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ABSTRACT
Differential evolution (DE) is a well-known type of evolutionary al-

gorithms (EA). Similarly to other EA variants it can suffer from small

populations and loose diversity too quickly. This paper presents a

new approach to mitigate this issue: We propose to generate new

candidate solutions by utilizing reversible linear transformation

applied to a triplet of solutions from the population. In other words,

the population is enlarged by using newly generated individuals

without evaluating their fitness. We assess our methods on three

problems: (i) benchmark function optimization, (ii) discovering

parameter values of the gene repressilator system, (iii) learning

neural networks. The empirical results indicate that the proposed

approach outperforms vanilla DE and a version of DE with applying

differential mutation three times on all testbeds.
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1 INTRODUCTION
Optimization is about finding a solution that minimizes (or max-

imizes) an objective function for given constraints, i.e., possible
values that solutions can take. A subset of optimization problems

with so called black-box objective functions constitute black-box
optimization. In general, a black-box is any process that when pro-

vided an input, returns an output, but its analytical description is

unavailable or it is non-differentiable [2]. Examples of black-box

functions (and/or constraints) are computer programs [6], physical

and biochemical processes [32, 33], or evolutionary robotics [7].

There exists a vast of derivative-free optimization (DFO) meth-

ods, ranging from classical algorithms like iterative local search or

direct search [2] to modern approaches like Bayesian optimization

[26] and evolutionary algorithms (EA) [3, 9]. Differential evolution
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(DE) [22, 28] is one of the most successful and popular population-

based DFO algorithms that utilizes evolutionary operators (muta-

tion and crossover) and a selection mechanism to generate a new

set of candidate solutions. DE is a metaheuristic with no conver-

gence guarantees, however, it possesses multiple interesting the-

oretical properties [20]. Since the original publication of DE [28],

the method was extended in many ways by, e.g., using adaptive

local search [19], modifying the differential mutation operator [35]

or optimizing parameters of DE [27]. DE has been also applied to

many real-life problem, such as, digital filter design [14], parameter

estimation in ODEs [34], discovering predictive genes in microarray

data [30], or robot navigation [18].

In this paper, we follow this line of research and present an ex-

tension of DE. One of potential issues with DE is, similarly to other

EA variants, that it can suffer from small populations and loose

diversity too quickly. Therefore, a potential solution is adjusting

or modifying the population size [8]. Here, we propose to enlarge

the population on-the-fly by generating new candidate solutions

using reversible linear transformation applied to a triplet of solu-

tions from the population. As a result, we take a population of N
individuals and generate 3N new candidates assuming that we can

afford running extra evaluations. This procedure allows to enhance

DE and explore/exploit the search space better. We evaluate our

approach on three testbeds. First, we present results on benchmark

function optimization (Griewank, Rastrigin, Schwefel and Salomon

functions). Second, we apply the proposed methods to discovering

parameter values of the gene repressilator system. Lastly, we utilize

the new DE schema in learning neural networks on image data. In

all experiments, we show that enlarging the population size indeed

allow to faster convergence (in terms of the number of fitness eval-

uations) and the reversible linear transformations provide efficient

and effective alternative to the vanilla differential mutation.

The contribution of the paper is threefold. First, we propose to

enhance DE by applying reversible linear transformations with

two different linear operators. Second, we analyze the operators

by inspecting their eigenvalues. Third, we show empirically on

problems with the number of variables ranging from 4 to 4120 that

the proposed DEwith reversible linear transformations significantly

outperforms the DE and its extension with three perturbations.

2 BACKGROUND
2.1 Black-box optimization
We consider an optimization problem of a function f : X → R,

where X ⊆ RD is the search space. In this paper we focus on the

minimization problem, namely:

x∗ = argmin

x∈X
f (x). (1)

Further, we assume that the analytical form of the function f is

unknown or cannot be used to calculate derivatives, however, we
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can query it through a simulation or experimental measurements.

Problems of this sort are known as black-box optimization problems
[2, 13]. Additionally, we consider a bounded search space, i.e., we
include inequality constraints for all dimensions in the following

form: ld ≤ xd ≤ ud , where ld ,ud ∈ R and ld < ud , for d =
1, 2, . . . ,D .

2.2 Differential Evolution
One of the most widely-used methods for black-box optimization

problems is differential evolution (DE) [28] that requires a population
of candidate solutions, X = {x1, . . . , xN }, to iteratively generate

new query points. A new candidate is generated by randomly pick-

ing a triple from the population, (xi , xj , xk ) ∈ X, and then xi is
perturbed by adding a scaled difference between xj and xk , that is:

y = xi + F (xj − xk ), (2)

where F ∈ R+ is the scaling factor. This operation could be seen as

an adaptive mutation operator that is widely known as differential
mutation [22].

Further, the authors of [28] proposed to sample a binary mask

m ∈ {0, 1}D according to the Bernoulli distribution with probability

p = P(md = 1) shared across all D dimensions, and calculate the

final candidate according to the following formula:

v = m ⊙ y + (1 −m) ⊙ xi , (3)

where ⊙ denotes the element-wise multiplication. In the evolu-

tionary computation literature this operation is known as uniform
crossover operator [3, 9]. In this paper, we fix p = 0.9 following

general recommendations in literature [21] and use the uniform

crossover in all methods.

The last component of a population-based method is a selection

mechanism. There are multiple variants of selection [3, 9], however,

here we use the “survival of the fittest” approach, i.e., we combine

the old population with the new one and select N candidates with

highest fitness values (i.e., the deterministic (µ + λ) selection).
This variant of DE is referred to as “DE/rand/1/bin”, where rand

stands for randomly selecting a base vector, 1 is for adding a single

perturbation (a vector difference) and bin denotes the uniform

crossover. Sometimes it is called classic DE [22].

3 OUR APPROACH
Generating new candidates in DE requires sampling a triplet of

solutions and, basing on these points, one solution is perturbed

using the other two solutions. This approach possesses multiple

advantages, naming only a few:

(i) it is non-parametric, i.e., contrary to evolutionary strategies

[4], no assumption on the underlying distribution of the

population is made;

(ii) it has been shown to be effective in many benchmark opti-

mization problems and real-life applications [22].

However, the number of possible perturbations is finite and relies

entirely on the population size. Therefore, a small population size

could produce insufficient variability of new candidate solutions.

To counteract this issue, we propose the following solutions:

(1) In order to increase variability, we can perturb candidates

multiple times by running the differential mutation more

than once (e.g., three times).

(2) In fact, we can use the selected triple of points and use it

three times to generate new points. In other words, we notice

that there is no need to sample three different triplets.

(3) We propose to modify the selected triplet by using generated

new solutions on-the-fly. This approach allows to enlarge

the population size.

In the following subsections, we outline the three approaches. Fur-

ther, we notice that the second and the third method could be

represented as linear transformations. As such, we could analyze

them algebraically.

3.1 Differential Evolution x3
In the first approach we generate a larger new population by per-

turbing the point xi using multiple candidate solutions, namely,

xj , xk , xl , xm , xn , xq ∈ X. Then, we can produce 3N new candidate

solutions instead of N as follows:

y1 = xi + F (xj − xk ) (4)

y2 = xi + F (xl − xm ) (5)

y3 = xi + F (xn − xq ). (6)

This approach requires sampling more pairs and evaluating more

points, however, it allows to better explore the search space. We

refer to this approach as Differential Evolution ×3, or DEx3 for short.

3.2 Antisymmetric Differential Evolution
We first notice that in the DEx3 approach we sample three pairs of

points to calculate perturbations. Since we pick them at random,

we propose to sample three candidates xi , xj , xk ∈ X and calculate

perturbations by changing their positions only, that is:

y1 = xi + F (xj − xk )
y2 = xj + F (xk − xi ) (7)

y3 = xk + F (xi − xj ).
In other words, we perturb each point by using the remaining two.

Interestingly, we notice that Eq. 7 corresponds to applying a linear

transformation to these three points. For this purpose, we rewrite

(7) using matrix notation by introducing matrices Y = [y1, y2, y3]⊤
and X = [xi , xj , xk ]⊤ that yields:

Y = MX, (8)

where:

M =

1 F −F
−F 1 F
F −F 1

 . (9)

The matrix M can be further decomposed as follows:

M =

1 0 0

0 1 0

0 0 1

︸       ︷︷       ︸
I

+


0 F −F
−F 0 F
F −F 0

︸               ︷︷               ︸
A

, (10)

where I denotes the identity matrix, and A is the antisymmetric

matrix.
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Figure 1: Real part of eigenvalues,ℜ(λ), and sbsolute value of eigenvalues, |λ |, for: (a)M in ADE, and (b) R in RevDE.

Comparing Eq. 7 to DE×3 we notice that there is no need to

sample additional candidates beyond one triplet. Moreover, the

new mutation in (7) allows us to analyze the transformation from

the algebraic perspective. Additional interesting property follow-

ing from representing DE using a linear operator corresponds to

parallelization of calculations and, thus, it could greatly speed up

computations.

We refer to this version of DE as Antisymmetric Differential
Evolution (ADE), because the linear transformation consists of the

identity matrix and the antisymmetric matrix parameterized with

the scaling factor F .

3.3 Reversible Differential Evolution
The linear transformation presented in Eq. 7 allows to utilize the

triplet (xi , xj , xk ) to generate three new points, however, it could be

still seen as applying DE three times, but in a specificmanner (i.e., by
defining the linear operator M). A natural question arises whether

a different transformation could be proposed that allows better
exploitation and/or exploration of the search space. The mutation

operator in DE perturbs candidates using other individuals in the

population. As a result, having too small population could limit

exploration of the search space. In order to overcome this issue,

we propose to modify ADE by using newly generated candidates

on-the-fly, that is:

y1 = xi + F (xj − xk )
y2 = x j + F (xk − y1) (11)

y3 = xk + F (y1 − y2).

Using new candidates y1 and y2 allows to calculate perturbations

using points outside the population. This approach does not follow

a typical construction of an EA where only evaluated candidates

are mutated. Further, similarly to ADE, we can express (11) as a

linear transformation Y = RX with the following linear operator:

R =


1 F −F
−F 1 − F 2 F + F 2

F + F 2 −F + F 2 + F 3 1 − 2F 2 − F 3

 . (12)

In order to obtain the matrix R, we need to plug y1 to the second
and third equation in (11), and then y2 to the last equation in (11).

We refer to this version of DE as Reversible Differential Evolution
(RevDE), because the linear transformation is reversible (see next

subsection).

3.4 Algebraic properties of ADE and RevDE
3.4.1 Reversibility. An interesting property of the matricesM

and R in ADE and RevDE, respectively, is that they are nonsigular

matrices (see the Appendix for the proofs). Since they are non-

singular, they are also invertible, and, thus, ADE and RevDE use

reversible linear transformations.

The reversibility is an important property for formulatingMarkov

Chain Monte Carlo methods (MCMC) [1]. Therefore, we could take

advantage of the proposed reversible linear transformations and

extend the existing work on utilizing DE for sampling methods

[31]. However, this is beyond the scope of this paper and we leave

investigating it in the future work.

3.4.2 Analysis of eigenvalues. We can obtain an insight into

a linear operator by analysing its eigenvalues that tell us how a

matrix transforms an object [29]. Therefore, they play a crucial role

in analyzing properties of linear operators, e.g., in control theory

real parts of eigenvalues are used to determine stability of linear

dynamical systems (if real part of all eigenvalues are lower than

0, then the system is stable; otherwise it is unstable [5]). Further,

the absolute value of an eigenvalue λi determines the influence

of the corresponding eigenvector [29]. If the absolute value of the

eigenvector is lower than 1, then the eigenvector is a decaying

mode. Similarly, if |λi | > 1, then the eigenvector is a dominant

mode. In the case of |λi | = 1 we call its eigenvector a steady state.

In Figure 1 we present the absolute value and the real part of

eigenvalues forM and R. We notice the following facts:

• For ADE, all real parts of eigenvalues are above or equal 1,

and all absolute values of eigenvalues are equal 1. As a result,

the method will never lead to a decaying mode, and as such

it will encourage exploration of the search space.

• For RevADE, the situation is different, namely, for F < 0.75

all real parts and all absolute values of eigenvalues are posi-

tive, while for F > 0.75 one eigenvalue has a real part equal

1 and the other two eigenvalues have real parts lower than

0. However, in all cases, all absolute values of eigenvalues

are larger than 0.
1
In other words, RevDE for some values

of F possesses steady states, but for F > 1 one eigenvalue

blows up and leads to the dominant mode, while the other

eigenvalue decays to 0 resulting in a decaying mode.

This analysis suggests that, in the case of ADE, taking too large

F could result in generating candidate solutions that are dominated

by a direction indicated by one of two eigenvectors. Consequently,

1
This fact follows from the non-singularity of the matrix R, i.e., a matrix is non-singular

iff all its eigenvalues are non-zero.
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this could lead to “jumping” in the search space. Since ADE is

closely related to DE×3, this result sheds an additional light on the

behavior of DE, and seems to confirm that taking F larger than 0.5

in DE is not a reasonable decision.

In the case of RevDE it seems that taking values of F below

0.75 is preferable, because then the linear operator will not lead to

dominating modes. As a result, a better exploitation/exploration of

the search space could be achieved.

4 EXPERIMENTS
In order to verify our approach empirically, we compare the three

proposed methods and the standard DE on three testbeds:

(1) Benchmark functions: selected benchmark function for opti-

mization.

(2) Gene Repressilator System: discovering parameter values of a

system of ordinary differential equations for given observa-

tions.

(3) Neural Networks Learning: learning a neural network with

one hidden layer on image dataset.

In all experiments, we used the uniform crossover with p = 0.9

for all methods. The scale parameter F was selected from the follow-

ing range of values: {0.125, 0.25, 0.375, 0.5, 0.6, 0.625, 0.675, 0.75}.
The population size was set to 500 across all experiments. We pick

the base vector randomly.
The code of the methods and all experiments is available under

the following link: https://github.com/jmtomczak/reversible-de.

4.1 Benchmark Function Optimization
4.1.1 Details. We evaluate the proposed methods on the opti-

mization task of four benchmark functions:

• Griewank function [11]:

f (x) = 1 +

D∑
d=1

√
x2d/4000 −

D∏
d=1

cos

( xd√
d

)
(13)

with the box constraints: ∀d ∈{1,2, ...,D } xd ∈ [−5, 5];
• Rastrigin function [23]:

f (x) = 10D +
D∑
d=1

(
x2d − 10 cos

(
2πxd

) )
(14)

with the box constraints: ∀d ∈{1,2, ...,D } xd ∈ [−5, 5];
• Salomon function [24]:

f (x) = 1 − cos

(
2π

√√√ D∑
d=1

x2d

)
+ 0.1

√√√ D∑
d=1

x2d (15)

with the box constraints: ∀d ∈{1,2, ...,D } xd ∈ [−5, 5];
• Schwefel function [25]:

f (x) = 418.9829D −
D∑
d=1

(
xd sin

(√
|xd |

) )
(16)

with the box constraints: ∀d ∈{1,2, ...,D } xd ∈ [200, 500].
We test the methods on these function with different dimensions,

namely, D ∈ {10, 30, 100}. We run DEx3, ADE and RevDE for 150

generations. Since DE evaluates three times less candidate solutions,

we run it for 450 generations to match the number of evaluations.

However, we want to highlight that DE is more informed than other

methods due to the propagation of new solutions in consecutive

iterations (i.e., applying the selection mechanism 3 times more). All

experiments are repeated 10.

4.1.2 Results & Discussion. The results of the best solution

found until given evaluation for this experiment are presented

in Figure 2. First, we notice that ADE and DEx3 similarly to the

DE. However, in 3 out of 12 cases (i.e., Griewank with D = 100),

Rastrigin with D = 100) and Schwefel with D = 100) DE is able to

converge to a better solution than ADE and DEx3. Nevertheless, the

results are similar and in the next experiments we skip comparing

to DE, because it is not completely fair due to the difference in the

number of generations.

Interestingly, ADE performs almost identically as DEx3. This

result seems to confirm that it is unnecessary to sample multiple

(i.e., three) triplets, and utilizing a single triplet to generate new

candidates is sufficient.

In all test cases, RevDE achieved the best results in terms of

both final objective value and convergence speed. This result is re-

markable, because new candidate solutions are generated on-the-fly
and are used to generate to new points. Moreover, for D = 30 and

D = 100, i.e., the higher-dimensional cases, RevDE outperformed

other methods significantly. These results are especially promising

for real-life applications like parameter values discovery of mecha-

nistic models and computer programs [6] or learning controllers in

(evolutionary) robotics [15, 16].

In the Rastrigin function with D = 30 and D = 100 there is a

peculiar behavior of RevDE where around the evaluation number

80000 and 50000, respectively, there is a large improvement in terms

of the objective value. We hypothesize that the optimizer “jumps

out” from a local minimum due to large eigenvalue as discussed in

Section 3.4.

4.2 Gene Repressilator System
4.2.1 Details. The gene repressilator system proposed in [10] is

a popular model for gene regulatory systems and consists of three

genes connected in a feedback loop, where each gene transcribes the

repressor protein for the next gene in the loop. The model consists

of six ordinary differential equations that describe dependencies

among mRNA (m1,m2,m3) and corresponding proteins (p1,p2,p3),
and four parameters x = [α0,n, β ,α]⊤, which are as follows:

dm1

dt
= −m1 +

α

1 + pn
3

+ α0 (17)

dp1
dt
= −β(p1 −m1) (18)

dm2

dt
= −m2 +

α

1 + pn
1

+ α0 (19)

dp2
dt
= −β(p2 −m2) (20)

dm3

dt
= −m3 +

α

1 + pn
2

+ α0 (21)

dp3
dt
= −β(p3 −m3). (22)

https://github.com/jmtomczak/reversible-de
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Figure 2: The results of the best solution found until given evaluation on four benchmark black-box optimization testbeds (a)
Griewank function, (b) Rastrigin function, (c) Salomon function, (d) Schwefel function, and three cases: (left column) 10D case,
(middle column) 30D case, (right column) 100D case. The solid red lines correspond to DE, the solid yellow lines are for DEx3,
the dotted-dashed green lines depict ADE, and the dotted blue lines represent RevDE. In all 12 test cases an average and one
standard deviations over 10 runs are presented.
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Figure 3: The discovered parameter values in the repressilator model by: (left column) DEx3, (middle column) ADE, (right
column) RevDE. Colors of dots represent the generation number: blue is the 1st generation, orange is the 4th generation,
green is the 8th generation, red is the 20th generation. The real parameter values: (α0,n, β,α) = (1, 2, 5, 1000).
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Further, we assume that only mRNAmeasurement are measured,

while proteins are considered as missing data. The goal of this
experiment is to discover the parameters’ values for a given obser-

vation of mRNA. We transform this problem into the minimization

of the following objective:

f (x) = 1

N

N∑
n=1

√√√
3∑
i=1

(
mi,n −mi,n (x)

)
2

, (23)

wheremi,n (x) is given by numerically integrating the system of

differential equations in (17–22) using a solver, e.g., a Runge-Kutta
method

2
. Notice that the objective function is black-box due to the

non-differentiable simulator.

We follow the settings outlined in [33]. The real parameters’

values are assumed to be x∗ = [1, 2, 5, 1000]⊤ and we generate real

values ofmi by first solving the equations (17–22) with x∗ and given
initial conditions (m1,p1,m2,p2,m3,p3) = (0, 2, 0, 1, 0, 3), and then

adding Gaussian noise with the mean equal 0 and the standard

deviation equal 5.

We run all methods for 20 generations. All experiments were

repeated 10 times. For analyzing final solutions, we look into the

convergence of a population from a single run.

0 5000 10000 15000 20000 25000 30000
Number of evaluations

4

5

6

7

8

9

ob
je

ct
iv

e

DEx3
ADE
RevDE

Figure 4: The results of the best solution found until given
fitness evaluation on the repressilator model. The average
and the standard deviation over 10 runs are reported.

4.2.2 Results & Discussion. We present results of the best so-

lution found until given objective evaluation in Figure 4. Further,

we depict converging process of the population in Figure 3. We

present only a single run out of ten, however, the behavior is almost

indistinguishable between runs.

All methods achieve almost identical objective values (see Figure

4). RevDE seems to converge slightly faster (on average) than other

methods, but the difference is not significant.

We can obtain more insight into the performance of the methods

by analysing behavior of the population over generations (see Fig-

ure 3). First we notice that all methods converge to a single point

2
In this work, we used the explicit Runge-Kutta method of order 5(4) provided by

SciPy: https://www.scipy.org/.

within 20 generations. Second, it seems that ADE and DEx3 behave

almost indistinguishably. Comparing their scatterplots it is almost

impossible to spot a difference. However, RevDE converges faster,

because already in the 4th generation the solutions are less scat-

tered than in the case of DEx3 and ADE. In other words, comparing

how points are distributed in the 4th and the 8th generation, it is

apparent that the variance for the populations found by RevDE is

smaller than for ADE ans DEx3.

Eventually, we would like to comment on discovering the pa-

rameter values. In the case of ADE, DEx3 and RevDE all candidates

converge to the same solution that are roughly around the point

x = [1, 2, 5, 1380]⊤. By comparing the real values and the discov-

ered ones we see that the only mismatch is for α . However, the
discrepancy (1000 vs. 1380) possibly follows from the fact that the

observed data is noisy, because the population in the 4th epoch

covered values around 1000well. Similarly, in [33] the Approximate

Bayesian Computation with the Sequential Monte Carlo method

(ABC-SMC) also obtained values between around 800 and 1300

(see Figure 4(c) in [33]). We conclude that RevDE seems to be a

very promising alternative to Monte Carlo techniques for finding

parameters in simulator-based inference problems [6].

4.3 Neural Networks Learning
4.3.1 Details. In the last experiment we aim at evaluating our

approach on a high-dimensional optimization problem. For this

purpose, we train a neural network with a single fully-connected

hidden layer on the image dataset of ten handwritten digits (MNIST

[17]). We resize original images from 28px × 28px to 14px × 14px,

and use 20 hidden units. As a result, we obtain the total number of

weights equal 4120 (i.e., X = R4120). We use the ReLU non-linear

activation function for hidden units and the softmax activation

function for outputs. The objective function is the classification

error:

f (x) = 1 − 1

N

N∑
n=1
I[yn = yn (x)], (24)

where N denotes the number of images, I[·] is an indicator function,

yn is the true label of the nth image, and yn (x) is the label for the nt
image predicted by a neural network with weights x. The prediction
of the neural network is a class label with highest value given by

the softmax output.

The original dataset consists of 60000 pairs of images and labels

for training, and 10000 pairs of images and labels for training. In

our experiments, we use only 2000 training points, but all 10000

testing points. All models are trained for 500 epochs (generations)

and the experiments are repeated 3 times. For testing, we take

a candidate solution from the final population with the lowest

training classification error.

The objective function in Eq. 24 is non-differentiable, and, thus,

could be treated as a black-box objective. However, we want to

highlight that this experiment does not aim at proposing DE as an

alternative training procedure to a gradient-basedmethods, because

the log-likelihood function is a good proxy to the objective in (24).

In fact, is has been shown in multiple papers that the (stochastic)

gradient descent optimizer is extremely effective in learning neural

networks and DE is not competitive with it at all [12]. We rather use

https://www.scipy.org/
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the neural network learning problem as an interesting showcase of

a high-dimensional optimization problem.

Table 1: Test results on MNIST. The average with the stan-
dard errors over 3 runs are reported.

Method Classification error
DE×3 20.1 ± 1.4

ADE 18.1 ± 0.2

RevDE 18.5 ± 0.8

4.3.2 Results & Discussion. In Figure 5 we present learning

curves for neural networks trained with different methods. Ad-

ditionally, in Table 1 we gather test classification errors.

First of all, we notice that the training is not fully converged

and possibly better results could have been achieved. Neverthe-

less, our goal is to present performance of our methods on a high-

dimensional problem rather than reaching state-of-the art scores.

That being said, we first observe that the proposed extensions of

DE shared similar learning curves. ADE performed the best during

training, and RevDE converged to a better point than DEx3 in the

very end. However, the final test performance was better for ADE

and RevDE than DEx3. This result could be possibly explained by

the fact that DEx3 is more stochastic than the other two methods

that could be harmful in the highly dimensional problem.

A close inspection of the results in Table 1 suggests that ADE

and RevDE perform on par, and they seem to be better than DEx3.

This result is potentially interesting because the negative message

delivered in [12] that DE is definitely worse than the gradient-

based learning method is not necessarily true and more research in

this direction is required. Especially in the context of adding non-

differentiable components (regularizers) to the learning objective.
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Figure 5: Training curves on MNIST. The average and the
standard deviation over 3 runs are reported.

5 CONCLUSION
In this paper, we note that insufficient variability of the population

could cause DE to loose diversity too quickly. In order to counteract

this issue, we propose three extensions of DE: (i) DE with multiple

samples of candidates for calculating perturbations, (ii) DE with

the reversible linear transformation using a sum of the identity

matrix and an anti-symmetric matrix, (iii) DE with the reversible

linear transformation utilizing newly generated yet not evaluated

candidates.

We provide a theoretical analysis of the proposed linear operators

by proving their reversibility, and inspecting their eigenvalues. Fur-

ther, we show empirically on three testbeds (benchmark function

optimization, discovering parameter values of the gene repressilator

systems, and learning neural networks) that producing new candi-

dates on-the-fly allows to obtain better results in fewer number of

evaluations compared to DE.

We believe that this work opens new possible research directions:

• Representing the differential mutation as a linear transfor-

mation allows to look into other forms of linear operators.

• The linear operators defined in this paper are parameter-

ized with a single parameter. A natural extension would be

considering different parameterization.

• Here, we present an analysis based on eigenvalues. However,

we can consider the reversible transformation as a dynamical

system (e.g., an extension of the analysis outlined in [20]).

• We can take advantage of the reversibility of the proposed

linear transformations. For instance, reversibility is an im-

portant property of transition operators in MCMC methods

[1]. A modification of the vanilla DE for formulating a proper

MCMC method was already presented in [31] and an inter-

esting direction would be to extend this work using DE with

the reversible linear transformations.

APPENDIX
Non-singularity ofM and R

Proposition 5.1. The matrix M defined in Eq. 9 is non-singular.

Proof. Since the matrix M is a small 3-on-3 matrix, we can

calculate its determinant analytically that gives:

det(M) = 1 + 3F 2. (25)

For any value of F we have det(M) , 0, therefore, the matrixM is

non-singular □

Proposition 5.2. The matrix R defined in Eq. 12 is non-singular.

Proof. The matrix R is a small 3-on-3 matrix, thus, we can

calculate its determinant analytically, that gives:

det(R) = 1. (26)

Since the determinant is always 1, then R is non-singular. □
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