
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

grlc Makes GitHub Taste Like Linked Data APIs

Meroño-Peñuela, A.; Hoekstra, R.

Publication date
2016
Document Version
Final published version
Published in
SALAD 2016 : Services and Applications over Linked APIs and Data

Link to publication

Citation for published version (APA):
Meroño-Peñuela, A., & Hoekstra, R. (2016). grlc Makes GitHub Taste Like Linked Data APIs.
In M. Maleshkova, R. Verborgh, & F. L. Keppmann (Eds.), SALAD 2016 : Services and
Applications over Linked APIs and Data: Proceedings of the 4th Workshop on Services and
Applications over Linked APIs and Data, co-located with the 13th Extended Semantic Web
Conference (ESWC 2016) : Crete, Greece, May 29, 2016 [7] (CEUR Workshop Proceedings;
Vol. 1629). CEUR-WS. http://ceur-ws.org/Vol-1629/paper7.pdf

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:11 Feb 2023

https://dare.uva.nl/personal/pure/en/publications/grlc-makes-github-taste-like-linked-data-apis(07dc7f11-ed19-4b15-a479-b51026ed973c).html
http://ceur-ws.org/Vol-1629/paper7.pdf


grlc Makes GitHub Taste Like Linked Data APIs

Albert Meroño-Peñuela1,2 and Rinke Hoekstra1,3

1 Department of Computer Science, Vrije Universiteit Amsterdam, NL
{albert.merono,rinke.hoekstra}@vu.nl

2 Data Archiving and Networked Services, KNAW, NL
3 Faculty of Law, University of Amsterdam, NL

Abstract. Building Web APIs on top of SPARQL endpoints is becom-
ing a common practice to enable universal access to the integration fa-
vorable dataspace of Linked Data. However, the Linked Data community
cannot expect users to learn SPARQL to query this dataspace, and Web
APIs are the most common way of enabling programmatic access to data
on the Web. However, the implementation of Web APIs around Linked
Data is often a tedious and repetitive process. Recent work speeds up this
Linked Data API construction by wrapping it around SPARQL queries,
which carry out the API functionality under the hood. Inspired by this, in
this paper we present grlc, a lightweight server that translates SPARQL
queries curated in GitHub repositories to Linked Data APIs on the fly.

Keywords: SPARQL, git, GitHub, Linked Data APIs

1 Introduction

Despite their known benefits for data integration, the Linked Data technologies
of RDF and SPARQL still operate in a niche. There is a gap with what aver-
age Web-applications and developers have come to expect. RDF and SPARQL
remain relatively unknown to the wider Web community, albeit being still a re-
quirement to access Linked Data. Both have steep learning curves that many
developers refuse to face. The W3C specification of SPARQL 1.1 has a limited
adoption even within the Linked Data community [14]. Linked Data APIs4 have
emerged as a solution to this problem, proposing the deployment of Web APIs
on top of Linked Data resources, e.g. as an interface to SPARQL endpoints. This
use of APIs to apply the basic principle of encapsulation, and their deployment
in large scale Linked Data applications [4], has proved to solve this problem.

However, the construction of these APIs by Linked Data developers is still a
cumbersome task. The deployment of effective Linked Data APIs requires careful
management of SPARQL queries, reliable storage, abundant documentation, and
the overhead of software maintenance. The latter has been recently addressed by
Daga et al. [1], who propose a system that builds API operations automatically
by taking a SPARQL query and an endpoint location as input. However, the
question of how to effectively store and organise such API-translated SPARQL

4https://github.com/UKGovLD/linked-data-api

grlc
https://github.com/UKGovLD/linked-data-api


queries remains. As shown in this paper, users require organised APIs that adapt
to their existing query curation workflows. This requires a paradigm shift where
not just the data, but the queries themselves also become first class citizens.

In recent Linked Data projects such as CEDAR [9] and CLARIAH-SDH [6]
we followed a practice of storing, curating, and publishing illustrative SPARQL
queries of their use cases using GitHub repositories. These queries are then used
by various client applications to access Linked Data. In this paper, we investigate
how the current practice of curating queries in open GitHub repositories can be
decoupled from, and used to lower the costs of, constructing APIs for Linked
Data applications. Concretely, the contributions of this paper are:
– A mapping specification between the Swagger RESTful API, and SPARQL

query repositories accessible through the GitHub API
– A decorator syntax to enrich SPARQL queries in git repositories with meta-

data about their intended use (Section 3.2)
– A description of the grlc service, that automatically exposes such enriched

SPARQL queries in GitHub repositories as Linked Data APIs (Section 4)
As for the rest of the paper, we survey relevant related work in Section 2,

evaluate our approach in two use cases in Section 5, and conclude in Section 6.

2 Related Work

The organization and management of SPARQL queries is central to the study of
their efficiency, nature, and use at improving Linked Data applications. SPARQL
query logs have been used to study differences between queries by humans and
machines [11]. These logs are also useful to understand semantic relatedness
of queried entities [7]. Saleem et al. [12] propose to “create a Linked Dataset
describing the SPARQL queries issued to various public SPARQL endpoints”. To
the best of our knowledge, no previous work addresses the use of collaborative
code platforms to ease deployment of Web APIs.

The Semantic Web has developed significant work on the relationship be-
tween the Linked Data and Web Services [3,10]. In [13], authors propose to
expose REST APIs as Linked Data. These approaches suggest the use of Linked
Data technology on top of Web services. Our work is related to results in the
opposite direction, concretely the Linked Data API specification5 and the W3C
Linked Data Platform 1.0 specification, which “describes the use of HTTP for
accessing, updating, creating and deleting resources from servers that expose
their resources as Linked Data”6. The OpenPHACTS Discovery Platform for
pharmacological data [4], and the BASIL server [1], which also builds Linked
Data APIs compliant with the Swagger RESTful API specification7, are work
we directly build on. Our contribution proposes additional decoupling of Linked
Data APIs with SPARQL query curation infrastructures, in order to lower the
costs of building and maintaining such APIs.

5https://github.com/UKGovLD/linked-data-api
6https://www.w3.org/TR/2015/REC-ldp-20150226/
7https://github.com/OAI/OpenAPI-Specification

2

https://github.com/UKGovLD/linked-data-api
https://www.w3.org/TR/2015/REC-ldp-20150226/
https://github.com/OAI/OpenAPI-Specification


3 From GitHub Repos to Linked Data APIs

It is becoming increasingly popular to maintain a great variety of data projects
beyond software code using git repositories, especially those in GitHub8 [8].
For example, we have used GitHub to store important SPARQL queries and
templates for the CEDAR and CLARIAH projects. This has brought two key
outcomes for these projects. First, it has contributed a better maintainability of
the life cycle of SPARQL queries. By leveraging git features and GitHub’s in-
frastructure, queries become easily reusable (since they get unique, dereference-
able URIs), their provenance better traceable [2], their development (through
frictionless branching) less error-prone, and their versioning trivial. Second, it
lowers coupling between SPARQL queries and applications, by separating their
workflows while keeping queries accessible. Consequently, these queries are less
frequently hard-coded and retyped. The idea behind grlc is to use this decou-
pling to simplify the infrastructure of building and exposing Linked Data APIs.

This section investigates how the organisational characteristics of GitHub
repositories can be used to build, manage and maintain a Swagger-spec compli-
ant API. First, in Section 3.1 we study the requirements of Swagger-compliant
APIs and map them to elements of the GitHub API. Since these elements are
insufficient for a complete API spec, in Section 3.2 we propose to complete it
with non-intrusive SPARQL decorators.

3.1 Mapping Swagger and GitHub

We propose to align the metaphor of the repository with that of the API, since
both share abstract notions of organizing files and operations in a way that is
meaningful for their users. For this reason, in this section we study a possible
mapping between the two. Table 1 shows the mapping between the attribute re-
quirements of the Swagger RESTful API specification, and how these correspond
with either attributes of the GitHub API (repository organisation elements) or
attributes of the SPARQL usage decorator (usage metadata elements). The lat-
ter are discussed in Section 3.2.

3.2 SPARQL Decorators

To complete the mapping of the GitHub API to the Swagger RESTful API
specification shown in Table 1, we propose SPARQL decorators to add metadata
in queries as comments. We assume SPARQL queries organised as .rq files in git
repositories. Each of these files will translate into an API operation. We propose
to comment them in the first file lines, with the syntax depicted in the following
example9:

8https://github.com/
9Additional examples can be found at https://github.com/CEDAR-project/

Queries and https://github.com/CLARIAH/wp4-queries

3

grlc
https://github.com/
https://github.com/CEDAR-project/Queries
https://github.com/CEDAR-project/Queries
https://github.com/CLARIAH/wp4-queries


Swagger
attribute

Scope Description Mapping

Swagger version API Version number of com-
pliant Swagger RESTful
API specification

Static: independent of the LDA.
Currently version 2.0 of the Swag-
ger RESTful API spec is sup-
ported

API version API Version number of the
API

GitHub API: last repo release
from the release API through
GET /repos/:owner/:repo/releases/
latest

Title API Title of the API GitHub API: name of the repos-
itory through GET /repos/:owner/:
repo

Contact name API Author and contact in-
formation

GitHub API: login name of
the repository owner through GET
/repos/:owner/:repo

Contact URL API URL to be followed for
additional information

GitHub API: link to the HTML
page of the repository owner
through GET /repos/:owner/:repo

License API License under which the
API is released

Repository file: a link to the raw
LICENSE file of the repo if it exists;
empty otherwise

Host API Host name to compose
the API calls

grlc parameter: supplied host
name in grlc’s configuration;
localhost by default

Base path API Base path to compose
the API calls

GitHub API: the string /:
owner/:repo in GET /repos/:owner/:
repo

Schemes API Supported schemes to
compose the API calls

Static: http is supported

Path name Operation Name of the API opera-
tion

GitHub API: the file name, with-
out the extension, of any .rq file
found in the repository

Path method Operation HTTP method for the
operation (GET, POST)

Static: GET is supported

Path tags Operation Tags under which the
operation will be classi-
fied

SPARQL decorator: the parsed
list of the decorator tags in .rq
files

Path description Operation Description of the API
operation

SPARQL decorator: the parsed
description decorator in .rq files

Path parameters Operation Parameters of the oper-
ation

SPARQL decorator: all param-
eter placeholders parsed in the
query (see Section 4)

Path responses Operation Responses of the opera-
tion

SPARQL decorator: response
codes on success, datatypes of pa-
rameters (see Section 4)

Table 1. Mappings between the Swagger RESTful API and the GitHub API/SPARQL
decorators. Such decorators, and the query itself, are parsed through accessing any
file with the extension .rq in the repo via GET raw.githubusercontent.com/:owner/:
repo/master/

4

GET
/repos/:owner/:repo/releases/latest
/repos/:owner/:repo/releases/latest
GET
/repos/:owner/:repo
/repos/:owner/:repo
GET
/repos/:owner/:repo
GET
/repos/:owner/:repo
/:owner/:repo
/:owner/:repo
GET
/repos/:owner/:repo
/repos/:owner/:repo
http
.rq
GET
POST
GET
.rq
.rq
.rq
GET
raw.githubusercontent.com/:owner/:repo/master/
raw.githubusercontent.com/:owner/:repo/master/


#+ summary: A brief summary of what the query does
#+ endpoint: http://example.org/sparql
#+ tags:
#+ - UseCase1
#+ - Awesomeness

This indicates the summary of the query (which will document the API oper-
ation), the endpoint to send the query, and the tags under which the operation
falls in. The latter helps to keep operations organized within the API. In ad-
dition, we suggest to include two special files in the repository. The first is a
LICENSE file containing the license for the SPARQL queries and the API. The
second is the endpoint.txt file, with the URI of a default endpoint to direct
all queries of the repository. When parsing the repository (see Section 4) the
target endpoint will be the one indicated by the #+ endpoint decorator, the
endpoint.txt file, or http://dbpedia.org/sparql, in this order of preference.

4 grlc

grlc10 is a thin gateway that automatically builds complete, well documented,
and neatly organized Linked Data APIs on the fly, with no input required from
users beyond a GitHub user and repository name. To do so, it implements the
GitHub API mappings proposed in Section 3.1, and uses the SPARQL decora-
tors described in Section 3.2. It provides three basic operations: (1) generates
the Swagger spec of a specified GitHub repository; (2) generates the Swagger UI
to provide an interactive user-facing frontend of the API contents; and (3) trans-
lates http requests to call the operations of the API against a SPARQL endpoint
with several parameters. If the GitHub repository at https://github.com/:
owner/:repo contains decorated SPARQL queries, grlc uses these, together
with organisational repo information from the GitHub API, to build the API in-
terface automatically. Assuming that grlc is running in :host, these operations
are available at the following routes:
– http://:host/:owner/:repo/spec: JSON Swagger-compliant specification,

using the mappings of Section 3
– http://:host/:owner/:repo/api-docs: Swagger-UI, rendered using such

mappings, as shown in Figure 1.
– http://:host/:owner/:repo/:operation?p_1=v_1...p_n=v_n: http GET re-

quest to :operation with parameters p1, ..., pn taking values v1, ..., vn.
grlc composes the Swagger spec as follows: (1) the user requests the URI

http://:host/:owner/:repo/spec11 to a host running grlc; (2) grlc issues
the http GET request to the GitHub API at https://api.github.com/repos/:
owner/:repo, using the owner and repo names indicated in the previous step;
(3) for each .rq file described in the response, grlc derefences https://raw.
githubusercontent.com/:owner/:repo/master/file.rq to get the SPARQL
file contents; (3) grlc parses these file contents to extract: (a) the values of

10Source code at https://github.com/CLARIAH/grlc; demo instance at http://
grlc.clariah-sdh.eculture.labs.vu.nl/

11Requested from any http compliant client: a Web browser, curl, etc.

5

http://dbpedia.org/sparql
grlc
http
https://github.com/:owner/:repo
https://github.com/:owner/:repo
grlc
grlc
:host
http://:host/:owner/:repo/spec
http://:host/:owner/:repo/api-docs
http://:host/:owner/:repo/:operation?p_1=v_1...p_n=v_n
http
GET
:operation
grlc
http://:host/:owner/:repo/spec
grlc
grlc
http
GET
https://api.github.com/repos/:owner/:repo
https://api.github.com/repos/:owner/:repo
.rq
grlc
https://raw.githubusercontent.com/:owner/:repo/master/file.rq
https://raw.githubusercontent.com/:owner/:repo/master/file.rq
grlc
https://github.com/CLARIAH/grlc
http://grlc.clariah-sdh.eculture.labs.vu.nl/
http://grlc.clariah-sdh.eculture.labs.vu.nl/
http
curl


Fig. 1. Screenshot of the Swagger user interface generated by grlc.

the decorators (if any), and (b) any parameter placeholders in the query; (4)
grlc uses all the gathered data to compose the Swagger spec, and returns it
to the client as JSON. The composition of the Swagger UI is analogous: first
the JSON spec is composed and, after, it is used to render the Swagger UI
template12.

Operations of the form http://:host/:owner/:repo/:operation?p_1=v_1.
..p_n=v_n, are executed by grlc by first retrieving the raw query at https://
raw.githubusercontent.com/:owner/:repo/master/:operation.rq, and then
rewriting it using the parameter values supplied in the corresponding placehold-
ers.13. After this, the query is submitted to the endpoint indicated by the meth-
ods described in Section 3.2, using supplied http headers (e.g. content-type).
The endpoint results are forwarded to the client application.

5 Preliminary Evaluation

In this section we evaluate requirements satisfied by grlc in two use cases.
Dutch Historical Census Data. The CEDAR project14 has published the

Dutch historical censuses (1795–1971) as 5-star Linked Data [9]. Key queries and
templates to interrogate this dataset are available at GitHub15. These queries
are used in various client applications16,17. Before grlc, we decided to imple-

12https://github.com/swagger-api/swagger-ui
13grlc is compliant with BASIL’s convention for Web API parame-

ters mapping, see https://github.com/the-open-university/basil/wiki/
SPARQL-variable-name-convention-for-WEB-API-parameters-mapping

14http://www.cedar-project.nl/
15https://github.com/CEDAR-project/Queries
16YASGUI-based browsing: http://lod.cedar-project.nl/cedar/data.html
17Drawing historical maps with census data: http://lod.cedar-project.nl/maps/

map_CEDAR_women_1899.html

6

grlc
grlc
http://:host/:owner/:repo/:operation?p_1=v_1...p_n=v_n
http://:host/:owner/:repo/:operation?p_1=v_1...p_n=v_n
grlc
https://raw.githubusercontent.com/:owner/:repo/master/:operation.rq
https://raw.githubusercontent.com/:owner/:repo/master/:operation.rq
http
grlc
grlc
https://github.com/swagger-api/swagger-ui
grlc
https://github.com/the-open-university/basil/wiki/SPARQL-variable-name-convention-for-WEB-API-parameters-mapping
https://github.com/the-open-university/basil/wiki/SPARQL-variable-name-convention-for-WEB-API-parameters-mapping
http://www.cedar-project.nl/
https://github.com/CEDAR-project/Queries
http://lod.cedar-project.nl/cedar/data.html
http://lod.cedar-project.nl/maps/map_CEDAR_women_1899.html
http://lod.cedar-project.nl/maps/map_CEDAR_women_1899.html


ment a minimal effort Web API using our own instance of BASIL18. However,
the queries needed to be retyped in the system, and caused ramifications with
respect to the ones in our existing applications. Moreover, it was not possible to
mimic the organisation these queries had in the original GitHub repo in the API
spec. After grlc, we could create this API without interfering with the original
applications and queries, effectively reusing them. Furthermore, grlc permitted
an ecosystem where SPARQL and non-SPARQL savvy applications coexist.

Born Under a Bad Sign. In CLARIAH19, querying structured humanities
data from combined sources is central. This particular use case focuses on vali-
dating the hypothesis that prenatal and early-life conditions have a strong impact
on socioeconomic and health outcomes later in life, by using 1891 census records
of Canada and Sweden. These were converted to Linked Data with QBer [6], and
analyzed in the statistical environment R. Before grlc, loading the data to be
analyzed implied the manual download of a SPARQL query resultset in a file,
and then loading this file in R. This was mitigated with the R SPARQL pack-
age [5]. However, this resulted in hard-coded, hardly reusable, and difficult to
maintain queries. After better organising these queries in a GitHub repository,
an API using them became immediately available through grlc. The R code
became clearer due to the decoupling with SPARQL; and shorter, since a curl
one-liner calling a grlc enabled API operation sufficed to retrieve the data.

6 Conclusion and Future Work

In this paper we have presented grlc, a novel approach to automatically build
Linked Data APIs by using SPARQL queries stored and documented in git repos-
itories. Our approach addresses two pitfalls of current practice in constructing
Linked Data APIs: (1) the coupling of SPARQL curation workflows and the
API infrastructure, which hampers query reuse and forces query retyping and
ramifications; and (2) the common lack of organisation in Linked Data APIs.
grlc maps the Swagger specification with GitHub API features and a proposed
SPARQL decorator notation, and builds and maintains Linked Data APIs au-
tomatically with minimal effort. We argue that this approach enables a better
coexistence of SPARQL and non-SPARQL savvy applications, and allows devel-
opers to switch their efforts from API infrastructure to applications.

We plan to extend this work in several ways. First, we will support additional
repository elements and SPARQL decorators. Second, we will add compatibility
with other collaborative coding platforms, like Bitbucket and GitLab, enabling
private APIs and authentication. Finally, we plan to create a grlc companion
to facilitate the curation of SPARQL queries in git repositories.

18https://github.com/the-open-university/BASIL
19http://clariah.nl/

7

grlc
grlc
grlc
grlc
grlc
grlc
grlc
grlc
https://github.com/the-open-university/BASIL
http://clariah.nl/


References

1. Daga, E., Panziera, L., Pedrinaci, C.: A BASILar Approach for Building Web APIs
on top of SPARQL Endpoints. In: Services and Applications over Linked APIs and
Data – SALAD2015 (ISWC 2015). vol. 1359. CEUR Workshop Proceedings (2015),
http://ceur-ws.org/Vol-1359/

2. De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens, E.,
Van de Walle, R.: Git2PROV: Exposing version control system content as W3C
PROV. In: Poster and Demo Proceedings of the 12th International Semantic Web
Conference (Oct 2013), http://www.iswc2013.semanticweb.org/sites/default/
files/iswc_demo_32_0.pdf

3. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures (2000)

4. Groth, P., Loizou, A., Gray, A.J., Goble, C., Harland, L., Pettifer, S.: API-
centric Linked Data integration: The Open PHACTS Discovery Platform case
study. Web Semantics: Science, Services and Agents on the World Wide Web
29(0), 12 – 18 (2014), http://www.sciencedirect.com/science/article/pii/
S1570826814000195, life Science and e-Science

5. van Hage, W.R., with contributions from: Tomi Kauppinen, Graeler, B., Davis,
C., Hoeksema, J., Ruttenberg, A., Bahls., D.: SPARQL: SPARQL client (2013),
http://CRAN.R-project.org/package=SPARQL, R package version 1.15

6. Hoekstra, R., Meroño-Peñuela, A., Dentler, K., Rijpma, A., Zijdeman, R., Zand-
huis, I.: An Ecosystem for Linked Humanities Data. In: Proceedings of the 1st
Workshop on Humanities in the Semantic Web (WHiSe 2016), ESWC 2016 (2016),
under review

7. Huelss, J., Paulheim, H.: The Semantic Web: ESWC 2015 Satellite Events, chap.
What SPARQL Query Logs Tell and Do Not Tell About Semantic Relatedness in
LOD, pp. 297–308. Springer International Publishing, Cham (2015), http://dx.
doi.org/10.1007/978-3-319-25639-9_44

8. McMillan, R.: From Collaborative Coding to Wedding Invitations: GitHub Is Going
Mainstream. Wired Magazine (2013, February 9), http://www.wired.com/2013/
09/github-for-anything/all

9. Meroño-Peñuela, A., Guéret, C., Ashkpour, A., Schlobach, S.: CEDAR: The Dutch
Historical Censuses as Linked Open Data. Semantic Web – Interoperability, Us-
ability, Applicability (2015), in press

10. Pedrinaci, C., Domingue, J.: Toward the next wave of services: Linked Services for
the Web of data. Journ. of Universal Computer Science 16(13), 1694––1719 (2010)

11. Rietveld, L., Hoekstra, R.: Man vs. Machine: Differences in SPARQL Queries. In:
Proceedings of the 4th USEWOD Workshop on Usage Analysis and the Web of
of Data, ESWC 2014 (2014), http://usewod.org/files/workshops/2014/papers/
rietveld_hoekstra_usewod2014.pdf

12. Saleem, M., Ali, M.I., Mehmood, Q., Hogan, A., Ngomo, A.C.N.: LSQ: Linked
SPARQL Queries Dataset. In: The Semantic Web - ISWC 2015. LNCS, vol. 9367,
pp. 261–269. Springer

13. Speiser, S., Harth, A.: Integrating linked data and services with linked data ser-
vices. In: The Semantic Web: Research and Applications. pp. 170––184. Springer
(2011)

14. Vandenbussche, P.Y., Aranda, C.B., Hogan, A., Umbrich, J.: Monitoring the Status
of SPARQL Endpoints. In: Proceedings of the ISWC 2013 Posters and Demonstra-
tions Track, 12th International Semantic Web Conference (ISWC 2013). pp. 81–84.
CEUR-WS (2013)

8

http://ceur-ws.org/Vol-1359/
http://www.iswc2013.semanticweb.org/sites/default/files/iswc_demo_32_0.pdf
http://www.iswc2013.semanticweb.org/sites/default/files/iswc_demo_32_0.pdf
http://www.sciencedirect.com/science/article/pii/S1570826814000195
http://www.sciencedirect.com/science/article/pii/S1570826814000195
http://CRAN.R-project.org/package=SPARQL
http://dx.doi.org/10.1007/978-3-319-25639-9_44
http://dx.doi.org/10.1007/978-3-319-25639-9_44
http://www.wired.com/2013/09/github-for-anything/all
http://www.wired.com/2013/09/github-for-anything/all
http://usewod.org/files/workshops/2014/papers/rietveld_hoekstra_usewod2014.pdf
http://usewod.org/files/workshops/2014/papers/rietveld_hoekstra_usewod2014.pdf

	grlc Makes GitHub Taste Like Linked Data APIs

