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Chapter 1

Introduction

The size and frequency of available data in organizations have greatly increased in

the past decades. Concurrently, the available computing power has expanded ex-

ponentially, which has enabled significant leaps in artificial intelligence and machine

learning. These advances are changing the requirements of (statistical) process moni-

toring. Small sample sizes are less common and a higher frequency of data collection

requires flexibility in monitoring procedures.

Process monitoring tracks process data streams and signals in case of a high proba-

bility of an unwanted outcome. In Statistical Process Monitoring (SPM), this amounts

to discerning special-cause from common-cause variation. Common-cause variation

consists of process fluctuation inherent to the design of the process. A process af-

fected by only common-cause variation produces stable outputs. Special-cause varia-

tion (temporarily) changes the distribution of the output. Examples of special-cause

variation are a ruptured fuel pipe that increases the basic fuel consumption of a car, a

traumatic event that impacts a child’s performance at school, and unexpected unem-

ployment impacting an individual’s mental health. In SPM, the variation of process

indicators is monitored using control charts.

Also, the future state of a process can be monitored. In this case, the control

chart monitors predictions that can be based on a variety of data sources and novel

statistical and machine learning techniques. The control chart gives a signal if the

predicted value exceeds a predetermined threshold. For example, monitoring the
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probability of success for high school students or monitoring the probability of having

an imminent mental health crisis.

In this thesis, we investigate the possibilities offered by the increase in computing

power and the size and frequency of data for both statistical and predictive process

monitoring. The first part of this thesis will focus on SPM. We will investigate

the use of the Central Limit Theorem (CLT) in monitoring subsample means. The

tail behavior of the process quality statistic is most important when using a control

chart to monitor. We thus investigate the tail behavior when applying the CLT and

how the performance of the most commonly-used control chart is affected. We then

consider updating the initial control chart parameter estimates using data from the

monitoring phase. This can improve the monitoring performance and flexibility for

high-frequency processes. In the second part of the thesis, we focus on Predictive

Process Monitoring (PPM). Motivated by a real-world application in education, we

introduce the use of hierarchical Bayesian regression models in PPM. Furthermore,

machine learning methods for prediction are investigated and we integrate gradient

boosting in a process monitoring framework which we apply using a large and unique

data set on mental health.

Signaling as early as possible can be imperative in taking preventive measures in

sectors such as healthcare, education, manufacturing, maintenance, and more. It can

improve the quality of products and services. The next two sections will introduce

the two parts of this thesis, SPM and PPM respectively.

1.1 What is SPM?

SPM provides techniques to monitor a process in real time. One of these techniques,

the control chart, is used to distinguish common-cause from special-cause variation in

a process. A process that solely exhibits common-cause variation is called in control.

Special-cause variation causes an out-of-control process. The control chart is designed

to detect such out-of-control situations.

A wide range of charts has been developed. The Shewhart, Cumulative Sum

(CUSUM), and Exponentially Weighted Moving Average (EWMA) control charts,

introduced by Shewhart (1926), Page (1954) and Roberts (1959), respectively, are the

2



1.1. WHAT IS SPM?

most commonly-used charts in practice. These three charts were developed to detect

changes in the underlying process, often called assignable or special-cause variation.

The Shewhart chart is simple to interpret and implement and is capable of quickly

detecting large shifts in the mean of the process quality indicator. The CUSUM and

EWMA charts are a bit harder to interpret, as both incorporate previous observations

in their test statistic. These two charts are generally better at detecting small shifts

in the mean (see Vera do Carmo et al., 2004, for a comparison).

All three mentioned charts have parameters that need to be estimated in practice.

This causes uncertainty in the charts’ performances. The effects of this uncertainty

have been widely researched in recent years and solutions have been proposed to deal

with this uncertainty. Jensen et al. (2006) and Psarakis et al. (2014) conducted litera-

ture reviews on the effects of parameter estimation on control chart performance and

identified directions for future research. Recently, several researchers have proposed

adjusted control chart designs based on guaranteed in-control performance (see e.g.

Gandy & Kvaløy, 2013; Saleh et al., 2015, 2016; Goedhart et al., 2017a,b; Zwetsloot

& Ajadi, 2019; Diko et al., 2019).

1.1.1 Control Chart Design

This section gives the relevant control chart designs. Let Xij denote the j-th obser-

vation in sample i (i “ 1, 2, ... and j “ 1, 2, ...n with n the sample size), and let Xi

denote the vector containing the n observations of sample i. Further, let mI repre-

sent the number of Phase I samples for initial parameter estimation, and XI equal

the total Phase I data. We assume that the mI samples in Phase I are in control

(in this stage the practitioner should determine if the process is in control). Further,

we assume that the observations Xij in the first mI samples are independent and

identically Npµ, σ2q distributed.

For each control chart type, µ and σ have to be estimated, and we use the same

estimators for each chart.

The parameter µ is estimated by

Ď

ĎX “
1

mI

mI
ÿ

i“1

ˆ

1

n

n
ÿ

j“1

Xij

˙

. (1.1)

3
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Further, σ is estimated by

S̃ “

ˆ

1

mI

mI
ÿ

i“1

S2
i

˙1{2

{c4pmIpn´ 1q ` 1q, (1.2)

where Si is the i-th sample standard deviation defined by

Si “

ˆ

1

n´ 1

n
ÿ

j“1

pXij ´ sXiq
2

˙1{2

and

c4pxq “

ˆ

2

x´ 1

˙1{2
Γpx{2q

Γppx´ 1q{2q
,

where Γpq is the Gamma function. The choice of the estimator of the standard

deviation of the sample means is based on Cryer & Ryan (1990). The following

sections outline the Shewhart, CUSUM, and EWMA control chart designs.

The estimated Shewhart control limits based on the samples in XI , used for mon-

itoring are given by
zUCL “ Ď

ĎX ` LsS̃{
?
n,

zLCL “ Ď

ĎX ´ LsS̃{
?
n,

(1.3)

where Ď

ĎX is given by (1.1) and S̃ by (1.2), while Ls is a positive constant for the

Shewhart control chart, depending on mI , n, the expected false alarm probability

and distribution of the estimates. The Shewhart control chart signals if sXi for i “

mI ` 1,mI ` 2, ..., is larger than zUCL or smaller than zLCL.

The two-sided CUSUM control chart uses the cumulative sum of observations to

monitor the process. The upper and lower statistics are calculated by

C`i “ maxp0, C`i´1 `
sXi ´

Ď

ĎX

S̃
´ kq (1.4)

C´i “ minp0, C´i´1 `
sXi ´

Ď

ĎX

S̃
` kq, (1.5)

with the chart parameter k ě 0 and C`0 “ C´0 “ 0. This CUSUM chart signals if

either C´i ă ´Lc or C`i ą Lc for i “ mI ` 1,mI ` 2, ..., where the critical value

Lc is a positive constant for the CUSUM control chart depending on k, the desired

expected false alarm probability and distribution of the estimates.

4



1.1. WHAT IS SPM?

The EWMA control chart is an extension of the CUSUM chart and a generalization

of the Shewhart chart, by adding weights to the cumulative sum of observations. The

EWMA statistic is defined as

Zi “ λ sXi ` p1´ λqZi´1 (1.6)

for i “ mI `1,mI `2, ..., where 0 ă λ ď 1 and ZmI
equals the mean estimate ĎĎX. For

λ “ 1 the EWMA control chart is equal to the Shewhart control chart. The EWMA

control limits for monitoring the process at time i “ mI ` 1,mI ` 2, ... are

zUCLi´1 “
Ď

ĎX ` Le
S̃
?
n

c

λ

2´ λ
r1´ p1´ λq2pi´mIqs

zLCLi´1 “
Ď

ĎX ´ Le
S̃
?
n

c

λ

2´ λ
r1´ p1´ λq2pi´mIqs,

(1.7)

where λ and Le determine the expected false alarm probability. When Zi falls above

(below) zUCLi (zLCLi) the process is considered out of control.

1.1.2 Control Chart Performance

The performance of control charts can be studied when the process is in or out of

control. The performance of a control chart is generally considered in terms of the

in-control False Alarm Rate (FAR) or Average Run Length (ARL). The FAR is the

probability of an incorrect control chart signal. The ARL is defined as the average

number of observations before the chart signals. A recent development in SPM is to

evaluate control chart design on the variation of the in-control ARLs of the individ-

ually estimated, also called conditional, control charts. This calls for the use of the

Conditional FAR (CFAR) and Conditional ARL (CARL) performance metrics.

The performance of the control charts depends heavily on the choice of the coef-

ficient L (Ls for the Shewhart, Lc for the CUSUM, and Le for the EWMA control

chart). Classical control chart design would suggest using a value of L that delivers

the desired unconditional FAR for known parameters. To achieve a desired con-

ditional performance, L is constructed to guarantee a certain probability that the

in-control FAR will be at most the desired FAR value, as proposed by Gandy &

Kvaløy (2013) and others (see for example Jones & Steiner, 2012; Saleh et al., 2015,

2016; Goedhart et al., 2017a,b). In that setting, the value L is determined such that
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P pCFAR ą FAR0q “ P pCARL ă ARL0q “ 1 ´ β, where CFAR is the in-control

conditional FAR, FAR0 is the desired FAR and β is the accepted (small) probability

that the CFAR will be larger than FAR0. The value of L, given FAR0 and β, can

be determined using analytical or numerical/Monte Carlo procedures.

1.2 What is PPM?

In the second part of this manuscript we discuss PPM. Where SPM and the first part

of this thesis considers the current state of a process, PPM is a promising research

area that focuses on forecasting potential problems during process execution before

they occur (Metzger et al., 2015). Applications have been developed in a wide range of

domains, such as manufacturing (Spiewak et al., 2000; Zhou et al., 2005), healthcare

(Reifman et al., 2007; Clifton et al., 2013; Luo, 2020), networking (Ali et al., 2012)

and business processes (Tax et al., 2017).

Increasingly comprehensive data collection provides more process visibility. Ad-

vances in machine learning make use of this increase in detail and frequency of data.

Data-driven techniques in this area can be used to improve process quality control by

forecasting and monitoring potential process problems. Prediction methods include

regression techniques, support vector machines, decision trees, random forest, elastic

nets, neural networks, and gradient boosting. For an overview of machine learning

methods see Hastie et al. (2009).

Predictive monitoring starts with defining an (unwanted) process outcome. Sub-

sequently, a model is specified for the process. The parameters of the model are then

estimated using the available data. When monitoring commences, the estimated pa-

rameters are used to generate process predictions. The probability of the defined pro-

cess outcome is then calculated. If the probability exceeds a predetermined threshold,

the procedure signals. The parameters can then be re-estimated and the monitoring

continues. Note that machine learning techniques require less formal modeling, but

more data and computing power to perform predictions. Furthermore, as with SPM,

the threshold to signal will determine the expected FAR.

The performance of a PPM procedure can be evaluated using the precision and

6



1.3. OUTLINE AND SCIENTIFIC CONTRIBUTION

recall metrics. The precision is given by

PrecisionpCq “
tppCq

tppCq ` fppCq
,

with tppCq equal to the number of true positives for threshold C and fppCq the

number of false positives for threshold C. The recall is defined as

RecallpCq “
tppCq

tppCq ` fnpCq
,

where fnpCq equals the number of false negatives for threshold C (Powers, 2011).

1.3 Outline and Scientific Contribution

The first part of this thesis considers SPM and consists of three chapters. In Chapter 2

of this thesis, we investigate the use of large sample sizes to eliminate the distributional

assumptions of the process indicators through the CLT. In theory, if the sample is

large enough and all the observations have the same distribution with mean µ and

finite variance σ2, for sample mean sXi, the distribution of
?
np sXi ´ µq converges

to a normal distribution Np0, σ2q (cf. Billingsley, 1995). As process monitoring is

concerned with the extremes of the process data, we study the tails of the distribution

of the process mean. The distributions of the convolutions of common known non-

normal distributions are analyzed. Furthermore, the effect of using the CLT for

large samples on the performance of the most used control chart (Shewhart X̄) is

studied. This chapter has been published under the title “The performance of X̄

control charts for large non-normally distributed datasets” in Quality and Reliability

Engineering International. This paper, Huberts et al. (2018), was joint work with dr.

M. Schoonhoven, dr. R. Goedhart, dr. M. D. Diko, and prof. dr. R.J.M.M. Does, in

which M. Schoonhoven and R.J.M.M. Does initiated the collaboration and I took the

lead in the analyses and writing.

Chapter 3 of this thesis is concerned with the updating of parameters during pro-

cess monitoring. SPM generally estimates the in-control process distribution in a

pre-monitoring phase, which is usually referred to as Phase I. The in-control parame-

ters remain fixed during the monitoring phase. Conversely, the data collected during

the monitoring phase could be used to update the parameter estimates. We study how

7
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this affects the performance of control charts for 16 different in- and out-of-control

monitoring scenarios. This chapter has been published under the title “The effect of

continuously updating control chart limits on control chart performance” in Quality

and Reliability Engineering International. This article, Huberts et al. (2019), was

joint work with dr. M. Schoonhoven and prof. dr. R.J.M.M. Does, in which I took the

lead in the analyses and writing.

Furthermore, introducing a delay in updating can prevent out-of-control samples

to be included in parameter updates. In Chapter 4, a procedure to introduce such

a delay is discussed and we propose some improvements. The method is applied to

a COVID-19 related data set. This chapter has been conditionally accepted under

the title “Improved control chart performance using cautious parameter learning” in

Computers and Industrial Engineering. In this study, Huberts et al. (2020b), I took

the lead in the analyses, dr. R. Goedhart assisted in the writing and prof. dr. R.J.M.M.

Does provided supervision.

The second part of this thesis, introduced in Section 1.2, considers PPM in two

chapters including applications. Chapter 5 introduces machine learning for PPM.

Many recently developed machine learning techniques can be used for prediction. We

introduce a procedure to tune the probability threshold towards a desired FAR in

monitoring. Using a unique non-public data set on mental health, we investigate the

predictive accuracy of machine learning techniques. The Extreme Gradient Boosting

(XGBoost) algorithm is subsequently used to monitor the risk of relapse in people

diagnosed with schizophrenia. The procedure can aid healthcare workers in identifying

people that are likely to need preventive care. This chapter has been submitted

under the title “Predictive monitoring using machine learning algorithms and a real-

life example on schizophrenia” to Quality and Reliability Engineering International.

This study, Huberts et al. (2020a), was combined work with prof. dr. R.J.M.M. Does,

dr. B. Ravesteijn, and dr. J. Lokkerbol in which dr. B. Ravesteijn provided access to

the data and feedback, dr. J. Lokkerbol and prof. dr. R.J.M.M. Does assisted with

the writing and I took the lead.

The final chapter of this thesis introduces multilevel process monitoring. Process

data often have some hierarchical structure. Modeling this structure can improve

parameter estimates and predictions. Furthermore, using a multilevel model allows

8
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monitoring at the different levels in the hierarchy. We illustrate this approach using

high school data. Bayesian hierarchical modeling is combined with SPM techniques

and used in a predictive monitoring procedure. The procedure allows early warn-

ings for students that have ‘exceptional’ performance. Exceptional students can be

failing students or students with exceptionally good grades. Based on the predictive

monitoring procedure, the school can intervene and offer tutoring to the former and

more challenging course work to the latter group. This assists schools in personalizing

education and controlling quality. This chapter has been published under the title

“Multilevel process monitoring: A case study to predict student success or failure” in

the Journal of Quality Technology. This paper, Huberts et al. (2020c), was combined

work with dr. M. Schoonhoven and prof. dr. R.J.M.M. Does and a Dutch high school

in which I took the initiative.

The conclusion will summarize the thesis and offer some views on the current state

of SPM and PPM as well as future directions for research in the field.
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Part I

Statistical Process Monitoring
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Chapter 2

Big Data and the Central Limit

Theorem

2.1 Motivation

Due to digitalization, many organizations possess large datasets. Furthermore, mea-

surement data are often not normally distributed. However, when samples are suffi-

ciently large and particular conditions met, the Central Limit Theorem (CLT) dictates

that the distribution of the sample means will converge to a normal distribution. In

this chapter, we evaluate the tail behavior of the CLT for various distributions and

sample sizes, as well as its effects on the performance of a Shewhart control chart for

these large non-normally distributed datasets.

Shewhart control charts are commonly used to monitor process data. Typically,

the performance of such control charts is heavily dependent on the assumption of

normally distributed data. In practice, this assumption is often violated. For example,

Alwan & Roberts (1995) analyzed 235 real datasets and concluded that most of these

datasets do not meet the assumptions underlying the traditional control charts.

Since recent advances have led to an increase in the amount of available informa-

tion, one way to work around the violation of the normality assumptions is to gather

larger datasets and use subgroup averages instead of individual observations. Because
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averages are approximately normally distributed under certain conditions, according

to the CLT, this should largely resolve the issue of non-normally distributed data (cf.

Billingsley, 1995).

While the approach of using averages instead of individual observations is suitable

for many statistical techniques, the major difference with many other statistical tech-

niques is that in Statistical Process Monitoring (SPM) we are interested in the long

tail behavior of the distribution. This means that, even when the statistic is almost

normally distributed, small deviations at the long tails can lead to bad control chart

performance in terms of the FAR and the ARL. In this chapter, we therefore in-

vestigate the performance of Shewhart type sX control charts for large, non-normally

distributed datasets using the convolutions of the distributions. To the best of our

knowledge, the performance of Shewhart sX control charts in this setting has not been

investigated thus far. The results in this chapter, which are based on Huberts et al.

(2018), indicate that the sX control chart should be applied with caution, even with

large sample sizes.

This chapter is structured as follows. In the next section, we briefly describe the

model and control charts considered in this chapter. Subsequently, in Section 2.3, the

CLT is summarized, followed by the convolutions of various probability distributions.

In Section 2.4, we investigate the differences between the normal and non-normal

convolutions. Next, Section 2.5 describes the performance of the Shewhart control

chart based on large non-normally distributed datasets. Finally, Section 2.6 provides

some concluding remarks.

2.2 The Classical Shewhart Control Chart

Due to the increase in data supply and storage, nowadays organizations often possess

large datasets. As the CLT states that under certain conditions the sample means are

normally distributed when the samples are sufficiently large, we could treat the sample

means as individual observations and use a Shewhart control chart as described in

Section 1.1.1 for individual observations under normal theory.

In this chapter, we study both the unconditional and conditional performance of

the control chart constructed with (1.3) including the newly developed factors, for the
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cases where the data are non-normally distributed and various sample sizes (n “ 5,

30, 50, 100, 250, 1000). With this model, we can investigate whether the CLT works

well and whether the newly developed correction factors apply to large non-normal

datasets as well. We consider the normal distribution, the standard uniform distri-

bution, heavy-tailed symmetrical distributions (Student’s t4 and t10 and the logistic

distribution), and skewed distributions (the lognormal, Gammap5, 1q, Gammap 5
2 , 2q,

which is identical to χ2
5 and χ2

20 distributions).

The distribution of the sample means for any one of these non-normal distributions

can be found using the convolution of that non-normal distribution, i.e.

sX “
1

n

n
ÿ

i“1

Xi “
1

n
Cn,

where Cn is the convolution of n i.i.d. random variables with distribution F . In

the next section we produce the distribution of Cn for the considered non-normal

distributions.

2.3 The Distribution of the Sample Mean

Let X1, X2, ..., Xn be n i.i.d. observations drawn from F , with ErXis “ µ and

V arrXis “ σ2 ă 8. Then as n tends to infinity, the random variables
?
np sX ´ µq

converge in distribution to a normal Np0, σ2q (cf. Billingsley, 1995), i.e.

?
n

ˆˆ

1

n
Cn

˙

´ µ

˙

d
ÝÑ Np0, σ2q.

Hence the asymptotic distribution of the sample means is normal under the above

restrictions. The exact distribution for finite values of n can be obtained by evaluating

the convolution. To assess the performance of the Shewhart control chart for sample

means of non-normally distributed samples, we need the distributional properties of

the convolution of these samples: Cn “
řn
i“1Xi. The convolutions will allow an

investigation of the distribution of the sample means of non-normal distributions and

a comparison with the asymptotic normal distribution according to the CLT.

The convolutions are given below; further details on the derivations and approxi-

mations are given in Huberts et al. (2018).
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2.3.1 The Convolutions

The Normal Distribution

The convolution of i.i.d. normal random variables is just a normal distribution, with

mean nµ and variance nσ2

Cn „ Npnµ, nσ2q.

The Uniform Distribution

The convolution of i.i.d. standard uniform random variables has an Irwin-Hall (IH)

distribution, which has a piecewise polynomial probability density function with pa-

rameter n (see Hall, 1927)

Cn „ IHpnq.

The Student’s tv Distribution with ν Degrees of Freedom

For ν “ 1, t1 is equal to a standard Cauchy distribution and its convolution Cn will

have a Cauchy distribution as well (see Blyth, 1986)

Cn „ Cauchyp0, nq,

where 0 and n denote the location and scale parameters of the Cauchy distribution

respectively. Note that the conditions needed to apply the CLT do not hold for this

case, as the Cauchy distribution has no finite mean and variance. For ν ą 1, we use

an approximation based on the numerical inversion of the characteristic function.

The Logistic Distribution

The standardized version of the sum of i.i.d. logistically distributed random variables

with µ “ 0 and s “ 1 can be approximated by a Student’s tν distributed random

variable with ν “ 5n` 4 degrees of freedom (George & Mudholkar, 1983)

Cn 9„ t5n`4.

The Lognormal Distribution

The distribution of the convolution Cn of the lognormal distribution can be approx-

imated using two methods: the Fenton-Wilkinson approximation by Fenton (1960)
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2.3. THE DISTRIBUTION OF THE SAMPLE MEAN

or the Pearson IV approximation by Nie & Chen (2007). The performance of the

Pearson IV approximation turns out to be more accurate than the Fenton-Wilkinson

approximation as it matches two more moments (see Section 2.3.2). In the following,

we will use the Pearson IV approximation

Cn 9„ PearsonIV pλ, α,m, νq,

with location parameter λ, scale parameter α ą 0 and shape parameters m ą 1
2 ,

ν ‰ 0.

The Gamma Γpα, βq Distribution with Parameters α and β

If Xi is Gamma distributed Xi „ Γpα, βq, with parameters α and β, then its convo-

lution is Gamma distributed with parameters nα and β

Cn „ Γpnα, βq.

The Chi-squared χ2
ν Distribution with ν Degrees of Freedom

The convolution distribution of the sum of n i.i.d. chi-squared random variables with

ν degrees of freedom is again a chi-squared distribution with nν degrees of freedom

Cn „ χ2
nν .

2.3.2 Accuracy of the Approximated Distributions

As reported in the previous section, the convolutions of the Student’s tν with ν ą

1, logistic and lognormal distributions have to be approximated. In the graphs in

the left column of Figure 2.1, the approximated densities of the convolutions for

the t10, t4, logistic and lognormal distributions are plotted and compared to the

empirical distribution based on six million samples. The graphs in the middle and

right columns of Figure 2.1 zoom in on the 0.135th and 99.865th percentiles. The

graphs show that the approximated t10, t4 and logistic convolutions are accurate. For

the lognormal approximations, we find that the Pearson IV approximation is closer to

the empirical distribution than the Fenton-Wilkinson approximation. Thus, we will

use that approximation in the following sections.
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2.4 Evaluation of the Central Limit Theorem

To investigate the differences between the actual distribution of the sample mean and

the appropriate normal distribution, we have plotted both distributions and the tail

behaviors. In Figure 2.2 we have used n “ 30 and α “ 0.0027 to investigate the tail

behaviors (see Huberts et al., 2018, for n “ 5 and n “ 250). The graphs on the left

give the densities, while the graphs in the middle and on the right zoom in on the

0.135th and 99.865th percentiles.

The graphs show that, for a sample size of n “ 30, the convolutions of the uniform,

t10, and logistic distributions do not deviate much from the normal distribution. The

distribution of the t4 convolution, however, clearly has wider tails than the normal

distribution.

The overall distribution of the Gamma convolution is quite close to normal, with

Gamma(5,1) closer to normal than Gamma( 5
2 , 2q „ χ2

5. When we zoom in on the tail

behavior, the Gamma distributions show skewed tail behavior with narrower tails on

the left and wider tails on the right than the normal distribution.

The χ2
20 convolution deviates a little from the normal distribution, but less so than

the χ2
5 convolution.

The lognormal convolution shows the largest difference with the normal distribu-

tion. The distribution of the lognormal convolution is still strongly skewed for large

values of n (n “ 250).

2.5 Control Chart Performance

2.5.1 Simulation Procedure

To evaluate the control chart performance, we conduct 10,000 simulation runs for

each parameter combination. For each simulation run:

1. A dataset consisting of mI samples of size n is generated. Based on these data, µ is

estimated by Ď

ĎX and σ is estimated by S̃, using (1.1)-(1.2). Next, zUCL and zLCL can

be determined using (1.3). We use Ls as the first control limit coefficient that ensures

that the in-control ARL in expectation (EARL) is equal to a specified value (ARL0)

(see Goedhart et al., 2016). The second conditional control limit coefficient Lcs is
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based on Goedhart et al. (2017b) and ensures that the probability (PE) that a design

delivers an estimated control chart with an in-control Conditional ARL (CARL) lower

than a specified value (ARL0) is at most a specified probability (p).

2. For each dataset, the Conditional False Alarm Rate (CFAR) is calculated as

CFAR “ 1 ´ P pzLCL ă sX ă zUCLq “ 1 ´ P pnzLCL ă Cn ă nzUCLq using the

convolutions of Section 2.3.1. The CARL is given by 1{CFAR.

When we perform the above procedure, we end up with 10,000 CARLs of in-

dividually estimated control charts. When Ls is used, the EARL is estimated by

averaging the 10,000 CARLs of the simulated control charts. When Lcs is used, the

exceedance probability (PE) is obtained by determining the percentage of CARLs

lower than ARL0. Both the unconditional and conditional results were verified using

the empirical distribution of the non-normal distributions.

We expect that the higher ARL0, the larger the sample size should be to ensure

that the performance of the control charts is as desired. This is because the higher

these values are, the more our interest moves towards the long tail of the distribution

of the sample means, where minor deviations from the normal approximation have

more impact on the performance. For this reason, we consider various values for

ARL0, namely 1,000, 370.4, and 100.

Finally, as we expect that the correction factors are more accurate when the sample

size (n) is larger, we consider a broad range of values, namely n “ 5, 30, 50, 100, 250, 1000.

For the amount of samples mI , we take values mI “ 30, 50, 100, 200.

2.5.2 Unconditional Performance

In this Section, we present the simulation results of the control charts based on (1.3)

and Ls as defined in Goedhart et al. (2016). Table 2.1 presents the results for an

ARL0 equal to 370.4 (see Huberts et al., 2018, for ARL0 “ 100 and ARL0 “

1000). The table presents the EARL and 5th, 50th and 95th percentiles of the

CARL distribution.

Table 2.1 shows that the larger the sample size (n), the closer the EARL is to its

desired value ARL0 and so the more applicable is the correction factor. Increasing

the number of samples (mI) also reduces the deviation in performance with respect
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to the case of normally distributed data, but the impact of mI is less strong than the

impact of n, as was to be expected. Also, the value of ARL0 is of influence: the higher

ARL0, the larger the sample size should be to obtain a performance that resembles

the performance under normality (Huberts et al., 2018). This can be explained as the

relative difference between the distributions of the means based on the non-normal

and normal distributions is the largest in the tails of the distributions. To give an

example, for the case ARL0 “ 1000, the t10 and logistic distributions require a sample

size of 100 or larger to obtain a correct in-control performance with the use of the

given correction factors while, for the case ARL0 “ 100, a sample size of 30 is sufficient

to obtain the correct EARL.

As discussed in Section 2.4, the uniform distribution is the only distribution that

has a convolution distribution with thinner tails than the normal distribution on both

sides. This produces extremely large EARL values for small n. Furthermore, as the

uniform distribution is bounded by an interval, conditional control limits have been

generated that produce a CFAR of zero for small values of n giving an infinite CARL.

Table 2.1 shows the number of infinite values we found for the uniform distribution

within the second parentheses.

In Section 2.4, we already indicated a large difference between the normal distribu-

tion and the distribution of the lognormal convolution and small deviations compared

to the t4, logistic, Gammap5, 1q, Gammap 5
2 , 2q „ χ2

5, and χ2
20 convolutions. The

EARL results confirm these hypotheses, as for all values of n and mI the lognor-

mal EARL values are consistently far below the desired ARL0, indicating the strong

skewness as observed in the analysis of the convolutions.

2.5.3 Conditional Performance

In this section, we present the results of the control charts based on (1.3) with Lcs

such that the probability of having an in-control CARL lower ARL0 is equal to p (cf.

Goedhart et al., 2017b). We set p “ 10%. Table 2.2 presents the realized exceedance

probabilities PE for a specified ARL0 of 1,000, 370.4 and 100. The presents the

results for various sample sizes (n “ 5, 30, 50, 100, 250, 1000), various numbers of

samples (mI “ 30, 50, 100, 200) and various distributions (normal, uniform, t10, t4,

logistic with µ “ 0 and s “ 1, lognormal with µ “ 0 and σ “ 1, Gammap5, 1q,
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Gammap 5
2 , 2q „ χ2

5 and χ2
20).

As for the unconditional case, the tables show that the larger the sample size (n),

the closer PE is to its desired value p, and so the better the applicability of the control

charts. Contrary to the unconditional case, increasing the number of samples (mI)

does not reduce deviation in conditional performance. Also, the value for ARL0 has

an impact: the lower the ARL0, the closer the control chart performance is to the

desired performance. This can be explained by the increase in relative differences

further in the tails of the distributions.

The normal approximation is worst in the case of the lognormal distribution, as we

see that the deviation of PE for p “ 10% is the largest. A very large sample size (n) is

needed to guarantee a desired conditional performance. In the case of ARL0 “ 100,

a sample size of 1,000 gives reasonable PE values, also for the lognormal distribution,

while for ARL0 “ 1, 000 and 370.4 even a sample size of 1,000 is not large enough to

ensure the right exceedance probabilities.

Interestingly, increasing mI actually increases PE for the non-normal distributions

in most situations. For example, the t4 distribution for ARL0 “ 370.4 and n “ 50

has a PE of 17.2% for mI “ 30. With mI increased to 200, for t4 now 40.3% of the

CARLs are below the desired ARL0 “ 370.4. This can be explained by a decrease in

parameter estimate variation and thus a decrease in the constant kc, causing tighter

control limits.

2.6 Concluding Remarks

In this chapter, we have studied the applicability of the CLT to large non-normal

datasets. According to the CLT, sufficiently large samples should lead to normally

distributed sample averages. However, since SPM is concerned with the far tail of the

distribution, it was unclear whether the convergence to normality would be sufficient.

In this research, we have thus investigated whether the charting constants that

are designed for normally distributed data can also be applied to large, non-normal

datasets. In particular, we have applied the Shewhart control chart for individual

observations to monitor the sample means of non-normally distributed datasets.

The study demonstrates that the appropriateness of the control charting con-
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stants, also for non-normally distributed data, depends on various factors. These

factors include the sample size (n), the number of samples (mI), the specified desired

performance of the control chart, and the degree of the deviation from normality.

When the deviation from normality is moderate (as is the case for the uniform, t10,

logistic, Gammap5, 1q, Gammap 5
2 q „ χ2

5 and χ2
20 distributions), a sample size of 100

is large enough in order to ensure appropriate use of the correction factors.

However, when the deviation from normality is substantial due to heavy tails (t4)

or substantial skewness (lognormal), the correction factors are not applicable even

when the sample size (n) is 1000. The implications are especially relevant within the

field of SPM, where the estimation of accurate tail behavior is important. The results

indicate that the sX control chart should be used with caution when the data are not

normally distributed, even with relatively large datasets.
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Figure 2.1 – Approximated versus empirical densities for n “ 30
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Figure 2.2 – Densities of non-normal convolutions versus normal distributions for

n “ 30 and α “ 0.0027
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Table 2.1 – EARL (5th, 50th, 95th percentile of CARL) with ARL0 “ 370.4

n Distribution mI “ 30 mI “ 50 mI “ 100 mI “ 200

5 Normal 378 (32,155,1224) 365 (56,217,1142) 375 (103,283,945) 368 (148,321,737)
Uniform: 271351 (36,251,7283)(2202) 15844 (74,430,6530)(679) 3061 (157,663,5127)(32) 1292 (279,827,3571)(0)
t10 224 (28,121,727) 245 (49,165,693) 246 (81,202,561) 252 (118,228,469)
t4 128 (22,70,276) 113 (34,85,258) 119 (51,102,226) 121 (66,109,197)
Logistic 211 (28,117,683) 225 (47,155,623) 230 (80,190,506) 238 (113,217,434)
Lognormal 75 (14,39,177) 67 (19,45,169) 64 (26,51,132) 63 (33,55,114)
Gammap5, 1q 236 (29,123,786) 229 (47,156,642) 224 (77,185,498) 224 (107,204,410)
Gammap 5

2 , 2q „ χ2
5 171 (26,101,523) 174 (42,124,462) 170 (63,143,363) 167 (84,154,294)

χ2
20 292 (30,138,966) 284 (51,177,854) 278 (86,222,656) 278 (126,249,529)

30 Normal 344 (32,155,1167) 366 (57,219,1123) 366 (101,282,907) 368 (150,322,746)
Uniform 406 (31,167,1413)(0) 430 (58,239,1355)(0) 417 (109,310,1073)(0) 418 (166,357,874)(0)
t10 324 (31,149,1085) 340 (54,206,1047) 340 (94,264,836) 340 (145,299,675)
t4 193 (27,111,543) 197 (48,144,510) 209 (75,174,440) 212 (106,193,367)
Logistic 338 (31,145,1052) 323 (55,204,986) 336 (96,263,817) 338 (145,297,669)
Lognormal 89 (20,59,230) 92 (29,70,210) 89 (40,77,170) 90 (51,83,149)
Gammap5, 1q 318 (30,147,1059) 328 (56,202,958) 331 (95,262,793) 331 (141,294,645)
Gammap 5

2 , 2q „ χ2
5 302 (31,144,1042) 304 (54,193,906) 302 (90,241,715) 301 (132,266,586)

χ2
20 349 (31,151,1166) 344 (56,208,1035) 352 (99,271,871) 347 (146,304,690)

50 Normal 336 (31,152,1112) 370 (56,220,1127) 366 (101,282,905) 368 (151,322,744)
Uniform 373 (31,156,1244)(0) 407 (58,226,1237)(0) 389 (105,295,984)(0) 390 (157,339,788)(0)
t10 366 (30,148,1096) 352 (57,213,1065) 349 (98,273,867) 349 (148,306,694)
t4 213 (29,120,639) 225 (49,159,591) 236 (80,195,500) 243 (116,220,434)
Logistic 327 (31,149,1127) 344 (55,210,1051) 344 (97,269,835) 352 (149,308,695)
Lognormal 130 (21,67,272) 104 (32,79,240) 105 (46,91,204) 104 (58,97,172)
Gammap5, 1q 350 (31,147,1187) 342 (56,206,1043) 345 (100,267,841) 348 (145,309,691)
Gammap 5

2 , 2q „ χ2
5 334 (31,145,1119) 324 (55,204,980) 329 (96,256,785) 323 (137,286,630)

χ2
20 358 (32,152,1197) 352 (55,212,1083) 356 (99,274,876) 358 (147,314,719)

100 Normal 371 (31,153,1233) 367 (56,215,1127) 369 (102,282,927) 367 (149,323,739)
Uniform 373 (32,156,1247)(0) 371 (56,221,1152)(0) 382 (105,290,948)(0) 384 (156,334,774)(0)
t10 349 (30,154,1245) 356 (56,215,1057) 364 (101,279,897) 358 (149,312,711)
t4 253 (29,129,758) 271 (50,182,755) 279 (88,225,623) 282 (128,253,529)
Logistic 334 (31,153,1157) 346 (56,209,1073) 361 (101,275,907) 359 (147,317,716)
Lognormal 147 (24,83,377) 134 (36,98,331) 131 (54,114,261) 133 (72,123,222)
Gammap5, 1q 372 (31,156,1275) 361 (55,211,1067) 359 (102,277,896) 360 (149,317,713)
Gammap 5

2 , 2q „ χ2
5 338 (31,149,1153) 356 (55,212,1088) 348 (98,269,856) 347 (146,304,694)

χ2
20 366 (31,152,1164) 364 (56,216,1134) 367 (102,281,909) 362 (148,315,726)

250 Normal 372 (32,154,1227) 371 (55,220,1152) 370 (103,283,924) 371 (153,325,740)
Uniform 364 (31,154,1314)(0) 368 (56,216,1119)(0) 370 (103,286,935)(0) 374 (152,326,759)(0)
t10 361 (31,154,1232) 357 (56,214,1089) 373 (102,286,918) 365 (151,321,731)
t4 295 (30,141,956) 308 (54,197,904) 313 (94,253,735) 317 (137,282,607)
Logistic 362 (33,154,1201) 357 (54,217,1084) 366 (101,279,923) 365 (150,319,730)
Lognormal 206 (27,106,580) 187 (44,134,491) 191 (70,159,409) 191 (95,175,334)
Gammap5, 1q 365 (31,160,1258) 362 (58,213,1122) 367 (100,282,905) 367 (150,320,747)
Gammap 5

2 , 2q „ χ2
5 359 (31,157,1220) 364 (55,215,1092) 361 (100,280,889) 359 (149,314,721)

χ2
20 360 (32,156,1220) 360 (56,217,1120) 364 (98,278,905) 368 (153,320,746)

1000 Normal 376 (32,151,1235) 358 (56,215,1100) 372 (102,285,947) 367 (153,322,730)
Uniform 356 (32,152,1199)(0) 368 (57,219,1199)(0) 373 (103,287,926)(0) 369 (151,323,745)(0)
t10 367 (32,154,1220) 368 (56,218,1141) 365 (101,278,914) 369 (152,321,744)
t4 323 (32,150,1150) 339 (56,210,1013) 357 (100,276,876) 353 (148,310,706)
Logistic 347 (31,153,1155) 363 (56,215,1125) 371 (100,286,904) 365 (150,319,735)
Lognormal 282 (29,135,926) 290 (52,184,845) 288 (88,230,671) 287 (127,258,544)
Gammap5, 1q 367 (31,154,1189) 369 (58,217,1165) 373 (103,281,923) 367 (151,321,747)
Gammap 5

2 , 2q „ χ2
5 341 (31,153,1190) 371 (57,222,1149) 369 (101,284,911) 369 (150,322,750)

χ2
20 357 (31,155,1225) 361 (56,213,1110) 374 (100,280,959) 367 (149,319,736)

: The amount of infinite CARL values we found is indicated within the second parentheses.
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Table 2.2 – PE with ARL0 “ 1000, 370.4, 1000 and p “ 10%

ARL0 “ 1000 and p “ 10% ARL0 “ 370.4 and p “ 10% ARL0 “ 100 and p “ 10%

n Distribution mI “ 30 mI “ 50 mI “ 100 mI “ 200 mI “ 30 mI “ 50 mI “ 100 mI “ 200 mI “ 30 mI “ 50 mI “ 100 mI “ 200

5 Normal 8.9 9.5 9.4 9.3 8.9 9.6 9.2 9.8 9.3 9.8 9.2 9.7
Uniform 2.9 1.6 0.7 0 4 2.6 1.3 0.3 5.9 4.4 3 1.5
t10 18.8 22.4 31.7 45.2 15.5 18.6 24.8 34.1 13.6 14.3 17.9 22.9
t4 83.7 93.5 98.7 99.6 62.1 78 91.6 97.9 35.6 45.3 60.9 76.5
Logistic 20.2 25.2 35.8 52.6 16.9 21.7 27.6 39.6 14.5 16.7 19.6 26.5
Lognormal 97.6 99 99.7 99.9 93.4 96.7 98.7 99.7 77 83.6 91.5 95.9
Gammap5, 1q 28.3 36.8 53.4 73.6 22.6 27.9 39.4 54.4 15.9 17.1 20.3 25.4
Gammap 5

2 , 2q „ χ2
5 44 57.9 78.2 94.3 34.6 44.3 63.6 82.3 22.8 25.6 34.6 44.6

χ2
20 18.6 23.7 31.8 45.5 15.8 18.6 23.6 30.3 12 12.5 14.2 16.1

30 Normal 9 9.1 9.7 9.5 9.3 9.4 9.7 9.6 9.1 9.2 9.5 10.4
Uniform 8.9 7.9 6.5 5.7 9.3 8.2 7.1 6.4 9.7 8.9 7.8 7.6
t10 10.6 11.3 12.5 13.3 10 10.3 11.5 12.6 9.4 9.9 11 11.2
t4 31.2 42.5 61.8 82.2 22.4 28.1 40.6 57.3 15.5 17.9 22.5 29.5
Logistic 10.9 11.1 12.1 14.9 10.1 11.1 11.5 14.2 9.9 10.1 10.8 12
Lognormal 92.3 97.2 99.6 100 80.9 90.7 97.7 99.6 52 63.1 77.8 91.1
Gammap5, 1q 12.8 14.2 16 19.5 11.5 12 13.4 15.5 9.9 10.2 11.2 11.5
Gammap 5

2 , 2q „ χ2
5 15.3 18.2 24.2 32.3 13.1 14.5 19.4 22.2 10.9 12.1 12.6 13.6

χ2
20 11 11.3 12.5 14.3 10 10.9 11.2 12.3 9.5 9.8 10.2 10.8

50 Normal 9 9.4 9 9.4 8.8 9.5 9.7 9.7 9.2 9.2 10 9.6
Uniform 9.3 8.9 8.2 7.8 9.5 9.2 8.8 8.5 9.8 9.7 9.5 9
t10 9.8 10.3 10.9 11.8 9.6 10.4 10.8 10.6 9.3 9.8 10.5 10.4
t4 21.7 30 42.6 62.3 17.2 21.3 28.3 40.3 13.8 15.1 17.8 22.1
Logistic 10.1 10.5 11.5 12.2 9.9 10.3 10.6 11.2 10.1 10 9.8 11.5
Lognormal 85.8 94.3 99.3 99.9 71 83.8 95.7 99.4 41.3 53 68.6 84.1
Gammap5, 1q 11.3 11.8 13.4 15.5 9.9 11 12.4 13.6 9.2 9.5 10.1 11.1
Gammap 5

2 , 2q „ χ2
5 12.6 14.8 17.9 22.2 11.7 12.6 15.3 16.9 10.4 11.3 11.3 12

χ2
20 10 10.2 12.1 12.5 10.3 10.1 11 11.2 9.9 9.9 9.5 9.9

100 Normal 9.4 9.2 9.5 9.6 9.1 9.3 9.7 10 9.1 9.2 9.5 9.3
Uniform 9.2 9.5 9 8.4 9.3 9.7 9.2 8.7 9.5 9.9 9.4 9.1
t10 9.1 9.7 10.1 10.9 9.1 9.6 10.3 10.8 9.1 9.7 10 9.8
t4 16.1 19.4 26.7 37 13.2 15.6 19.6 25.9 11.8 11.5 14.2 16.4
Logistic 9.5 9.6 10.2 10.9 9.2 9.8 10.5 10.2 9.7 9.8 10.7 9.8
Lognormal 67.5 82.5 95.9 99.8 52.2 66.4 84.8 96.3 29.2 36.9 49.6 66.5
Gammap5, 1q 9.5 10.3 11.7 12 9.5 10.3 10 11.1 9.5 9.6 9.7 10.4
Gammap 5

2 , 2q „ χ2
5 11 11.5 13.6 16.1 9.9 11.4 12 12.9 9.5 9.9 9.9 10.5

χ2
20 9.7 9.9 10.5 11.4 9.1 9.4 10.4 9.8 9.7 9.5 9.5 9.8

250 Normal 9.5 9.8 8.8 9.4 8.8 9.5 9.8 9.5 9 9.5 9.3 9.5
Uniform 9.8 10.1 9.5 9.5 9.9 10.1 9.6 9.7 10 10.2 9.8 9.9
t10 8.9 9.2 9.4 10.2 9.3 9.3 9.3 10.1 9.2 9.5 9.4 10
t4 12.1 13.3 16.2 20 11.6 12.4 13.8 15.8 10.5 10.8 12 13.4
Logistic 9 9.4 9.5 10 9 9.9 10.1 9.5 9 9 9.3 9.5
Lognormal 37.4 49.9 70.8 89.2 28 37.2 52.8 71 18 21.4 28.1 35.9
Gammap5, 1q 9.1 10 10.6 11 9.1 9.6 10 10 9.3 9.9 9.8 9.8
Gammap 5

2 , 2q „ χ2
5 9.8 10.6 9.8 11.8 9.6 9.6 10.3 11 8.9 9.5 9.5 10

χ2
20 9.6 9.8 9.8 10 9.4 9.1 9.9 10.1 9.3 9.4 9.3 10

1000 Normal 8.8 9.4 9.3 9.6 9.7 9 9.5 10.1 9.4 10 9.3 9.4
Uniform 10.5 8.8 9.1 10.3 10.5 8.9 9.1 "10.3 " 10.6 8.9 9.1 "10.3

" t10 9.2 9.5 9.7 9.6 8.9 8.9 9.5 9.4 9.2 10 9.3 10.3
t4 10 10.5 11.5 12.8 9.2 10.1 10.7 11.5 9.5 10.1 10.3 10.3
Logistic 9.2 9.2 9.6 10 9.3 9.1 9.3 9.8 8.7 9.4 9.1 10.2
Lognormal 15.5 19.2 25.1 34.5 13.7 16.6 19.3 24.4 11.6 12.6 14.3 16.2
Gammap5, 1q 9.2 9.4 9.7 9 9.5 9.2 9.6 10 9 8.8 9.7 9.8
Gammap 5

2 , 2q „ χ2
5 8.6 9.4 9.3 10.1 9.3 9.5 9.5 9.8 9 9.8 9.2 9.7

χ2
20 9.6 9.3 8.7 9.8 8.9 9.2 9.3 9.7 9.4 9.3 9.7 9.3
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Chapter 3

Continuously Updating Control
Charts

3.1 Motivation

Jensen et al. (2006) surveyed the literature on estimated control charts and identified

13 issues for future research. Issue 6 of Jensen et al. (2006) suggests re-estimating the

limits during the monitoring period: “Related to the previous research question is the

effect on control chart properties when the control limits are updated in some future

time that is not necessarily during a start-up period. If the process is in control, it

would be reasonable to use the data to update control limits during Phase II and not

continue to use the original limits indefinitely. It is not clear how control chart per-

formance is impacted, but it seems that making use of earlier Phase II data would lead

to better control charts.” This issue is the subject under study in the present chapter.

In this context, we should also mention the self-starting Cumulative Sum (CUSUM)

and Shewhart control chart designs proposed by Hawkins (1987) and Quesenberry

(1991) respectively. These designs can already be used when just a few samples are

available. The performance of these charts was studied by Keefe et al. (2015) using

a simulation procedure. However, they did not study the effect of out-of-control data

and reset the parameters to the initial Phase I estimates when the conditional control

chart gives a signal.

In this chapter we study the effect of updating for different scenarios: the updating
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data may be in or out of control, signals may or may not be correctly classified

(depending on the scenario), and when the control chart signals the parameters are

re-estimated, and the updating continues.

The chapter is structured as follows. The next section gives the relevant control

chart designs. The following section describes the scenarios that will be included in

the simulation procedure, which is described in the subsequent section. Then, the

results during and after updating are given and the last section offers conclusions and

recommendations. This chapter is based on Huberts et al. (2019).

3.2 Control Chart Updating

This section gives the continuously updating Shewhart, CUSUM, and Exponentially

Weighted Moving Average (EWMA) control chart designs. Let mu be the number of

samples within the updating period. The mu monitoring/updating samples may or

may not be out of control. We assume that the observationsXij in the firstmI samples

are independent and identically Npµ, σ2q distributed and that the observations in

the next mu samples are independent and identically Npµ ` δ, σ2q distributed with

probability P (and Npµ, σ2q distributed with probability 1 ´ P ), where the values

of δ and P depend on the scenario. Let i be the time stamp during monitoring

(i “ mI ` 1,mI ` 2, ...,mI `mu) and let Xic
i´1 denote the samples that are classified

as in control up to and including time i ´ 1. The number of samples within Xic
i´1 is

denoted by mi´1 (so mI ď mi´1 ď mI `mu). Similar to (1.1), µ is estimated by

Ď

ĎXi´1 “
1

mi´1

i´1
ÿ

r“1

ˆ

1

n

n
ÿ

j“1

Xrj

˙

1XiPXic
i´1
, (3.1)

with 1 the indicator function. Further, similar to 1.2, σ is estimated by

S̃i´1 “

ˆ

1

mi´1

i´1
ÿ

r“1

S2
r1XiPXic

i´1

˙1{2

{c4pmi´1pn´ 1q ` 1q, (3.2)

where Si is the i-th sample standard deviation.

For the Shewhart chart, we use Ls “ 3 which 3 is the traditional constant used for

known parameters to ensure that the False Alarm Rate (FAR) of the chart is equal to

0.0027 and the Average Run Length (ARL) of the chart is equal to 370. The reason

why we use the traditional constant is that we want to make a comparison with the
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CUSUM and EWMA control charts with traditional constants. We have, however,

also studied the performance of the updated Shewhart chart with the constants for

estimated parameters of Goedhart et al. (2016, 2017b) but the results are similar.

As the Crosier CUSUM control chart outperforms the classical CUSUM chart (see

Crosier, 1986), we will apply the Crosier chart design of Section 1.1.1. The Crosier

CUSUM control chart is a one-sided version of the classical CUSUM chart (see Crosier,

1986). It is defined as

Ci “ |Vi´1 `xQi|, (3.3)

where xQi “
ĎXi´

Ď

ĎX
S̃{
?
n

and VmI
“ 0. The monitoring statistic then becomes

Vi “

$

’

&

’

%

0 if Ci ď k

pVi´1 `xQiqp1´
k
Ci
q if Ci ą k,

(3.4)

where k is the reference value that determines the point at which Vi accumulates

deviations from the target value Ď

ĎX and is commonly set at k “ 1
2 . The chart signals

if |Vi| ą H, where H is the CUSUM control chart limit whose value depends on

desired chart performance. To achieve an in-control ARL of 370 for k “ 1
2 and known

parameters, H should be set at 4.3904 (see also Crosier, 1986).

For the EWMA control chart of Section 1.1.1 we set λ “ 0.1 and L “ 2.703 because

for these settings the in-control ARL is 370 when the distributional parameters are

known and the chart is able to detect small mean shifts quickly (cf. Lucas & Saccucci,

1990).

3.3 Simulation Scenarios

In this section we describe the various scenarios included in the simulation. For each

scenario and control chart type, we simulate 100,000 conditional control charts. The

scenarios that we consider are presented in Table 3.1. The case mu “ 0 is used

to investigate how control chart performance improves when updating (mu ą 0)

compared to not updating (mu “ 0). We consider three reference scenarios: mI “

5, 200, 2000 all with mu “ 0. The reference scenario with mI “ 2000 and mu “ 0

allows us to determine the difference in performance by starting with a small sample
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and then updating (using mI ` mu “ 2000 samples in total) compared to directly

constructing a control chart based on mI “ 2000 samples.

In scenarios 1-4 the monitoring/updating data are in control andmI is 5 or 200 and

mu is 1995 (for mI “ 5) or 1800 (for mI “ 200). In scenarios 5-8, 9-12, and 13-16 the

monitoring/updating data may be out of control, with varying levels of contamination.

The contamination is modeled as follows: each sample has a probability P that the

observations are drawn from a Npµ ` δ, σ2q distribution. We assume that when the

process is out of control, it remains out of control until the control chart gives a signal.

Table 3.1 – Scenarios

mI mu Phase I: Updating: Signal:
IC or OOC? IC or OOC? Reason known?

Reference 1 5 0 IC N/A N/A
Reference 2 200 0 IC N/A N/A
Reference 3 2000 0 IC N/A N/A
Scenario 1 5 1995 IC IC No
Scenario 2 200 1800 IC IC No
Scenario 3 5 1995 IC IC Yes
Scenario 4 200 1800 IC IC Yes
Scenario 5 5 1995 IC OOC: P “ 0.01; δ “ 0.5 No
Scenario 6 200 1800 IC OOC: P “ 0.01; δ “ 0.5 No
Scenario 7 5 1995 IC OOC: P “ 0.01; δ “ 0.5 Yes
Scenario 8 200 1800 IC OOC: P “ 0.01; δ “ 0.5 Yes
Scenario 9 5 1995 IC OOC: P “ 0.01; δ “ 2 No
Scenario 10 200 1800 IC OOC: P “ 0.01; δ “ 2 No
Scenario 11 5 1995 IC OOC: P “ 0.01; δ “ 2 Yes
Scenario 12 200 1800 IC OOC: P “ 0.01; δ “ 2 Yes
Scenario 13 5 1995 IC OOC: P “ 0.1; δ “ 3 No
Scenario 14 200 1800 IC OOC: P “ 0.1; δ “ 3 No
Scenario 15 5 1995 IC OOC: P “ 0.1; δ “ 3 Yes
Scenario 16 200 1800 IC OOC: P “ 0.1; δ “ 3 Yes

Moreover, we investigate the effect of the incorrect classification of a signal. In

scenarios 1, 2, 5, 6, 9, 10, 13, and 14 it is assumed that the operator can not classify a

signal correctly and therefore relies on the control chart. Thus, samples that give no

signal are considered as in control and used for re-estimating the control limits, and

data that give a signal are classified as out of control and not used for re-estimation.

In these scenarios, it is thus not possible to trace back the start of the out-of-control

situation and filter out previous out-of-control samples. On the other hand, in sce-

narios 3, 4, 7, 8, 11, 12, 15, and 16, we assume that the operator is able to identify the
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cause of a signal; so data samples that give a false signal are included and we assume

that in this case, it is possible to retrace the start of the out-of-control situation and

exclude previous out-of-control samples from estimation.

3.4 Simulation Procedure

Below, we describe the simulation procedure.

Step 1: Generate Conditional Control Chart

In this step we construct the initial conditional control chart based on the Phase I

dataset of mI (5, 200) samples of size 5 (n “ 5). We estimate µ and σ with the

estimators Ď

ĎXmI
and S̃mI

given by (1.1) and (1.2) respectively, and determine the

Shewhart or EWMA control limits using (1.3) or (1.7) respectively. The limit for the

CUSUM control chart is 4.3904.

Step 2: Use Conditional Control Chart for Monitoring and Update the

Chart

For each i “ mI ` 1,mI ` 2, ...,mI `mu: for scenarios 1-4 draw a sample Xi from

Npµ, σ2q and for scenarios 5-16, when the process is in control, draw a sample with

probability 1´ P from Npµ, σ2q and otherwise from Npµ` δ, σ2q, with the values of

P and δ depending on the scenario (see Table 3.1). Calculate the test statistics ( sXi,

Vi or Zi).

When the test statistic falls between zUCLi´1 and zLCLi´1, the dataset of classified

in-control samples, Xic
i´1, is augmented with Xi and denoted by Xic

i . The process

parameters are recalculated using (1.1) and (1.2), and the control limits zUCLi and
zLCLi are determined with the new parameter estimates.

When the test statistic falls outside the control limits zUCLi´1 and zLCLi´1, the

next step depends on the scenario. For scenarios 1, 2, 5, 6, 9, 10, 13 and 14 (the

reason unknown scenarios) the current data sample Xi is considered out of control

and therefore not added to the dataset of classified in-control samples. The limits

are not recalculated. Thus, zUCLi “ zUCLi´1, zLCLi “ zLCLi´1, ĎĎXi “
Ď

ĎXi´1 and

S̃i “ S̃i´1. For the CUSUM and EWMA control charts, we set Vi “ 0 and Zi “ Ď

ĎXmI
.

In contrast, when the test statistic falls outside the control limits, but the process
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is in control and the operator is able to determine the cause of the signal – as is

the case in scenarios 3, 4, 7, 8, 11, 12, 15 and 16 – Xi will be used for updating the

control chart. The dataset of classified in-control samples, Xic
i´1, is augmented with

Xi and is denoted by Xic
i . The process parameters are recalculated using (1.1) and

(1.2), and the control limits zUCLi and zLCLi are determined with the new parameter

estimates.

When the test statistic falls outside the control limits, the process is out of con-

trol and the operator is able to determine the cause of the signal – as is the case

in scenarios 3, 4, 7, 8, 11, 12, 15 and 16 – Xi will not be used for updating the

control chart. Moreover, previous real out-of-control samples, the number denoted by

N with N ď mu, are excluded from Xic
i´1. Thus, Xic

i “ Xic
i´N , zUCLi “ zUCLi´N ,

zLCLi “ zLCLi´N , ĎĎXi “
Ď

ĎXi´N and S̃i “ S̃i´N . For the CUSUM and EWMA control

charts, we set Vi “ 0 and Zi “ Ď

ĎXi´N .

To assess the performance during updating, we determine for each conditional

control chart the true alarm percentage (CTAP ) and the false alarm percentage

(CFAP ) within each simulation run. Related measures were presented by Fraker

et al. (2008), Chakraborti et al. (2009) and Frisén (2009). To this end, for 100,000

simulation runs we count the number of correct signals, out-of-control samples, false

alarms and in-control samples.

Step 3: Assess the Conditional Control Chart Performance

To assess the performance of a conditional control chart during updating we determine

the CTAP and CFAP as follows

CTAP “
#correct signals

#out-of-control samples
,

and

CFAP “
#false signals

#in-control samples
.

To assess the conditional performance of a conditional control chart after updating

we determine the Conditional FAR (CFAR) and the Conditional ARL (CARL). For

the Shewhart chart these values can be obtained by

CFAR “ Φ

˜

zLCLi ´ µ

σ{
?
n

¸

` 1´ Φ

˜

zUCLi ´ µ

σ{
?
n

¸

, (3.5)
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and

CARL “ 1{CFAR. (3.6)

For the CUSUM and EWMA control charts, CFAR is assessed by determining the

number of false alarms on an interval of 100,000 samples and CARL is determined

by the Markov chain approaches given by Hany & Mahmoud (2016) and Saleh et al.

(2013).

Step 4: Assess the Overall Control Chart Performance

To assess the unconditional control chart performance during updating, we determine

the average true alarm percentage (ATAP ) and the average false alarm percentage

(AFAP ) by averaging the CTAP and CFAP values for the R simulation runs.

The Expected ARL after updating (EARL) and the expected FAR after updating

(EFAR) are determined by averaging the corresponding conditional values obtained

in the R simulation runs. Moreover, we determine the 10th and 90th percentiles of

the CARL and CFAR values, which are indicated by CARL10, CARL90, CFAR10

and CFAR90.

The next two sections present the performance results during and after updating.

3.5 Performance During Updating

In this section we consider the chart performance during updating for either mu “

1995 or mu “ 1800 updates. The ATAP and AFAP values for the three charts are

reported in Table 3.2.

3.5.1 Shewhart

The in-control behavior of scenarios 1-4 for the Shewhart chart is as expected. For

the small mean deviations pδ “ 0.5q of scenarios 5-8, in the reason unknown scenarios

(5-6), the ATAP values are smaller than the known parameter detection probability

(0.03) and the AFAP values are larger as well. In the reason known scenarios (7-8)

the ATAP and AFAP values are very close to the known detection probabilities for

the Shewhart chart. For larger deviations δ “ 2, 3 in scenarios 9-16 the detection

percentages of Table 3.2 show almost perfect detection, as expected for the Shewhart

chart when large mean shifts occur.
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3.5.2 CUSUM and EWMA

As the results for the CUSUM and EWMA are comparable, we will consider them

together in this section. The in-control AFAP performance is around 0.0027. As

expected, the CUSUM and EWMA charts are more capable of detecting small mean

shifts pδ “ 0.5q in scenarios 5-8 than the Shewhart chart. For δ “ 2, the ATAP

values for both charts are around 0.5-0.6, detecting more than half of the out-of-

control observations. Furthermore, the AFAP values for both charts in Table 3.2 are

acceptably close to 0.0027 in scenarios 9-12. However, in scenarios 13-16 for large and

frequent deviations (δ “ 3, P “ 0.1), the ATAP values indicate that the CUSUM

and EWMA charts still miss a significant portion of the out-of-control observations.

The CUSUM (EWMA) chart detects during updating only about 90% (70% to 82%)

of the out-of-control observations.

The ATAP values are affected by the effects of (contaminated) parameter esti-

mates. Consider the mean estimates during updating for scenario 13 in Figure 3.1 for

the three charts. For the first 100 updates, all three charts show a very inaccurate

estimation of the mean due to (mostly) the effects of an inaccurate Phase I mean

estimate. Over time, the Shewhart chart improves to a very accurate mean estimate

of around 0 as it perfectly detects all out-of-control observations. The CUSUM and

EWMA chart converge to higher estimates of the mean, as due to their lower detection

probability they include contaminated samples in the mean estimate.

3.6 Performance after Updating

This section presents the performance results of the control charts after updating.

The tables that correspond to this section are 3.3 (Shewhart), 3.4 (CUSUM) and 3.5

(EWMA).

3.6.1 Shewhart

As we can see in Table 3.3, updating the chart after a limited initial Phase I dataset

(scenarios 1-4 and 7-16) can result in a control chart performance that is similar to
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Figure 3.1 – Mean estimates during updates for scenario 13

directly estimating limits from a very large Phase I dataset (reference scenario 3).

More specifically, for these scenarios, a chart estimated on mI “ 5 or mI “ 200

samples, which is then used for monitoring and updating during mu “ 1995 or mu “

1800 samples respectively, results in a chart that has the same performance as charts

estimated directly from a large Phase I dataset (mI “ 2000 and mu “ 0). This means

that in these scenarios monitoring can start quickly on a limited dataset. It should

also be noted that a chart that is initially estimated on a small dataset (mI “ 5),

followed by monitoring and updating, leads to similar performance as of a chart for

which a larger Phase I dataset is used (mI “ 200) before the monitoring and updating

starts.

We can also conclude that for a more serious level of contamination (scenarios

9-16) it does not matter whether the practitioner classifies signals correctly (scenarios

9, 10, 13, 14) or incorrectly (scenarios 11, 12, 15, 16). The reason is that these

out-of-control conditions are quickly detected so that there are fewer out-of-control

samples in the estimation dataset. Moreover, excluding from the estimation dataset

any samples that give a false alarm, does not result in significantly worse performance,

as we have also seen in scenarios 1-4.
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When there is a little contamination (scenarios 5-8) performance depends on the

operator’s ability to classify out-of-control signals correctly. When it is possible to de-

termine the cause of the signal and trace back the start of the out-of-control situation,

the resulting control chart performs well. On the other hand, when it is not possi-

ble to identify the cause and retrace the start of the signal then many out-of-control

samples will be left in the estimation sample (because smaller out-of-control levels are

not detected quickly by the Shewhart control chart) resulting in less representative

final control limits and worse performance.

3.6.2 CUSUM and EWMA

As the conclusions for the CUSUM (Table 3.4) and EWMA (Table 3.5) control charts

are very similar we describe them together.

As with the Shewhart control chart, we can see that depending on the scenario,

updating generates the same performance as direct estimation from a large Phase

I dataset (reference scenario 3: mI “ 2000, mu “ 0). Mainly in scenarios where

the data are in control (scenarios 1-4) or where the operator is able to identify the

cause of a signal and trace back the start (scenarios 7, 8, 11, 12, 15, and 16), control

chart performance is similar to the performance of charts estimated on a large Phase

I dataset.

When the operator is not able to identify the cause of a signal (and filter out

previous out-of-control data samples) the performance of the updated control chart

depends on the contamination level. Mainly for major contamination (scenarios 13

and 14), out-of-control signals will not be detected quickly so that – until the chart

gives a signal – many of the out-of-control samples are included in the estimation

dataset, affecting the control chart limits.

3.7 Concluding Remarks

In the present chapter, we have simulated 16 scenarios, differing in the size of Phase

I datasets (mI “ 5, 200), in the ability to determine the cause of a signal, as well as

the status (in- or out-of-control) of the updating datasets. The charts’ performances

have been analyzed both during and after (at i “ 2000) the updating period.
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3.7. CONCLUDING REMARKS

The results show improved chart behavior for updated limits when the updating

dataset is in control, even when the size of the initial dataset is very small (mI “ 5).

This holds for all three charts and means that excluding samples that give a false

alarm from the estimation dataset does not affect control chart performance for these

values of mI and mu.

For a low level of contamination (e.g. δ “ 0.5), the limits can be updated safely

for all three charts as long as the signal reason is known and the out-of-control data

can be removed. When the signal reason is unknown, so that the origin of the out-of-

control situation can not be retraced, the results show a decline in performance for all

three charts. The Shewhart chart is especially vulnerable, as it has the least ability

to quickly detect small shifts in the process mean.

For higher contamination levels (e.g. δ “ 2, 3), it is safe to update the Shewhart

chart control limits even if the signal reason is unknown. This is due to the chart’s

ability to detect all out-of-control signals, preventing contaminated samples to be

included in the data set. For the CUSUM and EWMA charts updating is only safe if

the signal reason is known and the origin can be retraced. If this is not the case, the

data and evolving statistic will get contaminated and the performance of the CUSUM

and EWMA charts is quite poor.

In summary, we recommend updating control limits for the Shewhart, EWMA,

and CUSUM charts as long as the reason for out-of-control signals is known and the

origin can be retraced. If this is not the case, the best strategy depends on the size of

the expected mean deviation. For large deviations, the Shewhart chart is safe to use,

but the EWMA and CUSUM charts are not. For smaller deviations, the Shewhart

chart fails and the performance of the CUSUM and EWMA charts is better. The

next chapter will consider updating the control chart limits with a delay.
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Chapter 4

Delayed Updating of Control
Charts

4.1 Motivation

Parameter estimation is an important topic in Statistical Process Monitoring (SPM),

as inaccurate estimates may lead to undesirable control chart performance. Updat-

ing the control chart limits during the monitoring period reduces estimation uncer-

tainty. Chapter 3 considered continuously updating control charts. However, when

out-of-control situations remain undetected, using the corresponding samples to up-

date the parameter estimates can deteriorate the control chart performance in terms

of in-control and out-of-control run lengths. For this reason, updating of parameter

estimates should only occur when there is sufficient evidence of an in-control process

state.

Control charts are used to monitor quality indicators in industry and services. All

three charts of Section 1.1.1 have parameters that need to be estimated in practice.

One of the directions that can further improve conditional control chart performance

concerns re-estimating the control limits of a control chart. A few studies have ap-

peared, among which Huberts et al. (2019) (Chapter 3) investigating the effects of up-

dating the control limits in various scenarios and Capizzi & Masarotto (2020) propos-

ing a delayed updating procedure for the Shewhart, Cumulative Sum (CUSUM), and

Exponentially Weighted Moving Average (EWMA) charts. This chapter builds upon

this work as Huberts et al. (2019) showed that updating can improve performance in
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certain settings and the proposed delayed updating by Capizzi & Masarotto (2020) is

a promising approach.

In this chapter, we evaluate and extend the approach of Capizzi & Masarotto

(2020). Depending on the practitioner’s needs, important choices have to be made

concerning if and when to update. These choices depend on the type of control chart,

the sizes of mean deviations deemed important, and the desired False Alarm Rate

(FAR0) and Average Run Length (ARL0). We propose simple rules for updating

parameters that improve the out-of-control performance of the control charts. We

show the added value of using these updating rules in practice through a case study

using data related to the COVID-19 pandemic.

The chapter is structured as follows. In the next section, we explain the procedure

proposed by Capizzi & Masarotto (2020). In the subsequent section, we analyze the

performance of this procedure in various settings. Then, the adjustments to the

procedure are motivated in Section 4.4 and a practical example is given in Section

4.5. In the last section, we provide some concluding remarks. This chapter has been

based on Huberts et al. (2020b).

4.2 Updating the Control Chart Limits

Similar to Capizzi & Masarotto (2020) we consider the Shewhart chart, the two-sided

CUSUM chart, and the EWMA control chart designs of section 1.1.1 for individual

observations (n “ 1, so we drop subscript j in Xij). Assume that Phase I runs from

i “ 1 to i “ mI . Further, we assume that the Phase I samples are independent and

identically Npµ, σ2q distributed and that the observations in Phase II are independent

and identically Npµ ` δσ, σ2q distributed. Note that Phase II starts at i “ mI ` 1.

As n “ 1 in contrast to the estimates of Section 1.1.1, the parameter µ up to and

including observation i is then estimated by

sXi “
1

i

i
ÿ

r“1

Xr, (4.1)

Further, σ is estimated by

Si “

ˆ

1

i´ 1

i
ÿ

r“1

pXr ´ sXiq
2

˙1{2

. (4.2)
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4.2. UPDATING THE CONTROL CHART LIMITS

In many cases, in-control Phase II data could be used to re-estimate Equations

(4.1) and (4.2) and update the control limits. Updating the estimates of the mean

and standard deviation could occur after every new observation as with self-starting

control charts (Hawkins, 1987; Quesenberry, 1991).

Chapter 3 explored a variety of scenarios and concluded that updating is often a

good choice but the type of chart and size of shift (δ) are important. Furthermore,

the outcome depends on the ability of practitioners to retrospectively identify out-

of-control samples. A potential hazard of an updating scheme is that small shifts

may not directly be detected, in which case the corresponding out-of-control obser-

vations would be used in the updated in-control parameter estimates. An approach

to counter this is to use some form of delay in updating, as was done by Capizzi

& Masarotto (2020). The effect of updating the control limits on the control chart

performance depends heavily on the parameters, the type of chart, and the choices

made by practitioners related to when to update and what data to use for updating.

The approach of Capizzi & Masarotto (2020) was to update Equations (4.1) and

(4.2) using a delay. Monitoring begins at time i “ mI ` 1. The main concept is

that at some time i ą mI , if it is reasonable to assume the process is in control, the

newly collected samples together with the initial mI Phase I observations can be used

to determine new values of Equations (4.1) and (4.2). This reduces the parameter

estimation uncertainty. The time at which an update occurs could be fixed beforehand

or determined using the collected samples. Capizzi & Masarotto (2020) proposed a

solution for the latter option, using the inequality
i
ÿ

h“i´di`1

ˆ

Xh ´ sXi´di

Si´di

˙2

ă Adi ´B, (4.3)

where di counts the number of samples from the last update, dmI`1 “ 1 and A and

B are parameters that need to be set. As long as this inequality doesn’t hold, di

(the updating delay) is increased by one (i.e. di`1 “ di ` 1). Thus, the right-hand

side of the inequality increases by A every i as long as there is no update. Capizzi &

Masarotto (2020) proposed using the values A “ 1.5 and B “ 50. As we will show

in the following section, this procedure can result in a deterioration of out-of-control

chart performance. Improvements can be made to the settings, which we will propose

later on in this chapter.
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4.2.1 Unconditional Expectation

The unconditional expectation of an individual term in the sum on the left-hand side

of Equation (4.3) can be shown to be (cf. Appendix 4.7.A)

E

«

ˆ

Xh ´ sXi´di

Si´di

˙2
ff

“

ˆ

mI ´ 1

mI ´ 3

˙ˆ

1` δ2 `
1

mI

˙

(4.4)

for mI ą 3. This shows that, in expectation, the left-hand side of Equation (4.3)

increases faster with larger values of δ thus confirming that the procedure is less

likely to update when a mean shift has occurred. However, when there is no shift

(δ “ 0) and mI “ 50, the expectation equals 1.0634. Therefore, in expectation, for

values A ă 1.0634 the left-hand side of Equation (4.3) increases faster than the right-

hand side, preventing updates. For δ “ 0.5,mI “ 50 the expectation in Equation

(4.4) equals 1.324. Then for A “ 1.5 as considered by Capizzi & Masarotto (2020),

in expectation, the right-hand side of Equation (4.3) grows more quickly than the

left-hand side. The setting for B does not affect the growth rate but does determine

the delay. A larger value for B will mean the left-hand side of Equation (4.3) will have

more ‘catching up’ to do. The settings for A and B will prove to be very important

for chart performance.

4.2.2 Conditional Expectation

We will now consider the conditional expectation of the sum on the left-hand side of

Equation (4.3). We only consider the time until the first update, such that di “ i´mI

until the update is done, so that sXi´di “
sXmI

and Si´di “ SmI
, and such that the

inequality (4.3) becomes

i
ÿ

h“mI`1

ˆ

Xh ´ sXmI

SmI

˙2

ă Api´mIq ´B. (4.5)

In Appendix 4.7.B we show that the expectation of the left-hand side of inequality

(4.5), conditional on sXmI
and SmI

, is equal to

E

«

i
ÿ

h“mI`1

ˆ

Xh ´ sXmI

SmI

˙2 ˇ

ˇ

ˇ

ˇ

sXmI
, SmI

ff

“ pi´mIq

ˆ

1`

ˆ

µ´ sXmI

σ
` δ

˙2˙
σ2

S2
mI

.

(4.6)
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4.2. UPDATING THE CONTROL CHART LIMITS

Next, we replace the sum in the left-hand side of inequality (4.5) by its expectation,

so that we obtain the inequality

pi´mIq

ˆ

1`

ˆ

µ´ sXmI

σ
` δ

˙2˙
σ2

S2
mI

ă Api´mIq ´B. (4.7)

We use this inequality to provide an estimate of the expected time to the first update

(ETFU). Since B should be a positive number in this method, note that this inequality

will never hold if
ˆ

1 `
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

ě A. If
ˆ

1 `
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

ă A,

then we can solve the inequality for i and find that

i ě mI `
B

A´

ˆ

1`
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

. (4.8)

Thus, our estimate of ETFU, conditional on sXmI
and SmI

, is equal to

ETFU | sXmI
, SmI

“

S

B

A´

ˆ

1`
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

W

, (4.9)

where r.s represents the ceiling function. The ETFU shows that B and A are im-

portant, as well as the shift size δ and of course the parameter estimation error.

Although the ETFU itself is an approximation, it provides some useful insight to-

wards the essence of the problem at hand. For example, given δ “ 0.5, X̄0 “ µ, S2
mI
“

σ2, A “ 1.5, and B “ 50, the expected first update will occur at ETFU “ 200. For

the Shewhart chart with ARL0 “ 500 the Expected ARL (EARL) for δ “ 0.5 equals

202. This means that, in expectation, this Shewhart chart will update the parameter

estimates with out-of-control observations before it is able to signal them.

4.2.3 The Updating Parameters

To analyze the impact of A,B, and δ on the time to update and on the ARL perfor-

mance we use a Monte Carlo simulation because analytical expressions for the three

control charts are infeasible. We do this by determining the probability that a control

chart will update the parameter estimates before it produces an out-of-control signal.
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We simulate for the Shewhart chart, but the same principle applies to the EWMA

and CUSUM charts. We apply the following procedure for ARL0 “ 200, 370 and 500:

For u “ 1, 2, ..., 6,000:

1. Simulate a Np0, 1q Phase I sample of size mI “ 50 and calculate XmI ,u and

SmI ,u, which are the the Phase I estimates according to Equations (4.1) and

(4.2), respectively, for the u-th simulated sample.

2. Initialize Shewhart control chart u using A P t1, 1.25, 1.5u, B P t50, 100, 200u,

m “ 50 and the CautiousLearning R-package of Capizzi & Masarotto (2020).

3. Simulate a Npδ, 1q Phase II sample of size 1,000,000 for a wide range of δ

p0.0, 0.25, 0.5, ..., 2.0q and calculate the first update FUu and first signal FSu

given sXmI ,u and SmI ,u.

4. If u ă 6,000 increase u with 1 and go back to step 1

5. Calculate the percentage of charts that have a first update before first signal as
ř6,000

u“1 IpFUuăFSuq

6,000 with I the indicator function.

The results of the simulation procedure for ARL0 “ 370 and various combinations

of δ, A, and B are shown in Figure 4.1. For ARL0 “ 200 the percentages of charts

that update before signaling are slightly lower and for ARL0 “ 500 slightly higher.

Figure 4.1 shows that for values of δ smaller than 1.5, the charts often update using

out-of-control observations. For example, given ARL0 “ 370, A “ 1.5, B “ 50 and

δ “ 0.5 the percentage of Shewhart charts that update before signalling is larger than

60%. This means that there is a substantial risk of using out-of-control observations

to update in-control parameter estimates, which may negatively affect control chart

performance, as we show in the next section.

4.3 Performance

The previous section has shown that there is a large likelihood of updating control

limits using out-of-control samples. The effects on chart performance in terms of

in-control and out-of-control EARL are studied in this section.
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4.3. PERFORMANCE

Figure 4.1 – Percentage of control charts with a first update before a signal for ARL0 “

370

We perform a Monte Carlo simulation to assess the effects of the updating pa-

rameters (A,B) and the shift size (δ) on the control chart performance. For the

Shewhart, EWMA, and CUSUM charts we set ARL0 “ 370. We have also analyzed

ARL0 “ 200 and ARL0 “ 500 for which the results were very similar. We let δ

vary from 0 to 2 in steps of 0.25, A “ 1, 1.5, 2, B “ 50, 100, 150, 200 and include the

reference without-updating EARL values (A “ 0, B “ 0). For each combination

of δ, A, and B we simulate 6,000 Shewhart, EWMA and CUSUM charts using the

CautiousLearning R-package (Capizzi & Masarotto, 2020) and calculate the EARL

as the average of the run lengths of these 6,000 charts.

The results for mI “ 50 are reported in Table 4.1. Since the control charts are

designed to provide a guaranteed in-control (δ “ 0) performance when parameters

are estimated, we focus on the out-of-control (δ ą 0) performance here. Note that in

the out-of-control situation smaller EARL values are preferred. Therefore, for each

out-of-control column, smaller EARL values are indicated by increased green shading

and higher EARL values by increased orange shading. The lowest value is printed in

bold.
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We can evaluate the performance of the different combinations of A and B in

the various scenarios. A first observation is that the values chosen by Capizzi &

Masarotto (2020), A “ 1.5 and B “ 50, are sub-optimal for all cases. The Shewhart

chart performs best for larger values of A regardless of δ. It appears that updating the

parameter estimates is very important for the Shewhart control chart performance in

this situation. For the EWMA and CUSUM charts the optimal parameters are more

mixed but for small values of δ “ p0.25, 0.5q it is best to update quickly using a high

value for A and small for B. For larger values of δ, better results are achieved for

smaller values of A and higher values of B.

Table 4.1 – EARLs for 6,000 simulated control charts and mI “ 50 in-control Phase
I samples

mI 50
δ 0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2

A B Shewhart EWMA CUSUM
0 0 7388 6321 3242 1178 527 103 28 9528 4018 535 78 25 8 5 12572 6878 1341 205 43 9 5
1 50 1255 1197 1160 827 458 98 31 1420 858 276 73 24 8 5 1431 1020 457 139 39 9 5

100 1417 1358 1197 828 480 103 26 1598 996 295 69 24 8 5 1623 1136 478 137 39 9 5
200 1692 1633 1387 863 451 110 29 2017 1145 308 71 24 8 5 2000 1366 528 136 38 9 5

1.25 50 726 698 654 553 394 101 28 781 583 278 88 26 8 5 802 680 405 148 42 9 5
100 835 793 736 622 409 100 27 888 633 273 76 24 8 5 884 730 401 139 39 9 5
200 981 968 856 672 437 105 29 1060 735 271 76 25 8 5 1081 853 425 135 39 9 5

1.5 50 686 659 594 469 320 106 28 677 565 296 97 25 8 5 729 651 437 186 50 9 5
100 726 704 625 491 338 103 27 740 577 293 82 25 8 5 796 645 436 158 43 9 5
200 798 782 662 536 347 101 27 856 658 264 76 24 8 5 887 759 411 150 38 9 5

2 50 585 569 548 466 300 70 20 561 487 269 102 23 7 5 591 551 417 213 68 8 4
100 615 611 557 458 289 77 21 634 511 273 81 23 8 5 657 588 396 180 49 8 4
200 690 676 589 464 284 87 25 713 574 268 71 22 8 5 753 650 406 155 40 9 5

We conclude that updating the parameter estimates using contaminated samples

can have a positive effect on performance. This surprising finding is due to the large

parameter estimation uncertainty when mI “ 50. To illustrate this, we calculate the

unconditional expected time to first update using Equation (4.9). We then compare

the estimated upper control limit values using only the mI samples of Phase I to

the estimated upper control limit when using mI ` ETFUδ,mI
samples. The latter

updates the control limits using contaminated Phase II data.

Consider the simulated Shewhart Control Limits in Figure 4.2. In green the con-

trol limits resulting from a Phase I sample size mI “ 50 are shown. In orange, the

control limits are depicted that result from the updating procedure using contami-

nated Phase II data with δ “ 0.25. The expected time to first update for δ “ 0.25 and

mI “ 50 equals ETFUδ“0.25,mI“50 “ 115 samples together (e.g., 165 in total). The

green histogram thus represents control limits based on mI “ 50 in-control samples.
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The orange histogram depicts the limits calculated using mI “ 50 in-control and

ETFUδ“0.25,mI“50 “ 115 out-of-control Phase II samples. The updated distribution

of control limits in orange is more narrow due the updated parameter estimates. A

small bias has been introduced, as Phase II samples with mean deviation δ “ 0.25

have been included in the parameter estimates. However, the updated limits are on

average still more accurate than the original Phase I control limits. The reduction

in parameter uncertainty outweighs the small bias that is introduced. This is be-

cause the value of Ls (cf. Section 1.1.1) required to guarantee a minimum in-control

performance will be smaller when more observations are available. In particular,

for the non-updated limits we have Ls “ 3.61 for mI “ 50, while for the updated

limits we have Ls “ 3.26 when using estimates based on 165 observations (cf. the

CautiousLearning R-package by Capizzi & Masarotto, 2020). As a consequence, even

though a positive bias is introduced in the estimate of the mean, the estimated control

limits will move closer towards sXi in this situation.

Figure 4.2 – Histograms of 10 million simulated Shewhart control limits based onmI “

50 (green) and updated control limits using using an additional 115 contaminated
observations (orange).

51



Leo C.E. Huberts

We have repeated the Monte Carlo simulation of Table 4.1 for larger Phase I

sample sizes mI “ p250, 500q. The results for mI “ 250 are reported in Table 4.2,

and for mI “ 500 in Table 4.3. Consider Table 4.2 with mI “ 250. Compared to

Table 4.1, the parameter estimation error is smaller. For the smallest δ “ 0.25, the

Shewhart chart should still update quickly using parameters A “ 2 and B “ 50. For

values of δ ą 0.5 this is not the case, A “ 1 and B “ 200 give good results. The

EWMA and CUSUM charts show a similar pattern for low A values. The CUSUM

does require a lower value of B for small δ. Table 4.3 shows the results whenmI “ 500.

In this case the Phase I sample size is larger still and hence parameter estimation is

more accurate. The table clearly shows that A “ 1 or A “ 1.25 generally performs

well. This means updating very slowly or not at all. For the Shewhart chart with

δ “ 0.75 the best performing chart is the non-updating chart A “ 0, B “ 0. Note

that for large shifts (δ “ 1.5, 2), for almost all charts and all mI , setting A “ 2 and

B “ 50 achieves the optimal EARL.

Table 4.2 – EARLs for 6,000 simulated control charts and mI “ 250 in-control Phase
I samples

mI 250
δ 0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2

A B Shewhart EWMA CUSUM
0 0 895 636 330 163 84 25 9 821 252 58 23 12 6 4 957 428 121 41 18 6 4
1 50 659 541 324 163 81 24 9 624 247 60 22 12 6 4 668 396 126 40 18 6 4

100 715 572 331 162 84 25 9 675 252 57 22 12 6 4 740 401 120 41 17 6 4
200 779 603 323 160 81 25 9 717 247 58 22 12 6 4 789 430 123 40 18 6 4

1.25 50 569 516 358 170 84 25 9 538 266 60 22 12 6 4 583 415 142 42 17 6 4
100 582 526 339 166 81 24 9 569 255 58 22 12 6 4 602 403 132 40 18 6 4
200 649 547 327 163 84 26 10 619 251 57 22 12 6 4 659 400 122 41 17 6 4

1.5 50 533 508 389 190 82 24 9 507 277 64 21 12 6 4 537 436 176 44 17 6 4
100 566 519 371 170 78 24 9 538 274 58 22 12 6 4 572 420 146 40 17 6 4
200 590 531 338 163 84 24 9 568 250 58 22 12 6 4 599 398 132 40 17 6 4

2 50 528 492 453 317 128 23 9 488 288 71 21 11 6 4 526 429 208 54 17 6 4
100 547 503 420 262 98 24 9 500 273 62 21 11 6 4 541 418 180 46 17 6 4
200 554 510 390 205 82 24 9 539 271 59 21 12 6 4 563 418 158 39 17 6 4

4.4 Improvements

In this section, we discuss the optimal settings when (cautiously) updating the She-

whart, EWMA, and CUSUM charts. As shown in the previous section these settings

depend on the number of Phase I samples mI , the desired ARL0, and the mean shift

δ.

The first general result is that the EWMA chart given the chosen parameter

settings obtains the smallest out-of-control EARL values for all combinations of δ and
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Table 4.3 – EARLs for 6,000 simulated control charts and mI “ 500 in-control Phase
I samples

mI 500
δ 0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2 0 0.25 0.5 0.75 1 1.5 2

A B Shewhart EWMA CUSUM
0 0 627 474 247 117 65 20 8 572 183 47 19 11 6 4 640 322 97 35 15 6 4
1 50 572 449 254 130 65 21 8 542 180 49 20 11 6 4 578 313 102 35 16 6 3

100 581 483 252 123 66 20 8 543 181 47 20 11 6 4 594 310 96 35 16 6 4
200 604 469 244 125 64 21 8 570 179 46 20 11 6 4 628 314 95 36 15 6 4

1.25 50 523 467 273 124 65 21 8 497 202 47 19 11 6 4 525 346 110 34 16 6 4
100 516 444 261 126 66 21 8 518 193 49 20 11 6 4 540 326 101 36 16 6 4
200 559 459 250 127 64 21 8 528 187 47 19 11 6 4 556 323 99 35 16 6 4

1.5 50 501 459 326 145 65 20 8 489 218 48 19 11 6 4 513 353 121 35 16 6 4
100 510 468 306 125 63 21 8 492 202 47 19 11 6 4 531 350 112 35 15 6 4
200 534 446 262 125 66 20 8 512 194 46 19 11 6 4 540 323 100 35 16 6 4

2 50 498 461 354 220 84 20 8 472 218 51 19 11 6 4 504 359 136 37 16 6 3
100 502 464 345 186 73 20 8 473 213 48 20 11 6 4 507 350 123 36 15 6 4
200 520 452 320 146 65 20 8 483 197 47 20 11 6 4 516 345 113 34 16 6 4

mI . The second general finding is that for large Phase I sample sizes (i.e. mI ě 500),

updating the limits often has negative effects on the control chart performance. Thus,

when a sufficient number of observations (mI ě 500) are available, we recommend

using the EWMA chart for δ ď 1 and do not update Phase I parameter estimates.

The optimal choice of A and B depends on the value of δ that is important to

the practitioner, as well as the number of available in-control Phase I samples mI .

Tables 4.1-4.3 give guidance on choosing the optimal A and B. We have translated

the findings from these tables into a few very simple rules of thumb.

1. For large numbers of Phase I samples (mI ě 500) consider if updating is still

necessary.

2. For detecting moderate to large shifts (δ ą 1) set A “ 2, B “ 50.

3. For detecting small shifts (δ ď 1) use the following rules. For the Shewhart

chart set A and B as

A “ max

ˆR

2´
1

2
|δ| ´

mI ´ 50

250

V

, 0

˙

(4.10)

B “ pmI ` 50q|δ|. (4.11)

For the EWMA and CUSUM charts set A and B as

A “ max

ˆR

2´
4

3
|δ| ´

mI ´ 50

250

V

, 0

˙

(4.12)

B “ 2pmI ` 50q|δ|. (4.13)
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These rules will result in the use of the values of A and B that deliver good out-of-

control performance and less unnecessary updating when a large number of Phase I

samples are available. Note that these rules apply to the specific settings investigated

in this chapter and do not (necessarily) generalize to other control chart settings.

4.4.1 Signal Behavior

The main motivation for updating control chart limits during monitoring (Phase II)

is a lack of sufficient reliable Phase I data before monitoring is required. Thus any

updating monitoring scheme should consider signal behavior. Capizzi & Masarotto

(2020) advised to re-run Phase I methods on all data collected so far, and re-estimating

the parameters with the remaining representative observations. Huberts et al. (2019)

gave examples of scenarios where updating and continued use of the chart after a signal

is beneficial. If the practitioner can retrospectively identify out-of-control samples and

remove them from the data, the chart can safely be updated even after signals. In

situations where this is not possible and there is no way to distinguish a false alarm

from a correct out-of-control signal, updating is often inadvisable. This does depend

on the values of δ,mI , and the chart that is used (Huberts et al., 2019).

4.5 Case Study Using COVID-19 Data

In this section, we demonstrate the (cautious) updating procedure on a control chart of

mortality data. The data consists of the weekly number of deaths in the Netherlands

among 0-65 year-old people. Note that we have chosen this age group to limit the size

of the shift. Phase I consists of mI “ 50 weeks in total; from week 24 of 2017 to week

21 of 2018. Phase II consists of 100 weeks from week 22 in 2018 to week 19 in 2020.

The COVID-19 disease was given the official pandemic label by the World Health

Organization on the 11th of March 2020 (week 12 of 2020). At that time there were

503 positive tests for COVID-19 in the Netherlands and 5 reported deaths related to

the virus. No nationwide restrictions were in place on that date. Figure 4.3 displays

the full 150 weeks of data, where the peak near the end corresponds to the increased

death rate due to COVID-19 infections.

We set ARL0 “ 370 and δ “ 0.25 for the control charts in this case study.
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Figure 4.4 displays the Shewhart chart as described in Section 1.1.1 without updating

parameter estimates. This chart fails to signal the outbreak of the pandemic. In

Figure 4.5 we display the Shewhart chart with the proposed method of Capizzi &

Masarotto (2020), using A “ 1.5 and B “ 50. Using these settings the chart does not

update during monitoring and thus also fails to signal the increased mortality among

the age groups considered here. In Figure 4.6 we display the Shewhart chart using

the updating rules in Equations (4.10) and (4.11). These rules lead to A “ 2 and

B “ 25 as input for the updating procedure. As a consequence of these settings, the

parameter estimates are updated twice during the monitoring phase. This delivers

more accurate parameter estimates and results in a signal from the Shewhart chart.

Figure 4.7 shows the EWMA chart using λ “ 0.2. Similar to the Shewhart chart,

there is no signal for the COVID-19 pandemic. The chart does signal for decreasing

death rates near the end of 2019, although there is no known assignable cause for this.

The same results are obtained when using the values A “ 1.5 and B “ 50 as proposed

by Capizzi & Masarotto (2020), as is demonstrated in Figure 4.8. In that scenario,

the parameters are not updated during the monitoring phase. Figure 4.9 shows the

chart using updating rules (4.12) and (4.13) resulting in A “ 2 and B “ 50. This

time the chart does signal the increased mortality rate at the time of the COVID-19

pandemic.

Finally, the CUSUM chart with k “ 1 signals both a decrease in death rates at

the end of 2019 and the increase in rates due to the COVID 19 pandemic, without

updating the limits. Updating the limits in Figure 4.12 leads to slightly narrower

limits, but doesn’t make a difference in the detection in this case.

Concluding this section, in the case of signaling the pandemic in the death rates

for ages 0 to 65, updating the parameters improves the charts’ performances. Using

the parameters set by Capizzi & Masarotto (2020) does not trigger updates, thus neu-

tralizing the updating procedure. Using the proposed rules in Equations (4.10)-(4.13)

does trigger updates of the parameter estimates in the monitoring phase, improving

performance and leading to an out-of-control signal at the time of the COVID-19

pandemic for all three charts. This case study is not exhaustive, but it does show a

clear example of the benefit of using an updating procedure, especially with adjusted

rules for the parameters.
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Figure 4.3 – Weekly deaths in the Netherlands for people aged under 65

Figure 4.4 – The Shewhart control chart, without updating the limits (A “ 0, B “ 0)

4.6 Concluding Remarks

In this chapter, we investigated the cautious parameter updating approach of Capizzi

& Masarotto (2020). Parameter estimation is an issue when determining control limits

for the Shewhart, EWMA, and CUSUM control charts, and can have a substantial

impact on the control chart performance. One approach to dealing with the estimation
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Figure 4.5 – The Shewhart control chart, updating the limits using A “ 1.5, B “ 50

error is to update the parameter estimates during Phase II.

We evaluated the cautious updating approach of Capizzi & Masarotto (2020) and

propose adjustments to their procedure. An approximation of the expected time to the

first parameter update shows that choosing the appropriate updating parameters is

important to prevent incorporating contaminated samples in the parameter estimates.

We have shown that the EARLs are a result of the mean deviation δ, the number

of Phase I samples mI , and the updating parameters A and B. To ensure optimal

Phase II performance, formulas were developed for A and B given the available Phase

I data and the value of δ that is important to the practitioner. Using these formulas

delivers very promising chart performance.

In a case study using COVID-19 data, we demonstrated the added value of updat-

ing the control limits for mortality rates in the Netherlands. The updating procedure

works especially well when using Equations (4.10)-(4.13) as rules for updating Equa-

tion (4.3).

Updating control chart limits is a logical step towards reducing parameter esti-

mation uncertainty. However, updating using contaminated samples can cause the

estimates to spiral out of control. The methods described in this chapter greatly re-

duce the probability of updating using contaminated samples, while still benefitting

from the improved estimation accuracy when possible.
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Figure 4.6 – The Shewhart control chart, updating the limits using rules (4.10) and
(4.11) resulting in A “ 2 and B “ 25

4.7 Appendices

4.7.A Expectation - Unconditional

In this section, we consider the unconditional expectation of Equation (4.3). For the

left-hand side of Equation (4.3), it is possible to determine the expectation of an

individual term in the sum. First, note that

Xh „ N
`

µ` δσ, σ2
˘

,

sXi´di „ N
`

µ, σ2{mI

˘

,

pmI ´ 1qS2
i´di

σ
„ χ2

mI´1.

SinceXh and sXi´di are independent, we also know thatXh´ sXi´di „ N
`

δσ, σ2p1` 1{mIq
˘

.

Denote Y “ Xh´ĎXi´di

Si´di
. We can then rewrite this as

Y “
Xh ´ sXi´di

Si´di

“
a

1` 1{mI

`

Xh ´ sXi´di ´ δσ
˘

{

´

σ
a

1` 1{mI

¯

` δσ{
´

σ
a

1` 1{mI

¯

Si´di{σ

“
a

1` 1{mI
Z ` δ{

a

1` 1{mI
a

V {ν
,

(4.14)
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Figure 4.7 – The EWMA control chart, without updating the limits (A “ 0, B “ 0)

where Z “
Xh´ĎXi´di

´δσ

σ
?

1`1{mI

is a standard normal variable, and V “
pmI´1qS2

i´di

σ2 is a

chi-squared variable with ν “ mI ´ 1 degrees of freedom. Next, note that

T “
Z ` δ{

a

1` 1{mI
a

V {ν

follows a noncentral t-distribution with ν “ mI ´ 1 degrees of freedom and noncen-

trality parameter γ “ δ{
a

1` 1{mI . Consequently, F “ T 2 follows a noncentral

F -distribution with ν1 “ 1 numerator degrees of freedom, ν2 “ ν “ mI ´ 1 denom-

inator degrees of freedom, and noncentrality parameter λ “ γ2 “ δ2p1 ` 1{mIq. To

get back to (4.3), for mI ą 3 the expectation of an individual term in the sum on the

left-hand side of the inequality can be calculated to be

E

«

ˆ

Xh ´ sXi´di

Si´di

˙2
ff

“ ErY 2s “

ˆ

1`
1

mI

˙

ErF s

“

ˆ

1`
1

mI

˙

pmI ´ 1qp1` δ2 mI

mI`1 q

mI ´ 3

“

ˆ

mI ´ 1

mI ´ 3

˙ˆ

1` δ2 `
1

mI

˙

.

(4.15)
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Figure 4.8 – The EWMA control chart, updating the limits using A “ 1.5, B “ 5

4.7.B Expectation of Sum - Conditional

Consider the conditional expectation of the sum on the left-hand side of Equation

(4.3). We only consider the time until the first update, such that di “ i ´mI until

the update is done, so that sXi´di “
sXmI

and Si´di “ SmI
, and such that the

inequality (4.3) becomes

i
ÿ

h“mI`1

ˆ

Xh ´ sXmI

SmI

˙2

ă Api´mIq ´B. (4.16)

Consider Yh “
Xh´ĎXmI

SmI
. Conditional on sXmI

and SmI
, we know that

Yh| sXmI
, SmI

„ N

ˆ

µ´ sXmI

SmI

` δ
σ

SmI

,
σ2

S2
mI

˙

,

or equivalently
SmI

σ
Yh| sXmI

, SmI
„ N

ˆ

µ´ sXmI

σ
` δ, 1

˙

.

We then rewrite the left-hand side of inequality (4.5) into

i
ÿ

h“mI`1

ˆ

Xh ´ sXmI

SmI

˙2

“

i
ÿ

h“mI`1

Y 2
h

“
σ2

S2
mI

Di,

(4.17)
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Figure 4.9 – The EWMA control chart, updating the limits using rules (4.12) and
(4.13) resulting in A “ 2 and B “ 50

where Di “
ři
h“mI`1

ˆ

SmI

σ Yh

˙2

. Note that Di| sXmI
, SmI

follows a noncentral chi-

square distribution with pi ´ mIq degrees of freedom and noncentrality parameter

pi´mIq

´

µ´ĎXmI

σ ` δ
¯2

. From this, we calculate the expectation of the left-hand side

of inequality (4.5), conditional on sXmI
and SmI

, to be

E

„

σ2

S2
mI

Di

ˇ

ˇ

ˇ

ˇ

sXmI
, SmI



“ pi´mIq

ˆ

1`

ˆ

µ´ sXmI

σ
` δ

˙2˙
σ2

S2
mI

.

(4.18)

Next, we replace the sum in the left-hand side of inequality (4.5) by its expectation,

so that we obtain the inequality

pi´mIq

ˆ

1`

ˆ

µ´ sXmI

σ
` δ

˙2˙
σ2

S2
mI

ă Api´mIq ´B. (4.19)

We can use this inequality to provide an estimate of the expected time to the first

update (ETFU). Since B should be a positive number in this method, note that this in-

equality will never hold if
ˆ

1`
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

ě A. If
ˆ

1`
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

ă
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Figure 4.10 – The CUSUM control chart, without updating the limits (A “ 0, B “ 0)

A, then we can solve the inequality for i and find that

i ě mI `
B

A´

ˆ

1`
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

. (4.20)

Thus, our estimate of ETFU, conditional on sXmI
and SmI

, is equal to

ETFU | sXmI
, SmI

“

S

B

A´

ˆ

1`
´

µ´ĎXmI

σ ` δ
¯2
˙

σ2

S2
mI

W

, (4.21)

where rXs represents the ceiling function.
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Figure 4.11 – The CUSUM control chart, updating the limits using A “ 1.5, B “ 50

Figure 4.12 – The CUSUM control chart, updating the limits using rules (4.12) and
(4.13) resulting in A “ 2 and B “ 50
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Chapter 5

Boosted Predictive Process
Monitoring in Mental Health

5.1 Motivation

In this chapter, we consider a wide range of techniques for predictive process moni-

toring (PPM). As described in Section 1.2, PPM aims to produce early warnings of

unwanted events. A mental health case study is presented, in which we demonstrate

the use of novel gradient boosting methods in predictive monitoring.

Gradient boosting is an important recent development within machine learning for

regression and classification. This technique produces an ensemble of decision trees

that minimize an appropriate loss function. Such an ensemble often produces better

predictions than a single, more comprehensive model. When used for classification,

as in most process monitoring applications, the predictions are in the form of prob-

abilities, similar to the output of regression models. In this paper, these predicted

probabilities will be used in a process monitoring procedure.

An area that has a real interest in predictive monitoring for quality control is

mental health (Hahn et al., 2017). Nineteen percent of adults in the United States

have a mental, behavioral, or emotional disorder (Substance Abuse and Mental Health

Services Administration, 2018). These disorders pose a heavy burden on the patient

and affected families, the healthcare system, and healthcare expenditure. Early inter-

vention is important for many of the severe mental disorders and could prevent the

escalation of the disease. However, it is very hard to predict the progress of a disease
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and thus determine when to intervene.

One of the most debilitating mental disorders is schizophrenia. According to

the World Health Organization (2019), schizophrenia is characterized by distortions

in thinking, perception, emotions, language, sense of self, and behavior. Common

experiences include hallucinations and delusions. Around 0.75 percent of people suffer

from the disease worldwide (Moreno-Küstner et al., 2018). Schizophrenia is one of

the top 15 leading causes of disability worldwide (Vos et al., 2017). The all-cause

standardized mortality rate is around 3.7 times higher for people diagnosed with

schizophrenia compared to the general adult population (Olfson et al., 2015). Suicide

is much more frequent among people suffering from schizophrenia. An estimated

4.9% of people with schizophrenia die by suicide compared to 0.013% for the general

population (Palmer et al., 2005).

The overwhelming majority of people suffering from schizophrenia will relapse into

crisis care over time, even with access to good care (Emsley et al., 2013). Relapse

averages are reported between 20% and 40% per year, depending on many factors

(Ruetsch et al., 2018). In the United States, the estimated total cost of schizophrenia

was $155.7 billion in 2013 (Cloutier et al., 2016). The healthcare costs for people

diagnosed with schizophrenia are significantly higher than the national average, where

relapse events (i.e. hospital admissions) are the most expensive (Karve et al., 2012).

This motivates the need for early identification of patients at high risk of having a

mental health crisis, to facilitate preventive measures, and mitigate the high costs

associated with these crises.

In a systematic review, Sullivan et al. (2017) investigated models to predict crises

and found a lack of high-quality evidence on prediction methods. Paxton et al. (2013)

and Amarasingham et al. (2014) highlighted the challenges that predictive modeling

based on Electronic Medical Records faces. According to Sullivan et al. (2017), the

number of studies with promising results is very limited. One of the exceptions is the

study by Vigod et al. (2015), which used Canadian data from 2008-2011 to predict 30-

day readmission rates for acute psychiatric units using logistic regression. The study

shows moderate discriminative capacity with an area under the receiver operating

characteristic curve of 0.630.

In this study, we have access to all mental health treatment records covered by the
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Dutch Health Insurance Act, which covers all specialist mental health treatment of

schizophrenia for all 17 million residents of the Netherlands between 2010 and 2014.

We use this data to predict readmission into crisis care for the 75,000 people diagnosed

with schizophrenia in the Netherlands. We compare the predictive power of logistic

regression as used by Vigod et al. (2015) to a hierarchical regression model.

Subsequently, a gradient boosting algorithm named Extreme Gradient Boosting

(abbreviated by XGBoost) is applied to the data. Teinemaa et al. (2019) reviewed

available PPM techniques and concluded that XGBoost is reasonably fast and often

the most accurate technique. It can deal with class imbalance and incomplete obser-

vations, which are often found in medical data (Paxton et al., 2013). Furthermore,

Zhang et al. (2018) used XGBoost for predictive monitoring of faults in wind turbines.

The XGBoost predictions are then used to monitor the set of people diagnosed

with schizophrenia during a monitoring phase. We present an algorithm to determine

the threshold to signal and consider the monitoring performance. The goal of the

procedure is to support healthcare workers in identifying individuals at risk of a

crisis.

The article is structured as follows. In the next section, we present the mental

health problem context. We describe the predictive models we consider in this study

and their performance in Section 5.3. In Section 5.4 we propose an algorithm to

determine the monitoring threshold and present the monitoring results when using

the XGBoost technique. In the last section, we provide concluding remarks and

limitations. This chapter has been based on Huberts et al. (2020a).

5.2 Problem Description

This section describes the setting in which this case study attempts to monitor the

risk of mental health crises. First, we give a summary of the mental healthcare system

in the Netherlands. We then describe the available data, followed by the definition of

a crisis event.
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5.2.1 The Mental Healthcare System

The total cost of mental healthcare in the Netherlands was estimated to be 6.5 billion

euros in 2017 (Statistics Netherlands, 2017), 416 million euros of which was directly

related to schizophrenia (National Institute for Public Health and the Environment,

2017). The details of the healthcare system are out of scope, but this section describes

the basics.

Similar to the US system, mental healthcare in the Netherlands is organized

through managed competition. In contrast to the US, health insurance is manda-

tory for all Dutch citizens and covers 99.9% of the population (OECD & European

Observatory on Health Systems and Policies, 2019). Insurers are required to accept

all applicants and offer community rating. The deductibles are relatively low in the

Netherlands and there is risk adjustment among insurers. Coverage includes a broad

set of essential health benefits, including out- and in-patient treatment of nearly all

disorders in the Diagnostic and Statistical Manual of Mental Disorders 5 (American

Psychiatric Association, 2013), except select diagnoses such as adjustment disorder

(since 2012). Curative healthcare expenditure is relatively high with per capita spend-

ing of 3, 791 euros in 2017 and the long-term care spending is the highest of all EU

countries. The system is comparatively effective and the Netherlands reports the low-

est rate of unmet medical needs among EU countries (OECD & European Observatory

on Health Systems and Policies, 2019).

5.2.2 Data Description

The non-public Microdata used in this paper is provided by Statistics Netherlands.

It consists of a wide range of de-identified administrative data sets on all 17 million

Dutch citizens. As the data is very sensitive, it is stored on secure servers at Statistics

Netherlands and can solely be accessed on their local terminals.

A patient requires a diagnosis for the health insurer to reimburse the mental

healthcare treatments. The diagnosis, together with the amount of treatment pro-

vided, constitutes the so-called Diagnosis-Treatment-Combination (DBC in Dutch)

that determines the amount of reimbursement. As reimbursement is dependent on

consistent registration, the system results in a clear timeline of the diagnoses and
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activities for a patient.

Mental health data were available for the years 2010 through 2013. The data

includes all registered healthcare information, such as detailed mental health diagnoses

(1.4 million) and psychological treatments (25 million). Furthermore, individual data

on employment, housing, and personal information were available. The data included

in the following concerns the subset of 75,000 people diagnosed with schizophrenia.

The resulting selection consists of an unbalanced panel data set, with a large variation

in the number of registered treatment activities per individual.

The gathered data cannot be used directly for statistical modeling, as the se-

quences of diagnoses and treatments vary widely in length, frequency, and type. Time

series models thus require padding and aggregation to balance the data, which will

produce sparse sequences for many of the included individuals. The decision of the

level of aggregation was motivated by domain experts and set at the week-level. The

week-level aggregation had enough detail to expect predictive value in the data while

resulting in an actionable time-frame for intervention.

Diagnoses and treatments were described in detailed labels. These were condensed

into broader categories to avoid high-dimensionality and sparsity. The 36 resulting

categories of diagnoses are tracked cumulatively. The weekly aggregations of treat-

ments are further aggregated into a short-, medium- and long-term history of 4, 12,

and 64 weeks respectively. The 4 weeks represent the past month of data, the 12

weeks represent the last quarter and the past 64 weeks consist of the last year plus

one quarter to make sure there is overlap between separate (administrative) years.

These three levels result in 264 predictors (74 for each of the three treatment aggre-

gation levels, 36 cumulative diagnoses, and 6 fixed variables) for more than 15 million

person-weeks.

5.2.3 The Definition of Crisis

A variable indicating a crisis was not readily available and had to be constructed

from the raw data. This section describes how the variable to signal a crisis event

was constructed. As described previously, individuals are assigned DBCs. Some of

these DBCs are directly defined as ‘crisis care’, i.e. treating a patient in a mental

health institution due to a crisis. In other cases, crisis care is registered to an existing,
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non-crisis DBC. Therefore, we define the start of a crisis event as the first moment a

crisis DBC was opened or any crisis care was given.

Furthermore, as the goal of the procedure is to support healthcare workers in

identifying individuals at risk of a crisis, the model should not focus on individuals

that are already known to be in a mental health crisis. The crisis care service in

the Netherlands aims to provide a maximum of 12 weeks of crisis care. In the data,

following the start of a crisis an individual will be excluded for the following 20 weeks.

This 20-week period covers the 12 weeks that a crisis can cover, plus some additional

weeks after that, where it could be argued that a patient will be on the radar of the

healthcare professional and a signaling mechanism is not needed to achieve this.

This results in a binary dependent variable on a weekly basis, where a TRUE

value equals the start of the crisis in that week and a FALSE indicating the subject

is not in a crisis. This binary dependent variable is sparse with only 0.285% TRUE

values for all person-weeks.

As the long-term aggregation level (64-week aggregations) includes all diagnoses

and healthcare activities from the past 64 weeks, the first week we can model is

week 65 (i.e. March 2011). Figure 5.1 plots the aggregated number of crises per

week. There are far fewer crises that start in 2013 than the other two years due

to administrative changes and incomplete data for that year. This is important to

consider when evaluating the results.

In total there are just over 28,300 crises that start between March 2011 and De-

cember 2013. These crises are divided over 22,600 people with an average of around

0.4 crisis per person in the data. The mean number of weeks between crises (for

people with multiple crises in the data) equals 51 weeks. Figure 5.2 gives an overview

of the number of crises per individual that had a crisis at least once. A large majority

has one crisis during the three years we consider. Table 5.1 gives an overview of the

ten mental healthcare activities with the largest weekly mean values in the data.

5.3 Predictive Model

This section describes the logistic regression model (similar to Vigod et al., 2015), the

hierarchical regression model, and the XGBoost algorithm that are used to predict
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Figure 5.1 – Number of crises per week from March 2011 (week 65) to December 2013
(week 209)

weekly probabilities of getting a crisis for people diagnosed with schizophrenia.

Define yi,t as a binary variable for individual i “ 1, ..., N and week t “ 1, ...,M .

If person i has a crisis in week t, then yi,t “ 1, if there is no sign of crisis yi,t “ 0.

Let Pi,t be the predicted probability of crisis in week t for person i. Furthermore,

Xi,t contains the constructed features based on the 4-, 12- and 64-week history of

individual i, as well as the individual characteristics.

5.3.1 Regression

Using regression models for prediction has the advantage of high explainability. In

contrast to many of the more advanced machine learning techniques, the parameters

of the logistic and hierarchical regression models we discuss can offer insight into the

process dynamics.
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Figure 5.2 – Number of crises per individual from March 2011 (week 65) to December
2013 (week 209)

5.3.1.1 Logistic Regression

Logistic regression is used to model the probabilities of a categorical outcome variable.

In this case, the categorical outcome is binary. The model for the probability of crisis

Pi,t “ P pyi,t “ 1|Xi,tq for individual i in week t with vector of predictors Xi,t has the

form (Hastie et al., 2009)

Pi,t “
exppβ0 ` β

1Xi,tq

1` exppβ0 ` βTXi,tq
, (5.1)

where β0 is a vector of constants and β1 is the transposed vector of parameters for

the predictors Xi,t. The model is fitted using maximum likelihood. The estimated

parameters β̂0, β̂ can be used for inference and prediction of Pi,t`1.

5.3.1.2 Hierarchical Regression

Hierarchical modeling is almost always an improvement over single level regression

models (Gelman, 2006). In this case, each observation equates to one person-week.
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Table 5.1 – Descriptive statistics for the ten most frequent mental healthcare activities
from March 2011 (week 65) to December 2013 (week 209) per person-week

Activity Mean Std.Dev
Individual contact 4.81 16.92
General no-show/other 1.13 8.04
Individual activating guidance 0.66 7.23
Diagnostics 0.65 8.23
Pharmacotherapy 0.60 4.86
Individual other communication 0.31 3.82
Individual supportive guidance 0.29 4.72
Group contact 0.21 2.91
Patient system 0.17 3.34
Crisis treatment 0.16 4.23

The mental healthcare activities, diagnoses, income changes, and crises leading up to

a specific week all relate to a single person. We can model this as a simple two-level

hierarchy, with the weeks as the lower level and the individual as the upper level (see

Figure 5.3). Suppose we have p0 predictors on the person-week level and p1 predictors

on the person level. The hierarchical model for the log-odds ratio of the probability

of a crisis for individual i in week t is then defined as

log

ˆ

Pi,t
1´ Pi,t

˙

„ NpXi,tαi, σ
2q, for t “ 1, ...,M (Week level),

where the individual level is modelled as

αi „ NpγW 1
i ,Σq, for i “ 1, ..., N (Individual level),

where Xi,t is a 1 ˆ pp0 ` 1q row vector of person-week specific variables such as

mental healthcare activities and diagnoses (see Table 5.1); αi is a pp0 ` 1q ˆ 1 vector

of parameters for individual i; σ2 is the variance for the person-week level; γ is a

pp0 ` 1q ˆ pp1 ` 1q parameter matrix determined by the person i that person-week t

is a part of; Wi is a 1 ˆ pp1 ` 1q row vector of person specific variables such as age

and Σ is the covariance matrix for parameters αi. We estimate the parameters using

restricted maximum likelihood (REML) in the lme4 package in R (Bates et al., 2015).

5.3.2 Machine Learning

A lot of progress has been made in the machine learning domain in recent years.

Increased availability of data and computing power extend the range of models that

75



Leo C.E. Huberts

Individual 1 (i “ 1)

Week 1 (t “ 1) Week 2 (t “ 2) Week 3 (t “ 3) . . .

Individual 2 (i “ 2)

Week 1 (t “ 1) Week 2 (t “ 2) Week 3 (t “ 3) . . .

. . .

Figure 5.3 – Two-level structure of the case study data with individuals pi “ 1, ..., Nq
as the top level. Weeks in the data pt “ 1, ...,Mq belonging to individual i are the
bottom level.

can be estimated. In this section, we discuss a gradient boosting framework called

extreme gradient boosting and a few alternative techniques.

5.3.2.1 Extreme Gradient Boosting

Gradient boosting is one of the most important recent developments in machine learn-

ing (Hastie et al., 2009). XGBoost is an open-source framework to apply gradient

boosting in various programming languages (Chen & Guestrin, 2016). The gradi-

ent boosting decision tree algorithm within XGBoost creates an ensemble of weak

learners that minimize an appropriate loss function. Each weak learner consists of

a regression tree grown on the residuals. Each tree has a number of terminal nodes

j “ 1, .., Jk that each represents a terminal region Rk,j , containing the predictions for

that specific tree. The output of a regression tree k is multiplied by learning rate η

and then added to the predictions of tree k ´ 1.

Figure 5.4 gives a fictional example of two trees grown to predict the risk of getting

heart disease. The values in the terminal nodes are the log-odds logp P
1´P q. The final

prediction equals the initial log-odds prediction plus the predictions of the regression

trees multiplied by the learning rate η. Given the example in Figure 5.4, the final

prediction of the log-odds for a 35-year-old person with a systolic blood pressure of

100 and 90 minutes of physical activity equals 0´0.3ˆ2´0.3ˆ3 “ ´1.5 pP « 0.18q.

The log-odds prediction for 25-year-old person with systolic blood pressure 145 and

30 minutes of physical activity equals 0´ 0.3ˆ 1` 0.3ˆ 1 “ 0 pP “ 0.5q.

In this study, the outcome is binary thus the logistic loss function is used, given

by

Lpyi,t, Pi,tq “ ´yi,t logpPi,tq ` pyi,t ´ 1q logp1´ Pi,tq, (5.2)

for individual i at time t. The algorithm is initialized by setting Pi,t,0 “ 0.5. Then a
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Tree k “ 1 with J1 “ 3 terminal nodes Tree k “ 2 with J2 “ 2 terminal nodes

Age ă 50

Blood pressure ă 140

-2 -1

+1

Y

Y N

N

Physical activity ą 60

-3 +1
Y N

Terminal regions R1,1, R1,2, R1,3 Terminal regions R2,1, R2,2

Figure 5.4 – An example of a tree ensemble model for the risk of heart disease using two trees
(K “ 2) and three variables. The learning rate is η “ 0.3. The initial prediction equals P0 “ 0.5.

manually specified number of trees k “ 1, 2, ...,K is grown on the pseudo-residuals.

The pseudo-residuals are ri,t,k “ yi,t´Pi,t,k´1, where Pi,t,k´1 are the predicted prob-

abilities of the previous iteration k ´ 1.

For each tree k the objective function objpt, kq for log-odds output values fkpXi,tq

consists of the loss function, the pruning term and a regularization term

objpt, kq “

«

n
ÿ

i“1

Lpyi,t, fkpXi,tq ` fk´1pXi,tqq

ff

` χJk `
1

2
λf2

k pXi,tq, (5.3)

where χ is a user specified pruning parameter and λ is a regularization parameter.

The output value at time t for the individuals i in terminal node j “ 1, .., Jk

in tree k that minimizes objpt, kq is approximated using the second order Taylor

expansion. The gradient for Lpyi,t, Pi,tq equals gi,t “ yi,t´Pi,t and the hessian equals

hi,t “ Pi,tp1´ Pi,tq. The output value for node j in tree k is then given by

fpXiPj,t,kq “

ř

iPjpyi,t ´ Pi,t,k´1q
ř

iPj rPi,t,k´1p1´ Pi,t,k´1qs ` λ
. (5.4)

The similarity score used to determine the splits when constructing the decision trees

is found by plugging the output value back into the second order Taylor approximation

and is given by p
ř

ipyi,t´Pi,tqq
2

ř

i Pi,tp1´Pi,tq`λ
.

There are four parameters Θ “ tη, λ, χ,Ku that need to be tuned using cross-

validation. Sparsity-aware split finding in the XGBoost framework ensures the algo-

rithm works efficiently for the sparse data in this study. We use the implementation

of XGBoost in R (Chen et al., 2019).
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5.3.2.2 Other Machine Learning Methods

Several other machine learning techniques can be used in this setting. Examples

include (one-class) support vector machines (SVM), decision trees, random forest,

and elastic nets. For an overview of machine learning methods in process monitoring

see Weese et al. (2016). We applied one-class support vector machines, random forest,

and the elastic net methods to the same data in this paper. Compared to the XGBoost

predictions, these methods produced inferior results. This is the reason that we have

excluded these methods from the analysis. There are some methods, such as recurrent

neural networks (see for example Choi et al., 2016), that require more computing

power than was available at the Statistics Netherlands terminals.

5.3.3 Estimation

To train the models, weeks 1–175 are used. The first 64 weeks are incorporated into

the features, thus the outcomes of weeks 65–175 are used in training. Weeks 176–209

are used to test the predictions. Due to limits in available computing power, the

regression models were trained on a random 50% of the people in the training set. To

cross-validate the parameters of the XGBoost model we use random splits (75%/25%)

of the person-weeks in the training data.

5.3.4 Results

This section describes the results of predicting weekly crises using the logistic re-

gression model, hierarchical model and the XGBoost algorithm described previously.

These results are based on the predictions for the test set of weeks 176-209. Because

of the highly imbalanced nature of the outcome, we consider the mean assigned prob-

abilities for weeks with crises, P̄t|y“1 “
1
N

řN
i“1 Pi,tIpyi,t “ 1q, and without crises

P̄t|y“0 “
1
N

řN
i“1 Pi,tIpyi,t “ 0q. The ratio of these probabilities, rt “

P̄t|y“1

P̄t|y“0
, is a

measure of the predictive power of a model. Values of rt ď 1 indicate that, on av-

erage, the procedure assigns the same or a lower probability to person-weeks with

positive outcome values. Values rt ą 1 show that, on average, the method estimates

a higher probability to person-weeks with positive outcome values. We also report

the widely used area under the receiver operating characteristic curve (AUC) values
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(see Bradley, 1997). AUC values close to 0.5 indicate a total lack of predictive power,

values close to 1 represent perfect prediction.

Table 5.2 – Table of the mean estimated probabilities for the three methods, aggre-
gated by the binary crisis outcome variable

Model P̄t|y“0 P̄t|y“1 rt AUC
Logistic regression* 0.0021 0.0026 1.2260 0.6130
Hierarchical regression* 0.0021 0.0030 1.4370 0.5856
XGBoost 0.0017 0.0062 3.5440 0.6533
*Using 50% of the persons in the data due to limited memory size

Table 5.2 shows the measures of performance for the three methods using the test

set. The logistic regression model does predict a slightly higher probability for person-

weeks with crises with a ratio of 1.226. The limited predictive power is also shown

by the AUC value of 0.613. The hierarchical model incorporates some more of the

structure in the data. The performance in terms of the ratio of predicted probabilities

seems slightly better than the logistic model with rt “ 1.437. Conversely, the AUC

value is lower than for the logistic regression, which indicates a limited predictive

power. Lastly, Table 5.2 shows the results for the XGBoost algorithm predictions

on the test set. The mean ratio rt is around 3.5 and it has the highest AUC score

of the three, which shows there is more predictive power than for the logistic and

hierarchical regressions. On average, for person-weeks with a crisis, the XGBoost

algorithm predicts a probability 3.5 times higher than for person-weeks with no crisis.

This suggests the predicted probabilities of the algorithm might be used as a risk

score to guide mental health workers towards unstable individuals.

5.4 Monitoring

The three models in the previous section predicted if a crisis is likely to occur for an

individual in a given week. This section will discuss the use of these predictions for

monitoring.

Using logistic regression, a hierarchical model, or the XGBoost algorithm to model

the risk of a crisis will result in weekly estimated probabilities. Monitoring these

probabilities requires a probability control limit C. Once a probability Pi,t passes

this limit, the procedure will signal and practitioners can intervene. The choice of C
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will determine the number of false/true signals. A higher value of C will decrease the

share of false signals, but also decrease the absolute number of true signals.

As discussed in Section 1.1.1, in process monitoring the performance of a moni-

toring procedure is often quantified using the False Alarm Rate (FAR) or the Aver-

age Run Length (ARL) (see, for example, Jones & Woodall, 1998; Shu et al., 2004;

Woodall, 2006). The ARL equals the average time it takes for the procedure to signal.

A monitoring procedure is configured to satisfy a required ARL0 or FAR0 as deter-

mined by the practitioner. This generally involves adjusting parameters based on

distributional assumptions or simulation. Distributional assumptions are not realistic

with a machine learning method such as XGBoost. Thus, in the following section,

we propose a simple tuning procedure that achieves a desired FAR0 for a predictive

monitoring approach. This involves cross-validating the predictions and results in a

non-parametric monitoring threshold. Note that the procedure is data-driven, thus

no distributional assumptions are needed.

5.4.1 Tuning Procedure

In this section, we propose a tuning procedure to achieve a FAR0. Assume a prac-

titioner determines a FAR0 based on the monitoring context. In the case of predic-

tive monitoring, a signal is produced when the predicted probability Pi,t exceeds the

threshold C. The following steps determine the value of C that produces the desired

FAR0:

1. Set FAR0, the size of the training set N0 and the test set N1, the number

of cross-validation splits S, the cross-validation proportion q and initialize an

empty vector Ĉ.

2. Split data tX, yu of size N ˆ k into i “ 1, 2, ..., N0 training set tX0, y0u of size

N0 ˆ k and i “ N0 ` 1, N0 ` 2, ..., N test set tX1, y1u of size N1 ˆ k with

N1 “ N ´N0.

3. Draw a random sample R of integers 1, 2, ..., N0 of size qN0 and define the vector

V of size p1´ qqN0 as integers 1, 2, ..., N0 R R.
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4. Split the training set tX0, y0u into tXR, yRu using rows R and tXV , yV u using

rows V .

5. Use tXR, yRu to estimate model F pXq and calculate PV “ F pXV q.

6. Use the grid-search algorithm below to find value ĉ for which 1
p1´qqN0

ř

iPV IpIpPi,V ě

ĉq ‰ yi,V q « FAR0, with Ipq the indicator function.

(a) Set resolution r ą 2, w “ 1{r, search limit wlim to a small value (i.e. 10´5)

and initiate grid G “ t0, 1{r, 2{r, ..., 1´ 2{r, 1´ 1{r, 1u of length r ` 1.

(b) Set c “ minpg P G : 1
p1´qqN0

ř

iPV IpIpPi,V ě gq ‰ yi,V q ă FAR0q.

(c) Calculate FARs “ 1
p1´qqN0

ř

iPV IpIpPi,V ě cq ‰ yi,V q.

(d) Update w as w “ 2w{r and redefine grid G “ tc´ rw{2, c´ rw{2`w, c´

rw{2` 2w, ..., c´ rw{2` pr ´ 1qw, c´ rw{2` rwu of length r ` 1.

(e) If |FAR0 ´ FARs| ą 0.01FAR0 and w ą wlim go back to step (b). If

|FAR0 ´ FARs| ď 0.01FAR0 set ĉ “ c. If |FAR0 ´ FARs| ą 0.01FAR0

and w ď wlim set ĉ “ NA.

7. Save value ĉ in vector Ĉ, if the length of Ĉ is smaller than S return to step 3.

8. Set threshold value Ctuned as maxpĈq for Ĉ ‰ NA. If all values in Ĉ are

NA no threshold was found. Use tX0, y0u to estimate model F pXq and cal-

culate P1 “ F pX1q. The expected FAR (EFAR) then equals EFAR “

1
N1

řN
i“N0`1 IpIpP1,i ě Ctunedq ‰ y1,iq.

Note that the maximum estimated value in Ĉ is set as Ctuned. Assuming the

model generalizes well to new data, this will result in an expected false alarm rate

EFAR that is smaller than FAR0.

The FAR0 set by the practitioner in this procedure translates to all observations

during monitoring. For example, setting FAR0 “ 0.01 will result in 1% of observa-

tions being false alarms. The other 99% of observations consist of true/false negatives

and true positives. A higher FAR0 will result in a lower value of C. We will demon-

strate the procedure in the following section.
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5.4.2 Results

In this section, we monitor the probability of a crisis as predicted by the XGBoost

algorithm. Threshold C determines when the procedure signals. As measures of

performance we consider the precision and recall values as defined in Section 1.2.

Figure 5.5 shows the average estimated probability per week, grouped by the ob-

served value of yi,t. On average, the procedure estimates a visibly higher probability

for the individuals that have a crisis for all weeks. We cannot show individual prob-

abilities to ensure the privacy of the persons.

Figure 5.5 – Average probability per week grouped for people that have a crisis in the
monitoring time frame (orange) and that do not have a crisis (blue)

Table 5.3 shows the precision and recall values for a wide range of values for C.

The table shows perfect recall for C “ 0.0001, but the precision is very low. Perfect

precision is achieved for C “ 0.75, but the recall is very low. This shows that, although

the model does have some predictive power, a high false alarm rate is needed to detect

a large portion of the crises.
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Table 5.3 – Precision and recall values using the XGBoost estimated probabilities and
various values for threshold C

C Precision Recall
0.0001 0.0017 1.0000
0.0010 0.0023 0.7955
0.0100 0.0081 0.0517
0.1000 0.1224 0.0087
0.5000 0.5000 0.0018
0.7500 1.0000 0.0003

5.4.2.1 Weeks Before a Crisis

The individual probability plots often show high volatility in the weeks leading up

to a crisis. In this subsection, we thus consider the average difference in estimated

probability in the weeks before a crisis occurs. Table 5.4 gives the average difference in

estimated probabilities over 10 weeks ( 1
9

řt
l“t´9pPi,l´Pi,l´1q for week t and individual

i), grouped by whether a crisis was observed at the end of those 10 weeks. This shows

that, on average, the estimated average difference in probability of a crisis in the 10

weeks leading up to crisis is 135 times higher than if no crisis is observed after these

10 weeks.

Table 5.5 gives the precision and recall values for a range of C values when pre-

dicting if a crisis will occur within 10 weeks. This shows a higher precision for low

values of C ď 0.1 compared to the weekly predictions (cf. Table 5.3).

Table 5.4 – Average estimated difference in probabilities per crisis/no crisis if we
consider a 10-week period

Crisis within 10 weeks Average estimated difference in probability
No -0.000002
Yes 0.000296
Ratio -135.846300

5.4.2.2 Tuning the Procedure

In this section, we run the procedure including the tuning algorithm for various re-

quired FAR0s. The desired FAR0 produces a value for C through the tuning algo-
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Table 5.5 – Precision and recall values using the XGBoost estimated probabilities of
a crisis within 10 weeks and various values for threshold C

C Precision Recall
1 0.0001 0.0148 1.0000000
2 0.0010 0.0183 0.8244052
3 0.0100 0.0438 0.0265457
4 0.1000 0.1603 0.0010674
5 0.5000 0.5000 0.0001685
6 0.7500 1.0000 0.0000281

rithm outlined in Section 5.4.1. This value Ctuned is then used to monitor the test set.

We use S “ 10 splits in the procedure and use cross-validation proportion q “ 0.75

for all values of FAR0.

Table 5.6 gives the tuned values Ctuned for a set of predetermined false alarm rates

FAR0 P t0.5, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001u, as well as the precision/recall val-

ues in the test set and the actual observed FARobserved. The table shows that all the

FARobserved values are smaller than their respective FAR0 values. In step 8 of the

procedure in Section 5.4.1 the maximum estimated value in Ĉ is set as Ctuned. This

results in FARobserved ď FAR0 for all FAR0 values of Table 5.6.

Table 5.6 – Ctuned-values for various predetermined values of FAR0, as well as the
precision/recall and the observed FARobserved

FAR0 Ctuned FARobserved Precision Recall
0.50000 0.001961 0.233681 0.003285 0.451351
0.10000 0.006116 0.029413 0.006130 0.106306
0.05000 0.008648 0.014699 0.007784 0.067568
0.01000 0.017988 0.003014 0.014247 0.025526
0.00100 0.051656 0.000327 0.064516 0.013213
0.00010 0.139054 0.000060 0.180556 0.007808
0.00001 0.333604 0.000009 0.400000 0.003604

5.5 Concluding Remarks

In this study, predictive monitoring using extreme gradient boosting (XGBoost) is

investigated. We develop a procedure that can produce early warnings of problematic
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events and can be tuned to deliver a desired false alarm rate.

Advances in data collection and machine learning techniques can improve process

quality control by forecasting and monitoring potential process problems. XGboost is

a recently developed powerful machine learning framework that efficiently combines

weak learners to minimize an appropriate loss function. The predictive monitoring

procedure is demonstrated using a real-life example on mental health in the Nether-

lands.

Predictive monitoring is an area of tremendous interest in mental health (Hahn

et al., 2017). A unique non-public data set on mental health in the Netherlands was

provided by Statistics Netherlands. We focused on predictive monitoring of mental

health crises in people diagnosed with schizophrenia. These crises are harmful, fre-

quent, and expensive, which motivated the need for early warnings of these events.

All 75,000 people diagnosed with schizophrenia in the Netherlands were included in

the study. The individual healthcare treatments, diagnoses, admissions, and incomes

were aggregated on a weekly interval. Subsequently, we built explanatory variables

on three levels of aggregation, short- (4 weeks), medium- (12 weeks), and long-term

(64 weeks). The final data set consisted of more than 15 million person-weeks and

264 predictors.

The data was then used to predict the probability of a crisis in a future week.

We compared the performance of logistic regression, hierarchical regression, and the

extreme gradient boosting algorithm. All three methods showed predictive power,

assigning a higher probability of a crisis to individuals that end up in crisis care

in the coming week. The XGBoost framework achieved the highest discriminative

capacity and was subsequently used in the monitoring procedure.

The predicted probabilities were monitored using a threshold value C. The proce-

dure signals when the predicted probability exceeds this value. Each value of C will

result in a number of true/false signals. A higher threshold will result in fewer false

positives, but it will also miss more cases of crisis in the monitoring phase. We pro-

pose a search-algorithm to find a value for C that results in a desired false alarm rate.

This algorithm uses cross-validation on the training data and delivers good results in

this case study.

We also considered the monitoring performance looking up to 10 weeks ahead.
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More specifically, the average estimated difference in probabilities in the weeks leading

up to a crisis was 135 times higher than for weeks that do not lead to a crisis. This

can be used by practitioners to produce early warnings of crises in people diagnosed

with schizophrenia.

Mental health crises on a weekly basis are rare, occurring in less than 0.3% of

the recorded cases. The predictive monitoring procedure shows promising results,

although a high degree of uncertainty remains. The administrative changes in the

final year of the data made predicting crises more challenging. Further tuning of

the parameters could produce more accurate results but are out of the scope of this

study. The proposed tuning algorithm provides a tool for practitioners to configure

the monitoring procedure based on the available capacity.

Some challenges in the application of the predictive monitoring procedure in men-

tal health remain. The data wrangling operation is extensive. The administration

of treatments and diagnoses is complicated causing inconsistencies among healthcare

providers. The facilities to process and clean the numerous protected Microdata

sources are currently limited in the Netherlands. Improving the consistency and im-

proving the computational facilities will boost the predictive performance.

A logical avenue for further research is the application of recurrent neural networks

to a similar data set. This requires more computational capacity than was available

in this study. Furthermore, applying the predictive monitoring procedure to a process

with a less sparse outcome is of interest.

In summary, predictive monitoring using XGBoost can produce good results in

the mental health domain, as well as other areas. It can be tuned to achieve a

desired false alarm rate and is capable of handling large amounts of (sparse) data.

The tuning procedure and unique data set in this study represent a new direction in

process monitoring.
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Chapter 6

Multilevel Predictive Process
Monitoring in Education

6.1 Motivation

“Early Warning Indicator Reports were invaluable to the success of our school” (high

school principal, a quote from the Strategic Data Project Report by Becker et al.,

2014). These early warning indicator reports monitor students throughout their school

career and warn teachers and staff of students with high dropout risks. According to

Romero & Ventura (2019), such early identification of vulnerable students who are

prone to fail or drop their courses is crucial for the success of any learning method.

Also, monitoring allows for the identification of students who are insufficiently chal-

lenged and will benefit from more stimulating classroom material.

Navigating the large body of literature in Statistical Process Monitoring (SPM),

predictive monitoring and educational data mining is a daunting task when looking

for answers as to what metrics should be monitored and which methods should be

implemented.

Multilevel modeling is often a good method in educational settings and can be

used for predictive monitoring in quality control. In this chapter, we demonstrate

such a procedure and aim to guide researchers and practitioners in monitoring student

performance, specifically in a high school setting. To achieve this, we work closely with

a Dutch high school to answer the following questions 1) What determines student

performance? 2) How can SPM be used in monitoring student progress? 3) What
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Class 1 (h “ 1)

Student 1 (j “ 1)

Course 1 (i “ 1) Course 2 (i “ 2)

Student 2 (j “ 2)

Course 3 (i “ 3)

Student 3 (j “ 3)

Course 4 (i “ 4)

Class 2 (h “ 2)

Student 4 (j “ 4)

Course 5 (i “ 5)

Student 5 (j “ 5)

Course 6 (i “ 6) . . .

. . .

. . .

Figure 6.1 – The hierarchical structure of the case study data with classes as the top
level. Students within these classes are the middle level and courses followed by these
students form the lower level.

method can be used for predictive monitoring of student results? This chapter has

been based on Huberts et al. (2020c).

6.1.1 Statistical Process Monitoring

A method that is used for multivariate processes is profile monitoring. Profile moni-

toring checks the stability of the modeled relationship between a response variable and

one or more explanatory variables over time. Often profile monitoring uses regression

control charts that were first introduced by Mandel (1969). The current body of re-

gression control charting literature almost exclusively handles the monitoring of linear

profiles using classical regression models. Weese et al. (2016) noted that large data

sets often contain complex relationships and patterns over time, such as hierarchical

structures and autocorrelation.

The case study presented in this chapter contains complex relationships and pat-

terns, notably the hierarchical structure of courses, students, and classes (see Figure

6.1). State-of-the-art multivariate control charting based on linear regression models

ignores this structure. However, incorporating hierarchical structures into the models

can improve the reliability of a monitoring system. Therefore, we will develop a con-

trol chart that can signal at three levels, the class, student, and course level. Also,

Woodall & Montgomery (2014) gave an overview of current directions in SPM and

highlighted profile monitoring with multiple profiles per group as a topic for further

research.

The advantage of using a hierarchical model is an improved estimation of process

variability; according to Gelman (2006), hierarchical modeling is almost always an im-

provement compared to classical regression. The reason is that a hierarchical model

includes the effects of both observed and unobserved variables, where unobserved vari-
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ables are not explicitly measured but inherent to the group. Another advantage over

classical regression is that a multilevel model provides a way to monitor new groups

since the model generates some prior beliefs upon which to base the distribution and

the prediction for the new groups. Furthermore, in contrast with classical regres-

sion, multilevel modeling is capable of prediction for groups with a small number of

observations.

Multilevel models have been used in agricultural and educational applications for

decades (Henderson et al., 1959; Aitkin & Longford, 1986; Bock, 1989; Aaronson,

1998; Sellström & Bremberg, 2006).

Today, hierarchical models are used in spatial data modeling (Banerjee et al.,

2014), extreme value modeling (Sang & Gelfand, 2009), quantum mechanics (Berend-

sen, 2007) and even in the modeling of intimacy in marriage (Laurenceau et al., 2005).

However, to the best of our knowledge, multilevel modeling has not found its way to

SPM. Schirru et al. (2010) modeled multistream processes in semiconductor manufac-

turing using a multilevel model, but it is only applicable to two levels. Qiu et al. (2010)

considered nonparametric profile monitoring using mixed-effects modeling, although

they did not consider hierarchical modeling.

This chapter will explore process monitoring for a school data set that contains

the grades of students in different groups over time. The school is interested in

monitoring deviations in student results from what is given by the model, which is a

form of profile monitoring. Therefore, we will investigate SPM based on hierarchical

Bayesian models. In the next section, we will discuss the use of a hierarchical model

to predict outlying results on the student level.

6.1.2 Predictive Monitoring

Becker et al. (2014) emphasized the need for actionable predictive analytics in high

schools to keep students on track toward graduation and better prepare them for

college and career success. The report discussed three examples of early warning

indicator systems that help school teachers and management with early identification

of students with a lower probability of passing, based on logistic regressions of student

grade and attendance information.

Early prediction of learning performance has gained more traction in the literature,
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as showcased by a recent special issue of IEEE Transactions on learning technologies.

Together with monitoring big and complex data, predictive monitoring is recently be-

ing considered in quality technology literature (for example Kang et al., 2018; Wang

et al., 2019). Although our case study focuses on the use of predictive monitoring to

improve the quality of education, the presented methods can be used in any setting

where clear hierarchical data structures exist. Baghdadi et al. (2019) stated that

the ability to estimate when the performance will deteriorate and what type of in-

tervention optimizes recovery can improve the quality and productivity and reduce

risk concerning worker fatigue. Our case study offers a very similar approach to im-

prove the quality and productivity of high school education by monitoring student

performance.

The hierarchical model will thus be applied in two ways. First, control charting

is applied based on the multilevel model. Second, the multilevel model is used for

predicting results on the student level. We will compare the results of the multilevel

model to one-level regression and the appropriate machine learning method. The final

results present a hierarchical early warning indicator system, that can be applied in

schools for predictive monitoring of student outcomes.

The outline of this chapter is as follows. The next section describes the relevant

educational literature, the practical problem we aim to solve, and the available data.

The hierarchical model and its performance are discussed in the section after this,

followed by a section that investigates student performance monitoring. The last

section summarizes the results.

6.2 Problem Description

In this section, we describe related student performance literature, the goal of the

method to be developed, and the data set including the predictor variables.

6.2.1 Student Performance Literature

This section will shortly discuss a selection of determinants of student performance,

whose selection has been based on a literature study. The determinants, their expected

effects on performance, and their modeling approach are summarized in Table 6.1.
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The important variables will be used in the modeling approaches of later sections.

The ‘unobserved’ variables represent variables that were not available in this study,

but the hierarchical modeling specification incorporates many of these ‘unobserved

differences’ between students and students within courses.

Table 6.1 – Summary of determinants of student performance according to the liter-
ature and modeling approach

Determinant Effect on performance
Student level Class level Modeling approach

SES ` Explanatory variable
Disabilities ´ Explanatory variable
Language `/´ Explanatory variable
Non-native `/´ ´ Explanatory variable
Student effort ` ` Student unobserved heterogeneity
Peer associations `/´ `/´ Student/course unobserved heterogeneity
Parent involvement ` Student unobserved heterogeneity
School climate `/´ `/´ Course unobserved heterogeneity
Intelligence ` Explanatory variable, student unobserved heterogeneity
Grades ` Time varying explanatory/dependent variable
Absences ´ ´ Time varying explanatory variable

Nichols (2003) found a significant relationship between poor performance at the

beginning of students’ educational careers and later on. Furthermore, students who

struggle academically had increased school absences, and students from lower-income

families showed a higher probability of poor results. This suggests an important role

for family income, absences, and temporal effects in predicting individual high school

performance.

Socioeconomic status (SES) has long been argued to significantly affect school per-

formance, although the importance varies greatly among different analyses. Geiser

& Santelices (2007) argued omission of socioeconomic background factors can lead

to significant overestimation of the predictive power of academic variables, that are

strongly correlated with socioeconomic advantage. They based this assumption on a

study by Rothstein (2004), which argued the exclusion of student background char-

acteristics from prediction models inflates college admission tests’ apparent validity

by over 150 percent.

Disabilities can be a determinant of student performance. Dyslexic children fail to

achieve school grades at a level that is commensurate with their intelligence (Karande

& Kulkarni, 2005). Although they might not be directly linked to learning, disabili-

ties like asthma, epilepsy, and autism can indirectly influence academic performance.

91



Leo C.E. Huberts

Autistic children can face a lot of problems in school as their core features impair

learning. Furthermore, medical problems like visual impairment, hearing impairment,

malnutrition, and low birth weight can cause difficulties in school.

The language that children speak at home can influence their academic abilities

both positively (Buriel et al., 1998) and negatively (Kennedy & Park, 1994). Collier

(1995) found that immigrants and language minority students need 4-12 years of sec-

ond language development for the most advantaged students to reach deep academic

proficiency and compete successfully with native speakers. It has been suggested

that the presence of non-native speakers in schools harms the performance of na-

tive speakers, but this has been refuted by Geay et al. (2013). In contrast, children

who interpret for their immigrant parents; ‘language brokers’, often perform better

academically (Buriel et al., 1998).

Some variables remain unobserved but can be incorporated in models by allow-

ing for unobserved heterogeneity. One is student effort, which is characterized by

the level of school attachment, involvement, and commitment displayed by the stu-

dent (Stewart, 2008). Also, peer influence, i.e. the associations between high school

students, matter a great deal to individual academic achievement and development

(Nichols & White, 2001). Besides, parent involvement is likely to influence academic

achievement. Sui-Chu & Willms (1996) found that the most important dimension

of parent involvement towards academic achievement is home discussion. They sug-

gested facilitating home discussion by providing concrete information to the parents

about parenting styles, teaching methods, and school curricula. Finally, school cli-

mate (a.o. Stewart, 2008) and intelligence (Rohde & Thompson, 2007; Laidra et al.,

2007; Parker et al., 2006) are important for academic achievement.

Parent involvement, disciplinary climate, and individual intelligence are usually

quite difficult to measure. This study aims to incorporate them nonetheless. Parent

involvement is incorporated mostly in student unobserved heterogeneity. Limited ob-

served information on the parents is included in the predictive model (i.e. education

level and SES). Disciplinary climate and class disruptions are mostly covered by in-

cluding absences that equate to dismissals from class and within unobserved course

differences. Individual intelligence is approximated using primary school test scores.

Next, some time-varying variables are important. The first variable is the grade.
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For each course, specific tests are taken with varying weights. Anytime during the

year, these tests determine a current weighted average grade for each student and

course. The resulting end-of-year grade is the most important student performance

indicator. Also, absences are important as attending class helps students understand

the material and motivates their participation (Rothman, 2001). The variables test

grades and absences are generated over time. Finally, temporal effects on student

performance encompass both inter-year changes and intra-year changes. Students

will change the allocation of their effort and time according to their current average

grade, their average grade for other courses, seasonal effects, within school changes,

and external factors. Ideally, modeling will allow for student and course-specific effects

to vary over time. The next section will describe the Dutch high school system.

6.2.2 The Dutch High School System

The Dutch school system in general consists of eight years of primary school, followed

by four, five, or six years of high school. There is one level of primary school, but

there are multiple levels of high school. Two criteria have been used in recent years

to determine the level of high school a child is allowed to go to. Firstly, there is the

teacher’s advice. The teacher advises the level that fits the child in the final year of

primary school. This advice is based on the performance of the child in a specific

primary school.

Secondly, the National Institute for Test Development (in Dutch: Centraal Insti-

tuut voor Toets Ontwikkeling, abbreviated by CITO) test is a test that is developed

by the CITO organization and is scientifically designed to test a child’s academic

abilities. It was initiated in the Netherlands by the famous psychologist professor

A.D. de Groot in 1966 and every primary school is required to conduct the CITO or

a similar test in the final year as of 2014.

To pass any specific year of high school, conditions set by the school have to be

met. These conditions usually consist of requirements on the end-of-year average

grades for all the student’s courses. The grades in most Dutch high schools are on a

scale from 1 to 10. The end-of-year grades are usually rounded, and a course is failed

or ‘insufficient’ if the rounded grade is below 6. The amount of allowed ‘failpoints’,

i.e. the total points below six, can then be restricted. A school might, for example,
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have a student repeat the current year if he or she scores more than two failpoints,

which could be a student with a grade of three for a single course or a four and a five

or three fives at the end of the year. The restrictions are not limited to the number of

failpoints. There can be requirements on the total average grade and certain subtleties

emerge once the students start splitting up into high school profiles, where different

students do a different set of courses from their fourth year on. These school profiles

can have special requirements, usually with more importance assigned to the profile

courses.

When implementing a predictive monitoring scheme in a school, the specific rules

employed by a school define the passing probability that is estimated. For example,

when a student is failing a profile course, this can lead to failing the year directly. If

the same student would obtain the same grade for a different course, this would not

necessarily mean failing the year. Therefore, different courses have different levels of

importance to the probability of success for individual students. The school that has

kindly provided the data described in the next section has different passing conditions

for each year. Although the implementation at the school incorporates all conditions,

the predictive analyses in this chapter reflect a simplified version to demonstrate the

detective capabilities of the methods.

6.2.3 Data Set

A large, detailed data set was provided by a Dutch high school. In total there are

eight years of data available, comprising of 36 different subjects followed by over 1,700

unique students (about 51% girls) and 711,653 individual tests. The students were

born in 38 different countries, spoke 18 different languages, and were taught by 110

different teachers. Out of the unique students, 326 had some kind of disability while

at school, 162 had a non-Dutch nationality and 51 students had a serious language

barrier. The number of students with parents who have attended university or higher-

level academics is 261 and 86% of students were residents of the large city that the

school is located in during their time at the Dutch high school.

To incorporate socioeconomic status (SES) in this analysis, nation-wide social

status data provided by the Dutch government was used. The relative SES score of a

student using a country-wide ranking of his or her postal code was added to the data
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set.

Learning disabilities that have been confirmed by the school are included in the

data set. The most common learning disabilities reported in the data are Attention-

Deficit/Hyperactivity Disorder (ADHD) and dyslexia.

The data used in this chapter contains grades that are on a 1-10 scale. Although

easy to interpret, some difficulties arise when using these grades for modeling. First,

as Figure 6.2 shows, there are peaks at integer grades and grades on a .5 scale. This

is due to teachers grading on an integer or .5 point scale instead of using continuous

grades. This becomes less of a problem with average grades, as they are eventually

rounded but fairly continuous during the year.
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Figure 6.2 – Histogram of the individual test grades in the data

Second, when predicting the precise end-of-year grade, grades below 1 or above 10

should be impossible. However, both grades should have some positive probability,

as some students do achieve average grades of 10 for specific courses during a year.

The following section describes the selected predictor variables in the data.

6.2.4 Determinants of Student Performance

We have discussed some of the literature on determinants of high school performance

in Section 6.2.1. This section investigates these variables in the data.

The raw values for the most important categorical variables in the data are plotted

in Figure 6.3. The first pair of boxplots in Figure 6.3 shows that girls seem to

outperform boys in terms of final grades, which is consistent with the literature in

95



Leo C.E. Huberts

different settings (see Rahafar et al., 2016; Deary et al., 2007; Battin-Pearson et al.,

2000, for examples of gender gap findings in academic achievement). The second pair

of boxplots in Figure 6.3 indicates that students with a disability achieve lower end-

of-year grades, consistent with the findings of Karande & Kulkarni (2005). Children

of highly-educated parents seem to perform slightly better at this school in terms of

final grades, as depicted in the third pair of boxplots in Figure 6.3.

In line with Buriel et al. (1998), children born outside of the Netherlands do not

underperform as shown by the fourth pair of boxplots in Figure 6.3. Students with

a different native language do achieve slightly lower grades in the data, supporting

conclusions by Collier (1995) and Kennedy & Park (1994). The end-of-year grades

are lower towards the end of high school, as indicated in Figure 6.3.

Figure 6.4 shows the two most important numerical independent variables plotted

against the final grades. The CITO score has a positive correlation with grades as

shown by the positive linear trend in Figure 6.4a. This makes sense, as the CITO

test is designed as a predictor of individual intelligence. Furthermore, in line with

Rothman (2001), more absences mean lower final grades in the data, as indicated by

the negative linear trend in Figure 6.4b.

6.3 Hierarchical Model

The objective is to monitor student progress during the school year, where the school’s

main interest lies in signaling ‘exceptional’ students. Exceptional students can be both

underperforming and overperforming students. In this section, we introduce a three-

level hierarchical model for student grades and compare its performance to simpler

models in monitoring student performance.

6.3.1 The Model

Throughout the year, students take tests for every course i “ 1, ...., n0. The grades

for these tests are defined as gki P r1, 10s with k “ 1, ..,Ki, where Ki is the number

of tests taken in course i. As these grades are obtained for individual tests, we have

a set of cumulative weighted average grades yi,jris,hrjriss for course i, student j and

class h. For readability we drop subscripts j and h. The individual test results gki
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Figure 6.3 – Boxplots of the final grades for the most important categorical predictor
variable

and the weights of the tests wki determine the average grade yi “
řKi

k“1 wkigki
řKi

k“1 wki

, with

yi P r1, 10s.

We consider a hierarchical model with three levels and use the index i pi “

1, 2, ..., n0q to denote the individual course level, j pj “ 1, 2, ..., n1q to denote the

individual student level and h ph “ 1, 2, ..., n2q for the class level (see Figure 6.1). We

have p0 predictors for the course level, p1 for the student level and p2 for the class

level. We define row vectors XpL0q

i , X
pL1q

j and XpL2q

h , which consist of the intercept

and predictor values for the course, student and class levels respectively.

We model cumulative weighted average grade yi for course i as

yi „ NpX
pL0q

i β
pL0q

jris , σ
2q, for i “ 1, ..., n0 (Course level),

where the student levels are modelled as

β
pL0q

j „ Npβ
pL1q

hrjs X
pL1q1

j ,ΣpL1qq, for j “ 1, ..., n1 (Student level),

and the class levels are specified by

vecpβ
pL1q

h q „ NpβpL2qX
pL2q1

h ,ΣpL2qq, for h “ 1, ..., n2 (Class level),
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(a) Final grades versus CITO score (b) Final grades versus total absences

Figure 6.4 – Scatterplots of the final grades and most important numerical variables
with a linear trendline

where XpL0q

i is a 1 ˆ pp0 ` 1q row vector of subject specific variables such as course

content and level; βpL0q

jris is a pp0 ` 1q ˆ 1 vector of parameters for student j that

follows course i; σ2 is the variance for the course level; βpL1q

hrjs is a pp0 ` 1q ˆ pp1 ` 1q

parameter matrix determined by the class h that student j is in; XpL1q

j is a 1ˆpp1`1q

row vector of student specific variables such as age, absences and IQ; ΣpL1q is the

covariance matrix for parameters βpL0q

j ; vecpβpL1q

h q is the vectorized version of βpL1q

h

with dimensions pp0 ` 1qpp1 ` 1q ˆ 1; βpL2q is a pp0 ` 1qpp1 ` 1q ˆ pp2 ` 1q parameter

matrix at the class level; XpL2q

h is a 1ˆ pp2 ` 1q row vector of class specific variables

such as class size; and ΣpL2q is the covariance matrix for parameters βpL1q

h .

6.3.2 Estimation

The parameters of a multilevel model can be estimated using, among other methods,

maximum likelihood, generalized least squares, and Bayesian theory (Hox et al., 2017).

A discussion of Bayesian and likelihood-based techniques for multilevel models was

given by Browne & Draper (2006). These authors show that Bayesian estimation

often provides an improvement over likelihood methods in terms of both point and

interval estimates as well as the posterior distributions for the parameters. We use
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Bayesian estimation to estimate the parameters in this chapter.

The full parameter space tβpL0q, σ2, βpL1q,ΣpL1q, βpL2q,ΣpL2qu, where βpL0q and

βpL1q are constructed by stacking the parameter matrices βpL0q

j and β
pL1q

h for all

groups j and h respectively, can be estimated based on data that are considered

representative, i.e. in control. To estimate the parameters, we use the Bayesian

method applying Markov Chain Monte Carlo (MCMC) methods which use the Gibbs

sampling procedure. These methods are described in the appendix and are applied

using the rJAGS package to link to JAGS (Plummer, 2018).

As the number of parameters increases quickly with added group levels, estimation

time increases greatly as well. Thus when defining a multilevel model, there is a

tradeoff between added precision and the additional estimation time for a group level.

In a two-level model, the number of parameters we need to estimate is 1 for σ2,

pp0 ` 1qpp1 ` 1q for βpL1q and 1
2 pp0 ` 1qpp0 ` 2q for ΣpL1q (βpL0q is constructed using

the estimates for βpL1q). For the three-level model this increases, with 1 for σ2,
1
2 pp0`1qpp0`2q for ΣpL1q, pp0`1qpp1`1qpp2`1q for βpL2q and 1

2 pp0`1qpp1`1qppp0`

1qpp1`1q`1q for ΣpL2q (βpL0q and βpL1q are constructed using the estimates for βpL2q).

For example, if there are three parameters per level, the number of parameters is 27

for a two-level model and 211 for a three-level model.

After applying the estimation procedure as described in the appendix, we obtain

the estimations for the parameters in the three-level model, which we denote by

tβ̂pL0q, σ̂2, β̂pL1q, Σ̂pL1q, β̂pL2q, Σ̂pL2qu. Later on we can use this three-level model for

monitoring the relationships given by the model as well as for predicting results.

6.3.3 Recurrent Neural Network

Recurrent neural networks (RNNs) are a family of neural networks designed to process

sequential data sources (Goodfellow et al., 2016). RNNs model a sequence of steps

and allows previous outputs to be inputs. The long short-term memory (LSTM)

model introduced by Hochreiter & Schmidhuber (1996) is an RNN that has been very

successful in recent years (Lipton et al., 2015). It is a gated version of an RNN that

adds input-, output- and forget-gates that regulate the flow of information in cells.

For details on the LSTM model we refer to Hochreiter & Schmidhuber (1996) and

Lipton et al. (2015). We will fit an LSTM model of the ‘many-to-one’ type as depicted
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in Figure 6.5 using Keras in R (Allaire & Chollet, 2019).

S0 S1 S2 St

yi

Xi,0 Xi,t1 Xi,t2
Xi,1. . .

Figure 6.5 – Illustration of a many-to-one long short-term memory model. The inputs
are represented by Xi,t at various times t during the year, the cells with hidden states
by S and yi represents the single output

6.3.4 Results

In this section, we consider the accuracy of the end-of-year average grade estimates for

N “ 3, 839 courses and 268 students during the school year 2014/2015. This subset

consists of the first-, second- and third-year students. In the fourth year, students

choose a profile, which changes the class compositions. The five school years from

2009 to 2014 are used to estimate the parameters.

As benchmarks, we consider using the weighted average grade pyiq and a simple

one-level linear regression model (ŷsrq to predict. The one-level linear regression fits

yi “ Xiβ ` εi using the same predictors as the multilevel specification.

As measures of accuracy, we report the Root Mean Squared Errors (RMSE) and

the Nearest Neighbors proportions (NN). The RMSE is calculated as

RMSE “

d

1

N

ÿ

iPN

pyi ´ ŷiq2, (6.1)

with i identifying all the predicted grades and N the total number of grades. The

RMSE score strongly punishes large errors. The second measure of performance is

nearest neighbors percentage (NN)

NN “
1

N

ÿ

iPN

Ipŷi ´ 1 ď yi ď ŷi ` 1q. (6.2)

Note that an alternative criterion is the Mean Absolute Deviation (MAD). However,

those results were comparable to the RMSE.
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Table 6.2 – RMSE and NN results for the predictions of the 2014/2015 end-of-year
grades of 268 students using the average grade (yi), the simple regression (ŷsr), the
hierarchical specification (ŷH) and the recurrent neural network (ŷRNN )

Time RMSE NN
t yi ŷsr ŷH ŷRNN yi ŷsr ŷH ŷRNN

0 - 1.15 0.86 1.14 - 0.80 0.90 0.80

0.1 1.53 1.07 0.84 1.07 0.70 0.83 0.91 0.83

0.3 1.04 0.83 0.74 0.82 0.86 0.92 0.94 0.92

0.5 0.77 0.67 0.65 0.65 0.93 0.96 0.96 0.97

0.7 0.51 0.48 0.47 0.53 0.98 0.98 0.98 0.98

Table 6.2 reports the RMSE and NN for the recurrent neural network (ŷRNN ),

the hierarchical model (ŷH), the one-level linear regression fit (ŷsr) and the weighted

average (yi) at five points in time t “ 0, 0.1, 0.3, 0.5, 0.7.

The two performance measures in Table 6.2 show the superiority of the hierarchical

method ŷH when predicting end-of-year grades at the beginning of the year (t “ 0).

As the year progresses, the relative advantage of the model decreases over time as

more grades accumulate and the final grade is less uncertain. Table 6.2 also shows

that the performance of the RNN model of Section 6.3.3 is very similar to the one-level

regression model.

A comparison of Tables 6.3 and 6.4 clarifies the advantage of the hierarchical

regression model compared to a one-level model. Both tables show the predicted and

realized end-of-year grades before the start of the year. The difference in RMSE of

0.292 might not seem worth the trouble at first, but when we compare these two

tables, Table 6.4 shows much more granularity in the results. The hierarchical model

identifies much more structure in the data, which is especially valuable in predicting

far above- and below-average grades.

6.4 Monitoring Student Performance

This section is about monitoring student performance using accumulated test grades.

We will consider SPM techniques and predictive monitoring.
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Table 6.3 – Confusion matrix of the predictions for the 2014/2015 end-of-year grades
of 268 students based on the simple linear regression model at t “ 0

Actual grades
3 4 5 6 7 8 9 10

P
re
di
ct
ed 6 0 1 0 0 0 0 2 0

7 9 53 208 722 962 747 283 33
8 0 6 20 134 255 252 140 12

Table 6.4 – Confusion matrix of the predictions for the 2014/2015 end-of-year grades
of 268 students based on the three-level model at t “ 0

RMSE = 0.860
Actual grades

3 4 5 6 7 8 9 10

P
re
di
ct
ed

3 0 1 1 0 0 0 0 0
4 0 1 3 2 0 0 0 0
5 3 10 19 27 11 2 0 0
6 4 36 114 358 182 55 10 0
7 2 10 83 425 749 434 79 3
8 0 2 8 43 267 464 213 14
9 0 0 0 1 8 44 118 22
10 0 0 0 0 0 0 5 6

6.4.1 Statistical Process Monitoring

To use a classical control chart technique (i.e. the Shewhart, CUSUM, or EWMA

charts of Section 1.1.1) we need a Phase I data set that serves as a training set and

a Phase II data set that will be a test set (Vining, 2009). Phase I is used to analyze

the model and to estimate the parameters involved. The data used are assumed to be

in control, and monitoring begins in Phase II. In this case, and many other practical

examples, there is no obvious Phase I at hand. We could use student data from

previous years as Phase I. These are not available however, for first-year students,

for new courses, and in case of limited data. Furthermore, a second-year course is

different from a first-year course and most students don’t repeat a year. Identifying

a clear Phase I/Phase II setup is thus difficult. These problems are amplified by the
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fact that yi is not i.i.d., violating the assumptions of the basic use of charts.

By modeling yi, we can correct for a lot of the problems we see for classical control

charting techniques. We model yi at time t using all test grades before time t, with

t P ttI , T u where tI indicates the start of the school year and T the end of the school

year. We then calculate an expected value ŷi. The difference between the expected

value and the actual observed value yi at time t can then be monitored in a Phase II

data set using a residuals control chart setup.

6.4.1.1 Three-level Control Chart

In this case, we evaluate whether the relations given by the three-level model still

hold. To this end, we monitor the residuals at the three levels. For existing groups,

we have estimates of the full parameter space tβ̂pL0q, σ̂2, β̂pL1q, Σ̂pL1q, β̂pL2q, Σ̂pL2qu.

Then using these estimated parameters, we can calculate the residuals for the three

levels for any new observation tyi, X
pL0q

i , X
pL1q

j , X
pL2q

h u

r
pL0q

i “ yi ´X
pL0q

i β̂
pL0q

jris

r
pL1q

j “ β̂
pL0q

j ´ β̂
pL1q

hrjs X
pL1q1

j ,

r
pL2q

h “ vecpβ̂
pL1q

h q ´ β̂pL2qX
pL2q1

h ,

where rpL0q

i , r
pL1q

j and rpL2q

h are the residual vectors at the three levels of size 1, pp0`1q

and pp0 ` 1qpp1 ` 1q respectively.

In line with traditional SPM techniques, we want to determine if a new observation

stems from the in-control Phase I distribution, which was obtained using estimation

(i.e. Phase I) data tXpL0q

I , X
pL1q

I , X
pL2q

I , yIu of size n0, where X
pL0q

I is the n0ˆpp0`1q

matrix with the ith row containing the intercept and predictor values for course i.

The other matrices are constructed in a similar way. The residuals can be monitored

using control charting techniques.

For example, we can use a Shewhart control chart taking the mean and variance

estimates from Phase I for rpL0q

i with upper and lower control limits zUCLy “ 3σ̂2

and zLCLy “ ´3σ̂2. The chart signals when the residual exceeds one of the control

limits, after which the underlying cause can be investigated.

For rpL1q

j and rpL2q

h , multivariate control charts are needed because these residuals

are multidimensional. A multivariate Hotelling T 2 chart offers a solution with test
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statistics (cf. 11.23 in Montgomery, 2007)

T 2
pL1q

“ n0r
pL1q1

j Σ̂pL1qr
pL1q

j , (6.3)

T 2
pL2q

“ n0r
pL2q1

h Σ̂pL2qr
pL2q

h , (6.4)

where n0 is the number of observations used to estimate the covariance matrix. The

lower control limit for these T 2 charts is LCL “ 0, the upper control limit with

false alarm percentage α is UCLpL1q “
p1pn0´1q
n0´p1

Fα,p1,n0´p1 for T 2
pL1q

and UCLpL2q “

p2pn0´1q
n0´p2

Fα,p2,n0´p2 for T 2
pL2q

.

If the T 2
pL2q

chart gives a signal, the root cause analysis can focus on the class

level; if the T 2
pL1q

chart gives a signal the root cause analysis can focus on the student

level; and if the Shewhart chart gives a signal, the root cause analysis can focus on

the course level.

Besides monitoring the residuals, there is the option of monitoring the parameter

estimates. Similar to Kang & Albin (2000), a T 2 chart can be used to monitor the

parameter estimates tβ̂L0 , σ̂2, vecpβ̂pL1qq, Σ̂pL1q, β̂pL2q, Σ̂pL2qu.

6.4.1.2 Example

To illustrate this three-level monitoring approach, we monitor the cumulative weighted

average yi at 15 times throughout the school year 2014/2015 using the same subset

as in the previous. Phase I consists of the five school years from 2009 to 2014; Phase

II is the school year 2014/2015 for the 3,839 courses followed by 268 first-, second-

and third-year students. We apply the hierarchical regression model and monitor the

residuals using a Shewhart control chart.

The school aims to detect ‘exceptional’ courses and students. It considers excep-

tional courses as final grades below 6 or above 8. Each point below 6 is counted as

a ‘failpoint’. A single course with an end-of-year grade 5 equals 1 failpoint; a single

course with an end-of-year grade 3 equals 3 failpoints, and one course grade of 4 and

one of 3 equals 5 failpoints, etc. On the other hand, each point above 8 is counted

as an ‘excelpoint’. Thus the maximum grade of 10 for a course equals 2 excelpoints.

An exceptional student is a student with at least four failpoints, and/or at least four

excelpoints.

The three-level model estimates have an overall RMSE of 1.172. Figure 6.6 displays
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an example of a Shewhart chart monitoring the residuals of the first level rpL0q

i . The

chart signals four times near the end of the year. In total, the residuals charts signal

190 times (88 of which (46.32%) are exceptional courses), for 112 different students

(36 of which (32.14%) are exceptional students).

●

●
●

●

● ● ●

● ●

● ●

●

● ●

●

−2.5

0.0

2.5

0.25 0.50 0.75 1.00

Time

S
ta

tis
tic

Figure 6.6 – Residual Shewhart control chart monitoring rpL0q

i based on a three-level
regression (signals in red)

As given by Equation (6.3), we can also monitor the student level residuals using

a Hotelling T 2 chart. Using the same data as in the previous, the T 2 chart signals at

least once for 105 students (38 (36.19%) of which are exceptional students).

The charts signal exceptional cases throughout the year. However, we can not

retrospectively determine if at the time of a signal there was some unknown factor

that influenced the performance of student j for course i. We are thus unable to

distinguish false from true signals. It does, however, out-of-the-box, identify students

whom we know have interesting performance during the monitoring phase.

The statistical monitoring approach identifies incidental anomalies in the weighted

averages. However, the school’s main focus is to identify students who need either

support or more challenging coursework. This monitoring approach is insufficient for

that goal. Therefore, in the next section, we use the hierarchical model to monitor

student expected end-of-year results to identify under- or overperforming students.
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6.4.2 Predictive Monitoring

The high school in this case study aims to predict the end-of-year grades of its stu-

dents. This enables the school to receive early warnings on exceptional students. In

this section, we will thus consider predictive monitoring of student performance.

6.4.2.1 Multilevel Predictive Monitoring

As demonstrated in Section 6.3.4, the predictions of the three-level model are relatively

accurate. Furthermore, the three-level model can be used for new students/classes,

and when there are a small number of courses per student or students per class. In

this section, we will thus use the three-level model for predictive monitoring.

We want to monitor P pEqt, defined as the probability of some event E at time

t. P pEqt summarizes the outcome of the model into a single predictive probability

at time t, with t P ttI , T u where tI indicates the start of the year and T the end of

the year. The chart signals when P pEqt exceeds threshold C, which is defined as the

maximum allowed probability of event E occurring (0 ă C ă 1). Event E concerns

the values of yi, which is context dependent and can take many forms (yi “ e, yi ě e,

yi ď e, e1 ď yi ď e2,
řb
i“a yi ě e etc., where e, e1 and e2 are arbitrary constants and a

and b are integers between 1 and n0). Following the MCMC estimation of the posterior

densities of the parameters θ “ tβpL0q, σ2, βpL1q,ΣpL1q, βpL2q,ΣpL2qu as described in

the supplementary material, we can use the posterior densities to calculate P pEqt.

The steps for predictive monitoring are

1. Define event E and threshold C

2. Specify the multilevel model for yi

3. Estimate the parameters to obtain θ̂I using the Phase I data at time tI using

MCMC, described in the appendix

4. Calculate P pEqt using the newly available observations at time t ą tI

5. Signal if P pEqt ą C

6. Re-estimate the parameters to obtain θ̂t using all available data at time t and

go back to step 4 for a new timepoint tII ą t.
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Assume that we have a large in-control Phase I data set tXpL0q

I , X
pL1q

I , X
pL2q

I , yIu

at time t “ tI . At time t ă tI we obtain the estimates for the parameters

tβ̂pL0q, σ̂2, β̂pL1q, Σ̂pL1q, β̂pL2q, Σ̂pL2qu based on observations in Phase I. As described

in the appendix for the three-level model, using the estimates of the parameters, at

any time t ą tI we have a predicted distribution for the outcome variable ŷi,t

ŷi,t „ N
´

pX
pL0q

i,t bX
pL1q1

jri,ts qβ̂
pL2qX

pL2q1

hrjri,tss,

pX
pL0q

i,t bX
pL1q

jri,tsqΣ̂
pL2qpX

pL0q

i,t bX
pL1q1

jri,ts q `X
pL0q

i,t Σ̂pL1qX
pL0q1

i,t ` σ̂2
¯

,

where b is the Kronecker product. We can use this result to estimate the probability

of the outcome P pEqt. The event E can take several forms. Suppose we consider

yi ď e, i.e. we study that the grade yi is less than e. The monitoring scheme we

propose uses the posterior distribution of ŷi,t to calculate the probability P pEqt. The

chart signals when P pEqt ą C, with C the threshold that determines the maximum

allowed probability of event E.

Monitoring P pEqt requires periodic re-estimation of the parameters to incorporate

newly available information at time t. Around the time event E occurs, the probability

P pEqt converges to 1 if t Ñ T . The major advantage of monitoring P pEqt instead

of yi,t is that, depending on the predictive capability of the multilevel model, the

monitoring scheme provides early warning and the opportunity to intervene before

event E occurs. If intervention occurs, it is important to include this in the predictors

tXpL0q, XpL1q, XpL2qu by including an additional variable, to extract the effect of the

intervention on outcome E. Furthermore, there is no need for n0 control charts. All

that is required is a single control chart plotting values of P pEqt and signaling for

observations or groups for which P pEqt exceeds C.

6.4.2.2 Example

Following the steps outlined before, we define two events: Ef as a student failing

the year and Ee as a student excelling that year. Ef occurs if a student has four

or more failpoints, as defined in the previous section (the number of points below 6

for all courses a student follows in a year). Ee occurs if a student has four or more

excelpoints (the number of points above 8 for all courses a student follows in a year).

The end-of-year rounded grade of student j for course i is defined as yij . At time
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t, the probability of a student failing the year can thus be summarized by P pEfj qt “

P p
řnj

i“1 maxp0, p6´ yijqq ě 4qt, where nj is the number of courses for student j. The

probability of a student excelling in the year can then be summarized by P pEej qt “

P p
řnj

i“1 maxp0, pyij ´ 8qq ě 4qt at time t.

Using the same data set as in the previous section, Figure 6.7 shows a control chart

of 1´P pEfj qt for J “ 268 students at 15 points in time. As an example, the threshold

C “ 0.05 is depicted as a dashed line. Note that 1 ´ P pEfj qt equals the probability

of passing the year. The Jp “ 238 students who passed are depicted in blue and the

probabilities of the Jf “ 30 students who failed in red. Although there are some

exceptions, overall the model consistently estimates the passing probabilities for the

students who fail the year much lower than the students who pass the year. This can

also be seen in the probabilities of failure in Table 6.5. This table reports the values of
1
Jp

ř

jPJp
P pEfj qt (the average estimated probability of failure for students that pass

the year) in the top row and 1
Jf

ř

jPJf
P pEfj qt (the average estimated probability of

failure for students that fail the year) in the bottom row. The model consistently

assigns a higher average probability of failure to students that end up failing the year.

Figure 6.8 plots P pEej qt for the same J “ 268 students. The Jn “ 222 students

who did not excel are depicted in red and the probabilities of the Je “ 46 students

who excelled are depicted in blue. As an example, threshold C “ 0.95 is depicted as

a dashed line. The model has impressive performance, shown also by the differences

in average probabilities over time between students who excel, 1
Je

ř

jPJe
P pEej qt, and

those that do not, 1
Jn

ř

jPJn
P pEej qt, as depicted in Table 6.6.

Table 6.5 – Average estimated probabilities of failing P pEf qt for 268 students in
2014/2015, split by observed outcome

Time
Failed 0 0.1 0.3 0.5 0.7 0.9 1
No 0.02 0.02 0.04 0.03 0.03 0.01 0.00

Yes 0.27 0.28 0.52 0.61 0.75 0.79 1.00

Depending on the threshold C that determines if the monitoring scheme signals,

the model correctly identifies several students who will fail/excel as well as some

false positives. Tables 6.7 and 6.8 report the precision and recall values as defined in
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Figure 6.7 – A control chart monitoring the estimated probabilities of passing 1 ´
P pEf qt for 268 students in 2014/2015, with dashed threshold C “ 0.05 in black. The
dashed blue lines represent students who passed, the red solid lines students who
failed

Section 1.2 when monitoring Ef and Ee respectively.

Table 6.7 shows the procedure correctly identifies students who will fail the year

early on. The performance is impressive, where, depending on the chosen level of

C, multiple early warnings are generated aiding in the student support system. For

example, setting C at 0.75, the procedure identifies almost half (14 out of 30) of the

students who will fail before the start of the year with only 26% (5) false positives.

Table 6.8 shows the precision and recall values when predicting excelling students.

Depending on the school’s preferences, high precision or recall can be achieved early

on in the year. For example, setting C at 0.50, the procedure identifies half (23 out

of 46) of the students who will excel before the start of the year with only 15% (4)

false positives.
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Figure 6.8 – A control chart monitoring the estimated probabilities of excelling P pEeqt
for 268 students in 2014/2015, with dashed threshold C “ 0.95 in black. The solid
blue lines represent students who excelled, the red dashed lines students who did not
excel

The multilevel monitoring procedure has shown its value in a high school setting,

as it adequately provides expected end-of-year grades for all students and subjects.

This can aid in classifying at-risk students who need support, as well as the areas

in which they need help. On the other side of the spectrum, the model successfully

identifies excelling students who can benefit from more challenging schoolwork. The

model further provides easily interpretable results, as well as good explainability for

the parameters.
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Table 6.6 – Average estimated probabilities of excelling P pEeqt for 268 students in
2014/2015, split by observed outcome

Time
Excelled 0 0.1 0.3 0.5 0.7 0.9 1

No 0.05 0.04 0.04 0.06 0.04 0.03 0.00
Yes 0.50 0.49 0.50 0.61 0.67 0.81 1.00

Table 6.7 – PrecisiontpCq (RecalltpCq) results when monitoring P pEf qt with various
values of C and t using the three-level model predictions of end-of-year grades for 268
students in 2014/2015

C
0.05 0.1 0.25 0.5 0.75 0.999

T
im

e

0 1 (0.07) 1 (0.07) 1 (0.07) 0.67 (0.13) 0.74 (0.47) 0.25 (0.93)
0.1 1 (0.07) 1 (0.07) 1 (0.07) 1 (0.27) 0.71 (0.40) 0.25 (0.93)
0.3 1 (0.10) 1 (0.20) 0.85 (0.37) 0.76 (0.53) 0.67 (0.67) 0.27 (1)
0.5 1 (0.33) 1 (0.43) 0.94 (0.53) 0.79 (0.63) 0.67 (0.67) 0.34 (0.97)
0.7 1 (0.57) 1 (0.63) 0.88 (0.73) 0.77 (0.70) 0.70 (0.77) 0.40 (0.97)
0.9 0.90 (0.63) 0.86 (0.63) 0.88 (0.70) 0.81 (0.70) 0.81 (0.73) 0.59 (0.90)
1 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

6.5 Concluding Remarks

This study has considered three research questions concerning high school students’

performance. We worked together with a Dutch high school in attempting to answer

the following questions (1) What determines student performance? (2) How can SPM

be used in monitoring student progress? (3) What method can be used for predictive

monitoring of student results? This resulted in the use of a three-level model in a

predictive monitoring scheme, that can be applied when monitoring hierarchical data.

We discuss our results in the following section.

6.5.1 What Determines Student Performance?

The detailed data set made available by a Dutch high school has shown interesting

determinants of student performance. These are generally in line with the educational

literature and are useful when monitoring student progress.

Female students were found to obtain higher final grades. In line with the litera-
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Table 6.8 – PrecisiontpCq (RecalltpCq) results when monitoring P pEeqt with various
values of C and t using the three-level model predictions of end-of-year grades for 268
students in 2014/2015

C
0.99 0.95 0.75 0.5 0.25 0.01

T
im

e

0 1 (0.02) 1 (0.09) 0.93 (0.3) 0.85 (0.5) 0.69 (0.72) 0.38 (0.89)
0.1 1 (0.04) 1 (0.2) 0.94 (0.35) 0.72 (0.46) 0.71 (0.65) 0.45 (0.87)
0.3 1 (0.09) 1 (0.28) 0.89 (0.37) 0.83 (0.54) 0.68 (0.54) 0.45 (0.85)
0.5 1 (0.37) 1 (0.41) 0.92 (0.52) 0.77 (0.59) 0.65 (0.67) 0.47 (0.96)
0.7 1 (0.43) 1 (0.48) 0.89 (0.54) 0.88 (0.61) 0.72 (0.78) 0.57 (0.93)
0.9 1 (0.57) 1 (0.63) 0.94 (0.74) 0.88 (0.83) 0.8 (0.87) 0.64 (1)
1 1 (1) 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

ture, students with disabilities perform slightly worse. Children with highly-educated

parents were found to outperform their peers with less-educated parents in this case

study.

The nationality and language barrier variables represent an interesting case study

of the discussed theory on immigrant and language barriers in academia. Consistent

with work by Geay et al. (2013) and the “language broker” effect of Buriel et al.

(1998), students born abroad achieve similar performance to their locally born peers.

A serious language barrier seems to produce slightly lower grades. This, in turn, is

consistent with findings by Kennedy & Park (1994) and Collier (1995).

Students show a decrease in performance through their high school career, with

around half a point difference in grades between the first and fourth years of high

school. Absences seem to have a strong negative correlation with grades. On a policy

level, the relationship between the primary school test scores (CITO) and student

grades should be considered towards current discussion around the determinants of

the high school level.

The main goal of the school was to monitor student performance as the process

output throughout the year. Therefore, statistical and predictive monitoring tech-

niques were considered.
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6.5.2 Statistical Process Monitoring

Classical SPM techniques are often insufficient when applied to complex processes,

for which increasingly large data sets are available. When a hierarchical structure is

present in the data set, multilevel modeling improves the reliability of process moni-

toring. Using multilevel models improves estimation accuracy and explainability over

regular linear regression models. Furthermore, the method is essential for predictive

modeling of new students/classes or students/classes with small sample sizes.

Univariate SPM techniques proved insufficient in this case study and one-level

linear regression models did not provide satisfactory results. We have discussed a

three-level model together with the monitoring options. Residual control charting

at the three levels was proposed as the multilevel statistical monitoring method for

online monitoring of process output. The proposed multilevel monitoring framework

did provide promising results.

6.5.3 Predictive Monitoring

A predictive monitoring method has been developed to enable an early warning mon-

itoring system. This method monitors the probability of an event, rather than a

process output. The three-level model was used to continuously predict end-of-year

individual grades. Using a Bayesian hierarchical model, probability distributions for

the student outcomes are obtained. These can be used to monitor unwanted results

in the form of under- and overperforming students using a single predictive control

chart setup. This predictive monitoring approach was shown to be very useful in prac-

tice, as the school obtains valuable early warnings on both under- and overperforming

students.

The proposed multilevel process monitoring framework can be useful across many

applications, including industrial processes (batch production, multiple factories),

market monitoring, HR analytics, sports, and more. Implementation of multilevel

models can be challenging, however, especially in a Bayesian setting. Sampling pro-

cedures can be used to simplify the analysis. We have provided a full analysis of the

three-level model and its estimation in the supplementary material, where we used

Gibbs sampling to estimate the parameters. Using these parameters, predictions
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were made for the monitoring period, after which the parameters can be updated to

improve the predictive power of the model. Predictive monitoring results in early

warning systems, that can greatly aid in early detection and prevention of special

cause variation.

We argue the importance of predictive monitoring in general. As more and more

data are available, the use of more complex models can extract more information

towards valuable predictions. Summarizing complex processes into simple and inter-

pretable results is essential. Multilevel modeling is one method that achieves this,

which is applicable in cases where a clear hierarchy is present. There are of course

many more statistical and machine learning methods that can be applied. We en-

courage research that investigates the use of these methods in a predictive monitoring

setting.

Concluding this chapter, early warning indicator systems have the potential to

improve the educational system at a low cost. These systems can add a layer of so-

phistication to school and teacher performance evaluation and work towards fulfilling

individual student needs.

6.6 Appendix

6.6.A Predictive Distribution

If we represent the three-level model as

yi “ X
pL0q

i β
pL0q

jris ` ε
pL0q

i , εpL0q „ Np0, σ2
yq (6.5)

β
pL0q

j “ β
pL1q

hrjs X
pL1q1

j ` ε
pL1q

j , εpL1q „ Np0,ΣpL1qq

vecpβ
pL1q

h q “ βpL2qX
pL2q1

h ` ε
pL2q

h , εpL2q „ Np0,ΣpL2qq,

we can summarize the model as

yi “ X
pL0q

i vec´1pβpL2qX
pL2q1

hrjrissqX
pL1q1

jris `X
pL0q

i vec´1pε
pL2q

h qX
pL1q1

jris `X
pL0q

i ε
pL1q

jris ` ε
pL0q

i .

We obtain parameter estimates tβ̂pL0q, σ̂2, β̂pL1q, Σ̂pL1q, β̂pL2q, Σ̂pL2qu using the obser-

vations during Phase I time period t ă tI . At any time t ą tI we have a predicted

distribution for the outcome variable ŷi,t. Considering the distributions of the error
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terms ŷi,t has a normal distribution

ŷi,t „ N
´

pX
pL1q

jri,ts bX
pL0q

i,t qβ̂pL2qX
pL2q1

hrjri,tss,

pX
pL1q

jri,ts bX
pL0q

i,t qΣ̂pL2qpX
pL1q

jri,ts bX
pL0q

i,t q1 `X
pL0q

i,t Σ̂pL1qX
pL0q1

i,t ` σ̂2
¯

,

where b is the Kronecker product and we use the relationship vecpABCq “ pC 1 b

AqvecpBq.

6.6.B Prior Distributions

The full parameter space θ “ tβpL0q, σ2, βpL1q,ΣpL1q, βpL2q,ΣpL2qu, where βpL0q and

βpL1q are constructed by stacking the parameter matrices βpL0q

j and βpL1q

h for all groups

j and h respectively, are estimated using the Gibbs sampler (Casella & George, 1992).

The Gibbs sampler approximates the posterior distribution by sampling from the full

conditional distributions of the parameters. We use the rJAGS package in R to link

to JAGS (Plummer, 2018).

The estimation requires prior distributions for the unknown parameter space. Pa-

rameters βpL0q and βpL1q have priors given explicitely by the model. Proper diffuse

priors are chosen for parameters tσ2,ΣpL1q, βpL2q,ΣpL2qu.

The vector vecpβpL2qq has a multivariate normal prior Npa,Bq, with diagonal

covariance matrix B and larger values of B reflecting greater uncertainty. Thus proper

but diffuse priors were determined, with a “ 0 and B “ 1000I, where I is the identity

matrix.

The covariance matrix ΣpL1q associated with level 1 student unobserved differences

and the covariance matrix ΣpL2q for unobserved group level 2 differences are both

defined as positive definite matrices with Inverse Wishart priors W´1pC, pp0` 1q` 1q

for ΣpL1q and prior W´1pD, pp0 ` 1qpp1 ` 1q ` 1q for ΣpL2q. C and D are diagonal

matrices, where smaller values correspond to more diffuse priors. Values for these

inverse Wishart distributions are set at C “ D “ diagp0.001q.

For the variance parameter σ2 of the error term in the model the inverse Gamma

distribution, IGpa, bq, was chosen. We use an uniformative prior, with parameters

a “ 0.001; b “ 1; σ2 „ IGp0.001, 1q.
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6.6.C Full Conditional Distributions

The Gibbs sampling procedure uses the full conditional distributions of the unknown

parameter space. Although they are not necessary when using rJAGS (Plummer,

2018), we report them below to be used in a Gibbs sampler or similar Markov Chain

Monte Carlo (MCMC) sampling methods.

The likelihood function of the n0 observed grades is the joint density of the data

conditional on the parameters.

Lpθq “
n0
ź

i“1

fpyi|θq “ p2πq
´n0{2σ´n0exp

˜

´1

2σ2

n0
ÿ

i“1

pyi ´X
pL0q

i β
pL0q

jris q
2

¸

.

Let vector Y of size n0 contain the observed values yi. The full conditional distribu-

tions of the individual parameters are each proportional to ppY, θq:

fpY, θq9fpβpL2qqfpσ2qfpΣpL1qqfpΣpL2qq

n2
ź

h“1

fpβ
pL1q

h |ΣpL2q, βpL2qq (6.6)

n1
ź

j“1

fpβjh|Σ
pL1q, β

pL1q

h q

n0
ź

i“1

fpyijh|βjh, β
pL1q

h ,σ2q.

We then calculate the full conditional distributions by multiplying the prior by the

likelihood and simplifying.

Calculation of the Full Conditional Distribution of βpL0q

j

We calculate the full conditional distribution of βpL0q

j using 6.6 and simplifying, i.e.

fpβ
pL0q

j , |Y, σ2, β
pL1q

h , βpL2q,ΣpL1q,ΣpL2qq9fpβ
pL0q

j |Σj , β
pL1q

h q ˆ

Nj
ź

i“1

fpyij |β
pL0q

j , β
pL1q

h ,σ2q9

NpV ´1M,V q,

with V “ pΣpL1q´1 ` σ´2X
pL0q1

iPj X
pL0q

iPj q
´1 and M “ pΣpL1q´1β

pL1q

h X
pL1q1

j `

σ´2X
pL0q1

iPj YiPjq.
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6.6. APPENDIX

Calculation of the Full Conditional Distribution of βpL1q

h

We calculate the full conditional distribution of vecpβpL1q

h q using 6.6 and simplifying,
giving

fpvecpβ
pL1q

h q|Y, σ2, β
pL0q

j , βpL2q,ΣpL1q,ΣpL2qq9

fpvecpβ
pL1q

h q|ΣpL2q, βpL2qq

NjPh
ź

j“1

fpβ
pL0q

j |ΣpL1q, β
pL1q

h q

NiPh
ź

i“1

fpyijh|β
pL0q

j , β
pL1q

h , σ2q9

exp

«

´ pvecpβ
pL1q

h q ´ βpL2qX
pL2q1

h q1ΣpL2q´1pvecpβ
pL1q

h q ´ βpL2qX
pL2q1

h q´

ÿ

jPh

´

pβ
pL0q

j ´ β
pL1q

h X
pL1q1

j q1ΣpL1q´1pβ
pL0q

j ´ β
pL1q

h X
pL1q1

j q

¯

ff

.

For further calculations, we define A “ vecpβ
pL1q

h q, B “ βpL2qX
pL2q1

h , C “ ΣpL2q,
Dj “ β

pL0q

j , E=ΣpL1q, Xj “ X
pL1q

j , this gives

fpvecpβ
pL1q

h q|Y, σ2, β
pL0q

j , βpL2q,ΣpL1q,ΣpL2qq9P pA|B,C,Dj , E,Xjq9

exp

«

´ pA´Bq1C´1pA´Bq ´
ÿ

jPh

”

D1jE
´1Dj ´ 2pXj b pD

1
jE
´1qqA`A1pXj b pX

1
j b EqqA

ı

ff

9

exp

«

´A1

¨

˝C´1 `
ÿ

jPh

`

Xj b pX
1
j b E

´1q
˘

˛

‚A`A1pC´1Bq `

¨

˝B1C´1 ` 2
ÿ

jPh

`

Xj b pD
1
jE
´1q

˘

˛

‚A

ff

,

which shows that the full conditional distribution of vecpβpL1q

h q is a multivariate

normal distribution with covariance matrix
˜

ΣpL2q´1 `
ÿ

jPh

´

X
pL1q

j b pX
pL1q1

j b ΣpL1q´1q

¯

¸´1

and mean
˜

ΣpL2q´1 `
ÿ

jPh

´

X
pL1q

j b pX
pL1q1

j b ΣpL1q´1q

¯

¸

pΣpL2q´1βpL2qX
pL2q1

h q.

Calculation of the Full Conditional Distribution of ΣpL1q

We calculate the full conditional distribution of ΣpL1q using 6.6 and simplifying, i.e.

ppΣpL1q|Y, σ2, β
pL0q

j , β
pL1q

h , βpL2q,ΣpL2qq9fpΣpL1qq

n1
ź

j“1

fpβ
pL0q

j |ΣpL1q, β
pL1q

h q9

|ΣpL1q|´pn1`ν`p0`2q{2expp´trppSL1 ` CqΣpL1q´1{2q

with SL1 “
řn1

j“1pβ
L0
j ´ β

pL1q

hrjs X
pL1q1

j q1pβL0
j ´ βL1

hrjsX
pL1q1

j q, which shows that the full

conditional distribution of ΣpL1q is W´1pSL1 ` C, n1 ` νq.
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Calculation of the Full Conditional Distribution of ΣpL2q

We calculate the full conditional distribution of ΣpL2q using 6.6 and simplifying, giving

ppΣpL2q|Y, σ2, β
pL0q

j , β
pL1q

h , βpL2q,ΣpL1qq9fpΣpL2qq

n2
ź

h“1

fpvecpβ
pL1q

h q|ΣpL2q, βpL2qq9

|ΣpL2q|´pn2`ν`2p0p1`2q{2expp´trppSL2 `DqΣpL2q´1{2q

with SL2 “
řn2

h“1pvecpβ
L1

h q ´ βL2X
pL2q1

h q1pvecpβL1

h q ´ βL2X
pL2q1

h q, which shows that

the full conditional distribution of ΣpL2q is W´1pSL2 `D,n2 ` νq.

Calculation of the Full Conditional Distribution of βpL2q

We calculate the full conditional distribution of βpL2q using 6.6 and simplifying, i.e.

ppvecpβpL2qq|Y, σ2, β
pL0q

j , β
pL1q

h ,ΣpL1q,ΣpL2qq9fpvecpβpL2qqq

n2
ź

h“1

fpvecpβ
pL1q

h q|ΣpL2q, βpL2qq,

which, similarly to βpL1q

h , has a multivariate normal distribution with covariance ma-

trix

˜

B´1 `
ÿ

h

´

X
pL2q1

h b pX
pL2q

h b ΣpL2q´1q

¯

¸´1

and mean
˜

B´1 `
ÿ

h

´

X
pL2q1

h b pX
pL2q

h b ΣpL2q´1q

¯

¸

pB´1aq.

Calculation of the Full Conditional Distribution of σ2

We calculate the full conditional distribution of σ2 using 6.6 and simplifying, giving

ppσ2|Y, β
pL0q

j , βpL2q, β
pL1q

h ,ΣpL1q,ΣpL2qq9fpσ2q

n0
ź

i“1

fpyijh|βjh, β
pL1q

h ,σ2q9

σ´pa`n0{2`1qexpp´σ´2pb`
n0
ÿ

i“1

pyi ´X
pL0q

i β
pL0q

jris q
2{2q,

which shows that the full conditional distribution of σ2 is proportional to an IGpa`
n0

2 , b`
1
2

řn0

i“1pyi ´X
pL0q

i β
pL0q

jris q
2q distribution.
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Chapter 7

Summary

In this dissertation, Statistical Process Monitoring (SPM) and Predictive Process

Monitoring (PPM) for big data sets have been discussed. We analyzed the use of

classical control charting techniques as well as predictive solutions.

In Chapter 2 of this thesis, we investigated the use of the Central Limit Theorem

(CLT) in monitoring large data streams. Because averages are normally distributed

under certain conditions, according to the CLT, this should largely resolve the issue

of non-normally distributed data. However, we showed that the tail behavior for the

means of non-normally distributed subsamples deviates strongly from normality. The

degree to which the distribution of the mean deviates depends on various factors:

the sample size, the number of samples, the specified desired performance of the

control chart, and the degree of the deviation from normality. For example, when

the deviation from normality is substantial due to heavy tails (t4) or substantial

skewness (lognormal), the tail behavior can not be accurately approximated by the

normal distribution even when the sample size is 1000. The implications are especially

relevant for process monitoring.

Chapter 3 of this thesis is concerned with the continuous updating of parameters

during process monitoring. We studied the effects of updating in various scenarios for

three types of control charts. The results support updating control limits as long as

the reason for out-of-control signals is known and the origin can be retraced. If this is

not the case, the best strategy depends on the size of the expected mean deviation. We

suggest further research on the behavior of updating the limits for various subgroup
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sample sizes, as well as on performance for varying distributional assumptions.

In Chapter 4 a procedure to introduce a delay in updating control chart param-

eters is discussed. As discussed in Chapter 3, updating using contaminated samples

should be avoided. The methods described in this chapter prevent these contaminated

updates while maintaining the improvements in parameter estimation. In a case study

using COVID-19 related data, we demonstrated the added value of updating control

chart parameters for mortality rates in the Netherlands.

The second part of this thesis considers PPM. In Chapter 5 we considered the use of

various machine learning techniques in PPM. A wide range of predictive techniques

is available that are largely data-driven. We introduce a procedure to tune these

predictions towards a desired false alarm rate in monitoring. Using a unique non-

public data set on mental health, we investigate the performance of machine learning

techniques. The Extreme Gradient Boosting (XGBoost) algorithm is subsequently

used to monitor the risk of relapse in people diagnosed with schizophrenia. The

procedure can aid healthcare workers in identifying people that are likely to need

preventive care. Future research using more consistent data and a longer timeframe

is encouraged. Neural networks can potentially improve predictions, as well as the

addition of high-frequency data sources.

In Chapter 6 of this thesis, we introduced multilevel process monitoring. Mod-

eling the hierarchical structure of a process can improve parameter estimates and

the predicted probabilities. Furthermore, using a multilevel model allows monitor-

ing at the different measurement levels. An educational case study was presented

to illustrate this approach. Bayesian hierarchical modeling was used in a predictive

monitoring procedure. This method produced more accurate predictions than the ap-

propriate machine learning method. The procedure allows early warnings for students

that have ‘exceptional’ performance. This aids schools in personalizing education and

quality control. We suggest further research of the procedure using industrial process

data of a hierarchical nature and varying the Bayesian priors in analyses.

In conclusion, the increase in available data and improvements in technology en-

able a new phase in SPM and PPM. Updating process parameter estimates will im-

prove the use of control charts. Introducing a delay in these updates can prevent the

use of contaminated data. Furthermore, early intervention based on PPM in services
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and industry can support the efficient use of resources and prevent processes and

people from spiraling out of control.
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