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A model-theoretic approach to descriptive
general frames: the van Benthem
characterization theorem

NICK BEZHANISHVILI, Institute for Logic, Language and Computation,
University of Amsterdam.

TIM HENKE, Institute for Logic, Language and Computation, University of
Amsterdam.

Abstract
The celebrated van Benthem characterization theorem states that on Kripke structures modal logic is the bisimulation-invariant
fragment of first-order logic. In this paper, we prove an analogue of the van Benthem characterization theorem for models
based on descriptive general frames. This is an important class of general frames for which every modal logic is complete.
These frames can be represented as Stone spaces equipped with a ‘continuous’ binary relation. The proof of our theorem
generalizes Rosen’s proof of the van Benthem theorem for finite frames and uses as an essential technique a new notion of
descriptive unravelling. We also develop a basic model theory for descriptive general frames and show that in many ways it
behaves like the model theory of finite structures. In particular, we prove the failure of the compactness theorem, of the Beth
definability theorem, of the Craig interpolation theorem and of the upward Löwenheim–Skolem theorem.1

Keywords: Modal logic, bisimulation, descriptive models, unravelling, bisimulation characterization

1 Introduction

Kripke models are relational structures that provide standard models for modal logic. Bisimulations
are relations on Kripke models that are indistinguishable by modal logic in the sense that the
truth of modal formulae is preserved under these relations. The van Benthem characterization
theorem states that in fact, any first-order formula that is invariant under bisimulations must be
equivalent to a modal formula [5, 8]. This is often formulated more succinctly by saying that
modal logic is the bisimulation-invariant fragment of first-order logic. The theorem has inspired
many generalizations and alternative versions, including a similar characterization for intuitionistic
logic [24, 25], neighbourhood models [16] and numerous coalgebraic generalizations [29]. Another
notable result is the Janin–Walukiewicz theorem [19], showing that the modal μ-calculus is the
bisimulation-invariant fragment of monadic second-order logic.

A result that is of particular importance to this paper was given by Rosen in [27], showing that
over finite models, too, modal logic is the bisimulation-invariant fragment of first-order logic. This
is particularly remarkable because the compactness theorem of first-order logic features prominently
in the proof of the original van Benthem characterization theorem, while the class of finite models
crucially lacks the compactness property. The result for finite models has in turn been generalized
to multiple other classes lacking the compactness property, including the classes of rooted finite
models, rooted transitive models and well-founded transitive models [10].

1This paper is based on [18].
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1332 A model-theoretic approach to descriptive general frames

The main result of this paper is the van Benthem characterization theorem for the class of models
over descriptive general frames. These frames can be represented topologically as totally separated,
compact topological spaces, commonly known as Stone spaces, with a continuous relation, whose
models have valuations restricted to clopen sets.

Descriptive general frames form an important class of frames with respect to which, unlike
standard Kripke semantics, every modal logic is complete. This is due to the Jónsson–Tarski duality
between descriptive general frames and modal algebras [8, 9, 20].

Descriptive general frames are also a natural generalization of finite frames. Topological
compactness is a common generalization of finiteness and the classes of finite and descriptive
general frames are both closed under many operations such as finite disjoint unions and p-morphic
images, they both are not closed under infinite disjoint unions and they both have the Hennessy–
Milner property (see [8, Theorem 2.24] and [6, Corollary 3.10]). Moreover, we show that they
have a similar model theory. In particular, we will prove that the compactness theorem, the Beth
definability theorem, the Craig interpolation theorem and the upward Löwenheim–Skolem theorem
all fail on descriptive general frames.

Finally, we point out that descriptive general frames can be viewed as coalgebras for the Vietoris
functor on the category of Stone spaces [22], just like Kripke frames are coalgebras for the powerset
functor and finite Kripke frames are coalgebras for the powerset functor restricted to finite sets [30].
While an analogue of the van Benthem theorem for coalgebraic logics given by Set-functors has
been proved in [29], as far as we are aware, the result in this paper is the first van Benthem-style
characterization theorem for coalgebras over a category of topological spaces. This may pave the
way for generalizations of the theorem for coalgebras of other Vietoris-like functors. These and
other potential generalizations are brief ly discussed in the conclusions.

The paper is organized as follows: in Section 2, descriptive general frames and their models
are introduced and discussed. Algebraic duality for general frames is presented and a descriptive
completion is introduced. Additionally, Vietoris bisimulations for models based on general frames
are defined and finite approximations to bisimulations are brief ly discussed. Section 3 focuses
on the model theory of descriptive models and proves the failure of a number of important
results from classical model theory such as the compactness theorem for first-order logic and the
upward Löwenheim–Skolem theorem on the class of descriptive general models. Inspired by the
model-theoretic similarities between the classes of finite and descriptive models, Section 4 uses
the approach from [27] to prove our main result, the van Benthem characterization theorem for
descriptive models. An unravelling construction that is the central tool in the proof is presented
together with a duplication procedure. Some of their properties are stated and proven, and with those
results, the main theorem is shown through an Ehrenfeucht–Fraïssé argument. The final section
contains a brief summary of the paper and points to a number of possible new research directions.

2 Preliminaries

In this section, we brief ly discuss some of the basic definitions and facts that will be used throughout
the paper. We use [8, 9, 21] as our main references for the basic theory of modal logic. We assume
the reader’s familiarity with the basic concepts of modal logic.

2.1 Descriptive frames

Let (W , R) be a Kripke frame, i.e. W is a set and R ⊆ W × W is a binary relation on W . For each
x ∈ W and U ⊆ W , we let R[x] = {y ∈ W : xRy}, R−1[x] = {y ∈ W : yRx} and 〈R〉U = {x ∈ W :
R[x] ∩ U �= ∅}.
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A model-theoretic approach to descriptive general frames 1333

We next recall the general frame semantics for modal logic.

DEFINITION 2.1
A triplet g = (W , R, A) is a general frame if (W , R) is a Kripke frame and A is a field of sets2 over
W that is closed under the operation 〈R〉 (i.e. for every a ∈ A also 〈R〉a ∈ A). The underlying frame
(W , R) of g will be denoted by g#.

A quadruplet m = (W , R, A, V) is a general model based on g = (W , R, A) over a set of
propositional variables P if V : P → A is a function. The definition of �·�m is the same for general
models as it is for Kripke models.

This definition is motivated by the fact that now, the truth set �ϕ�m belongs to A for any general
model m and formula ϕ.

General frames also have a natural structure of a topological space, with A acting as a basis of
clopens on a universe W . This opens the subject for topological analysis, which has led in the past
to many crucial insights into these structures.

Some specific types of general frames are of special importance. The following classes of
important general frames will be relevant to this paper.

DEFINITION 2.2
Let g = (W , R, A) be a general frame. Then

• g is called differentiated if for all distinct w, v ∈ W , there exists an a ∈ A such that v ∈ a and
w /∈ a;

• g is tight3 if for all w, v ∈ W with (w, v) /∈ R, there exists an a ∈ A such that v ∈ a and
w /∈ 〈R〉a;

• g is called compact if all collections A ⊆ A with empty intersection have a finite subcollection
A0 ⊆ A with empty intersection;

• g is called image-compact if for any point w ∈ W , a collection A ⊆ A whose intersection
is disjoint from R[w], the set of successors of w, has a finite subcollection A0 ⊆ A whose
intersection is also disjoint from R[w];

• g is called descriptive if it is differentiated, tight and compact. The class of models based on
descriptive frames will be denoted by D .

Models based on such a general frame are called differentiated, tight, compact or descriptive models.
In the presence of these modifiers, the adjective ‘general’ will usually be omitted from both the
frames and the models.

The term compactness is used because it corresponds to topological compactness. Differentiated-
ness is equivalent to the topological space being totally separated (i.e. every two distinct points being
separated by a clopen set). Topological spaces that are compact and totally separated are called Stone
spaces. Descriptive frames are then pairs (W , R) where W is a Stone space and R is such that

• R[x] is closed for every x ∈ W .
• For every clopen set U ⊆ W , the set 〈R〉U is also clopen.

2That is, a non-empty collection of sets that is closed under binary union and complementation.
3The tightness condition can also be considered a continuity condition for the relation with respect to the topology, see

also [18, Definition 2.71, Proposition 2.73].
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1334 A model-theoretic approach to descriptive general frames

We refer to [8, 21] for a detailed discussion on the connection of these two approaches to descriptive
frames. From now on, we will use the topological concept interchangeably with the subclass of
general frames.

2.2 Duality

One of the many reasons descriptive frames have proven a valuable tool is their role in Jónsson–
Tarski duality for modal algebras. This duality builds on the celebrated Stone duality between the
category of Boolean algebras and Boolean algebra homomorphisms and the category of Stone spaces
and continuous maps.

DEFINITION 2.3
A modal algebra is a pair M = (B,♦) where B = (B,∨,∧,¬, 0, 1) is a Boolean algebra, and
♦ : B → B is an operator satisfying ♦0 = 0 and ♦(a ∨ b) = ♦a ∨ ♦b.

The category MA has as objects all modal algebras and as morphisms the Boolean morphisms f
such that f (♦a) = ♦f (a) for all a.

DEFINITION 2.4
The category DF is the category with all descriptive frames as objects and as morphisms the
continuous bounded morphisms.4

The functors that establish the category duality will be referred to as (−)∗ and (−)∗. We will
brief ly recall their definition.

Let M = (B,♦) be a modal algebra. Then let M∗ = (W , R, A) be the descriptive frame (see [8,
Theorem 5.76]) with

W = Uf B the collection of ultrafilters on B;

A = {̂b | b ∈ B
}

where b̂ := {F ∈ W | b ∈ F};
FRF′ :⇐⇒ b ∈ F′ implies ♦b ∈ F.

Moreover, if f : M → M′ is a morphism of modal algebras, let then f∗ : M′∗ → M∗ be the map
given by f∗(F′) = f −1[F′] for each ultrafilter F′ ∈M′∗. In [8, Proposition 5.80], this is shown to be
a continuous bounded morphism.

Let g = (W , R, A) be a descriptive frame. Then the associated modal algebra is g∗ = (A, 〈R〉).
A continuous bounded morphism f : g → g′ is sent to the map f ∗ : (g′)∗ → g∗ of modal algebras
given by f ∗(a) = f −1[a] for each a ∈ A.

THEOREM 2.5 (Jónsson–Tarski duality [8, 9, 20, 21]).
The functors (−)∗ and (−)∗ provide a dual equivalence between the categories MA and DF.

It is important to note the use of the (−)∗-functor is not restricted to descriptive frames only. For
the entire class of general frames, one may define the exact same operation. Combining it with the
other functor results in an operation that turns every general frame into a descriptive frame. This
may be called the descriptive completion of the general frame.

4A bounded morphism between Kripke frames F = (W , R) and F′ = (W ′, R′) is a map f : W → W ′ with the property
that if wRv then f (w)Rf (v) and if f (w)R′v′, then there is a v ∈ W such that wRv and f (v) = v′. A map is continuous if the
inverse image of any open set is open.
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A model-theoretic approach to descriptive general frames 1335

DEFINITION 2.6
Let g = (W , R, A) be a general frame. Then its descriptive completion is defined as (g∗)∗ =:
(W∗, R∗, Â), where Â = {̂a | a ∈ A}. If m = (g, V) is a general model, there is an induced descriptive
model m∗ := ((g∗)∗, V∗), where V∗ is the unique valuation such that if originally V(p) = a, then
V∗(p) = â.

The name ‘descriptive completion’ is justified by the following theorem.

THEOREM 2.7 ([8, Theorem 5.76])
Let g be a general frame. Then

• (g∗)∗ is a descriptive frame,
• g ∼= (g∗)∗ if and only if g is descriptive.

In the special case that g is a Kripke frame, meaning that A = P(W) is the powerset, then (g∗)∗
is known as the ultrafilter extension of g, see, e.g., [8, Section 2.5].

This completion construction will be used in Section 4 to develop the central tool in the proof for
a van Benthem-type result.

2.3 Kripke and Vietoris bisimulations

An important notion in modal logic that is central to main theorem of this thesis is the concept of
bisimulations. Intuitively, if two points w and v in models M and N respectively are bisimilar, they
are impossible to distinguish by walking from w and v through the models and looking only at the
propositional variables that are true at the points reached. In this section, we will recall the notions
of Kripke and Vietoris bisimulations for descriptive models.

DEFINITION 2.8
Let M and M′ be (general) models on frames (W , R) and (W ′, R′) with valuations V and V ′. A
relation Z ⊆ W × W ′ is called a (Kripke) bisimulation if for all (w, w′) ∈ Z the following three
conditions hold:

1. (prop) If p ∈ P, then w ∈ V(p) ⇐⇒ w′ ∈ V ′(p).
(forth) If v ∈ R[w], then there exists a v′ ∈ R′[w′] such that (v, v′) ∈ Z.
(back) If v′ ∈ R′[w′], then there exists a v ∈ R[w] such that (v, v′) ∈ Z.

If two points w and v in models M and N are linked by a bisimulation, then we say that w and v are
bisimilar. A model M with a fixed element w will be called a pointed model. If two points w and v
in models M and N respectively are bisimilar, then we say that pointed models M, w and N, v are
bisimilar.

As will be shown in Theorem 2.15, two points linked by a bisimulation satisfy the same modal
formulae.

DEFINITION 2.9 ([6, 12]).
Let m and m′ be general models and Z a Kripke bisimulation between them. If Z is closed in the
product topology of the two associated topological spaces, then it is called a Vietoris bisimulation.

If two pointed models are linked by a Kripke bisimulation this is denoted by

m, w ↔ m′, w′
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1336 A model-theoretic approach to descriptive general frames

and if they are linked by a Vietoris bisimulation this will be written as

m, w � m′, w′.

REMARK 2.10
This definition is motivated by a coalgebraic perspective on descriptive frames, in which it is the
coalgebraic definition of a bisimulation on descriptive frames as coalgebras for the Vietoris functor.
However, on descriptive frames this is equivalent to the definition provided above. A detailed
exploration of the coalgebraic notion of descriptive frames can be found in [6, 22, 31] and an
extensive treatment of Vietoris bisimulations, including this equivalence, can be found in [6, 12].

THEOREM 2.11 ([6, Theorem 5.2]).
If m, w and n, v are two pointed image-compact general models, then the following are equivalent:

1. m, w ↔ n, v;
2. m, w � n, v.

2.4 Finite bisimulations

Crucial for this paper will be the notion of finite (approximations to) bisimulations. Like the finitary
modal language, the finite number of steps involved makes them much easier to deal with.

DEFINITION 2.12
Let k ∈ N be a natural number, P a set of propositional variables and M and M′ be two (general)
models with frames (W , R) and (W ′, R′) and valuations V and V ′ over P, respectively. Then a k-
bisimulation over P is a ⊆-decreasing (k + 1)-sequence (Z�)0≤�≤k of relations Z� ⊆ W × W ′ such
that for all natural numbers � ≤ k and (w, w′) ∈ Z�:

(prop) If p ∈ P, then w ∈ V(p) if and only if w′ ∈ V ′(p).
(forth) For all non-negative m < �, if v ∈ R[w], then there exists a v′ ∈ R′[w′] such that the
pair (v, v′) is an element of Zm.
(back) For all non-negative m < �, if v′ ∈ R′[w′], then there exists a v ∈ R[w] such that the
pair (v, v′) is an element of Zm.

If there exists a k-bisimulation (Z�)0≤�≤k with (w, v) ∈ Zk , this is denoted by M, w ↔k N, v.

One could also define finite Vietoris bisimulations when all Z� are closed, but this notion will not
be useful for this paper.

REMARK 2.13
If Z is a Kripke bisimulation, then for any k ∈ N the sequence (Z)0≤�≤k is a k-bisimulation. As such,
M, w ↔ N, v implies M, w ↔k N, v for any k.

LEMMA 2.14
Let k ∈ N and M, w and N, v be two pointed (general) models and P a set of propositional variables.
Then

if M, w ↔k N, v over P then M, w �k N, v over P,

where �k denotes agreement on all modal formulae on modal depth ≤ k. Moreover, if P is finite,
then the converse implication holds as well.
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A model-theoretic approach to descriptive general frames 1337

PROOF. The proof for Kripke models can be found in e.g. [8, Proposition 2.31]. As general models
satisfy the same formulae as their associated Kripke models5 and the definition of k-bisimulations
references only the Kripke model structure, this immediately extends the result to general models.

�
THEOREM 2.15
Any two (Vietoris-)bisimilar pointed (general) models satisfy the same formulae.

PROOF. This follows immediately from Lemma 2.14 and Remark 2.13 for the Kripke case and
additionally Theorem 2.11 for the Vietoris case. �

An important note to make is that these are equivalence relations, in particular transitive.

LEMMA 2.16
Assume that M0, w0 ↔� M1, w1 and M1, w1 ↔k M2, w2 for � ≤ k. Then M0, w0 ↔� M2, w2. In
particular, if M0, w0 ↔M1, w1 and M0, w0 ↔� N, v, then M1, w1 ↔� N, v.

PROOF. Let (Zm)0≤m≤� be an �-bisimulation between M0, w0 and M1, w1, and let (̃Zn)0≤n≤k be
a k-bisimulation between M1, w1 and M2, w2. Then consider (Zm; Z̃m)0≤m≤� as an �-bisimulation
between M0, w0 and M2, w2, where ; denotes the composition of relations. Suppose that (v0, v2) ∈
Zm; Z̃m for some m ≤ �. Then there exists a v1 such that v0Zmv1 and v1Z̃mv2. Consequently,
v0 satisfies the same propositional variables as v1, which in turn satisfies the same propositional
variables as v2, verifying that v0 and v2 satisfy the same propositional variables.

For the forth condition, if v0 has a successor x0, then there is a successor x1 of v1 such that x0Znx1
for all n < m. Then from v1Z̃mv2, it follows that there is a successor x2 of v2 such that x1Z̃nx2 for
all n < m. Therefore, (x0, x2) ∈ (Zn; Z̃n) for all n < m. The back condition is identical. The final
observation then follows from Remark 2.13. �

3 Model-theoretic failures on descriptive models

In this section, we will study the basic model-theoretic properties of descriptive frames. We will show
that, similarly to finite frames, many classical model-theoretic results fail on descriptive frames.

The next lemma demonstrates that a subclass of finite frames can be defined with a single first-
order sentence.6

LEMMA 3.1
An infinite, irref lexive, linear order cannot be given the structure of a descriptive frame. Therefore,
the subclass of finite, irref lexive, linear orders of the class of descriptive models can be defined by
a single first-order sentence.

PROOF. Suppose g = (W , R, A) is a descriptive frame such that (W , R) is an infinite, irref lexive
linear order. The ⊆-decreasing sequence of sets W ⊇ R[W ] ⊇ · · · ⊇ Rn[W ] ⊇ · · · must be

5That is, a general model (W , R, A, V) has an associated Kripke model (W , R, V), which satisfies the same formulae in
the same points as the collection of admissible sets, whose only semantic function is to restrict the choice of valuation, is not
relevant when the valuation has already been chosen.

6In [18, Lemma 3.6], we have attempted to present an intuitive, visual proof of this fact, but this proof requires a
topological toolkit of ‘nets’. Readers with a background in topology are encouraged to consult it but the proof included
in this paper is purposefully elementary.
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1338 A model-theoretic approach to descriptive general frames

non-empty for all n, otherwise g would be a finite chain. As such, C := ⋂n Rn[W ] is closed and
non-empty, because the space is topologically compact by assumption, the R-image of a closed set is
closed [8, Proposition 5.83iii] and induction thus grants that Rn[W ] is closed for all n. By tightness
and irref lexivity, for each x ∈ C there must be a clopen set ax such that x ∈ ax but x /∈ 〈R〉ax. As
then

C ∩
⋂
x∈C

〈R〉ax = ∅,

topological compactness of g gives a finite set {x1, . . . , xk} such that the finite intersection C ∩
〈R〉ax1 ∩ · · · ∩ 〈R〉axk is empty. Since the xi are linearly ordered, there must be a least one, say x1, so
that 〈R〉ax1 ⊆ 〈R〉axi for all i by transitivity, yielding C ∩ 〈R〉ax1 = ∅.

The fact that 〈R〉ax1 is clopen, hence compact, and the fact that C = ⋂n Rn[W ], imply that there
is an n ∈ N such that Rn[W ] ∩ 〈R〉ax1 = ∅, so that x1 /∈ Rn+1[W ], which contradicts x1 ∈ C. Thus,
no such descriptive frame exists.

The irref lexive linear orders are definable in the single first-order sentence λ given by

λ := ∀x∀y[(x ≡ y ∨ Rxy) ↔ ¬Ryx]︸ ︷︷ ︸
total, irref lexive and antisymmetric

∧∀x∀y∀z[(Rxy ∧ Ryz) → Rxz]︸ ︷︷ ︸
transitive

. (1)

Since all finite irref lexive linear orders can be given the structure of a descriptive frame (with the
powerset as a collection of admissible sets), the subclass of finite, irref lexive linear orders in the
class of descriptive models can be defined by a single first-order sentence. �

This lemma immediately implies the failure of the compactness theorem for first-order logic.

THEOREM 3.2
The class of descriptive models is not compact over first-order logic.

PROOF. From Lemma 3.1, the compactness theorem fails almost immediately. Taking λ to be
Formula 1 and letting ϕn denote the existence of at least n distinct elements by

ϕn := ∃x1 · · · ∃xn

∧
1≤i<j≤n

¬xi ≡ xj where n ∈ N,

Lemma 3.1 implies directly that {λ} ∪ {ϕn}n∈N is not satisfiable on the class of descriptive models.
However, every finite subset is satisfied on a finite, irref lexive linear order, which can always be
given the structure of a descriptive model with the powerset as collection of admissible sets. �

With the failure of the compactness theorem in mind, it is natural to wonder if some of its famous
consequences fail, and indeed they do.

THEOREM 3.3 (Failure of Beth definability theorem on descriptive models).
Let R be a binary relation symbol, and let P be a unary predicate symbol. Then there exists a formula
ϕ that implicitly defines7 P over the class D of descriptive models such that there is no formula
ψ ∈ FOL({R, P},∅) that explicitly defines P relative to ϕ8 over D .

7A formula ϕ in a language L � {P} implicitly defines a predicate P if every L-structure A has at most one extension to a
L � {P}-structure Ã such that Ã |� ϕ.

8If ϕ in L � {P} implicitly defines P, then a formula ψ(x) in L explicitly defines P relative to ϕ if ϕ |� ∀x[ψ(x) ↔ Px].
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A model-theoretic approach to descriptive general frames 1339

PROOF. Let λ be Formula 1 defining the finite, irref lexive linear orders over the class of descriptive
models as per Lemma 3.1. Then take ϕ to be the formula saying that R is an irref lexive linear order,
the R-minimum does not have P and any two immediate successors disagree on P. Formally, ϕ is

λ ∧ ∀x[Px ↔ ∃y[Ryx ∧ ¬∃z[Ryz ∧ Rzx] ∧ ¬Py]︸ ︷︷ ︸
P iff an immediate predecessor lacks P

]. (2)

The models of λ are precisely finite, irref lexive linear orders that assign P to exactly the even points.
Suppose now that there were a formula ψ(x) ∈ FOL({R},∅) that explicitly defined P. Then the

formula ε stating that R is an irref lexive linear order and the maximum has the property ψ , given
explicitly by

λ ∧ ∀x[¬∃y Rxy → ψ(x)] (3)

would be a formula in FOL({R},∅) that characterizes exactly the finite, even, irref lexive linear
orders. However, sufficiently large linear orders are first-order equivalent as shown in [11, Example
2.3.6] with the Ehrenfeucht–Fraïssé method. It follows that no one formula can characterize the even
linear orders and thus ψ cannot exist. �

The Craig interpolation theorem fails on the class of descriptive models for essentially the same
reason that the Beth definability theorem fails. Usually, the Beth definability theorem is stated as a
consequence of the Craig interpolation theorem, so that the failure of former immediately implies
failure of the latter, but we consider a direct proof to be informative.

THEOREM 3.4 (Failure of Craig interpolation theorem on descriptive models).
Let R be a binary relation symbol, let P0, P1 be unary predicate symbols, and let D0, D1 and D01
denote the class of descriptive models over predicate sets {P0}, {P1} and {P0, P1}, respectively. Then
there exist formulae ϕ ∈ FOL({R, P0},∅) and ψ ∈ FOL({R, P1},∅) such that ϕ |�D01 ψ , but there is
no formula θ ∈ FOL({R},∅) such that ϕ |�D0 θ and θ |�D1 ψ .

PROOF. Let ϕ state that R is an irref lexive linear order, P0 occurs only on the even points as in
Formula 2 in the proof of Theorem 3.3, as well as that the maximum satisfies P0 like Formula 3.
Let ψ state that R is an irref lexive linear order, and if P1 occurs only on the even points, then the
maximum has P1.

The formula ϕ is true on the finite, even, irref lexive linear orders with P0 on the even points.
Similarly, for ψ to be true, a structure must be a finite, irref lexive linear order with P1 true on an
odd point or false on an even point or it must be even. Since all structures satisfying ϕ are even, it
follows that ϕ |�D01 ψ .

Suppose now for contradiction that there is an interpolant θ ∈ FOL({R},∅) such that ϕ |�D0 θ and
θ |�D1 ψ . Then in particular θ must be true on all finite, even, irref lexive linear R-orders. Again
from [11, Example 2.3.6], this means that θ is true on all sufficiently large finite, irref lexive linear
R-orders. But an odd linear order among these can be expanded with a predicate P1 on the even
points, from which it follows that θ �|�D1 ψ . This is a contradiction. �

These two results use Lemma 3.1 to reduce a model-theoretic problem for the class of descriptive
models to the corresponding result in finite model theory. This reasoning can resolve model-theoretic
problems on descriptive models that have an analogue on finite models but does not help when
considering results that have no sensible corresponding statement in finite model theory.

For an example of such results, consider the celebrated upward Löwenheim–Skolem theorem. It
states that any first-order theory T with an infinite model has arbitrarily large models.
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1340 A model-theoretic approach to descriptive general frames

FIGURE 1. Schematic illustration of (ω+1, R) for R the≥-relation without ref lexivity on the natural
numbers. To avoid cluttering, not all arrows between the natural numbers are drawn, but the relation
should be understood to be transitive.

The upward Löwenheim–Skolem theorem has no meaningful interpretation in finite model theory
because the hypothesis of the implication is vacuously false. However, as the theorem is an immediate
consequence of the compactness theorem, it is natural to wonder if it holds on the class of descriptive
models on which this the compactness property fails. Indeed, this class turns out to lack the upward
Löwenheim–Skolem property. In fact, it even fails when the theorem is restricted to speak only about
formulae.

THEOREM 3.5 (Failure of upward Löwenheim–Skolem theorem for descriptive models).
There exists a first-order formula that is satisfiable on an infinite descriptive model, but not
satisfiable on any uncountable descriptive model.

PROOF. Let ϕ be a formula encoding a linear order with a ref lexive minimum and no other ref lexive
points. That is, ϕ is the formula

∀x∀y[x ≡ y ∨ (Rxy ↔ ¬Ryx)] (antisymmetric and total)

∧ ∀x∀y∀z[(Rxy ∧ Ryz) → Rxz] (transitive)

∧ ∀x∀y[Rxx ∧ Ryy → x ≡ y] (at most one ref lexive point)

∧ ∃x[Rxx ∧ ∀y Rxy] (there is a ref lexive minimum).

First, consider the Kripke frame (ω + 1, R) with Rab if and only if a > b or a = b = ω, equipped
with the collection of admissible sets given by the finite subsets of N and cofinite subsets of N with
ω. See Figure 1 for the underlying Kripke frame. This is easily checked to be a descriptive frame.
Then any model based on this frame satisfies ϕ, because the relation is a linear order, has a ref lexive
minimum and no other ref lexive points.

Now suppose that m = (W , R, A, V) is a descriptive model of cardinality |W | > ℵ0 whose
underlying frame is a linear order with exactly one ref lexive point v that is also its minimum. Because
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A model-theoretic approach to descriptive general frames 1341

of transitivity and cardinality reasons, there is at least one point w with infinitely many successors
that is not the minimum:

ℵ0 < |W | = |R[v]| = |R[v] \ {v}| =
∣∣∣∣∣∣
⋃
x �=v

{x} ∪ R[x]

∣∣∣∣∣∣ = sup
x �=v

|{x} ∪ R[x]| ,

where the last equality follows from transitivity. So there is at least one w ∈ W \ {v} such that
|{w} ∪ R[w]| > ℵ0.

Now R[w] is closed by [8, Proposition 5.83iv] and thus a compact subspace as a closed subset
of a compact space, thereby inducing another infinite descriptive model that is a linear order. By
Lemma 3.1, it follows that R[w] contains another ref lexive point, which means that m contains at
least two ref lexive points, implying that m �|� ϕ. �

REMARK 3.6
In this section, we gave a number of negative results about model theory of descriptive frames and
models. However, as Barwise and van Benthem [4] have suggested, ‘failures’ of classical results
in a new area may be viewed as failures of one particular formulation of these results—while
other formulations (equivalent for the original logic) might hold. For example, [4] shows this for
interpolation theorems that fail in one sense, but hold in another for infinitary logics. This raises
an interesting question whether there exist modified versions of the classical model-theoretic results
that hold on descriptive frames and models.

For example, the proof for the failure of the upward Löwenheim–Skolem theorem relies very
specifically on the unique properties of ℵ0, namely that every smaller cardinal is finite. The same
proof would fail immediately, with no obvious remedy, when starting out with a model of size ℵ1,
because such a model would have infinitely many limit points and thus at least as many ref lexive
points. One might thus conjecture that any theory with a model of size at least ℵ1 must have
arbitrarily large models.

Moreover, as previously noted, descriptive models are natural generalizations of finite models, and
their model theories are very similar. While most of classical model theory fails for finite models,
there is a notable exception: Rossman’s homomorphism preservation theorems [28, Theorems 1.6–
1.9]. A natural question, then, is to ask if Rossman’s theorem also holds for descriptive models.
However, based on the complexity of the proof for Rossman’s original results, we expect this to be
highly non-trivial.

4 The van Benthem characterization theorem for descriptive models

In this section, we prove the van Benthem characterization theorem for the class of models over
descriptive frames, stating that modal logic is the Kripke-bisimulation-invariant (or equivalently the
Vietoris-bisimulation-invariant) fragment of first-order logic.

THEOREM 4.1 (The van Benthem characterization theorem for descriptive models).
Let α be a first-order formula in one free variable. Then the following are equivalent:

1. There exists a modal formula ϕ such that for all pointed, descriptive models m, w

m, w � ϕ if and only if m |� α[w].
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1342 A model-theoretic approach to descriptive general frames

2. If m, w and n, v are two Kripke-bisimilar pointed, descriptive models, then

m |� α[w] if and only if n |� α[v].

3. If m, w and n, v are two Vietoris-bisimilar pointed, descriptive models, then

m |� α[w] if and only if n |� α[v].

The strategy followed will be modelled after [27] and is visually represented in Figure 2.
That is, the unravelling tree will be modified in Definitions 4.12 to remain in the class of

descriptive models, while still Kripke-bisimilar (and Vietoris-bisimilar) to the original model. On
these tree-like structures, an Ehrenfeucht–Fraïssé-type argument (see [14] for more details on this
technique) will show in Lemma 4.26 that bisimulation-invariance implies k-bisimulation-invariance
for sufficiently large k. This will imply that any formula that is bisimulation-invariant on descriptive
models is modally expressible. Assuming that α is bisimulation-invariant, m |� α[w] and m, w↔�n, v
for sufficiently large �, the formula α can be followed clockwise around the diagram to conclude
n |� α[v]. The final conclusion of the proof can be found in Section 4.3

FIGURE 2 A visual representation of the argument that will be used to prove Theorem 4.1.

4.1 Unravelling for general frames

Towards proving the van Benthem theorem for descriptive models, it will be necessary to modify
the notion of unravelling trees and unravelling forests to descriptive frames. To do this, first the
unravelling forest of all finite paths needs to be given the structure of a general frame. The most
canonical way of doing that, pulling back the admissible sets through the projection map π , does
not offer a useful solution. The resulting frame would not inherit differentiatedness nor tightness. To
accomplish this inheritance, RT-closure and the collection I of paths of length 0 will be added.

DEFINITION 4.2
Let g = (F, A) be a general frame with underlying frame F = (W , R). Define the unravelling cover
T(g) of g to be T(g) := (T(F), AT), where T(F) = (WT, RT) defined by

WT := {(wi)i≤n ∈ W n+1 | n ∈ N,∀i < n : wiRwi+1};
RT := {((wi)i≤n, (wi)i≤n+1) : (wi)i≤n+1 ∈ WT}
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A model-theoretic approach to descriptive general frames 1343

is the forest of all finite paths in F and with collection of admissible sets AT, a subalgebra of
(P(WT), 〈RT〉) defined through the surjective bounded morphism π : T(F) � F by the following
recursive schema:

I := WT ∩W ∈ AT; (1)

a ∈ A �⇒ π−1[a] ∈ AT; (2)

b ∈ AT �⇒ RT[b] ∈ AT; (3)

b, b′ ∈ AT �⇒ b ∪ b′, b ∩ b′ ∈ AT. (4)

In a similar vein, for a general model m = (g, V), the unravelling cover will be T(m) :=
(T(g), Popπ ◦ V), where Popπ(a) = π−1[a]. For any point w ∈ W , the connected component
of paths starting at w will be written as Tw(g) or Tw(m).

Despite these extra additions, the resulting frame is always a general frame.

PROPOSITION 4.3
Let g = (W , R, A) be a general frame. Then T(g) is a general frame.

PROOF. All to be checked is that AT is a field of sets and closed under the 〈RT〉-operation. This
is an elementary, but tedious induction. Closure under binary union and intersection is immediate.
Closure under complements can be checked by induction on the construction of AT. The complement
of the initial points Ic = RT[WT] is the set of points with a predecessor and is in AT because
WT = π−1[W ] is in AT, from which rule (3) gives Ic = RT[WT] ∈ AT.

Moreover, (π−1[a])c = π−1[ac] ∈ AT and if b0, b1 ∈ AT have bc
0, bc

1 ∈ AT, then (b0 ∪ b1)
c =

bc
0 ∩ bc

1 ∈ AT and (b0 ∩ b1)
c = bc

0 ∪ bc
1 ∈ AT.

The final case, the RT-image of an admissible set, requires a minor observation about RT: distinct
points have disjoint image sets. After all, two distinct paths cannot have the same extension. An
alternative way of saying this is that each point has at most one RT-predecessor. As such, we have
for all a ⊆ WT that

(RT[a])c = RT[ac] ∪ I ∈ AT,

because each point with no predecessor in a either has a its unique predecessor in ac or has no
predecessor.

For closure under 〈RT〉, note that every element in AT can be written as a finite union of finite
intersections of elements of the form π−1[a] for a ∈ A admissible, RT[b] for b ∈ AT or I. This is
evident for elements of the forms (1), (2) or (3) and will follow by induction on the construction for
elements of the form (4).

As 〈RT〉 distributes over unions, it is sufficient to show 〈RT〉-closure for finite intersections. By
induction on n, it will be shown that for b1, . . . , bn of the forms (1), (2) and (3), the set 〈RT〉(b1 ∩
· · · ∩ bn) is in AT.

For n = 1, note that 〈RT〉I = ∅ = π−1[∅] ∈ AT and if a ∈ A then 〈RT〉π−1[a] = π−1[〈R〉a] ∈
AT because π is a bounded morphism.

Moreover, 〈RT〉(RT[b]), again because each point has at most one predecessor, is the subset of
b given by points with at least one successor. After all, x ∈ 〈RT〉(RT[b]) if and only if there is
a y such that y ∈ RT[b] and xRTy. That is equivalent to y being a successor to x and having a
predecessor in b, and since predecessors in this frame are unique, this predecessor must be x. So
〈RT〉(RT[b]) = 〈RT〉WT ∩ b = π−1[〈R〉W ] ∩ b ∈ AT.
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1344 A model-theoretic approach to descriptive general frames

Now suppose that 〈RT〉(b1 ∩ · · · ∩ bn) ∈ AT when all bi are of the forms (1), (2) or (3). Consider
then b0 ∩ b1 ∩ · · · ∩ bn for n ≥ 1. If one of the bi is of the form I, then it follows immediately
that 〈RT〉(b0 ∩ b1 ∩ · · · ∩ bn) ⊆ 〈RT〉I = ∅. If one of them, without loss of generality b0, is of the
form RT[b′], then observe that x ∈ 〈RT〉(RT[b′] ∩ b1 ∩ · · · ∩ bn) if and only if ∃y ∈ RT[x] : y ∈
RT[b′] ∩ b1 ∩ · · · ∩ bn. By the uniqueness of predecessors, this is equivalent to having x ∈ b′ and
x ∈ 〈RT〉(b1 ∩ · · · ∩ bn). As the latter was admissible by the induction hypothesis, it follows that
〈RT〉(RT[b′] ∩ b1 ∩ · · · ∩ bn) = b′ ∩ 〈RT〉(b1 ∩ · · · ∩ bn), which is admissible by closure under
intersection.

Finally, if none of the bi are of the form I or RT[b′] for some b′ ∈ AT, then they must all be of
the form bi = π−1[ai], from which it follows that:

〈RT〉(b0 ∩ · · · ∩ bn) = 〈RT〉(π−1[a0] ∩ · · · ∩ π−1[an]) = 〈RT〉π−1[a0 ∩ · · · ∩ an]

= π−1[〈R〉(a0 ∩ · · · ∩ an)] ∈ AT,

because 〈R〉(a0 ∩ · · · ∩ an) ∈ A. �
Now towards the main result of the paper, it is useful to find out which properties of the general

frame are transferred to its unravelling cover.

REMARK 4.4
For all a ∈ AT and n ∈ N, the set (RT)n[a] is admissible.

In order to obtain the van Benthem result for descriptive models, we will show that properties
defining descriptive frames are preserved under this construction.

PROPOSITION 4.5
If g = (F, A) is differentiated, then so is T(g).

PROOF. Let �x = (xi)i≤n, �y = (yj)j≤m ∈ WT be distinct paths. If n > m, then �y /∈ (RT)n[WT] � �x.
So assume n = m. Then their distinction must mean there is some k ≤ n such that xk �= yk . Then by
differentiatedness of g there is an a ∈ A such that yk /∈ a � xk . But then (yi)i≤k /∈ π−1[a] � (xi)i≤k ,
meaning �y /∈ (RT)n−k[π−1[a]] � �x. �
PROPOSITION 4.6
If g = (F, A) is differentiated, then T(g) is tight.

PROOF. Let (�x, �y) /∈ RT. If the length l(�y) of �y is not l(�x) + 1, then �y ∈ (RT)l(�y)[I], but �x /∈
〈RT〉(RT)l(�y)[I] ⊆ (RT)l(�y)−1[I], because all paths in (RT)n[I] have length n.

If n := l(�y) = l(�x) + 1, then there must be a k ≤ l(�x) such that xk �= yk . By assumption, g is
differentiated, so there exists an a ∈ A with xk /∈ a � yk . This implies that �y ∈ (RT)n−k[π−1[a]] ∈
AT but �x /∈ (RT)n−k−1[π−1[a]] ⊇ 〈RT〉(RT)n−k[π−1[a]]. �

Although surprising, it may be understandable that tightness is not required, as the structure of the
forest itself already separates unconnected points automatically.

PROPOSITION 4.7
Let g = (W , R, A) be a general frame and T(g) its unravelling cover. Take �x ∈ WT. Then π � RT[�x] :
RT[�x] → R[π(�x)] is a homeomorphism between the subspace topologies.
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A model-theoretic approach to descriptive general frames 1345

PROOF. It is obviously a continuous bijection as π−1[a] ∈ AT for all a ∈ A, which is the basis of
the topology on g. To prove continuity of the inverse, it is sufficient to show that all basis elements
in the subspace topology of RT[�x] are of the form π−1[a] ∩ RT[�x].

By induction on the recursion schema for AT. It is obvious for the restriction of π−1[a] and I. If
b ∈ AT, then

RT[b] ∩ RT[�x] =
{
∅ if �x /∈ b,

RT[�x] if �x ∈ b,

by using again that distinct points have disjoint RT-successor sets.
Finally, π−1 distributes over intersection and union, completing the induction. �

COROLLARY 4.8
A general frame g is image-compact if and only if T(g) is image-compact.

PROOF. The previous proposition gives that the image sets are homeomorphic, granting the corollary
immediately. �
COROLLARY 4.9
Let g be a descriptive frame. Then T(g) is a differentiated, tight and image compact.

PROOF. Differentiatedness and tightness were stated in Propositions 4.5 and 4.6. Note that
descriptive frames are image-compact, because points are closed in Hausdorff spaces, the image
of a closed set is closed in a descriptive frame [8, Proposition 5.83iii], and a closed subset of a
compact space is also compact. From there, Corollary 4.8 finishes the proof. �

4.2 The descriptive unravelling

The unravelling cover of a compact frame is not necessarily compact, as the following example
demonstrates.

EXAMPLE 4.10
Consider the descriptive frame consisting of a single ref lexive point with the only field of sets
possible. Its unravelling cover is N with the finite and cofinite sets as admissible sets, which is not
compact.

This shows that while differentiatedness of g implies T(g) is differentiated and tight, compactness
may not be preserved. In fact, no collection of admissible sets can be constructed with which an
unravelling forest of a descriptive frame with arbitrarily long paths is descriptive.

PROPOSITION 4.11
Let g = (F, A) be a descriptive frame. If the path lengths in g are unbounded, then T(F) cannot be
made into a descriptive frame.

PROOF. For contraposition, let (T(F),A) be descriptive. As reasoned before in the proof of Lemma
3.1, from [8, Proposition 5.83iii] and induction it follows that (RT)n[WT] is closed for all n. Clearly,⋂

n∈N(RT)n[WT] = ∅, as any one path is of finite length. By compactness, then, there exists an m
such that (RT)m[WT] = ∅. Therefore, there exist no path of length m or more in g. �

Like for the proof on finite models from [27], the unravelling must be modified to become
descriptive. In principle, this could be done in the same way as in [27]. Putting the original frame at a
sufficiently long distance from I would likely suffice for a reproduction of the argument. However,
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1346 A model-theoretic approach to descriptive general frames

for descriptive frames, there exists an alternative construction that will be used in this paper: the
descriptive completion using Jónsson–Tarski duality discussed in Definition 2.6.9

DEFINITION 4.12
Let g be a general frame. Then let its descriptive unravelling be the descriptive completion
(Definition 2.6) of the unravelling cover (Definition 4.2) of g. Write

ĝ := ((T(g))∗)∗
to abbreviate.

This will turn out to be a very well-behaved construction for descriptive frames and will be key to
the theorem.

LEMMA 4.13
Let g = (W , R, A) be image-compact. Let Fx, F ∈ Uf A, where Fx is the ultrafilter generated by x.
Then in the descriptive completion FxR∗F if and only if F = Fy for some y ∈ R[x].

PROOF. For the implication from right to left, assume that y ∈ R[x]. To prove that FxR∗Fy, let a ∈ Fy.
Then y ∈ a. From xRy it follows that x ∈ 〈R〉a, yielding 〈R〉a ∈ Fx. Since a was arbitrary, this holds
for all a ∈ Fy, so that FxR∗Fy.

For the implication from left to right, assume FxR∗F. By definition, if a ∈ F then 〈R〉a ∈ Fx,
implying x ∈ 〈R〉a. Therefore, there exists an x′ ∈ a such that xRx′.

So for every a ∈ F, we have a ∩ R[x] �= ∅. Since F is closed under finite intersections, we
obtain that {a ∩ R[x] : a ∈ F} has the finite intersection property. By compactness of R[x], the set⋂{a ∩ R[x] : a ∈ F} = R[x] ∩⋂F is non-empty. Therefore, there exists a y ∈ R[x] such that for all
a ∈ F, we have y ∈ a. So F = Fy for some y ∈ R[x], because it is an ultrafilter. �

REMARK 4.14
One might have expected tightness to show up in the proposition above to prove that FxR∗Fy implies
xRy, but tightness as an immediate consequence of image-compactness and differentiability, so it
may be reasonable to expect that image-compactness is strong enough to prove something not quite
as strong as tightness.

PROPOSITION 4.15
Let g be a differentiated and image-compact frame. Then g 	 (g∗)∗ is a generated subframe10

through a topological embedding ιg : x �→ Fx. That is, g is homeomorphic to its image under ιg.

PROOF. Lemma 4.13 gives immediately that it is a bounded morphism. From the fact that g is
differentiated, it follows that ιg injective, making g a generated subframe. To see that it is a
homeomorphism on its image, let a be an admissible set on g. Then

ιg(x) = Fx ∈ â ⇐⇒ a ∈ Fx ⇐⇒ x ∈ a,

so that ιg and ι−1
g preserve the basis elements of the topology, ensuring continuity for both it and its

inverse restricted to the image. �

9Actually, the construction is quite natural in that it admits several potential equivalent definitions, including an explicit
construction and a topological definition [18, Definition 2.86, Definition 5.14] as well as a definition through a universal
property, but these will not be needed in this paper.

10Generated subframes are given by injective bounded morphisms.
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A model-theoretic approach to descriptive general frames 1347

THEOREM 4.16
Let g be a descriptive frame. Then ι̂ = ιT(g) : T(g) 	 ĝ is a continuous embedding.

PROOF. Note that descriptive frames are in particular, image-compact and differentiated, so
Corollary 4.8 and Proposition 4.5 gives that T(g) is image-compact and differentiated. Proposition
4.15 then give the theorem. �

In fact, an even stronger claim is true.

THEOREM 4.17
Let g be a descriptive frame. Then ĝ# = T(g)#  L for some unspecified frame of limit points L,11

where the #-operation takes the underlying Kripke frame of a general frame.

PROOF. Let g = (W , R, A). From Theorem 4.16, it is sufficient to show that two points in ĝ can only
be (RT)∗-related if they are both inside or both outside T(g)#. Theorem 4.16 implies that if w is in
the image of ι̂ : T(g) 	 ĝ, then the (RT)∗-successor set of w is, too. To complete the theorem,
the predecessor set has to be, as well. This means that if F(RT)∗Fx for some ultrafilter F and the
ultrafilter Fx generated by x, then F = Fy for y ∈ (RT)−1[x].

Towards contraposition, assume that F �= Fy for any y ∈ (RT)−1[x]. In T(g), each point has at
most one predecessor, so (RT)−1[x] ⊆ {y} for some y. In particular, this means there exists some
a ∈ F ⊆ AT such that x /∈ RT[a], either because it has no predecessor or because y /∈ a. By
construction of AT, the set RT[a] is in AT, so that a ⊆ [RT]RT[a] ∈ F by monotonicity of filters.
Since x /∈ RT[a], also RT[a] /∈ Fx, implying that (F, Fx) /∈ (RT)∗. �

As such, there is an isomorphic copy of T(g)# in ĝ#. The next step is to upgrade the descriptive
unravelling to a descriptive model.

COROLLARY 4.18
Let m = (g, V) be a descriptive model. Define m̂ := (̂g, V̂) with V̂(p) = ̂π−1[V(p)]. Then the
relation πT ; ι̂ is a Kripke bisimulation between m and m̂, where the functions π and ι̂ are to be
viewed as binary relations, ; denotes composition of the relations and −T takes the inverse of a
relation. Therefore, its closure is a Vietoris bisimulation.

PROOF. Both π and ι̂ are bounded morphisms, so they satisfy the back and forth conditions by
construction. The propositional requirement is satisfied because

π(�x) ∈ V(p) ⇐⇒ �x ∈ π−1[V(p)] ⇐⇒ π−1[V(p)] ∈ F�x

⇐⇒ F�x ∈ ̂π−1[V(p)] = V̂(p).

The final remark is then given by [6, Theorem 5.2]. �

4.3 Preservation under finite bisimulations

The previous section provides a tool with which to show invariance under bisimulation implies
invariance under some finite bisimulation. This tool will now be used to achieve this through
Ehrenfeucht–Fraïssé methods. To this end, there is a final combinatorial construction that will prove
useful: a duplication process. It will be useful to copy points in a manner that preserves compactness.

11See [18, Chapter 5] for the structure of these limit points.
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1348 A model-theoretic approach to descriptive general frames

DEFINITION 4.19
Let A and B be fields of sets over universes X and Y . Write A ⊗ B for the field of sets over the
universe X × Y generated by {a× b | a ∈ A, b ∈ B}.
PROPOSITION 4.20
Let A and B be fields of sets generating topological spaces X and Y as bases. Then A⊗ B is a basis
for the product space X × Y .

PROOF. To see that A ⊗ B generates topology that is at least as fine, note that the basis of X × Y
consists of all U × V where U and V are open subsets of X and Y , respectively. This means that
U = ⋃η∈I aη and V = ⋃ξ∈J bξ for aη ∈ A and bξ ∈ B and index sets I and J . But then it is
immediate that

U × V =
⎛⎝⋃

η∈I

aη

⎞⎠×
⎛⎝⋃

ξ∈J

bξ

⎞⎠ = ⋃
η∈I ,ξ∈J

aη × bξ

is generated by A⊗ B.
To see that it is at least as coarse, remark that all elements of A⊗B are products of sets open in X

with open sets of Y . �
COROLLARY 4.21
Let A and B be fields of sets.

1. If A and B are compact, then A⊗ B is compact.
2. If A and B are differentiated, then A⊗ B is differentiated.

PROOF. This follows immediately from Proposition 4.20 and the fact that the product of two compact
spaces is compact and the product of totally separated spaces is totally separated. �

DEFINITION 4.22
Let g = (W , R, A) be a general frame, and let F be a field of sets over a universe X . Define the
F-multiplier of g by

R⊗ X := {((w, x1), (v, x2)) ∈ (W × X )2 | (w, v) ∈ R, x1, x2 ∈ X };
g⊗F := (W × X , R⊗ X , A⊗ F).

If m = (g, V) is a general model, then define V(·)× X by p �→ V(p)× X and

m⊗F := (g⊗F , V(·)× X ),

which will be called the F-multiplier of m.

REMARK 4.23
There is an obvious surjective continuous bounded morphism π0 : F⊗X � F given by projection on
the first coordinate.

LEMMA 4.24
Let g = (W , R, A) be a descriptive frame, and let F over X be a compact and differentiated field of
sets. Then g⊗F is a descriptive frame.
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A model-theoretic approach to descriptive general frames 1349

PROOF. Compactness and differentiatedness follow immediately from Corollary 4.21. To see
tightness, let ((w, x1), (v, x2)) /∈ R ⊗ X . Then (w, v) /∈ R. From tightness of g follows the existence
of a ∈ A such that v ∈ a but w /∈ 〈R〉a. Then in particular, (v, x2) ∈ a× X , but (w, x1) /∈ (〈R〉a)× X .
It is a general frame in the first place because

〈R⊗ X 〉(a× X ) = {�s ∈ W × X | ∃�t ∈ a× X : �s(R⊗ X )�t}
= {(s, x) ∈ W × X | ∃(t, y) ∈ a× X : sRt}
= {s ∈ W × X | ∃t ∈ a : sRt} × X = (〈R〉a)× X ,

completing the proof. �
As mentioned before, this construction will be used to apply Ehrenfeucht–Fraïssé method.

Multiple constructions are conceivable, but the approach taken here is adopted for its convenience.
It will be inspired by Hanf’s lemma [15, Lemma 2.3]. Like Hanf’s lemma, it relies on the notion of
the Gaifman neighbourhood.

DEFINITION 4.25
Let F = (W , R) be a frame, M = (F, V) a model and S ⊆ W . Then the Gaifman neighbourhood of
size � of S is defined recursively by

NF

0 (S) = S;

NF

�+1(S) = NF
� (S) ∪ 〈R〉NF

� (S) ∪ R
[
NF

� (S)
]
;

N F
� (S) = (NF

� (S), R � NF
� (S)) where R � A := R ∩ A× A;

N M
� (S) = (N F

� (S), V ∩ NF
� (S)),

where V ∩ NF
� (S) :=

(
p �→ V(p) ∩ NF

� (S)
)

. That is, the �-neighbourhood of S is the set of points

that can be reached in � steps along or against R. The letter N is used for the set, and N is used for
the subframe and the submodel.

That is, the �-neighbourhood of a set S is the collection of sets that can be reached in at most �

steps forwards or backwards along R from S.

LEMMA 4.26
Let M = X  ⊎η∈I Bη and N = X  ⊎ρ∈J Cρ be two (general) models such that

• Bη
∼= Bξ for all η, ξ ∈ I ;

• Cρ
∼= Cπ for all ρ, π ∈ J ;

• I and J are infinite.

Taking � = 3n, suppose that for each point w in Bη, there exists a point v in a Cρ such that N M
� (w) ∼=

N N
� (v) and vice versa. Then for w0 in M and v0 in N

N M
� (w0) ∼= N N

� (v0) �⇒ M, w0 ≡n N, v0.

PROOF. The proof uses the Ehrenfeucht–Fraïssé method. The reader is referred to [14] for an
exposition of the method.

By induction on the number of rounds played so far, it will be shown that duplicator can counter
any move by spoiler. To this end, write �(k) := 3n−k .

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/30/7/1331/5896992 by U
niversiteit van Am

sterdam
 user on 08 July 2021



1350 A model-theoretic approach to descriptive general frames

More precisely, let the induction hypothesis denote that for any (ai)i<k and (bi)i<k such that

X ∪N�(k)

(
{w0} ∪ {ai}i<k

) ∼= X ∪N�(k)

(
{v0} ∪ {bi}i<k

)
where

⎧⎪⎨⎪⎩
ai �→ bi,

w0 �→ v0,

x �→ x if x ∈ X .

A move ak can be countered with a move bk such that the above condition holds with k replaced by
k+1. In particular, there will be a local isomorphism between the elements chosen. From symmetry,
the response of an ak to a bk can be given similarly. Inductively performing this until k = n then
gives victory for duplicator.

Suppose that there have been k turns and the inductive hypothesis holds. When spoiler makes a
move ak , there are two cases to consider:

1. ak ∈ N2·�(k+1)

(
{w0} ∪ {ai}i<k

)
∪ X ,

2. ak /∈ N2·�(k+1)

(
{w0} ∪ {ai}i<k

)
∪ X .

In the former case, let θ : X ∪ N�(k)({ai}i<k) → X ∪ N�(k)({bi}i<k) be the isomorphism assumed
in the induction hypothesis, and let bk = θ(ak). Observe that 2 · 3n−k−1 + 3n−k−1 = 3n−k , so
N�(k−1)({ai}i≤k) ⊆ N�(k)({ai}i<k) and the same for b. It follows immediately that the restriction of θ

is again an isomorphism between these two smaller neighbourhoods.
In the second case, remark that N�(k)({bi}i<k) can only intersect at most k connected components.

Because J was infinite per assumption, there is a ρ ∈ J such that N�(k)({bi}i<k) ∩ Cρ = ∅. By
assumption, there is a π such that

N�(0)(ak) ∼= N�(0)(v) ⊆ Cπ
∼= Cρ

for some v. Therefore, there is a bk in Cρ (namely the image of v under the isomorphism directly
above) such that N�(0)(ak) ∼= N�(0)(bk). Choosing it, one obtains

N�(k+1)(ak) ∼= N�(k+1)(bk);

X ∪N�(k+1)({ai}i<k) ∼= X ∪N�(k+1)({ai}i<k) through restriction of θ ;

X ∪N�(k+1)({ai}i≤k) = N�(k+1)(ak)  
(
X ∪N�(k+1)({ai}i<k)

)
∼= N�(k+1)(bk)  

(
X ∪N�(k+1)({bi}i<k)

)
= X ∪N�(k+1)({bi}i≤k),

where  denotes disjoint union of models and the isomorphism on the different disjoint components
is preserved, so that it is still the identity on X and sends the ai to the bi.

Symmetry of the models M and N guarantees that the exact same argument provides a response
ak to a move bk by spoiler.

At the end, this gives duplicator an isomorphism

X ∪N�(n)

(
{w0} ∪ {ai}i<n

) ∼= X ∪N�(n)

(
{w0} ∪ {ai}i<n

)
which, using �(n) = 1, can be restricted to a local isomorphism

{w0} ∪ {ai}i<n ∼= {v0} ∪ {bi}i<n,

winning the game for duplicator. �
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A model-theoretic approach to descriptive general frames 1351

This final lemma now permits a proof of the van Benthem characterization theorem for the class
of models on descriptive frames.

PROOF OF THEOREM 4.1. Remark that the equivalence (2) ⇐⇒ (3) follows immediately from
Theorem 2.11.

The implication (1) �⇒ (2) is a well-known property of Kripke bisimulations and modal logic
[8, Theorem 2.20]. Modal formulae are bisimulation-invariant, so any first-order formula equivalent
to one is also bisimulation-invariant.

The only interesting implication is the implication towards (1). Towards the implication (2) �⇒
(1), it will turn out to be sufficient that Kripke-bisimulation-invariance implies finite-bisimulation-
invariance.

Let α(x) be a bisimulation-invariant formula in one free variable with quantifier depth q(α). Write
� = 2 · 3q(α) and assume that m, w and n, v are pointed descriptive models with respective universes
W and W̃ such that

• m |� α[w];
• m, w ↔� n, v over the propositional variables corresponding to the predicates occurring in α.

Let κ be an infinite cardinal greater than those of the universes of m and n. Then the order topology
is compact and totally separated on the ordinal number κ+1. Write K for the field of clopens of this
topology. Remark 4.23 gives that m⊗K , (w, 0) ↔� n

⊗K , (v, 0) and Corollary 4.18 implies

m̂⊗K , F((w,0)) ↔� n̂
⊗K , F((v,0)).

Write ŵ := F((w,0)) and v̂ := F((v,0)) to avoid unnecessarily complicated expressions. Observe
that the bisimulations provided by Remark 4.23 and Corollary 4.18, together with the bisimulation-
invariance of α imply that m̂⊗K |� α[ŵ]. Showing now that n̂⊗K |� α[̂v] would, through the same
bisimulations, then show n |� α[v], as desired.

Following Theorem 4.17, the models m̂⊗K and n̂⊗K can be written as

m̂⊗K = L  T(m⊗K)
∗= L  

⊎
η∈κ+1
w∈W

T(w,η)(m
⊗K);

n̂⊗K = Λ  T(n⊗K)
∗= Λ  

⊎
η∈κ+1

v∈W̃

T(v,η)(n
⊗K);

m̂⊗K  n̂⊗K = (L  Λ)  
⊎

η∈κ+1

( ⊎
w∈W

T(w,η)(m
⊗K)  

⊎
v∈W̃

T(v,η)(n
⊗K)
)

,

where the equalities marked by ∗ follow from the fact that two paths can only be related in the tree if
one extends the other, and two paths with different starting points cannot extend one another. Recall
from Definition 4.2 that Tx(M) is the submodel of paths starting at x. The submodels L and Λ are
unspecified frames of limit points.

For any η, ξ ∈ κ + 1,⊎
w∈W

T(w,η)(m
⊗K)  

⊎
v∈W̃

T(v,η)(n
⊗K) ∼=

⊎
w∈W

T(w,ξ)(m
⊗K)  

⊎
v∈W̃

T(v,ξ)(n
⊗K)

through the map of switching the initial point. Moreover,

m̂⊗K , ŵ ↔ m̂⊗K  n̂⊗K , ŵ �⇒ m̂⊗K  n̂⊗K |� α[ŵ]
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1352 A model-theoretic approach to descriptive general frames

and

n̂⊗K , v̂ ↔ m̂⊗K  n̂⊗K , v̂.

Therefore, if N m̂⊗K

� (ŵ) ∼= N n̂⊗K

� (̂v), applying Lemma 4.26 for

M = N := m̂⊗K  n̂⊗K ;

I = J := κ + 1;

Bη = Cη :=
⊎

w∈W

T(w,η)(m
⊗K)  

⊎
v∈W̃

T(v,η)(n
⊗K);

X = L  Λ

will prove that

M, ŵ ≡q(α) N, v̂.

This implies m̂⊗K  n̂⊗K |� α[̂v], from which the bisimulation above provides n̂⊗K |� α[̂v], which in
turn shows n |� α[v] from the previous bisimulations. This implies that α is preserved under finitary
bisimulations. As bisimilarity up to depth � over finitely many propositional variables is identical to
modal equivalence up to depth � ([27, Proposition 1]), this means that α is characterized by some
collection of theories of formulae of finite modal depth. As there are finitely many such formulae,
there is a modal formula of depth up to � equivalent to α, concluding the proof.

This final claim of isomorphism of neighbourhoods will be achieved by showing inductively that
there exists a sequence of isomorphisms (fi)i≤� with

fi : N m̂⊗K

i (ŵ) ∼= N n̂⊗K

i (̂v);

fi � N m̂⊗K

j (ŵ) = fj for j ≤ i;

Nm̂⊗K

i (ŵ) � x ��−i fi(x) ∈ N n̂⊗K

i (̂v) over the predicates in α.

Clearly, the map f0 : N m̂⊗K

0 (ŵ) → N n̂⊗K

0 (̂v) is an isomorphism, since both consist of a single
irref lexive point and must satisfy the same propositional variables, because m⊗K , ŵ ↔� n⊗K , v̂, so
they satisfy the same propositional variables, implying that f0 is an isomorphism. Moreover, through
[27, Proposition 1], it implies that ŵ �� v̂.

Now suppose that fi : N m̂⊗K

i (ŵ) → N n̂⊗K

i (̂v) is an isomorphism. Since ŵ is the root of its
tree-like connected component, if R is the relation on m̂⊗K , then

Nm̂⊗K

j (ŵ) =
⋃
k≤j

Rk[ŵ],

so the isomorphism fi+1 only needs to extend fi on the successors of Ri[ŵ]. Because the connected
component under consideration is a tree, no two points share successors. Therefore, the successors
of each such point may be considered separately.

Let x ∈ Ri[ŵ]. Each theory of modal depth � − i − 1 over the predicates in α has a single
characterizing formula, as there are finitely many such formulae. Write Σ for the set of these
characterizing formulae. For each ϕ ∈ Σ , if m⊗K , x � ♦ϕ, then this type occurs κ many times
in R[x] and otherwise it occurs 0 times, because if it occurs once, then it must occur in all the
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A model-theoretic approach to descriptive general frames 1353

K-duplicates. The same reasoning applies to fi(x), so because they agree on each ♦ϕ per assumption,
for each theory x and fi(x) either both have κ many successors with that theory or none.

It follows that for every ϕ ∈ Σ , there exists a bijection gx
ϕ between the successors of x

satisfying ϕ and the successors of fi(x) satisfying ϕ. Choosing one such gx
ϕ for each ϕ allows the

construction of

fi+1 = fi �
⊔

x∈Ri[ŵ]
ϕ∈Σ

gx
ϕ ,

this preserves all new relations and predicates. Moreover, y ∈ R[x] with x ∈ Ri[ŵ] has modal theory
characterized by ϕ ∈ Σ and therefore by construction y ��−i−1 gx

ϕ(y). Since this also held for fi
by induction hypothesis, the inductive condition is satisfied again. �

5 Conclusions and future work

The main result of this paper is the validity of the van Benthem characterization theorem on the class
of models based on descriptive frames. We also showed the failures of the compactness theorem,
the upward Löwenheim–Skolem theorem, the Beth definability theorem and the Craig interpolation
theorem on this class of models.

We will now brief ly discuss potential directions for future work. As pointed out in the introduction,
many generalizations and adaptations exist of the classical van Benthem characterization theorem.
Deserving special mention is the Janin–Walukiewicz theorem [19]. This theorem is an analogue
of the van Benthem characterization theorem for the modal μ-calculus. It states that the modal
μ-calculus is the bisimulation-invariant fragment of monadic first-order logic. The proof of this
theorem also relies centrally on unravelling trees and the convenient properties of trees for game-
theoretic semantics. In [7], a subclass of descriptive frames is designed to allow interpretation of the
modal μ-calculus. We leave it as an open problem whether an analogue of the Janin–Walukiewicz
theorem can be proved for these descriptive μ-frames. We only note that for this task, one could try
to work with an appropriate version of descriptive unravellings defined in this paper.

There are also other important language expansions of modal logic such as hybrid logic [3] and
guarded fragment [1]. The analogues of van Benthem’s theorem have been proved for these languages
[2, 5]. For the guarded fragment, the theorem also holds for finite models [26]. It is natural to ask
whether the analogue of these results hold for descriptive models of these logics. These will also
provide interesting new venues for the proof strategy via descriptive unravellings given in this paper.
However, to formulate such results, descriptive frames and models for hybrid logic and guarded
fragment need to be defined first. For hybrid logics, one might draw inspiration from the algebraic
treatment in [23]. Therefore, we leave it as an open problem to develop appropriate version of
descriptive models for these languages and to prove an analogue of van Benthem characterization
theorem for these models.

The coalgebraic generalizations of the van Benthem characterization theorem for finite frames
are inspired by the view of Kripke frames as coalgebras for the powerset functor on the category
of sets. Similarly, the finite Kripke frames can be viewed as coalgebras for the powerset functor
in the category of finite sets. This then leads to a strategy based on the pseudotrees as in [27] to
obtain the van Benthem characterization theorem for finite supported coalgebras. As was shown in
this paper, descriptive frames are model-theoretically very similar to finite frames. As descriptive
frames are coalgebras for the Vietoris functor on the category of Stone spaces, one could consider
combining the constructions from this paper with the approach used in [29]. There again, a type of
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1354 A model-theoretic approach to descriptive general frames

pseudotree is introduced to apply arguments from finite model theory to obtain the result. Replacing
the pseudotree with the descriptive unravelling could give way to a similar result for alternative
Vietoris-like coalgebras on Stone spaces.

In [24, 25], the van Benthem characterization theorem is treated for intuitionistic frames.
Descriptive intuitionistic frames are known as Esakia spaces [13] and with the techniques from this
paper, one could pursue modal characterization theorems on these interesting classes.

Finally, neighbourhood structures have been given the structure of Stone coalgebras in [17]. Thus,
the constructions presented here may be combined with the approach from [16] to achieve a modal
characterization result on these neighbourhood structures over Stone spaces.
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