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Abstract
Borderline Personality Disorder (BPD) is characterized by an increased emotional sensitivity and dysfunctional capacity 
to regulate emotions. While amygdala and prefrontal cortex interactions are regarded as the critical neural mechanisms 
underlying these problems, the empirical evidence hereof is inconsistent. In the current study, we aimed to systematically 
test different properties of brain connectivity and evaluate the predictive power to detect borderline personality disorder. 
Patients with borderline personality disorder (n = 51), cluster C personality disorder (n = 26) and non-patient controls (n = 44), 
performed an fMRI emotion regulation task. Brain network analyses focused on two properties of task-related connectivity: 
phasic refers to task-event dependent changes in connectivity, while tonic was defined as task-stable background connectiv-
ity. Three different network measures were estimated (strength, local efficiency, and participation coefficient) and entered 
as separate models in a nested cross-validated linear support vector machine classification analysis. Borderline personality 
disorder vs. non-patient controls classification showed a balanced accuracy of 55%, which was not significant under a per-
mutation null-model, p = 0.23. Exploratory analyses did indicate that the tonic strength model was the highest performing 
model (balanced accuracy 62%), and the amygdala was one of the most important features. Despite being one of the largest 
data-sets in the field of BPD fMRI research, the sample size may have been limited for this type of classification analysis. 
The results and analytic procedures do provide starting points for future research, focusing on network measures of tonic 
connectivity, and potentially focusing on subgroups of BPD.

Keywords  Borderline personality disorder · Machine learning · Classification · Phasic vs. tonic brain connectivity · 
Networks analysis · Network measures

Introduction

Borderline Personality Disorder (BPD) is characterized by 
a pervasive pattern of instability of interpersonal relation-
ships, self-image, affect, and impulse control [1]. Particu-
larly, an increased sensitivity to emotions and a dysfunc-
tional capacity to regulate emotions is considered to be 
one of the hallmark features of BPD [2]. Research gener-
ally focuses on increased amygdala and reduced prefrontal 
activity as the neural mechanism underlying these processes 
[3]. Furthermore, previous research suggests a disruption 
of functional connectivity between these brain areas (e.g., 
[4, 5]). While some research findings indeed fit this pattern, 
the inconsistency of results on this topic is perhaps even 
more notable [3]. For example, there is a large discrepancy 
between studies on the involvement of lateral and medial 
prefrontal regions in BPD during emotion regulation [3]. 
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There are several potential reasons for this, such as small 
samples (low statistical power) and flexibility in analyses, 
which we aim to address in the current study.

Graph theory is a powerful framework to evaluate the 
highly interconnected nature of the brain [6], particularly by 
addressing the balance between the integration of a network 
on the one hand, and the segregation into modules on the 
other [6]. Network measures capture to what extend brain 
regions form important hubs that connect different submod-
ules of a network [7] and alterations in these hub regions 
characterize several psychiatric disorders [8]. While network 
analyses are often based on resting-state functional Mag-
netic Resonance Imaging (fMRI) data, the principles can 
be extended to capture task-related network reconfiguration 
of a network [9]. Here we aim to investigate the predictive 
power of these different network properties to classify BPD 
patients.

Predictive modeling through machine learning algorithms 
[10] provides a framework to quantify how well the different 
network measures can classify BPD. It can be considered a 
two-step approach, where the first question is if there is any 
pattern to detect and classify a target variable. Subsequently, 
one can aim to assess the contributions (feature weights) of 
the input data, at least in case of linear classification models, 
which are most commonly used in fMRI [11]. To date, one 
study has applied a brain network approach to classifying 
BPD [12] and displayed a promising classification accuracy 
of 80%. Increased efficiency of the amygdala, entorhinal 
cortex, and temporal pole in BPD were some of the main 
discriminative features, which may reflect clinically well-
observed borderline characteristics of emotion processing 
dysfunction. Yet, this study contained a small sample (20 
patients, 10 controls), which necessitates further investiga-
tion, and whether or not such models can distinguish BPD 
from other personality disorders also remains to be investi-
gated. Additionally, this work utilized resting-state connec-
tivity, which does show overlap with task-related activation 
patterns [13], but does not directly tap into emotion regula-
tion processes.

Here, we investigated whole-brain connectivity during an 
emotion regulation task, to assess task-state related shifts in 
network configuration [9, 14]. Specifically, we focused on 
delineating two characteristics: phasic connectivity: the task-
event related changes in brain connectivity (see [9, 15, 16 for 
comparable approaches] and tonic connectivity: background 
connectivity of brain regions, unrelated to task-events. We 
build on our previous work [17, 18] and compare BPD to 
non-patient controls (NPC) and cluster-C personality disor-
der patients as a relevant clinical control group. Due to the 
importance of emotion regulation in BPD, we expected that 
the phasic connectivity shifts would show the highest classi-
fication accuracy. We further examined which brain regions 
were most important in the classification, particularly the 

critical functional subnetwork modules related to psychiatric 
disorders: the emotion (including the amygdala), motivation, 
cognitive control, and default mode modules of the brain 
[19]. We hypothesized that BPD would show decreased cog-
nitive control-related phasic connectivity during cognitive 
emotion regulation compared to controls.

Materials and methods

A detailed outline of the participant inclusion, the task, as 
well as fMRI data acquisition and preprocessing is described 
elsewhere [17, 18]. Below are summaries for each section.

Participants

Patients with BPD or Cluster-C personality disorders were 
recruited from mental health clinics at two sites in the Neth-
erlands (Maastricht, Heerlen) and three sites in Germany 
(Freiburg, Lübeck, Hamburg), see “Brain parcellation and 
subject inclusion” of the results for the subject inclusion. 
Non-patient controls (NPC) were recruited from the gen-
eral population at each site. Participants had to be hetero- or 
bisexual women aged 18–65 years, and were assessed by 
trained interviewers according to the DSM-IV criteria using 
the Structural Clinical Interview (SCID) II and I [20]. All 
participants provided written informed consent. The study 
was approved by the local ethical committees.

Task

Participants performed an adapted version of an emotion 
regulation paradigm, which involved the presentation of 
pictures that were preceded by a safe (emotion regulation) 
or look instruction. During the safe trials, participants were 
asked to imagine themselves as being in a safe situation. 
This regulation strategy was based on a central element of 
schema therapy, one of the main therapies for BPD [17]. 
There were 4 categories of picture stimuli (negative, neu-
tral, positive, and erotic), and the task consisted of 96 trials 
divided into 4 runs of 24 trials each (see Fig. 1a for an out-
line of a trial). As part of the scanning session, participants 
also underwent resting-state scans before and after the task.

fMRI data

Acquisition and preprocessing

Functional and structural MRI data were acquired with 
3  T scanners. The Functional images were acquired 
with a T2*-weighted echo planar imaging (EPI) 
sequence, with the following parameters: TR = 2000 ms, 
TE = 27 ms, flip angle = 90°, FoV = 192 × 192 mm, voxel 
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size = 3 × 3 × 3 mm, and matrix = 64 × 64. In Maastricht 
240 images and in Freiburg and Lübeck 252 images were 
collected. The number of interleaved axial slices in one 
volume was 32 in Maastricht and 34 in Freiburg and 
Lübeck. In Maastricht and Freiburg, the T2*-weighted 
slices were adjusted with a negative tilt of 30°, with the 
goal of minimizing susceptibility and distortion arti-
facts within the amygdala. The anatomical images were 
acquired with a T1-weighted sequence, with the fol-
lowing parameters: TR = 2250  ms, TE = 2.6  ms, f lip 
angle = 9°, Field of View (FoV) = 256 × 256 mm, voxel 
size 1 × 1 × 1 mm. In total, 192 images were obtained 
in Maastricht, 160 in Freiburg, and 170 in Lübeck. The 
preprocessed images from a previous study were used 
(see [17] for details of the preprocessing pipeline) and 

transformed from BrainVoyager format into nifti format, 
using Neuroelf (www.neuro​elf.net).

Analyses

Network estimation  Phasic brain connectivity networks 
were estimated by performing a whole-brain psychophysi-
ological interaction (PPI) analysis. PPI analyses aim to 
identify brain regions, where the time-series (physiological 
signal) connectivity is moderated by a task condition (“the 
psychological variable”) [21]. Traditionally, this approach 
has consisted of predefining a source (or seed) region and 
then estimating its connectivity with other (target) regions. 
We extended this rationale to a whole-brain network method 
(see [15, 16] for similar approaches). Here, each brain node 
is once considered to be the source, while the other nodes 

Fig. 1   Emotion regulation task and analysis pipeline. a Outline of the 
task: each trial consisted of an instruction (look or safe), IAPS picture 
presentation, rating period, and fixation-cross screen. b Brain regions 
(Reg) included in the analyses and the statistical models testing the 
connectivity between two regions (i and j). For each region, the time-
series was extracted and multiplied with the task regressors (only one 
shown), which resulted in the psychophysiological interaction (PPI) 
terms. The phasic connectivity analyses referred to a regression of 
the PPI term on the time-series of another region while controlling 
for the task regressors, time-series, and confounds (not shown). The 
tonic connectivity analyses referred to the graphical lasso estima-
tion of the residual times series of all regions, after correcting for the 
task regressors and confounding effects. Each connectivity analysis 

resulted in a connectivity matrix, which was averaged across runs. 
c Overview of the basic properties of a network consisting of nodes 
connected by edges and forming subnetworks (modules). Three net-
work measures are used to assess hub functioning: strength, local 
efficiency, and the participation coefficient. d Linear support vector 
machine classification in a one vs. one fashion (e.g., BPD vs. NPC) 
using the different network measures from the phasic and tonic con-
nectivity as input features. The different models (e.g., phasic strength, 
phasic local efficiency, tonic participation coefficient) were assed in a 
repeated (200 times) nested cross-validation procedure. In the inner 
loop, the best performing model was selected, re-fitted to the test data 
of the outer loop, and evaluated on the balanced accuracy of the vali-
dation data

http://www.neuroelf.net


1172	 European Archives of Psychiatry and Clinical Neuroscience (2021) 271:1169–1178

1 3

are the target. The PPI terms were estimated separately for 
each task regressor, but since PPI analyses are in general 
less powerful compared to estimating activation (i.e., the 
main effect of a task regressor) [22], we opted for a sum-
mary model that collapsed the different emotional valences 
(negative, neutral, positive), and included the general look 
and safe condition. Each model contained the time-series 
of the source region, the task regressors (safe and look), 
the interaction terms (PPIs) and the confound regressors 
(motion parameters, cue presentation, and ratings) (Fig. 1b). 
This procedure resulted in two different brain connectivity 
matrices for each run, consisting of contrast estimates for 
the safe and look condition. The connectivity matrices were 
then made symmetric by averaging corresponding (a-b, and 
b-a) parameter estimates, and were  subsequently averaged 
across the four different runs. Subsequently the absolute 
values of the connectivity matrices were taken, and the con-
nectivity matrices were additionally thresholded at 5%, (i.e., 
retaining only the strongest 5% of the connection).

To estimate the tonic brain connectivity an approach was 
followed as described by [15, 23]. For each time-series the 
task-related variance was “removed” by regressing a model 
containing task regressors and confounds (motion param-
eter, cue presentation, and ratings) on the time-series, and 
subsequently using the residual time-series for further anal-
yses (Fig. 1b). The connectivity matrix was estimated by 
applying a graphical lasso [24] to the residuals of all nodes 
with the function graphicallasso.m (https​://statw​eb.stanf​ord.
edu/~tibs/glass​o) for a range of regularization parameters, 
lambda. The optimal regularization parameter lambda was 
estimated for each network (each run and each subject) by 
minimizing the Bayesian Information Criterion [25, 26]. 
These connectivity matrices were then averaged across the 
four different runs. The absolute value of the connectivity 
matrix was taken and entered in a graph theoretical analysis.

As a control to the connectivity analyses, the task-related 
activity per region was also estimated by a basic regres-
sion analyses of the task condition (safe and look, and 
safe > look) on the time-series of each region.

Functional module assignment  Each of the resulting brain 
nodes was assigned to a higher level functional module as 
proposed in [19]. The functional module assignment was 
performed as follows: the term related to each functional 
module was entered in Neurosynth [27], an automated 
meta-analysis tool; “Emotion”, “Motivation”, “Cognitive 
Control”, “Default Mode”, resulting in four (“association 
test”) images. The cortical region related to the term “emo-
tion” that showed overlap with the cognitive control regions 
was assigned to the latter. Finally, the correspondence of the 
brain regions of the above-described parcellation and the 
four functional modules was estimated by testing the over-

lap of each region with any voxel of the resulting Neuro-
synth maps, see Fig. 4.

Network measures  The resulting phasic and tonic networks 
(absolute weighted graphs), where used to estimative sev-
eral network measures [6], using the Brain Connectivity 
Toolbox (https​://sites​.googl​e.com/site/bctne​t/). For each 
node, the strength (the sum of connectivity values), local 
efficiency (average inverse shortest path length of a node), 
and the participation coefficient (diversity of intermodu-
lar connections of individual nodes) [28] were estimated 
(Fig. 1c). These measures were selected to capture some of 
the essential properties of network nodes (i.e., integration 
and segregation) which are suggested to be related to per-
sonality [29].

Classification: linear support vector machine  To estimate 
the predictive accuracy in classifying borderline personality 
disorder, a linear support vector machine (SVM) function 
implemented in Matlab (The MathWorks, Inc) was applied 
to the brain network measures and the task activity contrast 
estimates as a set of features. The advantage of using the 
network measures as features is that it yields a reduced set 
(here 121 features) of variables for classification, compared 
to using the element-wise connectivity (here 7260), and can 
thus also be regarded as a dimensionality reduction method 
while allowing inference on the brain node level.

The different network measures (strength, participation 
coefficient, local efficiency) for the phasic (safe > look, and 
the safe + look contrast) and tonic connectivity, as well as the 
main effect of the task (also safe > look, and the safe + look 
contrast) where entered as feature models (resulting in 11 
different models). Before the classification procedure, the 
input feature data was “corrected” for the different sites by 
performing a regression analysis with dummy coded site 
regressors and then using the resulting residuals.

Each group was compared to each other group (one vs. 
one classification) in a nested-cross-validation procedure, 
where the balanced accuracy (the average of the sensitivity 
and specificity) served as the key outcome measure (effect 
size) of the classification performance. The data was divided 
in tenfold validation and test/train data. In the inner loop 
of the nested cross-validation, the test/train data was fur-
ther divided in a fivefold cross-validation train and test data 
to estimate the balanced accuracy per model. The feature 
model with the highest balanced accuracy was then fitted 
to all test/training data of the inner loop, and the model was 
evaluated on the performance of the validation data of the 
outer loop [see Fig. 1 for an illustration of the procedure]. 
This process was repeated 200 times to obtain a stable esti-
mate of the mean balanced accuracy and a 95% confidence 
interval.

https://statweb.stanford.edu/~tibs/glasso
https://statweb.stanford.edu/~tibs/glasso
https://sites.google.com/site/bctnet/
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The SVM classification was then repeated 1000 times 
with randomly permuted labels [25], to obtain a permutation 
null distribution. The p-value was defined as the number 
of times the null distribution showed a balanced accuracy 
higher than the average balanced accuracy of the validation 
data divided by the total number of permutations. Follow-
up analyses were subsequently performed to aid the func-
tional interpretation of the best performing model of the 
inner loop: (1) the SVM model weights were averaged across 
folds and repetitions resulting in an averaged model of fea-
ture weights, indicating the relative (by ranking [30]) con-
tribution of each brain region in the classification (2) groups 
were tested on the difference of the network measures per 
functional module (emotion, motivation, cognitive control, 
default mode). The Matlab code for the network and SVM 
prediction analyses is available at https​://githu​b.com/henkc​
remer​s/Netwo​rkAna​lysis​.

Results

Brain parcellation and subject inclusion

51 borderline patients, 26 cluster-C patients, and 44 non-
patients were included in the current analyses, see Supple-
mentary material 1 for details and Fig. S1.2 for the included 
brain nodes.

Classification accuracy

The classification results for each group compared to each 
other group showed a limited cross-validated balanced 

accuracy, 55% CI95 [45 63] p = 0.23, for the BPD vs. NPC, 
50% CI95 [39 59] p = 0.46 for the NPC vs. CLC, and 48%, 
CI95 [38 59], p > 0.5 for BPD vs. CLC, see Fig. 2 for an 
overview of these and other classification metrics. Thus, 
only the BPD vs. NPC classification showed a very modest, 
yet non-significant, effect.

Exploratory analysis

We did opt to explore the results further to guide potential 
future research. Figure 3 shows the results of the balanced 
accuracy of the inner loop, which indicates that the tonic 
strength model was most often selected (40%), and showed 
a classification accuracy of 62%. Figure 4 then illustrates 
the rank-ordered features of the tonic strength BPD vs. 
NPC classification, the functional module assignment, and 
the averaged strength data per group. It is of note that the 
left amygdala was one of the 5 highest-ranking features 
and showed an increased strength (stronger connections) 
in the BPD group than the NPC group. The strength cen-
trality was further tested on group differences between 
BPD and NPC for the four functional defined modules; 
emotion, motivation, cognitive control, and default mode. 
The results did not indicate any substantial difference (all 
Cohen’s d < 0.12, and all p > 0.5) between BPD and NPC 
(see Fig. 5).
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Fig. 2   Performance of the SVM classification analysis. Each row rep-
resents the group comparison, and the columns indicate the outcome 
metrics. Values in the middle of each cell are the mean for a metric, 
the value above and below indicate the lower and upper bound of the 
95% confidence interval. Bal. Accuracy balanced accuracy

Fig. 3   Results of the inner loop of the BPD vs. NPC model. The 
y-axis depicts the proportion of times the model was the highest per-
forming model in the inner loop. The color-coding indicates the bal-
anced accuracy of the inner loop of each model

https://github.com/henkcremers/NetworkAnalysis
https://github.com/henkcremers/NetworkAnalysis
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Discussion

The current study used network measures in a machine 
learning approach to classify BPD patients when engaged 
in an emotion regulation task. There was a small, yet not 
statistically significant, classification accuracy for BPD vs. 
NPC of 55%. Within the nested classification procedure, the 
tonic strength model showed the highest balanced classifi-
cation accuracy of 62%. Contrary to our expectations, the 
network measure models based on phasic connectivity per-
formed worse in classifying BPD vs. NPC. While statistical 
significance testing is arbitrary and heavily debated [32, 33], 
the effects found in our study (classification accuracy) are 
undoubtedly small. First, we will consider possible explana-
tions for this and recommendations for future research; then 
we will evaluate the potential of the analytic procedure.

The current data set is the largest BPD study [18] in the 
published literature [3, 34]. At the same time, the sample 
size is still modest considering statistical power in gen-
eral [35], and arguably even more so for machine learning 
analyses [36]. On the one hand, machine learning analy-
ses focuses on the classification performance on an entire 
model and hence consist of a single (or a few) outcome 
measures which improve power over mass-univariate test-
ing [35]. However, there is a large error surrounding the 

cross-validation accuracy in relatively small samples [36]. 
Indeed, the estimated confidence intervals here (± 8–10%) 
indicate a large variability of the balanced accuracy, and 
the permutation distributions showed a large standard 
deviation. Moreover, in the nested cross-validation, only 
a subset of the data is used for model testing, and we did 
observe a substantial drop in balanced accuracy from the 
inner to the outer loop (see [11] for a discussion). The 
subsampling analyses did display an increase in balanced 
accuracy as a function of sample size for the BPD vs. NPC 
classification (see supplementary material 3), showing that 
larger samples could lead to increased classification accu-
racy. In sum, these limitations underscore the necessity to 
further study this topic, preferably in a larger (for example, 
aggregated) sample.

Previous machine learning fMRI research on BPD [12, 
37, 38] did show a substantially higher classification accu-
racy, yet there are some methodological factors to consider. 
While machine learning approaches, through cross-valida-
tion, provide an estimate of the generalization of a model 
[35], they are nonetheless also susceptible to methodological 
variability and researcher degrees of freedom [39]. Further-
more, the cross-validation procedures used in other studies 
(leave-one-out cross-validation) tend to overestimate accu-
racy [11]. Lastly, previous BPD classification studies con-
tained much smaller sample sizes, which, in combination 
with a certain degree of flexibility in analytic strategies can 
lead to possibly inflated effect sizes [35] and the discussed 
large confidence intervals surrounding the estimates. In gen-
eral, an overview of fMRI based classification of psychiat-
ric disorders showed that when tested on validation/external 
data, classification accuracy drops substantially [40].

Aside from the above-mentioned methodological issues, 
there are critical clinical and biological aspects to deliber-
ate when evaluating the balanced classification accuracy. 
BPD is, like most psychiatric disorders, a heterogeneous 
construct: patients with different symptom profiles can be 

Fig. 4   BPD vs. NPC Tonic-strength model. Upper panel the SVM 
weights plotted using BrainNet Viewer [31]. Red means a node has 
higher centrality in BPD, and blue represents higher centrality in 
NPC. The size of the nodes is proportional to the SVM weights. Mid-
dle panel from outside to inside: (A) rank-ordered averaged weights 
of the linear support vector machine, Color bar (bottom of figure), 
and node size indicates the relative contribution. (B) Functional mod-
ule assignment, see bottom of figure for legend. (C) Node strength 
averaged per group, see lower panel for the legend. See supplemen-
tary Table  S1 for a complete list of the nodes. Different nodes can 
contain the same label, see supplementary material

◂

Fig. 5   Manhattan style bar plot 
of strength centrality per mod-
ule and group. The two adjacent 
black symbols per bar indicate 
the mean value of the subject 
per group (across regions; left 
of each pair) and mean of the 
different regions (across sub-
jects; right of each pair)
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diagnosed with BPD. In addition, the BPD diagnostic cri-
teria do not incorporate any brain markers—for good rea-
sons, since no reliable biomarker has been identified yet 
[41]. Clinical and biological heterogeneity of BPD imposes 
a low ceiling on the maximum classification accuracy one 
can realistically expect. That is, while in principle, a het-
erogeneous clinical construct could have a homogenous 
biological basis (i.e., multifinality [42]), we regard this to 
be unlikely in BPD. A potential future research avenue is 
to test if clinically identified subtypes of BPD [43] are also 
potentially more biologically homogenous in terms of brain 
network organization. In this case, classifying these subtypes 
with network centrality might be possible with much higher 
accuracy.

While the overall classification accuracy thus was small, 
we did further explore the highest performing model (tonic 
strength) to indicate the possibilities of network measures 
as features in classification analyses. As noted in the method 
section, a benefit of network measures is the dimensional-
ity reduction it involves and making inferences possible at 
the node level. For example, the amygdala was one of the 
five highest-ranking positive features in the classification 
of BPD vs. NPC. The amygdala is considered to be a criti-
cal region in almost any form of psychopathology, includ-
ing BPD [3]. The BPD patients displayed higher amygdala 
connectivity strength than the NPC. This indicates that the 
amygdala in BPD is more interconnected with the rest of the 
brain, which could signal an increase in arousal [44] to other 
brain regions. At the same time, the follow-up analyses of 
the strength centrality of regions in the functional modules 
(emotion, motivation, cognitive control, and default mode 
network), did not show any substantial difference between 
the BPD and NPC. This could imply that there is no particu-
lar functional network that differentiates BPD from NPC, 
and that distributed and subtle differences across brain 
regions represent the neural mechanism underlying BPD. 
However, it is also possible that there is considerable varia-
tion among individual subjects concerning which cognitive 
control regions are most involved in this emotion regulation 
task, which would also create this observed scattered pattern.

Contrary to our expectations, as mentioned, we found 
that the phasic connectivity (connectivity that depends on 
specific task-events) models were not able to detect BPD 
vs. NPC. Psychophysiological interaction analysis is a well-
established approach to assess phasic task-related connectiv-
ity. However, a principal shortcoming of this analysis (and 
more generally, the testing of interaction effects [45]) is that 
by controlling for the “main” effects of task and time-series, 
the psychophysiological interaction term needs to demon-
strate a large effect above and beyond these main effects 
[22]. It is unknown if this could explain the limited suc-
cess in classifying BPD vs. NPC based on the phasic con-
nectivity, but it is a principle difficulty in assessing phasic 

connectivity changes. Also, here, more research is needed to 
evaluate the predictive power of phasic connectivity in clas-
sifying BPD patients and other psychiatric disorders. In that 
sense, this discussion can be regarded as part of a broader 
discussion on the added benefit of investigating dynamic vs. 
stationary connectivity [46, 47].

A fundamental limitation is the difference between the 
participating sites in the angle (tilt) of the field of view in 
fMRI data acquisition, and consequently, the loss of data. 
We have addressed this problem by performing a trade-off 
analysis of minimal node intensity as an index of data qual-
ity and subject inclusion yet aiming to incorporate important 
subcortical and cortical nodes. Nonetheless, seven subjects 
were excluded from the current analyses, and a part of the 
brain was not included in the analyses. This might have lim-
ited the classification accuracy, yet to the best of our knowl-
edge, not biased the results.

Conclusion

The current study found a small and non-significant effect 
of BPD classification based on the brain network measures. 
Larger samples are needed to more accurately assess how 
well BPD patients can be classified. Future research should, 
furthermore, focus on clinically or biologically defined 
potential subtypes of BPD. Finally, a better understanding of 
the neural network organization and connectivity of border-
line personality disorder could eventually have the potential 
to optimize individually tailored treatments.
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