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ABSTRACT

Test smells are poor design decisions implemented in test code,
which can have an impact on the effectiveness and maintainabil-
ity of unit tests. Even though test smell detection tools exist, how
to rank the severity of the detected smells is an open research
topic. In this work, we aim at investigating the severity rating
for four test smells and investigate their perceived impact on test
suite maintainability by the developers. To accomplish this, we
first analyzed some 1,500 open-source projects to elicit severity
thresholds for commonly found test smells. Then, we conducted a
study with developers to evaluate our thresholds. We found that
(1) current detection rules for certain test smells are considered
as too strict by the developers and (2) our newly defined sever-
ity thresholds are in line with the participants’ perception of how
test smells have an impact on the maintainability of a test suite.
Preprint [https://doi.org/10.5281/zenodo.3744281], data and mate-
rial [https://doi.org/10.5281/zenodo.3611111].
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1 INTRODUCTION

Violations of design principles (a.k.a., code smells) are not restricted
to production code, but are also found in (unit) test code [12, 19, 31].
Such test smells can lead to harder to maintain tests [6, 7, 29], just
as (production) code smells can increase maintenance effort [27].
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Developers tend to focus on production code quality, while test
code quality is often not prioritized [29]; moreover, once test smells
are introduced, they are hardly ever removed through refactor-
ing [30]. One could argue that the concept of test code quality
and test smells in particular is in need of further investigation. For
example, previous research has reported that developers do not al-
ways perceive test smells as problematic [30], but the actual reason
is unclear. One reasonable explanation is that current test smell
detection tools lack severity thresholds, which could make their
indications more actionable. Indeed, Alves et al. showed the im-
portance of determining severity thresholds for (production) code
smells to “adequately support subsequent decision-making” [2], by
successfully using their defined thresholds for software analysis,
benchmarking, and certification in industry [2]. In this study, we
investigate severity thresholds for test smells.

Particularly, our aim is to:
• Calibrate detection thresholds such that severity levels can
be assigned to a test smell instance, allowing developers to
focus on the higher severity smells.

• Improve the accessibility of automatic test smell detection
by integrating into existing developer tooling.

In their work, Alves et al. defined amethod to calibrate thresholds
for code quality metrics, which they named as ‘benchmark based
threshold derivation methodology’ [2]. Their approach consisted
of collecting data from existing software systems and using the
distributions of metric values to find appropriate thresholds [2,
4]. In our investigation, we take a similar approach. We collect
the (unit) test code of 1,489 Java projects from the Apache and
Eclipse ecosystems and apply the open-source test smells detection
tool tsDetect [23]; then, we use these systems as a benchmark to
derive the values for three severity thresholds: ‘Medium’, ‘High’,
‘Very high’. Following this approach, we found that four of nine
test smells we considered should have higher thresholds than what
previously reported in literature [7, 22, 29].

Subsequently, we move to our second goal: We integrate test
smell detection provided by tsDetect into a prototype (back-end)
extension of BetterCodeHub 1 (BCH), a web-based code quality
analysis tool provided by SIG. We engaged the existing users of
BCH to interact with the new test smell prototype and solicited
their feedback on instances of test smells within their own code
bases. A total of 31 developers, across 47 diverse projects, answered,

1https://bettercodehub.com
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providing data points on 301 detected test smells. These responses
allowed us to evaluate the developers’ perceptions of our newly pro-
posed thresholds. According to the developers, Empty Test, Sleepy
Test, and Mystery Guest have the highest priority as refactoring
candidates, while Empty Test, Ignored Test, and Conditional Test
Logic are considered the smells with the higher impact on code
maintainability. Furthermore, the ratings submitted by the users are
aligned with our thresholds, with a statistically significant differ-
ence and a strong Spearman’s coefficient, suggesting that the newly
defined thresholds can be used to prioritize test smells instances.
Our study makes the following contributions:
(1) Calibrated severity thresholds for test smell detectors
(2) A mechanism for rating the severity of certain test smells, al-

lowing tools to classify test smells into distinct categories based
on their severity. This enables developers to only focus on the
most critical test smells.

(3) An integration of an automatic test smell detector within a
GitHub-based code quality tool (BCH).

(4) An evaluation of developers’ perceptions of test smells within
their own code bases, by integrating our new thresholds into a
GitHub-based code quality tool (BCH), thus validating our test
smell severity levels.

2 RELATEDWORK

2.1 Test Smell Detection Tools

Van Rompaey et al. created a metrics-based test smell detection
tool for Java to detect General Fixtures and Eager Tests [32, 33].
Later Breugelmans and van Rompaey developed the TestQ tool,
which works with C, C++ and Java test code to detect the following
test smells: Assertion Roulette, Eager Test, Empty Test, For Testers
Only, General Fixture, Indented Test (the equivalent of Conditional
Test Logic), Indirect Test, Mystery Guest, Sensitive Equality and
Verbose Test [8].

Greiler et al. focused on identifying common problems with test
fixtures. They implemented a tool called TestHound, which works
on JVM bytecode level and can detect the following test smells:
General Fixture, Test Maverick, Dead Field, Lack of Cohesion of
Test Methods, Obscure In-Line Setup and Vague Header. In this tool,
they showed the code impacted by test smells to the developers
along with tips for how to refactor the test code [14]. This setup is
comparable to the one we implemented in BCH, as we also present
code instances impacted by test smells. They concluded that having
a tool to point out the problems with the test suite can help the
developers with refactoring.

Palomba et al. developed TASTE (Textual AnalySis for Test smEll
detection), which can detect General Fixtures, Eager Tests, and Lack
of Cohesion of Methods using Information Retrieval techniques,
thus bypassing the need to fully parse the test code. Their tool
shows a better precision and recall than the AST-based tools TestQ
and TestHound [22].

Satter et al. [25] created a tool for the detection of dead fields
in Java unit tests. They report a better detection accuracy than
TestHound.

Bavota et al. studied the diffusion of test smells in open-source
and industrial projects [6]. To help with their research, they created
a test smell detection tool for Resource Optimism, Indirect Testing,

Test Run War, Mystery Guest, General Fixture, Eager Test, Lazy
Test, Assertion Roulette, For Testers Only, Test Code Duplication
and Sensitive Equality.

Zhang et al. focused on dependencies between tests by empiri-
cally investigating issue tracking systems. They developed a tool
which identifies dependencies between tests on a test suite level,
not on individual test case level). Their approach requires executing
the tests (dynamic analysis) [34].

Gambi et al. also looked into test dependency detection and
developed the tool PraDeT, which also requires running the tests
to find dependencies [13].

2.2 How Developers Perceive Test Smells

Tufano et al. asked 19 developers from various open-source projects
to look at test code samples which contained instances of test smells.
In the majority of the presented cases (82%), the developers did not
recognize any problems with the test code. The code presented was
created or maintained by the interviewed developers and thus the
developers saw or created the presented code before the interview
session. The authors highlight the need for having automated tools
that can detect test smells and present them to the developers. They
have also found out that the majority of test smells are created dur-
ing the initial test development and are not removed in subsequent
refactoring [30].

Palomba et al. investigated the developer’s perception of code
smells, using both the original authors and independent developers.
They asked the developers to identify the design problems (code
smells) and, if found, give them a severity rating. The severity rat-
ings were applied to the whole code smell category, and not to the
specific code smells instances. Furthermore, the research focused
only on production code smells and not test smells. They have then
split the observed code smells into 3 categories: Generally not Per-
ceived as Design or Implementation Problems, Generally Perceived
and Identified by Respondents, and Perception may Vary [21].

Both of these studies differ from ours in execution, as they pre-
sented developers test code sections without further context, and
outside of the developer’s usual work environments. In contrast,
our study asks developers to work within the normal work-flow of
their code quality tool (BCH) and within the context of their own
project.

Kummer studied whether developers recognize test smells using
a sample of 20 developers. The author concludes that test smells can
be refactored by the developers without them knowing that they
are specific instances of test smells and suggests that automated
test smell detection tools could help the developers further justify
their removal [15].

2.3 Test Smells and Code Quality

Spadini et al. studied the relationship between the presence of test
smells and software change and defect proneness. They analyzed
multiple releases of ten software products and their test cases,
investigating the following test smells: Mystery Guest, Resource
Optimism, Eager Test, Assertion Roulette, Indirect Testing and
Sensitive Equality. Between each release, they looked at how the
production code changed and how many fixes were reported by
the accompanying issue tracking systems and Git commits. Their
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main findings were that “tests affected by test smells are associated
with higher change- and defect-proneness than tests not affected by
smells” [29]. In our research, we investigate a wider variety of test
smells and use an existing code quality model to compare against,
however we do not investigate change- and defect proneness.

3 METHODOLOGY

Our overall research goal is to investigate severity thresholds for
test smells. The most common test smell detection tools work on a
binary scale of whether a given code is impacted by a test smell or
not without any additional data, thus ignoring commonly encoun-
tered situations in software development.

In our first research question, we seek to define new thresholds
for test smells, based on the ‘benchmark based threshold derivation
methodology’ [2] considering a large number of software systems.

RQ1. How can test smells be given a severity rating?

In our second research question, we aim to challenge our newly
defined thresholds with users, therefore we ask:

RQ2. What is the perception of developers on test smells in
their codebase?

3.1 Test Smells Tool Selection

We researched the available test smell detection tools, detailed
in Section 2.1. Given that most of the better validated tools only
support Java for the widest variety of test smells, we decided to
focus on test smell research in Java. We selected the open-source
tool tsDetect [23] for finding test smells in the codebase. The
tool works with Java JUnit projects and has support for JUnit 4
annotations, which can be extended to support JUnit 5, and has
precision and recall above 85% [23]. It also has a published accuracy
rating along with manually classified test smell data [23], providing
a test suite for the tool extension and testing. The main advantages
of tsDetect are that it is open-source, developed recently in 2018,
uses AST-based detection of test smells, and supports adding new
test smells and detection rules. Compared to other tools, the support
for JUnit along with using only AST information instead of text
search for pattern violations results in improved accuracy.

3.2 Test Smells Selection

tsDetect can detect multiple test smells. However, for this study
we restricted our analysis to the test smells depicted in Table 1. We
select these test smells because they do not require viewing the
full test source code to understand whether they are smelly or not.
Certain test smells, such as Lazy Test (multiple test methods invok-
ing the same method of the production object), require viewing
the entire test class code to evaluate, while in this research we are
focused on detecting test smells at method level. Based on testing
done on a selected dataset, tsDetect is highly reliable at detecting
instances of these test smells [23]. Previous studies [7, 24] report
the distributions of the smells we analyzed along with others we
did not select. The F-Score for tsDetect on the selected subset of
test smells is between 87% and 99% [23].

3.3 Preliminary Study

Before running the study in large scale, we perform a preliminary
study within SIG. In this phase, we test the integration of tsDetect
(without any modification) in BetterCodeHub.

During the pilots, the developers were asked to answer three
questions: (1) whether the test smell instance is valid in the project
context, (2) whether they classify the smell as "refactoring candi-
date" or as something which will take too much time and effort to fix
(technical debt), and (3) rate from 1 to 5 the importance of the test
smell instance on the project’s maintainability. After completing
the pilot, the developers were interviewed about their experience
and asked for additional feedback, so that we could implement them
before running the actual study. Four developers of SIG participated
in the pilot, and each of them was asked to evaluate parts of the
codebase written in Java they were actively working on as part of
their daily job while using our prototype for the evaluation.

The main result of this preliminary study is that many of the
test smell instances were rated as false positive or no-fix. The main
reason is that in many of these instances developers did not see a
design issue. For example, for the "Conditional Test Logic" smell
developers complained that having only one branch (e.g., if -else,
or a for) should not be considered as a high priority refactoring.
Similarly, developers did not agree on how "Eager Test" is calculated:
currently, a method suffers from this smell if it contains more than
one production call. However, developers agreed that almost all the
tests have at least two production calls, hence resulting in many
test methods rated as Eager Tests even though they are not.

On the other hand, in some cases developers acknowledged the
problem and were willing to refactor the test method. However,
since there is no distinction between having one production call or
10, these cases were mixed together with the false positives.

The main takeaway of this preliminary study is that test smells
presented to the developers should be prioritized. The prioritization
could help them focus only on the most severe test smell instances
first, before moving onto fixing the less severe ones. The current
implementation of test smell detection does not take into account
additional information about the test smells, such as what percent-
age of the test code it impacts or how severe it is. Presenting the
developers with test smells they perceive to be of low severity could
lead them being more likely to ignore them and also trust the tool
less. For these reasons, we need to determine a way to prioritize
test smells, by means of new severity thresholds.

3.4 RQ1: Defining Severity Thresholds

With RQ1 we aim at creating new severity ratings for each test
smell. Hence, we first define metrics for each test smell, based on
their definitions and characteristics as proposed by van Deursen et
al. [31] and Meszaros [19]. The metrics are shown in Table 2. Here
the metrics denote the value which will be collected for each test
method. Due to the binary nature of Empty Test and Ignored Test,
we excluded them from the calibration metrics, and all instances of
these smells are classified as the highest severity.

Once the metrics are defined, we need to give them a severity
rating. For this, we used the Benchmark-based threshold deriva-
tion proposed by Alves et al. [2] methodology, which follows three
core principles [11], which states that the method should (1) be
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Table 1: Subject test smells

Test smell Description Problem

‘Mystery Guest’ A test that uses external resources (e.g., file containing
test data) [31]

Lack of informationmakes it hard to understand.More-
over, using external resources introduces hidden de-
pendencies: if someone deletes such a resource, tests
start failing.

‘Resource Optimism’ A test that makes optimistic assumptions about the
state/existence of external resources [31]

It can cause non-deterministic behavior in test out-
comes. The situation where tests run fine at one time
and fail miserably the other time.

‘Eager Test’ A test that tries to verify too many functionalities,
which can lead to difficulty in understanding the test
code [31]

It is hard to read and understand, and therefore more
difficult to use as documentation. Moreover, it makes
tests more dependent on each other and harder to
maintain.

‘Assertion Roulette’ A test that has multiple assertion statements that do
not provide any description of why they failed [31]

When the test fails, investigating the reason can be
problematic as the assertion statement might not pro-
vide the reason why the test could have failed.

‘Conditional Test Logic’ A test that has control flow statements inside a test [19] tests can have multiple branch points and greater care
must be taken when analyzing whether the test is
correct.

‘General Fixture’ It occurs when the test setup method creates fixtures
(class fields used by the test cases) and a portion of the
tests use only a subset of the fixtures [31]

The presence of this smell can result in longer execu-
tion of tests, as tests that do not use all of the fixtures
still need to wait for the creation of all test fixtures.

‘Empty Test’ It occurs when a test method does not contain exe-
cutable statements

An empty test can be considered problematic andmore
dangerous than not having a test case at all since JUnit
will indicate that the test passes even if there are no
executable statements present in the method body.

‘Magic Number Test’ A test that contains so-called “magic numbers”, which
are numbers used in assertions without any expla-
nation where they come from and their value may
not be immediately clear from just looking at the test
code [17, 19]

The magic numbers should be replaced by a named
constant, where the name describes where the value
comes from or what it represents.

‘Sleepy Test’ A test which contains thread suspension calls [19] The use of this method call introduces additional delay
to the test execution.

‘Verbose Test’ A test that is too long and hard to understand [19] Too long tests prevent them from being used as doc-
umentation and they are harder to maintain due to
their complexity.

‘Ignore Test’ A test method or class that contains the @Ignore an-
notation

ignored test methods result in overhead since they
add unnecessary overhead with regards to compila-
tion time, and increases code complexity and compre-
hension.

Table 2: Metrics used for threshold derivation, by test smell

Test Smell Metric

Assertion Roulette # assertions without description
Conditional Test Logic # conditional statements
Eager Test # production method calls
General Fixture # unused fixtures
Magic Number Test # magic numbers
Mystery Guest # external files used
Resource Optimism # files not checked for existence
Sleepy Test # thread suspend calls
Verbose Test # statements

driven by measurement data from a representative set of systems
(data-driven), rather than expert opinion, (2) respect the statistical
properties of the metric (e.g., the metric scale and distribution),
(3) be resilient against outliers in metric values and system size
(robust), (4) be repeatable, transparent, and straightforward to carry
out (pragmatic). We chose this technique as it (i) does not assume

the normality of the metric values distribution, (ii) uses a weight
function (LOC), which emphasizes the metric variability, (iii) sep-
arates the thresholds into different risk categories. Furthermore,
this state-of-art benchmarking technique has been used in many
previous studies that needed to calculate thresholds for new met-
rics [1, 3, 5, 11, 29].

The Benchmark-based threshold derivation enables us to define
severity levels based on the representation of occurrences in the
benchmark dataset.
Dataset. To apply this technique and derive the thresholds, we
need a large and representative enough dataset. For this purpose,
we selected all the projects from the Apache Software Foundation2
and the Eclipse Foundation3, which contained Java code. A total
of 1,489 projects were selected. We use these projects because (1)
the source code is publicly available, and (2) systems have different
sizes and scopes. This will serve as our dataset. The dataset has a
total of 25,356,827 LOC (project average: 31,617, median: 6,650).

2https://www.apache.org/
3https://www.eclipse.org/

https://www.apache.org/
https://www.eclipse.org/
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Thresholds calculation.After the first step of selecting the projects,
we follow the Benchmark-based threshold derivation methodol-
ogy [2], consisting of the following 6 steps:
(1) Metrics extraction: for each test method in the systems, we

extract test smell metric information (see Table 2) and LOC to
be used as weight.

(2) Weight ratio calculation: for each method, we compute the
weight percentage within its system, i.e., we divide the method
weight by the sum of all weights of the same system.

(3) Entity aggregation: we aggregate the weights of all methods
(4) System aggregation: we normalize the weights for the num-

ber of systems and then aggregate the weight for all systems.
(5) Weight ratio aggregation: we order the metric values in as-

cending order.
(6) Thresholds Derivation: we find the 70-80-90 percentiles to

determine the thresholds.
After repeating this procedure for each test smell, we obtain 3

thresholds per smell for which we have defined a metric and weight.
For instance, to represent 90% of the overall code for the Eager Test
metric, the derived threshold is 39. In other words, we can say that
90% of the test methods (weighted by LOC and system size) have
less than 39 production calls. This threshold is meaningful, since
not only it means that it represents 90% of the code of a benchmark
of systems, but it also can be used to identify 10% of the worst
code [2]. To notice that the old threshold for this specific smell was
the value one. We chose the percentile ranges of 70, 80, and 90 for
each test smell, as this represents the increasingly worse portion of
the codebase by volume [2, 4, 29] and thus represents the severity.

The thresholds allow the classification of test smells in a codebase
into 4 distinct categories: test smell not found or below threshold
(percentile intervals [0,70)), medium severity test smell for long
term refactoring (percentile intervals [70,80)), high severity test
smell for short term refactoring (percentile intervals [80,90)) and
very high severity test smell for immediate refactoring (percentile
intervals [90,100]).

3.5 RQ2: Developers’ perceptions

To study the perception of developers on test smells found in their
codebase, based on our thresholds, we modified BCH to present
found test smells to the developers who could then provide their
insights. By using the developer’s repositories, we avoid the prob-
lem of developers seeing the code without knowing the project’s
context. Furthermore, we perform an analysis of test smells that
were not considered for removal by the developers.
User Interface Design. Following the results of the new thresh-
olds derived in RQ1, we modify BCH to integrate the test smells
detector with the new thresholds. The front-end was also modified
to show the analysis results along with our survey to gather devel-
oper feedback for each found test smell. This allows the developers
who use BCH to access the results as part of their regular workflow,
whether as a one-off analysis or continuous monitoring during pull
requests or on a per commit level. Figure 1 shows an example of
how the result was presented to the user.

Clicking on the test smell instance brings the users to the screen
in Figure 2, where they can see the source code of the problematic
code along with the survey. The users also had the ability to submit

a GitHub issue to their repository with a description of the test smell
and how it could be removed. The top displays a short explanation
of what the test smell is and why it is harmful with a link to a more
detailed page containing examples and explanations.

Figure 1: BCH view of test smell guidelines and violations.

Figure 2: BCH details on a found test smell with the corre-

sponding survey form.

Questions’ Design. The questions asked to users about each found
test smell are the following:
SQ1 Please rate the impact of this test smell instance on the test

suite maintainability. Options: Don’t know, False Positive, Very
Low, Low, Medium, High, Very High.
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SQ2 What action will you take with this test smell? Options: Mark
for refactoring as soon as possible; Mark as technical debt for
later refactoring; Ignore as won’t fix / false positive.

SQ3 Estimated effort to refactor in person-hours. Options: numeric
value (optional)

SQ4 Additional remarks. Options: free text (optional)

To avoid duplication, the questions (Figure 2) are only displayed
if the user has not submitted a rating for the specific smell instance.

Attracting Participants. We sent an email to all the BCH users
(N ≈ 13, 000) to invite them to test these new changes on a ded-
icated research server. The email also contained a brief text and
video guideline on how to use these new features. A total of 31
users responded, providing feedback on more than 300 test smell
instances, which have been all analyzed.

4 RESULTS

In this section we present our results by research question.

4.1 RQ1: Severity Thresholds

We analyzed a corpus of 1,489 projects to determine the severity
thresholds for 9 test smells (Empty Test and Ignore Test are ex-
cluded from this calibration since they are binary by default). The
calibration results are shown in Table 3.

As an example, Assertion Roulette has medium, high and very
high severity set to 3, 5 and 10 respectively. These numbers repre-
sent the metric value (see Table 2): in the case of Assertion Roulette,
it represents the number of assertions without descriptions. This
means that if a method has a test smell value below 3, it should be
considered not smelly (or in other words, it belongs to the best 70%
of the corpus); if it has a test smell value between 5 and 10 it should
be considered as high severity (it belongs to the worst 20% methods
of the corpus); above a value of 10 it should be considered as very
high severity, since it belongs to the worst 10% of the corpus.

As we can notice, 5 test smells have severity equals to 0: this
means that the metric by which the smell is measured is so rare
that even by considering the 90th percentile we obtain a severity
value of 0. Hence, for these cases, any test having a metric value
higher than 1 results in a classification of very high severity. The
distribution of the metrics across the observed projects for each
test smell can be found in the replication package [28].

Table 3: Severity thresholds calculated from the benchmark

Test Smell
Severity Threshold

Medium High Very High

Assertion Roulette 3 5 10
Eager Test 4 7 39
Verbose Test 13 19 30
Conditional Test Logic 0 1 2
Magic Number Test 0 0 1
General Fixture 0 0 0
Mystery Guest 0 0 0
Resource Optimism 0 0 0
Sleepy Test 0 0 0

Previous studies have empirically investigated to what extent test
smells are spread in software systems, by analyzing the distribution
of test smells in source code [7, 10]. However, since our derived
thresholds are higher, the diffusion of test smells would decrease.

As a first step to understand the test smells diffusion in open
source projects using the new derived thresholds, we re-run the
test smell analysis on our corpus of 1,489 projects using the new
aforementioned thresholds. In Figure 3 we present the result. As
we might expect since the new thresholds are stricter, we obtain
from 8% to 30% less test smells instances than when using the old
thresholds. To notice that the diffusion of the old thresholds are in
line with what previous studies found [7]: "Assertion Roulette" is
present in ≈ 50% of the test classes and "Eager Test" in 30% of them.
However, by applying the new thresholds we obtain that "Assertion
Roulette" is present in ≈ 30% of the classes and "Eager Test" in
≈ 15% of them. As for "Conditional Test Logic" and "Verbose Test"
we could not find previous literature on their diffusion, however
from the figure we can see that their occurrence is much lower
when using the new thresholds.

In Table 4 we present the result for every test smell. Given that
we defined new thresholds for only four smells, the numbers for
the others are identical. Since out of the scope of this paper, we
did not further investigate the test smells diffusion on OSS systems.
New research should be carried on this topic, for example by inves-
tigating the co-occurrence of the smells, similar to what previous
studies did with the old thresholds [7].
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Figure 3: Diffusion of test smells across OSS systems: new

thresholds vs old thresholds (N=1,489)

Thresholds’ evaluation. After identifying the new thresholds,
we want to determine if they are also aligned with the developer’s
perception of how much impact these instances have on the test
suite maintainability. To this aim, we modify tsDetect to incor-
porate the defined thresholds and plug it in BCH. Using a survey
(explained in Section 3.5), we ask the developers their perception
of the shown test smell severity by using a Likert Scale [16]. Then
we triangulated our severity score to the users’ perception of sever-
ity employing the Spearman’s rank correlation coefficient. We use
the Spearman’s rank correlation test, as we could not make any



Investigating Severity Thresholds for Test Smells MSR ’20, October 5–6, 2020, Seoul, Republic of Korea

Table 4: Test smells’ distribution across systems (N=1,489)

Test Smell

Old Thresholds Derived Thresholds

Impacted Not impacted Impacted Not impacted

Assertion Roulette 56,177 (50.9%) 54,278 (49.1%) 34,156 (30.9%) 76,299 (69.1%)
Cond. Test Logic 29,077 (26.3%) 81,378 (73.7%) 20,095 (18.2%) 90,360 (81.8%)
Empty Test 1,280 (1.2%) 109,175 (98.8%) 1,280 (1.2%) 109,175 (98.8%)
General Fixture 8,829 (8.0%) 101,626 (92.0%) 8,829 (8.0%) 101,626 (92.0%)
Mystery Guest 6,071 (5.5%) 104,384 (94.5%) 6,071 (5.5%) 104,384 (94.5%)
Sleepy Test 4,500 (4.1%) 105,955 (95.9%) 4,500 (4.1%) 105,955 (95.9%)
Eager Test 29,333 (26.6%) 81,122 (73.4%) 14,284 (12.9%) 96,171 (87.1%)
Ignored Test 3,105 (2.8%) 107,350 (97.2%) 3,105 (2.8%) 107,350 (97.2%)
Resource Optimism 7,345 (6.6%) 103,110 (93.4%) 7,345 (6.6%) 103,110 (93.4%)
Magic Num. Test 18,920 (17.1%) 91,535 (82.9%) 18,920 (17.1%) 91,535 (82.9%)
Verbose Test 70,461 (63.8%) 39,994 (36.2%) 36,080 (32.7%) 74,375 (67.3%)

assumptions about the distribution of our data, thus ruling out the
use of Pearson’s test [9].

In Table 5 we show the results: all the four test smells for which
we defined non-binary severity thresholds have a statistically signif-
icant difference between our proposed severity and user-perceived
maintainability impact. Furthermore, Verbose Test and Conditional
Test Logic showed a high statistically significant relationship (p <
0.001) and a strong Spearman’s coefficient (0.6 ≤ rs ≤ 0.79), while
Eager Test and Assertion Roulette showed a lower statistically sig-
nificant relationship (p < 0.05) and a weaker Spearman’s coefficient
(0.2 ≤ rs ≤ 0.39).

Table 5: Spearman’s rank correlation between test smell

severities as set by our thresholds and rated by users. Sta-

tistically significant results are in bold.

Test Smell Responses p rs

Eager Test 42 0.027 0.342
Conditional Test Logic 36 <0.001 0.753
Verbose Test 51 <0.001 0.679
Assertion Roulette 47 0.016 0.350

Figure 4 shows the distribution of the user-submitted impact rat-
ings for each test smell severity category. As previously discussed,
we can notice that for Verbose Test and Conditional Test Logic, the
ratings submitted by the users are aligned with our thresholds, and
the relationship is strong. For Eager Test and Assertion Roulette
the difference is less visible instead, though statistically significant.
Across the four smells, the threshold that aligns better with devel-
opers’ perceptions is ‘Very High’, thus suggesting that it is the most
appropriate to be used with practitioners.

4.2 RQ2: Developers’ Perceptions

In this RQ, we want to investigate developers’ overall perception
on test smells found in their codebase: to this aim, we asked them
to indicate for each test smell instance whether they would classify
it as a valid instance to remove, how much priority they would give
to the refactoring, and how long it would take according to them.
Refactoring evaluation. In Table 6 we show the percentage of
actions the surveyed users indicated to take for each test smell
instance identified in the BCH analysis report. We got a total of
301 responses. In Table 7 we show the impact ratings for test smell

Medium High Very High
Calculated severity based on thresholds

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Us
er

 ra
te

d 
im

pa
ct

(a) Eager Test

Medium High Very High
Calculated severity based on thresholds

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Us
er

 ra
te

d 
im

pa
ct

(b) Verbose Test

Medium High Very High
Calculated severity based on thresholds

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Us
er

 ra
te

d 
im

pa
ct

(c) Assertion Roulette

Medium High Very High
Calculated severity based on thresholds

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Us
er

 ra
te

d 
im

pa
ct

(d) Conditional Test Logic

Figure 4: Test smell severity vs. user rated impact values

Table 6: Actions taken by users, by identified test smell

Test Smell Responses Immediate Refactor Long-term Refactor No Action

Empty Test 14 71.43% 21.43% 7.14%
Sleepy Test 13 61.54% 23.08% 15.38%
Mystery Guest 10 60.00% 10.00% 30.00%
Resource Optimism 12 58.33% 16.67% 25.00%
Cond. Test Logic 39 53.85% 33.33% 12.82%
Verbose Test 54 48.15% 40.74% 11.11%
Magic Number Test 23 47.83% 34.78% 17.39%
Assertion Roulette 55 29.09% 50.91% 20.00%
Eager Test 51 21.57% 50.98% 27.45%
Ignored Test 10 20.00% 50.00% 30.00%
General Fixture 20 20.00% 40.00% 40.00%

Table 7: Impact ratings on test suite maintainability

Test Smell Responses Very Low Low Medium High Very High

Assertion Roulette 47 17.0% 27.7% 38.3% 14.9% 2.1%
Conditional Test Logic 36 2.8% 25.0% 30.6% 22.2% 19.4%
Eager Test 42 31.0% 26.2% 21.4% 16.7% 4.8%
Empty Test 13 0.0% 15.4% 7.7% 46.2% 30.8%
General Fixture 13 23.1% 30.8% 38.5% 7.7% 0.0%
Ignored Test 8 12.5% 12.5% 12.5% 37.5% 25.0%
Magic Number Test 20 15.0% 20.0% 30.0% 30.0% 5.0%
Mystery Guest 8 0.0% 12.5% 37.5% 50.0% 0.0%
Resource Optimism 10 10.0% 0.0% 20.0% 60.0% 10.0%
Sleepy Test 11 0.0% 9.1% 18.2% 63.6% 9.1%
Verbose Test 51 13.7% 23.5% 23.5% 27.5% 11.8%

instances which were rated as either short or long term refactoring
candidates (no action excluded).
Smell evaluation. We now discuss the finding for each test smell
separately, taking into account the optional additional remarks field
(SQ4) of the survey, where the user could add remarks regarding
their perception of the smell.
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Assertion Roulette: Assertion Roulette is rated as having a low
to medium impact on test suite severity and considered primarily
as long term technical debt. One reason to mark assertion roulette
as a no action item is that the test method name accurately reflects
the reason for the test to fail and thus no further comments in the
assertions are required. In some instances, the purpose of a block
of assertions was described in a comment, which would require
looking at the source code and line number to see why the test
failed.

Conditional Test Logic Conditional Test Logicwas primarily rated
as a short-term refactoring candidate having medium to high im-
pact. Of the 39 reported cases, 24 times it was reported as imme-
diate refactoring, 13 as long-term refactoring and 2 times as no
actions. In the comments, some developers stated that they use
conditions to avoid running the test in a specific configuration
(e.g., on Windows, or using a specific version of the library, etc.),
and in this case is difficult to avoid an if-else condition.

Eager Test: Eager Test is considered to have a low impact on test
suite maintainability and is considered primarily as technical debt
which can be addressed later or will not be addressed at all. Of the
51 reported cases, 26 times (50.98%) was reported as long-term
refactoring, and 14 times was reported as no action/false positive.
Only in 11 cases was considered as immediate refactoring.
Among the "no action" feedback, a repetitive comment is that
getters and setters should be left out from the analysis. In this case,
by getters and setters we not only mean the Java encapsulation
pattern (i.e., getters and setters of class members), but all the
methods that retrieve (e.g., get) or set a variable in the production
class. Listing 1 exemplifies a common won’t fix Eager Test pattern.

1 @Test
2 p u b l i c vo id t e s t F o oAc t i o n ( ) {
3 Foo foo = new Foo ( . . . ) ;
4 foo . s e t P r op1 ( . . . ) ; / / 1 s t p r oduc t i on method c a l l
5 foo . s e t P r op2 ( . . . ) ; / / 2nd c a l l
6 i n t r e s u l t = foo . a c t i o n ( ) ; / / 3 rd c a l l
7 a s s e r t E q u a l s ( r e s u l t , e x p e c t e dR e s u l t ) ;
8 a s s e r t E q u a l s ( foo . ge tP rop1 ( ) , . . . ) ; / / 4 th c a l l
9 a s s e r t E q u a l s ( foo . ge tP rop2 ( ) , . . . ) ; / / 5 th c a l l
10 }

Listing 1: Example of a test case containing an Eager Test

Empty Test Empty test is considered as an immediate refactoring
candidate and rated as having a high to very high impact on test
suite maintainability. In this case, almost all the developers agreed
that the test should be immediately removed, since it does not
contain any assert statement.

General Fixture General Fixture is considered among the sam-
pled developers as having a low to medium impact on the test
suite maintainability and not considered as an issue to remove.
In most of the cases, the tests used all or a different combination
of the test fixture variables – on class level, all of the test fixtures
were used.

Ignored Test Ignored Tests are considered to have a high impact
on test suite maintainability and considered for long-term re-
moval. Ignored tests are often accompanied by a bug ID inside
the ignore statement (e.g., @Ignore("PROJECTCODE-123")). De-
velopers consider that these tests should not count as a test smell
instance if they are properly documented in the bug tracking

system. The source of the bug might not be in the test but rather
in the production code.

Magic Number Test Magic Number Test is considered low to
medium severity and rated primarily as a short-term refactor-
ing candidate. Tests exhibiting the Magic Number Test which
were marked for refactoring were accompanied by comments
from the developers, such as where the numbers come from and
how they could be replaced with named constants (e.g., HTTP
status codes). In instances marked as will not fix, the magic num-
bers were the results of a calculation performed inside the tested
function. In these cases, the developers do not see the problem of
not naming the constants, as the value according to them should
be clear from the test context.

Mystery Guest Mystery Guest is rated as having medium to high
impact on test suite maintainability and is considered to be primar-
ily a candidate for immediate refactoring. Unless the developer
wants to test the reading/writing of a file to the file system, a
more appropriate approach would be to create a data structure
that holds the necessary information.

Resource Optimism Resource Optimism is considered to be pri-
marily a short-term refactoring candidate of high severity. The
refactoring for this test smell can be done by adding file existence
checks for each resource used.

Sleepy Test Sleepy Test is primarily perceived as having a high
impact on test suite maintainability and is considered for immedi-
ate refactoring. The presence of thread sleep calls indicates that
the test is not a good unit test and negatively impacts the test suite
maintainability, since it might introduce flakiness. The removal
of this test smell could require rewriting the entire test.

Verbose Test Verbose Test is split between immediate and long
term refactoring. It is rated as having an overall medium to high
impact on test suite maintainability. In the feedback, the devel-
opers pointed out that the tests exhibiting Verbose Test smell
can be either split into multiple smaller tests or refactored to use
methods to decrease the test size.

Analysis of ‘will not fix’ reports To gain more insights on why
developers reported test smells as ‘will not fix’, we examine
all of the instances which had their source code accessible in a
public repository (29 out of 60 ratings). We performed an open
card sorting method [20] with two inspectors. This method allows
creating mental models and allowing the definition of taxonomies
from input data [20].

The two inspectors were the first two authors of this paper, each
with over four years of Java development experience.We applied the
open card sorting method by first independently grouping the test
smell instances and then comparing the results with a discussion
about the classification and group differences. After we have agreed
on a unified view on the classification, we move to the next test
smell. The inspectors had at their disposal the source code of the
test and the comments provided by the developer.

Based on the open card sorting methodology, we have identified
the following four categories of will not fix test smells.

False Positive. These instances are true false positives – they
show the limitations of our current tooling and approach. Here
the fix would require modifying tsDetect or creating a new tool.
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The issue could not be fixed by setting better thresholds. There
were a total of 7 false positives (24%).

Dismissed, Hard to fix. In this category, developers either do not
see the problem with the test or changing the test to remove the
smell instance would require a significant amount of effort to fix.
The fix in some instances would require rewriting the production
class under test, or even the related classes to support better
testability. In these cases, the test smell points to larger problems
of the codebase, not just related to the test design itself. There
were a total of 11 instances (38%).

Dismissed, Easy Fix. Test smells in this category can be easily
removed by refactoring them. However, developers either do not
acknowledge them as a problem or are unwilling to refactor it
to remove the test smell instance. In all identified cases in this
category, the readability and maintainability of the test would be
significantly improved if the test was refactored to follow the best
practices. From the developer’s point of view, these might be only
perceived to be marginal gains and they concentrate their efforts
elsewhere. There were 9 instances (31%) in this category.

Acknowledged problem, won’t fix. Test smell instances in this
category are acknowledged by the developers as possibly prob-
lematic, but in the domain context, they are perceived to be an
acceptable trade-off between maintainability and ease of writ-
ing. The two instances of this category were Assertion Roulette
smells. Here the developers consider “simple” assertions to be
self-documenting. For example, in case of failing ‘assertEquals(
HttpStatus.BAD_REQUEST, ...);’ is easy to understand, even
without documentation.

5 DISCUSSION AND FUTUREWORK

In this section we discuss our results, their implications, and future
research directions.

Severity Rating of Test Smells. Our approach of defining test
smell severity shows promising results when applied to certain test
smells, as pointed out by the developers agreeing with our rating.
On the other hand, for some test smells our approach does not
work, as they are very rare, and an alternative classification would
have to be used to define their severity.

We defined new severity thresholds for Assertion Roulette, Con-
ditional Test Logic, Eager Test, and Verbose Test. These test smells
had their respective metrics distributed across the selected bench-
mark project’s codebase. On the contrary, several of our proposed
thresholds had zero-valued thresholds up to or including the very
high severity, which presents problems as we can not make any
distinction between the severity levels. A possible approach to intro-
duce granularity for the test smells where the thresholds are zeros
would be to investigate the top 10 percentile of the worst projects,
and extend the scale to there. Then set the high and very high
thresholds based on the values of applying the original method-
ology on only this filtered sample size again. This would ensure
that the medium risk threshold is at zero following the original
methodology, and would introduce more fine-grained values for
the high and very high thresholds.

Since out of the scope of this paper, we treated the smells with
zero thresholds as critical (very high) severity, because present in
less than 10% of the benchmark corpus. However, in certain test

smells such as Sleepy Test, the usage of even one thread sleep call
versus multiple calls can be considered to be irrelevant, as even one
such call makes the test dependent on the timing and can introduce
multi-threading faults and flakiness.

Two test smells were excluded from the calibration: "Ignored
Test" and "Empty Test". For these test smells, no conventional met-
ric exists; hence an alternative should be proposed. For example,
"Ignored Test" smell can be classified based on whether the@Ignore
annotation contains a bug tracking issue identifier or description
for the failing test. Developers can then focus on tests that are
ignored without a description to investigate the root cause of the
failure.

Classification of Empty Test could involve looking at whether
the test is empty and does not contain any commented code. If it
contains commented code, this could indicate that the test should
have an @Ignore annotation instead, since it is masking an uncov-
ered issue. In the latter case, these tests could be considered to be
of high severity and the developers should investigate why the test
code was commented out.

Developers’ perception. By using the new derived thresholds we
lowered the number of false positives the tool detects. However, as
we saw from our RQ2, developers in some cases still do not perceive
the smell as an actual problem and mark it as no-fix. The reason
for this could be that the thresholds are still set too low, and most
of the found instances are perceived as not problematic. This result
is in line with previous studies [30], where the authors showed
that often developers do not perceive test smells as actual problems.
More recently, De Bleser et al. [10] studied developers’ perception
on test smells of Scala projects. The authors found that General
Fixture and Mystery Guest are the test smells that are perceived as
the most problematic. While we can confirm this result for Mystery
Guest, the developers that participated in our study rated General
Fixture as having a low impact on test suite maintainability.

However, when analyzing the cases in which the developers
rated an instance as a no-fix (Section 4.2), we saw that in few cases
the tool had false positive (e.g., getters and setters should not be
counted as method calls), but in the majority of the cases they
dismissed the test smell instance as they were unwilling to refactor
the test (even if it was an easy fix). Even though by fixing the
smell the readability and maintainability would be significantly
improved, these might be only perceived to be marginal gains, and
they concentrate their efforts elsewhere. In this case, increasing the
thresholds would not change their perception.

Test Smell Triage. Test smells density, defined as the number of
test smells in a test class, is too low level to be used as direct metrics
to present to developers. It can be incorporated into another higher
level metric to measure test code quality.

For example, a possible approach would be to look into test
smell co-occurrence, combined with our proposed severity levels,
to rank individual unit tests, test files, or test modules as ones that
need more attention than the others. A test file impacted by several
different instances of high severity test smells might need more
attention than a file impacted by only one test smell type of low
severity. This would give better actionability to the developers, as
they would then have an indicator where to direct their attention.
This approach would require investigating whether a combination
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of several test smells of different severity levels is worse than, for
example, one very high severity test smell.

New or Improved Test Smell Detection Tool. We have identi-
fied several limitations in how tsDetect identifies test smells and
that the current definition of certain test smells does not match
the developer’s perception or common practices. This mismatch
between the developer’s perception of what is vs. is not a test smell
cannot be fixed by setting thresholds alone. In the case of Assertion
Roulette, the developers consider good test naming to be sufficient
to document the assertions. Incorporating or creating a test naming
model, such as the one proposed byMeester [18] for rating howwell
a method is named, could be used to determine if a test is named
correctly and thus the assertions do not need an additional expla-
nation. Currently, no tool also considers block comments above a
series of assertions as a description, while developers consider this
to be enough to describe what the assertions are for.

For Ignored Test, further research could be investigating whether
it is possible to classify the description in the @Ignore annotation
to determine if it contains a bug tracking issue identifier or a de-
scription for why it is failing. The impact of Eager Test detection
excluding getters and setters could be investigated to see if this
detection method would improve the probability that flagged Eager
Tests are given bigger priority by the developers. All of the above
could be further explored and then integrated into a new test smell
detection tool, which would detect a smaller subset of test smells;
however, the smells detected would be more likely to be perceived
by the developers as problematic and an issue to remove.

6 THREATS TO VALIDITY

Construct validity. Threats to construct validity concern our re-
search instruments. We used the tool tsDetect to detect test smells
and classify them according to our defined thresholds. For the sub-
set of test smells we observed, the tool was reported to have an
F-score surpassing 87% for each test smell as determined by a com-
prehensive review of multiple projects [23].

Internal validity. Threats to internal validity concern factors that
could affect the variables and the relations being investigated. All
of the contacted developers for this experiment were users of BCH,
who have used it at least once in the past. The developers using a
code quality tool might have more knowledge about code quality
than developers who have never used such tools and thus their
opinion might be different than those of developers who do not
use BCH or any other quality control tool. Furthermore, developers
that use code quality tools might care more of code quality (hence
rating a test smell as high impact) than developers that do not use
code quality tools.

External validity. Threats to external validity concern the general-
ization of results. We are aware that derivation of metrics thresholds
from a benchmark dataset introduces dependency on the dataset
and its representativeness. Further investigation needs to be done
to determine the degree of sensitivity of this approach with respect
to different benchmark datasets, precomputed metrics, and differ-
ent metric extraction tools. However, to mitigate this issue, we
used a big corpus of 1,489 OSS systems of different scopes, size and
characteristics, to strengthen the generalizability of our findings.

For the second part of the study, we modified BCH by including a
test smell detector and asked developers to rate their code. We have
received responses from 31 developers, who evaluated 47 distinct
projects. In comparison to other experiments in software engineer-
ing, our sample size is above the median (30 respondents) [26].

We only analyzed Java source code for test smells. The thresholds
we defined would have to be defined per language, as the occur-
rence of test smells might be different across various languages
and unit testing frameworks. The methodology for the test smell
calibration should nonetheless generalize to other languages if they
are supported by a test smell detection tool, which can also provide
metrics in addition to detection.

7 CONCLUSION

In this paper, we investigated the classification of test smells based
on their severity. To do this, we define metrics for each test smell
and then apply the benchmark-based threshold derivation on a
sample of open-source projects. The result of this process allows
us to give test smells a severity rating, from low to very high,
which we verified with a sample of developers using their test
source code to see if they agree with the rating classification. For
four test smells (Assertion Roulette, Eager Test, Verbose Test and
Conditional Test Logic), we defined non-binary severity thresholds
and have a statistically significant difference between our proposed
severity and user-perceived maintainability impact. Furthermore,
Verbose Test and Conditional Test Logic showed a high statistically
significant relationship and a strong Spearman coefficient.

We conducted a study of developer perception on selected test
smells in their codebase using amodified version of BCH that allows
for the detection of test smells with the new derived thresholds.
We asked the developers to indicate for each test smell instance
whether they would classify it as a valid instance to remove, how
much priority they would give to the refactoring, and how long it
would take according to them. Among the main results, we saw
that Empty Test and Sleepy Test are considered the smells with
the highest priority in refactoring, follows by Mystery Guest and
Resource Optimism. The smells with the lowest priorities instead
were General Fixture, Ignored Test, and Eager Test.

Furthermore, we analyzed test smells the developers marked
as won’t fix, trying to discover the reasons behind it, indicating
how test smell detection tools could be improved to match the
developer’s views on what is a test smell. This information can also
be used to enhance the proposed test smell severity ratings.

Furthermore, we have shown that test smell detection can be
successfully integrated into a code quality tool to inform developers
on test issues and help make tests more maintainable.
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