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Abstract: One of the central elements in systems biology is the interaction between mathematical
modeling and measured quantities. Typically, biological phenomena are represented as dynamical
systems, and they are further analyzed and comprehended by identifying model parameters using
experimental data. However, all model parameters cannot be found by gradient-based optimization
methods by fitting the model to the experimental data due to the non-differentiable character of the
problem. Here, we present POPI4SB, a Python-based framework for population-based parameter
identification of dynamic models in systems biology. The code is built on top of PySCeS that provides
an engine to run dynamic simulations. The idea behind the methodology is to provide a set of
derivative-free optimization methods that utilize a population of candidate solutions to find a better
solution iteratively. Additionally, we propose two surrogate-assisted population-based methods,
namely, a combination of a k-nearest-neighbor regressor with the Reversible Differential Evolution
and the Evolution of Distribution Algorithm, that speeds up convergence. We present the optimiza-
tion framework on the example of the well-studied glycolytic pathway in Saccharomyces cerevisiae.

Keywords: dynamic models; evolutionary computing; derivative-free optimization; metabolism;
glycolysis; yeast

1. Introduction

Mathematical models in systems biology are mostly represented by ordinary dif-
ferential equations (ODEs). They provide a representation of the information obtained
from experimental observations about the structure and function of a particular biological
network [1,2]. The integral component of ODEs is parameters that correspond to the
kinetic characteristics of a reaction catalyzed by a specific enzyme in particular conditions.
Typically, the parameters are identified by fitting the model to experimental data or are
measured for individual reactions separately. Once parameter values are determined,
dynamic models could be used to confirm hypotheses, draw predictions and find such
(time-varying) stimulation conditions that result in a particular desired behavior of a sys-
tem [2–4]. However, the problem of fitting a dynamical model to experimental data is
non-differentiable, thus, derivative-free optimization methods should be used instead of
gradient-based or higher-order optimizers [5,6].

Here, we present a framework that implements a set of population-based optimization
methods to identify parameters in a dynamic model of a biological network of interest,
from limited available experimental data. In other words, the presented framework allows
finding parameter values of a dynamical model while only selected quantities are observed.
This could drastically decrease the time of fitting separate reactions to data and improve
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estimation quality because all reactions are considered as a whole, thus, it takes into account
interaction among reactions. The implementation of the approach is a stand-alone Python
program. It utilizes PySCeS (Python Simulator for Cellular System) [7], a modeling tool for
formulating dynamical models of biological networks and running simulations by solving
ODEs numerically. Our framework loads a model developed using PySCeS or from the
JWS database [8] together with experimental data, and outputs parameter values for which
a difference between the experimental data and the simulation is smallest. Moreover, the
framework allows adding new optimizers to a single file, without the necessity of changing
any other parts of the program. Please see Supplementary Data for details. We refer to this
framework as POPI4SB, see its schematic representation in Figure 1.

In this study, we chose glycolysis that is a crucial metabolic pathway and its upregu-
lation is correlated with diseases like cancer [9,10]. Nearly all living organisms carry out
glycolysis as a part of cellular metabolism. One of the most intensively studied organisms
in the context of, among others, glycolysis is Saccharomyces cerevisiae species, also known as
baker’s yeast [11–15]. We applied our optimization framework to a model of glycolysis in
yeast proposed in [16]. This model contains lumped reactions of the glycolytic pathway
and includes production of glycerol, fermentation to ethanol and exchange of acetaldehyde
between the cells, and trapping of acetaldehyde by cyanide.

Generation
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Differential
equations

Limited data

Input Output

Timecourses Parameter
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k11, k12
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Figure 1. A schematic representation of our framework. A dynamic model in the PySCeS format and experimental data are
inputs to the program. The core component is the parameter identification with population-based optimization methods.
Eventually, parameters values are returned, for with the lowest error (i.e., the difference between simulated data and
experimental data) was achieved.

The contribution of the paper is threefold:

• We provide a population-based optimization framework for parameter identification
and showcase its performance on the example of the glycolysis of Saccharomyces
cerevisiae, one of the most studied species in biology.

• We analyze the performance of the population-based optimization framework in the
considered problem and indicate its high potential for future research.

• We extend the Python framework PySCeS [7] by implementing the population-based
optimization methods (four methods known in the literature, and two new methods)
in Python. The code for the methods together with the experiments is available online:
https://github.com/jmtomczak/popi4sb.

https://github.com/jmtomczak/popi4sb
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2. Materials and Methods
2.1. Derivative-Free Optimization

We consider an optimization problem of a function f : X→ R, where X ⊆ RD is the
search space. In this paper we focus on the minimization problem, namely:

x∗ = arg min
x∈X

f (x;D), (1)

where D denotes observed data.
Further, we assume that the analytical form of the function f is unknown or cannot

be used to calculate derivatives, however, we can query it through a simulation or ex-
perimental measurements. Problems of this sort are known as derivative-free or black-box
(In general, a black-box problem means that a formal description of a problem is unknown,
however, very often non-differentiable problems with known mathematical representa-
tion (e.g., differential equations) are treated as black-box) optimization problems [5,17].
Additionally, we consider a bounded search space, i.e., we include inequality constraints
for all dimensions in the following form: ld ≤ xd ≤ ud, where ld, ud ∈ R and ld < ud,
for d = 1, 2, . . . , D.

2.2. Population-Based Optimization Methods

One group of widely-used methods for derivative-free optimization problems is
population-based optimization algorithms. The idea behind these methods is to use a
population of individuals, i.e., a collection of candidate solutionsX = {x1, . . . , xN}, instead of
a single individual in the iterative manner. The premise of utilizing the population over a
single candidate solution is to obtain better exploration of the search space and exploiting
potential local optima [18,19].

In the essence, every population-based algorithm consists of three following steps that
utilize a procedure for generating new individuals G, and a selection procedure S, that is:

(Init) Initialize X = {x1, . . . , xN} and evaluate all individuals Fx = { fn : fn = f (xn),
xn ∈ X}.
(Generation) Generate new candidate solutions using the current population, C = G(X ,Fx).
(Evaluation) Evaluate all candidates solutions:

Fc = { fn : fn = f (xn), xn ∈ C}.

(Selection) Select a new population using the candidate solutions and the old population

X := S(X ,Fx, C,Fc).

Go to Generate or terminate.

An exemplary population-based optimization approach is depicted in Figure 2.
In general, the population-based optimization methods are favorable over standard

derivative-free optimization (DFO) algorithms in problems when querying the objective
function is relatively cheap. Their computational complexity depends mainly on the
population size, i.e., it is linear with respect to the size of the population N. Other DFO
methods are typically more expensive. Bayesian Optimization, for instance, is known to
give a good performance, but its complexity typically scales cubically with respect to the
number of queries [20]. Here, we take advantage of the very low execution time of running
a simulator (the glycolysis model) and propose to use the population-based methods for
the parameter identification task.

There are a plethora of population-based DFO algorithms [5,6,18,21,22], however,
our goal is to verify whether this approach, in general, could be successfully used in the
considered task. Therefore, we decide to choose four instances of a group of methods
that are easy-to-use and are proven to work well in practice: evolutionary strategies (ES),
differential evolution (DE), estimation of distribution algorithms (EDA), and recently
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proposed reversible differential evolution (RevDE). Moreover, we propose to enhance EDA
and RevDE with a surrogate model to allow better exploration and speed up calculations.
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Figure 2. An illustration of a population-based optimization of a quadratic function (blue solid
line) using the Estimation of Distribution Algorithm. At each generation a population is selected
(blue nodes) and weakest individuals are discarded (red crosses). New candidate solutions are
generated by sampling from the normal distribution fit to the previous population (orange solid line).

2.2.1. Evolutionary Strategies (ES)

Evolutionary strategies can be seen as a specialization of evolutionary algorithms with
very specific choices of G and S. The core of ES is to formulate G using the multivariate
Gaussian distribution. Here, we follow the widely-used (1 + 1)-ES that generates a new
candidate using the Gaussian mutation parameterized by σ > 0, namely:

x′ = x + σ · ε, (2)

where ε ∼ N (0, I), and N (0, I) denotes the Gaussian distribution with zero mean and the
identity covariance matrix I. Next, if the fitness value of x′ is smaller than the value of
fitness function of x, the new candidate is accepted and the old one is discarded.

The crucial element of this approach is determining the value of σ. In order to over-
come possibly time-consuming hyperparameter search, the following adaptive procedure
is proposed [21]:

σ :=


σ · c if ps < 1/5,
σ/c if ps > 1/5,

σ if ps = 1/5.
(3)

where ps is the number of accepted individuals of the offspring divided by the population
size N, and c is equal 0.817 following the recommendation in [23].

2.2.2. Differential Evolution (DE)

Differential evolution is another population-based method that is loosely based on the
Nelder-Mead method [24,25]. A new candidate is generated by randomly picking a triple
from the population, (xi, xj, xk) ∈ X , and then xi is perturbed by adding a scaled difference
between xj and xk, that is:

y = xi + F(xj − xk), (4)

where F ∈ (0, 2] is the scaling factor. This operation could be seen as an adaptive mutation
operator that is widely known as differential mutation [25].
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Further, the authors of [24] proposed to sample a binary mask m ∈ {0, 1}D accord-
ing to the Bernoulli distribution with probability p = P(md = 1) shared across all D
dimensions, and calculate the final candidate according to the following formula:

v = m� y + (1−m)� xi, (5)

where � denotes the element-wise multiplication. In the evolutionary computation litera-
ture this operation is known as uniform crossover operator [18]. In this paper, we fix p = 0.9
following general recommendations in literature [26] and use the uniform crossover in all
methods.

The last component of a population-based method is a selection mechanism. There are
multiple variants of selection [18], however, here we use the “survival of the fittest” ap-
proach, i.e., we combine the old population with the new one and select N candidates with
highest fitness values, i.e., the deterministic (µ + λ) selection.

This variant of DE is referred to as “DE/rand/1/bin”, where rand stands for randomly
selecting a base vector, 1 is for adding a single perturbation and bin denotes the uniform
crossover. Sometimes it is called classic DE [25].

2.2.3. Reversible Differential Evolution (RevDE)

The mutation operator in DE perturbs candidates using other individuals in the
population to generate a single new candidate. As a result, having too small population
could limit exploration of the search space. In order to overcome this issue, a modification
of DE was proposed that utilized all three individuals to generate three new points in the
following manner [27]:

y1 = xi + F(xj − xk)

y2 = xj + F(xk − y1) (6)

y3 = xk + F(y1 − y2).

New candidates y1 and y2 could be further used to calculate perturbations using
points outside the population. This approach does not follow a typical construction of an
EA where only evaluated candidates are mutated. Further, we can express (6) as a linear
transformation using matrix notation by introducing matrices as follows:y1

y2
y3

 =

 1 F −F
−F 1− F2 F + F2

F + F2 −F + F2 + F3 1− 2F2 − F3


︸ ︷︷ ︸

=R

x1
x2
x3

. (7)

In order to obtain the matrix R, we need to plug y1 to the second and third equation
in (6), and then y2 to the last equation in (6). As a result, we obtain M = 3N new candidate
solutions. This version of DE is called Reversible Differential Evolution, because the linear
transformation R is reversible [27].

2.2.4. Estimation of Distribution Algorithms (EDA)

Most of the population-based optimization methods aim at finding a solution and
the information about the distribution of the search space and the fitness function is
represented implicitly by the population. However, this distribution could be modeled
explicitly using a probabilistic model [19]. These methods have become known as the
estimation of distribution algorithms [28–30].

The key difference between EDA and EA is the generation step. While an EA uses
evolutionary operators like mutation and cross-over to generate new candidate solutions,
EDA fits a probabilistic model to the population, and then new individuals are sampled
from this model.
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Therefore, fitting a distribution to the population is the crucial part of an EDA.
There are various probabilistic models that could be used for this purpose. Here, we pro-
pose to fit the multivariate Gaussian distribution N (¯, Σ) to the population X . For this
purpose, we can use the empirical mean and the empirical covariance matrix:

µ̂ =
1
N

N

∑
n=1

xn, (8)

and

Σ̂ =
1
N

N

∑
n=1

(xn − µ̂)(xn − µ̂)>. (9)

An efficient manner of sampling new candidates is to first calculate the Cholesky
decomposition of the covariance matrix, Σ̂ = LL>, where L is the lower-triangular matrix,
and then computing:

x′ = µ̂ + Lε, (10)

where ε ∼ N (0, I). The Equation (10) is repeated M times to generate a new set of candidate
solutions. Here, we set M to the size of the population, i.e., M = N. Once new candidate
solutions are generated, the selection mechanism is applied. In this paper, we use the same
selection procedure as the one used for DE.

2.2.5. Population-Based Methods with Surrogate Models (RevDE+ & EDA+)

Surrogate models: A possible drawback of population-based methods is the neces-
sity of evaluating large populations that, even though we assume a low time cost per a
single evaluation, could significantly slow down the whole optimization process. To over-
come this issue, a surrogate model could be used to partially replace querying the fitness
function [31]. The surrogate model is either a probabilistic model or a machine learning
model (e.g., a neural network) that gathers previously evaluated populations and allows
to mimic the behavior of the fitness function. While applying the surrogate model, it is
assumed that its utilization cost (e.g., training) is lower or even significantly lower than the
computational cost of running the simulator.

There are multiple possible surrogate models, however, non-parametric models,
e.g., Gaussian processes [20], are preferable, because they do not suffer from catastrophic for-
getting (i.e., overfitting to the last population and forgetting first populations). Here, we con-
sider another non-parametric model, namely, K-Nearest-Neighbor (K-NN) regression
model that stores all previously seen individuals with evaluations, and the prediction of a
new candidate solution is an average over K (e.g., K = 3) closest previously seen individu-
als. Current implementations of the K-NN regressor provide efficient search procedures
that result in the computational complexity better than N ·D, e.g., using KD-trees results in
O(D log N). This computational complexity is significantly better than the computational
complexity of Gaussian processes, O(N3).

RevDE+: In the RevDE approach, we generate 3N new candidate solutions and all
of them are further evaluated. However, this introduces an extra computational cost of
running the simulator. This issue could be alleviated by using the K-NN regressor to
approximate the fitness values of the new candidates. Further, we can select N most
promising points. We refer to this approach as RevDE+.

EDA+: The outlined procedure of EDA produces M new candidate solutions and
to keep a similar computational cost as ES and DE, we set M to N. However, this could
significantly limit the potential of modeling a search space, because sampling in high-
dimensional search spaces requires a significantly large number of points. A potential
solution to this problem could be the application of the K-NN regressor to quickly verify
the L new points. As long as the time cost of providing the approximated value of the
fitness function is lower than the running time of the simulator, we can afford to take
L > N (e.g., L = 5N). We refer to this approach as EDA+.



Processes 2021, 9, 98 7 of 14

2.3. The Model of Glycolysis in Saccharomyces Cerevisiae

Introduction: As an example, we chose glycolysis that is a crucial metabolic pathway
and its upregulation is correlated with diseases like cancer [9,10]. Nearly all living organ-
isms carry out glycolysis as a part of cellular metabolism. A glycolytic path that consists of
a series of reactions breaks down glucose into two three-carbon compounds and extracts
energy for cellular metabolism. Therefore, glycolysis is at the heart of classical biochemistry
and, as such, it is very well described. One of the most intensively studied organisms in
the context of, among others, glycolysis is Saccharomyces cerevisiae species, also known as
baker’s yeast [11–15]. Whereas, the dynamic model of glycolysis in Saccharomyces cerevisiae
is of big interest in systems biology dynamic modeling literature [16,32–35].

glucose

v1

v2

fructose-1,6-biphosphate

ATP v11

triose
phosphates

v3

v4 NADNAD

ATP

v5

triphosphoglycerate

pyruvate

acetaldehydeNAD external
acetaldehyde

v6

v7

v9 v10v8

ATP

Figure 3. The glycolysis process in the yeast Saccharomyces cerevisiae proposed in [16]. There are
11 reactions governing the process with 18 parameters in total, and 9 metabolites. Blue circles depict
observable metabolites, red circles denote unobservable metabolites, and green squares represent
reactions. A white circle with a diagonal line corresponds to a sink. The model is taken from the JWS
database [8].
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We applied our optimization framework to a model of glycolysis in yeast proposed
in [16], see Figure 3, that suffices to present the essence of our framework. This model con-
tains lumped reactions of the glycolytic pathway and includes the production of glycerol,
fermentation to ethanol, and exchange of acetaldehyde between the cells, and trapping of
acetaldehyde by cyanide.

A system of Ordinary Differential Equations: In the considered model of the glycol-
ysis we distinguish the following metabolites: glycolysis (glu), fructose-1,6-bisphosphate
(fru), triosephosphates (triop), triphosphoglycerate (tp), pyruvate (pyr), acetaldehyde (ac),
external acetaldehyde (ace).

Following the same assumptions as in [16] (i.e., a homogeneous distribution of the
metabolites in the intracellular and in the extracellular solution), the system of ordinary
differential equations of the glycolysis model in Saccharomyces cerevisiae is the following [36]:

˙glu = v1 − v2 (11)
˙f ru = v2 − v3 (12)

˙triop = 2v3 − v4 − v5 (13)
˙tp = v5 − v6 (14)

˙pyr = v6 − v7 (15)

ȧc = v7 − v8 − v9 (16)

˙ace = 0.1v9 − v10 (17)
˙atp = −2v2 + v5 + v6 − v11 (18)
˙nad = v4 − v5 − v8 (19)

with the rate equations:

v1 = k0 (20)

v2 =
k1 · glu · at

1 + (at/ki)n (21)

v3 = k2 · f ru (22)

v4 =
k31 · k32 · triop · nadA− k33 · k34 · tp · atp N

k33 · N + k32 · A
(23)

v5 = k4 · tp · A (24)

v6 = k5 · pyr (25)

v7 = k6 · ac · nad (26)

v8 = k7 · atp (27)

v9 = k8 · triop · nad (28)

v10 = k9 · ace (29)

v11 = k7 · atp (30)

where A = (atot − atp) and N = (ntot − nad).

Initial conditions

The initial conditions are the following:

atp = 2.0 nad = 0.6 glu = 5.0
f ru = 5.0 triop = 0.6 tp = 0.7
pyr = 8.0 ac = 0.08 ace = 0.02 .

Real parameter values

The real values of the parameters are the following [36]:
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atot = 4 ∈ [0, 10] k0 = 0 ∈ [0, 10] k1 = 550 ∈ [550, 600]
k2 = 9.8 ∈ [0, 10] k31 = 323.8 ∈ [300, 350] k32 = 76411.1 ∈ [76, 400, 76, 450]
k33 = 57823.1 ∈ [57800, 57850] k34 = 23.7 ∈ [20, 50] k4 = 80 ∈ [80, 100]
k5 = 9.7 ∈ [0, 10] k6 = 2000 ∈ [2000, 2050] k7 = 28.0 ∈ [20, 50]
k8 = 85.7 ∈ [80, 100] k9 = 0 ∈ [0, 10] k10 = 375 ∈ [350, 400]
ki = 1 ∈ [0, 10] n = 4 ∈ [0, 10 ntot = 1 ∈ [0, 10]

where we indicate the set of possible values of the parameters in the square brackets.
We note that for the sake of our experiments, we set k0 to 0 (originally: k0 = 50 [36])

in order to forbid a constant injection of glu, and k9 to 0 (originally: k9 = 80 [36]) in order
to avoid oscillatory behavior of the system.

3. Experimental Setup

The experiments have been carried in silico in which the performance of the selected
algorithms has been evaluated.

3.1. Implementation

POPI4SB is implemented in Python, and utilizes PySCeS for running simulations.
The code for carrying out experiments is available online: https://github.com/jmtomczak/
popi4sb. The list of requirements is provided therein.

3.2. Parameter Identification & the Fitness Function

We consider the glycolysis process in yeast as a biochemical system with inputs and
outputs (see Figure 3). The input to the system is glucose (glu), and the outputs are ATP
(atp), NAD (nad), acetaldehyde (ac), and external acetaldehyde (ace). The other metabolites,
i.e., triose phosphates (triop), pyruvate (pyr), fructose-1,6-biphosphate (fru) and triphos-
phoglycerate (tp) are considered to be unobserved quantities. The system is governed
by 11 reactions with 18 parameters in total (see Appendix for details). Each reaction is
represented by an ordinary differential equation that is known. We assume that we have
inputs and outputs, namely, i.e., glu, atp, nad, ac, and ace, and each quantity is represented
as a timecourse of length T. We denote these measurements by

D = {glu, atp, nad, ac, ace}.

Further, following the nomenclature presented in [37], we consider the system of differ-
ential equations representing the glycolysis process as the simulator that for given values
of parameters and initial conditions provides timecourses of all metabolites. Then, we can
denote parameters by x and the simulator by sim : X → R9×T , i.e., sim takes parameters
x and simulates timcourses of length T for all 9 metabolites, including glu, atp, nad, ac, ace.
In order to calculate the objective (or the fitness) of the parameter values, we use the
following function:

f (x;D) =
5

∑
i=1

1
γ · T

T

∑
t=1
‖yi,t − simi,t(x)‖2

2, (31)

where yi,t corresponds to one of the five observed metabolites at the t-th time step,
and simi,t(x) is the corresponding synthetically generated signal given by the simula-
tor with parameters x, γ > 0 specifies the strength of penalizing a mistake. Notice that this
is the (unnormalized) logarithm of the product of Gaussian distributions with means given
by sim(x) and the diagonal covariance matrix with shared variance γ.

3.3. Simulated Data

In the experiments, we assume that glu, atp, nad, ac, and ace are observed. We generate
the observed metabolites by running the simulator with the real parameter values. To mimic
real measurements that are typically noisy, we add a Gaussian noise with zero mean and
the standard deviation equal 3% of a generated value of a metabolite at a given time step.

https://github.com/jmtomczak/popi4sb
https://github.com/jmtomczak/popi4sb
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Adding noise prohibits finding a solution (i.e., values of parameters) that achieves error
defined in Equation (31) equal zero. We repeat all experiments three times. For each repetition,
we set the length of a timecourse to T = 30.

3.4. Settings

For all optimization methods, we set the population size to N = 100. All optimizers
run maximally 1000 generations. In the case of ES, we use the initial value of σ equal 0.1.
For DE, RevDE, and RevDE+, we use F = 0.5, and p = 0.9. For EDA we take M = 100.
In the case of EDA+ and RevDE+, we use the K-NN as the surrogate model with K = 3,
and we do not store more than 10,000 evaluated individuals.

4. Results & Discussion

Fitness value: In Figure 4 we present convergence of the methods in Figure 4. We notice
that all methods were able to converge and achieve very similar fitness values. How-
ever, the (1 + 1)-ES method was slowest due to the slow exploration capabilities. EDA
also required more evaluations to obtain better results. Interestingly, DE, RevDE, RevDE+,
and EDA+ achieved almost identical values of the fitness function (the differences were
beyond the three-digit precision). An important observation is that application of the
surrogate model (the K-NN regressor) allowed to significantly speed up the conver-
gence of RevDE+ and EDA+ compared to RevDE and EDA, respectively. We conclude
that all population-based methods were able to converge and achieved almost identical
scores, and our proposition of applying the surrogate model led to improving both RevDE
and EDA.

0
50

00
10
,00

0
15
,00

0

No. of evaluations

3.675

3.680

3.685

3.690

Ob
je

ct
ive

 v
al

ue

DE
exp1: 3.676
exp2: 3.676
exp3: 3.676

0
50

00
10
,00

0
15
,00

0

No. of evaluations

3.675

3.680

3.685

3.690

Ob
je

ct
ive

 v
al

ue

RevDE
exp1: 3.676
exp2: 3.676
exp3: 3.676

0
50

00
10
,00

0
15
,00

0

No. of evaluations

3.675

3.680

3.685

3.690

Ob
je

ct
ive

 v
al

ue

EDA
exp1: 3.676
exp2: 3.677
exp3: 3.679

0
20
,00

0
40
,00

0
60
,00

0
80
,00

0

No. of evaluations

3.675

3.680

3.685

3.690

Ob
jec

tiv
e v

alu
e

ES
exp1: 3.676
exp2: 3.676
exp3: 3.676

0
50

00
10
,00

0
15
,00

0

No. of evaluations

3.675

3.680

3.685

3.690

Ob
je

ct
ive

 v
al

ue

RevDE+
exp1: 3.676
exp2: 3.676
exp3: 3.676

0
50

00
10
,00

0
15
,00

0

No. of evaluations

3.675

3.680

3.685

3.690

Ob
je

ct
ive

 v
al

ue

EDA+
exp1: 3.676
exp2: 3.676
exp3: 3.676

Figure 4. The convergence of the population-based optimization methods over 3 runs. In the legends, we indicate the value
of the fitness function after the methods converged.

Timecourses: The final value of the fitness function tells us how well the simula-
tor models the observed timecourses for given parameters provided by an optimizer.
Additionally, we can also qualitatively inspect the timecourses both the observed and un-
observed metabolites. In Figure 5 we present timecourses for the unobserved metabolites,
for parameter values found the five methods.

For all unobserved metabolites, the average over 3 repetitions of the experiments over-
lapped with the real value or laid within the confidence interval (3× standard deviation).
This is a result that we hoped for since being able to generate unobserved metabolite is
extremely important for analyzing biological systems. However, we notice that DE and
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RevDE+ led to almost identical timecourses, thus, they were able to properly identify pa-
rameters.
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Figure 5. A comparison of the timecourses of the unobserved metabolites. Real timecourses are depicted in red, and the
average value and a confidence interval (3× standard deviation) over 3 runs of the simulator is depicted in blue. The titles
of the plots indicate optimization methods.

Differences in parameters: In this paper, we know precisely the values of the pa-
rameters since they were measured in [16]. Hence, we can compare the parameter values
found by the optimization methods with the real parameter values. We use the absolute
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value of the difference of two values. We calculate the mean and the standard deviations
of the difference from three runs, and use the cumulative distribution function of the
folded normal distribution to visualize the distribution of differences (the ideal case is 0).
The difference between two real-valued random variable is normally distributed. However,
taking the absolute value of a normally distributed random variable results in the folded
normal distribution.

In Figure 6 we present difference of all parameters. In general, the differences are
marginal and we can conclude that all parameter values were rather properly identified.
The biggest problems though appear for parameters that have very large values, e.g., k8 or
k33. This result is very promising because it seems to confirm the promise of the paper
that it is possible to identify parameters of a complex biological network for only partially
observable metabolites.
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Figure 6. The cumulative distribution functions (cdfs) of the differences for all parameters. Ideally, a cdf of an optimization
method should resemble a step-function centered at 0. The averages and the scales are calculated over 3 repetitions of
the experiment.



Processes 2021, 9, 98 13 of 14

5. Conclusions

In this work, we present a population-based framework for parameter identification of
biological networks described as dynamic models. The obtained results indicate the great
potential of population-based optimization methods in the field of biology and biochemistry.
In the case of relatively low computational costs of obtaining an evaluation of parameters,
the population-based methods seem to be sufficient to solve the parameter identification
problem. Moreover, our results for applying surrogate models to the optimizers can
be highly effective (i.e., speeding up convergence). It is a known fact (e.g., see [31,38]),
nevertheless, we believe that the optimization with surrogate models has a great future
and should be further investigated. For instance, considering other classes of surrogate
models like Gaussian processes or (Bayesian) neural networks opens new opportunities
and research questions worth following.

Additionally, the development of our framework in Python, an open-source platform,
simplifies its distribution and enables its use on most operating systems. POPI4SB is easy-
to-use and since the code is freely available, it constitutes a platform for developing new
population-based optimizers. Therefore, the proposed framework can be relatively easily
extended and serve for future research.
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