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Transfer Learning for Historical Corpora: An Assessment
on Post-OCR Correction and Named Entity Recognition
Konstantin Todorova, Giovanni Colavizzaa

aUniversity of Amsterdam, The Netherlands

Abstract
Transfer learning in Natural Language Processing, mainly in the form of pre-trained language models,
has recently delivered substantial gains across a range of tasks. Scholars and practitioners working
with OCRed historical corpora are thus increasingly exploring the use of pre-trained language models.
Nevertheless, the specific challenges posed by historical documents, including OCR quality and lin-
guistic change, call for a critical assessment of the use of pre-trained language models in this setting.
We consider two shared tasks, ICDAR2019 (post-OCR correction) and CLEF-HIPE-2020 (Named
Entity Recognition, NER), and systematically assess using pre-trained language models with data in
French, German and English. We find that using pre-trained language models helps with NER but
less so with post-OCR correction. Pre-trained language models should therefore be used critically
when working with OCRed historical corpora. We release our code base, in order to allow replicating
our results and testing other pre-trained representations.

Keywords
Digital cultural heritage, Transfer learning, Multi-task learning, BERT, Post-OCR correction,
Named Entity Recognition (NER)

1. Introduction
The digitisation of written records of cultural value, such as books, historical newspapers and
archival materials, has been advancing since decades [46]. While much remains to be digitised,
by now scholars and the public have at their disposal large corpora of digitised records [44]. As
a consequence, the interlocked questions of their accessibility and use for research come to the
forefront. For example, most digitised historical records still have to be made fully searchable
like other large textual collections such as the Web.

There are several factors which make the accessibility of collections of digitised historical
records, and their use as data for research, challenging [41, 18, 8]. Those include the need
to use Optical or Handwritten Character Recognition (O/HCR) to extract texts from images,
which is error prone and of varying quality. Challenges also include language variability over
time and the lack of linguistic resources for automatic processing. These challenges both call
for, but at the same time question, the use of modern machine learning techniques to improve
the accessibility of digitised historical records. Perhaps the most successful technique in this
respect is transfer learning.

Transfer learning aims to transfer knowledge from a general-purpose source task to a spe-
cialised target task [38, 48]. Transfer learning can help in (i) gaining faster convergence; (ii) use
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fewer computation resources; (iii) overcome the lack of linguistic resources, such as annotated
data [13]. For transfer learning to be successful, the source and target domains and/or tasks
need to be related in some way. Examples of transfer learning include multitask learning [14,
16, 23, 43], when two or more related tasks are learning jointly, and sequential transfer learning
[60, 42, 40, 15], when the source task is learned first and then some components of the original
architecture are used and adapted to the target task.

Both multi-task and sequential transfer learning provide advantages. Multitask learning
often allows to achieve better generalisation [5], it provides a model with the capacity to eaves-
drop, i.e., learn to do one task through another, and finally it is a form of regularisation [54].
Sequential transfer learning, on the other hand, has the benefit of fast adaptation to new tasks,
sometimes even without additional training. A widely successful example of sequential transfer
learning in Natural Language Processing (NLP) are language models used as embeddings to
represent textual inputs, such as BERT [17].

Recently, transfer learning has started to be applied on historical collections in a variety
of ways. Examples include the representation and measurement of semantic change [52, 24]
or extracting named entity information [31]. Nevertheless, several questions remain open, in
particular due to the challenges which historical corpora pose. It remains unclear when (i.e.,
for which tasks, languages, etc.) and how (i.e., taking which approach) transfer learning can
be successfully applied on historical collections. Given that most pre-trained language models
have been trained on modern-day, high-resource languages (e.g., Wikipedia in English), their
applicability to historical collections deserves more than an afterthought.

In this work, we start bridging the gap of systematically assessing transfer learning for
historical textual collections. We consider two tasks: the ICDAR2019 Competition on Post-
OCR Text Correction [45] and the CLEF-HIPE-2020 challenge on Named Entity Recognition,
Classification and Linking [20]. These tasks are of importance to practitioners as they directly
influence the usability and accessibility of digitised historical collections. We propose a general
architecture made of a modular embedding layer, which allows us to perform ablation studies
using combinations of newly trained and pre-trained embeddings, and task-specific layers. For
both tasks, we consider English, German and French as languages, and use the task data and
evaluations.

2. Empirical setup
In order to assess the added value of transfer learning on a variety of tasks, we use a general
approach illustrated in Figure 1. We represent the input using a modular embedding layer
which can include combinations of newly trained and pre-trained embeddings. Embeddings
can be at the character, sub-word or word level, and can be combined flexibly. In this way,
we can perform ablation studies and measure the impact of using pre-trained embeddings.
Each task is performed using the embedding layer to create an input representation, followed
by task-specific layers and evaluation. In this section, we describe the challenges and our
approach to them. Further details are provided as an appendix.

2.1. Post-OCR Correction
OCR is an often noisy process which introduces errors in the extracted text. One option to
improve the quality of its results is to attempt to correct the extracted text using linguistic
knowledge. We work with the ICDAR2019 Competition on Post-OCR Text Correction [45].
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Figure 1: General model architecture for assessing transfer learning on a variety of tasks.

Two sub-tasks are proposed as part of this challenge: (i) the detection of the OCR errors and
(ii) the correction the OCR errors. For this study, we focus on the latter.

2.1.1. Previous work

The quality of OCRed texts is crucial for achieving stable performance in NLP [58, 36, 11].
Noisy OCR can be the result of the acquisition process, of the document conservation state
or even of some of its properties, such as the use of worn-out types [53]. This makes post-
processing techniques such as post-OCR correction, potentially important as they could over-
come some of the noise introduced during OCR. However, still little work has been devoted
to this area. Nevertheless, previous work has found that working at narrower linguistic levels,
such as focusing on characters or sub-words instead of words, leads to better results [7].

2.1.2. Data

The data which is provided includes noisy OCR of printed texts from different sources and
ten languages (English, French, German, Finish, Spanish, Dutch, Czech, Bulgarian, Slovak
and Polish). We focus on English, German and French which taken together total 13 628
documents for 17 884 116 characters. We keep the same 80-20% data split provided by the
organisers, and use the ground truth to OCRed text versions aligned at the character level.
This choice allows our models to disregard having to learn how to perform sequence alignment
too.
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Since we have considerably less data for English and French when compared to German,
we also make use of data in these languages from a previous edition of the challenge, namely
ICDAR2017 Competition on Post-OCR Text Correction [10]. This allows us to add 12 000 000
OCRed characters along with their corresponding ground truth, approximately half in English
and half in French. We further augment the dataset by adding OverProof data1 in English. We
use 100% of ICDAR2017’s and Overproof’s data as training data. We split ICDAR2017 and
ICDAR2019 documents into sequences of 50 characters in length. OverProof data are already
split line-by-line instead.

2.1.3. Evaluation

Evaluation is performed by making use of the sum of the Levenshtein distances [35] of the
documents between the corrected candidates and the corresponding ground truth, using the
raw OCR text as baseline. The sum is used to calculate the improvement over the Levenshtein
distance of the original OCR and the ground truth. We additionally report a normalised Jac-
card similarity for each run, calculated at the character level and without taking into account
their sequencing. We normalise the Jaccard similarity using the length of the sequences. We
report the average for both metrics across the sequences that are evaluated. We note that our
results cannot be immediately compared with the reported results from ICDAR2019 [45], for
the reason that these are calculated over erroneous tokens only (i.e., they are based on the
outputs of the challenge’s task 1), while we consider the whole text.

2.1.4. Model

We combine the embedding layer with an encoder-decoder architecture with attention [4],
typically used for translation. We thus consider the raw OCR version of a text and ground
truth as two distinct languages, and train the model to ‘translate’ from one to the other. A
key difference from a language translation setup is that we rely on the same character and
sub-word vocabularies for input and output instead of having two distinct vocabularies. Our
encoder-decoder architecture works at the character level, to be able to correct errors at that
level.

Embedding layer We experiment with newly trained character-level embeddings, combined
with BERT and in-domain sub-word embeddings. Sub-word embeddings are concatenated to
character-level embeddings, as illustrated in Figure 2. Concatenation brings significant speed-
up benefits while performing, in our setting, similarly to other approaches such as using extra
RNNs or CNNs layers. As sub-word embeddings, we use bert-base-cased for English, bert-
base-german-cased for German and bert-base-multilingual-cased for French. Furthermore, we
use FastText [27] embeddings which have been pre-trained on historical newspaper corpora
(in-domain) and were provided by the organisers of the NER task. We always use WordPiece
sub-word tokenization [51, 30].

Encoder The concatenated embeddings are used in the encoder, which produces a sequence
of hidden states h1, . . . ,hM , one for each character embedding. The encoder in our case is a Bi-
directional Gated Recurrent Unit (Bi-GRU) [12]. The Bi-GRU produces two representations,
one left-to-right and one right-to-left, as follows:

1https://overproof.projectcomputing.com.
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Figure 2: Sub-word and character embedding concatenation for the post-OCR correction encoder.

−→
h =

[−→
h1, . . .

−→
hM

]
and ←−h =

[←−
h1, . . .

←−
hM

]
Where each hidden state is calculated as:

−→
hi = GRU

(
xi,
−−→
hi−1

)
and ←−hi = GRU

(
xi,
←−−
hi+1

)
The final representation of the Bi-GRU is:

h =
[−→
h ;
←−
h
]

Where “;” stands for the concatenation between the left-to-right and right-to-left passes.

Figure 3: Post-OCR correction model, decoder pass.
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Decoder This final hidden state is then forwarded to the decoder. This is similar to the
encoder with two major differences. The whole pass can be seen in Figure 3. We first use
an embedding layer which does not make use of any pre-trained embeddings. When we test
sharing the same embedding layer in the encoder and the decoder, we skip pre-trained model
embeddings for the decoder. We justify this with the fact that we decode information character
by character, thus making pre-trained embeddings not applicable – since in our case they work
at the sub-word level. Furthermore, we use attention [4]. The final representation of each
target character can be formulated as:

si = GRU (si−1,yi−1, ci)

where si is the decoder hidden state, for which we use a GRU. We decode each character
separately by feeding the encoded final state h to the attention mechanism which then outputs
a context vector ci (shown in yellow). This is done at each step where the attention dynamically
selects that part of the encoded source sentence that is considered most relevant for the current
target character. Additionally, we use the previously decoded character hidden state as input
knowledge, and we label them as yi−1.

After computing the decoder state si, we use a non-linear function g – a softmax in our case
– and calculate the probability of the target character yi for this step:

p (yi|y<i, X) = g (si)

Here, X = (x1, . . . , xM ) is the input sequence and g (a softmax) provides a probability vector
of the same size as the character vocabulary. This is a distribution over all target characters,
where at inference time we select the character with the highest probability as output. This
setup ends with a cross entropy loss that is used to maximise the probability of selecting the
correct character at each step.

2.2. Named Entity Recognition
Named Entity (NE) processing is increasingly applied to historical collections [31]. We par-
ticipate in the CLEF-HIPE-2020 challenge [20] which focuses on two of the most pressing NE
processing tasks, namely Named Entity Recognition and Classification (NERC) and Named
Entity Linking (NEL). We only focus on the former task (NERC) in what follows.

The CLEF-HIPE-2020 NERC task is further split into two sub-tasks. Sub-task 1 considers
coarse-grained NE types, that is to say the most general entity tags, for example a grouping such
as loc combines all location entities and sub-entities. Sub-task 2 considers fine-grained entity
types. Following previous examples, we now have detailed sub-entities such as loc.adm.town
which corresponds to an administrative town or loc.adm.nat which corresponds to an admin-
istrative unit at the national level. Both sub-tasks make a distinction between the literal and
the metonymic senses of an entity. Metonymy stands for a figure of speech in which a specific
thing is referred to by the name of something closely related to it. Additionally, detection and
classification of nested entities of depth one and of entity mention components (such as title,
function, etc.) is required. Table 1 shows a comparison of the two sub-tasks and the differences
in expected predictions.

2.2.1. Previous work

Recently, the task of named entity recognition has seen major improvements thanks to the
inclusion of novel deep learning techniques and the usage of learned representations (em-
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Sub-task 1 Sub-task 2
NE mentions with coarse types yes yes
NE mentions with fine types no yes
Metonymic sense yes yes
NE components no yes
Nested entities of depth one no yes

Table 1
NERC sub-task comparison

beddings) [1, 34, 31]. Named entity recognition and classification (NERC) is also of great
importance in the digital humanities and cultural heritage. However, applying existing NERC
techniques is also made challenging by the complexities of historical corpora [55, 26]. Crucially,
transferring NE models from one domain to another is not straightforward [59] and in many
cases performance is consequently greatly impacted [56].

2.2.2. Data

The data consists of Swiss, Luxembourgish and American historical newspapers written in
French, German and English respectively, collected in the context of the IMPRESSO project
[19]. Newspaper articles were sampled over a period spanning 1790 to 2010. We have in total
569 articles and 1 894 741 characters with a vocabulary of 151 unique characters. It is also
important to note that, as it is often the case with NE tasks, most of the tokens are labelled
as “Other” or O. In total, we have that 94.92%, 95.95%, and 96.5% of all English, French and
German tokens are labelled as “Other”, respectively. Furthermore, some tags are particularly
sparse. For nested and the two metonymic tags, we have more than 99.5% non-entities across
languages. More information about the data distribution can be found in the Appendix.

The data are released in IOB format (Inside-Outside-Beginning format), which we also use
during training and evaluating. Some pre-processing was done by the organisers, applying
tokenization using white space splitting and flagging some tokens as NoSpaceAfter in order
to allow full words to be reconstructed. The organisers also provided in-domain pre-trained
FastText embeddings for all languages, which we used for both post-OCR correction and
NER [27]. The organisers also provide Flair embeddings [2] which we do not use here.

2.2.3. Evaluation

The task is evaluated in terms of Precision, Recall and F1-measure. Two evaluation scenarios
are considered: (i) strict (exact boundary matching) and (ii) relaxed (fuzzy boundary match-
ing). Fuzzy scoring works in a relaxed way, allowing fuzzy boundary matching of entities.
That is if an entity is only partially recognised, e.g., if 4 out of total of 6 tokens are recognised
correctly, this is still considered a successful recognition. Conversely, strict matching requires
all tokens to match with exact boundary matching – in previous example this would require 6
out of 6 total tokens to be predicted correctly. Each entity type is evaluated independently,
by using the entity-level micro average. It must be noted that all evaluations are performed
on entities (inside or at the beginning) only and do not consider predictions of outside tokens
or tokens originally labelled as outside (O). The organisers provide a simple CRF [32] baseline
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model based on the sklearn_crfsuite library 1 and using hand-crafted features.

2.2.4. Model

We combine our modular embedding layer with a Bidirectional LSTM-CRF (Bi-LSTM-CRF)
for Named Entity Recognition [34], with the only simplification of removing the tanh non-
linearity after the LSTM. We consider embeddings at varying input granularities, including:
(i) character-, (ii) sub-word- and (iii) word-level. As a sanity test, we applied our model on
the modern-day CoNLL-2003 dataset [49], achieving results comparable to current state of the
art. Due to the challenge consisting of six prediction tasks (one for each tag type), we consider
a multi-task approach where we repeat our final fully connected and CRF layers for each task
and share the remaining ones. This is illustrated in Figure 4. When testing for single-task, we
use the same architecture with a single final layer for a single entity type.

Figure 4: NERC multi-task model architecture. Our single-task architecture is identical and only contains
a final layer for one entity type.

Embedding layer We consider four different embeddings. (i) Character embeddings with an
embedding layer followed by a bidirectional LSTM. We use a character-level custom vocabu-
laries for each language built from the training and validation data sets. (ii) BERT embeddings
at sub-word level. We use bert-base-multilingual-cased for French, bert-base-german-cased for

1https://sklearn-crfsuite.readthedocs.io/en/latest [version used: 0.3.6, last accessed: 2020-07-24].
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German, and bert-base-cased for English, from HuggingFace Transformers library [61]. This
brings the specific limitation of only working with sequences of 512 character in maximum
length. As our text sequences are usually longer, we implement a sliding-window splitting of
input sequences before passing them through BERT. While splitting, we keep the first and last
5 characters of each chunk as overlap among sequential chunks. After embedding each chunk,
we then reconstruct the full input sequences by averaging the embeddings of the overlapping
characters. (iii) Newly trained embeddings at sub-word level with randomly initialised weights.
We include these newly-trained embeddings to test whether parameters learned from scratch
at the sub-word level, instead of just pre-trained, can help. We use the same vocabulary as
with BERT. (iv) In-domain pre-trained embeddings provided by the task organisers are used for
feature extraction only (frozen). These embeddings have size of 300 and work at the sub-word
level, using the FastText library [27].

After testing different alternatives, we found that the simplest and fastest way to combine
these embeddings is by concatenating them, resulting in concatenated sub-word embeddings
of size 1836 when the largest configuration and all embedding options are used.

Task-specific layer based on a Bi-LSTM-CRF [34]. The Bi-LSTM-CRF works on the con-
catenated sub-word embeddings, which are then merged at word level by taking their average
before feeding the representation through a fully connected layer which then outputs tag prob-
abilities for each token. We tested concatenating embeddings before or after the Bi-LSTM,
or not merging at all, and found that our approach performs best, also in accordance with
previous findings [48]. A Conditional Random Field (CRF) [33] is used over the produced tag
probabilities to decode the final tag predictions.

Multi-task We introduce additional output heads, one for each of the different entity types
that the task aims to predict. The final two layers of the model, namely the fully connected
layer and CRF, are specific to each entity type, while the rest of the architecture is shared.
The individual losses for each task are summed during backpropagation. We compare using
single vs multi-task approach in what follows.

Additional resources We use the Annotated Corpus for Named Entity Recognition built on
top of Groningen Meaning Bank (GMB) [9]1. This dataset is annotated specifically for training
NER classifiers, and contains most of the coarse-grained tag types which occur in the English
dataset provided by organisers. We consolidate some tags with the same meaning but different
labels ourselves. The dataset contains in total 1,354,149 tokens of which 85% are labelled as O
originally. We convert the tag types that are not part of this challenge to O as well, resulting
in total of 94.92% tokens having O literal tags.

3. Results
3.1. Post-OCR Correction
We start discussing results for post-OCR correction reporting the average Levenshtein distance
and normalised Jaccard similarity. We always provide, for reference, both measures calculated
on the raw OCRed text (No correction), and the % of improvement. We report results with

1https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus [accessed 2020-07-16].
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a baseline model without pre-trained embeddings (Base), adding FastText (+ FT), BERT (+
BERT) and both. We further assess fine-tuning BERT models by unfreezing BERT embeddings
from the start or after convergence. More details on model fitting and the hyper-parameters
we used are given in the Appendix. We also show, in Figure 5 (in Appendix A), the normalised
histogram of the Levenshtein distances for all documents and languages, comparing the raw
OCRed text, the Base model and the best model we found for each language.

Configuration Levenshtein distance Normalised Jaccard similarity
Average % improvement Average % improvement

No correction 3.568 - 0.926 -

Base 3.369 5.579 0.934 0.824
Base + FT 3.442 3.522 0.934 0.855
Base + BERT 3.393 4.896 0.934 0.881
Base + FT + BERT 3.389 5.020 0.934 0.850
+ Fine-tuning (unfreezing, from start) BERT
Base + BERT 3.441 3.565 0.933 0.722
Base + FT + BERT 3.397 4.784 0.936 1.008
+ Fine-tuning (unfreezing, after initial convergence) BERT
Base + BERT 3.401 4.668 0.935 0.923
Base + FT + BERT 3.448 3.347 0.935 0.900

Table 2
Post-OCR correction, French. Best result per table and column is given in bold, second best is underlined.

Starting with French (Table 2), we find that the raw OCRed texts for this language are
already of very high quality, thus we are able to get but minor improvements. Furthermore,
using pre-trained embeddings does not seem to help in any significant way. When considered
using the Levenshtein distance, the best model is one without pre-trained embeddings (Base),
while fine-tuning BERT leads to slightly higher performance under the Jaccard similarity.
Nevertheless, these gains are very marginal. German raw OCRed texts are of lower quality
than French, we are thus able to get substantial improvements with correction (up to 64%
with Levenshtein distance, Table 3). While our post-OCR correction gains are substantial, the
impact of pre-trained embeddings remains negligible or non-existent.

Lastly, with English we face another challenge namely the bad quality of the ground truth
(Table 4). As a consequence, results are largely inconclusive and our model fails to learn
anything significant in order to improve upon the original sequence pairs. Furthermore, in
many instances, the ground truth proved to contain errors while our models were suggesting
valid corrections. For example:

• input: “any glimpse, or sign *f Eight trom the Earth, it”
ground truth: “any glimpse, or ffgn of Light from the Earth, it”
prediction: “any glimpse, or sign of Eight from the Earth, it”

• input: “• Henry K Concert—AU flddledidee—Triumph* ot”
ground truth: “.... Henry A Concert All ddledidee Triumphs of”
prediction: “Henry a Concert All dreest the”
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Configuration Levenshtein distance Normalised Jaccard similarity
Average % improvement Average % improvement

No correction 12.008 - 0.656 -

Base 4.302 64.172 0.900 37.290
Base + FT 4.439 63.034 0.896 36.584
Base + BERT 4.464 62.827 0.896 36.630
Base + FT + BERT 5.393 55.088 0.872 32.938
+ Fine-tuning (unfreezing, from start) BERT
Base + BERT 4.283 64.334 0.900 37.324
Base + FT + BERT 4.340 63.863 0.899 37.131
+ Fine-tuning (unfreezing, after initial convergence) BERT
Base + BERT 4.344 63.828 0.898 37.039
Base + FT + BERT 4.411 63.271 0.898 36.908

Table 3
Post-OCR correction, German. Best result per table and column is given in bold, second best is underlined.

Configuration Levenshtein distance Normalised Jaccard similarity
Average % improvement Average % improvement

No correction 9.397 - 0.825 -

Base 9.955 -5.944 0.822 -0.310
Base + FT 9.864 -4.971 0.825 -0.005
Base + BERT 10.228 -8.840 0.822 -0.364
Base + FT + BERT 9.992 -6.338 0.825 -0.006
+ Fine-tuning (unfreezing, from start) BERT
Base + BERT 9.835 -4.665 0.825 0.062
Base + FT + BERT 9.787 -4.151 0.825 0.078
+ Fine-tuning (unfreezing, after initial convergence) BERT
Base + BERT 9.724 -3.483 0.829 0.510
Base + FT + BERT 9.927 -5.639 0.826 0.108

Table 4
Post-OCR correction, English. Best result per table and column is given in bold, second best is underlined.

In conclusion, we find that for post-OCR correction pre-trained embeddings do not provide
any significant gain over a baseline with newly trained embeddings. Considering that the
convergence speed (and hence compute cost) is higher when using pre-trained embeddings, in
particular when fine-tuning them (Appendix, Table 12), transfer learning does not appear to
help with post-OCR correction.

We underline that the data provided for the ICDAR2019 challenge is far from uniform across
languages, and this has a major impact on our results. While data for German contains bad
raw OCRed texts and good ground truth (the ideal setting for post-OCR correction), data
for French contains high-quality raw OCRed texts and data for English contains a low-quality
ground truth. We still see how the inclusion of pre-trained embeddings makes our model able to
correct words that have incorrect ground truth, thus confusing the learning process even more.
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Furthermore, we observe how we can get better results with a single-origin dataset (German),
than with similarly sized datasets (French and English) originating from a combination of
different sources.

3.2. Named Entity Recognition
We report results for the three languages part of the task, namely French, German and En-
glish, using the official test set v1.3 [20] We base our reporting from our submission in the
challenge [57]. In addition to that, we report using multi-segment and document-level split
types for French and German and segment split type for English, since our English training
data lacks the document level. All results are reported in the two scoring approaches used in
the challenge – fuzzy and strict. For each scoring approach, we provide precision (P), recall (R)
and F-score (F). We report the baseline model provided by organisers for reference, reminding
the reader that the baseline model always uses a document-level split. We also report the
baseline model results on our English data. More details on model fitting and the parameters
are provided in the Appendix.

Configuration
Literal coarse

Fuzzy Strict
P R F P R F

Baseline (organisers) .736 .454 .562 .531 .327 .405
Baseline (ours) .377 .612 .466 .190 .310 .236
Base .307 .576 .401 .139 .261 .181
Base + CE .300 .640 .409 .139 .296 .189
Base + CE + FT .309 .627 .414 .140 .285 .188
Base + CE + BERT .457 .538 .494 .261 .307 .282
Base + CE + BERT - newly .475 .535 .503 .265 .298 .281
Base + CE + FT + BERT .408 .590 .482 .229 .332 .271
Base + CE + FT + BERT - newly .415 .528 .465 .179 .227 .200
+ Fine-tuning (unfreezing) BERT
Base + CE + BERT .421 .622 .502 .203 .301 .243
Base + CE + BERT - newly .493 .530 .511 .292 .314 .303
Base + CE + FT + BERT .404 .582 .477 .205 .296 .242
Base + CE + FT + BERT - newly .462 .508 .484 .261 .287 .274

Table 5
NERC, English, segment split. Best result per table and column is given in bold, second best is underlined

We order the different configurations for all languages in order to assess the impact of transfer
learning. We start with the simplest Base model which is only using newly trained sub-word
embeddings and no pre-trained information of any type. Then we continue by adding character
embeddings which use RNN (+ CE). Due to the significant improvements observed by adding
character embeddings, we keep them enabled in all of our next reported setups. We further
report results that were achieved by adding firstly the (frozen) FastText embeddings provided
by organisers (+ FT), then (frozen) BERT embeddings (+ BERT), and finally both. Whenever
BERT is enabled, we also report runs where we disable newly trained embeddings (- newly).
Eventually, we report three different setups where we unfreeze BERT and fine-tune them on
the task at hand. Due to the long sequence lengths when working on document level, we are
unable to perform fine-tuning of BERT at the document level. We therefore report the results
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of fine-tuning BERT only using multi-segment split. All models use the multi-task approach,
except for one single-task run using all available embeddings (single).

Results for French (Table 6) and German (Table 7) are aligned. Firstly, adding character-
level embeddings and BERT consistently improves results. Better results overall are obtained
with a single-task approach and using all available embeddings, including newly trained ones.
A document-level split, following this configuration, perform best across the board. We also see
that most of our configurations struggle on tasks with sparser annotations such as Metonymic
and Nested, in particular for German where we are not predictive at all on nested tags. Fur-
thermore, fine-tuning BERT does not seem to improve results.

For completeness, we report results for English in Table 5, limited to the Literal coarse task.
For a better comparison, we provide results from two baseline models: i) the baseline from
the organisers and ii) the baseline model trained on the English dataset we use. Our models
are mostly not able to perform beyond the provided baseline. This is likely in part due to the
training data that we use originating from a different source than the evaluation data.

We see that in a scenario where data is small or lacking, transfer learning proves to be highly
beneficial. The inclusion of BERT for NER brings noticeable improvements, especially when
compared to the post-OCR correction challenge where improvements are negligible while data
is more abundant. Furthermore, multi-task learning proves to be beneficial, often bringing
better results than single-task and requiring less time for convergence. This challenge further
underlines the importance of having high-quality annotated data.
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Configuration
Literal coarse Metonymic coarse

Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F

Baseline .825 .721 .769 .693 .606 .646 .541 .179 .268 .541 .179 .268
Base .776 .690 .730 .618 .550 .582 .500 .424 .459 .495 .420 .454
Base + CE .806 .739 .771 .649 .594 .620 .552 .379 .45 .545 .375 .444
Base + CE + FT .789 .780 .784 .650 .642 .646 .481 .339 .398 .468 .330 .387
Base + CE + BERT .886 .801 .841 .782 .707 .743 .424 .397 .410 .410 .384 .396
Base + CE + BERT - newly .859 .818 .838 .719 .685 .702 .417 .384 .400 .417 .384 .400
Base + CE + FT + BERT .866 .836 .851 .767 .739 .753 .664 .362 .468 .656 .357 .462
Base + CE + FT + BERT - newly .864 .848 .856 .765 .751 .758 .766 .321 .453 .766 .321 .453
Base + CE + FT + BERT (single) .872 .835 .853 .769 .737 .753 .036 .069 .000 .036 .069 .000
+ Fine-tuning (unfreezing) BERT
Base + CE + BERT .876 .824 .849 .775 .729 .751 .442 .375 .406 .432 .366 .396
Base + CE + BERT - newly .877 .804 .839 .775 .711 .742 .754 .384 .509 .754 .384 .509
Base + CE + FT + BERT .857 .836 .846 .759 .741 .750 .551 .482 .514 .541 .473 .505
Base + CE + FT + BERT - newly .845 .838 .842 .742 .737 .740 .659 .500 .569 .659 .500 .569

(a) coarse grained entity type, multi-segment split

Configuration
Literal fine Metonymic fine Component Nested

Fuzzy Strict Fuzzy Strict Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F P R F P R F P R F P R F

Baseline .838 .693 .758 .644 .533 .583 .564 .196 .291 .538 .187 .278 .799 .531 .638 .733 .487 .585 .267 .049 .082 .267 .049 .082
Base .800 .670 .729 .548 .459 .499 .476 .451 .463 .472 .446 .459 .774 .531 .630 .692 .475 .563 .383 .140 .205 .333 .122 .179
Base + CE .825 .708 .762 .562 .482 .519 .594 .366 .453 .594 .366 .453 .779 .556 .649 .720 .514 .600 .500 .067 .118 .364 .049 .086
Base + CE + FT .801 .763 .781 .568 .541 .554 .567 .228 .325 .533 .214 .306 .762 .598 .670 .682 .535 .600 .425 .207 .279 .375 .183 .246
Base + CE + BERT .889 .781 .831 .658 .578 .616 .532 .366 .434 .519 .357 .423 .803 .579 .673 .715 .515 .599 .000 .000 .000 .000 .000 .000
Base + CE + BERT - newly .865 .748 .802 .613 .530 .568 .54 .241 .333 .540 .241 .333 .821 .504 .625 .732 .449 .557 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT .866 .818 .842 .672 .634 .653 .702 .263 .383 .643 .241 .351 .804 .563 .662 .712 .499 .587 .357 .03 .056 .143 .012 .022
Base + CE + FT + BERT - newly .873 .820 .846 .672 .631 .651 .771 .241 .367 .743 .232 .354 .842 .546 .663 .774 .503 .61 .393 .067 .115 .286 .049 .083
Base + CE + FT + BERT (single) .868 .818 .842 .676 .636 .655 .538 .442 .485 .533 .438 .48 .752 .677 .713 .659 .594 .625 .000 .000 .000 .000 .000 .000
+ Fine-tuning (unfreezing) BERT
Base + CE + BERT .877 .806 .840 .654 .600 .626 .434 .379 .405 .429 .375 .400 .770 .598 .673 .673 .523 .588 .267 .049 .082 .133 .024 .041
Base + CE + BERT - newly .885 .782 .830 .672 .593 .630 .739 .290 .417 .705 .277 .397 .818 .524 .639 .745 .477 .582 .107 .018 .031 .071 .012 .021
Base + CE + FT + BERT .871 .814 .842 .687 .642 .664 .568 .411 .477 .543 .393 .456 .741 .672 .705 .648 .587 .616 .232 .159 .188 .179 .122 .145
Base + CE + FT + BERT - newly .852 .837 .845 .663 .652 .658 .681 .420 .519 .609 .375 .464 .785 .626 .697 .701 .559 .622 .333 .183 .236 .244 .134 .173

(b) fine grained entity type, multi-segment split

Configuration
Literal coarse Metonymic coarse

Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F

Baseline .825 .721 .769 .693 .606 .646 .541 .179 .268 .541 .179 .268
Base .812 .686 .743 .671 .566 .614 .444 .536 .486 .444 .536 .486
Base + CE .802 .762 .782 .658 .625 .641 .575 .272 .370 .566 .268 .364
Base + CE + FT .815 .737 .774 .673 .608 .639 .510 .469 .488 .505 .464 .484
Base + CE + BERT .871 .831 .851 .779 .743 .760 .684 .232 .347 .684 .232 .347
Base + CE + BERT - newly .890 .828 .858 .788 .733 .759 .564 .277 .371 .545 .268 .359
Base + CE + FT + BERT .872 .828 .849 .772 .733 .752 .433 .696 .534 .428 .688 .527
Base + CE + FT + BERT - newly .869 .872 .871 .780 .782 .781 .755 .357 .485 .755 .357 .485
Base + CE + FT + BERT (single) .890 .856 .873 .807 .776 .791 .699 .424 .528 .691 .420 .522

(c) coarse grained entity type, document split

Configuration
Literal fine Metonymic fine Component Nested

Fuzzy Strict Fuzzy Strict Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F P R F P R F P R F P R F

Baseline .838 .693 .758 .644 .533 .583 .564 .196 .291 .538 .187 .278 .799 .531 .638 .733 .487 .585 .267 .049 .082 .267 .049 .082
Base .822 .672 .739 .594 .486 .534 .446 .513 .477 .419 .482 .448 .738 .600 .662 .657 .534 .589 .512 .250 .336 .350 .171 .230
Base + CE .809 .752 .780 .586 .546 .565 .521 .223 .313 .521 .223 .313 .743 .618 .675 .650 .541 .590 .350 .171 .230 .275 .134 .180
Base + CE + FT .811 .722 .764 .599 .534 .565 .540 .362 .433 .507 .339 .406 .759 .603 .672 .684 .544 .606 .453 .177 .254 .406 .159 .228
Base + CE + BERT .885 .799 .840 .696 .629 .661 .654 .304 .415 .654 .304 .415 .719 .686 .702 .625 .596 .610 .304 .104 .155 .250 .085 .127
Base + CE + BERT - newly .896 .790 .840 .675 .595 .633 .568 .223 .321 .568 .223 .321 .808 .603 .690 .696 .520 .595 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT .883 .800 .839 .717 .649 .682 .741 .371 .494 .679 .339 .452 .794 .631 .703 .715 .568 .633 .341 .183 .238 .318 .171 .222
Base + CE + FT + BERT - newly .881 .841 .861 .703 .671 .687 .705 .384 .497 .689 .375 .486 .792 .644 .710 .704 .572 .631 .233 .043 .072 .067 .012 .021
Base + CE + FT + BERT (single) .882 .853 .867 .729 .704 .716 .741 .357 .482 .741 .357 .482 .734 .726 .73 .650 .642 .646 .438 .299 .355 .393 .268 .319

(d) fine grained entity type, document split
Table 6
NERC, French. The best result per table and column is given in bold, second best result is underlined
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Configuration
Literal coarse Metonymic coarse

Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F

Baseline .790 .464 .585 .643 .378 .476 .814 .297 .435 .814 .297 .435
Base .698 .526 .600 .535 .404 .46 .559 .602 .580 .551 .593 .571
Base + CE .685 .605 .642 .535 .473 .502 .588 .568 .578 .588 .568 .578
Base + CE + FT .691 .554 .615 .528 .424 .470 .534 .602 .566 .534 .602 .566
Base + CE + BERT .801 .675 .733 .596 .502 .545 .000 .000 .000 .000 .000 .000
Base + CE + BERT - newly .759 .706 .732 .582 .541 .561 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT .784 .724 .753 .639 .589 .613 .598 .542 .569 .598 .542 .569
Base + CE + FT + BERT - newly .840 .640 .726 .696 .530 .602 .696 .466 .558 .696 .466 .558
Base + CE + FT + BERT (single) .827 .731 .776 .708 .625 .664 .492 .530 .510 .472 .508 .490
+ Fine-tuning (unfreezing) BERT
Base + CE + BERT .756 .718 .737 .546 .519 .532 .000 .000 .000 .000 .000 .000
Base + CE + BERT - newly .752 .718 .734 .56 .534 .547 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT .738 .678 .707 .575 .528 .551 .562 .500 .529 .543 .483 .511
Base + CE + FT + BERT - newly .802 .689 .741 .658 .565 .608 .621 .521 .567 .616 .517 .562

(a) coarse grained entity type, multi-segment split

Configuration
Literal fine Metonymic fine Component Nested

Fuzzy Strict Fuzzy Strict Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F P R F P R F P R F P R F

Baseline .792 .419 .548 .641 .339 .444 .805 .28 .415 .805 .28 .415 .783 .34 .474 .727 .316 .44 .333 .014 .026 .333 .014 .026
Base .723 .517 .602 .479 .343 .400 .593 .593 .593 .585 .585 .585 .589 .298 .396 .486 .246 .327 .000 .000 .000 .000 .000 .000
Base + CE .704 .585 .639 .466 .388 .424 .667 .559 .608 .667 .559 .608 .589 .432 .498 .506 .371 .428 .250 .014 .026 .000 .000 .000
Base + CE + FT .706 .521 .600 .478 .353 .406 .538 .602 .568 .538 .602 .568 .654 .266 .378 .571 .232 .33 .000 .000 .000 .000 .000 .000
Base + CE + BERT .773 .693 .731 .348 .312 .329 .000 .000 .000 .000 .000 .000 .562 .222 .318 .382 .151 .216 .000 .000 .000 .000 .000 .000
Base + CE + BERT - newly .800 .647 .716 .358 .289 .32 .000 .000 .000 .000 .000 .000 .455 .480 .467 .31 .327 .318 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT .800 .626 .703 .515 .403 .452 .581 .547 .563 .568 .534 .550 .670 .471 .553 .525 .369 .433 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT - newly .816 .639 .717 .551 .432 .484 .627 .542 .582 .627 .542 .582 .533 .227 .319 .397 .169 .237 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT (single) .776 .569 .656 .477 .35 .403 .000 .000 .000 .000 .000 .000 .841 .423 .563 .751 .378 .503 .000 .000 .000 .000 .000 .000
+ Fine-tuning (unfreezing) BERT
Base + CE + BERT .759 .703 .73 .311 .288 .299 .000 .000 .000 .000 .000 .000 .418 .295 .346 .276 .195 .229 .000 .000 .000 .000 .000 .000
Base + CE + BERT - newly .758 .696 .726 .290 .267 .278 .000 .000 .000 .000 .000 .000 .399 .328 .360 .239 .197 .216 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT .736 .687 .711 .433 .405 .418 .524 .551 .537 .508 .534 .521 .474 .508 .490 .338 .362 .349 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT - newly .801 .685 .738 .548 .469 .506 .691 .475 .563 .691 .475 .563 .58 .51 .543 .472 .415 .442 .000 .000 .000 .000 .000 .000

(b) fine grained entity type, multi-segment split

Configuration
Literal coarse Metonymic coarse

Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F

Baseline .790 .464 .585 .643 .378 .476 .814 .297 .435 .814 .297 .435
Base .678 .552 .609 .519 .422 .465 .571 .581 .576 .567 .576 .571
Base + CE .688 .573 .626 .548 .456 .498 .618 .576 .596 .618 .576 .596
Base + CE + FT .706 .548 .617 .549 .426 .480 .725 .492 .586 .725 .492 .586
Base + CE + BERT .763 .752 .758 .642 .632 .637 .714 .508 .594 .714 .508 .594
Base + CE + BERT - newly .805 .654 .722 .641 .520 .574 .433 .517 .471 .426 .508 .463
Base + CE + FT + BERT .767 .765 .766 .647 .645 .646 .622 .627 .624 .622 .627 .624
Base + CE + FT + BERT - newly .799 .726 .761 .671 .609 .639 .696 .542 .610 .696 .542 .610
Base + CE + FT + BERT (single) .860 .738 .795 .753 .647 .696 .709 .517 .598 .709 .517 .598

(c) coarse grained entity type, document split

Configuration
Literal fine Metonymic fine Component Nested

Fuzzy Strict Fuzzy Strict Fuzzy Strict Fuzzy Strict
P R F P R F P R F P R F P R F P R F P R F P R F

Baseline .792 .419 .548 .641 .339 .444 .805 .280 .415 .805 .280 .415 .783 .340 .474 .727 .316 .440 .333 .014 .026 .333 .014 .026
Base .690 .530 .599 .448 .344 .389 .586 .606 .596 .582 .602 .592 .592 .394 .474 .491 .327 .393 .312 .068 .112 .250 .055 .090
Base + CE .706 .555 .622 .483 .380 .426 .670 .534 .594 .670 .534 .594 .683 .447 .54 .589 .385 .466 .154 .027 .047 .077 .014 .023
Base + CE + FT .726 .530 .613 .527 .384 .445 .766 .500 .605 .766 .500 .605 .722 .332 .455 .636 .292 .401 .500 .082 .141 .500 .082 .141
Base + CE + BERT .782 .734 .757 .571 .536 .553 .750 .508 .606 .750 .508 .606 .700 .500 .583 .623 .445 .520 .333 .027 .051 .333 .027 .051
Base + CE + BERT - newly .806 .594 .684 .496 .365 .421 .500 .508 .504 .500 .508 .504 .565 .090 .156 .420 .067 .116 .000 .000 .000 .000 .000 .000
Base + CE + FT + BERT .791 .763 .777 .594 .574 .584 .649 .610 .629 .649 .610 .629 .703 .582 .637 .585 .485 .53 .250 .014 .026 .250 .014 .026
Base + CE + FT + BERT - newly .840 .679 .751 .615 .497 .550 .744 .517 .610 .744 .517 .610 .792 .397 .529 .699 .350 .467 .250 .007 .013 .000 .000 .000
Base + CE + FT + BERT (single) .839 .743 .788 .669 .593 .629 .667 .525 .588 .645 .508 .569 .718 .588 .647 .632 .517 .569 .000 .000 .000 .000 .000 .000

(d) fine grained entity type, document split
Table 7
NERC, German. The best result per table and column is given in bold, second best result is underlined
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4. Conclusion
We have used a modular architecture to approach two distinct shared tasks relevant for OCRed
historical corpora: post-OCR correction (ICDAR2019) and Named Entity Recognition (CLEF-
HIPE-2020), using data in English, French and German. Our architecture combines a modular
embedding layer with a task-specific layer, allowing us to test the impact of pre-trained lan-
guage models, such as BERT, and compare them against other set-ups. We find that using
pre-trained models has a limited or absent impact on post-OCR correction, while it greatly
helps for NER. These results underline how, despite the recent successes of pre-trained lan-
guage models, their use on historical collections should still be assessed critically according to
the data and the task at hand.

The quality and quantity of the available data is a significant limitation of our study, for
both tasks and especially for English. Curating and releasing high-quality shared tasks for the
community is a particularly important present and future contribution to make, as demon-
strated by recent, successful examples including SemEval2020 [50] and CLEF-HIPE-2020 [20].
Another related limitation is given by the choice to focus on only two tasks and three languages.
Future work should encompass a broader set of tasks and languages. Lastly, the current offer-
ing of language models pre-trained on historical texts is still very limited, its expansion in the
future should prove useful.

Limitations notwithstanding, our work might serve to dispel the illusion that plug-and-play
transfer learning with pre-trained language models will overcome all the challenges posed by
historical corpora. While practically useful in a variety of settings, pre-trained language models
also have their limitations. When considering the use of pre-trained language models, several
elements should be considered, including: a) does the complexity of the task at hand require
them, or would a simpler approach suffice? b) Does the task at hand benefits from modelling a
broader linguistic context (e.g., the sentence, the preceding and following sentences) or not? c)
How many data are available? Pre-trained language models are particularly helpful in tackling
complex tasks, benefiting from modelling a wider linguistic context, and when little or no
high-quality annotated data are available.

Data and code availability
Our code base is publicly available and described at https://doi.org/10.5281/zenodo.4033104.
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Appendix A Post-OCR Correction
A.1 Data
More details on the data split are given in Table 8. German and French are further split into
different sources depending on where the data is from. The corresponding ground truth for
these languages comes from initiatives such as HIMANIS [6], IMPACT [39], IMPRESSO [19]
and RECEIPT [3].

Language Subset File count Characters count
Total Trainset Testset

German

DE1 102 575 416 460 333 115 083
DE2 200 494 328 309 973 106 862
DE3 7623 10 018 258 8 014 606 2 003 652
DE4 321 509 757 407 806 101 951
DE5 654 818 711 654 969 163 742
DE6 773 935 014 748 011 187 003
DE7 415 527 845 422 276 105 569

English EN1 200 243 107 189 085 52 112

French
FR1 1172 2 792 067 2 233 654 558 413
FR2 200 227039 170 569 52 989
FR3 1968 742 574 594 059 148 515

Table 8
ICDAR 2019 data split.

For each document, there are three versions available: (i) OCR_toInput which is the OCRed
text, (ii) OCR_aligned which is the OCRed text aligned to the ground truth character by
character. Finally, (iii) GS_aligned contains the ground truth. An example from such a
structure is provided in Table 9.

Version Text
OCR_toInput sail sliort of that than they who
OCR_aligned sail sliort of that than they who@@@@@@@
GS_aligned fall s@hort of that than they who aspire

Table 9
ICDAR 2019 data sample.

ICDAR2017’s data come from several digital collections, including the National Library of
France (BnF) and the British Library (BL). The ground truth tokens come from BnF’s internal
projects and other initiatives such as Project Gutenberg1, Europoeana Newspapers, IMPACT
and Wikisource. OverProof data2 combines publications of historical newspapers coming from
the National Library of Australia’s Trove newspaper archive3 with randomly selected articles

1https://www.gutenberg.org.
2https://overproof.projectcomputing.com.
3https://trove.nla.gov.au.
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in the Library of Congress Chronicling America1. The service uses ABBYY’s FineReader OCR
texts published from 1842 to 1954.

A.2 Model fitting
In order to fine-tune the architecture and assess the impact of pre-trained embeddings, we
consider an extensive list of hyper-parameters for testing. The full list is shown in Table 10.
The configuration that we use to report results is summarised in Table 11.

Parameter name Value options

M
od

el
hy

pe
r-

pa
ra

m
et

er
s

use of newly trained encoder character embeddings yes/no
- newly trained encoder character embedding layer size 32/64/128
- newly trained encoder character embedding layer dropout 0/0.2/0.5/0.8
newly trained decoder character embedding layer size 32/64/128
newly trained decoder character embedding layer dropout 0/0.2/0.5/0.8
share encoder and decoder embedding layers yes/no
use of pre-trained (FastText) embeddings yes/no
use of pre-trained (BERT) embeddings yes/no
- weights usage type fine tune/freeze

- fine tune type from beginning/after initial convergence
- fine tune BERT learning rate same as global learning rate/1e−3/1e−4

Encoder GRU options
- hidden size 128/256/512/1024
- dropout 0/0.2/0.5/0.8
- directionality bi-directional/uni-directional
- number of layers 1/2/3
Decoder GRU options
- hidden size 128/256/512/1024
- dropout 0/0.2/0.5/0.8
- number of layers 1/2/3

Training Optimizer SGD/Adam/AdamW
- learning rate 1e−2/1e−3/1e−4/1e−5

Table 10
Post-OCR correction hyper-parameters.

We have two configuration sets related to newly trained embeddings due to having two
embedding layers – for the encoder and the decoder respectively. There is a special case in
which we only use one and we share it between the encoder and decoder. When used in the
decoder, the embedding layer does not consider pre-trained information since it works at the
character level.

If BERT embeddings are included in our configuration, we face similar decisions as mentioned
before, and we assess whether freezing the weights hinders performance compared to fine-
tuning them further. If we choose the latter, we additionally test two ways of fine-tuning:
from the beginning or, alternatively, after the encoder-decoder model has converged. Our
global learning rate is generally similar to the one used for fine-tuning BERT, but we keep the
option to configure those two separately and use a different one for the pre-trained partition.

1https://chroniclingamerica.loc.gov.
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Hyper-parameters Value
GRU encoder hidden size 512
GRU directionality bi-directional
GRU encoder dropout 0.5
GRU encoder number of layers 2
GRU decoder hidden size 512
GRU decoder dropout 0.5
GRU decoder number of layers 2
Share embedding layer yes
Newly trained embeddings size 128
Newly trained dropout 0.5
Optimizer AdamW
Learning rate 1e−4
Fine-tune learning rate 1e−4

Table 11
Post-OCR correction hyper-parameter configuration.

Due to using an encoder-decoder architecture, we have two distinct configuration sets for
the RNNs taking part in those. We assess a variety of hyper-parameters including: hidden
size, dropout, directionality and number of layers for each GRU. For the decoder, we keep a
uni-directional setup due to the specifics of working with a single character and therefore not
having any benefits from using two directions.

Finally, we assess a variety of optimisers including SGD, Adam and AdamW [47, 28, 37],
using AdamW in our reported results. We test out different learning rate values, keep the
momentum of SGD optimiser to its default value of 0 and set a weight decay of 1e−8 for all
optimisers. We also report the average convergence time of different models during training in
Table 12. As it can be seen, adding BERT entails a slower convergence speed, in particular if
BERT if fine-tuned.

Configuration English French German
Base 475.882 662.735 1560.595
Base + FT 475.494 735.93 1481.484
Base + BERT 710.549 1070.933 1593.157
Base + FT + BERT 659.277 1141.16 1873.405
+ Fine-tuning (unfreezing, from start) BERT
Base + BERT 1218.266 1292.461 3153.515
Base + FT + BERT 1300.52 1529.498 3064.282
+ Fine-tuning (unfreezing, after initial convergence) BERT
Base + BERT 990.149 1200.414 2639.135
Base + FT + BERT 1087.442 1570.694 2393.629

Table 12
Post-OCR convergence speed (averaged, in minutes).
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(a) French.

(b) German.

(c) English.
Figure 5: Levenshtein edit distance distribution comparing the raw OCR texts, the Base model and the best
model for each language. The bars are ordered, for each bin, from the smallest to the largest value, in order
to show them all.
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Appendix B Named Entity Recognition
B.1 Data
For each newspaper, articles were randomly sampled in order to (i) belong to the first years
of a set of predefined decades covering the life-span of the newspaper, and (ii) have a title,
have more than 50 characters, and belong to any page (no restriction to front pages only). For
each decade, the set of selected articles was additionally manually triaged in order to filter-out
non-journalistic contents such as ads. The time span of the whole dataset goes from 1790 until
2010 decades and the OCR quality varies according to time and archival material. Information
about the amount of tokens per decade and per language is shown in Figure 6. Additionally,
the amount of mentions, i.e., entity occurrences per decade are also shown in Figure 7. They
are broken down per coarse-grained type.

Figure 6: Amount of tokens per decade and language.

Figure 7: Amount of tag mentions per decade and tag.

Another important characteristic of the data is the abundance of non-entity tokens. More
specifically, percentage-wise tokens which are labelled as “Other” or O make up a considerable
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amount of the labels. We show the proportions of non-entity tokens for the training datasets
in Figure 8.

Figure 8: Non-entity tokens per language in the training datasets.

The annotation was made by native speakers using the INCEpTION annotation platform [29].
Annotators were first trained on a ‘mini-reference’ corpus consisting of 10 articles per language,
in order to ensure their understanding of the guidelines. Additionally, some items of the test
set, as well as randomly sampled items among the training and development sets, were double-
annotated and adjudicated.

To showcase all entity types and compare their properties, we visualise them in Table 13.
The data is released in IOB format (inside-outside-beginning format)1 which we also use during
training and evaluating. This format is derived in a similar fashion, following the CoNLL-U
format2

Full details and specifications about the dataset can be found in the original CLEF-HIPE-
2020 challenge participation guidelines [21].

B.2 Model fitting
We investigate how different configurations, embedding combinations and single- to multi-task
transition affects the performance of our model and of its components. To this end, we consider
an extensive set of hyper-parameters as listed in Table 14. The configurations we use to report
results are summarised in Table 15.

Pre-processing The input data is organised into documents, and each document is split into
multiple segments where usually one segment corresponds to one line in the original historical
source. The input can thus be split into segments or into documents. Using segments leads to
much faster convergence, while document splitting usually yields better results in our experi-
ments. We further analyse the importance of splitting by introducing a multi-segment option
which combines more than one consecutive segment. We pick the maximum length of one

1https://en.wikipedia.org/wiki/Inside–outside–beginning_(tagging)
2https://universaldependencies.org/format.html.
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Coarse-grained tag set Fine-grained tag set Metonymy applies Entity nesting applies

pers
pers.ind

yes yespers.coll
pers.ind.articleauthor

org
org.adm

yes yesorg.ent
org.ent.pressagency

prod prod.media yes noprod.doctr
time time.date.abs no no

loc

loc.add.elec

yes yes

loc.add.phys
loc.adm.town
loc.adm.reg
loc.adm.nat
loc.adm.sup
loc.phys.geo
loc.phys.hydro
loc.phys.astro
loc.oro
loc.fac
loc.unk no no

Table 13
NERC entity types comparison

multi-segment sequence to be the maximum length allowed by the HuggingFace Transformers
library. We do this purely for simplicity reasons and to avoid any unwanted noise. At docu-
ment level we overcome this limitation by splitting documents using a sliding window approach
where the first and last 5 tokens for each split are overlapping with the previous and next splits
respectively. We perform the cutting before extracting features through BERT after which we
concatenate the representations back. We take the average values for the overlapping tokens.
Finally, we replace all numbers with zeros, including such that contain more than one digit.
Besides, we do not lowercase, nor do we remove any punctuation or other characters.

Fine-tuning vs. freezing There are two possibilities when using pre-trained embeddings:
keep them frozen or fine-tuning. Fine-tuning the model lets us introduce two additional con-
figuration options. The first one is related to when to start fine-tuning. This is most often
performed at the beginning and until convergence. However, previous studies have shown [25]
that fine-tuning from the start might lead the model away from its main objective and thus
that the full model should converge first, with frozen pre-trained weights. After convergence,
the pre-trained weights are fine-tuned. This is something that we also investigate but find no
difference between the two approaches. We therefore fine-tune from the start in the reported
experiments with fine-tuning enabled.

Manually crafted features Following previous work [22], we assess the importance of manu-
ally crafted features. We use AllLower, AllUpper, IsTitle, IsNumeric, FirstLetterUpper,
FirstLetterNotUpper and NoAlphaNumeric as extra morphological features. When including
these features in the model, we do not get significant improvements.

337



Parameter name Value options

M
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r-
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amount of tag types simultaneously trained
one of 6 tags;
coarse(literal and metonymic);
fine(literal, metonymic, nested and component);
all 6 tags;

replace numbers during pre-processing yes/no
sequences split type segment/multi-segment/document
use of character embeddings yes/no
- characters embedding layer size 16/32/64/128
- characters RNN hidden size 16/32/64/128/256
use of newly trained sub-word embeddings yes/no
- newly trained sub-word embedding layer size 16/32/64/128
- newly trained sub-word embedding layer dropout 0/0.2/0.5/0.8
use of pre-trained (FastText) embeddings yes/no
use of pre-trained (BERT) embeddings yes/no
- weights usage type fine tune/freeze

- fine tune type from beginning/after initial convergence
- fine tune BERT learning rate same as global learning rate/1e−3/1e−4

LSTM options
- hidden size 128/256/512
- dropout 0/0.2/0.5/0.8
- directionality bi-directional/uni-directional
- number of layers 1/2
use of manually crafted features yes/no
use of weighted loss yes/no

Training Optimizer SGD/Adam/AdamW
- learning rate 1e−2/1e−3/1e−4

Table 14
NER hyper-parameters

Weighting As it is common with NERC tasks, most of the ground truth is composed of
outside or O tags. In our case, these make up for approximately 94.92%, 95.95%, and 96.5%
of the total tokens for English, French and German languages respectively. To counteract tag
imbalance, we test a weighted loss which we plug into the CRF layer, giving more weight to
tags predicted as outside ones but are in fact part of entities, and less on tokens which are
predicted as inside an entity but are actually outside. This weighted loss does not prove to be
beneficial.

Other hyper-parameters We assess a variety of optimizers including SGD, Adam and AdamW [47,
28, 37]. For the learning rate we see that higher values benefit the model more. When using
SGD, lower values tend to produce better results. We use a default value of 0 for momentum –
when using SGD – and pick a similar default value of 1e−8 for weight decay for all optimizers.

We observe a similar trend as for post-OCR correction in terms of converge speed when using
pre-trained information. Additionally, we investigate the speed when comparing a multi-task
versus a single-task setting. As expected, multi-task training is slower compared to a single-
task approach. Even more so, when using multi-segment split type, running six single-task
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Hyper-parameters Configuration I Configuration II Configuration III
RNN hidden size 512 256 512
RNN directionality bi-directional bi-directional bi-directional
RNN dropout 0.5/0.8 0.5/0.8 0.5/0.8
Newly trained embeddings size 64 64 64
Character embeddings size - 16 16
Character embeddings RNN hidden size - 32 32
Replace numbers during pre-processing yes yes yes
Weighted loss usage no no no
Optimizer AdamW AdamW AdamW
Learning rate 1e−2 1e−2 1e−2
Fine-tune learning rate 1e−4 1e−4 1e−4

Table 15
NER hyper-parameter configurations.
Configuration I is used for Base.
Configuration II is used for Base + CE + BERT and Base + CE + BERT - newly.
Configuration III is used for all remaining setups.

runs for each tag type takes about the same time as one multi-task but yields better results.
Exact numbers are reported in Table 16.

Configuration Time(minutes) Time(hours)
Multi-task (document) 347.1 5.78
Single-task (document) 144.15 2.4
Multi-task (multi-segment) 162.96 2.72
Single-task (multi-segment) 26.86 0.45

Table 16
NER convergence speed (averaged).
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