of the normality assumption can be critical to the valid-
ity of the test. Second, the t-test assumes the data to be measured on the ratio or
interval level, rather than the ordinal level. The ratio measurement level implies
that a value of 2 is twice as high as a value of 1. For these data this would imply
that, when Player 1 finishes third and Player 2 finishes first (see Bowser’s Castle
in Table 1.1), Player 2 is judged to be three times as skilled as Player 1. Although
the outcome of this race is an indication that Player 2 is more skilled than Player
1, it is an extremely strong statement to speak of “three times as skilled”. The
interval measurement level implies that the difference in skill between the first
place and second place is as big as the difference in skill between the ninth and
tenth place. While this statement is not as strong as the ratio measurement level,
the rank data alone cannot distinguish between a linear relationship of skill and
rank, or an exponential relationship of skill and rank.

The equivalent of the t-test that does not make such strong assumptions, is
the Wilcoxon signed rank test. Instead of comparing the average ranks of Player
1 to the average ranks of Player 2, this test considers whether the ranks of Player
1 are more often higher, or more often lower than the ranks of Player 2. Addition-
ally, it also considers the magnitude of the differences in ranks. Thus, the most
appropriate test that we could conduct to compare H0 and H1, is the Bayesian

2



1.1. Two Friends Playing Mario Kart

Wilcoxon signed rank test.
The Bayesian framework is centered on the notion of knowledge updating.

Before Sjoerd and I had met each other (played any game of Mario kart), it was
very hard to tell whether one of us would be the better player, and to what ex-
tent that player would be better. In other words, there was little prior knowledge
about hypotheses H0 and H1, and about the size of the difference in our skill
level, if there was any. After 332 games, however, there were many data points
with which to update that prior knowledge, in order to form posterior knowl-
edge. Humans experience this process of knowledge updating every day, and do
this naturally. Statisticians, on the other hand, have the need to formalize this
procedure. The formalization of updating knowledge with ordinal data is quite
challenging, because rank data typically lack a likelihood function, which is re-
quired to compute the probability of observing the data, given a hypothesized
value for our difference in ability. Since the likelihood function is a fundamental
part of Bayesian inference, this has frustrated the development of Bayesian in-
ference for rank data. In the hope of one day proving to be better than Sjoerd at
Mario Kart, I centered my research around this development.

It would not only be Mario Kart players that would gain from the develop-
ment of Bayesian hypothesis tests for ranks. In psychological science, rank data
are ubiquitous. The most common form of rank data is the Likert scale (Likert,
1932). An example of a 5-point Likert scale is the common “strongly agree”,
“agree”, “neutral”, “disagree”, “strongly disagree”, where respondents then indi-
cate to what extent they agree or disagree with a certain statement, or series of
statements. Similarly, it can be used to measure respondents’ levels of emotion,
pain, level of well-being or depression, or degree of exhibiting a certain behavior.
For all of thesemeasurements, treating these observations on an ordinal measure-
ment scale is again of crucial importance: if person A “strongly agrees”, person B
“agrees”, and person C is “neutral”, it absolutely need not be the case that person
A agrees twice as much with the statement as person B (i.e., ratio measurement
level), or that person B’s level of agreement is exactly in the middle of the levels
of agreement of Person A and person C (i.e., interval measurement level).

Rank-based tests only consider the ordinal information in the data. So far,
the discussion here has focused on applying these tests to rank data that occur
due to the nature of the measuring instrument. However, these tests can also be
applied to continuous measurements. While considering only the ordinal infor-
mation of continuous measurements discards some information, it yields signif-
icant advantages in terms of robust inference. Specifically, rank-based tests are
robust to the presence of outliers, monotonic transformations of the data (e.g.,
the log-transform), and non-normality of the data. Each of these three compo-
nents can lead to arbitrary decision-making in the analytic process (e.g., “Is this
data point an outlier, and should I remove it?”, “Should I consider the raw, or
the log-transformed response times?”, or “Are my data normally distributed?”).
How these decisions are handled can heavily influence the outcome of a non-
rank-based test. In contrast, the rank-based test omits these arbitrary decisions
altogether and makes for a more straightforward analysis procedure.

About halfway through my PhD, my colleagues and I developed a Bayesian

3
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Figure 1.1: The top row presents the observed ranks of all 332 races for both Player 1 and Player
2. Since the observations for both players are paired, the bottom plot shows the difference between
the ranks for each race. For instance, if Player 1 finished second, and Player 2 finished third, the
difference is 2 − 3 = −1. As illustrated by the bottom plot, Player 1 finished before Player 2 in the
majority of the races. In other words, a negative difference in ranks is an indication of greater skill
of Player 1. Since it is not possible to finish a race simultaneously (i.e., ties), there is no observed
difference of 0.
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1.1. Two Friends Playing Mario Kart

framework for several rank-based hypothesis tests. One of these, the Wilcoxon
signed rank test, was the exact test needed to analyze the Mario Kart data. The
data are summarized in Figure 1.1. The plots in the top row display the frequen-
cies of our respective ranks and the bottom row displays the difference in rank,
for each race. A negative difference here is indicative of Player 1 having greater
skill, and a positive difference here is indicative of Player 2 having greater skill.
Thus, if there are more negative differences than positive differences (i.e., Player
1 defeated Player 2 in the majority of the races), there is evidence that Player 1
is better, and vice versa. Additionally, the magnitude of the differences can be
considered. For example, if Player 1 wins five games, and Player 2 gets second
place every time (i.e., five differences scores of −1), this is less diagnostic for a
skill difference than when Player 1 wins five games, and Player 2 gets twelfth
place every time (i.e., five difference scores of −11). The Wilcoxon signed rank
test is precisely based on these two considerations.

With the test defined, the hypotheses can be formulatedmore specifically, and
posit a direction of the effect:

H− : Player 1 is better
(i.e., there are more and greater negative differences)

H+ : Player 2 is better
(i.e., there are more and greater positive differences)

H0 : Players 1 and 2 are equally good
(i.e., the positive and negative differences are equal in frequency and mag-
nitude)

Using the method outlined in Chapter 9, a Bayes factor can be obtained that
quantifies the support of one of the hypotheses under consideration over an-
other. Figure 1.2 shows the prior and posterior distribution for δ, which is a
standardized measure of the differences between the ranks. Additionally, it in-
cludes the Bayes factor comparing H− to H0, and indicates overwhelming evi-
dence that Player 1 is better than Player 2 at Mario Kart: the observed data are
9,950,000 times more likely under the hypothesis that Player 1 is better, than
under the hypothesis that we are both equally good.

Since I am Player 1, I considered my research to be a great success. However,
I realized that none of my academic peers were as impressed with the result as
I was. I quickly came to the conclusion that the reason for this lack of enthusi-
asm must be a lack of understanding and popularity of Bayesian inference. Since
Bayesian methods are relatively new, many researchers struggle to understand
the central concepts inherent to these methods, do not know how to properly
conduct and report Bayesian analyses, or are simply unfamiliar with the frame-
work. The other half of my research was therefore dedicated to improving this
situation by writing various tutorial-style articles on how to best conduct and
teach Bayesian inference.

I strongly believe that the value of a statistical method stands or falls on the
successful and correct application of the method. It is therefore of critical impor-
tance for the improvement of psychological science to not only develop a prudent
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Figure 1.2: Bayesian Wilcoxon signed rank test for the difference parameter δ. The probability wheel
at the top illustrates the ratio of the evidence in favor of the two hypotheses under consideration. The
Bayes factor indicates that the data 9,950,000 times more likely under H− than under H0.

statistical method, but to also properly document and explain the method, and
to develop easy-to-use tools for applying the method. The combination of part I
(Bayes Factor Hypothesis Tests for Researchers) and part II (Bayes Factor Hypoth-
esis Tests for Ranks) of this thesis reflect this belief, and will enable any interested
researcher to learn about rank-based Bayesian inference, as well as properly un-
derstand, conduct, and report the Bayesian tests introduced in this thesis.

1.2 Chapter Outline

1.2.1 Part I: For Researchers

The first part of the dissertation is concerned with guiding researchers into the
realm of Bayesian inference, with an emphasis on Bayes factor hypothesis test-
ing. Instead of introducing new methods, this part focuses on demonstrating the
proper use of existing statistical tools.

Chapter 2 introduces a set of guiding principles for researchers looking to ap-
ply the Bayesian framework. The guidelines are divided into four main parts of
statistical inference: planning, conducting, interpreting, and reporting an analy-
sis. The main focus of this chapter is promoting understanding and transparency
in psychological science, such that any scientific finding can be easily contextu-
alized and reproduced. The chapter uses a running example to demonstrate the
practical relevance of each guideline as they are introduced. While the guidelines
are aimed at Bayesian inference, many principles discussed here extend beyond
the Bayesian framework.

6



1.2. Chapter Outline

Chapter 3 describes a qualitative study where four teams of statisticians were
asked to analyze two relatively simple data sets (concerning an association be-
tween two continuous variables, and a cross table). The goal of this study was to
demonstrate how, even for a simple scenario, there are many ways to approach a
data set and corresponding research question. The round table discussion at the
end of the chapter provides insight in how the different teams arrived at their
specific analysis choices, and highlights how there is never a single, unanimous
approach to statistical inference. The main question presented here, is whether it
is problematic, or beneficial, when different teams choose different approaches,
while arriving at qualitatively similar conclusions.

Chapter 4 provides an interactive and informative experiment that can be
used to teach Bayesian inference at the beginner level. The experiment is based
on Ronald Fisher’s experiment “A lady tasting tea” (Fisher, 1935), and the chapter
describes how a similar experiment can be conducted in real-time in a classroom
setting. This educational exercise familiarizes participants with the core ideas of
Bayesian inference, such as the prior and posterior distribution, likelihood, and
Bayes factor.

Chapter 5 discusses how applied researchers reason about the claims made
in their empirical papers. The chapter presents results from a questionnaire sent
to lead authors of empirical articles in the journal Nature Human Behavior. Most
respondents in the questionnaire only reported a modest increase of the plausi-
bility of the main claim in their article, as a result of their data. The aim of this
study was to gauge whether there would be a gap between the seeming certainty
with which empirical articles are written, and the (semi)private convictions of
the researchers themselves.

Chapter 6 aims to facilitate a much needed discussion and set of guiding prin-
ciples about how to properly conduct Bayesian model comparison of mixed ef-
fects models (also called hierarchical models). This family of models offers great
versatility and applicability in psychological science, in particular when com-
bined with the benefits of Bayesian hypothesis testing. Unfortunately, there are
several modeling choices to overcome, which are not well documented in the
literature. Using three data examples, this chapter outlines modeling questions
related to choice of alternative and null model, prior distribution, aggregation of
the data, and measurement error in the context of mixed effects models.

1.2.2 Part II: For Ranks

The second part of the dissertation is concerned with Bayesian inference for rank
data.

Chapter 7 introduces Bayesian inference for rank correlation Kendall’s τ. By
using the asymptotic likelihood of the test statistic, rather than the likelihood of
the rank data, the problematic lack of a likelihood is omitted (Yuan & Johnson,
2008). A method for prior elicitation, “parametric yoking”, is introduced to cre-
ate a default prior distribution for Kendall’s τ based on the Bayesian framework
for Pearson’s ρ. The result is a posterior distribution for estimation and a Bayes
factor for hypothesis testing.
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1. Introduction

Chapter 8 introduces a general data augmentation framework for Bayesian
inference for rank data and applies this to Kendall’s τ. In this data augmenta-
tion framework, rank data are seen as impoverished measures of an underlying
(i.e., latent) continuous scale. For the Mario Kart example, this means that the
observed ranks are treated as ordinal manifestations of our latent ability. Using
MCMC-sampling in combination with the ordinal information in the data, this
latent scale can be approximated, and the uncertainty with which ranks are re-
flecting the latent construct is adequately accounted for. A mixture of parametric
test can then be performed on these latent values. This method yields identical,
or more accurate results for Kendall’s τ as in Chapter 7. The behavior of this
method is illustrated by a simulation study and data application.

Chapter 9 applies the data augmentation framework from Chapter 8 to other
rank-based tests to yield Bayesian inference for Spearman’s ρ, the Wilcoxon rank
sum test, and the Wilcoxon signed rank test. By demonstrating the application
of the framework to other tests, the generalizability of the data augmentation
framework is underscored. The behavior of each test is illustrated by a simulation
study and data application.

Chapter 10 outlines how Kendall’s distance, the unstandardized version of
Kendall’s τ, is a highly versatile tool in psychological modeling that can be used
to express the (dis)similarity between two participants’ responses, or between a
participants’ responses and the ground truth. In contrast to the previous chap-
ters, this chapter does not outline a statistical test or estimation procedure, but a
summarizing statistic that can be used for further analysis, such as multidimen-
sional scaling. The chapter describes the basic measure and four extensions that
increase its applicability. With the measure in hand, it is then applied to four
real-world examples to demonstrate its use.
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For Researchers
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Chapter 2

The JASP Guidelines for

Conducting and Reporting a

Bayesian Analysis

Abstract

Despite the increasing popularity of Bayesian inference in empirical research, few prac-
tical guidelines provide detailed recommendations for how to apply Bayesian procedures
and interpret the results. Here we offer specific guidelines for four different stages of
Bayesian statistical reasoning in a research setting: planning the analysis, executing the
analysis, interpreting the results, and reporting the results. The guidelines for each stage
are illustrated with a running example. Although the guidelines are geared toward anal-
yses performed with the open-source statistical software JASP, most guidelines extend to
Bayesian inference in general.

2.1 Introduction

In recent years Bayesian inference has become increasingly popular, both in sta-
tistical science and in applied fields such as psychology, biology, and econo-
metrics (e.g., Vandekerckhove et al., 2018; Andrews & Baguley, 2013). For the
pragmatic researcher, the adoption of the Bayesian framework brings several ad-
vantages over the standard framework of frequentist null-hypothesis significance
testing (NHST), including (1) the ability to obtain evidence in favor of the null
hypothesis and discriminate between “absence of evidence” and “evidence of ab-
sence” (Dienes, 2014; Keysers et al., 2020); (2) the ability to take into account
prior knowledge to construct a more informative test (Lee & Vanpaemel, 2018;
Gronau et al., 2018); and (3) the ability to monitor the evidence as the data ac-
cumulate (Rouder, 2014). However, the relative novelty of conducting Bayesian
analyses in applied fields means that there are no detailed reporting standards,

This chapter is published as van Doorn, J.B., van den Bergh, D., Boehm, U., Dablander, F., Derks,
K., Draws, T., Evans, N. J., Gronau, Q. F., Hinne, M., Kucharsky, S., Ly, A., Marsman, M., Matzke, D.,
Komarlu Narendra Gupta, A. R., Sarafoglou, A., Stefan, A., Voelkel, J. G., & Wagenmakers, E.–J. (in
press). The JASP guidelines for conducting and reporting a Bayesian analysis. Psychonomic Bulletin &
Review. Also available as PsyArXiv preprint: https://psyarxiv.com/yqxfr
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2. The JASP Guidelines for Conducting and Reporting a Bayesian Analysis

and this in turn may frustrate the broader adoption and proper interpretation of
the Bayesian framework.

Several recent statistical guidelines include information on Bayesian infer-
ence, but these guidelines are either minimalist (The BaSiS group, 2001; Ap-
pelbaum et al., 2018), focus only on relatively complex statistical tests (Depaoli
& van de Schoot, 2017), are too specific to a certain field (Spiegelhalter et al.,
2000; Sung et al., 2005), or do not cover the full inferential process (Jarosz &
Wiley, 2014). The current chapter aims to provide a general overview of the
different stages of the Bayesian reasoning process in a research setting. Specifi-
cally, we focus on guidelines for analyses conducted in JASP (JASP Team, 2020;
jasp-stats.org), although these guidelines can be generalized to other software
packages for Bayesian inference. JASP is an open-source statistical software pro-
gram with a graphical user interface that features both Bayesian and frequentist
versions of common tools such as the t-test, the ANOVA, and regression analysis
(e.g., Marsman & Wagenmakers, 2017; Wagenmakers, Love, et al., 2018a).

We discuss four stages of analysis: planning, executing, interpreting, and re-
porting. These stages and their individual components are summarized in Table
2.1 at the end of this chapter. In order to provide a concrete illustration of the
guidelines for each of the four stages, each section features a data set reported by
Frisby & Clatworthy (1975). This data set concerns the time it took two groups
of participants to see a figure hidden in a stereogram – one group received ad-
vance visual information about the scene (i.e., the VV condition), whereas the
other group did not (i.e., the NV condition).1 Three additional examples (mixed
ANOVA, correlation analysis, and a t-test with an informed prior) are provided
in an online appendix at https://osf.io/nw49j/. Throughout the paper, we
present three boxes that provide additional technical discussion. These boxes,
while not strictly necessary, may prove useful to readers interested in greater
detail.

2.2 Stage 1: Planning the Analysis

Specifying the goal of the analysis. We recommend that researchers carefully
consider their goal, that is, the research question that they wish to answer, prior
to the study (Jeffreys, 1939). When the goal is to ascertain the presence or absence
of an effect, we recommend a Bayes factor hypothesis test (see Box 1). The Bayes
factor compares the predictive performance of two hypotheses. This underscores
an important point: in the Bayes factor testing framework, hypotheses cannot be
evaluated until they are embedded in fully specified models with a prior distri-
bution and likelihood (i.e., in such a way that they make quantitative predictions
about the data). Thus, when we refer to the predictive performance of a hypothe-
sis, we implicitly refer to the accuracy of the predictions made by the model that
encompasses the hypothesis (Etz et al., 2018).

1The variables are participant number, the time (in seconds) each participant needed to see the
hidden figure (i.e., fuse time), experimental condition (VV = with visual information, NV = without
visual information), and the log-transformed fuse time.
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2.2. Stage 1: Planning the Analysis

When the goal is to determine the size of the effect, under the assumption that
it is present, we recommend to plot the posterior distribution or summarize it by
a credible interval (see Box 2). Testing and estimation are not mutually exclusive
and may be used in sequence; for instance, one may first use a test to ascertain
that the effect exists, and then continue to estimate the size of the effect.

Box 1. Hypothesis testing. The principled approach to Bayesian hypothesis
testing is by means of the Bayes factor (e.g., Wrinch & Jeffreys, 1921; Etz &
Wagenmakers, 2017; Jeffreys, 1939; Ly et al., 2016). The Bayes factor quan-
tifies the relative predictive performance of two rival hypotheses, and it is
the degree to which the data demand a change in beliefs concerning the hy-
potheses’ relative plausibility (see Equation 2.1). Specifically, the first term
in Equation 2.1 corresponds to the prior odds, that is, the relative plausi-
bility of the rival hypotheses before seeing the data. The second term, the
Bayes factor, indicates the evidence provided by the data. The third term,
the posterior odds, indicates the relative plausibility of the rival hypotheses
after having seen the data.

p(H1)

p(H0)
︸ ︷︷ ︸

Prior odds

× p(D | H1)

p(D | H0)
︸     ︷︷     ︸

Bayes factor10

=
p(H1 |D)

p(H0 |D)
︸     ︷︷     ︸

Posterior odds

(2.1)

The subscript in the Bayes factor notation indicates which hypothesis is sup-
ported by the data. BF10 indicates the Bayes factor in favor of H1 over H0,
whereas BF01 indicates the Bayes factor in favor of H0 over H1. Specifically,
BF10 = 1/BF01. Larger values of BF10 indicate more support for H1. Bayes fac-
tors range from 0 to∞, and a Bayes factor of 1 indicates that both hypotheses
predicted the data equally well. This principle is further illustrated in Figure
2.4.

Box 2. Parameter estimation. For Bayesian parameter estimation, interest
centers on the posterior distribution of the model parameters. The poste-
rior distribution reflects the relative plausibility of the parameter values af-
ter prior knowledge has been updated by means of the data. Specifically, we
start the estimation procedure by assigning themodel parameters a prior dis-
tribution that reflects the relative plausibility of each parameter value before
seeing the data. The information in the data is then used to update the prior
distribution to the posterior distribution. Parameter values that predicted
the data relatively well receive a boost in plausibility, whereas parameter val-
ues that predicted the data relatively poorly suffer a decline (Wagenmakers
et al., 2016). Equation 2.2 illustrates this principle. The first term indicates
the prior beliefs about the values of parameter θ. The second term is the
updating factor: for each value of θ, the quality of its prediction is compared
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to the average quality of the predictions over all values of θ. The third term
indicates the posterior beliefs about θ.

p(θ)
︸︷︷︸

Prior belief
about θ

×

Predictive adequacy
of specific θ
︷       ︸︸       ︷

p(data | θ)
p(data)

︸       ︷︷       ︸

Average predictive
adequacy across all θ′s

= p(θ | data)
︸      ︷︷      ︸

Posterior belief
about θ

. (2.2)

The posterior distribution can be plotted or summarized by an x% credible
interval. An x% credible interval contains x% of the posterior mass. Two
popular ways of creating a credible interval are the highest density credible
interval, which is the narrowest interval containing the specified mass, and
the central credible interval, which is created by cutting off 100−x

2 % from each
of the tails of the posterior distribution.

Specifying the statistical model. The functional form of the model (i.e., the
likelihood; Etz, 2018) is guided by the nature of the data and the research ques-
tion. For instance, if interest centers on the association between two variables,
one may specify a bivariate normal model in order to conduct inference on Pear-
son’s correlation parameter ρ. The statistical model also determines which as-
sumptions ought to be satisfied by the data. For instance, the statistical model
might assume the dependent variable to be normally distributed. Violations of
assumptions may be addressed at different points in the analysis, such as the data
preprocessing steps discussed below, or by planning to conduct robust inferential
procedures as a contingency plan.

The next step in model specification is to determine the sidedness of the pro-
cedure. For hypothesis testing, this means deciding whether the procedure is
one-sided (i.e., the alternative hypothesis dictates a specific direction of the pop-
ulation effect) or two-sided (i.e., the alternative hypothesis dictates that the effect
can be either positive or negative). The choice of one-sided versus two-sided de-
pends on the research question at hand and this choice should be theoretically
justified prior to the study. For hypothesis testing it is usually the case that the
alternative hypothesis posits a specific direction. In Bayesian hypothesis testing,
a one-sided hypothesis yields a more diagnostic test than a two-sided alternative
(e.g., Wetzels et al., 2009; Jeffreys, 1961, p.283).2

For parameter estimation, we recommend to always use the two-sided model
instead of the one-sided model: when a positive one-sided model is specified
but the observed effect turns out to be negative, all of the posterior mass will

2A one-sided alternative hypothesis makes a more risky prediction than a two-sided hypothesis.
Consequently, if the data are in line with the one-sided prediction, the one-sided alternative hypoth-
esis is rewarded with a greater gain in plausibility compared to the two-sided alternative hypothesis;
if the data oppose the one-sided prediction, the one-sided alternative hypothesis is penalized with a
greater loss in plausibility compared to the two-sided alternative hypothesis.
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2.2. Stage 1: Planning the Analysis

nevertheless remain on the positive values, falsely suggesting the presence of a
small positive effect.

The next step in model specification concerns the type and spread of the prior
distribution, including its justification. For the most common statistical models
(e.g., correlations, t-tests, and ANOVA), certain “default” prior distributions are
available that can be used in cases where prior knowledge is absent, vague, or dif-
ficult to elicit (for more information, see Ly et al., 2016). These priors are default
options in JASP. In cases where prior information is present, different “informed”
prior distributions may be specified. However, the more the informed priors de-
viate from the default priors, the stronger becomes the need for a justification (see
the informed t-test example in the online appendix at https://osf.io/ybszx/).
Additionally, the robustness of the result to different prior distributions can be
explored and included in the report. This is an important type of robustness
check because the choice of prior can sometimes impact our inferences, such as
in experiments with small sample sizes or missing data. In JASP, Bayes factor
robustness plots show the Bayes factor for a wide range of prior distributions,
allowing researchers to quickly examine the extent to which their conclusions
depend on their prior specification. An example of such a plot is given later in
Figure 2.7.

Specifying data preprocessing steps. Dependent on the goal of the analysis
and the statistical model, different data preprocessing steps might be taken. For
instance, if the statistical model assumes normally distributed data, a transfor-
mation to normality (e.g., the logarithmic transformation) might be considered
(e.g., Draper & Cox, 1969). Other points to consider at this stage are when and
how outliers may be identified and accounted for, which variables are to be ana-
lyzed, and whether further transformation or combination of data are necessary.
These decisions can be somewhat arbitrary, and yet may exert a large influence
on the results (Wicherts et al., 2016). In order to assess the degree to which the
conclusions are robust to arbitrary modeling decisions, it is advisable to conduct
a multiverse analysis (Steegen et al., 2016). Preferably, the multiverse analysis is
specified at study onset. A multiverse analysis can easily be conducted in JASP,
but doing so is not the goal of the current paper.

Specifying the sampling plan. As may be expected from a framework for
the continual updating of knowledge, Bayesian inference allows researchers to
monitor evidence as the data come in, and stop whenever they like, for any reason
whatsoever. Thus, strictly speaking there is no Bayesian need to pre-specify
sample size at all (e.g., Berger & Wolpert, 1988). Nevertheless, Bayesians are free
to specify a sampling plan if they so desire; for instance, one may commit to stop
data collection as soon as BF10 ≥ 10 or BF01 ≥ 10. This approach can also be
combined with a maximum sample size (N ), where data collection stops when
either the maximum N or the desired Bayes factor is obtained, whichever comes
first (for examples see Matzke et al., 2015; Wagenmakers et al., 2015).

In order to examine what sampling plans are feasible, researchers can conduct
a Bayes factor design analysis (Schönbrodt & Wagenmakers, 2018; Stefan et al.,
2019), a method that shows the predicted outcomes for different designs and
sampling plans. Of course, when the study is observational and the data are
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2. The JASP Guidelines for Conducting and Reporting a Bayesian Analysis

available ‘en bloc’, the sampling plan becomes irrelevant in the planning stage.

Stereogram Example

First, we consider the research goal, which was to determine if participants who
receive advance visual information exhibit a shorter fuse time (Frisby & Clatwor-
thy, 1975). A Bayes factor hypothesis test can be used to quantify the evidence
that the data provide for and against the hypothesis that an effect is present.
Should this test reveal support in favor of the presence of the effect, then we have
grounds for a follow-up analysis in which the size of the effect is estimated.

Second, we specify the statistical model. The study focus is on the differ-
ence in performance between two between-subjects conditions, suggesting a two-
sample t-test on the fuse times is appropriate. The main measure of the study
is a reaction time variable, which can for various reasons be non-normally dis-
tributed (Lo & Andrews, 2015; but see Schramm & Rouder, 2019). If our data
show signs of non-normality we will conduct two alternatives: a t-test on
the log-transformed fuse time data and a non-parametric t-test (i.e., the Mann-
Whitney U test), which is robust to non-normality and unaffected by the log-
transformation of the fuse times.

For hypothesis testing, we compare the null hypothesis (i.e., advance visual
information has no effect on fuse times) to a one-sided alternative hypothesis (i.e.,
advance visual information shortens the fuse times), in line with the directional
nature of the original research question. The rival hypotheses are thus H0 : δ = 0
andH+ : δ > 0, where δ is the standardized effect size (i.e., the population version
of Cohen’s d), H0 denotes the null hypothesis, and H+ denotes the one-sided
alternative hypothesis (note the ‘+’ in the subscript). For parameter estimation
(under the assumption that the effect exists) we use the two-sided t-test model
and plot the posterior distribution of δ. This distribution can also be summarized
by a 95% central credible interval.

We complete the model specification by assigning prior distributions to the
model parameters. Since we have only little prior knowledge about the topic,
we select a default prior option for the two-sample t-test, that is, a Cauchy dis-
tribution3 with spread r set to 1/

√
2. Since we specified a one-sided alternative

hypothesis, the prior distribution is truncated at zero, such that only positive
effect size values are allowed. The robustness of the Bayes factor to this prior
specification can be easily assessed in JASP by means of a Bayes factor robustness
plot.

Since the data are already available, we do not have to specify a sampling plan.
The original data set has a total sample size of 103, from which 25 participants
were eliminated due to failing an initial stereo-acuity test, leaving 78 participants
(43 in the NV condition and 35 in the VV condition). The data are available online
at https://osf.io/5vjyt/.

3The fat-tailed Cauchy distribution is a popular default choice because it fulfills particular desider-
ata, see Jeffreys, 1961; Liang et al., 2008; Ly et al., 2016; Rouder et al., 2009 for details.
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2.3. Stage 2: Executing the Analysis

2.3 Stage 2: Executing the Analysis

Before executing the primary analysis and interpreting the outcome, it is im-
portant to confirm that the intended analyses are appropriate and the models
are not grossly misspecified for the data at hand. In other words, it is strongly
recommended to examine the validity of the model assumptions (e.g., normally
distributed residuals or equal variances across groups). Such assumptions may
be checked by plotting the data, inspecting summary statistics, or conducting
formal assumption tests (but see Tijmstra, 2018).

A powerful demonstration of the dangers of failing to check the assumptions
is provided by Anscombe’s quartet (Anscombe, 1973; see Figure 2.1). The quartet
consists of four fictitious data sets of equal size that each have the same observed
Pearson’s product moment correlation r, and therefore lead to the same infer-
ential result both in a frequentist and a Bayesian framework. However, visual
inspection of the scatterplots immediately reveals that three of the four data sets
are not suitable for a linear correlation analysis, and the statistical inference for
these three data sets is meaningless or even misleading. This example highlights
the adage that conducting a Bayesian analysis does not safeguard against general
statistical malpractice – the Bayesian framework is as vulnerable to violations of
assumptions as its frequentist counterpart. In cases where assumptions are vio-
lated, an ordinal or non-parametric test can be used, and the parametric results
should be interpreted with caution.

Once the quality of the data has been confirmed, the planned analyses can
be carried out. JASP offers a graphical user interface for both frequentist and
Bayesian analyses. JASP 0.10.2 features the following Bayesian analyses: the
binomial test, the chi-square test, the multinomial test, the t-test (one-sample,
paired sample, two-sample, Wilcoxon rank sum, and Wilcoxon signed-rank
tests), A/B tests, ANOVA, ANCOVA, repeated measures ANOVA, correlations
(Pearson’s ρ and Kendall’s τ), linear regression, and log-linear regression. Af-
ter loading the data into JASP, the desired analysis can be conducted by dragging
and dropping variables into the appropriate boxes; tick marks can be used to
select the desired output.

The resulting output (i.e., figures and tables) can be annotated and saved as a
.jasp file. Output can then be shared with peers, with or without the real data
in the .jasp file; if the real data are added, reviewers can easily reproduce the
analyses, conduct alternative analyses, or insert comments.

Stereogram Example

In order to check for violations of the assumptions of the t-test, the top row of
Figure 2.2 shows boxplots and Q-Q plots of the dependent variable fuse time,
split by condition. Visual inspection of the boxplots suggests that the variances
of the fuse times may not be equal (observed standard deviations of the NV and
VV groups are 8.085 and 4.802, respectively), suggesting the equal variance as-
sumption may be unlikely to hold. There also appear to be a number of potential
outliers in both groups. Moreover, the Q-Q plots show that the normality as-
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Figure 2.1: Model misspecification is also a problem for Bayesian analyses. The four scatterplots on
top show Anscombe’s quartet (Anscombe, 1973); the bottom panel shows the corresponding infer-
ence, which is identical for all four scatter plots. Except for the leftmost scatterplot, all data violate
the assumptions of the linear correlation analysis in important ways.
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2.3. Stage 2: Executing the Analysis

sumption of the t-test is untenable here. Thus, in line with our analysis plan we
will apply the log-transformation to the fuse times. The standard deviations of
the log-transformed fuse times in the groups are roughly equal (observed stan-
dard deviations are 0.814 and 0.818 in the NV and the VV group, respectively);
the Q-Q plots in the bottom row of Figure 2.2 also look acceptable for both groups
and there are no apparent outliers. However, it seems prudent to assess the ro-
bustness of the result by also conducting the Bayesian Mann-Whitney U test (van
Doorn et al., 2020) on the fuse times.
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(a) Boxplots of raw fuse times split
by condition.
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(b)Q-Q plot of the raw fuse times for
the NV condition.
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(c)Q-Q plot of the raw fuse times for
the VV condition.
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(d)Boxplots of log fuse times split by
condition.
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(e) Q-Q plot of the log fuse times for
the NV condition
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(f) Q-Q plot of the log fuse times for
the VV condition.

Figure 2.2: Descriptive plots allow a visual assessment of the assumptions of the t-test for the stere-
ogram data. The top row shows descriptive plots for the raw fuse times, and the bottom row shows
descriptive plots for the log-transformed fuse times. The left column shows boxplots, including the
jittered data points, for each of the experimental conditions. The middle and right columns show
Q-Q plots of the dependent variable, split by experimental condition. Here we see that the log-
transformed dependent variable is more appropriate for the t-test, due to its distribution and absence
of outliers. Figures from JASP.

Following the assumption check we proceed to execute the analyses in JASP.
For hypothesis testing, we obtain a Bayes factor using the one-sided Bayesian
two-sample t-test. Figure 2.3 shows the JASP user interface for this procedure.
For parameter estimation, we obtain a posterior distribution and credible inter-
val, using the two-sided Bayesian two-sample t-test. The relevant boxes for the
various plots were ticked, and an annotated .jasp file was created with all of
the relevant analyses: the one-sided Bayes factor hypothesis tests, the robustness
check, the posterior distribution from the two-sided analysis, and the one-sided
results of the Bayesian Mann-Whitney U test. The .jasp file can be found at
https://osf.io/nw49j/. The next section outlines how these results are to be
interpreted.
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Figure 2.3: JASP menu for the Bayesian two-sample t-test. The left input panel offers the analysis
options, including the specification of the alternative hypothesis and the selection of plots. The right
output panel shows the corresponding analysis output. The prior and posterior plot is explained in
more detail in Figure 2.6b. The input panel specifies the one-sided analysis for hypothesis testing;
a two-sided analysis for estimation can be obtained by selecting “Group 1 , Group 2” under “Alt.
Hypothesis”.

2.4 Stage 3: Interpreting the Results

With the analysis outcome in hand we are ready to draw conclusions. We first
discuss the scenario of hypothesis testing, where the goal typically is to conclude
whether an effect is present or absent. Then, we discuss the scenario of param-
eter estimation, where the goal is to estimate the size of the population effect,
assuming it is present. When both hypothesis testing and estimation procedures
have been planned and executed, there is no predetermined order for their inter-
pretation. One may adhere to the adage “only estimate something when there is
something to be estimated” (Wagenmakers, Marsman, et al., 2018) and first test
whether an effect is present, and then estimate its size (assuming the test pro-
vided sufficiently strong evidence against the null), or one may first estimate the
magnitude of an effect, and then quantify the degree to which this magnitude
warrants a shift in plausibility away from or toward the null hypothesis (but see
Box 3).

If the goal of the analysis is hypothesis testing, we recommend using the Bayes
factor. As described in Box 1, the Bayes factor quantifies the relative predictive
performance of two rival hypotheses (Wagenmakers et al., 2016; see Box 1). Im-
portantly, the Bayes factor is a relative metric of the hypotheses’ predictive qual-
ity. For instance, if BF10 = 5, this means that the data are 5 times more likely
under H1 than under H0. However, a Bayes factor in favor of H1 does not mean
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Figure 2.4: A graphical representation of a Bayes factor classification table. As the Bayes factor
deviates from 1, which indicates equal support for H0 and H1, more support is gained for either
H0 or H1. Bayes factors between 1 and 3 are considered to be weak, Bayes factors between 3 and
10 are considered moderate, and Bayes factors greater than 10 are considered strong evidence. The
Bayes factors are also represented as probability wheels, where the ratio of white (i.e., support forH0)
to red (i.e., support for H1) surface is a function of the Bayes factor. The probability wheels further
underscore the continuous scale of evidence that Bayes factors represent. These classifications are
heuristic and should not be misused as an absolute rule for all-or-nothing conclusions.

that H1 predicts the data well. As Figure 2.1 illustrates, H1 provides a dreadful
account of three out of four data sets, yet is still supported relative to H0.

There can be no hard Bayes factor bound (other than zero and infinity) for
accepting or rejecting a hypothesis wholesale, but there have been some attempts
to classify the strength of evidence that different Bayes factors provide (e.g., Jef-
freys, 1939; Kass & Raftery, 1995). One such classification scheme is shown in
Figure 2.4. Several magnitudes of the Bayes factor are visualized as a probability
wheel, where the proportion of red to white is determined by the degree of evi-
dence in favor ofH0 andH1.

4 In line with Jeffreys, a Bayes factor between 1 and 3
is considered weak evidence, a Bayes factor between 3 and 10 is considered mod-
erate evidence, and a Bayes factor greater than 10 is considered strong evidence.
Note that these classifications should only be used as general rules of thumb to
facilitate communication and interpretation of evidential strength. Indeed, one
of the merits of the Bayes factor is that it offers an assessment of evidence on a
continuous scale.

When the goal of the analysis is parameter estimation, the posterior distribu-
tion is key (see Box 2). The posterior distribution is often summarized by a loca-
tion parameter (point estimate) and uncertainty measure (interval estimate). For
point estimation, the posterior median (reported by JASP), mean, or mode can be
reported, although these do not contain any information about the uncertainty of
the estimate. In order to capture the uncertainty of the estimate, an x% credible
interval can be reported. The credible interval [L,U ] has a x% probability that
the true parameter lies in the interval that ranges from L to U (an interpretation
that is often wrongly attributed to frequentist confidence intervals, see Morey et

4Specifically, the proportion of red is the posterior probability of H1 under a prior probability of
0.5; for a more detailed explanation and a cartoon see https://tinyurl.com/ydhfndxa
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al., 2016). For example, if we obtain a 95% credible interval of [−1, 0.5] for ef-
fect size δ, we can be 95% certain that the true value of δ lies between −1 and
0.5, assuming that the alternative hypothesis we specify is true. In case one does
not want to make this assumption, one can present the unconditional posterior
distribution instead. For more discussion on this point, see Box 3.

Box 3. Conditional vs. Unconditional Inference. A widely accepted view
on statistical inference is neatly summarized by Fisher (1925), who states
that “it is a useful preliminary before making a statistical estimate . . . to test
if there is anything to justify estimation at all” (p. 300; see also J. Haaf et al.,
2019). In the Bayesian framework, this stance naturally leads to posterior
distributions conditional on H1, which ignores the possibility that the null
value could be true. Generally, whenwe say “prior distribution” or “posterior
distribution” we are following convention and referring to such conditional
distributions. However, only presenting conditional posterior distributions
can potentially be misleading in cases where the null hypothesis remains rel-
atively plausible after seeing the data. A general benefit of Bayesian analysis
is that one can compute an unconditional posterior distribution for the pa-
rameter using model averaging (e.g., Hinne et al., 2020; Clyde et al., 2011).
An unconditional posterior distribution for a parameter accounts for both
the uncertainty about the parameter within any one model and the uncer-
tainty about the model itself, providing an estimate of the parameter that is
a compromise between the candidate models (for more details see Hoeting et
al., 1999). In the case of a t-test, which features only the null and the alter-
native hypothesis, the unconditional posterior consists of a mixture between
a spike underH0 and a bell-shaped posterior distribution underH1 (Rouder
et al., 2018; van den Bergh et al., 2019). Figure 2.5 illustrates this approach
for the stereogram example.
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δ

-2 -1 0 1 2

p(H0) = 0.5 p(H1) = 0.5

→
D

δ

-2 -1 0 1 2

p(H0 | D) = 0.3 p(H1 | D) = 0.7

Figure 2.5: Updating the unconditional prior distribution to the unconditional posterior
distribution for the stereogram example. The left panel shows the unconditional prior
distribution, which is a mixture between the prior distributions under H0 and H1. The
prior distribution under H0 is a spike at the null value, indicated by the dotted line;
the prior distribution under H1 is a Cauchy distribution, indicated by the gray mass.
The mixture proportion is determined by the prior model probabilities p(H0) and p(H1).
The right panel shows the unconditional posterior distribution, after updating the prior
distribution with the data D. This distribution is a mixture between the posterior distri-
butions under H0 and H1., where the mixture proportion is determined by the posterior
model probabilities p(H0 | D) and p(H1 | D). Since p(H1 | D) = 0.7 (i.e., the data provide
support for H1 over H0), about 70% of the unconditional posterior mass is comprised of
the posterior mass under H1, indicated by the gray mass. Thus, the unconditional pos-
terior distribution provides information about plausible values for δ, while taking into
account the uncertainty of H1 being true. In both panels, the dotted line and gray mass
have been rescaled such that the height of the dotted line and the highest point of the
gray mass reflect the prior (left) and posterior (right) model probabilities.

Common Pitfalls in Interpreting Bayesian Results

Bayesian veterans sometimes argue that Bayesian concepts are intuitive and eas-
ier to grasp than frequentist concepts. However, in our experience there exist
persistent misinterpretations of Bayesian results. Here we list five:

• The Bayes factor does not equal the posterior odds; in fact, the posterior
odds are equal to the Bayes factor multiplied by the prior odds (see also
Equation 2.1). These prior odds reflect the relative plausibility of the rival
hypotheses before seeing the data (e.g., 50/50 when both hypotheses are
equally plausible, or 80/20 when one hypothesis is deemed to be 4 times
more plausible than the other). For instance, a proponent and a skeptic
may differ greatly in their assessment of the prior plausibility of a hypoth-
esis; their prior odds differ, and, consequently, so will their posterior odds.
However, as the Bayes factor is the updating factor from prior odds to pos-
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terior odds, proponent and skeptic ought to change their beliefs to the same
degree (assuming they agree on the model specification, including the pa-
rameter prior distributions).

• Prior model probabilities (i.e., prior odds) and parameter prior distribu-
tions play different conceptual roles.5 The former concerns prior beliefs
about the hypotheses, for instance that both H0 and H1 are equally plausi-
ble a priori. The latter concerns prior beliefs about the model parameters
within amodel, for instance that all values of Pearson’s ρ are equally likely a
priori (i.e., a uniform prior distribution on the correlation parameter). Prior
model probabilities and parameter prior distributions can be combined to
one unconditional prior distribution as described in Box 3 and Figure 2.5.

• The Bayes factor and credible interval have different purposes and can yield
different conclusions. Specifically, the typical credible interval for an effect
size is conditional on H1 being true and quantifies the strength of an ef-
fect, assuming it is present (but see Box 3); in contrast, the Bayes factor
quantifies evidence for the presence or absence of an effect. A common
misconception is to conduct a “hypothesis test” by inspecting only credible
intervals. Berger (2006, p. 383) remarks: “[...] Bayesians cannot test precise
hypotheses using confidence intervals. In classical statistics one frequently
sees testing done by forming a confidence region for the parameter, and
then rejecting a null value of the parameter if it does not lie in the confi-
dence region. This is simply wrong if done in a Bayesian formulation (and
if the null value of the parameter is believable as a hypothesis).”

• The strength of evidence in the data is easy to overstate: a Bayes factor of
3 provides some support for one hypothesis over another, but should not
warrant the confident all-or-none acceptance of that hypothesis.

• The results of an analysis always depend on the questions that were asked.6

For instance, choosing a one-sided analysis over a two-sided analysis will
impact both the Bayes factor and the posterior distribution. For an illus-
tration of this, see Figure 2.6 for a comparison between one-sided and a
two-sided results.

In order to avoid these and other pitfalls, we recommend that researchers
who are doubtful about the correct interpretation of their Bayesian results solicit
expert advice (for instance through the JASP forum at http://forum.cogsci
.nl).

5This confusion does not arise for the rarely reported unconditional distributions (see Box 3).
6This is known as Jeffreys’s platitude: “The most beneficial result that I can hope for as a conse-

quence of this work is that more attention will be paid to the precise statement of the alternatives
involved in the questions asked. It is sometimes considered a paradox that the answer depends not
only on the observations but on the question; it should be a platitude” (Jeffreys, 1939, p.vi).
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Stereogram Example

For hypothesis testing, the results of the one-sided t-test are presented in Figure
2.6a. The resulting BF+0 is 4.567, indicating moderate evidence in favor of H+:
the data are approximately 4.6 times more likely underH+ than underH0. To as-
sess the robustness of this result, we also planned aMann-Whitney U test. The re-
sulting BF+0 is 5.191, qualitatively similar to the Bayes factor from the paramet-
ric test. Additionally, we could have specified a multiverse analysis where data
exclusion criteria (i.e., exclusion vs. no exclusion), the type of test (i..e, Mann-
Whitney U vs. t-test), and data transformations (i.e., log-transformed vs. raw fuse
times) are varied. Typically in multiverse analyses these three decisions would be
crossed, resulting in at least eight different analyses. However, in our case some
of these analyses are implausible or redundant. First, because the Mann-Whitney
U test is unaffected by the log transformation, the log-transformed and raw fuse
times yield the same results. Second, due to the multiple assumption violations,
the t-test model for raw fuse times is severely misspecified and hence we do not
trust the validity of its result. Third, we do not know which observations were
excluded by Frisby & Clatworthy (1975). Consequently, only two of these eight
analyses are relevant. Furthermore, a more comprehensive multiverse analysis
could also consider the Bayes factors from two-sided tests (i.e., BF10 = 2:323 for
the t-test and BF10 = 2:557 for the Mann-Whitney U test). However, these tests
are not in line with the theory under consideration, as they answer a different
theoretical question (see “Specifying the statistical model” in the Planning sec-
tion).

For parameter estimation, the results of the two-sided t-test are presented in
Figure 2.6b. The 95% central credible interval for δ is relatively wide, ranging
from 0.046 to 0.904: this means that, under the assumption that the effect exists
and given the model we specified, we can be 95% certain that the true value of
δ lies between 0.046 to 0.904. In conclusion, there is moderate evidence for the
presence of an effect, and large uncertainty about its size.

2.5 Stage 4: Reporting the Results

For increased transparency, and to allow a skeptical assessment of the statistical
claims, we recommend to present an elaborate analysis report including relevant
tables, figures, assumption checks, and background information. The extent to
which this needs to be done in the manuscript itself depends on context. Ideally,
an annotated .jasp file is created that presents the full results and analysis set-
tings. The resulting file can then be uploaded to the Open Science Framework
(OSF; https://osf.io), where it can be viewed by collaborators and peers, even
without having JASP installed. Note that the .jasp file retains the settings that
were used to create the reported output. Analyses not conducted in JASP should
mimic such transparency, for instance through uploading an R-script. In this
section, we list several desiderata for reporting, both for hypothesis testing and
parameter estimation. What to include in the report depends on the goal of the
analysis, regardless of whether the result is conclusive or not.
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In all cases, we recommend to provide a complete description of the prior
specification (i.e., the type of distribution and its parameter values) and, espe-
cially for informed priors, to provide a justification for the choices that were
made. When reporting a specific analysis, we advise to refer to the relevant back-
ground literature for details. In JASP, the relevant references for specific tests can
be copied from the drop-down menus in the results panel.

When the goal of the analysis is hypothesis testing, it is key to outline which
hypotheses are compared by clearly stating each hypothesis and including the
corresponding subscript in the Bayes factor notation. Furthermore, we recom-
mend to include, if available, the Bayes factor robustness check discussed in the
section on planning (see Figure 2.7 for an example). This check provides an as-
sessment of the robustness of the Bayes factor under different prior specifications:
if the qualitative conclusions do not change across a range of different plausible
prior distributions, this indicates that the analysis is relatively robust. If this plot
is unavailable, the robustness of the Bayes factor can be checked manually by
specifying several different prior distributions (see the mixed ANOVA analysis
in the online appendix at https://osf.io/wae57/ for an example). When data
come in sequentially, it may also be of interest to examine the sequential Bayes
factor plot, which shows the evidential flow as a function of increasing sample
size.

When the goal of the analysis is parameter estimation, it is important to
present a plot of the posterior distribution, or report a summary, for instance
through the median and a 95% credible interval. Ideally, the results of the analy-
sis are reported both graphically and numerically. This means that, when possi-
ble, a plot is presented that includes the posterior distribution, prior distribution,
Bayes factor, 95% credible interval, and posterior median.7

Numeric results can be presented either in a table or in the main text. If rel-
evant, we recommend to report the results from both estimation and hypothesis
test. For some analyses, the results are based on a numerical algorithm, such as
Markov chain Monte Carlo (MCMC), which yields an error percentage. If appli-
cable and available, the error percentage ought to be reported too, to indicate the
numeric robustness of the result. Lower values of the error percentage indicate
greater numerical stability of the result.8 In order to increase numerical stability,
JASP includes an option to increase the number of samples for MCMC sampling
when applicable.

7The posterior median is popular because it is robust to skewed distributions and invariant un-
der smooth transformations of parameters, although other measures of central tendency, such as the
mode or the mean, are also in common use.

8We generally recommend error percentages below 20% as acceptable. A 20% change in the Bayes
factor will result in one making the same qualitative conclusions. However, this threshold naturally
increases with the magnitude of the Bayes factor. For instance, a Bayes factor of 10 with a 50% error
percentage could be expected to fluctuate between 5 and 15 upon recomputation. This could be
considered a large change. However, with a Bayes factor of 1000 a 50% reduction would still leave us
with overwhelming evidence.
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2.6. Limitations and Challenges

Stereogram Example

This is an example report of the stereograms t-test example:

Here we summarize the results of the Bayesian analysis for the
stereogram data. For this analysis we used the Bayesian t-test frame-
work proposed by Jeffreys (1961, see also Rouder et al. 2009). We
analyzed the data with JASP (JASP Team, 2020). An annotated .jasp

file, including distribution plots, data, and input options, is available
at https://osf.io/25ekj/. Due to model misspecification (i.e., non-
normality, presence of outliers, and unequal variances), we applied
a log-transformation to the fuse times. This remedied the misspec-
ification. To assess the robustness of the results, we also applied a
Mann-Whitney U test.

First, we discuss the results for hypothesis testing. The null hy-
pothesis postulates that there is no difference in log fuse time between
the groups and therefore H0 : δ = 0. The one-sided alternative hy-
pothesis states that only positive values of δ are possible, and assigns
more prior mass to values closer to 0 than extreme values. Specifically,
δ was assigned a Cauchy prior distribution with r = 1/

√
2, truncated to

allow only positive effect size values. Figure 2.6a shows that the Bayes
factor indicates evidence for H+; specifically, BF+0 = 4.567, which
means that the data are approximately 4.5 times more likely to occur
under H+ than under H0. This result indicates moderate evidence in
favor of H+. The error percentage is < 0.001%, which indicates great
stability of the numerical algorithm that was used to obtain the result.
The Mann-Whitney U test yielded a qualitatively similar result, BF+0
is 5.191. In order to asses the robustness of the Bayes factor to our
prior specification, Figure 2.7 shows BF+0 as a function of the prior
width r. Across a wide range of widths, the Bayes factor appears to be
relatively stable, ranging from about 3 to 5.

Second, we discuss the results for parameter estimation. Of inter-
est is the posterior distribution of the standardized effect size δ (i.e.,
the population version of Cohen’s d, the standardized difference in
mean fuse times). For parameter estimation, δ was assigned a Cauchy
prior distribution with r = 1/

√
2. Figure 2.6b shows that the median of

the resulting posterior distribution for δ equals 0.47 with a central
95% credible interval for δ that ranges from 0.046 to 0.904. If the ef-
fect is assumed to exist, there remains substantial uncertainty about
its size, with values close to 0 having the same posterior density as
values close to 1.

2.6 Limitations and Challenges

The Bayesian toolkit for the empirical social scientist still has some limitations
to overcome. First, for some frequentist analyses, the Bayesian counterpart has
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(a) One-sided analysis for testing:
H+ : δ > 0
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(b) Two-sided analysis for estimation:
H1 : δ ∼ Cauchy

Figure 2.6: Bayesian two-sample t-test for the parameter δ. The probability wheel on top visualizes
the evidence that the data provide for the two rival hypotheses. The two gray dots indicate the prior
and posterior density at the test value (Dickey & Lientz, 1970; Wagenmakers et al., 2010). The median
and the 95% central credible interval of the posterior distribution are shown in the top right corner.
The left panel shows the one-sided procedure for hypothesis testing and the right panel shows the
two-sided procedure for parameter estimation. Both figures from JASP.

not yet been developed or implemented in JASP. Secondly, some analyses in JASP
currently provide only a Bayes factor, and not a visual representation of the pos-
terior distributions, for instance due to the multidimensional parameter space of
themodel. Thirdly, some analyses in JASP are only available with a relatively lim-
ited set of prior distributions. However, these are not principled limitations and
the software is actively being developed to overcome these limitations. When
dealing with more complex models that go beyond the staple analyses such as
t-tests, there exist a number of software packages that allow custom coding, such
as JAGS (Plummer, 2003) or Stan (Carpenter et al., 2017). Another option for
Bayesian inference is to code the analyses in a programming language such as R
(R Development Core Team, 2004) or Python (van Rossum, 1995). This requires a
certain degree of programming ability, but grants the user more flexibility. Pop-
ular packages for conducting Bayesian analyses in R are the BayesFactor package
(Morey & Rouder, 2018) and the brms package (Bürkner, 2017), among others
(see https://cran.r-project.org/web/views/Bayesian.html for a more ex-
haustive list). For Python, a popular package for Bayesian analyses is PyMC3
(Salvatier et al., 2016). The practical guidelines provided in this paper can largely
be generalized to the application of these software programs.

2.7 Concluding Comments

We have attempted to provide concise recommendations for planning, executing,
interpreting, and reporting Bayesian analyses. These recommendations are sum-
marized in Table 2.1. Our guidelines focused on the standard analyses that are
currently featured in JASP. When going beyond these analyses, some of the dis-
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Figure 2.7: The Bayes factor robustness plot. The maximum BF+0 is attained when setting the prior
width r to 0.38. The plot indicates BF+0 for the user specified prior ( r = 1/

√
2), wide prior (r = 1), and

ultrawide prior (r =
√
2). The evidence for the alternative hypothesis is relatively stable across a wide

range of prior distributions, suggesting that the analysis is robust. However, the evidence in favor of
H+ is not particularly strong and will not convince a skeptic.
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cussed guidelines will be easier to implement than others. However, the general
process of transparent, comprehensive, and careful statistical reporting extends
to all Bayesian procedures and indeed to statistical analyses across the board.

Stage Recommendation

Planning Write the methods section in advance of data collection
Distinguish between exploratory and confirmatory research
Specify the goal; estimation, testing, or both
If the goal is testing, decide on one-sided or two-sided procedure
Choose a statistical model
Determine which model checks will need to be performed
Specify how to deal with possible model violations
Choose a prior distribution
Consider how to assess the impact of prior choices on the inferences
Specify the sampling plan
Consider a Bayes factor design analysis
Preregister the analysis plan for increased transparency

Executing Check the quality of the data (e.g., assumption checks)
Annotate the JASP output

Interpreting Beware of the common pitfalls
Use the correct interpretation of Bayes factor and credible interval
When in doubt, ask for advice (e.g., on the JASP forum)

Reporting Mention the goal of the analysis
Include a plot of the prior and posterior distribution, if available
If testing, report the Bayes factor, including its subscripts
If estimating, report the posterior median and x% credible interval
Include which prior settings were used
Justify the prior settings (particularly for informed priors for testing)
Discuss the robustness of the result
If relevant, report the results from both estimation and testing
Refer to the statistical literature for details about the analyses used
Consider a sequential analysis
Report the results any multiverse analyses, if conducted
Make the .jasp file and data available online

Table 2.1: A summary of the guidelines for the different stages of a Bayesian analysis, with a focus
on analyses conducted in JASP. Note that the stages have a predetermined order, but the individual
recommendations can be rearranged where necessary.
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Chapter 3

Multiple Perspectives on

Inference for two Simple

Statistical Scenarios

Abstract

When data analysts operate within different statistical frameworks (e.g., frequentist ver-
sus Bayesian, emphasis on estimation versus emphasis on testing), how does this impact
the qualitative conclusions that are drawn for real data? To study this question empiri-
cally we selected from the literature two simple scenarios –involving a comparison of two
proportions and a Pearson correlation– and asked four teams of statisticians to provide a
concise analysis and a qualitative interpretation of the outcome. The results showed con-
siderable overall agreement; nevertheless, this agreement did not appear to diminish the
intensity of the subsequent debate over which statistical framework is more appropriate
to address the questions at hand.

3.1 Introduction

When analyzing a specific data set, statisticians usually operate within the con-
fines of their preferred inferential paradigm. For instance, frequentist statisti-
cians interested in hypothesis testing may report p-values, whereas those inter-
ested in estimation may seek to draw conclusions from confidence intervals. In
the Bayesian realm, those who wish to test hypotheses may use Bayes factors and
those who wish to estimate parameters may report credible intervals. And then
there are likelihoodists, information-theorists, and machine-learners — there ex-
ists a diverse collection of statistical approaches, many of which are philosophi-
cally incompatible.

Moreover, proponents of the various camps regularly explain why their posi-
tion is the most exalted, either in practical or theoretical terms. For instance, in a
well-known article ‘Why Isn’t Everyone a Bayesian?’, Bradley Efron claimed that

This chapter is published as van Dongen, N. N. N., van Doorn, J. B., Gronau, Q. F., van Raven-
zwaaij, D., Hoekstra, R., Haucke, M. N., Lakens, D., Hennig, C., Morey, R. D., Homer, S., Gelman,
A., Sprenger, J., & Wagenmakers, E.–J. (2019). Multiple perspectives on inference for two simple
statistical scenarios. The American Statistician, 73, 328–339. Also available as PsyArXiv preprint:
https://psyarxiv.com/ue5wb/
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“The high ground of scientific objectivity has been seized by the frequentists”
(Efron, 1986, p. 4), upon which Dennis Lindley replied that “Every statistician
would be a Bayesian if he took the trouble to read the literature thoroughly and
was honest enough to admit that he might have been wrong.” (Lindley, 1986,
p. 7). Similarly spirited debates occurred earlier, notably between Fisher and
Jeffreys (e.g., Howie, 2002) and between Fisher and Neyman. Even today, the
paradigmatic debates show no sign of stalling, neither in the published literature
(e.g., Benjamin et al., 2018; McShane et al., 2019; R. L. Wasserstein & Lazar, 2016)
nor on social media.

The question that concerns us here is purely pragmatic: ‘does it matter?’ In
other words, will reasonable statistical analyses on the same data set, each con-
ducted within their own paradigm, result in qualitatively similar conclusions
(Berger, 2003)? One of the first to pose this question was Ronald Fisher. In a
letter to Harold Jeffreys, dated March 29, 1934, Fisher proposed that “From the
point of view of interesting the general scientific public, which really ought to be
much more interested than it is in the problem of inductive inference, probably
the most useful thing we could do would be to take one or more specific puzzles
and show what our respective methods made of them” (Bennett, 1990, p. 156; see
also Howie, 2002, p. 167). The two men then proceeded to construct somewhat
idiosyncratic statistical ‘puzzles’ that the other found difficult to solve. Never-
theless, three years and several letters later, on May 18, 1937, Jeffreys stated that
“Your letter confirms my previous impression that it would only be once in a blue
moon that we would disagree about the inference to be drawn in any particular
case, and that in the exceptional cases we would both be a bit doubtful” (Bennett,
1990, p. 162). Similarly, Edwards et al. (1963) suggested that well-conducted ex-
periments often satisfy Berkson’s interocular traumatic test – “you know what the
data mean when the conclusion hits you between the eyes” (p. 217). Neverthe-
less, surprisingly little is known about the extent to which, in concrete scenarios,
a data analyst’s statistical plumage affects the inference.

Here we revisit Fisher’s challenge. We invited four groups of statisticians to
analyze two real data sets, report and interpret their results in about 300 words,
and discuss these results and interpretations in a round-table discussion. The
data sets are provided online at https://osf.io/hykmz/ and described below.
In addition to providing an empirical answer to the question ‘does it matter?’, we
hope to highlight how the same data set can give rise to rather different statistical
treatments. In our opinion, this method variability ought to be acknowledged
rather than ignored (for a complementary approach see Silberzahn et al., 2018).1

The selected data sets are straightforward: the first data set concerns a 2x2
contingency table, and the second concerns a correlation between two variables.
The simplicity of the statistical scenarios is on purpose, as we hoped to facilitate a
detailed discussion about assumptions and conclusions that could otherwise have
remained hidden underneath an unavoidable layer of statistical sophistication.
The full instructions for participation can be found online at https://osf.io/

1In contrast to the current approach, Silberzahn et al. (2018) used a relatively complex data set and
did not emphasize the differences in interpretation caused by the adoption of dissimilar statistical
paradigms.
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3.2. Data Set I: Birth Defects and Cetirizine Exposure

dg9t7/.

3.2 Data Set I: Birth Defects and Cetirizine Exposure

Study summary

Cetirizine is a non-sedating long-acting antihistamine with some mast-cell stabi-
lizing activity. It is used for the symptomatic relief of allergic conditions, such
as rhinitis and urticaria, which are common in pregnant women. In the study
of interest, Weber-Schoendorfer & Schaefer (2008) aimed to assess the safety of
cetirizine during the first trimester of pregnancy when used. The pregnancy out-
comes of a cetirizine group (n = 181) were compared to those of the control group
(n = 1685; pregnant women who had been counseled during pregnancy about
exposures known to be non-teratogenic). Due to the observational nature of the
data, the allocation of participants to the groups was non-randomized. The main
point of interest was the rate of birth defects.2 Variables of the data set3 are
described in Table 3.1 and the data are presented in Table 3.2.

Cetirizine research question

Is cetirizine exposure during pregnancy associated with a higher incidence of
birth defects? In the next sections each of four data analysis teams will attempt
to address this question.

Table 3.1: Variable names and their description.

Variable Description

CetirizineExposure Whether exposed to cetirizine
BirthDefect Whether birth defects were detected
Counts Count data for each cell

Table 3.2: Cetirizine exposure and birth defects.

Birth Defects

Cetirizine Exposure No Yes Total

No 1588 97 1685
Yes 167 14 181
Total 1755 111 1866

2The original study focused on Cetirizine-induced differences in major birth defects, spontaneous
abortions, and preterm deliveries. We decided to look at all birth defects, because the sample sizes
were larger for this comparison and we deemed the data more interesting.

3The data set is made available on the OSF repository: https://osf.io/hykmz/.
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Analysis and interpretation by Lakens and Hennig

Preamble

Frequentist statistics is based on idealised models of data generating processes.
We cannot expect these models to be literally true in practice, but it is instructive
to see whether data are consistent with such models, which is what hypothesis
tests and confidence intervals allow us to examine. We do appreciate that
automatic procedures involving for example fixed significance levels allow us
to control error probabilities assuming the model, but given that the models
do never hold precisely, and that there are often issues with measurement or
selection effects, in most cases we think it is prudent to interpret outcomes in a
coarse way rather than to read too much meaning into, say, differences between
p-values of 0.047 and 0.062. We stick to quite elementary methodology in our
analyses.

Analysis and software

We performed a Pearson’s Chi-squared test with Yates’ continuity correction to
test for dependence between exposure of pregnant women exposed to cetirizine
and birth defects using the chisq.test function in R software version 3.4.3
(R Development Core Team, 2004). However, because Weber-Schoendorfer
& Schaefer (2008) wanted “to assess the safety of cetirizine during the first
trimester of pregnancy”, their actual research question is whether we can reject
the presence of a meaningful effect. We therefore performed an equivalence test
on proportions (J. J. Chen et al., 2000) as implemented in the TOSTtwo.prop
function in the TOSTER package (Lakens, 2017).

Results and interpretation

The chi-squared test yielded χ2(1, N = 1866) = 0.817, p = .366, which suggests
that the data are consistent with an independence model at any significance level
in general use. The answer to the question whether the drug is safe depends on a
smallest effect size of interest (when is the difference in birth defects considered
too small to matter?). This choice, and the selection of equivalence bounds more
generally, should always be justified by clinical and statistical considerations per-
tinent to the case at hand. In the absence of a discussion of this essential aspect
of the study by the authors, and in order to show an example computation, we
will test against a difference in proportions of 10%, which, although debatable,
has been suggested as a sensible bound for some drugs (see Röhmel, 2001, for a
discussion).

An equivalence test against a difference in proportions (Mdif = 0.02, 95%
CI[−0.02;0.06]) of 10% based on Fishers exact z-test was significant, z = −3.88,
p < 0.001. This means that we can reject differences in proportions as large, or
larger, than 10%, again at any significance level in general use.
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3.2. Data Set I: Birth Defects and Cetirizine Exposure

Is cetirizine exposure during pregnancy associated with a higher incidence of
birth defects? Based on the current study, there is no evidence that cetirizine ex-
posure during pregnancy is associated with a higher incidence of birth defects.
Obviously this does not mean that cetirizine is safe; in fact the observed birth de-
fect rate in the cetirizine group is about 2% higher than without exposure, which
may or may not be explained by random variation. Is cetirizine during the first
trimester of pregnancy ‘safe’? If we accept a difference in the proportion of birth
defects of 10%, and desire a 5% long run error rate, there is clear evidence that
the drug is safe. However, we expect that a cost-benefit analysis would suggest
proportions of 5% to be unacceptably high, which is in the 95% confidence inter-
val and therefore well compatible with the data. Therefore, we would personally
consider the current data inconclusive.

Analysis and interpretation by Morey and Homer

Fitting a classical logistic model with the binary birth defect outcome pre-
dicted from the cetirizine indicator confirmed the non-significant relationship
(p = 0.287). The point estimate of the effect of taking cetirizine is to increase the
odds of the birth defect by only 37%. At the baseline levels of birth defects in the
non-cetirizine-exposed sample (approximately 6%), this would amount to about
an extra two birth defects in every hundred pregnancies in the cetirizine-exposed
group.

There are several problemswith taking these data as evidence that cetirizine is
safe. The first is the observational nature of the data. We have no way of knowing
whether an apparent effect — or lack of effect — reflects confounds. Suppose,
though, that we set this question aside and assess the evidence that birth defects
are not more common in the cetirizine group. We can use a classical one-sided CI
to determine the size of the differences we can rule out. We call the upper bound
of the 100(1−α)% CI the “worst case” for that confidence coefficient. Figure 3.1
shows that at 95%, the worst case odds increase is for the cetirizine group is
124%. At 99.5%, the worst case increase is 195%. We can translate this into
more a more intuitive metric of numbers of birth defects: at baseline rates of
birth defects, these would amount to additional 6 and 10 birth defects per 100,
respectively (Figure 3.2).

The large p-value of the initial significance test suggests we cannot rule out
that cetirizine group has lower rates of birth defects; the one-sided test assuming
a decrease in birth defects as the null would not yield a rejection except at high α
levels. But also, the “worst case” analysis using the upper bound of the one-sided
CI suggests we also cannot rule out a substantial increase in birth defects in the
cetirizine group.

We are unsure whether cetirizine is safe, but it seems clear to us that these
data do not provide much evidence of its relative safety, contrary to what Weber-
Schoendorfer and Schaefer suggest.
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3. Multiple Perspectives on Inference for two Simple Statistical Scenarios

Figure 3.1: Estimates of the odds of a birth defect when no cetirizine (control) was taken during
pregnancy and when cetirizine was taken. Horizontal dashed lines and shaded regions show point
estimates and standard errors. The solid line labeled “Cetirizine worst case” shows the upper bound
of the one-sided CI as a function of the confidence coefficient (x-axis). The right axis shows the
estimated increase in odds of a birth defect for the cetirizine group compared to the control group.

Analysis and interpretation by Gronau, van Doorn, and Wagen-
makers

We used the model proposed by Kass & Vaidyanathan (1992):

log

(

p1
1− p1

)

= β − ψ
2

log

(

p2
1− p2

)

= β +
ψ

2

y1 ∼ Binomial(n1,p1)

y2 ∼ Binomial(n2,p2).

(3.1)

Here, y1 = 97, n1 = 1,685, y2 = 14, and n2 = 181, p1 is the probability of a birth
defect in the control group, and p2 is that probability in the cetirizine group.
Probabilities p1 and p2 are functions of model parameters β and ψ. Nuisance
parameter β corresponds to the grand mean of the log odds, whereas the test-
relevant parameter ψ corresponds to the log odds ratio. We assigned β a standard
normal prior and used a zero-centered normal prior with standard deviation σ
for the log odds ratio ψ. Inference was conducted with Stan (Carpenter et al.,
2017; Stan Development Team, 2016) and the bridgesampling package (Gronau
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3.2. Data Set I: Birth Defects and Cetirizine Exposure

Figure 3.2: Frequency representations of the number of birth defects expected under various scenar-
ios. Top: Expected frequency of birth defects when cetirizine was not taken (control). Bottom-left:
Point estimate of the expected frequency of birth defects when cetirizine is taken. Bottom-middle
(bottom-right): Upper bound of a one-sided 95% (99%) CI for the expected frequency of birth defects
when cetirizine was taken. Because the analysis is intended to be comparative, in the bottom panels
the no-cetirizine estimate was assumed to be the truth when calculating the increase in frequency.

et al., 2020). For ease of interpretation, the results will be shown on the odds
ratio scale.

Our first analysis focuses on estimation and uses σ = 1. The result, shown
in the left panel of Figure 3.3, indicates that the posterior median equals 1.429,
with a 95% credible interval ranging from 0.793 to 2.412. This credible interval
is relatively wide, indicating substantial uncertainty about the true value of the
odds ratio.

Our second analysis focuses on testing and quantifies the extent to which the
data support the skeptic’s H0 : ψ = 0 versus the proponent’s H1. To specify H1

we initially use σ = 0.4 (i.e., a mildly informative prior; Diamond & Kaul, 2004),
truncated at zero to respect the fact that cetirizine exposure is hypothesized to
cause a higher incidence of birth defects: H+ : ψ ∼N+(0,0.42).

As can be seen from the right panel of Figure 3.3, the observed data are pre-
dicted about 1.8 times better by H+ than by H0. According to Jeffreys (1961,
Appendix B), this level of support is “not worth more than a bare mention”. To
investigate the robustness of this result we explored a range of alternative prior
choices for σ under H+, varying it from 0.01 to 2. The results of this sensitiv-
ity analysis are shown in Figure 3.4 and reveal that across a wide range of pri-
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3. Multiple Perspectives on Inference for two Simple Statistical Scenarios

ors, the data never provide more than anecdotal support for one model over the
other. When σ is selected post-hoc to maximize the support for H+ this yields
BF+0 = 1.84, which, starting from a position of equipoise, raises the probability
of H+ from 0.50 to about 0.65, leaving a posterior probability of 0.35 for H0.

In sum, based on this data set we cannot draw strong conclusions about
whether or not cetirizine exposure during pregnancy is associated with a higher
incidence of birth defects. Our analysis shows an ‘absence of evidence’, not ‘evi-
dence for absence’.
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(b) Testing results.

Figure 3.3: Gronau, van Doorn, and Wagenmakers’ Bayesian analysis of the cetirizine data set. The
left panel shows the results of estimating the log odds ratio under H1 with a two-sided standard
normal prior. For ease of interpretation, results are displayed on the odds ratio scale. The right panel

shows the results of testing the one-sided alternative hypothesis H+ : ψ ∼N +(0,0.42) versus the null
hypothesis H0 : ψ = 0. Figures inspired by JASP (jasp-stats.org).

Analysis and interpretation by Gelman

I summarized the data with a simple comparison: the proportion of birth defects
is 0.06 in the control group and 0.08 in the cetirizine group. The difference is
0.02 with a standard error of 0.02. I got essentially the same result with a logistic
regression predicting birth defect: the coefficient of cetirizine is 0.3 with a stan-
dard error of 0.3. I performed the analyses in R using rstanarm (code available at
https://osf.io/nh4gc/).

I then looked up the article, “The safety of cetirizine during pregnancy:
A prospective observational cohort study”, by Weber-Schoendorfer & Schaefer
(2008) and noticed some interesting things:

1. The published article gives N = 196 and 1686 for the two groups, not quite
the same as the 181 and 1685 for the “all birth defects” category. I couldn’t
follow the exact reasoning.4

4Clarification: the original paper does not provide a rationale for why several participants were
excluded from the analysis.
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Figure 3.4: Sensitivity analysis for the Bayesian one-sided test. The Bayes factor BF+0 is a function of
the prior standard deviation σ . Figure inspired by JASP.

2. The two groups differ in various background variables: most notably, the
cetirizine group has a higher smoking rate (17% compared to 10%).

3. In the published article, the outcome of focus was “major birth defects”,
not the “all birth defects” given for us to study.

4. The published article has a causal aim (as can be seen, for example, from
the word “safety” in its title); our assignment is purely observational.

Now the question, “Is cetirizine exposure during pregnancy associated with
a higher incidence of birth defects?” I have not read the literature on the topic.
To understand how the data at hand address this question, I would like to think
of the mapping from prior to posterior distribution. In this case, the prior would
be the distribution of association with birth defects of all drugs of this sort. That
is, imagine a population of drugs, j = 1,2, . . . , taken by pregnant women, and
for each drug, define θj as the proportion of birth defects among women who
took drug j , minus the proportion of birth defects in the general population. Just
based on my general understanding (which could be wrong), I would expect this
distribution to be more positive than negative and concentrated near zero: some
drugs could be mildly protective against birth defects or associated with low-risk
pregnancies, most would have small effects and not be strongly associated with
low or high-risk pregnancies, and some could cause birth defects or be taken
disproportionately by women with high-risk pregnancies. Supposing that the
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3. Multiple Perspectives on Inference for two Simple Statistical Scenarios

prior is concentrated within the range (−0.01, +0.01), the data would not add
much information to this prior.

To answer, “Is cetirizine exposure during pregnancy associated with a higher
incidence of birth defects?”, the key question would seem to be whether the drug
is more or less likely to be taken by women at higher risk of birth defects. I’m
guessing that maternal age is a big predictor here. In the reported study, average
age of the exposed and control groups was the same, but I don’t know if that’s
generally the case or if the designers of the study were purposely seeking a bal-
anced comparison.

3.3 Data Set II: Amygdalar Activity and Perceived
Stress

Study summary

In a recent study published in the Lancet, Tawakol et al. (2017) tested the hy-
pothesis that perceived stress is positively associated with resting activity in the
amygdala. In the second study reported in Tawakol et al. (2017), n = 13 individ-
uals with an increased burden of chronic stress (i.e., a history of post-traumatic
stress disorder or PTSD) were recruited from the community, completed a Per-
ceived Stress Scale (i.e., the PSS-10; Cohen et al., 1983) and had their amygdalar
activity measured. Variables of the data set5 are described in Table 3.3, the raw
data are presented in Table 3.4, and the data are visualized in Figure 3.5.

Amygdala research question

Do PTSD patients with high resting state amygdalar activity experience more
stress? In the next sections each of four data analysis teams will attempt to
address this question.

Table 3.3: Variable names and their description.

Variable Description

Perceived stress scale Participant score on the PSS
Amygdalar activity Intensity of amygdalar resting state activity

Analysis and interpretation by Lakens and Hennig

Analysis and software

We calculated tests for uncorrelatedness based on both Pearson’s product-
moment correlation and Spearman’s rank correlation using the cor.test func-

5The data set is made available on the OSF repository: https://osf.io/hykmz/.
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Table 3.4: Raw data as extracted from Figure 5 in Tawakol et al. (2017), with help of Jurgen Rusch,
Philips Research Eindhoven.

Perceived Amygdalar
Stress Scale Activity

12.0103 5.2418
32.0350 6.8601
22.0296 6.4402
20.0079 5.4620
24.0155 5.4439
24.0155 5.3349
24.0155 5.4216
26.0082 5.5176
28.0120 5.1615
21.9872 4.7114
21.9872 4.1844
20.0138 4.3079
16.0088 3.3015
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Figure 3.5: Scatter plot of amygdalar activity and perceived stress in 13 patients with PTSD. Data
extracted from Figure 5 in Tawakol et al. (2017), with help of Jurgen Rusch, Philips Research Eind-
hoven.
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tion in the stats package in R 3.4.3.

Results and interpretation

The Pearson correlation between perceived stress and resting activity in the
amygdala is r = 0.555, and the corresponding test yields p = 0.047. Although
this is just smaller than the conventional 5% level, we do not consider it as clear
evidence for nonzero correlation. From the appendix it becomes clear that the re-
ported correlations are exploratory: “Patients completed a battery of self-report
measures that assessed variables that may correlate with PTSD symptom sever-
ity, including comorbid depressive and anxiety symptoms (MADRS, HAMA) and
a well-validated questionnaire Perceived Stress Scale (PSS-10).” Therefore, cor-
rections for multiple comparisons would be required to maintain a given sig-
nificance level. The article does not provide us with sufficient information to
determine the number of tests that were performed, but corrections for multiple
comparisons would thus be in order. Consequently, the fairly large observed cor-
relation and the borderline significant p-value can be interpreted as an indication
that it may be worthwhile to investigate the issue with a larger sample size, but
do not give conclusive evidence. Visual inspection of the data does not give any
indication against the validity of using Pearson’s correlation, but with N = 13
we do not have very strong information regarding the distributional shape. The
analogous test based on Spearman’s correlation yields p = 0.062, which given its
weaker power is compatible with the qualitative interpretation we gave based on
the Pearson correlation.

Do PTSD patients with high resting state amygdalar activity experience more
stress? Based on the current study, we can not conclude that PTSD patients with
high resting state amygdalar activity experience more stress. The single p = 0.047
is not low enough to indicate clear evidence against the null hypothesis after
correcting for multiple comparisons when using an alpha of .05. Therefore, our
conclusion is: Based on the desired error rate specified by the authors, we can’t
reject a correlation of zero between amygdalar activity and participants’ score on
the perceived stress scale. With a 95% CI that ranges from r = 0 to r = 0.85, it
seems clear that effects that would be considered interesting cannot be rejected
in an equivalence test. Thus, the results are inconclusive.

Analysis and interpretation by Morey and Homer

The first thing that should be noted about this data set is that it contains a mea-
ger 13 data points. The linear correlation by Tawakol et al. (2017) depends on
assumptions that are for all intents and purposes unverifiable with this few par-
ticipants. Add to this the difficulty of interpreting the independent variable —
a sum of ordinal responses — and we are justified being skeptical of any hard
conclusions from these data.

Suppose, however, that the relationship between these two variables was best
characterized by a linear correlation, and set aside any worries about assump-
tions. The large observed correlation coupled with the marginal p value should
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Figure 3.6: Confidence intervals and one-sided tests for the Pearson correlation as a function of the
confidence coefficient. The vertical lines represent the confidence intervals (confidence coefficient on
lower axis), and the curve represents the value that is just rejected by the one-sided test (α on the
upper axis).

signal to us that a wide range of correlations are not ruled out by the data. Con-
sider that the 95% CI on the Pearson correlation is [0.009,0.848]; the 99.5% CI is
[−0.254,0.908]. Negligible correlations are not ruled out; due to the small sample
size, any correlation from “essentially zero” to “the correlation between height
and leg length” (that is, very high) is consistent with these data. The solid curve
in Figure 3.6 shows the lower bound of the confidence interval on the linear cor-
relation for a wide range of confidence levels; they are all negligible or even neg-
ative.

Finally, the authors did not show that this correlation is selective to the amyg-
dala; it seems to us that interpreting the correlation as evidence for their model
requires selectivity. It is important to interpret the correlation in the context of
the relationship between amygdala resting state activity, stress, and cardiovascu-
lar disease. If one could not show that amygdala resting-state activation showed
a substantially higher correlation with stress than other brain regions not im-
plicated in the model, this would suggest that the correlation cannot be used to
bolster their case. Given the uncertainty in the estimate of the correlation, there
is little chance of being able to show this.

All in all, we’re not sure that the information in these thirteen participants
is enough to say anything beyond “the correlation doesn’t appear to be (very)
negative.”
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Analysis and interpretation by van Doorn, Gronau, and Wagen-
makers

We applied Harold Jeffreys’s test for a Pearson correlation coefficient ρ (Jeffreys,
1961; Ly, Marsman, &Wagenmakers, 2018) as implemented in JASP (jasp-stats
.org; JASP Team, 2020).6 Our first analysis focuses on estimation and assigns ρ a
uniform prior from −1 to 1. The result, shown in the left panel of Figure 3.7, indi-
cates that the posterior median equals 0.47, with a 95% credible interval ranging
from −0.01 to 0.81. As can be expected with only 13 observations, there is great
uncertainty about the size of ρ.

Our second analysis focuses on testing and quantifies the extent to which the
data support the skeptic’sH0 : ρ = 0 versus the proponent’sH1. To specifyH1 we
initially use Jeffreys’s default uniform distribution, truncated at zero to respect
the directionality of the hypothesized effect: H+ : ρ ∼U [0,1].

As can be seen from the right panel of Figure 3.7, the observed data are pre-
dicted about 3.9 times better by H+ than by H0. This degree of support is rela-
tively modest: whenH+ andH0 are equally likely a priori, the Bayes factor of 3.9
raises the posterior plausibility of H+ from 0.50 to 0.80, leaving a non-negligible
0.20 for H0.

To investigate the robustness of this result we explored a continuous range
of alternative prior distributions for ρ under H+; specifically, we assigned ρ a
stretched Beta(a,a) distribution truncated at zero, and studied how the Bayes fac-
tor changes with 1/a, the parameter that quantifies the prior width and governs
the extent to which H+ predicts large values of r. The results of this sensitivity
analysis are shown in Figure 3.8 and confirm that the data provide modest sup-
port forH+ across a wide range of priors. When the precision is selected post-hoc
to maximize the support for H+ this yields BF+0 = 4.35, which –under a posi-
tion of equipose– raises the plausibility of H+ from 0.50 to about 0.81, leaving a
posterior probability of 0.19 for H0.

A similar sensitivity analysis could be conducted for H0 by assuming a ‘per-
inull’ (Tukey, 1995, p. 8) — a distribution tightly centered around ρ = 0 rather
than a point mass on ρ = 0. The results will be qualitatively similar.

In sum, the claim that ‘PTSD patients with high resting state amygdalar activ-
ity experience more stress’ receives modest but not compelling support from the
data. The 13 observations do not warrant categorical statements, neither about
the presence nor about the strength of the hypothesized effect.

Analysis and interpretation by Gelman

I summarized the data with a simple scatterplot and a linear regression of log-
arithm of perceived stress on logarithm of amygdalar activity, using log scales
because the data were all-positive and it seemed reasonable to model a multi-
plicative relation. The scatterplot revealed a positive correlation and no other

6JASP is an open-source statistical software program with a graphical user interface that supports
both frequentist and Bayesian analyses.
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(a) Estimation results
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Figure 3.7: van Doorn, Gronau, and Wagenmakers’ Bayesian analysis of the amygdala data set. The
left panel shows the result of estimating the Pearson correlation coefficient ρ under H1 with a two-
sided uniform prior. The right panel shows the result of testing H0 : ρ = 0 versus the one-sided
alternative hypothesis H+ : ρ ∼U [0,1]. Figures from JASP.
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Figure 3.8: Sensitivity analysis for the Bayesian one-sided correlation test. The Bayes factor BF+0 is a
function of the prior width parameter 1/a from the stretched Beta(a,a) distribution. Figure from JASP.

striking patterns, and the regression coefficient was estimated at 0.6 with a stan-
dard error of 0.4. I performed the analyses in R using rstanarm (code available at
https://osf.io/nh4gc/). and the standard error is based on the median abso-
lute deviation of posterior simulations (see help(“mad”) in R for more on this).
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I then looked up the article, “Relation between resting amygdalar activity
and cardiovascular events: a longitudinal and cohort study”, by Tawakol et al.
(2017). The goal of the research is “to determine whether [the amygdala’s] resting
metabolic activity predicts risk of subsequent cardiovascular events.” Here are
some items relevant to our current task:

1. Perceived stress is an intermediate outcome, not the ultimate goal of the
study.

2. Any correlation or predictive relation will depend on the reference popula-
tion. The people in this particular study are “individuals with a history of
post-traumatic stress disorder” living in the Boston area.

3. The published article reports that “Perceived stress was associated with
amygdalar activity (r = 0.56; p = 0.0485).” Performing the correlation (or,
equivalently, the regression) on the log scale, the result is not statistically
significant at the 5% level. This is no big deal given that I don’t think that it
makes sense to make decisions based on a statistical significance threshold,
but it is relevant when considering scientific communication.

4. Comparing my log-scale scatterplot to the raw-scale scatterplot (Figure 5A
in the published article), I’d say that the unlogged scatterplot looks cleaner,
with the points more symmetrically distributed. Indeed, based on these
data alone, I’d move to an unlogged analysis–that is, the estimated correla-
tion of 0.56 reported in the paper.

To address the question, “Do PTSD patients with high resting state amygdalar
activity experience more stress?”, we need two additional decisions or pieces of
information. First, we must decide the population of interest; here there is a chal-
lenge in extrapolating from people with PTSD to the general population. Second,
we need a prior distribution for the correlation being estimated. It is difficult for
me to address either of these issues: as a statistician my contribution would be
to map from assumptions to conclusions. In this case, the assumptions about
the prior distribution and the assumptions about extrapolation go together, as
in both cases we need some sense of how likely it is to see large correlations be-
tween the responses to a subjective stress survey and a biomeasurement such as
amygdalar activity. It could well be that there is a prior expectation of positive
correlation between these two variables in the general population, but that the
current data do not provide much information beyond our prior for this general
question.

3.4 Round-Table Discussion

As described above, the two data sets have each been analyzed by four teams.
The different approaches and conclusions are summarized in Table 5. The
discussion was carried out via email and a transcript can be found online at
https://osf.io/f4z7x/. Below we highlight and summarize the central ele-
ments of a discussion that quickly proceeded from the data analysis techniques
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in the concrete case to more fundamental philosophical issues. Given the relative
agreement among the conclusions reached by different methodological angles,
our discussion started out with the following deliberately provocative statement:

In statistics, it doesn’t matter what approach is used. As long as you do con-
duct your analysis with care, you will invariably arrive at the same qualitative
conclusion.7

In agreement with this claim, Hennig stated that “we all seem to have a
healthy skepticism about the models that we are using. This probably con-
tributes strongly to the fact that all our final interpretations by and large agree.
Ultimately our conclusions all state that ‘the data are inconclusive’. I think the
important point here is that we all treat our models as tools for thinking that
can only do so much, and of which the limitations need to be explored, rather
than ‘believing in’ our relying on any specific model” (Email 29). On the other
hand, Hennig wonders “whether differences between us would’ve been more
pronounced with data that wouldn’t have allowed us to sit on the fence that
easily” (Email 29) and Lakens wonders “about what would have happened if
the data were clearer” (Email 32). In addition, Morey points out that “none of
us had anything invested in these questions, whereas almost always analyses
are published by people who are most invested” (Email 33). Wagenmakers
responds that “we [referring to the group that organized this study] wanted to
use simple problems that would not pose immediate problems of either one of
the paradigms...[and] we tried to avoid data sets that met Berkson’s ‘inter-ocular
traumatic test’ (when the data are so clear that the conclusion hits you right
between the eyes) where we would immediately agree” (Email 31). In addition,
the focus was on the analyses and discussion as free as possible from other
consideration (e.g., personal investment in the questions).

However, differences between the analyses were emphasized as well. First,
Morey argued that the differences (e.g., research planning, execution, analysis,
etc.) between the Bayesian and frequentist approach are critically important and
not easily inter-translatable (Email 2). This gave rise to an extended discussion
about the frequentist procedures’ dependence of the sampling protocol, which
Bayesian procedures lack. While Bayesians such as Wagenmakers see this as a
critical objection against the coherent use of frequentist procedures (e.g., in cases
where the sampling protocol is uncertain), Hennig contends that one can still
interpret the p-value as indicating the compatibility of the data with the null
model, assuming a hypothetical sampling plan (see Email 5-11, 16-18, 23, and
24). Second, Lakens speculated that, in the cases where the approaches differ,
there “might be more variation within specific approaches, than between” (Email
1). Third, Hennig pointed out that differences in prior specifications could lead

7The statement is based on Jeffreys’ claims “[a]s a matter of fact I have applied my significance
tests to numerous applications that have also been worked out by Fisher’s, and have not yet found
a disagreement in the actual decisions reached” (Jeffreys, 1939, p. 365) and “it would only be once
in a blue moon that we [Fisher and Jeffreys] would disagree about the inference to be drawn in any
particular case, and that in the exceptional cases we would both be a bit doubtful” (Bennett, 1990, p.
162).
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to discrepancies between Bayesians (Email 4) and Homer pointed out that differ-
ences in alpha decision boundaries could lead to discrepancies between frequen-
tists’ conclusions (Email 11). Finally, Gelman disagreed with most if what had
been said in the discussion thus far. Specifically, he said: “I don’t think ‘alpha’
makes any sense, I don’t think 95% intervals are generally a good idea, I don’t
think it’s necessarily true that points in 95% interval are compatible with the
data, etc etc.” (Email 15).

A concrete issue concerned the equivalence test used by Lakens and Hennig
for the first data set. Wagenmakers objects that it does not add relevant informa-
tion to the presentation of a confidence interval (Email 12). Lakens responds that
it allows to reject the hypothesis of a >10% difference in proportions at almost
any alpha level, thereby avoiding reliance on default alpha levels, which are of-
ten used in a mindless way and without attention to the particular case (Email
13).

A more foundational point of contention with the two data sets and their
analysis was about the question of how to formulate Bayesian priors. For these
concrete cases, Hennig contends that the subject-matter information cannot be
smoothly translated into prior specifications (Email 27), which is the reason why
Morey and Homer choose a frequenstist approach, while Gelman considers it
“hard for me to imagine how to answer the questions without thinking about
subject-matter information” (Email 26).

Lakens raised the question of howmuch the approaches in this paper are rep-
resentative of what researchers do in general (Email 43 and 44). Wagenmakers’
discussion of p-values echoes this point. While Lakens describes p-values as a
guide to “deciding to act in a certain way with an acceptable risk of error” and
contends many scientists conform to this rationale (Email 32), Wagenmakers has
a more pessimistic view. In his experience, the role of p-values is less epistemic
than social: they are used to convince referees and editors and to suggest that the
hypothesis in question is true (Email 37). Also Hennig disagrees with Lakens,
but from a frequentist point of view: they should not guide binary accept/reject-
decisions, they just indicate the degree to which the observed data is compatible
with the model specified by the null hypothesis (Email 34).

The question of how data analysis relates to learning, inference and decision-
making was also discussed regarding the merits (and problems) of Bayesian
statistics. Hennig contends that there can be “some substantial gain from them
[priors] only if the prior encodes some relevant information that can help the
analysis. However, here we don’t have such information” and the Bayesian “ap-
proach added unnecessary complexity” (Email 23). Wagenmakers reply is that
“prior is not there to help or hurt an analysis: it is there because without it, the
models do not make predictions; and without making predictions, the hypothe-
ses or parameters cannot be evaluated” and that “the approach is more complex,
but this is because it includes some essential ingredients that the classical analysis
omits” (Email 24). In fact, he insinuates that frequentists learn from data through
“Bayes by stealth”: the observed p-values, confidence intervals and other quanti-
ties are used to update the plausibility of the models in an “inexact and intuitive”
way. “Without invoking Bayes’ rule (by stealth) you can’t learn much from a clas-
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sical analysis, at least not in any formal sense.” (ibid.) According to Hennig there
is more to learning than “updating epistemic probabilities of certain parameter
values being true. For example I find it informative to learn that ‘Model X is
compatible with the data’ ” (Email 25). However, Wagenmakers considers Hen-
nig’s example of learning as a synonymous to observing. Though he agrees that
“it is informative to know when a specific model is or is not compatible with
data; to learn anything, however, by its very definition requires some form of
knowledge updating” (Email 30). This discussion evolved, finally, into a gen-
eral discussion about the philosophical principles and ideas underlying schools
of statistical inference. Ironically, both Lakens (decision-theoretically oriented
frequentism) and Gelman (falsificationist Bayesianism) claim the philosophers
of science Karl Popper and Imre Lakatos, known for their ideas of accumulating
scientific progress through successive falsification attempts, as one of their pri-
mary inspirations, although they spell out their ideas in a different way (Emails
42 and 45).

Hennig and Lakens also devoted some attention to improving statistical prac-
tice and either directly or indirectly questioned the relevance of foundational
debates. Concerning the above issue with using p-values for binary decision-
making, Hennig suspects that “if Bayesian methodology would be in more
widespread use, we’d see the same issue there ... and then ‘reject’ or ‘accept’ based
on whether a posterior probability is larger than some mechanical cutoff” (Email
34) and “that much of the controversy about these approaches concerns naive
‘mechanical’ applications in which formal assumptions are taken for granted to
be fulfilled in reality” (Email 29). In addition, Lakens points out that “whether
you use one approach to statistics or another doesn’t matter anything in practice.
If my entire department would use a different approach to statistical inferences
(now everyone uses frequentist hypothesis testing) it would have basically zero
impact on their work. However, if they would learn how to better use statistics,
and apply it in a more thoughtful manner, a lot would be gained” (Email 32).
Homer provides an apt conclusion to this topic by stating “I think a lot of prob-
lems with research happen long before statistics get involved. E.g. Issues with
measurement; samples and/or methods that can’t answer the research question;
untrained or poor observers” (Email 35).

Finally, an interesting distinction was made between a prescriptive use of
statistics and a more pragmatic use of statistics. As an illustration of the lat-
ter, Hennig has a more pragmatic perspective on statistics, because a strong pre-
scriptive view (i.e., fulfillment of modeling assumptions as a strict requirement
for statistical inference) would often mean that we can’t do anything in practice
(Email 2). To clarify this point, he adds: “Model assumptions are never literally
fulfilled so the question cannot be whether they are..., but rather whether there
is information or features of the data that will mislead the methods that we want
to apply” (Email 23). The former is illustrated by Homer: “I think that assump-
tions are critically important in statistical analysis. Statistical assumptions are
the axioms which allow a flow of mathematical logic to lead to a statistical in-
ference. There is some wiggle room when it comes to things like ‘how robust is
this test, which assumes normality, to skew?’ but you are on far safer ground
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when all the assumptions are/appear to be met. I personally think that not even
checking the plausibility of assumptions is inexcusable sloppiness (not that I feel
anyone here suggested otherwise)” (Email 11). From what has been said in the
discussion, there is general consensus that not all assumptions need to be met
and not all rules need to be strictly followed. However, there is great disagree-
ment about which assumptions are important; which rules should be followed
and how strictly; and what can be interpreted from the results when (it is uncer-
tain if) these rules and assumptions are violated. The interesting subtleties of this
topic and the discussants’ views on use of statistics can be read in the online sup-
plement (model assumptions: Emails 4, 11, 23, and 24; alpha-levels, p-values,
Bayes factors, and decision procedures: Emails 2, 9, 11, 14, 15, 24, and 31-40;
sampling plan, optional stopping, and conditioning on the data: Emails 2, 5-11,
16-18, 23, and 24).

In summary, dissimilar methods were used that resulted in similar conclu-
sions and varying views were discussed on how statistical methods are used and
should be used. At times it was a heated debate with interesting arguments from
both (or more) sides. As one might expect, there was disagreement about partic-
ularities of procedures and consensus on the expectation that scientific practice
would be improved by better general education on the use of statistics.

3.5 Concluding Comments

Four teams each analyzed two published data sets. Despite substantial variation
in the statistical approaches employed, all teams agreed that it would be pre-
mature to draw strong conclusions from either of the data sets. Adding to this
cautious attitude are concerns about the nature of the data. For instance, the
first data set was observational, and the second data set may require a correction
for multiplicity. In addition, for each scenario, the research teams indicated that
more background information was desired; for instance, “when is the difference
in birth defects considered too small to matter?”; “what are the effects for similar
drugs?”; “is the correlation selective to the amygdala?”; and “what is the prior
distribution for the correlation?”. Unfortunately, in the routine use of statistical
procedures such information is provided only rarely.

It also became evident that the analysis teams not only needed to make as-
sumptions about the nature of the data and any relevant background knowledge,
but they also needed to interpret the research question. For the first data set,
for instance, the question was formulated as “Is cetirizine exposure during preg-
nancy associated with a higher incidence of birth defects?”. What the original re-
searchers wanted to know, however, is whether or not cetirizine is safe – this more
general question opens up the possibility of applying alternative approaches,
such as the equivalence test, or even a statistical decision analysis: should preg-
nant women be advised not to take cetirizine? We purposefully tried to steer
clear from decision analyses because the context-dependent specification of utili-
ties adds another layer of complexity and requires even more background knowl-
edge than was already demanded for the present approaches. More generally, the
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formulation of our research questions was susceptible to multiple interpretation:
as tests against a point null, as tests of direction, or as tests of effect size. The
goals of a statistical analysis can be many, and it is important to define them
unambiguously – again, the routine use of statistical procedures almost never
conveys this information.

Despite the (unfortunately near-universal) ambiguity about the nature of the
data, the background knowledge, and the research question, each analysis team
added valuable insights and ideas. This reinforces the idea that a careful statisti-
cal analysis, even for the simplest of scenarios, requires more than a mechanical
application of a set of rules; a careful analysis is a process that involves both
skepticism and creativity. Perhaps popular opinion is correct, and statistics is
difficult. On the other hand, despite employing widely different approaches, all
teams nevertheless arrived at a similar conclusion. This tentatively supports the
Fisher-Jeffreys conjecture that, regardless of the statistical framework in which
they operate, careful analysts will often come to similar conclusions.
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Chapter 4

An In-Class Demonstration

of Bayesian Inference

Abstract

Sir Ronald Fisher’s venerable experiment “The Lady Tasting Tea” is revisited from a
Bayesian perspective. We demonstrate how a similar tasting experiment, conducted in
a classroom setting, can familiarize students with several key concepts of Bayesian in-
ference, such as the prior distribution, the posterior distribution, the Bayes factor, and
sequential analysis.

4.1 Introduction

Over 80 years ago, Sir Ronald Fisher conducted the famous experiment “The
Lady Tasting Tea” in order to test whether his colleague, Dr. Muriel Bristol, could
taste if the tea infusion or the milk had been added to the cup first (Fisher, 1935,
p. 11). Dr. Bristol was presented with eight cups of tea and the knowledge that
four of these had the milk poured in first. Dr. Bristol was then asked to identify
these four cups. Fisher analyzed the results using null hypothesis significance
testing: (1) assume the null hypothesis to be true (i.e., Dr. Bristol lacks any abil-
ity to discriminate the cups); (2) calculate the probability of encountering results
at least as extreme as those observed; (3) if that probability is sufficiently low,
consider the null hypothesis discredited. This probability is now known as the
p-value and it features in many statistical analyses across empirical sciences such
as biology, economics, and psychology (for recent critique, see R. Wasserstein &
Lazar, 2016; Benjamin et al., 2018).

Decades later, Dennis Lindley (1993) used an experimental procedure similar
to that of Fisher to highlight some limitations of the p-value paradigm. Specif-
ically, the calculation of the p-value depends on the sampling plan, that is, the
intention with which the data were collected. Consider the Lindley setup: the
lady is offered six pairs of cups, where each pair consists of a cup where the tea
was poured first, and a cup where the milk was poured first. She is then asked to
judge, for each pair, which cup has had the tea added first. A possible outcome is

This chapter is published as van Doorn, J.B., Matzke, D., & Wagenmakers, E.–J. (2020). An In-
Class Demonstration of Bayesian Inference. Psychology Learning and Teaching, 19, 36–45.
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the sequence RRRRRW, indicating that she was right for the first five pairs, and
wrong for the last pair. However, as Lindley demonstrated, the original sampling
plan is crucial in calculating the p-value. Was the goal to have the lady taste
six pairs of cups –no more, no less– or did she need to continue until she made
her first mistake? The observed data are compatible with either sampling plan;
yet in the former case, the p-value equals 0.109, whereas in the latter case the
p-value equals 0.031. The difference lies in the inclusion of more extreme cases.
In the ‘test six cups’ plan, the only more extreme outcome is RRRRRR (i.e., the
binomial sampling distribution), whereas for the ‘test until error’ plan the more
extreme outcomes include sequences such as RRRRRRW and RRRRRRRW (i.e.,
the negative binomial sampling distribution). It seems undesirable that the p-
value depends on hypothetical outcomes that are in turn determined by the sam-
pling plan. Harold Jeffreys summarized: “What the use of p implies, therefore, is
that a hypothesis that may be true may be rejected because it has not predicted
observable results that have not occurred. This seems a remarkable procedure.”
(Jeffreys, 1961, p. 385; see also Berger & Wolpert, 1988).

In this chapter we revisit Fisher’s experimental paradigm to demonstrate sev-
eral key concepts of Bayesian inference, specifically the prior distribution, the
posterior distribution, the Bayes factor, and sequential analysis. Furthermore,
we highlight the advantages of Bayesian inference, such as its straightforward in-
terpretation, the ability to monitor the result in real-time, and the irrelevance of
the sampling plan. For concreteness, we analyze the outcome of a tasting experi-
ment that featured 57 staffmembers and students of the Psychology Department
at the University of Amsterdam; these participants were asked to distinguish be-
tween the alcoholic and non-alcoholic version of theWeihenstephaner Hefeweiss-
bier, a German wheat beer. We describe how classroom tasting experiments can
acquaint students with Bayesian inference, noting that beer can be substituted
with anything else suitable (e.g., red and green M&M’s, Coca Cola and Pepsi, de-
caf and regular coffee). We analyze and present the results in the open-source
statistical software JASP (JASP Team, 2020).

4.2 The Tasting Experiment

On a Friday afternoon, May 12th 2017, an informal beer tasting experiment took
place at the Psychology Department of the University of Amsterdam. The ex-
perimental team consisted of three members: one to introduce the participants
to the experiment and administer the test, one to pour the drinks, and one to
process the data. Participants tasted two small cups filled with Weihenstephaner
Hefeweissbier, one with alcohol and one without, and indicated which one con-
tained alcohol. Participants were also asked to rate the confidence in their answer
(measured on a scale from 1 to 100, with 1 being completely clueless and 100 be-
ing absolutely sure), and to rate the two beers in tastiness (measured on a scale
from 1 to 100, with 1 being the worst beer ever and 100 being the best beer ever).
The experiment was double-blind, such that the person administering the test
and interacting with the participants did not know which of the two cups con-
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tained alcohol. For ease of reference, each cup was labeled with a random integer
between 1 and 500, and each integer corresponded either to the alcoholic or non-
alcoholic beer. A coin was flipped to decide which beer was tasted first. The
setup was piloted with 9 participants; subsequently, we tested as many people
as possible within an hour, and also recorded which of the two beers was tasted
first. On average, testing took approximately 30 seconds per participant, yielding
a total of 57 participants. Of the 57 participants, 42 (73.7%) correctly identified
the beer that contained alcohol: in other words, there were s = 42 successes and
f = 15 failures.1

4.3 Theoretical Analysis

In order to assess statistically whether and to what extent participants were able
to discriminate between alcoholic and non-alcoholic beer we apply the binomial
model, where the rate parameter θ governs the probability of a correct response
for each of the participants. Chance performance corresponds to θ = 1/2. Above-
chance performance corresponds to values of θ higher than 1/2, with θ = 1 indi-
cating perfect performance.

In the Bayesian framework, we start by specifying a prior distribution. The
prior distribution quantifies our beliefs about the parameter of interest before
seeing the data. For convenience, we may specify a beta distribution: a probabil-
ity distribution on the domain [0,1] governed by two shape parameters, a and b.
Setting a = b = 1 yields a uniform distribution, and implies that all values of rate
θ are equally likely a priori. Setting a > b assigns more prior probability mass to
values of θ higher than 1/2, whereas setting a < b assigns more mass to values of
θ lower than 1/2.2

The beta prior distribution is then updated to a posterior distribution using
Bayes’ rule, such that values of θ that predicted the data well receive a boost in
credibility, whereas values of θ that predicted the data poorly suffer a decline
(Rouder & Morey, 2019; Wagenmakers et al., 2016):

p(θ | s, f )
︸    ︷︷    ︸

Posterior

= p(θ)
︸︷︷︸

Prior

×

Prediction for specific θ
︷     ︸︸     ︷

p(s, f | θ)
p(s, f )

︸     ︷︷     ︸

Average prediction
across all θ′s

. (4.1)

The right-most term is the predictive updating factor that quantifies the
change from prior to posterior beliefs brought about by the data. This predictive
updating factor indicates how well each value of θ predicted the data, relative
to the average prediction across all values of θ. When a specific value of θ pre-

1Three video recordings of the procedure are available at https://osf.io/428pb/
2A Shiny app to examine the shape of different beta distributions is available at http://shinyapps

.org/, under “A first lesson in Bayesian inference”.
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dicted the data better than average, the posterior density at that point will be
higher than the prior density.

We used the binomial likelihood to assess the quality of each value’s predic-
tion (i.e., the likelihood of observing s successes and f failures, given a specific
value of θ). Because we used the binomial likelihood and a beta prior distri-
bution, the updated posterior distribution will also be a beta distribution – a
property known as conjugacy (Gelman, 2013).

The obtained posterior distribution can be used for both parameter estimation
and hypothesis testing. For parameter estimation, either a point estimate or an
interval estimate can be obtained. Commonly used point estimates include the
posterior median and posterior mean. Interval estimation can be done with a
so-called credible interval, which is an interval that contains x% of the posterior
mass3 and can be interpreted as follows: there is an x% probability that the true
parameter lies in this interval. For example, if we obtain a 95% credible interval
of [0.6, 0.9] for θ, we can be 95% sure that the true value of θ lies between 0.6
and 0.9.

The posterior distribution can also be used for hypothesis testing, where the
traditional goal is to examine specific values of θ. For instance, we can test the
hypothesis H0 : θ = 1/2 (i.e., chance performance) by comparing its predictive
adequacy to that of an alternative hypothesis H1 : θ , 1/2. In other words, H0

represents the idealized position of a skeptic who believes that the data can be
accounted for purely by chance. This ‘chance only’ model is pitted against an
alternative that allows θ to take on values different from 1/2.

As before, hypotheses that predict the data well receive a boost in credibility,
whereas hypotheses that predict the data poorly suffer a decline. In the Bayesian
framework, hypothesis testing is traditionally achieved through the Bayes factor
(Kass & Raftery, 1995; Etz & Wagenmakers, 2017).4 The Bayes factor can be seen
as a weighing of one hypothesis’ predictive quality relative to that of another.
The following equation illustrates this principle, and is very similar to equation
(4.1):

p(H1 | s, f )
p(H0 | s, f )
︸       ︷︷       ︸

Posterior beliefs
about hypotheses

=
p(H1)

p(H0)
︸ ︷︷ ︸

Prior beliefs
about hypotheses

× p(s, f | H1)

p(s, f | H0)
︸       ︷︷       ︸

Bayes factor

(4.2)

It is important to note here that the Bayes factor is a relative metric of the hy-
potheses’ predictive quality. For instance, if the Bayes factor equals 5, this means
that the data are 5 times as likely under H1 than under H0. The relative nature
of the Bayes factor stands in stark contrast with the frequentist paradigm, where
only the null hypothesis is under consideration.

3Two popular ways of creating a credible interval are the highest density credible interval, which
is the narrowest interval containing the specified mass, and the central credible interval, which is

created by cutting off 100−x
2 % from each of the tails of the posterior distribution. In the remainder of

this chapter, we use the central credible interval.
4For an alternative procedure to test parameter values, see for instance Kruschke (2011, 2018).
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The computation of the Bayes factor is usually not straightforward; however,
when the two hypotheses are nested, a convenient computational shortcut can be
used, known as the Savage-Dickey density ratio (Dickey & Lientz, 1970; Wagen-
makers, Lodewyckx, Kuriyal, & Grasman, 2010). The shortcut entails that the
Bayes factor equals the ratio of the prior density and the posterior density at the
test value θ0. For instance, in the current study, θ0 = 1/2 so we have the following
ratio:

BF10 =
p(θ = 1/2)

p(θ = 1/2 | data) , (4.3)

where the numerator indicates the prior ordinate and the denominator indicates
the posterior ordinate evaluated at the test value, θ = 1/2. BF denotes the Bayes
factor, and the subscript indicates which hypotheses are compared. BF10 in-

dicates the Bayes factor in favor of H1

(

i.e.,
p(data|H1)
p(data|H0)

)

, whereas BF01 indicates

the Bayes factor in favor of H0

(

i.e.,
p(data|H0)
p(data|H1)

)

. For instance, if BF10 = 1/5, then

BF01 = 5.
We stress that the mathematical details are not critical for students’ under-

standing of the Bayesian procedures. The following section shows how the ex-
ample and the associated graphs suffice to clarify the key Bayesian concepts at an
intuitive level.

4.4 Bayesian Inference with JASP

When the statistical explanation does not resonate with students, a practical
demonstration of the analysis might. This can be done with the statistical soft-
ware JASP, which offers a graphical user interface for conducting Bayesian (and
frequentist) analyses. In order to analyze the collected data, the Bayesian bino-
mial test can be used, which can be found under the menu labeled “Frequencies”.
Several settings are available for the binomial test, allowing students to explore
different analysis choices. Figure 4.1 presents a screenshot of the options panel
in JASP. For this analysis, we specify a test value of 1/2 (i.e., chance performance),
and a = b = 1 for the prior distribution of θ under H1. Note that in a sensitivity
or robustness analysis, other values for a and b may be explored to assess their
impact on the posterior distribution.

The null hypothesis postulates that participants performed at chance level,
whereas the alternative hypothesis postulates that this is not the case. For in-
stance, in the case of two-sided hypothesis testing, the hypotheses are specified
as follows

H0 : θ = 1/2

H1 : θ ∼ beta(1,1). (4.4)

However, since we wish to test whether or not participants’ discriminating ability
exceeds chance, we can specify the alternative hypothesis to allow only values of
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4. An In-Class Demonstration of Bayesian Inference

Figure 4.1: The input panel for the Bayesian binomial test in JASP. The upper left box displays all
available variables. The upper right box displays the tested variables. Below are other options, such
as setting the test value, the alternative hypothesis, and the shape parameters of the beta prior.

θ greater than 1/2 (note the ‘+’ in the subscript):

H+ : θ ∼ beta(1,1)I(1/2,1), (4.5)

where I indicates truncation of the beta distribution to the interval [1/2,1].
Figure 4.2 illustrates the results of the binomial test. The left panel shows the

prior and the posterior distribution of θ for the two-sided alternative hypoth-
esis, along with the median and credible interval of the posterior distribution.
The posterior median equals 0.731 and the 95% credible interval ranges from
0.610 to 0.833, indicating a substantial deviation of θ from 1/2. For each value
of θ, the change from prior distribution to posterior distribution is quantified by
predictive adequacy: for those values of θ that predict the data better than aver-
age, the posterior density exceeds the prior density (see equation (4.1))). The left
panel shows inference for the two-sided alternative hypothesis (i.e., H1 : θ , 1/2)
compared to the null hypothesis (i.e., H0 : θ = 1/2). The resulting Bayes factor is
122.65 in favor of the alternative hypothesis, that is, the observed data are about
112.65 times more likely to occur under H1 than under H0.

The right panel shows inference for the one-sided positive hypothesis (i.e.,
H+ : θ ≥ 1/2) compared to the null hypothesis: the resulting Bayes factor is 225.26
in favor of the alternative hypothesis. Note that the posterior distribution itself
has hardly changed: the posterior median still equals 0.731 and the 95% credible
interval ranges from 0.610 to 0.833. Because virtually all posterior mass was
already to the right of 1/2 in the two-sided case, the posterior distribution was
virtually unaffected by changing fromH1 toH+. However, in the right panel,H+

only predicts values greater than 1/2, which is reflected in the prior distribution:
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4.4. Bayesian Inference with JASP

all prior mass is now located in the interval (1/2, 1), and as a result, the prior mass
in the interval (1/2, 1) has doubled. Since the posterior density at the point of
testing is the same in both panels, but the prior density is doubled in the right
panel, the Bayes factor for the directed hypothesis doubles as well.
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Figure 4.2: Bayesian binomial test for the rate parameter θ. The probability wheel at the top illus-
trates the ratio of the evidence in favor of the two hypotheses. The two gray dots indicate the prior
and posterior density at the test value - the ratio of these is the Savage-Dickey density ratio. The
median and the 95% credible interval of the posterior distribution are shown in the top right corner.
The left panel shows the two-sided test and the right panel shows the one-sided test. Both figures
from JASP.

The experimental procedure also highlights one of the main strengths of
Bayesian inference: real-time monitoring of the incoming data. As the data ac-
cumulate, the analysis can be continuously updated to include the latest results.
In other words, the results may be updated after every participant, or analyzed
all at one, without affecting the resulting inference. To illustrate this, we can use
Equation 4.1 to compute the posterior distribution for the first 9 participants of
the experiment for which s = 6 and f = 3. Specifying the same beta prior dis-
tribution as before, namely a truncated beta distribution with shape parameters
a = b = 1, and combining this with the data, yields a truncated beta posterior
distribution with shape parameters a = 6 + 1 = 7 and b = 3 + 1 = 4.5 The result-
ing posterior distribution is presented in the left panel of Figure 4.3. Now, we
can take the remaining 48 participants and conduct the Bayesian binomial test.
Because we already have knowledge about the population’s rate parameter θ,
namely the results of the first 9 participants, we can incorporate this in the anal-
ysis through the prior distribution, following Lindley’s maxim “today’s posterior
is tomorrow’s prior” (Lindley, 1972).

In this case, we can specify a truncated beta prior distribution with a = 7
and b = 4, and update this with the data of the remaining 48 participants using

5Due to the property of conjugacy, where the posterior distribution has the same form as the prior
distribution, the shape parameters of the beta posterior distribution can be obtained by summing
the a and b parameters of the prior distribution with the observed number of successes and failures,
respectively.
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4. An In-Class Demonstration of Bayesian Inference

Equation 4.1. Out of the 48 participants, 36 were correct, and 12 were incorrect.
Updating the prior distribution with this data yields a posterior distribution with
shape parameters a = 7 + 36 = 43 and b = 4 + 12 = 16, which is exactly the same
posterior distribution obtained when analyzing the full data set at once. This
two-step procedure is illustrated in Figure 4.3. The left panel shows the prior dis-
tribution (i.e., the truncated beta distribution with a = 1, b = 1) and the posterior
distribution for the first 9 participants. The right panel shows the inference for
the remaining 48 participants, while incorporating the knowledge gained from
the first 9 participants in the prior distribution by specifying a truncated beta
distribution with a = 7, b = 4.
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Figure 4.3: Sequential updating of the Bayesian binomial test. The left panel shows results from a
one-sided Bayesian binomial test for the first n = 9 participants (s = 6, f = 3). The shape parameters
of the truncated beta prior were set to a = 1 and b = 1. The right panel shows results from a one-sided
binomial test for the remaining 48 participants. Here, the specified prior is the posterior distribution
from the left panel: a truncated beta distribution with a+ s = 7 and b + f = 4. The resulting posterior
distribution is identical to the posterior distribution in Figure 4.2b. In order to obtain the total Bayes
factor in Figure 4.2b, the component Bayes factors in Figures 4.3a and 4.3b can be multiplied (Jeffreys,
1937). Both figures from JASP.

The ability to monitor the data in real-time and update the inference accord-
ingly prevents wasteful data collection: if there is sufficient evidence to discredit
either hypothesis with 50 observations, why collect another 10? Wasteful test-
ing is a serious issue, and monitoring the evidence is important in fields such as
medicine, biology, and industry. The Bayesian framework for planning experi-
ments is discussed in more detail by Rouder (2014), Schönbrodt et al. (2017) and
Schönbrodt & Wagenmakers (2018). Figure 4.4 shows the evolution of the Bayes
factor as more data are collected. Initially the evidence is inconclusive, but after
30 participants the evidence increasingly supports H1.

4.5 Concluding Comments

This chapter has outlined a teaching tool for familiarizing students with the ba-
sics of Bayesian inference. The educational advantage of the Bayesian binomial
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Figure 4.4: Sequential analysis, showing the evolution of the Bayes factor as n, the number of observed
participants, increases. After an initial period of inconclusiveness, the Bayes factor strongly favors
H1. Figure from JASP.

test is that both the likelihood function and the parameterization of the prior and
posterior distributions are intuitive and straightforward. The tasting experiment
allows students to analyze their own data, collected on the fly, making the in-
ferential process more concrete and relevant. Table 4.1 summarizes the concepts
that are introduced during the tasting experiment, as well as how these concepts
can be practically demonstrated. The experiment is aimed at introducing college
level students to these concepts. We have positive experiences using it as a teach-
ing tool in both introductory workshops and undergraduate courses in Bayesian
inference. We have created an Open Science Framework repository that contains
the original data set, as well as a fully annotated JASP-file that presents addi-
tional analyses, such as a t-test on the difference in ratings for the alcoholic and
non-alcoholic beer. The repository can be found at https://osf.io/428pb/
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Bayesian Concept Demonstration

1. Irrelevance of sampling plan for
Bayesian updating

Analyzing the data as they come in

2. Evidence for H0 is possible, as it is for
H1

Computing the Bayes factor

3. Conjugate prior distribution Using the binomial likelihood to update
a beta prior distribution

4. Savage-Dickey density ratio for compu-
tation of Bayes factors

Interpreting posterior plots (e.g., Figure
4.2)

5. Analysis of sensitivity of results to
choice of prior distribution

Changing the parameters of the beta
prior distribution and observing the cor-
responding changes in the posterior dis-
tribution and the Bayes factor

6. Bayesian one-sided testing Specifying different alternative hy-
potheses

7. Principle of parsimony in Bayesian in-
ference

Comparing two-sided results with one-
sided results; comparing H0 with H1

Table 4.1: Bayesian concepts that students will learn during the tasting experiment and how these
concepts can be demonstrated.
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Chapter 5

Strong Public Claims May

Not Reflect Researchers’

Private Convictions

How confident are researchers in their own claims? Augustus De Morgan (De
Morgan, 1847/2003) suggested that researchers may initially present their con-
clusions modestly, but afterwards use them as if they were a “moral certainty”.
To prevent this from happening, De Morgan proposed that whenever researchers
make a claim, they accompany it with a number that reflects their degree of con-
fidence (Goodman, 2018). Current reporting procedures in academia, however,
usually present claims without the authors’ assessment of confidence.

Here, we report the partial results from an anonymous questionnaire on the
concept of evidence that we sent to 162 corresponding authors of research articles
and letters published in Nature Human Behaviour (NHB). We opted for NHB be-
cause of its broad scope and because the majority of its articles include the main
claim in the title (e.g., from the first issue, “Pathogen prevalence is associated
with cultural changes in gender equality” (Zhou et al., 2016), or “Attention mod-
ulates perception of visual space” (Varnum & Grossmann, 2016)), which made it
convenient to directly reference the claim in the questionnaire. We selected 129
articles with a claim in the title published between January 2017 and April 2020.
The list of selected articles as well as a description of the selection procedure can
be found in Appendix A of the online supplement (https://osf.io/zjnpm/).
We received 31 complete responses (response rate: 19%). A complete overview
of the questionnaire can be found in online Appendices B, C, and D.

As part of the questionnaire, we asked respondents two questions about the
claim in the title of their NHB article: “In your opinion, how plausible was the
claim before you saw the data?” and “In your opinion, how plausible was the
claim after you saw the data?”. Respondents answered by manipulating a sliding
bar that ranged from 0 (i.e., “you know the claim is false”) to 100 (i.e., “you
know the claim is true”), with an initial value of 50 (i.e., “you believe the claim is
equally likely to be true or false”).

This chapter has been submitted for publication as van Doorn, J.B., van den Bergh, D., Dab-
lander, F., Derks, K., van Dongen, N.N.N., Evans, N. J., Gronau, Q. F., Haaf, J.M., Kunisato, Y., Ly,
A., Marsman, M., Sarafoglou, A., Stefan, A., & Wagenmakers, E.–J. (in press). Strong Public Claims
May Not Reflect Researchers’ Private Convictions. Significance. Also available as PsyArXiv preprint:
https://psyarxiv.com/pc4ad
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Figure 1 shows the responses to both questions. The blue dots quantify the
assessment of prior plausibility. The highest prior plausibility is 75, and the low-
est is 20, indicating that (albeit with the benefit of hindsight) the respondents did
not set out to study claims that they believed to be either outlandish or trivial.
Compared to the heterogeneity in the topics covered, this range of prior plausi-
bility is relatively narrow.

The lines in Figure 1 connect prior to posterior plausibility for each respon-
dent and their positive slopes indicate that all 31 respondents believed that the
data increased the plausibility of the claim from the title of their article. However,
with a median of only 80, the posterior plausibility for their claims is surpris-
ingly low. From the difference between prior and posterior odds we can derive
the Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995), that is, the extent to which
the data changed researchers’ conviction. Themedian of this derived Bayes factor
is 3, corresponding to the interpretation that the data are 3 times more likely to
have occurred under the hypothesis that the claim is true than under the hypoth-
esis that the claim is false. A Bayes factor of 3 equals Jeffreys’s threshold value
for labeling the evidence “not worth more than a bare mention” (Jeffreys, 1961),
further underscoring the authors’ modesty and/or seemingly weak convictions
of their article’s main claim.

The authors’ modesty appears excessive. It is not reflected in the declarative
title of their NHB articles, and it could not reasonably have been gleaned from
the content of the articles themselves. Perhaps authors grossly overestimated the
prior plausibility of their claims (due to hindsight bias); or perhaps they were
afraid to come across as overconfident; or perhaps they felt that the title claim
was overly general. It is also possible that authors were not sufficiently attuned
to the response scale, although none of the respondents indicated that the scales
were unclear.

Empirical disciplines do not ask authors to express the confidence in their
claims. When an author publishes a strong claim in a top-tier journal such as
NHB, one may expect this author to be relatively confident. While the current
academic landscape does not allow authors to express their uncertainty publicly,
our results suggest that they may well be aware of it. Encouraging authors to
express this uncertainty openly may lead to more honest and nuanced scientific
communication (Kousta, 2020).
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Figure 5.1: All 31 respondents indicated that the data made the claim in the title of their NHB article
more likely than it was before. However, the size of the increase is modest. Before seeing the data, the
plausibility centers around 50 (median = 56); after seeing the data, the plausibility centers around 75
(median = 80). The gray lines connect the responses for each respondent.
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Chapter 6

Bayes Factors for Mixed

Models

Abstract

Although Bayesian mixed models are increasingly popular for data analysis in psychology
and other fields, there remains considerable ambiguity on the most appropriate Bayes
factor hypothesis test to quantify the degree to which the data support the presence or
absence of an experimental effect. Specifically, different choices for both the null model
and the alternative model are possible, and each choice constitutes a different definition
of an effect resulting in a different test outcome. We outline the common approaches and
focus on the impact of aggregation, the effect of measurement error, the choice of prior
distribution, and the detection of interactions. For concreteness, three example scenarios
showcase how seemingly innocuous choices can lead to dramatic differences in statistical
evidence. We hope this work will facilitate a more explicit discussion about best practices
in Bayes factor hypothesis testing in mixed models.

6.1 Introduction

In a typical response time experiment, multiple participants complete multiple
trials in multiple conditions. For example, in a lexical decision task (Meyer &
Schvaneveldt, 1971), 30 participants may be instructed to decide as quickly and
accurately as possible whether or not 100 individually presented letter strings are
words (e.g., FISH) or nonwords (e.g., DRAPA). A possible experimental manipu-
lation may concern the type of motor effector – on half of the trials participants
have to press the response buttons with their thumbs, and on the other half they
have to use their index fingers. In such two-condition within-participant designs,
researchers are generally interested in the effect of the experimental manipula-
tion. As a first step, researchers often address the question of whether or not
the manipulation may be said to have had an effect, for instance, whether or not
response times (RTs) differ when people respond with their thumbs rather than
with their index fingers. Several statistical methods are available to test for such
a difference between conditions and the choice among them cannot be based on

This chapter has been submitted for publication as van Doorn, J.B., Aust, F., Haaf, J.M., Stefan,
A., & Wagenmakers, E.–J. (2020). Bayes Factors for Mixed Models.
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statistical considerations alone—each of these approaches instantiates a different
interpretation of the main question of interest.

The oldest and most common analysis approach is to conduct a repeated-
measures (RM) analysis of variance (ANOVA), which in the case of two conditions
is equivalent to a paired-samples t-test. In the scenario above, participants’ RTs
for individual trials are first averaged within each condition, resulting in two av-
erage RTs per participant, one for each condition. We term this averaging process
aggregation. Following aggregation, participants’ average RTs are then subjected
to a one-way RM ANOVA.1

This method accounts for the correlation between the averaged observations
that is caused by some participants generally being faster or slower than others
(i.e., the presence of baseline differences or random intercepts). This is in contrast
to a between participants ANOVA, which is not designed to account for correlated
observations. Nonetheless, both types of ANOVA have in common that they are
applied to observations averaged across multiple trials. Aggregating individual
response times loses information and limits the questions that can be addressed.
For example, aggregated RM ANOVA cannot be used to assess whether the ex-
perimental manipulation affects all participants alike, or whether the effect of
the manipulation differs per participant.

In contrast, mixed effects models (also referred to as hierarchical or multilevel
models) make use of the full (i.e., unaggregated) data set. These models typically
account for the nested data structure by modelling baseline differences in general
response speed across participants (as in RMANOVA) as well as differences in the
magnitude of the condition effect across participants (i.e., random slopes). By
modelling individual RTs, mixed effects models enable researchers to ask more
specific questions. As in RM ANOVA, mixed effects models estimate the average
effect of condition (i.e., the fixed effect), but additionally they can be used to
examine the extent to which the effect of condition differs between participants
(i.e., the random effect).

The example given here can be generalized in two ways. First, while condi-
tion is a categorical variable, the same framework can be applied to continuous
predictor variables. Second, the random effects grouping factor (in the example
above, “participant” is the grouping factor) can be any categorical variable in the
design for which there are multiple observations. For instance, instead of mod-
eling differences between individual participants, we could model a difference in
the effect of the manipulation for left-handed people, compared to right-handed
people. Furthermore, in the case of multiple grouping factors, the random effects
can either be nested or crossed. In the case of nested random effects, not all levels
of one grouping factor aremeasured for the other grouping factor. For example, if
both “participant” and “handedness” are used as grouping factors, the structure
is nested, because each participant will be either left-handed or right-handed. In
the case of crossed random effects, all levels of one grouping factor are measured
for the other grouping factor. For example, if both “participant” and “item” are

1We assume that interest centers on RT for correct responses to word stimuli. For simplicity, we
also assume that the untransformed trial-level RTs are normally distributed, which is usually not the
case.
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used as grouping factors, the structure is crossed, because for each participant,
there are observations for each item (for more examples, see Baayen et al., 2008;
Quené & Van den Bergh, 2008; Singmann & Kellen, 2019).

Although alluded to by Fisher (1935) and Yates (1935), the first explicit defini-
tion of random intercepts was given by Jackson (1939), who proposed to account
for individual differences in intelligence in order to more accurately assess the
reliability of mental tests. Since their introduction, mixed effects models have
seen an increase in statistical development (e.g., Scheffe 1956; Kempthorne 1975;
Efron & Morris 1977; Nelder 1977; Lindstrom & Bates 1990), and arguably rank
among themost important statistical ideas of the last 50 years (Gelman &Vehtari,
2020). The application of mixed effects models has been particularly stimulated
by software implementations (e.g., lme4, Bates, Mächler, et al. 2015; nlme, Pin-
heiro & Bates 2000; Pinheiro et al. 2020; and afex, Singmann et al. 2020) and
tutorial papers (e.g., Baayen et al., 2008; Judd et al., 2012, 2017; Singmann &
Kellen, 2019).

Here we focus on Bayesian inference for mixed effects models, and specifically
on Bayes factor hypothesis tests (e.g., Rouder et al., 2012; Clyde et al., 2011).2

Despite the availability of Bayesian tutorials (Shiffrin et al., 2008; Rouder et al.,
2013; Sorensen et al., 2016) and software alternatives (e.g., Morey & Rouder,
2018; Carpenter et al., 2017; Goodrich et al., 2020; Bürkner, 2017; Thalmann
& Niklaus, 2018; JASP Team, 2020), there remains a lack of clarity and consensus
about how to best conduct Bayesian model comparison when considering mixed
effects.

Examining the effect of a manipulation requires the specification of both a
null model, which assumes no effect of the manipulation, and an alternative
model. In the frequentist framework, a well-cited recommendation for the spec-
ification of the alternative mixed effects model of the full data is to specify a
“maximal” model (i.e., the model that includes all fixed and random effects jus-
tified by the study design). In particular, failure to include random slopes can
inflate Type 1 and Type 2 error probabilities (Barr et al., 2013; Berkhof & Kam-
pen, 2004; Schielzeth & Forstmeier, 2008; Heisig & Schaeffer, 2019, but see Bates,
Kliegl, et al. 2015; Matuschek et al. 2017). Despite the fact that there are multiple
suitable null models that the maximal model can be compared to, the appropri-
ate specification of the null model is much less discussed. This is problematic
because the choice of the null model (just like the alternative model) defines the
question we ask about the condition effect.

Several decisions need to be made when testing for the effect of a manipula-
tion in an experimental within-participant designs: Which model comparisons
are both suitable and sensible, whether or not to aggregate, how to quantify ef-
fects, and how to set prior distributions. The aim of the current paper is to list
the available options and demonstrate their impact on inference. We hope our
exposition provides a common starting ground for a discussion among experts in
the field of Bayes factor model comparison. We further hope that this discussion
will foster the development of a much needed set of guiding principles for the

2We use the terms “hypothesis test” and “model comparison” interchangeably.
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applied researcher who ventures into the realm of Bayesian mixed models.
The outline of this paper is as follows. We start by defining the possible mod-

els that can be compared when random effects are considered. Then, we present
a simple synthetic data set to illustrate the differences in model comparisons,
as well as the effect of aggregating the data. The second example demonstrates
how the different mixed model comparisons behave when analyzing data sets
with either few accurate measurements or many noisy measurements. As a third
example, we present a more real-life data set that underscores these modeling
questions, and highlights the added complexity of having multiple independent
variables of interest.

6.2 The Candidate Models

In this section we define the candidate models for a one-factorial design. Sup-
pose I participants each observe M trials in each of J conditions. For this re-
search scenario, there are the following six candidate models, each with different
theoretical underpinnings:

Model 1. Intercept (µ) only: no fixed effect of condition and no random effects
for participants. With subscript i for the ith participant, j for the j th

condition, and m for the mth trial, the model for the observed values
Yijm can be written as a function of the grand mean µ and the error

variance σ2
ǫ . We give this definition below, and then expand it for each

subsequent model:
Yijm ∼N(µ,σ2

ǫ ). (6.1)

Model 2. Fixed effect ν of condition, but no random effects for participants. The
term xj is a design element that encodes condition (i.e., x1 = −1/2, x2 =
1/2 if J = 2), which ensures the sums-to-zero constraint for the fixed
effects (Rouder et al., 2012).3 The resulting model can be written as
follows:

Yijm ∼N(µ+ xjν,σ
2
ǫ ). (6.2)

Model 3. No fixed effect of condition, but random intercepts αi specific to the
ith participant. In contrast to Models 1 and 2, this model includes
baseline differences. The random intercepts are distributed normally
around the grand mean µ, with standard deviation σα . Random in-
tercepts can also be understood as a main effect of participant. When
σα is 0, Model 6.3 reduces to Model 6.1. In one-way RM ANOVA, this
model is typically used as the null model. The model can be written as
follows:

Yijm ∼N(αi ,σ
2
ǫ ),

αi ∼N(µ,σ2
α ).

(6.3)

3This setup is known as effect coding, and implies that the µ parameter is the grand mean.
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Model 4. Fixed effect ν of condition and random intercepts αi for participants.
In one-way RM ANOVA, this model is used as the alternative model.
The model can be written as follows:

Yijm ∼N(αi + xjν,σ
2
ǫ ),

αi ∼N(µ,σ2
α ).

(6.4)

Model 5. No fixed effect, but random intercepts αi and slopes θi specific to the
ith participant. The random slopes are distributed normally around
0, with standard deviation σθ . In general, random slopes can also be
understood as an interaction effect between condition and participant
(Nelder, 1977). When σθ is 0, Model 6.5 reduces to to Model 6.3. In
essence, this model postulates that there is an effect of condition in
each participant, but that it varies across participants in a perfectly
balanced way, such that the average effect is 0 across participants. The
model can be written as follows:

Yijm ∼N(αi + xjθi ,σ
2
ǫ )

αi ∼N(µ,σ2
α )

θi ∼N(0,σ2
θ )

(6.5)

Model 6. The full model, with fixed effect ν of condition, random intercepts αi ,
and random slopes θi for participants. All previous models are re-
strictions of this model. For mixed models in the frequentist frame-
work, this is the often-recommended alternative model (Barr, 2013).
The model can be written as follows:

Yijm ∼N(αi + xjθi ,σ
2
ǫ )

αi ∼N(µ,σ2
α )

θi ∼N(ν,σ2
θ )

(6.6)

We do not entertain all possible combinations of parameters (e.g., models
with random slopes but no random intercepts, or models without a grand mean),
because we consider them both theoretically and statistically inappropriate in the
current mixed modeling setting.

For all models, σ2
ǫ denotes the error variance, which is the variance in the

data left unexplained by the model. The explained variance of a mixed model is
the sum of the variance induced by the fixed effect, the variance of the random
intercepts σ2

α , and the variance of the random slopes σ2
θ (Rights & Sterba, 2019).

Together the explained variance and σ2
ǫ make up the total variance of the data

y. Random effects are a source of systematic variation that, if unaccounted for
in the model, may be incorrectly attributed to the explained variance of a fixed
effect, or the error variance, leading to conclusions about the fixed effect that are
either overly permissive, or overly conservative, respectively (Barr et al., 2013).
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6.2.1 The Model Comparisons

With the series of six models defined, we can use model comparisons to assess
whether or not there is an effect of condition. Between the six models under con-
sideration we can make

n(n−1)
2 = 15 model comparisons that can be applied to

either the full data or the aggregated data. The models differ from each other
with respect to the three parameters of interest: ν,σα , and σθ . The appropriate
model comparison depends on the research question at hand, since each compar-
ison answers a different question. Specifically, the combined choice of the null
and alternative model constitute different definitions of what it means for a ma-
nipulation to have an effect: Model 6.4 posits that the fixed effect manifests in
every participant, whereas Model 6.6 posits that the fixed effect is the average
of participant-specific effects that vary in magnitude. Below, we consider three
model comparisons that we consider to be primarily relevant to the current sce-
nario.

We start by outlining the popular RM ANOVA procedure, which compares
Model 6.3 to Model 6.4. This procedure uses one observation per participant and
per level of each factor (i.e., M = 1). In cases where M > 1, the observations are
typically aggregated first, even though aggregation is not strictly required.4 The
aggregation discards information about the distribution of each participants’ ob-
servations within each condition. As a consequence, it becomes impossible to
distinguish between systematic random slope variance and random error vari-
ance (i.e., aggregation confounds the random slopes variance with the residual
variance). However, a benefit of aggregation is that it greatly reduces the impact
of random slopes in the inference for a fixed effect and therefore eliminates the
inflation of Type 1 and Type 2 error rates that ignoring random slopes typically
entails (see Examples 1 & 2 for a demonstration). Comparing Model 6.3 to Model
6.4 on the full data, on the other hand, does suffer from this inflation, and we
therefore do not consider it appropriate.

We now outline the comparisons of models that contain random slopes. In
the frequentist framework, it is often recommended to use the maximal mixed
model justified by the design (Barr, 2013). The presence of the fixed effect ν is
typically tested by means of a t- or F-test. This procedure implicitly compares
the full model (Model 6.6) to the full model without the fixed effect (Model 6.5).
Since random slopes are in fact an interaction effect between the fixed effect of
condition and the random effect of participant, specifying a model that includes
random slopes without the corresponding fixed effect (i.e., Model 6.5) can be
seen as conceptually problematic. Specifically, Rouder et al. (2016) argues that a
model containing an interaction effect without the main effect is only plausible
when the exact levels of each factor are picked such that the true main effects
perfectly cancel, which in most practical applications seems implausible. If we
accept this argument while still accounting for random slopes, the implied model
comparison is between the full model (Model 6.6) and the model with only the

4Barr (2013) notes this as one of the three common misconceptions about conventional RM
ANOVA. While Barr does not advise to conduct the typical RM ANOVA (i.e., without considering
the random slopes) using the non-aggregated data, it is technically possible to do so.
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random intercepts (Model 6.3). However, this model comparison comes with
its own set of challenges: The increase in model validity coincides with a loss
of diagnostic specificity: when Model 6.6 outperforms Model 6.3, we can only
conclude that the data offer support for the presence of a fixed effect, random
effect, or both a fixed and random effect.

Note that, for aggregated data, Models 6.5 and 6.6 are not identified.5 We
therefore only consider model comparisons involving Models 6.5 and 6.6 when
applied to the full data.

Thus, based on different considerations, we identify three possible model
comparisons, where the last two comparisons are named after the researchers
(i.e., Klaus Oberauer and Jeff Rouder) who advocated these comparisons in an
informal email discussion:

1. The RM ANOVA comparison: Model 6.3 vs Model 6.4 using the aggregated
data

2. The Oberauer comparison: Model 6.5 vs Model 6.6 using the full data

3. The Rouder comparison: Model 6.3 vs Model 6.6 using the full data

6.3 Examples

Although all three comparisons outlined in the previous section can be viable
options in an applied setting, they may lead to dramatically different conclu-
sions. In order to illustrate the different behaviors of the three comparisons, we
now discuss three data examples. We follow each example with several concrete
questions that we hope will serve as useful starting points for discussion.

All Bayes factors presented below are computed using the BayesFactor pack-
age (Morey & Rouder, 2018), using the default settings for the multivariate
Cauchy prior distributions (scale set to 0.5 and 1 for fixed effects and random
effects, respectively). Each example also includes a reference to the analysis code
in the online supplementary material.

6.3.1 Example 1: The Effect of Aggregation

We start with a relatively simple scenario, where I = 20 participants complete
M = 15 trials in each of J = 2 conditions for a total of 600 observations.6 The
purpose of this example is to illustrate the effect of random slopes on the dif-
ferent model comparisons, and how each comparison reacts to the process of
aggregation. Figure 6.1 shows both the full data and the aggregated data, where

5Technically, in the Bayesian framework random slopes can be included even for the aggregated
data. In this case the estimates will be informed entirely by the prior distribution. Therefore, in most
practical applications this approach is not useful.

6These data were generated using a Shiny app we developed to better understand these
model comparisons under different population parameters. The app can be found at https://

bayesianmixedmodels.shinyapps.io/mixedModelsMarkdown/ and the R-script for these specific
data at https://osf.io/tjgc8/.
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each color corresponds to a different participant. The data were simulated with
a medium fixed effect (ν = 0.5), random intercepts (σ2

α = 0.5), and random slopes
(σ2
θ = 1). The difference between the top-left and top-right panel clearly under-

scores the process of aggregating, where a lot of information is discarded. The
random slopes are evidenced by the different orientations of the lines in the plots
in the bottom row: some participants exhibit an increase from condition 1 to
condition 2, while for other participants this effect is reversed. To further demon-
strate the effect of aggregation, we present the results for all three comparisons,
for both the full and aggregated data.

The different model comparisons yield wildly different Bayes factors. For
comparison purposes we report the natural logarithm of the Bayes factor
throughout this manuscript. When log

(

BFA,B
)

> 0, Model A is preferred; when
log

(

BFA,B
)

< 0, Model B is preferred. First, consider the results for the full data
set:

1. The RM ANOVA comparison: log
(

BF4,3
)

= 10.81

2. The Oberauer comparison: log
(

BF6,5
)

= 0.04

3. The Rouder comparison: log
(

BF6,3
)

= 65.5

The RM ANOVA comparison on the full data highlights why it is important
to include random slopes whenever possible. The true difference between the
condition means is modest, and so is the sample size – yet this model compari-
son yields overwhelming evidence in favor of a fixed effect of condition, a result
caused by the presence and pronounced influence of the random slopes. This
behavior aligns with the inflation of Type 1 error probabilities in the frequentist
framework as demonstrated by Barr et al. (2013), who therefore advised against
performing the RM ANOVA comparison on the full data. Since the Oberauer
comparison controls for random slopes by including the random slopes term
in both models, it does not suffer from the overconfidence displayed in the RM
ANOVA comparison. The Rouder comparison yields extreme evidence in favor
of Model 6.6, but based on this comparison alone it is impossible to conclude
whether this evidence is due to the random slopes, the fixed effect, or both.

Now, consider the results for the aggregated data:

1. The RM ANOVA comparison: logBF4,3 = 0.2

2. The Oberauer comparison: logBF6,5 = 0.16

3. The Rouder comparison: logBF6,3 = −0.21

For the two comparisons where only one or none of the models include a ran-
dom slope (i.e., the Rouder comparison and the RM ANOVA comparison, respec-
tively), aggregation greatly impacts the Bayes factor. For both comparisons, the
previously overwhelming Bayes factor plummets to around 0, leaving it unde-
cided about which model best predicted the data. This demonstrates that ag-
gregation eliminates the presence of random slopes: for the Rouder comparison,
there is no longer any evidence for the alternative model, and for the RMANOVA
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Figure 6.1: Synthetic data for Example 1: the effect of aggregation. The top left panel presents the full
data set, and the top right panel the aggregated data, where the average value is taken per participant,
per condition. The bottom row presents the full data for five example participants, including their
condition means. Some participants display an increase as a result of the manipulation, whereas
other participants display a decrease. Note that the overall and participant-specific condition means
are exactly the same for both versions of the data. The different point colors in the top row correspond
to different participants.
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comparison there is no longer the inflation of the evidence in favor of a fixed ef-
fect.

In contrast, the Oberauer comparison appears relatively stable and is barely
in favor of Model 6.6 in both cases, since the two rival models both include the
random slopes. However, we should stress that conducting the Oberauer and
Rouder comparisons on aggregated data is unorthodox (i.e., the random slopes
estimates are entirely informed by the prior distribution), and that we present
these two Bayes factors merely as an illustration.

Taken together, these results suggest that there are two valid methods to test
for the presence of a fixed effect, and only the fixed effect, of condition in the
presence of random slopes: either performing the Oberauer comparison on the
full data, or performing the RM ANOVA comparison on the aggregated data. In
order to avoid the demonstrated inflation of the fixed effect when performing
the RM ANOVA comparison on the full data, we therefore only consider the this
comparison for the aggregated data and not the full data in the remainder of this
manuscript.

The considerations above motivate the following questions:

1. What are the relevant model comparisons for a one-factorial design?

(a) When is aggregation an appropriate procedure?

2. Should more models be considered than the ones described here?

3. If strictly interested in the fixed effect only, when should the RM ANOVA
comparison be used instead of the Oberauer comparison?

6.3.2 Example 2: The Effect of Measurement Error

For the second example, we again consider RTs of I = 20 participants in J = 2 con-
ditions. However, the measurements are done with an instrument that can either
measure quickly but inaccurately, or measure accurately but slowly. Thus, there
is a trade-off between the measurement error and the number of trials that can
be measured in the experiment. If this trade-off is perfectly balanced (i.e., the ob-
served condition means, observed participant means within each condition, and
the within-participant standard errors of the condition means are identical) does
it matter which setting we choose? In other words, can a noisy measurement in-
strument be compensated for by collectingmany data points per participant? The
purpose of this example is to demonstrate how the different model comparisons
behave as both the measurement error and number of trials decrease.

In order to implement the trade-off between number of trials and measure-
ment error, we can start with the data set that has 100 trials per participant, per
condition. Then, the average RT can be taken of every 10 trials a participant com-
pletes. This results in 10 scores per participant, per condition. For both of these
data sets, the participant means for each condition and the within-participant
standard errors for the fixed effect of condition in a hierarchical model are iden-
tical. The difference between these data sets lies in the trial level variance (i.e.,
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the residual variance). Multiple data sets can be created this way by using dif-
ferent numbers of trials to average across. Doing so illustrates how the different
model comparisons develop as the number of trials decreases, but the accuracy
of those measurements increases. When the number of averages equals 100, the
full data is used; when the number of averages equals 1, we obtain the fully ag-
gregated data set. We also create intermediate data sets by taking 50, 10, 5, and
2 averages per participant, per condition. Since the RM ANOVA comparison is
performed on the aggregated data and would remain identical, we consider only
the Oberauer and Rouder comparisons for these different versions of the data.

Figure 6.2 shows how each Bayes factor changes as the number of trials de-
creases and the accuracy of each individual trial increases. The three panels cor-
respond to three different models that generated the data. In the first panel, data
were simulated under the model without a fixed effect or random slopes (i.e.,
Model 6.3). In the second panel, data were simulated for a fixed effect only (i.e.,
Model 6.4). In the third panel, data were simulated under a fixed effect and ran-
dom slopes (i.e., Model 6.6). The code for the data generation and analysis is
available at https://osf.io/jsgm3/.

The effect of decreasing the number of trials in the data is the most pro-
nounced in the Rouder comparison, where the log Bayes factor gets less decisive
(i.e, closer to 0) as the data set goes towards full aggregation in all three settings.
As was illustrated in Example 1, the process of aggregation confounds the ran-
dom slope variance with residual variance. This results in a less decisive Bayes
factor for the Rouder comparison, as only one of the two models being compared
includes the random slopes term. In the top panel, the data were generated under
the null model of the Rouder comparison, and in the bottom panel the data were
generated under the alternative model of that comparison. For these settings, it is
not surprising that those models receive the most support in their favor, although
themagnitudes of the Bayes factors seem too extreme in light of the relatively low
sample sizes.

Surprisingly, the middle panel still depicts overwhelming evidence in favor
of the alternative model (i.e., model 6), even though the data generating model
did not include random effects. The Oberauer comparison in the middle panel
also depicts evidence in favor of model 6, but to a much lesser extent than the
Rouder comparison. Since both comparisons have the same alternative model,
this difference in behavior is due to the null model. It seems that the null model
in the Oberauer comparison (i.e., model 5) is able to model the data better than
the null model in the Rouder comparison (i.e., model 3). This suggests that a
random slopes term can, to some degree, account for a fixed effect in the data.
Moreover, by definition, adding a random effect inherently increases a models
robustness to the added variance induced by outliers.

The Oberauer comparison is relatively stable in the top and bottom panel,
which confirms the balance between the number of trials and their accuracy.
Since this comparison is between twomodels that both contain the random slopes
factor, these Bayes factors do not reflect the effect of averaging on the random
slope variance. However, the Oberauer comparison is not entirely stable across
the different levels of averaging.
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Figure 6.2: Bayes factors for Example 2 across the various comparisons, for different levels of aggre-
gation. The y-axis shows log(BFA,N ), where A refers to the alternative model, and N refers to the null
model of that specific comparison. The lower x-axis denotes how many averages are taken; 100 indi-
cates the use of the full data, and 1 indicates the use of the aggregated data. The upper x-axis denote
the measurement error, which decreases as the number of trials decreases. The Rouder comparison is
highly influenced by the presence or absence of random slopes, although this sensitivity dramatically
decreases as the the number of trials decreases. The Oberauer comparison remains relatively stable
around values of −1.5 and 5 in the top and bottom panel, respectively.
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We suspect that the instability of the Oberauer comparison is largely due to
a component of Bayesian mixed modeling that we have not addressed so far: the
prior distribution. Until now, we have used the default settings for the scale set-
tings of the multivariate Cauchy prior distributions, which are 0.5 and 1 for the
fixed effects and random effects, respectively. The widths of these distributions
reflect which standardized effect sizes are to be expected under each model. The
standardization of the effect sizes is influenced by the measurement error, since
observing the same mean difference between conditions, but with a smaller mea-
surement error, results in a larger effect size. Thus, the prior distribution ought
to reflect information about the expected measurement error: when this error is
small, we can expect larger effect sizes and the prior distribution should be wider,
and vice versa.

We suspect that using the same prior distribution for each level of aggregation
is in part what leads to the extreme levels of evidence obtained for the full data
sets in the Rouder comparisons, which seems overly sensitive to the presence
of absence of random slopes in the data. In the case where there is only a fixed
effect and no random slopes (middle panel of Figure 6.2), the Rouder comparison
yields far more decisive Bayes factors than the Oberauer comparison, which does
not seem desirable. We therefore wish to underscore the importance of having
a sensible prior specification (i.e., accounting for the trial level variance) when
random slopes are considered in only one of the two models under consideration.

Finally we focus on the difference between the Rouder and the Oberauer com-
parisons. In the former comparison, the null model (Model 6.3) postulates that
none of the participants is affected by condition, whereas the alternative model
(Model 6.6) postulates that participants are affected differently. For the Oberauer
comparison, both the null model (Model 6.5) and the alternative model (Model
6.6) postulate that participants are affected differently by condition, but only the
latter model postulates an overall effect. When there are more observations per
participant, the error variance and the random slope variance can be disentan-
gled more easily. Since the Rouder comparison focuses more on individual dif-
ferences than the Oberauer comparison, collecting more data points will lead to
more decisive Bayes factors in the Rouder comparison than in the Oberauer com-
parison.

The above considerations motivate the following questions:

1. How should the prior distributions for the fixed and random effect be con-
structed?

(a) What is a meaningful standardized effect size in this scenario?

(b) How can we construct an effect size that is meaningfully standardized?
In other words, what variance should we standardize by?

2. Since there is overlap of the predictive space of Model 4 (fixed effect, but
no random effect) and Model 5 (random effect, but no fixed effect), there
is a certain degree of model mimicry (see also Figure 6.2); can we mean-
ingfully disentangle a fixed effect and random effect, both statistically and
theoretically?
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6.3.3 Example 3: A Random Interaction Effect

Up to now, our discussion on mixed models has only dealt with the relatively
simple case of a single independent variable of interest (e.g., condition). The
purpose of the present example is to highlight how mixed model comparisons
are affected by the presence of multiple independent variables of interest, and
to explore which models to consider when testing for the presence of an inter-
action effect. Due to the addition of a second independent variable of interest,
the possibility emerges to test for an interaction effect between the two variables
that, just like a main effect, can have a fixed and a random component. Just as
for the main effects, each cell of the interaction (i.e., each combination of levels
from each factor) requires multiple measurements within each participant for the
random interaction effect to be identifiable.

To demonstrate the decisions that arise when testing for an interaction effect,
we consider a real world example by Lukács et al. (2020).7 In this scenario, the
hold-duration of a response button was measured in I = 116 participants, who
completed an item recognition task where they used either thumb or index fin-
ger (factor A, with two levels) to respond to either a probed or irrelevant item
(factor B, with two levels). For the RM ANOVA comparison, we can consider the
aggregated case with one observation per participant, per cell of the design (i.e.,
per level of A, per level of B). For instance, the aggregated data contains one ob-
servation for the hold-duration of participant 4, where they responded with their
thumb to an irrelevant item. Figure 6.3 presents these aggregated data.

For aggregated data, the analysis of choice is typically a RM ANOVA, where
only the fixed effects of A, B, and A×B are considered. However, despite of the
aggregation, it is possible to fit random slopes for A and B, because there are
2 observations for each level of A, and 2 observations for each level of B, for
each participant. On the other hand, the aggregation prevents the calculation of
random slopes for the interaction effect as there is only one observation for each
combined cell of A×B.8 Considering the full data instead of the aggregated data
enables the fitting of random slopes for main and interaction effects. Figure 6.4
presents the full data that contains multiple observations per cell of the research
design.

In this example, we are interested in whether there is an interaction effect
A×B, as the original authors postulated that participants might keep the response
button pressed for a longer period of timewhen responding to an irrelevant probe
(factor B), and that this difference in hold-duration might differ per response
mechanism (factor A). Because we previously defined the models in a scenario
with only a single variable of interest, we will alter the models under considera-

7In fact, a forum post commenting on diverging results in the frequentist and the Bayesian RM
ANOVA provided additional motivation for the current project. In the post, the p-value yielded
evidence in favor of the interaction effect, while the Bayesian RM ANOVA yielded evidence against
the interaction effect. Upon investigating the issue, it became clear that inference for an interaction
effect, in the context of mixed effects, is not a straightforward endeavor.

8In general terms, aggregation of the data limits random slopes to only be fitted to (K − 1)-order
effects, whereK is the number of categorical independent variables measured within each participant.
In the case above, K = 2, so we can still fit random slopes for first order effects.
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Figure 6.3: Aggregated data for Example 3, where we consider only the average observation per
participant, per cell of the design. Each point in the plot represents one aggregated hold-duration.
The left panel has factor A on the x-axis and factor B indicated by the colors of the points. The right
panel has factor B on the x-axis and factor A indicated by the colors of the points. The lines connect
the condition means in order to illustrate whether or not there is an interaction effect. If the two lines
are not parallel, this is an indication of an interaction effect. There appears to be a main effect of
factor A (i.e., responses made with the thumb are faster than those made with the index finger).

tion. We list the models under consideration in Table 6.1, and below we describe
the process of constructing these models.

We start with the commonalities. Previously, this was only µ and σǫ, but
now this includes all parameters that are essential: the main effects of A and B
(due to marginality; see also Wagenmakers, Love, et al., 2018b, and references
therein), and the random intercepts for each participant (due to the repeated
measures design). This defines a new version ofModel 6.1. Next, we add the fixed
interaction effect of the two factors, A×B, and create a new version of Model 6.2.
However, these two models can also include random slopes for the main effect of
A and B, since these are now identifiable. Thus, we can define Model 3 and 4,
which are similar to the updated Models 1 and 2, but with added random slopes
for A and B. Finally, we can add the random slopes for the interaction effect to
these newly defined models 3 and 4, and create the updated versions of models
6.5 and 6.6, respectively.

With the updated models, we can consider the different model comparisons
again. The RM ANOVA comparison, which is based on the aggregated data, can
be either between Model 1 and Model 2, or between Model 3 and Model 4, based
on whether or not the random effects for A and B are included. We will refer to
the former comparison as the “minimal” RM ANOVA comparison, as it includes
no random slopes at all. As before, both versions of the RM ANOVA take the
approach of minimizing the random effects through aggregation, in order to fo-
cus on the fixed effect at hand. The Oberauer comparison (Model 5 vs Model 6),
on the other hand, accounts for the random effect by including it in both models
that are compared, such that the only difference between the models is the fixed
effect of interest. The Rouder comparison (Model 3 vs Model 6) makes a differ-
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Figure 6.4: Full data for Example 3, where we consider all observations per participant, per cell of
the design. The distributions of hold-duration for five example participants for each combination of
conditions A and B are shown in two rows. The top row shows factor A on the x-axis, and indicates
factor B with the different colors. The bottom row shows factor B on the x-axis, and indicates factor A
with the different colors. The points indicate the participant means for level of A and B. The lines are
drawn between the points to indicate the change in hold-duration. If these two lines are not parallel,
this is an indication of an interaction effect. A random interaction effect then means that different
participants exhibit varying degrees of the two lines not being parallel.

ent statement. Analogous to the earlier examples, the difference between the two
models under consideration is the combination of both the fixed and random ef-
fect. It therefore quantifies evidence for the presence or absence of a general effect
of condition.

The differences between these four comparisons are again reflected in the di-
verging Bayes factors:9

1. The minimal RM ANOVA comparison: logBF2,1 = −1.75

2. The RM ANOVA: logBF4,3 = 2.26

3. The Oberauer comparison: logBF6,5 = −1.59

4. The Rouder comparison: logBF6,3 = −34.35

The RM ANOVA comparison is the only case where there is evidence in favor
of an interaction effect. Interestingly, there is a discrepancy between the two RM
ANOVA comparisons, which means that including the random effects for A and
B has consequences for the interaction effect. A possible explanation for this is

9The R-script with the analysis code can be found at https://osf.io/cw5jd/.
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6.3. Examples

Model Specification
(1) A + B + id
(2) A + B + id + A×B
(3) A + B + id + B×id + A×id
(4) A + B + id + A×B + B×id + A×id
(5) A + B + id + B×id + A×id + A×B×id
(6) A + B + id + A×B + B×id + A×id + A×B×id

Table 6.1: Model definitions for a 2x2 design when analyzing an interaction effect. All models contain
the fixed effect of A and B, and the random intercept for each participant. In the model specification,
“id” refers to a random effect: “+id” refers to the random intercept, while “×id” refers to the random
slope (e.g., B×id denotes random slopes for the main effect of B). Models 2, 4, and 6 contain the
fixed interaction effect of A and B. Models 3-6 contain random slopes for the main effects of A and B.
Models 5 and 6 contain random slopes for the interaction effect of A and B.

the presence of a strong random and fixed effect for A. This result stands in con-
trast to the frequentist results in Barr (2013), who demonstrated that excluding
the non-critical random slopes yields similar results to the approach that does
include the non-critical slopes.

The Oberauer comparison agrees with the minimal RM ANOVA comparison
and provides moderate evidence against the presence of a fixed interaction ef-
fect. The Rouder comparison also agrees but yields a much stronger Bayes factor,
which implies that there is also no evidence for a random interaction effect. Table
6.2 shows all possible Bayes factor comparisons between the 6 models outlined
here, for both the full and aggregated data. From these comparisons, it is clear
that there is evidence in favor of random effects of A and/or B, because of the
overwhelming Bayes factors comparing Models 3, 4, 5, and 6 (i.e., the models
with the random effects of A and B) to Models 1 and 2 (i.e., the models without
the random effects of A and B). For instance, while Model 1 is marginally better
thanModel 2 for the full data (log(BF1,2) = 1.03), Model 1 is heavily outperformed
by Model 3 (log(BF1,3) = −4286.09). Based on the table, Model 4 (i.e., the model
with the random and fixed main effects) performed the best for both versions of
the data: all the Bayes factors in row 4 are positive, indicating that there is at
least moderate support for Model 4 compared to the model in the column, for
both aggregated and full data.

The considerations above motivate the following questions:

1. What are the relevantmodel comparisons for amain effect in a two-factorial
design?

2. What are the relevant model comparisons for an interaction effect in a two-
factorial design?

(a) Should the random main effects be included in all comparisons?

3. How can we explain the difference between the two versions of the RM
ANOVA comparison?
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4. For this example, is it theoretically meaningful to analyze random main
effects when the data is aggregated?

Model (1) (2) (3) (4) (5) (6)
(1) 1.03 -4286.09 -4286.47 -4253.33 -4251.74
(2) -1.75 -4287.12 -4287.50 -4254.36 -4252.77
(3) 248.67 250.42 -0.38 32.76 34.35
(4) 250.93 252.68 2.26 33.14 34.73
(5) 247.84 249.59 -0.83 -3.09 1.59
(6) 250.67 252.42 2.00 -0.26 2.83

Table 6.2: Bayes factors for all pairs of models defined in Table 6.1. The cell entries are log(BFR,C ),
where R refers to the model in the row, and C refers to the model in the column. Bayes factors above
the diagonal are for the full data, and under the diagonal are for the aggregated data.

6.4 Concluding Comments

This manuscript illustrated the three main choices faced by researchers who ap-
ply mixed models: when and why to aggregate, which model comparisons to use
when testing hypotheses about the presence or absence of an effect, and whether
or not to collect more (albeit noisier) observations per participant. Testing for a
fixed effect is not straightforward in the presence of random effects, and we pre-
sented three approaches to do so. First, the data can be aggregated, which mini-
mizes the impact of the random effects in the inference for a fixed effect. Second,
twomodels can be compared that both include the random effects, which controls
for the random effects. Third, the fixed and random effect can be considered to-
gether, instead of trying to dissect the general effect into its constituent elements.
Each of these three approaches have their own implications for the three main
choices, and –especially in the case where more than one variable is considered–
the consequences of these different choices can be profound.

Our aim is for this manuscript to initiate a discussion on best practices in
Bayes factor model comparison in mixed models. Table 6.3 outlines the specific
questions and their relevant examples. Mixed model comparisons are surpris-
ingly intricate, and a systematic discussion of the most pressing topics is long
overdue. We hope that this discussion will result in broad consensus on best
practices, even if this consensus is that those who apply mixed models should be
aware what models are being compared and, consequently, what questions are
being answered.
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6.4. Concluding Comments

Question Related Example

What are the appropriate model comparisons for a one-
factorial design?

1, 2

What are the appropriate model comparisons for a two-
factorial design?

3

What is the effect of aggregation? 1, 2

How should prior distributions be specified in the context
of random effects?

2

Is it desirable to have different inference for many noisy
observations, compared to few accurate observations?

2

How to cope with a growing model space, as the design
becomes more complex?

3

Table 6.3: Summary of the different modeling questions faced when conducting a Bayes factor mixed
model comparison. The right column indicates which of the presented examples are relevant to each
question.
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Chapter 7

Bayesian Inference for

Kendall’s Rank Correlation

Coefficient

Abstract

This chapter outlines a Bayesian methodology to estimate and test the Kendall rank cor-
relation coefficient τ. The nonparametric nature of rank data implies the absence of a
generative model and the lack of an explicit likelihood function. These challenges can be
overcome by modeling test statistics rather than data (Johnson, 2005). We also introduce
a method for obtaining a default prior distribution. The combined result is an inferential
methodology that yields a posterior distribution for Kendall’s τ.

7.1 Introduction

One of the most widely used nonparametric tests of dependence between two
variables is the rank correlation known as Kendall’s τ (Kendall, 1938). Com-
pared to Pearson’s ρ, Kendall’s τ is robust to outliers and violations of normal-
ity (Kendall & Gibbons, 1990). Moreover, Kendall’s τ expresses dependence in
terms of monotonicity instead of linearity and is therefore invariant under rank-
preserving transformations of the measurement scale (Kruskal, 1958; Wasser-
man, 2006). As expressed by Harold Jeffreys (1961, p. 231): “(...) it seems to
me that the chief merit of the method of ranks is that it eliminates departure
from linearity, and with it a large part of the uncertainty arising from the fact
that we do not know any form of the law connecting X and Y”. Here we apply
the Bayesian inferential paradigm to Kendall’s τ. Specifically, we define a default
prior distribution on Kendall’s τ, obtain the associated posterior distribution,
and use the Savage-Dickey density ratio to obtain a Bayes factor hypothesis test
(Dickey & Lientz, 1970; Jeffreys, 1961; Kass & Raftery, 1995).

This chapter is published as van Doorn, J.B., Ly, A., Marsman, M., & Wagenmakers, E-J. (2018).
Bayesian Inference for Kendall’s Rank Correlation Coefficient. The American Statistician, 72, 303–308.
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7. Bayesian Inference for Kendall’s Rank Correlation Coefficient

7.1.1 Kendall’s τ

Let X = (x1, ...,xn) and Y = (y1, ..., yn) be two data vectors each containing mea-
surements of the same n units. For example, consider the association between
French and math grades in a class of n = 3 children: Tina, Bob, and Jim; let
X = (8,7,5) be their grades for a French exam and Y = (9,6,7) be their grades for
a math exam. For 1 ≤ i < j ≤ n, each pair (i, j) is defined to be a pair of differences
(xi −xj ) and (yi −yj ). A pair is considered to be concordant if (xi −xj ) and (yi −yj )
share the same sign, and discordant when they do not. In our data example, Tina
has higher grades on both exams than Bob, which means that Tina and Bob are
a concordant pair. Conversely, Bob has a higher score for French, but a lower
score for math than Jim, which means Bob and Jim are a discordant pair. The
observed value of Kendall’s τ, denoted τobs, is defined as the difference between
the number of concordant and discordant pairs, expressed as proportion of the
total number of pairs:

τobs =

∑n
1≤i<j≤nQ((xi , yi ), (xj , yj ))

n(n− 1)/2 , (7.1)

where the denominator is the total number of pairs and Q is the concordance
indicator function:

Q((xi , yi )(xj , yj )) =









−1 if (xi − xj )(yi − yj ) < 0

+1 if (xi − xj )(yi − yj ) > 0
. (7.2)

Table 7.1 illustrates the calculation for our small data example. Applying
Equation (7.1) gives τobs = 1/3, an indication of a positive correlation between
French and math grades.

i j (xi − xj ) (yi − yj ) Q

1 2 8-7 9-6 1
1 3 8-5 9-7 1
2 3 7-5 6-7 -1

Table 7.1: The pairs (i, j) for 1 ≤ i < j ≤ n and the concordance indicator function Q for the data
example where X = (8,7,5) and Y = (9,6,7).

When τobs = 1, all pairs of observations are concordant, and when τobs = −1,
all pairs are discordant. Kruskal (1958) provides the following interpretation of
Kendall’s τ: in the case of n = 2, suppose we bet that y1 < y2 whenever x1 < x2,
and that y1 > y2 whenever x1 > x2; winning $1 after a correct prediction and
losing $1 after an incorrect prediction, the expected outcome of the bet equals τ.
Furthermore, Griffin (1958) has illustrated that when the ordered rank-converted
values of X are placed above the rank-converted values of Y and lines are drawn
between the same numbers, Kendall’s τobs is given by the formula: 1 − 4z

n(n−1) ,
where Z is the number of line intersections; see Figure 7.1 for an illustration of
this method using our example data of French andmath grades. These tools make
for a straightforward and intuitive calculation and interpretation of Kendall’s τ.
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8 7 5French grades :

9 6 7Math grades :

1 2 3Ranks :

Ranks : 1 3 2

Figure 7.1: A visual interpretation of Kendall’s τobs through the formula: 1 − 4z
n(n−1) , where z is the

number of intersections of the lines. In this case, n = 3, z = 1, and τobs = 1/3.

Despite these appealing properties and the overall popularity of Kendall’s τ,
a default Bayesian inferential paradigm is still lacking because the application of
Bayesian inference to nonparametric data analysis is not trivial. The main chal-
lenge in obtaining posterior distributions and Bayes factors for nonparametric
tests is that there is no generative model and no explicit likelihood function. In
addition, Bayesian model specification requires the specification of a prior dis-
tribution, and this is especially important for Bayes factor hypothesis testing;
however, for nonparametric tests it can be challenging to define a sensible de-
fault prior. Though recent developments have been made in two-sample non-
parametric Bayesian hypothesis testing with Dirichlet process priors (Borgwardt
& Ghahramani, 2009; Labadi, Masuadi, & Zarepour, 2014) and Pòlya tree pri-
ors (Y. Chen & Hanson, 2014; Holmes, Caron, Griffin, & Stephens, 2015), this
chapter will outline a different approach, one that permits an intuitive and direct
interpretation.

7.1.2 Modeling Test Statistics

In order to compute Bayes factors for Kendall’s τ we start with the approach pio-
neered by Johnson (2005) and Yuan & Johnson (2008). These authors established
bounds for Bayes factors based on the sampling distribution of the standardized
value of τ, denoted by T ∗, which will be formally defined in section 7.2.1. Using
the Pitman translation alternative, where a non-centrality parameter is used to
distinguish between the null and alternative hypotheses (Randles &Wolfe, 1979),
Johnson and colleagues specified the following hypotheses:

H0 : θ = θ0, (7.3)

H1 : θ = θ0 +
∆√
n
, (7.4)
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7. Bayesian Inference for Kendall’s Rank Correlation Coefficient

where θ is the true underlying value of Kendall’s τ, θ0 is the value of Kendall’s
τ under the null hypothesis, and ∆ serves as the non-centrality parameter which
can be assigned a prior distribution. The limiting distribution of T ∗ under both
hypotheses is normal (Hotelling & Pabst, 1936; Noether, 1955; Chernoff & Sav-
age, 1958), with likelihoods

H0 : T
∗ ∼N (0,1)

H1 : T
∗ ∼N

(

3∆

2
,1

)

.

The prior on ∆ is specified by Yuan and Johnson as

∆ ∼N (0,κ2),

where κ is used to specify the expectation about the size of the departure from
the null-value of ∆. This leads to the following Bayes factor:

BF01 =

√

1+
9

4
κ2 exp








− κ

2T ∗2

2κ2 + 8
9








. (7.5)

Next, Yuan and Johnson calculated an upper bound on BF10, (i.e., a lower bound
on BF01) by maximizing over the parameter κ.

7.1.3 Challenges

Although innovative and compelling, the approach advocated by Yuan & John-
son (2008) does have a number of non-Bayesian elements, most notably the data-
dependent maximization over the parameter κ that results in a data-dependent
prior distribution. Moreover, the definition of H1 depends on n: as n→∞, H1

and H0 become indistinguishable and lead to an inconsistent inferential frame-
work.

Our approach, motivated by the earlier work by Johnson and colleagues,
sought to eliminate κ not by maximization but by a method we call “paramet-
ric yoking” (i.e., matching with a prior distribution for a parametric alternative).
In addition, we redefined H1 such that its definition does not depend on sample
size. As such, ∆ becomes synonymous with the true underlying value of Kendall’s
τ when θ0 = 0.

7.2 Methods

7.2.1 Defining T ∗

As mentioned above, Yuan & Johnson (2008) use the standardized version of τobs,
denoted T ∗ (Kendall, 1938) which is defined as follows:

T ∗ =

∑n
1≤i<j≤nQ((xi , yi ), (xj , yj ))
√

n(n− 1)(2n+5)/18
. (7.6)
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7.2. Methods

Here the numerator contains the concordance indicator function Q. Thus, T ∗

is not necessarily situated between the traditional bounds [-1,1] for a correla-

tion; instead, T ∗ has a maximum of

√

9n(n−1)
4n+10 and a minimum of −

√

9n(n−1)
4n+10 . This

definition of T ∗ enables the asymptotic normal approximation to the sampling
distribution of the test statistic (Kendall & Gibbons, 1990).

7.2.2 Prior Distribution through Parametric Yoking

In order to derive a Bayes factor for τ we first determine a default prior for τ
through what we term parametric yoking. In this procedure, a default prior
distribution is constructed by comparison to a parametric alternative. In this
case, a convenient parametric alternative is given by Pearson’s correlation for
bivariate normal data. Ly, Verhagen, & Wagenmakers (2016) use a symmetric
beta prior distribution (α = β) on the domain [-1,1], that is:

p(ρ) =
21−2α

B(α,α) × (1− ρ
2)(α−1),ρ ∈ (−1,1), (7.7)

where B is the beta function. For bivariate normal data, Kendall’s τ is related to
Pearson’s ρ by Greiner’s relation (Greiner, 1909; Kruskal, 1958):

τ =
2

π
arcsin(ρ). (7.8)

We can use this relationship to transform the beta prior in (7.7) on ρ to a prior
on τ given by:

p(τ) = π
2−2α

B(α,α) × cos
(
πτ

2

)(2α−1)
,τ ∈ (−1,1). (7.9)

In the absence of strong prior beliefs, Jeffreys (1961) proposed a uniform distri-
bution on ρ, that is, a stretched beta with α = β = 1. This induces a non-uniform
distribution on τ, that is,

p(τ) =
π

4
cos

(
πτ

2

)

. (7.10)

Values of α , 1 can be specified to induce different prior distributions on τ. In
general, values of α > 1 increase the prior mass near τ = 0, whereas values of α < 1
decrease the prior mass near τ = 0. When the focus is on parameter estimation
instead of hypothesis testing, we may follow Jeffreys (1961) and use a stretched
beta prior on ρ with α = β = 1/2. As is easily confirmed by entering these values
in (7.9), this choice induces a uniform prior distribution for Kendall’s τ.1 The
parametric yoking framework can be extended to other prior distributions that
exist for Pearson’s ρ (e.g., the inverse Wishart distribution; Berger & Sun, 2008;
Gelman, 2013), by transforming ρ with the inverse of the expression given in
(7.8):

ρ = sin
(
πτ

2

)

.

1Additional examples and figures of the stretched beta prior, including cases where α , β, are
available online at https://osf.io/b9qhj/.
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7. Bayesian Inference for Kendall’s Rank Correlation Coefficient

7.2.3 Posterior Distribution and Bayes Factor

Removing
√
n from the specification of H1 by substituting ∆

√
n for ∆, the like-

lihood function under H1 equals a normal density with mean µ = 3
2∆
√
n and

standard deviation σ = 1:

p(T ∗|θ0 +∆) =
1√
2π

exp

(

− (T
∗ − (3/2)∆√n)2

2

)

. (7.11)

Combining this normal likelihood function with the prior from (7.9) yields the
posterior distribution for Kendall’s τ. Next, Bayes factors can be computed as the
ratio of the prior and posterior ordinate at the point under test (i.e., the Savage-
Dickey density ratio, Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010). In the case of testing independence, the point under test is

τ = 0, leading to the following ratio: BF01 =
p(τ=0|y)
p(τ=0)

, which is analogous to:

BF01 =
p(T ∗|θ0)

∫

p(T ∗|θ0 +∆)p(∆)d∆
, (7.12)

and in the case of Kendall’s τ translates to

BF01 =
exp(−T ∗22 )

1∫

−1
exp

(

− (T ∗−(3/2)τ√n)2
2

)(

π 2−2α
B(α,α) × cos

(
πτ
2

)(2α−1))
dτ

. (7.13)

7.2.4 Verifying the Asymptotic Normality of T ∗

Our method relies on the asymptotic normality of T ∗, a property established
mathematically by Hoeffding (1948). For practical purposes, however, it is in-
sightful to assess the extent to which this distributional assumption is appro-
priate for realistic sample sizes. By considering all possible permutations of the
data, deriving the exact cumulative density of T ∗, and comparing the densities to
those of a standard normal distribution, Ferguson, Genest, & Hallin (2000) con-
cluded that the normal approximation holds under H0 when n ≥ 10. But what if
H0 is false?

Here we report a simulation study designed to assess the quality of the nor-
mal approximation to the sampling distribution of T ∗ when H1 is true. With
the use of copulas, 100,000 synthetic data sets were created for each of several
combinations of Kendall’s τ and sample size n.2 For each simulated data set, the
Kolmogorov-Smirnov statistic was used to quantify the fit of the normal approx-
imation to the sampling distribution of T ∗.3 Figure 7.2 shows the Kolmogorov-
Smirnov statistic as a function of n, for various values of τ when data sets were
generated from a bivariate normal distribution (i.e., the normal copula). Similar

2For more information on copulas see Nelsen (2006), Genest & Favre (2007), and Colonius (in
press).

3R-code, plots, and further details are available online at https://osf.io/b9qhj/.
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results were obtained using Frank, Clayton, and Gumbel copulas. As is the case
under H0 (e.g., Ferguson et al., 2000; Kendall & Gibbons, 1990), the quality of
the normal approximation increases exponentially with n. Furthermore, larger
values of τ necessitate larger values of n to achieve the same quality of approxi-
mation.

The means of the normal distributions fit to the sampling distribution of T ∗

are situated at the point 3
2∆
√
n. The data sets from this simulation can also be

used to examine the variance of the normal approximation. UnderH0 (i.e., τ = 0),
the variance of these normal distributions equals 1. As the population correlation
grows (i.e., |τ| → 1), the number of permissible rank permutations decreases and
so does the variance of T ∗. The upper bound of the sampling variance of T ∗ is a
function of the population value for τ (Kendall & Gibbons, 1990):

σ2
T ∗ ≤

2.5n(1− τ2)
2n+5

. (7.14)

As shown in the online appendix, our simulation results provide specific values
for the variance which respect this upper bound. This result has ramifications for
the Bayes factor. As the test statistic moves away from 0, the variance falls be-
low 1, and the posterior distribution will be more peaked on the value of the test
statistic than when the variance is assumed to equal 1. This results in increased
evidence in favor of H1, so that our proposed procedure is somewhat conserva-
tive. However, for n ≥ 20, the changes in variance will only surface in cases where
there already exists substantial evidence for H1 (i.e., BF10 ≥ 10).

7.3 Results

7.3.1 Bayes Factor Behavior

Now that we have determined a default prior for τ and combined it with the
specified Gaussian likelihood function, computation of the posterior distribu-
tion and the Bayes factor becomes feasible. For an uninformative prior on τ (i.e.,
α = β = 1), Figure 7.3 illustrates BF10 as a function of n, for three values of τobs.
The lines for τobs = 0.2 and τobs = 0.3 show that BF10 for a trueH1 increases expo-
nentially with n, as is generally the case. For τobs = 0, the Bayes factor decreases
as n increases.

7.3.2 Comparison to Pearson’s ρ

In order to put the result in perspective, the Bayes factors for Kendall’s tau (i.e.,

BFτ10) can be compared to those for Pearson’s ρ (i.e., BF
ρ
10). The Bayes factors

for Pearson’s ρ are based on Jeffreys (1961, see also Ly et al., 2016), who used
the uniform prior on ρ. Figure 7.4 shows that the relationship between BFτ10
and BF

ρ
10 for normal data is approximately linear as a function of sample size. In

addition, and as one would expect due to the loss of information when continuous

values are converted to coarser ranks, BFτ10 < BF
ρ
10 in the case of evidence in favor
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Figure 7.2: Quality of the normal approximation to the sampling distribution of T ∗, as assessed by
the Kolmogorov-Smirnov statistic. As n grows, the quality of the normal approximation increases
exponentially. Larger values of τ necessitate larger values of n to achieve the same quality of approx-
imation. The grey horizontal line corresponds to a Kolmogorov-Smirnov statistic of 0.038 (obtained
when τ = 0 and n = 10), for which Ferguson et al. (2000, p. 589) deemed the quality of the normal
approximation to be “sufficiently precise for practical purposes”.

of H1 (left panel of Figure 7.4). When evidence is in favor of H0, i.e. τ = 0,

BFτ10 and BF
ρ
10 perform similarly (right panel of Figure 7.4).

7.3.3 Real Data Example

Willerman, Schultz, Rutledge, & Bigler (1991) set out to uncover the relation be-
tween brain size and IQ. Across 20 participants, the authors observed a Pearson’s
correlation coefficient of r = 0.51 between IQ and brain size, measured in MRI
count of gray matter pixels. The data are presented in the top left panel of Figure

7.5. Bayes factor hypothesis testing of Pearson’s ρ yields BF
ρ
10 = 5.16, which is

illustrated in the middle left panel. This means the data are 5.16 times as likely
to occur under H1 than under H0. When applying a log-transformation on the
MRI counts (after subtracting the minimum value minus 1), however, the linear
relation between IQ and brain size is less strong. The top right panel of Figure
7.5 presents the effect of this monotonic transformation on the data. The mid-

dle right panel illustrates how the transformation decreases BF
ρ
10 to 1.28. The

bottom left panel presents our Bayesian analysis on Kendall’s τ, which yields a
BFτ10 of 2.17. Furthermore, the bottom right panel shows the same analysis on
the transformed data, illustrating the invariance of Kendall’s τ against mono-
tonic transformations: the inference remains unchanged, which highlights one of
Kendall’s τ most appealing features.
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Figure 7.3: Relation between BF10 and sample size (3 ≤ n ≤ 150) for three values of Kendall’s τ.
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Figure 7.5: Bayesian inference for Kendall’s τ illustrated with data on IQ and brain size (Willerman et
al. 1991). The left column presents the relation between brain size and IQ, analyzed using Pearson’s
ρ (middle panel) and Kendall’s τ (bottom panel). The right column presents the results after a log
transformation of brain size. Note that the transformation affects inference for Pearson’s ρ, but does
not affect inference for Kendall’s τ.

7.4 Concluding Comments

This chapter outlined a nonparametric Bayesian framework for inference about
Kendall’s tau. The framework is based on modeling test statistics and assigning
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a prior by means of a parametric yoking procedure. The framework produces a
posterior distribution for Kendall’s tau, and –via the Savage-Dickey density ratio
test– also yields a Bayes factor that quantifies the evidence for the absence of a
correlation.

Our general procedure (i.e., modeling test statistics and assigning a prior
through parametric yoking) is relatively general and may be used to facilitate
Bayesian inference for other nonparametric tests as well. For instance, Serfling
(1980) offers a range of test statistics with asymptotic normality to which our
framework may be expanded, whereas Johnson (2005) has explored the model-
ing of test statistics that have non-Gaussian limiting distributions.
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Chapter 8

Bayesian Estimation of

Kendall’s τ Using a Latent

Normal Approach

Abstract

The rank-based association between two variables can be modeled by introducing a latent
normal level to ordinal data. We demonstrate how this approach yields Bayesian inference
for Kendall’s τ, improving on a recent Bayesian solution based on its asymptotic proper-
ties.

8.1 Introduction

Kendall’s τ is a popular rank-based correlation coefficient. Compared to Pearson’s
ρ, Kendall’s τ is robust to outliers, invariant under monotonic transformations,
and has an intuitive interpretation (Kendall & Gibbons, 1990). Let x = (x1, ...,xn)
and y = (y1, ..., yn) be two data vectors each containing ranked measurements of
the same n units. For instance, x could be the rank ordered scores on a math
exam and y the rank ordered scores on a geography exam, for n test-takers. A
concordant pair is defined as a pair of subjects (i, j) where subject i has a higher
score on x and y compared to subject j , whereas a discordant pair is defined as
one where i scores higher on y, but j scores higher on x, or the other way around.
Kendall’s τ is defined as the difference between the number of concordant and
discordant pairs, expressed as proportion of the total number of pairs:

τ =

∑n
1≤i<j≤nQ((xi , yi ), (xj , yj ))

n(n− 1)/2 , (8.1)

where the denominator is the total number of pairs and Q is the concordance
indicator function, which is defined by:

Q((xi , yi )(xj , yj )) =









−1 if (xi − xj )(yi − yj ) < 0,

+1 if (xi − xj )(yi − yj ) > 0,
(8.2)

This chapter is published as van Doorn, J.B., Ly, A., Marsman, M., & Wagenmakers, E.–J. (2019).
Bayesian Estimation of Kendall’s tau Using a Latent Normal Approach. Statistics and Probability Let-
ters, 145, 268–272. Also available as ArXiv preprint: https://arxiv.org/abs/1703.01805
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8. Bayesian Estimation of Kendall’s τ Using a Latent Normal Approach

which returns −1 if a pair is discordant, and returns +1 if a pair is concordant.
However, due to the nonparametric nature of Kendall’s τ and the lack of a likeli-
hood function for the data, Bayesian inference is not trivial.

An innovative method for overcoming this problem was proposed by Johnson
(2005), and involves the modeling of the test statistic itself, rather than the data.
This method has been applied to Kendall’s τ by Yuan & Johnson (2008), and was
recently developed by van Doorn, Ly, Marsman, & Wagenmakers (2018). The
inferential framework that follows from this work uses the limiting normal dis-
tribution of the test statistic T ∗ (Hotelling & Pabst, 1936; Noether, 1955), where

T ∗ = τ

√

9n(n− 1)
4n+10

. (8.3)

UnderH0, this limiting normal distribution is the standard normal, whereas un-
der H1, this distribution is specified with a non-centrality parameter ∆ for the
mean, and a sampling variance of 1.

However, the method—henceforth the original asymptotic method—might fall
short on two counts. Firstly, the asymptotic assumptions only hold for sufficiently
large n (i.e., n ≥ 20, see van Doorn et al., 2018). Secondly, the variance of the
sampling distribution of the test statistic depends on the population value of
Kendall’s τ. For τ = 0, the sampling variance equals 1, but as | τ |→ 1, the variance
decreases to 0 (Kendall & Gibbons, 1990; Hotelling & Pabst, 1936).

In the current chapter, we will explore two corrections that aim to improve
Bayesian inference for Kendall’s τ:

1. Within the asymptotic framework, the observed value of Kendall’s τ can
be used to set its sampling variance. We label this the enhanced asymptotic
method.

2. Within a Bayesian latent normal framework, a latent level correlation is
obtained and transformed to Kendall’s τ. We label this the latent normal
method.

8.2 Correction Using The Sample τ

A first correction to consider is to use the sample value of Kendall’s τ, denoted
τobs, to estimate the sampling variance of T ∗, denoted σ2

T ∗ . A convenient expres-

sion for the upper bound of σ2
T ∗ in terms of τ is given in Kendall & Gibbons

(1990):

σ2
T ∗ ≤

2.5n(1− τ2)
2n+5

. (8.4)

Using τobs as an estimate of τ provides a somewhat crude approximation to the
sampling distribution of T ∗. However, compared to using σ2

T ∗ = 1 as in the origi-
nal asymptotic method, working with the upper bound will result in a more nar-
row posterior for cases where τ , 0. However, the enhanced asymptotic method
still suffers from the use of asymptotic assumptions about the sampling distribu-
tion and variance of the test statistic.
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Figure 8.1: A graphical model of the latent normal method. Here, x and y are observed rank data.
The latent level is denoted with zx and zy , and ρzxzy represents the latent correlation.

8.3 Correction Using The Latent Normal Approach

8.3.1 Latent Normal Models

Several latent variable models quantify the association between two ordinal vari-
ables. These methods often introduce a latent bivariate normal distribution to the
ordinal variables, where the association between variables is modeled through a
latent correlation (Pearson, 1900; Olssen, 1979; Pettitt, 1982; Albert, 1992b; Alvo
& Yu, 2014). The observed rank data (x,y) can then be seen as the ordinal man-
ifestations of the continuous latent variables (zx, zy), which have a bivariate nor-
mal distribution. Figure 8.1 offers a graphical representation of such a model.
Using this methodology, the nonparametric problem of ordinal analysis is trans-
formed to a parametric data augmentation problem.

8.3.2 Posterior Distribution for the Latent Correlation

The joint posterior can be decomposed as follows:

P(zx, zy ,ρzx ,zy | x,y) ∝ P(x,y | zx, zy)×P(zx, zy | ρzx ,zy )×P(ρzx ,zy ). (8.5)

The second factor on the right-hand side is the bivariate normal distribution of
the latent scores given the latent correlation:

(

zx

zy

)

∼N
[(

0
0

)

,

(

1 ρzx ,zy
ρzx ,zy 1

)]

. (8.6)

The factor P(x,y | zx, zy) consists of a set of indicator functions that map the ob-
served ranks to latent scores, such that the ordinal information is preserved. For
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the value zxi , this means that its range is truncated by the lower and upper thresh-
olds that are respectively defined as:

axi = max
j :xj<xi

(

zxj

)

(8.7)

bxi = min
j :xj>xi

(

zxj

)

. (8.8)

The third factor is the prior distribution on the latent correlation. In the re-
mainder of this chapter, the prior is specified by a uniform distribution on (−1,1)
(but see Berger & Sun 2008; Ly, Verhagen, & Wagenmakers 2016).

The general Bayesian framework for estimating the latent correlation involves
data augmentation through a Gibbs sampling algorithm (Geman &Geman, 1984)
for the latent values zx and zy , combined with a random walk Metropolis-
Hastings sampling algorithm for ρzx ,zy . At sampling step s:

1. For each value of zxi , sample from a truncated normal distribution:

(zxi | zxi ′ , z
y
i ,ρzx ,zy ) ∼N

(

z
y
i ρzx ,zy ,1− ρ2zx ,zy

)

1(axi ,b
x
i )
(zxi ),

where 1(axi ,b
x
i )
(zxi ) indicates truncation between the lower threshold axi given

in (8.7) and the upper threshold bxi given in (8.8).

2. For each value of z
y
i , the sampling procedure is analogous to step 1.

3. Sample a new proposal for ρzx ,zy , denoted ρ
∗
zx ,zy , from the asymptotic nor-

mal approximation to the sampling distribution of Fisher’s z-transform of
ρ (Fisher, 1915):

tanh−1(ρ∗zx ,zy ) ∼N
(

tanh−1
(

ρs−1zx ,zy

)

,
1

n− 3
)

.

The acceptance rate α is determined by the likelihood ratio of (zx, zy | ρ∗zx ,zy )
and (zx, zy | ρs−1zx ,zy ), where each likelihood is determined by the bivariate
normal distribution in (8.6):

α =min








1,
P(zx, zy | ρ∗zx ,zy )(1− (ρ∗zx ,zy )2)
P(zx, zy | ρs−1zx ,zy )(1− (ρs−1zx ,zy )

2)








,

where (1− ρ2) is the Jacobian of Fisher’s z-transform.

Repeating the algorithm a sufficient number of times yields samples from ρzx ,zy
given zx, zy , thus, P(ρzx ,zy | zx, zy), and the posterior of zx, zy , that is, P(zx, zy | x,y).
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8.3.3 Relation to Kendall’s τ

With the posterior distribution for the latent ρzx ,zy in hand, the transition to
the posterior distribution for Kendall’s τ can be made using Greiner’s relation
(Greiner, 1909; Kruskal, 1958). This relation, defined in 7.8, enables the trans-
formation of Pearson’s ρ to Kendall’s τ when the data follow a bivariate normal
distribution. The latent normal framework thus models the posterior distribu-
tion for Kendall’s τ as

P(τ | x,y) = P(G(ρ) | x,y) =
∫ ∫

P(G(ρ) | zx, zy)P(zx, zy | x,y)dzxdzy .

Introducing the latent normal level to the observed variables enables the link
between Pearson’s ρ and Kendall’s τ, and turns posterior inference for Kendall’s
τ into a parametric data augmentation problem that can be solved with the above
MCMC-methods. Thus, Greiner’s relation can be applied to the posterior samples
of ρzx ,zy to yield posterior samples of τ. Furthermore, the application of Greiner’s
relation in this manner implicitly alters the prior from a uniform distribution on
the latent correlation to the prior distribution on Kendall’s τ given in 7.9.

8.4 Results: Simulation Study

The performance of the original asymptotic method, the enhanced asymptotic
method, and the latent normal method was assessed with a simulation study.
For four values of τ (0, 0.2, 0.4, 0.7) and three values of n (10, 20, 50), 10,000
data sets were generated under four copula models: Clayton, Gumbel, Frank,
and Gaussian (Sklar, 1959; Nelsen, 2006; Genest & Favre, 2007; Colonius, 2016).
Using Sklar’s theorem, copula models decompose a joint distribution into uni-
variate marginal distributions and a dependence structure (i.e., the copula). The
aforementioned copulas are governed by Kendall’s τ, so the performance of each
method can be assessed through a parameter recovery simulation study. Fur-
thermore, the univariate marginal distributions can be transformed to any other
distribution using the cumulative distribution function and its inverse. Because
these functions are monotonic, this does not affect the copula or ordinal informa-
tion in the synthetic data and therefore vastly increases the scope of the simula-
tion study.

For each data set, a posterior distribution was obtained using the three meth-
ods and the population value of τ was estimated using the posterior median. Per
combination of n and τ, this resulted in 10,000 posterior distributions. For an
overall view of each method’s performance, Figure 8.2 shows the quantile aver-
aged posterior distributions, along with a vertical line indicating the population
value of τ. The data in Figure 8.2 were generated using the Clayton copula; other
copula models yielded highly similar results. The quantile averaged posteriors
indicate no difference between the inferential methods under H0, which corrob-
orates the assumption of σ2

T ∗ = 1 when τ = 0. However, the difference in methods
becomes pronounced in the scenario where n = 10 and τ = 0.7. Both asymptotic

105



8. Bayesian Estimation of Kendall’s τ Using a Latent Normal Approach

approaches show a degree of underestimation, and yield a relatively broad poste-
rior distribution. In the panels where τ , 0, the misspecification of the sampling
variance also becomes clear, as it is overestimated and results in a wider posterior
distribution compared to the latent normal method. Although the assumption of
latent normality is the price to pay for the Bayesian latent normal methodology,
the simulation results indicate robustness of the method to various violations of
this assumption.1

8.5 Concluding Comments

This chapter has outlined two methods of improving the Bayesian inferential
framework in cases where n is low and/or τ is high. Although an extension of
the asymptotic framework performs somewhat better than the original asymp-
totic framework in van Doorn et al. (2018), both are outperformed by the latent
normal approach. Under H0, the methods do not differ from each other, under-
scoring the validity of the general framework.

The outlined methods are useful for both estimation and hypothesis testing.
In the former case, the posterior distribution enables point estimation through
the posterior median, or interval estimation through the credible interval. For
hypothesis testing, the Savage-Dickey density ratio (Dickey & Lientz, 1970; Wa-
genmakers et al., 2010) can be used to obtain Bayes factors (Kass & Raftery, 1995).
A concrete example is presented in the online appendix. Because the method
uses only the ordinal information in the data, it retains the robust properties
of Kendall’s τ, such as invariance to monotone transformations, robustness to
outliers or violations of normality, and ability to detect nonlinear monotone re-
lations.

1R-code, plots, and further details of the simulation study are available at https://osf.io/
u7jj9/.
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Figure 8.2: To illustrate the performance of the three methods, quantile averaged posterior distribu-
tions for several values of τ and n are shown. Each column corresponds to a value of n, and each row
corresponds to a value of τ. The quantile averaged posterior distributions were obtained with 10,000
synthetic datasets per combination of n and τ. The vertical gray line indicates the population value
of τ.
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Chapter 9

Bayesian Rank-Based

Hypothesis Testing for the

Rank Sum Test, the Signed

Rank Test, and Spearman’s ρ

Abstract

Bayesian inference for rank-order problems is frustrated by the absence of an explicit like-
lihood function. This hurdle can be overcome by assuming a latent normal representation
that is consistent with the ordinal information in the data: the observed ranks are concep-
tualized as an impoverished reflection of an underlying continuous scale, and inference
concerns the parameters that govern the latent representation. We apply this generic data-
augmentation method to obtain Bayes factors for three popular rank-based tests: the rank
sum test, the signed rank test, and Spearman’s ρs .

9.1 Introduction

The debate on alternatives to null hypothesis significance tests based on p-values
(R. Wasserstein & Lazar, 2016) has led to a renewed interest in the Bayesian alter-
native known as the Bayes factor. Advantages of such Bayesian tests include the
ability to provide evidence in favor of both the null and the alternative hypothe-
ses (Dienes, 2014), the ability to straightforwardly synthesize evidence to assess
replicability (Ly, Etz, et al., 2018), and the ability to monitor the evidence as the
data accumulate (Rouder, 2014); see Wagenmakers, Marsman, et al. (2018) and
Dienes & McLatchie (2018) for further details on the advantages of Bayesian in-
ference. These advantages are met by the recently proposed Bayes factors for the
classical two- and one-sample t-tests (Rouder et al., 2009), as well as for the Bayes
factor for Pearson’s correlation (Ly, Marsman, &Wagenmakers, 2018). These tests

This chapter is published as van Doorn, J.B., Ly, A., Marsman, M., & Wagenmakers, E.–J.
(2020). Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed Rank Test,
and Spearman’s ρ. Journal of Applied Statistics, 47, 2984–3006. Also available as ArXiv preprint:
https://arxiv.org/abs/1712.06941
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have become increasingly popular in the applied sciences. The goal of this paper
is to extend these parametric Bayes factors to their rank-based counterparts.

Rank-based statistical procedures offer a range of advantages over their para-
metric counterparts. First, they are robust to outliers and to violations of dis-
tributional assumptions, which occur frequently in many practical applications,
such as the analysis of questionnaire data. Second, they are invariant under
monotonic transformations, which is desirable when interest concerns a hypoth-
esized concept (e.g., rat intelligence) whose relation to the measurement scale is
only weakly specified (e.g., brain volume or log brain volume could be used as
a predictor; without a process model that specifies how brain physiology trans-
lates to rat intelligence, neither choice is privileged). Third, many data sets are
inherently ordinal (e.g., Likert scales, where survey participants are asked to in-
dicate their opinion on, say, a 7-point scale ranging from ‘disagree completely’
to ‘agree completely’). Finally, rank-based procedures perform better than their
fully parametric counterparts when assumptions are violated, with little loss of
efficiency when the assumptions do hold (Hollander & Wolfe, 1973).

Prominent rank-based tests include the Mann-Whitney-Wilcoxon rank sum
test (i.e., the rank-based equivalent of the two-sample t-test), theWilcoxon signed
rank test (i.e., the rank-based equivalent of the paired sample t-test), and Spear-
man’s ρs (i.e., a rank-based equivalent of the Pearson correlation coefficient).
These ordinal tests were developed within the frequentist statistical paradigm,
and Bayesian analogues through Bayes factor hypothesis testing have, to the best
of our knowledge, not yet been proposed. We speculate that the main challenge
in the development of Bayesian hypothesis tests for ordinal data is the lack of a
straightforward likelihood function. As stated by Harold Jeffreys (Jeffreys, 1939,
pp. 178-179) for the case of Spearman’s ρs:

“The rank correlation, while certainly useful in practice, is diffi-
cult to interpret. It is an estimate, but what is it an estimate of? That
is, it is calculated from the observations, but a function of the ob-
servations has no relevance beyond the observations unless it is an
estimate of a parameter in some law. Now what can this law be? [...]
the interpretation is not clear.”

This difficulty can be overcome by postulating a latent, normally distributed
level for the observed data (i.e., data augmentation). In other words, the rank data
are conceptualized to be an impoverished reflection of richer latent data that are
governed by a specific likelihood function. The latent normal distribution was
chosen for computational convenience and ease of interpretation. This general
procedure is widely known as data augmentation (Tanner & Wong, 1987; Albert
& Chib, 1993), and Bayesian inference for the parameters of interest (e.g., a loca-
tion difference parameter δ or an association parameter ρ) can then be achieved
using Markov chain Monte Carlo (MCMC) sampling. In other words, we can use
the latent normal approach to overcome the lack of a likelihood function, and
thus enable a Bayesian approach to rank-based testing.

Below we first outline the general latent normal framework and then develop
Bayesian counterparts for three popular frequentist rank-based procedures: the
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rank sum test, the signed rank test, and Spearman’s rank correlation. Each of
these developed Bayesian tests is accompanied by a simulation study that as-
sesses the behavior of the test and a data example that highlights the desirable
properties of rank-based inference, as well as the applicability of our proposed
tests.

9.2 General Methodology

In the Bayesian framework, the posterior distribution of the parameter of interest
θ is often used for hypothesis testing and parameter estimation. The posterior
distribution is proportional to the likelihood, i.e., f (data | θ), times the prior, i.e.,
π(θ), that is,

π(θ | data) ∝ f (data | θ)×π(θ). (9.1)

In the parametric case, this is often straightforward. For rank-based proce-
dures, however, f (data | θ) is unavailable and to overcome this complication, we
can use a latent normal framework.

9.2.1 Latent Normal Models

Latent normal models were first introduced by Pearson (1900) as a means of mod-
eling data from a 2× 2 cross-classification table. The method was later extended
by Pearson & Pearson (1922) to accommodate r×s tables. Instead of modeling the
count data directly for the 2× 2 case, Pearson assumed a latent bivariate normal
level with certain governing parameters. In the case of cross-classification tables,
the governing parameter is the polychoric correlation coefficient (PCC) and refers
to Pearson’s correlation on the bivariate, latent normal level.

Amaximum likelihood estimator for the PCCwas developed by Olssen (1979)
and Olssen et al. (1982), and a Bayesian framework for the PCC was later intro-
duced by Albert (1992b). This idea was extended by Pettitt (1982) to rank like-
lihood models, where the latent boundaries are not estimated but determined
directly by the latent scores (see also Hoff, 2007, 2009). For the two-sample
location problem, a similar approach has been discussed by Savage (1956) and
Brooks (1974, 1978), where a continuous distribution is assumed to be under-
lying the observed data. Further models for ordinal data are given in Mallows
(1957), Fligner & Verducci (1986), Fligner & Verducci (1988), andMarden (1995).
However, these methods omit Bayesian hypothesis testing through Bayes factors
and/or lack a straightforward interpretation of the model parameters.

In general, the latent normal methodology allows one to transform ordinal
problems to parametric problems. The resulting models that are discussed here
have a data-generating process, are governed by easily interpretable parameters
on the latent level, and enable Bayes factor hypothesis testing. A detailed sam-
pling algorithm of the general methodology is presented in the next section.
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9.2.2 Posterior Distribution

We elaborate the main idea of the latent normal approach with data consisting of
two groups of samples. Let (rx, ry) be two vectors of ranked data, and zx, zy be the
vectors of associated latent normal scores which depend on a model parameter
θ. The latent normal posterior is then proportional to

π(zx, zy ,θ | x,y) ∝ f (rx, ry | zx, zy)× f (zx, zy | θ)×π(θ) (9.2)

Note how the parametric likelihood in (9.1) is now replaced by the product
f (rx, ry | zx, zy) × f (zx, zy | θ). As before, the third term on the right-hand side
refers to the prior π(θ). The second term refers to the latent normal structure.
For instance, in the two-sample case, we replace the generic θ by the population
difference δ and take for f (zx, zy | θ) the product of two normal densities with
unit variances, but a mean depending on δ, see below for further details. On the
other hand, for inference on Spearman’s ρs, we replace the generic θ by ρ, and
take for f (zx, zy | θ) the centered bivariate normal density with unit variances,
and correlation ρ.

The first term on the right-hand side of (9.2), i.e., f (rx, ry | zx, zy) consists of
a set of indicator functions, presented below, that connect the observed ranks
to the unobserved latent normal scores, zx, zy such that the ordinal information
(i.e., the ranking function) in the observations rx, ry is preserved. This is similar
to the approach of Albert (1992a) and Albert & Chib (1993), who sampled latent
scores for binary or polytomous response data from a normal distribution that
was truncated with respect to the ordinal information of the data.

With (9.2) in hand, we have the specified the link between the data, the la-
tent normal scores and parameters, and an MCMC sampler can be constructed
in order to obtain the joint posterior distribution. This sampler takes as input
the ordinal information of the observed data, and iteratively generates random
parameter values θ as well as random latent scores zx, zy . The indicator function
f (rx, ry | zx, zy) ensures that the latent scores zx, zy retain the ordinal information
in the data by truncating the latent normal likelihood f (zx, zy | θ). For the latent
value zxi this means that its range is truncated by the lower and upper thresholds
that are respectively defined as:

axi = max
j : rxj <r

x
i

(

zxj

)

(9.3)

bxi = min
j : rxj >r

x
i

(

zxj

)

. (9.4)

For example, suppose that on a particular MCMC iteration we wish to aug-
ment the observed ordinal value rxi to a latent zxi ; on the latent scale, the lower
threshold axi is given by the maximum latent value associated with all rx lower
than rxi , whereas the upper threshold bxi is determined by the minimum latent
value associated with all rx higher than rxi . This dependence between the scores
can make the sampler inefficient. In order to remedy the high degree of autocor-
relation that data augmentation can induce (van Dyk &Meng, 2001), we included
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an additive decorrelating step documented by S. Liu & Sabatti (2000) and Morey
et al. (2008).

9.2.3 Estimation and Testing

After obtaining the joint posterior distribution through the MCMC sampling
algorithm outlined above, we can either focus on estimation and present the
marginal posterior distribution for the parameter of interest θ, or we can con-
duct a Bayes factor hypothesis test and compare the predictive performance of a
point-null hypothesis H0 (in which the parameter of interest is fixed at a prede-
fined value θ0) against that of an alternative hypothesis H1 (in which θ is free to
vary; Kass & Raftery (1995); Jeffreys (1939); Ly et al. (2016)). The Bayes factor
can be interpreted as a predictive updating factor, that is, degree to which the
observed data drive a change from prior to posterior odds for the hypothesis of
interest:

p(H1)

p(H0)
︸ ︷︷ ︸

Prior odds

× p(data | H1)

p(data | H0)
︸         ︷︷         ︸

Bayes factor10

=
p(H1 | data)
p(H0 | data)
︸         ︷︷         ︸

Posterior odds

(9.5)

For instance, a Bayes factor BF10 = 7 implies that the data are seven times more
likely under H1 then under H0, whereas BF10 = 1/9 indicates that the data are 9
times more likely under the null than under the alternative.

For nested models, the Bayes factor be easily obtained using the Savage-
Dickey density ratio (Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal,
& Grasman, 2010), that is, the ratio of the posterior and prior ordinate for the
parameter of interest θ, under H1, evaluated at the point of testing θ0 specified
under H0:

BF10 =
p(θ0 | H0)

p(θ0 | data,H1)
. (9.6)

9.3 Case 1: Wilcoxon Rank Sum Test

9.3.1 Background

The ordinal counterpart to the two-sample t-test is known as the Wilcoxon
rank sum test (or as the Mann-Whitney-Wilcoxon U test). It was introduced by
Wilcoxon (1945) and further developed by Mann &Whitney (1947), who worked
out the statistical properties of the test. Let x = (x1, ...,xn1 ) and y = (y1, ..., yn2 ) be
two data vectors that contain measurements of n1 and n2 units, respectively. The
aggregated ranks rx, ry (i.e., the ranking of x and y together) are defined as:

rxi = rank of xi among (x1, . . . ,xn1 , y1 . . . yn2 ),

r
y
i = rank of yi among (x1, . . . ,xn1 , y1 . . . yn2 ).
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The test statisticU is then given by summing over either rx or ry , and subtracting
nx(nx+1)

2 or
ny (ny+1)

2 , respectively. In order to test for a difference between the two
groups, the observed value of U can be compared to the value of U that corre-
sponds to no difference. This point of testing is defined as n1n2

2 .
To illustrate the procedure, consider the following hypothetical example. In

the movie review section of a newspaper, three action movies and three comedy
movies are each assigned a star rating between 0 and 5. Let X = (4,3,1) be the
star ratings for the action movies, and let Y = (2,3,5) be the star ratings for the
comedy movies. The corresponding aggregated ranks are Rx = (5,3.5,1) and Ry =
(2,3.5,6). The test statistic U is then obtained by summing over either Rx or Ry ,

and subtracting
3(3+1)

2 = 6, yielding 3.5 or 5.5, respectively. Either of these values
can then be compared to the null point which is equal to n1n2

2 = 4.5.
The range of U depends on the sample sizes and to avoid this dependence,

we consider the rank-biserial correlation, which is a standardized effect size of U
instead. The rank-biserial correlation, denoted ρrb, is the correlation coefficient
used as a measure of association between a nominal dichotomous variable and an
ordinal variable. The transformation is as follows:

ρrb = 1− 2U

n1n2
. (9.7)

When ρrb = 1 we now know that U is at its maximum. The rank-biserial correla-
tion can also be expressed as the difference between the proportion of data pairs
where xi > yj versus xi < yj (Cureton, 1956; Kerby, 2014):

ρrb =

∑n1
i=1

∑n2
j=1Q(xi − yj )
n1n2

, (9.8)

where Q(di ) is the sign indicator function defined as

Q(di ) =









−1 if di < 0

+1 if di > 0
. (9.9)

This provides an intuitive interpretation of the test procedure: each data point in
x is compared to each data point in y and scored −1 or 1 if it is lower or higher,
respectively. In the movie ratings data example, there are three pairs for which
xi > yj , five pairs for which xi < yj , and one pair for which xi = yj , yielding an ob-

served rank-biserial correlation coefficient of 3−5
9 = −0.22, which is an indication

that comedy movies receive slightly more positive reviews.
One argument to favor the Wilcoxon rank sum test over its parametric coun-

terpart is provided by Pitman’s asymptotic relative efficiency (ARE); that is, the
ratio of the number of observations necessary to achieve the same level of power
(Lehmann, 1999).1 If ARE > 1 then we require fewer samples for U than for its
parametric counterpart (van der Vaart, 2000).

1More precisely, let θ be a true parameter value and α,β ∈ (0,1) fixed, then we denote byNT(α,β,θ)
the number of samples necessary for a generic test statistic T at level α to reach the desired power of
1−β under θ computed using the asymptotical variance of the test statistic. The ARE of the parametric
test over the Mann-Whitney-Wilcoxon U test is defined as ARE =Npar(α,β,θ)/NU (α,β,θ).
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When the data are normally distributed as assumed under the parametric
setting, then the rank sum test performs slightly poorer to the parametric two-
sample t-test as ARE of 3/π ≈ 0.955 (Hodges & Lehmann, 1956; Lehmann, 1975).
Thus, even when the distributional assumption of the t-test holds, the loss of the
rank sum test in terms of sample sizes is about 4.5%. The ARE increases as the
data distribution grows more heavy-tailed, with a maximum value of infinity. In
addition, results for other distributions include the logistic distribution (ARE =
π2/9 ≈ 1.097), the Laplace distribution (ARE = 1.5), and the exponential distri-
bution (ARE = 3). Hence, relatively little is lost when using the Wilcoxon rank
sum tests as compared to the parametric two-sample t-test when the parametric
assumptions are met, but a lot is gained when the assumptions are violated.

9.3.2 Sampling Algorithm

For the Bayesian counterpart of the Wilcoxon rank sum test, we use the latent
normal framework as elaborated on above. Specifically, the Bayesian data aug-
mentation algorithm for the rank sum test follows the graphical model outlined
in Figure 9.1. The ordinal information contained in the aggregated ranking con-
strains the corresponding values for the latent normal parameters Zx and Zy to
lie within certain intervals (i.e., the ordinal information imposes truncation). The
parameter of interest here is the effect size δ, the difference in location of the dis-
tributions for Zx and Zy . We follow Jeffreys (1961) and assign δ a Cauchy prior
with scale parameter γ . For computational simplicity, this prior is implemented
as a normal distribution with an inverse gamma prior on the variance, where the
shape parameter is set to 0.5 and the scale parameter is set to γ2/2 (Liang, Ger-
man, Clyde, & Berger, 2008; Rouder, Speckman, Sun, Morey, & Iverson, 2009).
The difference with earlier work is that we set the latent normal variances σ to 1,
as the rank data contain no information about the variance and the inclusion of
σ in the sampling algorithm becomes redundant.

r
x
i

Z
x
i

r
y
j

Z
y
j

δ

ji data ij data

δ ∼ Normal(0, g)

g ∼ Inverse Gamma
(

1

2
,
γ2

2

)

Z
x
i ∼ Normal

(

−
1

2
δ,1

)

Z
y
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(

1

2
δ,1

)

r
x
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i ) among (Zx
1
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x
n, Z
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1
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y
n)
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y
j ← Rank(Zy
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1
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x
n, Z

y
1
, ..., Z

y
n)

Figure 9.1: The graphical model underlying the Bayesian rank sum test. The latent, continuous scores

are denoted by Zxi and Z
y
i , and their manifest rank values are denoted by xi and yj . The latent scores

are assumed to follow a normal distribution governed by the parameter δ. This parameter is assigned
a Cauchy prior distribution, which for computational convenience is reparameterized to a normal
distribution with variance g (which is then assigned an inverse gamma distribution).

In order to sample from the posterior distributions of δ, Zx and Zy , we used
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Gibbs sampling (Geman & Geman, 1984). Specifically, the sampling algorithm
takes the aggregated ranks rx, ry as input and iteratively generates the latent δ,
Zx, and Zy as follows, at sampling time point s:

1. For each i in (1, . . . , nx), sample Zxi from a truncated normal distribution,
where the lower threshold is axi given in (9.3) and the upper threshold is bxi
given in (9.4):

(Zxi | zxi ′ , z
y
i ,δ) ∼N(axi , bxi )

(

−1
2δ, 1

)

,

where the subscripts ofN indicate the interval that is sampled from.

2. For each i in (1, . . . , ny), the sampling procedure for Z
y
i is analogous to step

1, with
(Z

y
i | z

y
i ′ , z

x
i , δ) ∼N(ayi , byi )

(
1
2δ, 1

)

.

3. Sample δ from
(δ | zx, zy , g) ∼N (µδ,σδ),

where

µδ =
2g(nyz

y −nxzx)
g(nx +ny) + 4

σ2
δ =

4g

g(nx +ny) + 4
.

4. Sample g from

(G | δ) ∼ Inverse Gamma

(

1,
δ2 +γ2

2

)

,

where γ determines the scale (i.e., width) of the Cauchy prior on δ.

Repeating the algorithm a sufficient number of times yields samples from the
posterior distributions of Zx,Zy , and δ. The posterior distribution of δ can then
be used to obtain a Bayes factor through the Savage-Dickey density ratio given in
(9.6).

9.3.3 Simulation Study

In order to provide insight into the behavior of the inferential framework, a simu-
lation study was performed. For three values of difference in location parameters,
δ (0, 0.5, 1.5), and three values of n (10, 20, 50), 1,000 data sets were generated
under various distributions: skew-normal, Cauchy, logistic, and uniform distri-
butions. In one scenario, both groups have the same distributional shape (e.g.,
both follow a logistic distribution), and in a second scenario, one group follows
the normal distribution and one group follows one of the aforementioned distri-
butions.
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First, the relationship between the observed rank statistic U and the latent
normal Bayes factor was analyzed. Figure 9.2 illustrates this relationship, fitted
with a cubic smoothing spline (J. Chambers & Hastie, 1992), for two logistic dis-
tributions (α = 20). To show results for multiple values of n in one figure, the
rank biserial correlation coefficient ρrb is plotted instead of U . The figure shows
a clear relationship: when ρrb = 0, thus, U corresponds to the test value n1n2/2,
then the evidence in favor of H0 is at its maximum as one would expect. Simi-
larly, when |U | is maximal, that is, |ρrb | = 1 , one has the most evidence against
the null, which is apparent from the curves getting closer to 0. This relation-
ship grows more decisive as n increases: both the peak at ρrb = 0 and the decay
at |ρrb | = 1 are more prominent as n grows. The results are highly similar for
the other distributions that were considered (see the online supplementary ma-
terial at https://osf.io/gny35/ for the results of these scenarios). Since both
statistics, ρrb and BF01, depend solely on the ordinal information in the data, the
observed relationship is not surprising. This result highlights and illustrates the
robustness of the latent normal Bayes factor to violations of the assumptions of
the parametric test: it illustrates the same robustness as the traditional W test
statistic.

Second, the relationship between the latent normal Bayes factor and the para-
metric Bayes factor (Rouder et al., 2009) was analyzed. For both the parametric

and rank-based Bayes factor, a default Cauchy prior with scale 1/
√
2 is used. Fig-

ure 9.3 illustrates this relationship for all values of n and δ that were used, again
in the scenario with two logistic distributions. Generally, the two Bayes factors
are in agreement. In cases where δ deviates from 0, the parametric Bayes fac-
tor becomes more decisive (i.e., deviates from 1) compared to the latent normal
Bayes factor. For distributions of data that violate the assumptions of the para-
metric test, such as the Cauchy distribution, the relationship between the two
Bayes factors is notably less defined. In this case, the results of the rank-based
Bayes factor are more reliable, which is expected based on the ARE results as the
Cauchy is a heavy-tailed distribution. The parametric test greatly overestimates
the variance and is no longer able to detect differences in location parameters
(see the supplementary material), whereas the latent normal Bayes factor is un-
affected by this. Note that the difference in performance is due to the use of the
latent normal framework and not due to the prior, as both the parametric and
rank-based Bayes factor use the same Cauchy prior.

9.3.4 Data Example

Cortez & Silva (2008) gathered data from 395 students concerning their math
performance (scored between 1 and 20) and their level of alcohol intake (self-
rated on a Likert scale between 1 and 5). Students passed the course if they
scored ≥ 10, and we will test whether students who failed the course (n1 = 130)
had a higher self-reported alcohol intake than their peers who passed (n2 = 265).

As alcohol intake was measured on a Likert scale, the data contain many ties
and show extreme non-normality. These properties make this data set particu-
larly suitable for the latent-normal rank sum test. The hypotheses are H0 : δ = 0
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Figure 9.2: The relationship between the latent normal Bayes factor and the observed rank-based test
statistic is illustrated for logistic data. Because U is dependent on n, the rank biserial correlation
coefficient is plotted on the x-axis instead of U . The relationship is clearly defined, and maximum
evidence in favor of H0 is attained when ρrb = 0. The further ρrb deviates from 0, the stronger the
evidence in favor of H1 becomes. The lines depict smoothing splines fitted to the observed Bayes
factors.

which is pitted against H1 : δ , 0. For the rank-based Bayes factor we use the

prior Cauchy prior with scale 1/
√
2, that is, δ ∼ Cauchy

(

0, 1√
2

)

. The null hypoth-

esis posits that alcohol intake does not differ between the students who passed
the course and those who failed. The alternative hypothesis posits the presence
of an effect and assigns effect size a Cauchy distribution with scale parameter set
to 1/

√
2, as advocated by Morey & Rouder (2018). Figure 9.4 shows the result-

ing posterior distribution for δ under H1 and the associated Bayes factor. The
posterior median for δ equals −0.121, with a 95% credible interval that ranges
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9.4. Case 2: Wilcoxon Signed Rank Test
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Figure 9.3: For all combinations of difference in location parameters δ, and n, the relationship be-
tween the latent normal Bayes factor and the parametric Bayes factor is shown for logistic data. The
black lines indicate the point of equivalence. The two Bayes factors are generally in agreement, as
suggested by the ARE results in van der Vaart (2000).

from −0.373 to 0.120. The corresponding Bayes factor indicates that the data
are about 4.694 times more likely under H0 than under H1, indicating moderate
evidence against the hypothesis that self-reported alcohol intake differentiates
between students who did and who did not pass the math exam. As a reference,
the parametric t-test yields a Bayes factor of 7.138 in favor of H1, which is less
conservative. However, due to the violated assumptions of the parametric t-test
model, this result is meaningless.

9.4 Case 2: Wilcoxon Signed Rank Test

9.4.1 Background

The rank-based counterpart to the paired samples t-test was proposed by
Wilcoxon (1945), who termed it the signed rank test. The test procedure involves
taking the difference scores between the two samples under consideration and
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9. Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed
Rank Test, and Spearman’s ρ
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Figure 9.4: Do students who flunk a math course report drinking more alcohol? Results for the
Bayesian rank sum test as applied to the data set fromCortez & Silva (2008). The dashed line indicates
the Cauchy prior with scale 1/

√
2. The solid line indicates the posterior distribution. The two grey dots

indicate the prior and posterior ordinate at the point under test, in this case δ = 0. The ratio of the
ordinates gives the Bayes factor.

ranking the absolute values. The procedure may also be applied to one-sample
scenarios by ranking the differences between the observed sample and the point
of testing. These ranks are thenmultiplied by the sign of the respective difference
scores and summed to produce the test statisticW . For the paired samples signed
rank test, let x = (x1, ..., xn) and y = (y1, ..., yn) be two data vectors each containing
measurements of the same n units, and let d = (d1, ..., dn) denote the difference
scores. For the one-sample signed rank test, this process is analogous, except y is
replaced by the test value. The test statistic is then defined as:

W =

n∑

1

[rank(|di |)×Q(di )] ,

where Q is the sign indicator function given in (9.9).
To illustrate the procedure, consider the following hypothetical data example.

Three students take a math exam, graded between 0 and 10, before and after
receiving a tutoring session. Let X = (5,8,4) be their scores on the exam before
the session, and let Y = (6,7,7) be their scores on the exam after the session.
The difference scores, the ranks of the absolute difference scores, and the sign
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9.4. Case 2: Wilcoxon Signed Rank Test

indicator function are presented in Table 9.1. In order to have a positive test
statistic indicate an increase in scores, the difference scores are defined here as
(yi − xi ). The test statistic W is then calculated by summing over the product of
the fourth and fifth column: 1.5−1.5+3 = 3. This value indicates a slight increase
in math scores after the tutoring session.

i (yi − xi ) di rank(|di |) Q(di )

1 6− 5 1 1.5 1
2 7− 8 −1 1.5 −1
3 7− 4 3 3 1

Table 9.1: The scores, difference scores, ranks of the absolute difference scores, and the sign indicator
function Q for the hypothetical scenario where X = (5,8,4) are the initial scores on a math exam and
Y = (6,7,7) are the scores on the exam after a tutoring session.

An often used standardized effect size for W is the matched-pairs rank-
biserial correlation, denoted ρmrb, which is the correlation coefficient used as a
within subjects measure of association between a nominal dichotomous variable
and an ordinal variable (Cureton, 1956; Kerby, 2014). The transformation is as
follows:

ρmrb = 1− 4W

n(n+1)
. (9.10)

The matched-pairs rank-biserial correlation can also be expressed as the differ-
ence between the proportion of data pairs where xi > yi versus xi < yi . For the
grades example, there is one pair for which xi > yi , and two pairs for which xi < yi ,
yielding a matched-pairs rank-biserial correlation coefficient of 2−1

3 = 2
3 , which is

an indication that the tutoring session has increased students’ math ability.
The signed rank test is similar to the sign test, where the procedure is to sum

over the sign indicator function. The difference here is that the output of the
sign indicator function is weighted by the ranked magnitude of the absolute dif-
ferences. The signed rank test has a higher ARE than the sign test: a relative
efficiency of 3

2 for all distributions (Conover, 1999). For the one-sample scenario,
the Pitman ARE of the signed rank test (compared to the fully parametric t-test)
is similar to the ARE of the rank sum test for the unpaired two-sample scenario;
for example, when the data follow a normal distribution the ARE equals 3

π . For
other distributions, especially when these are heavy-tailed, the signed rank test
outperforms the t-test (Lehmann, 1999; van der Vaart, 2000).

9.4.2 Sampling Algorithm

The data augmentation algorithm is similar to that of the rank sum test and is
outlined in Figure 9.5. Here d denotes the difference scores as ordinal manifesta-
tions of latent, normally distributed values Zd . The parameter of interest is again
the standardized location parameter δ, which is assigned a Cauchy prior distri-
bution with scale parameter γ . Similar to the rank sum sampling procedure, the
variance of Zd is set to 1, as the ranked data contain no information about the
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9. Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed
Rank Test, and Spearman’s ρ
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Figure 9.5: The graphical model underlying the Bayesian signed rank test. The latent, continuous

difference scores are denoted by Zdi , and their manifest signed rank values are denoted by di . The
latent scores are assumed to follow a normal distribution governed by parameter δ. This parameter
is assigned a Cauchy prior distribution, which for computational convenience is reparameterized to
a normal distribution with variance g (which is then assigned an inverse gamma distribution).

variance. The computational complexity of sampling from the posterior distri-
bution of δ is again reduced by introducing the parameter g . The Gibbs algorithm
for the data augmentation and sampling δ is as follows, at sampling time point s:

1. For each value of i in (1, . . . , n), sample Zdi from a truncated normal distri-

bution, where the lower threshold is adi given in (9.3) and the upper thresh-

old is bdi given in (9.4):

(Zdi | zdi ′ , δ) ∼N(adi , bdi ) (δ, 1)

2. Sample δ from

(δ | zd , g) ∼N
(

µδ, σ
2
δ

)

,

where

µδ =
gnzd

gn+1

σ2
δ =

g

gn+1

3. Sample g from

(g | δ) ∼ Inverse Gamma

(

1,
δ2 +γ2

2

)

,

where γ determines the scale (i.e., width) of the Cauchy prior on δ.

122



9.4. Case 2: Wilcoxon Signed Rank Test

Repeating the algorithm a sufficient number of times yields samples from the
posterior distributions of Zd and δ. The posterior distribution of δ can then be
used to obtain a Bayes factor through the Savage-Dickey density ratio given in
(9.6).

9.4.3 Simulation Study

Similar to theWilcoxon rank sum test, a simulation study was performed to illus-
trate the behavior of the Bayesian signed rank test. For three values of difference
in location parameters, δ (0, 0.5, 1.5), and three values of n (10, 20, 50), 1,000 data
sets were generated under various distributions: skew-normal, Cauchy, logistic,
and uniform distributions. In one scenario, both groups have the same distribu-
tional shape, and in a second scenario, one group follows the normal distribution
and one group follows one of the aforementioned distributions. After the data
were generated, the difference scores between the two groups were calculated,
and used as input for the Bayesian latent normal test.

The same analyses were performed as for the Wilcoxon rank sum test. First,
the relationship between the observed rank statistic W and the latent normal
Bayes Factor was analyzed. Figure 9.6 illustrates this relationship, fitted with a
cubic smoothing spline (J. Chambers & Hastie, 1992), when the difference scores
were taken for two logistic distributions. To show results for multiple values of n
in one figure, the matched-pairs rank-biserial correlation coefficient ρmrb is plot-
ted instead ofW . The Bayes factor shows a clear relationship with the rank-based
test statistic, where the maximum evidence in favor of H0 is obtained when this
statistic equals 0. Furthermore, the obtained Bayes factor grows more decisive
as n increases. For other distributions of the data, highly similar results were
obtained (see the online supplementary material at https://osf.io/gny35/ for
the results of these scenarios).

Next to the relationship between W and the latent normal Bayes factor, the
relationship between the latent normal Bayes factor and the parametric Bayes
factor (Rouder et al., 2009) was analyzed. Figure 9.7 illustrates the results for all
combinations of n and the difference in location parameters, δ. Note that differ-
ences in performance are due to the use of the latent normal framework and not
due to the prior specification, as both the parametric and rank-based Bayes factor

were based on the same Cauchy prior with scale 1/
√
2. The two Bayes factors are

generally in agreement, with the parametric Bayes factor accumulating evidence
in favor of H1 faster when this is the true model. The latent normal Bayes factor
demonstrates more instability, due to only using the ordinal information in the
data. For distributions of the data that violate the assumptions of the parametric
test, such as the Cauchy distribution, the parametric test greatly overestimates
the variance and is no longer able to detect differences in location parameters
(see the supplementary material). This misspecification does not affect the latent
normal Bayes factor, underscoring its robustness.
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9. Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed
Rank Test, and Spearman’s ρ
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Figure 9.6: The relationship between the latent normal Bayes factor and the observed rank-based test
statistic is illustrated for logistic data. BecauseW is dependent on n, the matched-pairs rank-biserial
correlation coefficient is plotted on the x-axis instead of W . The relationship is clearly defined, and
maximum evidence in favor of H0 is attained when ρmrb = 0. The further ρmrb deviates from 0, the
stronger the evidence in favor of H1 becomes. The lines are smoothing splines fitted to the observed
Bayes factors.

9.4.4 Data Example

Thall & Vail (1990) investigated a data set obtained by D. S. Salsburg concerning
the effects of the drug progabide on the occurrence of epileptic seizures. Dur-
ing an initial eight week baseline period, the number of epileptic seizures was
recorded in a sample of 31 epileptics. Next, the patients were given progabide,
and the number of epileptic seizures was recorded for another eight weeks. In
order to accommodate the discreteness and non-normality of the data, Thall &
Vail (1990) applied a log-transformation on the counts.
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9.4. Case 2: Wilcoxon Signed Rank Test
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Figure 9.7: For all combinations of difference in location parameters δ, and n, the relationship be-
tween the latent normal Bayes factor and the parametric Bayes factor is shown for logistic data. The
black lines indicate the point of equivalence. The two Bayes factors are generally in agreement, with
the latent normal Bayes factor accumulating evidence in favor of the true model faster.

This log-transformation has a clear impact on the outcome of a parametric
Bayesian t-test (Morey & Rouder, 2018): BF10 ≈ 0.2 for the raw data, whereas
BF10 ≈ 2.95 for the log-transformed data. Here we analyze the data with the
signed rank test; because this test is invariant under monotonic transformations,
the same inference will result regardless of whether or not the data are log-
transformed.

The hypothesis specification here is similar to that of the setup of the rank

sum example: H0 : δ = 0 which is pitted against H1 : δ , 0 and prior 1/
√
2, that

is, δ ∼ Cauchy
(

0, 1√
2

)

. Figure 9.8 shows the resulting posterior distribution for

δ under H1 and the associated Bayes factor. The posterior median for δ equals
0.207, with a 95% credible interval that ranges from −0.138 to 0.549. The corre-
sponding Bayes factor indicates that the data are about 2.513 times more likely
under H0 than under H1, indicating that, for the purpose of discriminating H0

from H1, the data are almost perfectly uninformative.
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9. Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed
Rank Test, and Spearman’s ρ
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Figure 9.8: Does progabide reduce the frequency of epileptic seizures? Results for the Bayesian signed
rank test as applied to the data set presented in Thall & Vail (1990). The dashed line indicates the
Cauchy prior with scale 1/

√
2. The solid line indicates the posterior distribution. The two grey dots

indicate the prior and posterior ordinate at the point under test, in this case δ = 0. The ratio of the
ordinates gives the Bayes factor.

9.5 Case 3: Spearman’s ρs

9.5.1 Background

Spearman (1904) introduced the rank correlation coefficient ρ in order to over-
come the main shortcoming of Pearson’s product moment correlation, namely
its inability to capture monotonic but non-linear associations between variables.
Spearman’s method first applies the rank transformation on the data and then
computes the product-moment correlation on the ranks. Let x = (x1, ..., xn) and
y = (y1, ..., yn) be two data vectors each containing measurements of the same n

units, and let rx = (rx1 , ..., r
x
n ) and r

y = (r
y
1 , ..., r

y
n ) denote their rank-transformed

values, where each value is assigned a ranking within its variable. This then
leads to the following formula for Spearman’s ρs:

ρs =
Covrxry

σrxσry
.

The Pitman ARE of Spearman’s ρ compared to parametric Pearson’s ρ displays
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9.5. Case 3: Spearman’s ρs

a similar pattern to the ARE’s discussed before. When the data follow a bivariate
normal distribution, the ARE equals 9/π2 (Hotelling & Pabst, 1936). Thus, under
optimal conditions for the parametric test, it is marginally more efficienct com-
pared to Spearman’s ρ. As the data depart from normality, the rank-based test
outperforms its parametric counterpart.

9.5.2 Sampling Algorithm

The graphical model in Figure 9.9 illustrates the data augmentation setup for
inference on the latent correlation parameter ρ. The sampling method is a
Metropolis-within-Gibbs algorithm, where data augmentation is conducted with
a Gibbs sampling algorithm as before, but combined with a random walk
Metropolis-Hastings sampling algorithm (Metropolis et al., 1953; Hastings, 1970)
to sample from the posterior distribution of ρ (see also van Doorn et al., 2019).

The sampling algorithm for the latent correlation is as follows, at sampling
time point s:

1. For each i in (1, . . . , nx), sample Zxi from a truncated normal distribution,
where the lower threshold is axi given in (9.3) and the upper threshold is bxi
given in (9.4):

(Zxi | zxi ′ , z
y
i , ρzx ,zy ) ∼N(axi , bxi )

(

z
y
i ρzx , zy ,

√

1− ρ2zx ,zy
)

2. For each i in (1, . . . , ny), the sampling procedure for Z
y
i is analogous to step

1.

3. Sample a new proposal for ρzx , zy , denoted ρ∗, from the asymptotic nor-
mal approximation to the sampling distribution of Fisher’s z-transform of
ρ (Fisher, 1915):

tanh−1(ρ∗) ∼N







tanh−1(ρs−1),

1
√

(n− 3)








.

The acceptance rate α is determined by the likelihood ratio of (zx, zy |ρ∗) and
(zx, zy | ρs−1), where each likelihood is determined by the centered bivariate
normal density with unit variances, and correlation ρ:

α =min

(

1,
P(zx, zy | ρ∗)
P(zx, zy | ρs−1)

)

.

Repeating the algorithm a sufficient number of times yields samples from the
posterior distributions of zx, zy , and ρzx , zy .
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i ∼ Normal(0,1)

ρZxZy ∼ Uniform(−1,1)
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i ← Rank(Zx

i )

r
y

i ← Rank(Zy

i )

Figure 9.9: The graphical model underlying the Bayesian test for Spearman’s ρs . The latent, continu-

ous scores are denoted by Zxi and Z
y
i , and their manifest rank values are denoted by rxi and r

y
j . The

latent scores are assumed to follow a normal distribution governed by parameter ρ (which is assigned
a uniform prior distribution).

9.5.3 Transforming Parameters

The transition from Pearson’s ρ to Spearman’s ρs can be made using a statistical
relation described in Kruskal (1958). This relation, defined as

ρs =
6

π
sin−1

(ρ

2

)

.

enables the transformation of Pearson’s ρ to Spearman’s ρs when the data follow
a bivariate normal distribution. Since the latent data are assumed to be normally
distributed, this means that the posterior samples for Pearson’s ρ can be easily
transformed to posterior samples for Spearman’s ρs. The posterior distribution
of ρs can then be used to obtain a Bayes factor through the Savage-Dickey density
ratio given in (9.6).

9.5.4 Simulation Study

Similar to the previous tests, the behavior of the latent normal correlation test
was assessed with a simulation study. For four values of Spearman’s ρs (0, 0.3, 0.8)
and three values of n (10, 20, 50), 1,000 data sets were generated under four cop-
ula models: Clayton, Gumbel, Frank, and Gaussian (Sklar, 1959; Nelsen, 2006;
Genest & Favre, 2007; Colonius, 2016). Using Sklar’s theorem, copula models
decompose a joint distribution into univariate marginal distributions and a de-
pendence structure (i.e., the copula). This decomposition enables the generation
of data for specific values of Spearman’s ρs. Furthermore, the copula is inde-
pendent of the marginal distributions of the data and can therefore encompass a
wide range of distributions.

Similar to the previous tests, the relationship between the latent normal Bayes
factor and the observed rank-based statistic was analyzed. Figure 9.10 illustrates
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this relationship, fitted with a cubic smoothing spline (J. Chambers & Hastie,
1992), for various values of n, for data generated with the Clayton copula. The
relationship is similar to those shown for the previous tests: maximum evidence
in favor ofH0 is attained when the observed Spearman’s ρs equals 0. The further
the observed test statistic deviates from 0, the more evidence is accumulated in
favor of H1. Furthermore, the obtained Bayes factor grows more decisive as n
increases. Highly similar results were obtained for the other copulas that were
considered (see the online supplementary material at https://osf.io/gny35/
for the results of these scenarios).

Secondly, the relationship between the latent normal Bayes factor and the
parametric Bayes factor (Ly, Marsman, & Wagenmakers, 2018) for testing cor-
relations was analyzed. For both Bayes factors, a uniform prior between -1 and
1 was used, such that differences in performance are due to the use of the la-
tent normal framework and not due to the prior. Figure 9.11 shows the results
for all combinations of n and ρ that were used, for the Clayton copula. The two
Bayes factors are generally in agreement. An important remark here is that the
marginal distributions of the data are not taken into account. The data gener-
ated with the copula method are located on the unit square, and if so desired,
can then be transformed with the inverse cdf to follow any desired distribution.
These transformations are monotonic, and therefore do not affect the rank-based
Bayes factor, whereas the parametric Bayes factor can be heavily affected by this.
This underscores an important property of the rank-based Bayes factor: it solely
depends on the copula (i.e., the only component of the data that pertains to the
dependence structure), and not on the marginal distribution of the data.

9.5.5 Data Example

We return to the data set from Cortez & Silva (2008) and examine the possibility
that math grades (ranging from 0 to 20) are associated with the quality of family
relations (self-reported on a Likert scale that ranges from 1− 5). The hypotheses
are H0 : ρ = 0 which is pitted against H1 : ρ , 0. For the Bayes factor we use the
uniform prior, that is, ρ ∼ Uniform[−1, 1]. Thus, the null hypothesis specifies
the lack of an association between the two variables and the alternative hypoth-
esis assigns the degree of association a uniform prior distribution (e.g., Jeffreys
(1961)). The parametric correlation test (Ly, Marsman, & Wagenmakers, 2018)
yields a Bayes factor of 9.467, but since the data are ordinal measures and not
normally distributed, the parametric correlation model is severely misspecified.
Thus, conducting the rank-based analysis is more applicable and prudent here.

Figure 9.12 shows the resulting posterior distribution for ρs under H1 and
the associated Bayes factor. The posterior median for ρs equals 0.059, with a
95% credible interval that ranges from −0.052 to 0.161. The corresponding Bayes
factor indicates that the data are about 7.915 times more likely under H0 than
under H1, indicating moderate evidence against an association between math
performance and the quality of family ties.
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Figure 9.10: The relationship between the latent normal Bayes factor and the observed rank-based test
statistic is illustrated for data generated with the Clayton copula. The relationship is clearly defined,
and maximum evidence in favor of H0 is attained when Spearman’s ρs = 0. The further Spearman’s
ρs deviates from 0, the stronger the evidence in favor ofH1 becomes. The lines are smoothing splines
fitted to the observed Bayes factors.

9.6 Concluding Comments

This chapter outlined a general methodology for applying conventional Bayesian
inference procedures to ordinal data problems. Latent normal distributions are
assumed to generate impoverished rank-based observations, and inference is
done on the model parameters that govern the latent normal level. This idea,
first proposed by Pearson (1900), yields all the advantages of ordinal inference
including robustness to outliers and invariance to monotonic transformations.
Moreover, the methodology also handles ties in a natural fashion, which is im-
portant for coarse data such as provided by popular Likert scales. Furthermore,
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Figure 9.11: For all combinations of Spearman’s ρs and n, the relationship between the latent normal
Bayes factor and the parametric Bayes factor is shown for data generated with the Clayton copula.
The black lines indicate the point of equivalence. The two Bayes factors are generally in agreement.

the robustness of the latent normal method is underscored by the simulation
studies performed for each test. These results illustrate that the method provides
accurate inference, even if the data are not normally distributed.

By postulating a latent normal level for the observed rank data, the advan-
tages of ordinal inference can be combined with the advantages of Bayesian infer-
ence such as the ability to update uncertainty as the data accumulate, the ability
to quantify evidence in favor of either hypothesis being tested, and the ability to
incorporate prior information. It should be stressed that, even though our exam-
ples used default prior distributions, the proposed methodology is entirely gen-
eral in the sense that it also applies to informed or subjective prior distributions
(Gronau et al., 2018).

For computational convenience and ease of interpretation, our framework
used latent normal distributions. This is not a principled limitation, however,
and the methodology would work for other families of latent distributions as
well (e.g., Albert (1992b)).

In sum, we have presented a general methodology to conduct Bayesian infer-
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9. Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed
Rank Test, and Spearman’s ρ
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Figure 9.12: Is performance on a math exam associated with the quality of family relations? Results
for the Bayesian version of Spearman’s ρs as applied to the data set from Cortez & Silva (2008).
The dashed line indicates the uniform prior distribution, and the solid line indicates the posterior
distribution. The two grey dots indicate the prior and posterior ordinate at the point under test, in
this case ρ = 0. The ratio of the ordinates gives the Bayes factor.

ence for ordinal problems, and illustrated its potential by developing Bayesian
counterparts to three popular ordinal tests: the rank sum test, the signed rank
test, and Spearman’s ρs. Supplementary material, including simulation study
results, R-code for each method and the example data used, is available at
https:https://osf.io/gny35/. In the near future we intend to make these
tests available in the open-source software package JASP (e.g., JASP Team (2020);
jasp-stats.org), which we hope will further increase the possibility that the
tests are used to analyze ordinal data sets for which the traditional parametric
approach is questionable.
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Chapter 10

Using the Weighted Kendall’s

Distance to Analyze Rank

Data in Psychology

Abstract

Although Kendall’s distance is a standard metric in computer science, it is less widely
used in psychology. We demonstrate the usefulness of Kendall’s distance for analyzing
psychological data that take the form of ranks, lists, or orders of items. We focus on
extensions of the metric that allow for heterogeneity of item importance, item position,
and item similarity, as well showing how the metric can accommodate missingness in
the form of top-k lists. To demonstrate how Kendall’s distance can help address research
questions in psychology, we present four applications to previous data. These applications
involve the recall of events on September 11, people’s preference rankings for the months
of the year, people’s free recall of animal names in a clinical setting, and expert predictions
involving American football outcomes.

10.1 Introduction

Rank data are ubiquitous in psychological science. Any task that involves se-
quences of behavior, such as recalling items from memory or solving a problem
through a series of decisions and actions, yields rank order data. Other com-
mon examples include Likert scale measures, consumer choice preferences, and
psychophysical judgments.

An often-used statistical tool to analyze rank data is a rank correlation, such
as Kendall’s τ (Kendall, 1938) or Spearman’s ρ (Spearman, 1904). The goal of
these methods is to quantify the strength of a monotonic relation between two
variables, without assuming this relation to be linear. The rank correlation co-
efficient is then frequently used to test hypotheses related to the presence or ab-
sence of such a relation. However, such a procedure often overlooks the wealth
of information embedded in the value of the rank correlation coefficient. In com-
puter science, for instance, rank correlations are a popular metric for aggregating

This chapter has been submitted for publication as van Doorn, J.B., Westfall, H., & Lee, M.D.
(2020). Using the Weighted Kendall’s Distance to Analyze Psychological Data and Models.
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search engine results, fighting spam, and word association (Beg & Ahmad, 2003).
Whereas psychological science predominantly uses the rank correlation to test for
an association between two variables, the field of computer science focuses on
the (non-standardized) rank distance to quantify degrees of similarity between
two or more observed sequences of data points. In doing so, the distance metric
becomes a function of the data that can, in turn, be used for further quantitative
analysis.

In this chapter, we aim to bridge the gap between developments in computer
science and psychological science by underscoring Kendall’s distance metric as
a useful tool for analyzing psychological data . First, we outline the basic dis-
tance metric, which has sometimes been used in psychology (e.g., Lee et al., 2014;
Brandt et al., 2016; Selker et al., 2017). Second, we introduce three extensions
that enable the weighting of item importance, item position, and item similarity,
which are rarely used in psychology. Third, we illustrate how Kendall’s distance
can be modified to accommodate missingness in the data in the form of top-k
lists. Each extension is first illustrated using a toy example, and then demon-
strated more fully in practical applications to existing data sets in psychology
previously collected to address specific research questions. In order to increase
the ease of application of the discussed algorithms, we include a plug and play
R-script, available at https://osf.io/6k9t8/

10.2 Kendall’s Distance

Introduced by Kendall (1938), the Kendall’s distance metric, often written as τ,
is a popular rank-based coefficient for comparing two vectors of data points. It is
based on the number of adjacent pairwise swaps required to transform one vector
into the other.

In order to introduce the notation and computation of Kendall’s distance and
its extensions, we use a small toy example where two people are asked to rank n =
4 sodas—Coke, Pepsi, Sprite, and Fanta—in terms of tastiness. Let the ranking
of person A be A = (Coke,Pepsi,Fanta,Sprite), and the ranking of person B be
B = (Pepsi,Coke,Sprite,Fanta). We denote the ith item of A with Ai , such that
Ai = Pepsi when i = 1. Next, we denote the ranking of item cwith σA(c) for person
A, and σB(c) for person B. For instance, σA(c) = 1 and σB(c) = 2 for c = Coke.
Combining these two notations allows us to denote the rank of the ith item in A,
for person B. For instance, σB(Ai ) = 2 when i = 1, because the first item in A (i.e.,
Coke) is ranked second by person B.

With these definitions in hand, we can compute Kendall’s distance between
person A and B. In order to sort B in such a way that it is identical to A, we need
to swap Coke and Pepsi, and then Fanta and Sprite. In this example, Kendall’s
distance is therefore equal to 2. As a consequence, Kendall’s distance is often
referred to as the bubble sort distance (Shaw & Trimble, 1963).1 Table 10.1
provides an illustration of this sorting procedure.

1See also https://www.youtube.com/watch?v=lyZQPjUT5B4 and https://www.geeksforgeeks

.org/bubble-sort/ for accessible introductions.
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10.2. Kendall’s Distance

In order to obtain the correlation coefficient, the distance is then standardized
to be in the interval [−1,1], however, we focus on the distance in this chapter. The
minimum value for the distance is 0, indicating perfect correspondence, and the

maximum value for the distance is equal to
n(n−1)

2 , where n is the length of A and
B.

A B B1 B2

Coke Pepsi Coke Coke
Pepsi Coke Pepsi Pepsi
Fanta Sprite Sprite Fanta
Sprite Fanta Fanta Sprite

Table 10.1: The two vectors A and B, and the adjacent pairwise swaps needed to transform B into

A: B1 denotes B after one swap, and B2 denotes B after two swaps. Therefore, Kendall’s distance
between A and B equals 2.

Another way of calculating Kendall’s distance is by comparing the ranks of
items Ai and Aj in the vector B, for i < j . If item σB(Ai ) is greater than σB(Aj ),
this means that person B ranked items Ai and Aj in the reverse order compared
to person A. We refer to this as an inversion. A formal definition is given by the
formula:

τ =
n∑

1≤i<j≤n

[

σB(Ai ) > σB(Aj )
]

, (10.1)

which counts the number of pairwise inversions.
We now consider four extensions of Kendall’s distance that we think can be

especially useful for analyzing psychological data.

10.2.1 ItemWeights

As presented by Kumar & Vassilvitskii (2010), item-specific weights may be in-
corporated in the distance metric. In the basic definition, the cost of swapping
two items is set to 1, such that swapping two items adds 1 to the metric. However,
it could be the case that some items contribute more, or less, to the dissimilarity
between the soda preferences of person A and B. For instance, we could theorize
that disagreement in taste is more prolific in the ranking of Fanta than for other
sodas. For instance, the marketing team of Fanta may want two people who rank
Fanta differently to be recognized as being more dissimilar than two people who
rank Coke differently. In such cases, we can introduce the item specific weights
w, where wi denotes the cost of performing a swap that contains item Ai . This
enables us to model different items as contributing more, or less, to differences
between the rankings represented by the vectors A and B.

Formally, the extension to include item importance is given by the formula:

τ =
n∑

1≤i<j≤n
wiwj

[

σB(Ai ) > σB(Aj )
]

. (10.2)
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10.2.2 Position Weights

Another extension focuses on weighting different positions in a ranking, rather
than different items. This can be achieved by making the cost of performing a
swap dependent on the position i on which an inversion occurs (Kumar & Vas-
silvitskii, 2010). We can imagine a situation in which one’s favorite soda is more
important in determining taste preference than one’s least favorite soda: if an in-
version occurs early in B, this should lead to a greater value of Kendall’s distance
than if an inversion occurs at the end of B.

In order to assign these weights, we first define p:

pi = pi−1 + δi ,

where p1 = 1. The position weight δi denotes the cost of a pairwise swap of an
item in the ith position. It therefore represents the importance of that position,
relative to the first position. This weight can either be assigned arbitrarily, or
through a specific algorithm. One popular method is called discounted cumula-
tive gain (DCG; Järvelin & Kekäläinen, 2002), where the weights are calculated
as a logarithmic function of the item positions:

δi =
1

log(i +1)
− 1

log(i +2)
.

The intuition behind the DCG weighting is that the item at position i is about
twice as important in determining the dissimilarity between A and B than the
item at position i −1, so that when the item is sorted, its swaps have a lower cost.
For an illustration of this, see Table 10.2.

i A B δ p

1 Coke Pepsi - 1
2 Pepsi Coke 0.189 1.189
3 Fanta Sprite 0.1 1.289
4 Sprite Fanta 0.063 1.352

Table 10.2: Values of the position weights δ and pi for the soda example, with δ calculated using the
DCG algorithm.

With δ and p defined, we can now calculate the average cost of moving item
i in B to the position of that item in A, remembering that this can involve

multiple pairwise swaps. This average cost is: p̄i =
pi−pσB(Ai )
i−σB(Ai ) . For instance, the

cost of moving item Coke from position 2 to position 1 in B is calculated as

p̄1 =
p1−pσB(Coke)
1−σB(Coke) =

p1−p2
1−2 = 1−1.189

1−2 = 0.189.

The general incorporation of position weights is provided by the formula:

τ =
n∑

1≤i<j≤n
p̄i p̄j

[

σB(Ai ) > σB(Aj )
]

. (10.3)
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10.2.3 Similarity Weights

The third extension of Kendall’s distance takes into account the similarities and
differences between items. This means that, when two items are considered
highly similar, the cost of swapping these two items is lower than the cost of
swapping two items that are considered to be more different from one another.
In our sodas example, this can be used to model the high similarity between Coke
and Pepsi.2 As such, the inversion of Coke and Pepsi has a lower cost than the
inversion of Fanta and Sprite.

In order to incorporate item similarities, we define the distance matrix D,
where element Dij determines how similar items Ai and Aj are. When this is set
to 0, items Ai and Aj are identical; as the values are set to the large values, the
item pairs become more different.

The distance matrix is incorporated as follows in the formula for Kendall’s
distance:

τ =
n∑

1≤i<j≤n
Dij

[

σB(Ai ) > σB(Aj )
]

. (10.4)

10.2.4 Top-k Lists

Lastly, we discuss comparing top-k lists. When comparing two lists of k items, it
may be the case that not all items appear on both lists. It could be that there is
no predetermined set of items to rank. For example, instead of asking person A
and B to rank four sodas, they could have been asked to list their top 4 favorite
sodas. It could also be the case that one ranking contains missing information.
For example, even if the same four sodas are being ranked, one person might
only list their top three. This sets the current extension apart from the previous
three extensions: whereas the other extensions are modeling choices, the top k
extension is driven by the nature of the data.

Suppose that we observe the responses A = (Coke,Pepsi,Fanta,Sprite) and
B = (7up,Sprite,GingerAle,Pepsi). In such a case, we cannot determine for all
items if an inversion has occurred due to some items only appearing in one of the
lists. A method introduced by Fagin, Kumar, & Sivakumar (2003) can be used to
model the missingness of items.

The approach identifies four cases of how two items may appear in A and B,
and outlines the cost of a swap z. We present these four cases for the toy example:

1. Both items appear in A and B (e.g., Coke and Pepsi). Since person A prefers
Coke and person B prefers Pepsi, this is the traditional case of an inversion
and therefore z = 1.

2. Both items appear in A, but only one item appears in B (e.g., Pepsi and
Fanta). Since person B only includes Pepsi, we can conclude that they prefer
Pepsi over Fanta. If person A shares this preference, z = 0. Otherwise, this
is an inversion and therefore z = 1.

2The authors acknowledge that some readers might wildly disagree with this statement.
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3. One item appears only inA, and the other item appears only in B (e.g., Coke
and 7up). In a similar reasoning to the previous case, we know that person
A prefers Coke over 7up and person B prefers 7up over Coke, because at
least those sodas appear in the list. This is an inversion and we therefore
set z = 1.

4. Both items appear in A, but neither appear in B (e.g., Coke and Fanta). Here
there is no information on whether person B prefers Coke or Fanta, since
neither appear in B. As a first option, Fagin et al. (2003) outline the opti-
mistic approach, which is setting z = 0. In other words, this gives person B
the “benefit of the doubt”, and assumes that if they had included Coke and
Fanta, they would have expressed the same preference as person A. Alter-
natively, the pessimistic approach sets z = 1, and assumes person B would
have expressed the opposite ordering of the items. In general, the probabil-
ity of person B preferring Coke over Fanta can be represented by parameter
0 ≤ θ ≤ 1, with θ = 0 corresponding to the optimistic approach and θ = 1
corresponding to the pessimistic approach. As such, specifying θ = 1

2 cor-
responds to a neutral approach, in which there is an equal probability for
person B expressing the same or reverse order for the items. This still takes
into account the missingness, while not making a statement about how the
items would be ranked if they would be included in B.

Adding this extension to the Kendall’s distance formula gives:

τ =
n∑

1≤i<j≤n
θij

[

σB(Ai ) > σB(Aj )
]

. (10.5)

All of the extensions presented above can be combined to form the weighted
partial Kendall’s distance:

τ =
n∑

1≤i<j≤n
wiwj p̄i p̄jDijθij

[

σB(Ai ) > σB(Aj )
]

. (10.6)

10.3 Applications

We have now defined the full metric that is capable of modeling item impor-
tance, item position, and item similarity, while also accommodating missingness
in top-k lists. In this section, we present a series of four applications of Kendall’s
distance to previous psychological data, demonstrating how the various exten-
sions can improve data analysis to address the motivating research questions.

10.3.1 ItemWeights: Recall of Events on September 11

In order to study memory reconstruction, Altmann (2003) considered six events
that occurred on September 11, 2001. The events, in their true temporal order,
were (1) One plane hits theWorld Trade Center, (2) A second plane hits theWorld
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Trade Center, (3) One Plane crashes into the Pentagon, (4) One tower at theWorld
Trade Center collapses, (5) One Plane crashes in Pennsylvania, and (6) A second
tower at the World Trade Center collapses.

The participant responses consist of individual’s recalled temporal orderings
of these events. Kendall’s distance provides a natural single measure of response
accuracy for each participant. However, as noted by Altmann (2003), the correct
ranking of some of these events need not be driven by memory, but can be de-
termined by logic. For example, it can be deduced that the planes hitting the
World Trade Center occurs before the tower collapsing, and that the first plane
hits before the second plane. In contrast, correctly recalling when the plane crash
in Pennsylvania occurred needs to be memory driven. Thus, when a participant
incorrectly orders the two planes hitting the towers, this can be due to poor mem-
ory or poor reasoning, while incorrectly ranking the Pennsylvania crash is more
likely due to poor memory.

These considerations mean that if the research goal is to study memory ability
in recall, rather than logic reasoning skill, events (3) and (5) should be weighted
more heavily than items (1), (2), and (4). For example, if we consider the re-
sponses from two specific participants in the Altmann (2003) data, who recalled
orders:

(A) Plane 2, Pentagon, Plane 1, Tower 1, Pennsylvania, Tower 2

(B) Plane 1, Pentagon, Plane 2, Pennsylvania, Tower 1, Tower 2

Both of these participants have the same number of inversions relative to the
ground truth, and therefore yield an identical unweighted Kendall’s distance of
2. However, participant A makes logical errors while participant B does not. As a
consequence, assigning a weight of 2 to the memory driven items, and a weight of
1/2 to the logic driven items, changes the accuracymeasures to 1.25 for participant
A and 3 for participant B.

Figure 10.1 shows the change in Kendall’s distance resulting from including
item weights for all 158 participants from Altmann (2003). The standard un-
weighted measure is shown on the left, and the item-weighted measure is shown
on the right, with lines connecting the same participant under each measure. It
is clear that the recall accuracy of participants can increase, decrease, or stay the
same once item weights are incorporated. It is also clear that the use of item
weights also gives the Kendall’s distance greater resolution as a measure of accu-
racy. Without weight, there theoretically are 15 possible outcomes for Kendall’s
distance, 9 of which are observed in the Altmann (2003) data. With item weight-
ing there are 61 possible outcomes, including fractional counts, 21 of which are
observed.

10.3.2 Position Weights: Month Preference

In the previous example, the participant responses were compared to a true rank-
ing, in order to determine their accuracy. However, participants’ responses can
also be compared to each other, in order to determine similar response patterns.
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Figure 10.1: Unweighted and item-weighted Kendall’s distance for 158 participants from the Alt-
mann (2003) study of memory for the order of events on September 11. Each point in the unweighted
column and item-weighted column corresponds to a participant, jittered around the Kendall’s dis-
tance measure. The same participant for each measure is connected by a gray line. Participants A
and B are highlighted by black lines. As a result of the weighting, Participant A sees an increase of
Kendall’s distance, whereas Participant B sees a decrease of Kendall’s distance.
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Accordingly, our second application involves people’s preferences for the months
of the year, as collected by the crowd-source opinion web site ranker.com. A
total of 16 people ranked the 12 months from best worst.

A natural research question addressed by these data is whether there are in-
dividual differences in people’s preference patterns. For instance, some people
prefer the winter months to the summer months, while others may prefer sum-
mer to winter. One exploratory approach to identifying such patterns is through
data visualization. We rely on multidimensional scaling (MDS: Borg & Groe-
nen, 1997) algorithm to the pairwise Kendall’s distances between people, using
spaces of just two dimensions. This allows for a simple visualization that may
reveal clusters of people based on the similarity of their preferences (i.e., groups
of participants whose Kendall’s distance scores are small with respect to each
other).

There are two extensions of Kendall’s distance that are potentially useful here.
First, we can model the adjacent months as being fairly similar to each other. We
can therefore reduce the cost of swapping, for instance, January and February
from 1 to 0.5. Secondly, we can use position weights to capture assumptions
about whether people’s most or least favorite months are more indicative of their
preference. For example, consider the rankings provided two ranker.com users:

(A) Dec, Jun, Oct, May, Jul, Nov, Aug, Apr, Sep, Mar, Feb, Jan

(B) May, Oct, Nov, Dec, Sep, Jun, Jul, Apr, Aug, Mar, Feb, Jan

Their favorite months are rather different, but their least favorite months are
very similar. Whether these people are regarded as having similar preferences
depends on the weighting given to their favorite vs least favorite months.

Figure 10.2 presents the MDS visualizations for all of the ranker.com peo-
ple, considering three scenarios. The top panel shows the MDS visualization for
the preference rankings that are weighted by similarity but are unweighted by
position. The lower-left panel shows the MDS visualization for the preference
rankings where the DCG algorithm was used to weight the best months more
heavily. The bottom-right panel shows the MDS visualization for the preference
rankings where the reverse DCG algorithm is applied, in order to weigh the worst
months more heavily.

In this way, the difference between the bottom-left and bottom-right visu-
alizations is based on whether the most favored or least favored months are
treated as the most important in determining the similarity between people’s
preferences. Accordingly, in terms of the specific examples presented earlier,
person A and person B are further apart in the top and bottom-left panels of
Figure 10.2 than they are when the weighting is changed to emphasize the least
favorite months, as in the bottom-right panel.

It is striking that the MDS visualization based on weighting the least favorite
months, shown in the bottom-right panel, reveals a clear cluster structure. There
is a divide between people who dislike the cold winter months, in the left half
of the plot, and people who dislike the hot summer months, in the right half
of the plot. The other visualizations lack this clear cluster structure, suggesting
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Figure 10.2: MDS visualization based on unweighted, top-position weighted, and bottom-positions
weighted Kendall distances between people’s preferences for the months of the year.
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that focusing on the months people like the least is a good way to understand the
group structure of their preferences.

10.3.3 Similarity Weights: The Free Recall of Animals

Our third application involves measuring performance on a free recall memory
task in a clinical setting, and focuses on the use of similarity weights. The data
were collected using the Mild Cognitive Impairment Screen (MCIS: Shankle et
al., 2009), one component of a routine assessment of Alzheimer’s patients in a
neurodegenerative disorders clinic. As part of this assessment, patients complete
a triadic comparison task for nine animal names, where each of the animals is
presented in a triad with each of the other animals and the patient must deter-
mine which of the three animal names is least like the other two. After a delay,
patients complete a surprise free recall task of those nine animal names.

One important research goal is to identify and understand the different free
recall response patterns. There is evidence that the semantic relationships be-
tween the animals influences the order in which their names are recalled (Bous-
field & Sedgewick, 1944; Bousfield, 1953; Romney et al., 1993). In particular, it
is common for the recalled list to be made up of sub-sequences of semantically-
related animal names. For example,“zebra”, “giraffe”, “elephant”, and “tiger” are
likely to be recalled consecutively, as a cluster of African zoo animals. In clinical
settings, the exact order in which a cluster like this is recalled is less important
than the fact it is recalled largely as a cluster, since this suggests semantic mem-
ory is intact.

As a concrete example, consider the recall data for three people:

(A) Elephant, Giraffe, Sheep, Rat, Monkey, Chimpanzee, Rabbit, Zebra, Tiger

(B) Rat, Sheep, Giraffe, Zebra, Elephant, Monkey, Chimpanzee, Tiger, Rabbit

(C) Rat, Chimpanzee, Zebra, Giraffe, Elephant, Tiger, Rabbit, Sheep, Monkey

The unweighted Kendall’s distance between A and B is 11, between A and
C is 18, and between B and C is 13, which implies A and B behave most like
one another. We implemented a similarity-weighted measure using the pairwise
similarity between each pair of animals determined by an independent triadic
comparison task (Lee et al., 2015; Westfall & Lee, 2020). Using this extension
of the metric changes the distances between A and B to 30.1, between A and C
to 41.7, and between B and C to 26.4, so that B and C become the most similar.
Person A breaks the recall of the African zoo animals across extremes of the list,
with “elephant” and “giraffe” first and “zebra” and “tiger” last. Persons B and C,
in contrast, recall these animals near each other, although not in the same order
as one another. The similarity weighting gives less penalty to the transposition
of semantically-related animal names, which leads to B and C being measured as
having given the most similar responses.

We again use MDS visualizations to explore the overall relationships between
people’s free recall patterns, based on the Kendall’s distance measures. The left-
hand panels of Figure 10.3 show the visualizations for the unweighted metric,
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Figure 10.3: MDS visualization of the similarities between recall patterns of animal names based
on the unweighted Kendall’s distance (left panels) and similarity-weighted Kendall’s distance (right
panels). The top panels show 15 labeled people, while the bottom panels show all 200 people.
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in the top panel for 15 labeled people, including A–C above, and in the bot-
tom panel for all 200 people. The right-hand panels show the corresponding
visualizations for the similarity-weighted metric. It is clear that the inclusion of
similarity information leads to more clustering between the recall patterns, sug-
gesting the presence of different recall patterns that can be understood in terms
of the semantic relationships between the stimuli being recalled.

10.3.4 Top-k: Expert Sporting Predictions

Our last application involves predictions about player performance for the
2017 American Football season by experts from the fantasy football website
fantasypros.com. On the website, experts provide rankings each week for each
playing position commonly used in fantasy football. These rankings serve as ad-
vice for players as to which players they should place in their fantasy teams each
week. We focus on the rankings of all 85 experts, but just for week 10 of the
season, and just for the “kicker” position. We chose the kicker position because
it is the one for which different experts often rank different numbers of players.
In week 10, experts ranked between 13 and 20 kickers, with a median of 19.

Table 10.3 shows the actual points earned by each kicker3, as well as the rank-
ing provided by two of the experts. Kendall’s distance provides a natural way of
measuring the performance of the experts, by quantifying how close their pre-
dictions are to the truth. Some players scored the same number of points, which
leads to ties in the true ranking. This can be accommodated using similarity
weights, assigning a weight of 0 to any pair of kickers who are tied, and 1 to any
pair of players who are not tied.

In addition, because the experts ranked different numbers of players, their
Kendall’s distance depends on the setting of the missingness parameter. For the
optimistic setting (θ = 0), expert A has accuracy 103 and expert B has accuracy
133, so that expert A is measured as having made better predictions. For the
neutral setting (θ = 1

2 ), expert A has accuracy 153.5 and expert B has accuracy
149.5, so they are very similar. For the pessimistic setting (θ = 1), expert A has
accuracy 204 and expert B has accuracy 167, so now expert B is measured as
having made better predictions.

In this application, the optimistic setting seems inappropriate. Expert A in-
cluded only 14 players in their ranking, whereas Expert B included 20 players.
Setting θ = 0 means that whenever two players (e.g., Mason Crosby and Blair
Walsh) are not ranked by an expert, this expert is given the benefit of the doubt
and is not penalized. Expert B does include these two players, but predicts their
ranking incorrectly, and is penalized for it. This property makes it appealing for
an expert to only include the few players that they are very sure about, which
is not what is sought from a good prediction. Both the neutral and pessimistic
settings seem more appropriate, since they penalize experts who fail to make
predictions about players.

Figure 10.4 shows the change in Kendall’s distance for optimistic, neutral,
and pessimistic top-k measures for all of the experts. Experts are represented

3Players included in expert predictions but not listed did not score any points.
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Points True ranking Expert A Expert B

15 Greg Zuerlein Greg Zuerlein Stephen Gostkowski
12 Nick Rose Matt Bryant Greg Zuerlein
11 Mason Crosby Stephen Gostkowski Matt Bryant
11 Stephen Gostkowski Matt Prater Matt Prater
11 Wil Lutz Josh Lambo Mike Nugent
10 Connor Barth Graham Gano Ryan Succop
10 Brandon McManus Chris Boswell Chris Boswell
9 Matt Bryant Kai Forbath Chandler Catanzaro
9 Graham Gano Blair Walsh Kai Forbath
9 Patrick Murray Ryan Succop Steven Hauschka
8 Kai Forbath Wil Lutz Wil Lutz
8 Matt Prater Steven Hauschka Brandon McManus
8 Blair Walsh Mike Nugent Josh Lambo
7 Robbie Gould Chandler Catanzaro Adam Vinatieri
7 Aldrick Rosas Graham Gano
6 Chris Boswell Blair Walsh
6 Zane Gonzalez Robbie Gould
6 Josh Lambo Mason Crosby
6 Ryan Succop Connor Barth
5 Nick Novak Nick Rose

Table 10.3: The number of fantasy points scored by kickers in week 10 of the 2017 American National
Football League season, the true ranking of the players according to these point totals, and the ranked
predictions of two experts from fantasypros.com.
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Figure 10.4: Optimistic, neutral, and pessimistic Kendall’s distance measures of accuracy for 85 ex-
perts from fantasypros.com. Each expert predicted the fantasy football performance of kickers in
week 10 of the American National Football League 2017 season. Each point corresponds to a par-
ticipant, jittered around the Kendall’s distance measure. The same participant for each measure is
connected by a gray line. Experts A and B from Table 10.3 are highlighted by black lines.
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by jittered markers with lines connecting the same expert under each measure.
Increasing pessimism leads to the experts who ranked fewer players being pe-
nalized more heavily for these missing data. Thus, while the distance measure
increases for all of the experts as pessimism increases, it increases more quickly
for some experts.

10.4 Concluding Comments

In this chapter, we aimed to introduce three extensions of the Kendall’s distance
metric that are useful for analyzing ranking data in psychological research, as
well as demonstrating the ability of the metric to accommodate top-k lists. Our
applications gave worked examples of how the extensions can help improve the
measurement of key properties of ranking data in the context of specific research
goals. Two of the applications focused on measuring people’s accuracy, and two
focused onmeasuring the extent and nature of the individual differences between
people. Measuring performance and individual differences are among the most
common and basic goals of data analysis in psychology.

While we mostly applied the extensions separately, the final application
showed that multiple extensions can be used simultaneously. There is nothing
preventing Kendall’s distance measures being designed to be sensitive to items,
their positions, and their similarities in top-k lists where different people have
different k. This underscores the flexibility and generality of the metric, and its
ability to be adapted to answer specific questions in specific research contexts.
While this flexibility should help improve data analysis, it may be important to
use pre-registration to make a clear whether and how the extensions to the metric
are used in an exploratory way (Lee et al., 2019). An OSF project page associated
with this chapter is available at https://osf.io/6k9t8/ It includes the R script
used for calculating weighted Kendall’s distance and example applications of the
toy example described in this article.
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Chapter 11

Summary and Future

Directions

In the first part of my dissertation, I provided guidelines and reflection on
Bayesian inference in general, aimed at familiarizing researchers with the core
concepts of the Bayesian framework. Moreover, in the first part I explored the
extent to which different researchers can approach a research question, both in
simple and complex scenarios, such as in the comparison of mixed effects mod-
els. In the second part of my dissertation, I applied the Bayesian philosophy to
rank-based tests, in order to combine the benefits of Bayesian inference with the
benefits of rank-based tests. In this part I demonstrated both the use of ranks in
hypothesis testing and the practical relevance of Kendall’s τ in the modeling of
psychological data. Below, I first summarize each chapter and its main conclu-
sions, and then explore potential directions for future research for each part of
the dissertation. This chapter ends with a general conclusion.

11.1 Part I: For Researchers

11.1.1 Chapter Summaries

Chapter 2 introduced the core concepts of Bayesian inference, and provided prac-
tical guidelines for the four stages of Bayesian inference: planning, conducting,
interpreting, and reporting. Each stage was demonstrated with the running ex-
ample featuring a Bayesian t-test. The aim of this chapter was to cover a broad
spectrum of statistical analyses (i.e., the analyses offered in JASP), where the
research question at hand concerns hypothesis testing, parameter estimation,
or both. Especially the planning stage is relevant for both Bayesian and non-
Bayesian analyses. There is a large emphasis on solidifying the choices made in
the planning stage by using a preregistration format (i.e., Nosek et al., 2018;
C. D. Chambers, 2013) and to share data and analysis code, in order to promote
transparent and reproducible science.

Chapter 3 illustrated that statistical inference features inherently subjective
components. Although the two scenario’s presented to the four teams of statis-
ticians were relatively simple (an association between two continuous variables
and a cross table), each team chose a distinct approach in answering the two re-
search questions. While two teams opted for a Bayesian analysis, their specific
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paths still differed (e.g., one team applied a log-transformation of the data first,
while the other team did not). The other two teams applied other methods such
as equivalence testing and p-values. However, all teams were in agreement about
both answers to the research questions at hand. The general conclusion for both
research questions was that the data were inconclusive, which was remarkable,
considering both scenario’s were based on the findings of published articles. The
disagreements in method, but agreement in conclusion, underscores the idea that
careful consideration (i.e., being aware of the capabilities and limitations of the
analysis framework of choice) and planning of the analysis is paramount, and
that the exact details of the statistical approach come second. Of course, this
conclusion holds in the scenario where simple scenario’s are deemed inconclu-
sive, and it remains to be seen whether this finding generalizes to more complex
scenarios with small effects.

Chapter 4 provided a teaching tool for introducing Bayesian inference at
the beginner level. The binomial test provides an excellent starting point for
Bayesian statistics education, since it is simple in its use due to its confined pa-
rameter space and conjugate prior/posterior, while also applicable to interesting
research settings. While the chapter demonstrates the test using a beer tasting ex-
periment conducted at the University of Amsterdam, the research question can
of course vary. I have used this chapter and demonstration in my own teaching.
Particularly in the first-year bachelor course “Research Methods and Statistics”,
using the binomial test to estimate and test the ratio of colored chocolate “kruid-
noten” has been a fun and educational adventure.1

Chapter 5 reported results from a questionnaire sent to lead authors of em-
pirical articles published in the journal Nature Human Behavior, in an effort to
gauge how applied researchers reason about the concept of evidence for a claim.
The chapter reported the results of two questions that asked the researcher to
assess the plausibility of the claim in their article before, and after observing the
data. The responses to this question enabled the computation of an informal
Bayes factor for each researcher’s claim, which often was merely supported by
“anecdotal” evidence. Since these claims were published in a top tier journal,
this result was rather shocking. The discrepancy between the private conviction
of the researcher and how the claim is publicly reported, uncovers a flaw in the
academic reporting system, where transparency about uncertainty is penalized,
rather than rewarded.

Chapter 6 outlined several choices that emerge in the Bayesian comparison
of mixed effects models. Specifically, it demonstrated how the choice of null
and alternative model affect the definition of “an effect” in the context of ran-
dom effects. Additionally, it explored the effect of aggregating the data, the
choice of prior distributions, and the role that measurement error plays in mixed
model comparisons. The aim of this chapter was to provide a common start-
ing ground for discussion among experts about best practices in Bayesian com-
parison of mixed effects models, in order to draft a set of practical guidelines.
By demonstrating the behavior of three possible model comparisons (i.e., com-

1The Bayesian lectures were given around the time of Sinterklaas, a Dutch celebration, where
kruidnoten are a popular sweet.
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bination of null and alternative model) in three different example scenario’s, the
differences between the model comparisons were underscored. Rather than elect-
ing the “best” model comparison, the aim was to inform the reader about these
choices, such that they can choose the option that best suits their research ques-
tion.

11.1.2 Discussion and Future Directions

The first part of this dissertation was contemplative in nature, and presented the
perspectives of both statisticians and applied researchers on statistical inference.
In this section, I explore avenues for future development that will focus on bridg-
ing the gap between the two groups of researchers. While expert opinions might
differ about which specific statistical framework is the most appropriate, even in
simple research settings, there is considerable agreement that the analyst should
be well-informed and transparent about the tools they are using. When each
step of the analysis is documented, and the data made openly available, critical
readers of an article may reproduce the analysis, and explore to what extent the
findings are robust to alternative analysis options. For example, a researcher first
aggregates their observations, conducts a Bayesian repeated measures ANOVA
(see Example 3 in Chapter 6), and reports evidence for an interaction effect. An-
other researcher ought to be able to repeat the analysis, but instead of aggregating
the data, conduct a full mixed effects model comparison to assess how well the
conclusion generalizes across different analysis setups.

Transparent inference is one part (and is easy to preach from our methodolog-
ical ivory tower), but the careful documentation and dissemination of the various
analysis choices that exist for a specific experimental design is a crucial second
part. I believe starting centralized discussions on best practices, as demonstrated
in Chapters 3 and 6, are an important area of psychological methods. Improv-
ing statistical practice in the field is arguably the most important goal of psy-
chological methods, but the statistical literature can easily feel overwhelming
for researchers in psychology. In other areas of psychology, research findings in
the literature are typically aggregated using meta-analysis. While unsuited for
quantitative aggregation, statistical methods can be aggregated through qualita-
tive meta-synthesis. Currently, my colleagues and I are experimenting with this
format, where Chapter 6 will serve as the starting point for discussion. If the
discussion on mixed models in the near future proves fruitful, a set of guiding
principles can be drafted that will be both practical and informative to the novice
practitioner in mixed model comparison.2 In doing so, it will be similar to the
guidelines discussed in Chapter 2.

The idea behind this methodological meta-synthesis is to carefully select sev-
eral example data sets (either synthetic or real) that are sensitive to the specific
issues at hand, such that different approaches lead to qualitatively different con-
clusions and will therefore foster discussion. A potential shortcoming of Chapter
3 is that both example data sets were deemed inconclusive by all the analysis
teams. Although the exercise itself still proved insightful, it limited the extent

2Of course, caution is warranted not to repeat iconic xkcd comic 927 (https://xkcd.com/927/).
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of the discussion afterwards. It would therefore be valuable to conduct simi-
lar studies of experts analyzing identical data sets, but for more complex and
slightly more conclusive data sets, in similar fashion to the Many Analysts setup
(Silberzahn et al., 2018). The goal of the Many Analysts setup is to underscore
statistical inference as a subjective exercise and to use the setup to create a ro-
bust inferential process. In contrast, the goal of this new line of studies is to
use the differences between experts to demonstrate the practical relevance and
implication of each analysis choice, as an educational endeavor, and to draft a
set of guidelines based on expert consensus. Concretely, the first avenue of fu-
ture development is therefore to continue the mixed modeling synthesis, and to
apply this general framework to other analyses that lack a clear set of guiding
principles, such as meta-analysis, Bayesian post-hoc testing in ANOVA, and ac-
commodating violated assumptions.

Whereas the future development of methodological synthesis focuses on or-
chestrating discussion among experts, I also propose to further explore how ap-
plied researchers view the process of statistical inference. The questionnaire and
data set presented in Chapter 5 offer a wealth of information on this subject, and
can inform statisticians about how to best provide methodological and statistical
advice. For example, proponents of the Bayes factor view the updating of prior
odds to posterior odds of two competing hypotheses to be the holy grail of sta-
tistical inference. However, 15 out of the 31 respondents felt that a decrease in
plausibility is not problematic, as long as the posterior odds are still in favor of
the alternative hypothesis.3 Bayes factor tutorial articles can use this information
and emphasize why knowledge updating is important, or focus on the interplay
between Bayes factor and posterior odds. Concretely, the second avenue for fu-
ture development will focus on exploration and dissemination of the current data
set, as well as expand the data set by approachingmore leading authors of articles
in high impact journals.

11.2 Part II: For Ranks

11.2.1 Chapter Summaries

Chapter 7 introduced a Bayesian framework for hypothesis testing and param-
eter estimation for the rank correlation Kendall’s τ. The framework was based
on work by Johnson (2005), who obtained an upper bound on BF10 (i.e., a lower
bound on BF01) by modeling the asymptotic sampling distribution of the test
statistic. In order to create a default prior distribution for Kendall’s τ, the de-
fault prior distribution for Pearson’s ρ was transformed using Greiner’s relation
(Greiner, 1909). Additionally, the alternative hypothesis was adjusted such that,
in combination with the new default prior distribution, a Bayes factor and poste-
rior distribution were obtained.

3Question 3a of the questionnaire: “Suppose another researcher conducted a study in their field
and then answered the previous two questions. Before seeing the data, the researcher was 80% confi-
dent that the claim is true. After seeing the data, the researcher was 60% confident that the claim is
true . The researcher now argues that the data support their claim. Do you think this is reasonable?”

154



11.2. Part II: For Ranks

Chapter 8 provided an alternativemethod for Bayesian inference for Kendall’s
τ using data augmentation. In this setup, rank data are seen as impoverished
manifestations of a latent (i.e., unobserved), normally distributed construct. Us-
ing Markov chain Monte Carlo sampling, the latent construct can be approxi-
mated in terms of a posterior distribution for the latent values, while the ordinal
information in the data is preserved. In this Gibbs sampling algorithm, the pos-
terior distribution of the parametric correlation Pearson’s ρ is also approximated.
The resulting posterior distribution of Pearson’s ρ can then be transformed using
Greiner’s relation, to obtain the posterior distribution of Kendall’s τ. This ap-
proach leads to highly similar inference as the approach outlined in Chapter 7,
except for small sample sizes and high values for Kendall’s τ, where the asymp-
totic approximation might not hold.

Chapter 9 applied the same latent normal algorithm introduced in Chapter 8,
but presented this framework as a general method for constructing Bayesian ver-
sions of rank-based tests. The framework was applied to create Bayesian equiva-
lents of theWilcoxon rank sum test (i.e., the Mann-Whitney U test), theWilcoxon
signed rank test, and Spearman’s ρ. The main idea of the data augmentation
method is to use the ordinal information in the data to approximate the latent
construct, and to conduct the parametric test (e.g., the Bayesian t-test, in the case
of the Wilcoxon rank sum test) on these latent scores. This respects the uncer-
tainty inherent in rank data, while creating a test that is easy to understand, since
it is based on the parameterization of the parametric equivalent. For example, the
Bayesian Wilcoxon rank sum test yields a posterior distribution for effect size δ,
but on the latent level. Additionally, the discussed tests have an asymptotic rel-
ative efficiency close to 1, compared to their parametric equivalents, when the
data are normally distributed. When the data depart from normality, the power
of the rank-based tests surpasses their parametric equivalents.

Chapter 10 did not focus on hypothesis tests or parameter estimation, but
instead presented Kendall’s distance as a modeling tool for rank data in psychol-
ogy. While Kendall’s τ is often used for capturing a rank-based association be-
tween two variables, its unstandardized version is a highly versatile statistic that
can be used to aggregate observed data. The chapter presented four extensions
of Kendall’s distance that can be used to model psychological phenomena, such
as item similarity, item importance, and item position. The metric was demon-
strated by applying it to four research scenario’s. First, the serial recall of the
events of 9/11, where incorrectly recalling some events is penalized more heav-
ily than incorrectly recalling other events, using item weights. Second, partici-
pants’ ranking of all twelve months, from most liked to most hated, where the
most hated months were weighted more heavily with position weights to detect
clusters of participants with similar aversions. Third, a free recall memory task
where response styles were modeled, and animal similarities were accounted for
by similarity weights. Fourth, experts’ predictions of American football player
performance, where varying lengths of the experts’ responses (i.e., top-k lists)
were accommodated using the missingness penalty parameter.
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11.2.2 Discussion and Future Directions

The second part of this dissertation was more technical in nature, and presented
Bayesian versions of several rank-based tests. While the asymptotic framework
in Chapter 7 is limited to a few tests, the latent normal framework in Chap-
ters 8 and 9 can be applied more generally. I believe that a major advantage of
this framework is the ease of its interpretation, since it is closely related to the
Bayesian framework for the parametric tests. For instance, the BayesianWilcoxon
rank sum test applies the Bayesian t-test of Rouder et al. (2009), but on the latent
level. The benefit of the latent normal framework is that the interpretation, prior
specification, and parameterization are very similar between the rank-based and
parametric methods, but where the rank-based method accounts for the extra
uncertainty inherent in ordinal observations. Additionally, the rank-based tests
eliminate certain arbitrary decisions in the analytic process (e.g., whether to ap-
ply a monotonic transformation, how to handle outliers, or whether the data are
normally distributed).

In recent years, two alternatives to the method outlined in Chapters 8 and
9 have been developed. First, a similar latent normal method is implemented
in the brms package (Bürkner, 2017; Bürkner & Vuorre, 2019) that allows rank-
based parameter estimation for linear models. Although easily applied and quite
versatile, the method lacks Bayes factor hypothesis tests. Second, Chechile (2020)
outlines various Bayesian rank-based tests, such as the Wilcoxon signed rank test
and Kendall’s τ. This method uses the binomial likelihood to model the proba-
bility of observing a positive difference (in the case of the Wilcoxon signed rank
test), or a concordant pair (in the case of Kendall’s τ). However, it seems that
the Bayes factors obtained through these methods are overly optimistic. For in-
stance, for the data example in Chapter 7, a data set with only 20 observations
and an observed Kendall’s τ of 0.28, Chechile obtains BF10 = 186. This is in
stark contrast to the BF10 = 2.17 presented in Chapter 7, particularly consider-
ing BF10 = 5.2 for Pearson’s ρ. An example of the Wilcoxon signed rank test is
available at https://osf.io/2wgtc/.

An obvious future direction of this part of my research is to explore applica-
tions of the latent normal framework to other rank-based tests. Some preliminary
work has already been done to realize Bayesian versions of the Kruskal-Wallis test
and the Friedman test (i.e., rank-based ANOVA), and the latent normal frame-
work can also be extended to create Bayes factor hypothesis tests for partial rank
correlations (e.g., Kendall, 1942; Q. Liu et al., 2018) and ordinally constrained
parameters (J. M. Haaf et al., 2018). However, a more adventurous endeavor
would be to explore the different models for rank data presented by Marden
(1995). These models provide likelihood functions for rank data in certain set-
tings. For instance, Mallows’s φmodel (Mallows, 1957) is a distance-basedmodel
that expresses the likelihood of the observed ranks as a function of the “modal”
ranking (i.e., a ground truth, or the consensus ranking) and a dispersion param-
eter that governs how close the responses are to the modal ranking. The work
presented in Chapter 10 is particularly suited to Mallows’s φ model, since this
model uses Kendall’s distance to quantify the distance between observed rank-
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ings and the modal ranking. It would therefore be worthwhile to explore the
distance-based models and incorporate the three weighting extensions outlined
in Chapter 10. Mallows’s φmodel can be applied to analyze general agreement in
rankings (e.g., preference rankings) or accuracy of participants’ responses (e.g.,
in a memory recall experiment), and by incorporating the three weighting ex-
tensions, the flexibility of the model is greatly enhanced. Concretely, the third
avenue for future development will focus on documenting the models presented
by Marden, illustrating their usefulness in psychological science, and expanding
the distance-based models with the weighted Kendall’s distance.

11.3 General Conclusion

This dissertation has discussed Bayes factor hypothesis testing on two levels.
First, a contemplative series of guidelines, reflections, and educational tools was
provided, in order to increase the understanding, transparency, and rigor in the
application of Bayesian inference. Second, the focus was shifted to providing
tools for conducting rank-based tests and modeling rank data. Together, the two
parts of this dissertation will enable any researcher to properly conduct a Bayes
factor hypothesis test in a scenario with ordinal, or non-normal, measurements
and a research question that pertains to testing for a difference between two inde-
pendent groups, two dependent groups, or an association between two variables.

In this concluding chapter I have outlined three potential avenues for future
development. First, to develop a wider array of methodological meta-syntheses
by demonstrating different options in a specific statistical framework, document-
ing the approaches and opinions by experts in the field, and drafting a set of
guiding principles. Second, to increase the effectiveness of statistical recom-
mendations by studying the practical and conceptual challenges faced by ap-
plied researchers. Third, to extend distance-based models for rank data with the
weighted partial Kendall’s distance.

The final path for the future is more general. Most chapters in this disser-
tation are related to JASP, either by using JASP as an educational or illustrative
tool, providing guidelines on how to best use it, or by developing new analyses
and making these available through JASP. Because JASP is open source, features a
graphical user interface, and has an active user community (e.g., through Github,
the JASP forum, and social media), it not only makes statistics more accessible,
but also lowers the threshold for users to be informed about best practices. In my
work for JASP, I have therefore not only focused on adding analyses to the plat-
form, but also on expanding the documentation for the existing analyses, and
advising users on specific analysis issues. At the start of this dissertation, I stated
my belief that a successful statistical method is not only functional and accurate,
but also features proper dissemination and documentation. With over 100,000
downloads in the past three months, I believe that JASP is instrumental in lower-
ing the threshold for researchers to conduct (rank-based) Bayes factor hypothesis
tests. In the future, I aim to further expand the available analyses, write tutorial
blogs and articles, and teach workshops.
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Exploring each avenue presented above aims to bridge the gap between ap-
plied and statistics researchers, and to ensure prudent statistical practice across
the board.

158



Part IV

Appendices

159





References

Albert, J. H. (1992a). Bayesian estimation of normal ogive item response curves
using gibbs sampling. Journal of Educational Statistics, 17(3), 251–269.

Albert, J. H. (1992b). Bayesian estimation of the polychoric correlation coeffi-
cient. Journal of Statistical Computation and Simulation, 44, 47–61.

Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous
response data. Journal of the American Statistical Association, 88, 669–679.

Altmann, E. M. (2003). Reconstructing the serial order of events: A case study
of September 11, 2001. Applied Cognitive Psychology: The Official Journal of the
Society for Applied Research in Memory and Cognition, 17, 1067–1080.

Alvo, M., & Yu, P. (2014). Statistical methods for ranking data. New York: Springer
New York.

Andrews, M., & Baguley, T. (2013). Prior approval: The growth of Bayesian meth-
ods in psychology. British Journal of Mathematical and Statistical Psychology, 66,
1–7.

Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician,
27, 17–21.

Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao,
S. M. (2018). Journal article reporting standards for quantitative research
in psychology: The APA publications and communications board task force
report. American Psychologist, 73, 3–25.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling
with crossed random effects for subjects and items. Journal of Memory and
Language, 59, 390–412.

Barr, D. J. (2013). Random effects structure for testing interactions in linear
mixed-effects models. Frontiers in Psychology, 4:328.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure
for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and
Language, 68, 255–278.

Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed
models. arXiv preprint arXiv:1506.04967.

161



REFERENCES
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Appendix A

Online Supplementary

Material

Summary

Chapter 2

https://osf.io/25ekj/ Annotated .jasp file of the running example
(t-test and Wilcoxon rank sum test)

https://osf.io/wae57/ Annotated .jasp file of online Example 2
(Mixed ANOVA)

https://osf.io/q38da/ Annotated .jasp file of online Example 3
(Correlation)

https://osf.io/ybszx/ Annotated .jasp file of online Example 4
(Informed t-test)

Chapter 3

https://osf.io/hykmz/ Repository of the two data sets that were ana-
lyzed by the teams

https://osf.io/f4z7x/ The complete email discussion between the
teams, after the analyses were conducted

Chapter 4

https://osf.io/cf3a2/ Annotated .jasp file of data and analyses of the
beer tasting experiment

https://osf.io/428pb/ Repository of the data and videos of data collec-
tion
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A. Online Supplementary Material

Summary

Chapter 5
https://osf.io/zjnpm/ The questionnaire and text based answers of re-

spondents (“Why (not) is it reasonable to publish
a claim after seeing a decrease in plausibility?”
and “What do you believe constitutes statistical
evidence?”)

https://osf.io/kd4ps/ Annotated .jasp file of the analysis of the dif-
ference in researchers’ assessments of prior and
posterior plausibility of their claims

Chapter 6

https://tinyurl.com/y7nlelyy Shiny app for simulating mixed effects data for
various parameter/sampling settings

https://tinyurl.com/ycamajfw Shiny app for exploring simulation study re-
sults, comparing the different model compar-
isons for various parameter settings

https://osf.io/tjgc8/ R-code to generate and analyze the data set used
in Example 1 (the effect of aggregation)

https://osf.io/xpk85/ R-code to generate and analyze the data sets used
in Example 2 (the effect of measurement error)

https://osf.io/cw5jd/ R-code to analyze the data set used in Example 3
(a random interaction effect)

Chapter 7

https://osf.io/bg4vw/ R-code to compute the posterior distribution and
Bayes factor for Kendall’s τ using the asymptotic
method

https://osf.io/es5ag/ Illustration of prior distribution and simulation
study for verifying the asymptotic normality of
Kendall’s τ

Chapter 8

https://osf.io/87zqx/ R-code to compute the posterior distribution and
Bayes factor for Kendall’s τ using the latent nor-
mal method

https://osf.io/b54mp/ Simulation study for comparing the behaviors of
the different methods for Bayesian inference of
Kendall’s τ
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Summary

Chapter 9

https://osf.io/gny35/ OSF repository of R-code for the rank sum,
signed rank, and Spearman’s ρ

https://osf.io/j5wud/ R-code for reproducing all examples in paper

https://tinyurl.com/y9ogaa6d Shiny app for exploring the simulation study re-
sults for the ranks sum and signed rank test

https://tinyurl.com/y9oewhss Shiny app for exploring the simulation study re-
sults for Spearman’s ρ

Chapter 10

https://osf.io/5agdv/ R code for the computation of the weighted par-
tial Kendall’s distance

https://osf.io/4ej6s/ Example applications of the weighted partial
Kendall’s distance for the toy soda data

179

https://osf.io/gny35/
https://osf.io/j5wud/
https://tinyurl.com/y9ogaa6d
https://tinyurl.com/y9oewhss
https://osf.io/5agdv/
https://osf.io/4ej6s/


A. Online Supplementary Material

180



Appendix B

Publications

B.1 Under Review

1. van Doorn, J.B., Aust, F., Haaf, J.M., Stefan, A., & Wagenmakers, E.–J. (un-
der review). Bayes Factors for Mixed Models.

2. van Doorn, J.B., Westfall, H., & Lee, M.D. (under review). Using the
Weighted Kendall’s Distance to Analyze Psychological Data and Models.

3. Scheepstra, K.W.F., van Doorn, J.B., Scheepens, D.S., de Haan, A.,
Schukking, N., Zantvoord, J.B., & Lok, A. (under review). Rapid speed
of response to ECT treatment in bipolar depression: A retrospective chart
review.

B.2 Published

1. van Doorn, J.B., van den Bergh, D., Dablander, F., Derks, K., van Dongen,
N.N.N., Evans, N. J., Gronau, Q. F., Haaf, J.M., Kunisato, Y., Ly, A., Mars-
man, M., Sarafoglou, A., Stefan, A., &Wagenmakers, E.–J. (in press). Strong
Public Claims May Not Reflect Researchers’ Private Convictions. Signifi-
cance.

2. van Doorn, J.B., van den Bergh, D., Boehm, U., Dablander, F., Derks, K.,
Draws, T., Evans, N. J., Gronau, Q. F., Hinne, M., Kucharsky, S., Ly, A.,
Marsman, M., Matzke, D., Komarlu Narendra Gupta, A. R., Sarafoglou, A.,
Stefan, A., Voelkel, J. G., & Wagenmakers, E.–J. (in press). The JASP guide-
lines for conducting and reporting a Bayesian analysis. Psychonomic Bulletin
& Review.

3. van Doorn, J.B., Ly, A., Marsman, M., & Wagenmakers, E.–J. (2020).
Bayesian Rank-Based Hypothesis Testing for the Rank Sum Test, the Signed
Rank Test, and Spearman’s ρ. Journal of Applied Statistics, 47, 2984–3006.

4. van Doorn, J.B., Matzke, D., & Wagenmakers, E.–J. (2020). An In-Class
Demonstration of Bayesian Inference. Psychology Learning and Teaching, 19,
36–45.

181



B. Publications

5. Ly, A., Stefan, A., van Doorn, J.B., Dablander, F., van den Bergh, D.,
Sarafoglou, A., Kucharsky, S., Derks, K., Gronau, Q. F., Raj, A., Boehm, U.,
van Kesteren, E.–J., Hinne, M., Matzke, D., Marsman, M., & Wagenmakers,
E.–J. (2020). The Bayesian methodology of Sir Harold Jeffreys as a practical
alternative to the p value hypothesis test. Computational Brain & Behavior,
3, 153–161.

6. van den Bergh, D., van Doorn, J.B., Marsman, M., Draws, T., van Kesteren,
E.–J., Derks, K., Dablander, F., Gronau, Q. F., Kucharsky, S., Komarlu Naren-
dra Gupta, A. R., Sarafoglou, A., Voelkel, J. G., Stefan, A., Ly, A., Hinne,
M., Matzke, D., & Wagenmakers, E.–J. (2020). A tutorial on conducting
and interpreting a Bayesian ANOVA in JASP. L’Année Psychologique/Topics
in Cognitive Psychology, 120, 73–96.

7. van Doorn, J.B., Ly, A., Marsman, M., & Wagenmakers, E.–J. (2019).
Bayesian Estimation of Kendall’s tau Using a Latent Normal Approach.
Statistics and Probability Letters, 145, 268–272.
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Appendix C

Dutch summary

Dit proefschrift, getiteld “Bayes Factor Hypothesis Tests for Ranks and Re-
searchers”, behandelt verschillende methoden voor gedragsmatig onderzoek.
Het eerste deel van dit proefschrift biedt richtlijnen voor, en beschouwing van,
Bayesiaanse statistiek in het algemeen, met als doel het introduceren van de cen-
trale concepten van Bayesiaanse statistiek voor toegepaste onderzoekers. Dit deel
verkent ook de verschillende routes die onderzoekers kunnen bewandelen wan-
neer zij geconfronteerd worden met een onderzoeksvraag en dataset. Het tweede
deel van dit proefschrift past de Bayesiaanse filosofie toe op hypothesetoetsing
voor rangorde data, zodat de voordelen van rangorde data gecombineerd kun-
nen worden met de voordelen van Bayesiaanse statistiek. Dit deel laat zien hoe
rangordes gebruikt kunnen worden in hypothesetoetsing, en hoe Kendall’s τ ge-
bruikt kan worden om psychologische data te modelleren.

C.1 Deel I: For Researchers

Hoofdstuk 2 introduceert centrale concepten in Bayesiaanse statistiek, en geeft
praktische richtlijnen voor de vier fases van Bayesiaanse gevolgtrekking: plan-
nen, uitvoeren, interpreteren, en rapporteren. Elke fase wordt uitgelegd aan de
hand van een voorbeeld dataset. Het doel van dit hoofdstuk is om een breed
spectrum te dekken van statistische analyses waarbij hypothesetoetsing, param-
eterschatting, of beiden het doel is/zijn. Vooral de planningfase is relevant
voor zowel Bayesiaanse als niet-Bayesiaanse analyses. Er is een grote nadruk
op het vastleggen van de keuzes die gemaakt worden tijdens het plannen door
middel van preregistratie (i.e., Nosek et al., 2018; C. D. Chambers, 2013), om
transparante en reproduceerbare wetenschap te faciliteren.

Hoofdstuk 3 demonstreert hoe statistische gevolgtrekking intrinsiek subjec-
tieve componenten bevat. Er werden twee relatief simpele onderzoeks scenario’s
(een associatie tussen twee continue variabelen, en een kruistabel) voorgelegd
aan vier teams van statistici, waarbij elk team de opdracht kreeg om antwoord te
geven op de centrale onderzoeksvraag. Zelfs in deze simpele scenario’s werden
vrij uiteenlopende statistische methoden gekozen om antwoord te geven. Ook
de twee teams die kozen voor een Bayesiaanse analyse, verschilden in hun spec-
ifieke aanpak (bijvoorbeeld het toepassen van een log-transformatie op de data).
De andere twee teams kozen voor anderemethoden, zoals equivalence testing en p-
waarden. Ondanks de verschillen in aanpak, kwamen alle teams tot de conclusie
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dat de data niet eenduidig genoeg waren. Deze conclusie was verrassend, om-
dat beide scenario’s uit gepubliceerde artikelen afkomstig waren. De verschillen
in methode, maar overeenkomst in conclusie, benadrukt het centrale idee dat
een goed doordachte statistische aanpak (zoals het van tevoren plannen welke
analysestappen nodig zijn) centraal staat in statistische gevolgtrekking, en dat de
specifieke details van de methode op de tweede plaats komen.

Hoofdstuk 4 beschrijft een onderwijsmethode voor het introduceren van
Bayesiaanse statistiek op het beginnersniveau. De binomiale toets is een uitstek-
end beginpunt voor een Bayesiaanse introductie, omdat deze simpel te gebruiken
is dankzij de beperkte parameterruimte, de conjugate prior- en posterior verdel-
ing, en de brede toepassing in psychologisch onderzoek. Het hoofdstuk demon-
streert de toets aan de hand van een bierproefexperiment aan de Universiteit van
Amsterdam, maar de onderzoeksvraag en data kunnen gemakkelijk anders in-
gevuld worden. Ik heb deze methode gebruikt in mijn eigen onderwijs, in de
bachelorcursus “Research Methods and Statistics”, waar het schatten en toetsen
van de proportie van chocolade pepernoten (de cursus vond plaats rond Sinterk-
laas) een leuke en leerzame ervaring was.

Hoofdstuk 5 rapporteert een vragenlijst die gestuurd is naar eerste auteurs
van empirische artikelen die zijn gepubliceerd in het academisch tijdschrift Na-
ture Human Behavior, om in kaart te te brengen hoe toegepaste onderzoekers
denken over het begrip van bewijs voor een bepaalde bewering. Dit hoofdstuk
beschreef de resultaten van twee vragen, die bij de onderzoekers peilden hoe
plausibel zij hun bewering achtten, voordat ze hun data bekeken, en nadat ze
hun data bekeken. De antwoorden op deze vraag maken het mogelijk om een
informele Bayes factor te berekenen voor de empirische bewering van elke deel-
nemer, waarbij de Bayes factors vooral duidden op “anekdotisch” bewijs voor de
bewering. Omdat deze beweringen allemaal gepubliceerd zijn in een hoogstaand
tijdschrift, is dit resultaat nogal verrassend. Het verschil tussen de zelfgerappor-
teerde overtuiging van de onderzoeker, en de overtuigdheid waarmee een artikel
geschreven wordt, toont een groot probleem aan in het wetenschappelijke sys-
teem, waar transparantie over onzekerheid gestraft wordt, in plaats van beloond.

Hoofdstuk 6 beschrijft verschillende keuzes die naar voren komen wan-
neer een Bayesiaanse vergelijking wordt gedaan voor mixed effects models. Het
hoofdstuk demonstreert hoe de keuze van nul- en alternatief model de definitie
beı̈nvloedt van “een random effect”. Ook worden het effect van het aggregeren
van data, de keuze voor prior verdelingen, en de rol vanmeetfout besproken in de
context van mixed effects model selectie. Het doel van dit hoofdstuk is het samen-
brengen van verschillende vraagstukken, en om concrete vraagstellingen te pre-
senteren, zodat er een set van leidende principes samengesteld kan worden op
basis van de discussie die hieruit voortkomt. Het hoofdstuk bespreekt het gedrag
van drie verschillende modelvergelijkingen (i.e., een combinatie van nul- en al-
ternatief model), in drie verschillende voorbeeldscenario’s, die elk de verschillen
tussen de vergelijkingen onderstrepen. In plaats van een “beste” modelvergeli-
jking voor te stellen, is het doel van dit hoofdstuk om de lezer te informeren
over deze keuzes, zodat zij zelf in staat zijn de beste aanpak te kiezen voor hun
onderzoeksvraag.

186



C.2. Deel II: For Ranks

C.2 Deel II: For Ranks

Hoofdstuk 7 introduceert een Bayesiaans kader voor hypothesetoetsing en pa-
rameterschatting voor de rangcorrelatie Kendall’s τ. Dit kader is gebaseerd op
werk van Johnson (2005), waar een bovengrens kan worden berekend voor BF10
(i.e., een ondergrens voor BF01), door de asymptotische steekproevenverdeling
van de toetsstatistiek te modelleren. Om een standaard prior verdeling op te
stellen voor Kendall’s τ, werd de standaard prior verdeling voor Pearson’s ρ te
transformeren met Greiner’s relation (Greiner, 1909). Bovendien wordt de alter-
natieve hypothese zo aangepast dat het, gecombineerd met de standaard prior
verdeling, mogelijk is om een Bayes factor en posterior verdeling voor Kendall’s
τ te berekenen.

Hoofdstuk 8 introduceert een tweede kader voor Bayesiaanse gevolgtrekking
voor Kendall’s τ. Dit nieuwe kader gebruikt data augmentation, en houdt in dat
de rang data beschouwd worden als ordinale manifestaties van een latent (i.e.,
niet geobserveerd), normaal verdeeld construct. Door middel van Markov chain
Monte Carlo sampling, kan dit latente construct benaderd worden in de vorm
van een posterior verdeling voor de latente waarden, waarbij de ordinale infor-
matie van de oorspronkelijke data behouden blijft. Dit Gibbs sampling algoritme
benadert ook de posterior verdeling van de parametrische correlatie coefficient
Pearson’s ρ, welke getransformeerd kan worden naar een posterior verdeling
voor Kendall’s τ middels Greiner’s relation. Deze methode leidt tot erg vergeli-
jkbare resultaten als de methode uit Hoofdstuk 7, behalve in scenario’s met lage
steekproefomvang en/of een hoge waarde voor de geobserveerde Kendall’s τ. In
deze gevallen werkt de huidige methode beter, omdat de asymptotische benader-
ing van de eerste methode hier tekort schiet.

Hoofdstuk 9 past hetzelfde latent normale algoritme toe als in Hoofdstuk 8,
maar presenteerde dit kader als een algemene methode voor het mogelijk maken
van Bayesiaanse gevolgtrekking voor op rang gebaseerde statistische toetsen. Dit
kader werd toegepast op de Mann-Whitney U toets, de Wilcoxon rangtekentoets,
en Spearman’s ρ. Het basisprincipe van de data augmentation methode is het
gebruiken van de ordinale informatie in de data, om zo het latente construct
te benaderen. Hierna kan de parametrische toets (bijvoorbeeld de Bayesiaanse
t-toets, in het geval van de Mann-Whitney U toets), toegepast worden op de la-
tente waarden. Deze procedure neemt de onzekerheid mee die inherent is aan
rangorde data, terwijl het ook een gemakkelijk te begrijpen procedure is, omdat
het dezelfde parameterisatie heeft als de parametrische toets. Bijvoorbeeld, de
Bayesiaanse Mann-Whitney U toets geeft een posterior verdeling voor de effect-
grootte δ, maar dan op het latente niveau. Bovendien hebben deze toetsen een
asymptotische efficiëntie dichtbij de 1 wanneer de data normaal verdeeld is, wat
betekent dat beide toetsen ongeveer even krachtig zijn. Naarmate de data minder
normaal verdeeld zijn, is de rangordetoets krachtiger dan de parametrische toets.

Hoofdstuk 10 behandelt geen hypothesetoetsing of parameterschatting, maar
presenteert Kendall’s τ juist als modelleergereedschap voor de psychologische
wetenschap. Kendall’s τ wordt vaak gebruikt om een associatie tussen twee vari-
abelen te kwantificeren, maar kan ook gebruikt worden om geobserveerde ran-
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gorde data op veel verschillendemanieren te aggregeren in de vorm van Kendall’s
distance. Dit hoofdstuk presenteert vier uitbreidingen voor Kendall’s distance
die gebruikt kunnen worden voor het modelleren van psychologische fenome-
nen, zoals item gelijkheid, item belangrijkheid, en item positie. Elke uitbreiding
wordt gedemonstreerd aan de hand van een onderzoeksscenario uit de literatuur.
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