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ABSTRACT
Computer simulations generate microscopic trajectories of complex systems at a single thermodynamic state point. We recently introduced
a Maximum Caliber (MaxCal) approach for dynamical reweighting. Our approach mapped these trajectories to a Markovian description on
the configurational coordinates and reweighted path probabilities as a function of external forces. Trajectory probabilities can be dynam-
ically reweighted both from and to equilibrium or non-equilibrium steady states. As the system’s dimensionality increases, an exhaustive
description of the microtrajectories becomes prohibitive—even with a Markovian assumption. Instead, we reduce the dimensionality of the
configurational space to collective variables (CVs). Going from configurational to CV space, we define local entropy productions derived from
configurationally averaged mean forces. The entropy production is shown to be a suitable constraint on MaxCal for non-equilibrium steady
states expressed as a function of CVs. We test the reweighting procedure on two systems: a particle subject to a two-dimensional potential and
a coarse-grained peptide. Our CV-based MaxCal approach expands dynamical reweighting to larger systems, for both static and dynamical
properties, and across a large range of driving forces.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042972., s

I. INTRODUCTION

Dynamical processes are used to describe complex behavior
in a number of fields; examples are transition state dynamics of
chemical reactions1 or photosynthesis.2 Many processes are influ-
enced by external driving and operate away from equilibrium.
Long-time driving often leads to systems eventually settling in a
non-equilibrium steady state (NESS). Application of NESS includes
the description of lasers,3 photosynthesis,4 gene regulatory circuits,5

or constant pulling experiments.6,7 Despite our current lack of a
universal theory for statistical mechanics of equilibrium (or NESS),8

computer simulations can provide microscopic insight into these
complex processes. Unfortunately, limited computational power
often prevents molecular simulations from reaching the exper-
imentally relevant timescales, or alternatively, requires them to
operate at artificially large driving forces.9 A formalism to reweight
non-equilibrated dynamics across these driving forces is needed.

Several reweighting schemes for dynamic and static informa-
tion in equilibrium are known. The Ferrenberg–Swendsen reweight-
ing10 is frequently used on stationary probability distributions
drawn from simulation in equilibrium. Potential and force-based
reweighting schemes for equilibrium dynamics have been of recent
interest and are based on Kramer’s rule,11,12 maximum likeli-
hood methods,13–15 the Girsanov–Radeon derivative,16 or Maximum
Caliber (MaxCal) methods.17 A method similar to the Rosenbluth
algorithm performs reweighting in NESS for minimal processes
such as birth–death processes.18 Another method based on iterative
trajectory weighting is expected to scale to NESS systems;19 how-
ever, these methods have not yet been shown to reweight complex
systems across non-equilibrium conditions. We recently introduced
a method based on MaxCal ansatz, which is capable of reweighting
the dynamics of minimal systems in NESSs.20 This paper extends
this method to reweight dynamical information of complex systems
described by collective coordinates.
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Designed as an extension of the Ferrenberg–Swendsen method,
our reweighting scheme is based on the Gibbs maximum entropy
approach. While the maximum entropy claims that a physical
system is in a state where it can be realized by the highest
number of microstates (i.e., highest entropy), MaxCal aims at
extending this idea to microtrajectories. The extension to micro-
trajectories is motivated by systems out of equilibrium being char-
acterized by probability currents. The currents cannot be modeled
by microstates alone and need microtrajectories for a complete
description.

Jaynes introduced MaxCal as a theoretical framework for all
dynamical processes.21 The method was shown to recover physical
relations of equilibrium;22 model dynamical complex systems from
limited information;23,24 correct dynamic information by inferring
physical information;25,26 and more applications on statistical sys-
tems in physics, chemistry, and biology.27 We use MaxCal as the
basis for our NESS reweighting method.

The MaxCal formalism requires us to choose a set of implied
constraints based on the physical manipulations made on a sys-
tem in NESS. A driving force exerted on the system will affect the
heat exchange of each pathway. The microscopic characterization
of heat exchange is described by the local entropy production.20

The NESS system is also constrained by global balance to preserve
probability fluxes. The dynamics can be separated into two parts:
dissipative and non-dissipative contributions.28 The dissipative con-
tribution is determined by the target NESS, accessed via the local
entropy production. The non-dissipative contribution, on the other
hand, is drawn from the reference data itself. We highlighted an
invariant, which contains the time-symmetric contributions—they
do not change under driving. The invariant acts similar to the den-
sity of states in equilibrium. MaxCal, combined with the appropriate
constraints, opens the possibility to reweight dynamical information
across external forces as a function of the system’s configurational
space.

Because the reweighting is performed at a microscopic level,
it requires the consideration of large numbers of microstates.
The sheer number of microtrajectories becomes computationally
intractable for all but the smallest of systems, and they are here
instead coarse-grained by Markov state models (MSMs). MSMs
describe the system’s dynamics by coarse-grained time and space.
They discretize the configurational space in microstates and model
the Markovian probability of transitions between these states. We
performed space discretization based on configurational coordi-
nates.20 Computational aspects typically limit the size of the transi-
tion probability matrix to ∼103 microstates.29 The representation of
molecular systems with a large number of particles rapidly becomes
problematic. Instead, the configurational space is often projected
down to a set of low-dimensional collective variables (CVs).30 The
application of CVs to MaxCal-based dynamical reweighting is the
topic of this study.

This paper is structured as follows: First, we will introduce the
reweighting method and show that it is applicable to CVs without
loss of generality in Sec. II. Second, the models investigated and
first-passage-time distributions used to analyze the dynamics are
introduced in Sec. III. In Sec. IV, we will apply the reweighting
to a toy model in full coordinates and along collective variables
to show how the choice of variables impacts the accuracy of the
methodology. Reweighting is then applied to a molecular system: a

tetra-alanine peptide. We apply the reweighting along two collective
variables, testing both conservative and non-conservative forces.

II. THEORY
Steady states are a special case of non-equilibrium, where heat

is supplied to and withdrawn from the system from an unlimited
reservoir at the same rate. The amount of heat flowing from and
to the system is controlled by the entropy. The system will eventu-
ally settle in a state with constant, positive total entropy production
dStot > 0, without the system undergoing changes—in a steady state
dSsys = 0. The system is characterized by steady currents from a
macroscopic point of view. These dynamical currents are described
by ensembles of microtrajectories, each with a time-independent
weight. Maintaining the currents results in positive entropy produc-
tion in the reservoir. The system remains off equilibrium but loses
time-dependence because the macroscopic system does not change
in time.

The resulting time-independent set of microtrajectories is
mapped onto a discrete Markov process. The configurational space
is discretized into the so-called microstates (i.e., collection of micro-
scopic states), and time is discretized in steps of constant duration
τ (i.e., the lag-time).31 All the observed transitions from microtra-
jectories are collected to infer a transition probability matrix pij(τ),
where i and j label microstates. This coarsening of microtrajecto-
ries leaves us with the easier task of sampling transition probabilities
and subsequently constructing microtrajectories out of the combina-
tion of individual micro-transitions. This mapping has been proven
to reach timescales that are out of range of brute-force computer
simulations.32

A. Maximum Caliber (MaxCal)
The maximum entropy formalism by Gibbs states that an equi-

librium system is in a state where it can realize the highest number
of microscopic configurations, subject to external constraints such
as the mean energy.33 Analogously, MaxCal proposes a framework
to study dynamical systems by replacing microstates with micro-
trajectories.34 In doing so, MaxCal moves away from Gibbs’ phys-
ical argument to an information theoretic point of view: Based on
partial information, what is the most likely state the system is in?
Jaynes answers this question by assuming the most uncertain (or
highest entropy) probability distribution as noncommittal as possi-
ble regarding unknown information. This point of view boils down
to a general inference method only subject to adequate physical
constraints. We take advantage of this formalism by generalizing
equilibrium reweighting, which focuses on the static distributions
of microstates, to dynamical reweighting of NESS.

An adequate choice of physical constraints forms an essential
element of MaxCal.35 For dynamical reweighting to another NESS,
we recently proposed the combined use of the local entropy produc-
tion and global balance.20 These constraints focus on the interactions
of the system with its environment:

1. Heat exchange is described at the microscopic level by entropy
production, itself constrained by microscopic reversibility.36,37

The system’s spatial heterogeneity, as well as the need to
describe dissipative dynamics, requires a local constraint.35
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The local entropy production, ΔSij, between microstates i and j
is constrained by the following relation:20

⟨ΔSij⟩ = ln
pij
pji

, (1)

where pij denotes the probability to jump between microstates
i and j.20 By making use of a microscopic expression for
ΔS, we integrate the conservative and non-conservative force
contributions along a trajectory [see Eq. (B1)].38

2. To connect all local changes, we add global balance, πi
= ∑kπkpki, for each microstate i. Global balance ensures the
conservation of probability flux.39 It connects a single state on
the left-hand side of the equation to all other states and couples
both stationary and dynamical properties.

Including adequate normalization constraints, the caliber func-
tional becomes

C = −∑
i,j
πipij ln

pij
qij

+∑
i
μiπi
⎛

⎝
∑
j
pij − 1

⎞

⎠

+ ζ(∑
i
πi − 1) +∑

j
νj(∑

i
πipij − πj)

+∑
ij
πiαij(ln(

pij
pji
) − ΔSij). (2)

Here, the first term represents the relative-entropy term on
pathways, specifically between the target (MSM-based) transition
probability pij with its reference counterpart, qij. The other terms
consist of constraints, expressed as Lagrange multipliers: first,
normalization constraints on the transition probability, pij, and the
steady-state distribution, πi, with associated parameters μi and ζ,
respectively. The last two terms constrain the global-balance con-
dition and local entropy production with Lagrangian multipliers νi
and αij, respectively. The parameters αij and μi were both rescaled by
πi. Maximization is described in Appendix A and yields

pij = qij exp(ζ +
1
2
(ci + cj + ΔSij − ΔSqij))

=
√
qijqji exp(ζ +

1
2
(ci + cj + ΔSij)), (3)

where Sqij is the local entropy production of the reference system
and ci are constants to be determined. This shows that we have two
options for the input parameters: The reweighting depends on either
the total entropy production ΔSij of the target system or the dif-
ference in local entropy production ΔSij − ΔSqij between target and
reference systems. The unknowns c are calculated by enforcing the
relation∑jpij = 1,

1 =∑
j

√
qijqji exp(ζ +

1
2
(ci + cj + ΔSij)). (4)

This is a convex set of equations that can be solved by numerical
iteration, for instance, by least-squares.40

B. Collective variables
To reduce the number of microstates, describing complex sys-

tems by collective variables (CVs) is essential to make the system
computationally accessible. Examples of CVs include the description
of a magnet by its magnetization while ignoring the influence of local
dipole fluctuations41 or the crystallization of particles described by
the closest radial environment of each crystallizing particle.42 Many
fast and local processes are averaged out when settling on a set of col-
lective variables. The mesoscopic descriptors or collective variables
are inherently system-specific and limit the view on the system: The
crystallization described by the local environment of the particles
holds a detailed view on the crystalline phase but only holds limited
information on the liquid phase.42 Furthermore, a poor choice of
CVs can hide important processes and free-energy barriers or cause
an inaccurate estimation of implied timescales.43–45 The adequate
choice of collective variables is a widely discussed research field on
its own and is applied to describe complex systems in chemistry,
biology, and physics.46

To extend our reweighting procedure from configurational
coordinates, x, to CVs, z, we need to adapt the expression for the
change in local-entropy production [Eq. (B1)]. CVs and configura-
tional coordinates are related by a mapping operator, z = M(x). The
potential energy is replaced by the potential of mean force,47

G(z) = −kBT ln∫ dx δ(M(x) − z)π(x). (5)

The change in entropy production due to a trajectory z(t)
with starting and end points z0 and zT , respectively, yields (see
Appendix B)

ΔS(z0, zT) − ΔSq(z0, zT)

=
1

kBT
[G(zT) −G

q
(zT) − (G(z0) −Gq

(z0))

+ (zT − z0) ⋅ (f − f q)], (6)

where z(t) is the D-dimensional CV vector, f is the non-conservative
force, and superscript q indicates the reference system. Concep-
tually, adapting ΔS from configurational to CV space amounts to
replacing the potential energy by the potential of mean force. The
expression holds for an arbitrary system with or without bound-
ary conditions but only for driving forces along the CVs. While
Eq. (6) assumes constant forces, it can readily be generalized, i.e.,
f (z), analogous to the full-configurational case.20

III. METHODS
The reweighting procedure for CVs is tested on two sys-

tems. The first model is a non-interacting particle subject to a
two-dimensional potential. The potential consists of three Gaussian
potential wells of varying depths. All boundaries are periodic, and
the external force is applied along the x-direction. Results for this
system are presented in reduced units, where the box size is set to
3L × 1L, the mass of the particle is set to M, and energy is mea-
sured in ϵ. The temperature is T = 1 ϵ/kB, and the unit of time is
T = L

√
M/ϵ. The integration time step is set to δt = 10−5 T, the
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non-conservative force is varied between 0 and 9 ϵ/L, the
microstates consists of 30 × 10 squares of equal size, and the lag-time
is chosen at 0.02T. The potential minima are Gaussian functions
with depths 3ϵ, 5ϵ, and 7ϵ and are located at x = {0.5, 1.5, 2.5} and
y = 0.5. The standard deviation of the Gaussian is 0.2L in both direc-
tions. By integrating out the y-dimension orthogonal to the driving
force, F2D(x, y), we imitate a reduction in variables, providing a
testing ground for the reweighting along CVs. The mean force is
calculated via the stationary distribution,

⟨F(x)⟩ = ∫ dyF2D(x, y)π(x, y). (7)

Both full and reduced descriptions will be analyzed along x. All
dynamics are extracted from the same reference simulations. An
MSM is constructed with the same lag-time τ = 0.02T and the same
30 equisized microstates in the x-direction. The lag-time for MSM is
validated by the Chapman–Kolmogorov test,48 for both the full 2D
and reduced 1D systems.49

The second system represents a tetra-alanine peptide consist-
ing of four amino acids and 52 atoms. Each amino acid is coarse-
grained to one bead centered at the backbone of the peptide. The
coarse-grained force field for the molecule solvated in water con-
sists of three pair potentials along the backbone, two bending-angle
interactions, a dihedral angle φ, and an effective pairwise interaction
between the first and last beads, R14.49 Simulations were run with
ESPResSo++.50

The MSM is constructed using two CVs: the end-to-end dis-
tance, R14, and the dihedral angle, φ (see Fig. 1).51,52 The unper-
turbed equilibrium system is called the reference system. Driven
systems consist of constant forces along either CV in either direc-
tion. We define 15 microstates over the range [−π, +π] in the
φ-direction and 15 microstates in the range [0.45, 1.15] nm in the
R14-direction. Two additional sets of microstates were added to col-
lect end-to-end distances outside this range. Energies are given in
ϵ = kJ

mol , and the system is simulated at temperature T = 2.479 ϵ
kB

.
A lag-time for the MSM is chosen using lag-time analysis and the
Chapman–Kolmogorov test.48,49 Metastable states for tetra-alanine
are defined by PCCA+.53 The metastable state analysis relies on equi-
librium dynamics, satisfying detailed balance. Thus, the analysis is
performed for the reference system, and the same metastable states
are chosen for the driven systems.

The dynamics are analyzed by using first-passage-time
distributions (FPTDs) between metastable states. It is defined by the

FIG. 1. Atomistic and coarse-grained representation of tetra-alanine. Atoms are
shown in licorice, where turquoise, white, blue, and red represent C, H, N, and O,
respectively. The transparent beads show the coarse-grained representation of the
system. The end-to-end distance R14 and the dihedral angle φ are defined based
on the coarse-grained representation.

distribution of time that a process starting from metastable state A
needs to reach metastable state B. FPTDs are widely used to char-
acterize processes in biology, chemistry, and physics and are often
associated with a free-energy barrier a system has to overcome. The
FPTD contains detailed transition information by collecting numer-
ous realizations of a process. Often, few observed realizations limit
the analysis to the mean of the distribution.54 Given an MSM with
identified metastable states, the FPTD between all metastable states
can be calculated directly.55 The collection of initial states is denoted
by I, the collection of final states is denoted by F, and the FPTD is
denoted by p FPT(I → F, t). Knowing the FPTD, all moments of the
distribution can be calculated by

M(n)I→F =∑
t
pFPT(I→ F, t)tn. (8)

In particular, we will make use of the quantities

μI→F =M(1)I→F,

σI→F =

√

M(2)I→F − μ2
I→F,

κI→F =
M(3)I→F − 3μI→Fσ2

I→F − μ3
I→F

σ3
I→F

,

(9)

where μI→F is the mean, σI→F is the standard deviation, and κI→F
is the standardized skewness, defined by the expectation value of
(
t−μ
σ )

3
. These moments are used to compare FPTDs throughout this

paper to capture the main features and draw physical information
from the distribution.

IV. RESULTS
A. Particle in a two-dimensional potential

We first consider a toy model: a particle in a multi-well. The sys-
tem is originally in two dimensions, but we also consider a reduced
one-dimensional description. We perform dynamical reweighting
for both descriptions from and to equilibrium and a driven NESS.
Figures 2(a) and 2(b) show the potential of the full and reduced
single-particle system. Dynamical reweighting leads to an accurate
reproduction of the stationary distribution, as seen for two differ-
ent driving forces [Fig. 2(c)]. Reweighting also leads to an accurate
reproduction of the FPTD [Fig. 2(d)], as shown for the process
C → B at both equilibrium and under driving and for both the
full and reduced descriptions. While longer timescales are repro-
duced accurately, the reweighting for short processes of 1–5τ shows
small deviations. These are caused by the spatial discretization, espe-
cially in highly populated areas. Overall, the dynamical-reweighting
scheme performs in both full-configurational and CV spaces as well.
We note that the present methodology requires external forces to be
aligned with the CVs.

In the following, we reduce all FPTDs to the first three moments
and the stationary distribution of metastable states for a comparison
between simulation and reweighting (Fig. 3). The largest deviation
can be seen for the process A→ B, where the reweighting error in the
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FIG. 2. (a) The 2D potential with the three
metastable states indicated by squares.
Integrating along the y-dimension gives
(b) the mean potential of the equilibrium
system. The gray area represents the
new metastable states A, B, and C. The
area of the metastable state is effectively
increased. (c) The stationary distribution
of the reduced system. (d) FPTD of the
process C → B. The lines in (c) and (d)
represent the results for a single particle
in reduced space without (blue) and with
(red) external force. The dots represent
the results from reweighting the systems
into each other. The orange and light-
blue dashed lines show the same pro-
cess for the underlying 2D process with
dots representing the reweighted FPTD.

1D and 2D systems is comparable, as well as the occupation proba-
bility of state C. The discrepancy in the stationary distribution at
heavy driving is also shown in more detail in Fig. 2(c). A metastable
state in the reduced system covers two microstates of the MSM and
is thus susceptible to discretization errors. Despite minor deviations,
dynamic and static data are reweighted virtually perfectly into each
other. We conclude that use of collective variables of the system
did not affect the accuracy of the reweighting process. Hence, it can
be applied to the same extent as the reweighting in configurational
space.

We now more closely compare the dynamics for the two sys-
tem descriptions (Fig. 3). While the processes remain qualitatively
similar irrespective of representation, the 2D processes are consis-
tently slower than those in the reduced representation. These accel-
erated dynamics are common in coarse-grained modeling.56–59 The
reduced roughness in the free-energy surface results in a decrease
in the effective friction. For our simplified model, this effect reduces
the effective potential barriers, which leads to the acceleration of the
coarse-grained process. Similar effects can be found for the stan-
dard deviation (STD) and skewness, though to smaller extents.
More details on the skewness can be found in the supplementary
material.

The occupation probability of the metastable states is signifi-
cantly larger for the reduced system. The metastable states are effec-
tively smaller for the 2D system because they do not span the whole
y-direction. The reduction to the x axis enlarges the metastable states
effectively, and the occupation probability increases. The trend of
decreasing occupation in C and increasing occupation in A and B is
the same for both systems.

B. Tetra-alanine peptide
To further challenge the reweighting procedure, we apply it

to a coarse-grained tetra-alanine peptide. This system is of higher

complexity than the previous model by showing rougher free-energy
landscapes and many-body interactions. External global forces are
applied along the CVs to alter the dynamics. Physically, these forces
may represent an optical tweezer controlling atom distances. The
external forces are chosen to test the effectiveness of the reweighting
procedure for conservative and non-conservative forces.

The free-energy surface of the coarse-grained reference system
is shown in Fig. 4(a), where we project along two CVs: the end-
to-end distance R14 and the dihedral angle φ. We use PCCA+ to
identify metastable states—a method aimed at identifying coarse-
grained states that preserve the slow timescales.60 We further chose
PCCA+ parameters, leading to metastable states that are both small
and well separated. Three basins were identified, representing the
helical states H, extended state E, and one intermediate state I. State
H is associated with helical states located to the right of the middle
free-energy barrier at φ ≈ 0.15 π. State I is an intermediate state at
φ ≈ 0.4 π.

The driving along R14 can be casted to an additional attractive
or repulsive interaction potential—leaving the system in equilib-
rium. On the other hand, we can also drive the peptide in a NESS
along the periodic dihedral angle φ. The direction of driving will
impact the dynamics because the free energy surface lacks the sym-
metry of the previous toy model. Thus, we can test the method for
reweighting between equilibrium states, NESS, or from equilibrium
to NESS and vice versa.

1. Equilibrium reweighting
Figure 4(b) shows the implied timescale analysis for the original

force field and an applied driving along R14. We choose a lag-time of
200T to capture the two slowest processes of both systems, where
T = 1 fs. The second process is captured by the MSM and is virtu-
ally unaffected by the additional forces applied. In the following, we
assume this process to remain unaffected by larger forces.
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FIG. 3. (a)–(c) The first three moments of the FPTD for all six processes between
metastable states under varying external force f. (d) The occupation probability of
each metastable state. The dots represent the value measured from simulation.
The line represents the reduced 1D equilibrium system continuously reweighted.
The dashed lines represent the continuously reweighting processes of the under-
lying equilibrium processes in 2D space. The error bars are smaller than the points
and lines.

Figures 5(a)–5(c) show the first three moments of the FPTD
between the metastable states when driving along R14. For the ref-
erence system at f = 0, we note the two fast processes I → E and
H → E. The next two slower processes are H → I and E → I, and
finally, the two slowest processes are both going to the helical state,
E→ H and I→ H. Under driving, transitions to I slow down under
an attractive end-to-end potential (i.e., negative forces) and speed up
for a repulsive end-to-end potential (i.e., positive forces). The oppo-
site happens for the processes going to H: An attractive end-to-end
potential increases the speed of these processes. Transitions to the
extended state E are comparatively unaffected by the driving. We

FIG. 4. (a) Free energy surface of tetra-alanine of the reference system. The
metastable states are indicated by helical (H), extended (E), and intermediate (I).
(b) Implied timescale analysis of the system defined by the reference force field
(f R = 0) and driven along the end-to-end distance with fR = −9 ϵ

nm . The shaded
area marks the non-physical area where ti < τ.

note that the STD behaves roughly proportional to the MFPT, while
the skewness varies extremely weakly.

Looking at Fig. 5(d), increasingly repulsive R14 interactions lead
to a stabilization of state I. On the other hand, this separation of the
residues destabilizes both H and E, where the former decays more
strongly.

The impact of the driving force on the MSM’s implied
timescales is shown in Fig. 5(e). The nature of the driving force
retains the system in equilibrium so that path-dependent effects are
not expected. In agreement with Fig. 4(b), the first timescale depends
strongly on driving, while the second one is virtually unaffected.

Results on the three moments of the FPTD indicate that the
transitions are recovered accurately. Minor deviations at large forces
are rationalized by a significant change in the relevant populations:
regions at large or small end-to-end distance become highly pop-
ulated but may be insufficiently sampled in the reference system.
These errors are mostly apparent for the higher-order moments.
Overall, though, we report extremely encouraging results in terms
of dynamical reweighting for a complex molecular system driven by
a constant conservative force.

J. Chem. Phys. 154, 134105 (2021); doi: 10.1063/5.0042972 154, 134105-6

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. (a)–(c) The first three moments of the FPTD for all six processes
between metastable states under varying external force f along R14. (d) The
occupation probability of each metastable state. (e) The timescale of the two
slowest processes covered by the MSM. The dots represent the value mea-
sured from simulation. The line represents the reference system continuously
reweighted.

2. NESS reweighting
Figure 6 shows NESS driving along the dihedral φ in either

direction. The dynamics of the system are largely dominated by its
large free-energy barrier at φ ≈ − π

6 . Driving in the positive direc-
tion speeds up the processes H → E and I → E, while I → H slows
down as it runs opposite to the driving force. On the other hand,
H→ I slows down, even though it runs along the external force. Most
trajectories starting from H bypass I under heavy driving, leading,
instead, directly to state E. This can be seen by the narrow, diago-
nal stripe below state I, which becomes more tightly populated. The
trajectories find a direct path to the global basin (E) without hitting
the intermediate state I, as can be seen in the transition density of
H→ E.

Overall agreement between direct simulations and reweighting
is observed for the FPTD, especially up to ∣ f ∣ < 1 ϵ

rad . Similar to equi-
librium reweighting, we find that the STD follows the behavior of
the MFPT, and the skewness varies weakly. We observe some dis-
crepancies at larger driving, notably for I → H and E → H. While
they all increase, the simulation curves seem to reach a maximum.

FIG. 6. (a)–(c) The first three moments of the FPTD for all six processes between
metastable states in Fig. 4(a) under varying external force f along φ. (d) The
occupation probability of each metastable state. The dots represent the value
measured from simulation. The line represents the reference system continuously
reweighted.

Examination of the simulations shows that the process becomes
faster by crossing over the free-energy barrier at φ ≈ − π

6 . Driv-
ing in the negative direction inverts the effect on the dynamics:
Processes aligned with the force speed up, whereas opposing pro-
cesses slow down. H → I does not follow this trend and instead
accelerates. The trajectories that bypass the intermediate state under
positive driving are now pushed into occupying state I. This is
indicated by the increasing population of I under negative driving
and depopulation under positive driving. The helical state popu-
lation shows similar, but even stronger, behavior. The extended
state, on the other hand, displays the opposite behavior. Here,
again, the occupation probabilities are recovered accurately by the
reweighting, even with small deviations in the dynamics at large
driving.

3. Path dependence of entropy production
The observed deviations between simulation and reweighting at

strong driving along the dihedral angle stem from the local entropy
production. This key quantity is determined by both the external
force and the set of paths connecting every pair of microstates. Find-
ing the shortest connection between two microstates was straightfor-
ward for the toy-model system because they were separated by three
or more barriers: Paths transitioning over a single barrier have much
higher probabilities so that the other set of paths can be neglected.20
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In tetra-alanine, driving along the R14-direction did not lead to this
issue because there are no periodic boundary conditions and the
forces can be mapped to a potential. Transitions become path inde-
pendent, and errors based on path dependence, thus, do not occur.
Driving along the φ-direction, on the other hand, results in a NESS
with periodic boundaries. It shows only one major barrier along the
dihedral angle that dominates the dynamics. Choosing the appropri-
ate path direction to feed into the local entropy production is more
challenging here. For every jump in the Markov model, one has to
determine if the underlying trajectory is aligned with, or directed
against, the external force.

To shed light on path directions, we analyze the matrix of tran-
sition probabilities, as shown in Fig. 7(a) for the reference system.
We fix a starting point, denoted by a green dot, and analyze the
expected direction, given any final microstate. We expect all states
to the right of the starting point (blue shaded area) to arise from tra-
jectories going right, i.e., in the positive φ-direction. On the other
hand, all states to the left of the starting point (green shaded area)
arise from trajectories going left, i.e., negative φ-direction—taking
periodic boundaries into account. A dividing mark (red dashed line)
separates the two regions. The lag-time of the MSM is chosen to be
small enough to avoid transition close to the divider, i.e., no transi-
tions lead to ambiguity as to their likely direction. This disconnect
in the transition matrix between left- and right-trajectories is associ-
ated with a discontinuity in the local entropy production. Figure 7(b)
shows the transition matrix with a driving force f = 1.4 ϵ

rad , initiated
from the same starting point as before. The non-zero driving leads to

a change in transition probabilities, but the spatially long transitions
are still forbidden. The discontinuity in local entropy production can
be set in the same position. This is important because the target tran-
sition matrix is not known before reweighting. Having a gap at a
similar position in the reference and target driving forces is essential
for the reweighting algorithm.

Next, we illustrate the impact of an incorrect assignment of path
direction. We displace the starting point directly to the left of the
large, central barrier along φ [Fig. 7(c)]. Upon driving [Fig. 7(d)], the
divider line cuts the transition matrix through a connected region,
close to the intermediate state. As such, a discontinuity in the local
entropy production will be present among the paths connecting this
intermediate region. Left- and right-trajectories are no more well
separated, leading to ambiguities. These issues directly result in the
discrepancies observed in Fig. 6. They only materialize at strong
driving; otherwise, the local entropy productions of these conflicting
paths are negligible.

This analysis highlights the dependence of NESS reweighting
by the choice of MSM. Upon reweighting from reference to target
driving forces, the set of paths connecting two microstates should
consist of similar sets of trajectories. Unfortunately, one cannot eas-
ily predict whether conditions for reweighting are met. The small
gaps between the groups of trajectories in Figs. 7(a) and 7(b) are a
warning signal. Models with three or more barriers, as constructed
in the toy model, are less susceptible to this issue. A particle cross-
ing a barrier is expected to take the shorter path over a single bar-
rier and is unlikely to hop over two barriers within one lag-time.

FIG. 7. Transition probabilities starting at the state marked by the green dot. [(a) and (c)] reference systems and [(b) and (d)] system driven along φ at 1.4 ϵ
rad

. The red line
represents the discontinuity in local entropy production, starting from the marked initial state. All states shaded green are connected to the starting state by trajectories going
left; all states shaded blue are connected by a trajectories going right.
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The tackling of larger systems should do away with these artifacts:
both slower diffusion and more complex free-energy landscapes will
remove directional ambiguity.

Clearly, these issues are brought about by the MSM construc-
tion of microtrajectories. Can we refine the MSM parameteriza-
tion? Shorter lag-times would result in shorter trajectories and, thus,
shorter jumps. Unfortunately, Fig. 4 shows that smaller lag-times
show non-Markovian dynamics. Other options point at the role of
CVs and microstate selection. We may select a different second col-
lective variable (CV) when reweighting along the first. Such choices
can have great impact and better represent the free-energy land-
scape. Alternatively, increasing the number of microstates does not
allow us to decrease the lag-time. The microstates in the present
model are discretized in equal size along the CVs. Advanced clus-
tering techniques, such as k-means61 or k-medoids,62 help define
more complex sets of microstates that could allow us to reduce
the lag-time. Both the selection and clustering of the CVs influ-
ence how dynamics are described by the MSM. The connection of
two microstates should be described by a unique bundle of paths.
This means that the CVs and their separation in microstates should
be chosen to reflect underlying kinetic distances of the system, as
was formulated as a requirement for reweighting of dynamics in
equilibrium by Wan et al.17

V. CONCLUSION
This study contributes to the sparse field of dynamical

reweighting between non-equilibrium steady states. The presented
method is based on Maximum Caliber (MaxCal) of Jaynes. It relies
on an ensemble description of NESS by physical constraints—global
balance and local entropy productions—and an efficient construc-
tion of microtrajectories by means of Markov state models (MSMs).
Instead of being directly sampled, microtrajectories are constructed
from the transition probability matrix, which robustly addresses
issues of path sampling. On the other hand, an MSM description
requires the use of appropriately chosen collective variables (CVs)
that can describe the dynamics of the slow processes. Our initial
description of NESS dynamical reweighting was based on the con-
figurational variables of the system themselves. To scale up, this
study presented an extension to CVs. The expression for the local
entropy production was extended from individual forces to mean
configurationally averaged forces. We tested the CV-based dynam-
ical reweighting to both conservative and non-conservative forces,
applied to both a toy model and a molecular system: a tetra-alanine
peptide.

Strong agreement in both the static and dynamical properties
is found overall. Discrepancies can be found at strong driving. We
showed that they can be traced back to ambiguities in the direc-
tion of the constructed MSM-based paths. The periodic boundary
conditions and relatively small landscape can lead to significant
path contributions from both directions along the CV. Finding bet-
ter CVs is an ever-present challenge46 and is expected to system-
atically improve the MaxCal-based reweighting scheme presented
here. Parallel avenues for improvements include the combination
with established enhanced-sampling methods. For instance, while
we herein reweight from a single state point, we expect the possi-
bility to combine information from multiple state points, akin to

several optimal-estimator methods.13,63–65 Furthermore, our current
use of stochastic thermodynamics limits us to a single temperature
reservoir. Extension of the method in this direction would open the
door to more complex non-equilibrium systems, such as tempera-
ture gradients, or methodologies such as reverse non-equilibrium
molecular dynamics.66 We hope that the present methodology
will help drive forward NESS reweighting for large molecular
systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for the mean-first-passage-time
distributions and Chapman–Kolmogorov test of the 1D and 2D par-
ticle in a potential, as well as the stationary distribution of reactive
trajectories for the peptide.

See the supplementary material at [URL] for additional
information.
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APPENDIX A: CALIBER MAXIMIZATION
We consider the caliber

C = −∑
i,j
πipij ln

pij
qij

+∑
i
μiπi
⎛

⎝
∑
j
pij − 1

⎞

⎠
+ ζ(∑

i
πi − 1)

+∑
j
νj(∑

i
πipij − πj) +∑

ij
πiαij(ln(

pij
pji
) − ΔSij). (A1)

The maximization with respect to the transition probabilities pij
gives

0 = −πi ln(
pij
qji
) − πi + πiμi + πiνj + πi

αij
pij
− πj

αji
pij

. (A2)

Solving for pij with πi ≠ 0 yields

pij = qij exp(−1 + μi + νj +
γij
pij
), (A3)

where γij = αij−
πj
πi
αji is used. Enforcing the local entropy productions

explicitly by ΔSij = ln pij
pji

and after some algebra, one finds that

γij
pij
= wij(ΔSij − ΔSqij − μi + νi + μj − νj), (A4)

where wij = 1/(1 + πipij
πjpji

)) and ΔSqij = ln qij
qji

are used. This expression
is set into Eq. (A3), and using wij + wji = 1, we find that

J. Chem. Phys. 154, 134105 (2021); doi: 10.1063/5.0042972 154, 134105-9

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0042972
https://www.scitation.org/doi/suppl/10.1063/5.0042972


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

pij = qij exp(−1 + wjiμi + wijμj + wjiνj + wijνi + wij(ΔSij − ΔSqij)).
(A5)

The caliber maximization with respect to the stationary distribution
gives

0 = −∑
k
pik ln(

pik
qik
) + μi∑

k
pik − μi + ζ − νi

+∑
k
νkpik +∑

k
αik(ln(

pik
pki
) − ΔSik). (A6)

By combining with Eq. (A3) and making use of the probability con-
servation constraints, one finds a relation between the Lagrangian
multipliers γij, νi, and μi,

μi + νi = 1 + ζ +∑
k
γik. (A7)

Enforcing the constraint ∑kpik = 1 on Eq. (A5) results in a set of N
equations, where N is the number of microstates. Combined with
the set of N equations from Eq. (A7), there is a set of 2N coupled
non-linear equations to be solved. To solve the problem, we assume
that deviations from detailed balance are small: πipij

πjpji
≈ 1, resulting

in wij ≈
1
2 . The approximation is applied to each Markovian jump

individually such that the aggregate contributions to a microtrajec-
tory may yield significant entropy productions. The approximation
applied to Eq. (A5) yields

pij = qij exp(
1
2
(−2 + μi + νj + μj + νi + ΔSij − ΔSqij)). (A8)

Using the result of Eq. (A7) and the definition ci =∑kγik, we obtain

pij = qij exp(ζ +
1
2
(ci + cj + ΔSij − ΔSqij)). (A9)

APPENDIX B: LOCAL ENTROPY PRODUCTION
IN COLLECTIVE COORDINATES

To solve the reweighting equation, we need an expression for
the relative local entropy production ΔSij − ΔSqij between target and
reference states, the latter being indicated by superscript q. The
indices i, j denote microstates that occur from discretizing the coor-
dinates of the system of interest. Having access to the full set of
coordinates allows us to analyze a trajectory x(t) and calculate the
entropy production using

ΔS[x(t)] = ∫ dt
F ⋅ ẋ
kBT

, (B1)

where ẋ is the velocity, F is the force, and T is the tempera-
ture.38 Making use of numerically discretized trajectories, x(t) ≈ {xk},
ΔS({xk}) is approximated between initial and target points, x0 and
xT , respectively,

ΔS[{xk}] ≈∑
d

T

∑
t=1

(x(d)t − x(d)t−1)(F
(d)
(xt) + F(d)(xt−1))

2kBT

≈
1

2kBT
∑
d

T

∑
t=0

x(d)t (F
(d)
(xt−1) − F(d)(xt+1)), (B2)

where Stratonovich integration is used67 and d iterates over the con-
figurational dimensions. The second approximation neglects end
terms assuming long enough trajectories. We project this equation
to D-dimensional collective variables z = M(x), making use of a
linear mapping operator M. Analogous to structure-based coarse-
graining, the local entropy production is transformed to CV space
by a path-ensemble average,47

ΔS[z(t)] = ∫
D[x(t)]δ(M(x(t)) − z(t))ΔS[x(t)]
∫ D[x(t)]δ(M(x(t)) − z(t))

,

(B3)
ΔS[{zk}] =

∏
T
t=0 ∫ dxtδ(M(xt) − zt)ΔS[{xt}]
∏

T
t=0 ∫ dxtδ(M(xt) − z)

.

Using the approximation in Eq. (B2), all integrals over x(d)t can be
performed separately and we find the entropy production in CV
space,

ΔS[z(t)] =
1

2kBT

D

∑
d

T

∑
t=0

z(d)t (F
(d)
(zt−1) − F(d)(zt+1)), (B4)

where F(d)(zt) are mean forces projected along dimension d eval-
uated at time t. The solution mentioned above requires to integrate
along stochastic trajectories. We approximate the equation by ignor-
ing fluctuations, which allows us to apply Riemann integration. By
averaging over all existing pathways between two microstates later
on, this approximation becomes exact because the fluctuations are
a symmetric contribution to dynamics and do not contribute to
entropy production. We express the forces through a conservative
contribution derived from the potential of mean force, G(z), and a
non-conservative contribution, f , resulting in F = −∂G(z)

∂z + f . The
non-conservative force is directed along the CVs. We find that

ΔS[{zt}] =
1

kBT ∫
dt

D

∑
d
(
∂G
∂zd

∂zd
∂t

+ fd
∂zd
∂t
)

=
1

kBT
(∫ dt

dG
dt

+
D

∑
d
(∫ dtfd

∂zd
∂t
))

=
G(zT) −G(z0)

kBT
+

1
kBT

D

∑
d
(∫ dtfd

∂zd
∂t
). (B5)

Analogous to reweighting in full-configurational coordinates,
two points in CV space can be connected along or against a constant
external force. This can create ambiguity for periodic systems. By
choosing the lag-time sufficiently small, one set of (long) trajecto-
ries has negligible weight compared to the other one. The expression
for local entropy production thereby only depends on the initial and
target points of the trajectory,
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ΔS(z0, zT) ≈
G(zT) −G(z0) + f ⋅ (z0 − zT)

kBT
. (B6)

We numerically estimate the change in the entropy production
between reference (superscript “q”) and target systems by

ΔS(z0, zT) − ΔSq(z0, zT)

=
1

kBT
[G(zT) −G

q
(zT) − (G(z0) −Gq

(z0))

+ (zT − z0) ⋅ (f − f q)] (B7)

as an input for the reweighting formula in Eq. (A9). z0 and zT
are chosen in the geometric center of each microstate. Because we
restrict G(z) to the equilibrium state, the solution of the caliber
[Eq. (A6)] does not contain an explicit dependence of ΔS on the
stationary distribution.
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